top of page

MATEMÁTICA PURA

Disciplina: Geometria Diferencial

(Cilindro e Helicóide)

Exemplo da interseção de um Cilindro e um Helicóide No caso, uma superfície transpassando a outra, dando origem a uma CURVA FECHADA no Espaço Tridimensional R³.

 

Todavia, em que não há o transpasse completo, o resultante da interseção das duas superfícies dá origem a duas curvas: uma de entrada e a outra de saída.

  

Parametrizações: F(u, v)=(3 Cos(u), 3 Sen(u), v)

                          G(r, s)=(s Cos(r), s Sen(r), r)

Logo, disponibilizaremos o Programa Executável (um arquivo de extensão “.exe”) acessado num Botão-Menu a ser denominado “Programa Executável”! Este Programa possibilitará a obtenção da interseção de quaisquer Superfícies Parametrizadas Regulares (uma Função F: R² em R³ dada por F(u,v)=(x(u,v);y(u,v);z(u,v)) e G(u,v) as quais possuem Derivadas em todo ponto e diferentes de Zero, isto é, que possuem Plano Tangente nesse ponto.

Na verdade, definimos uma Superfície Parametrizada Regular ou simplesmente uma superfície sendo uma aplicação

F:UСR² → R³, U subconjunto aberto de R², tal que

a) F é diferenciável de classe C (isto é, quando as funções x(u,v); y(u,v); e z(u,v) possuem derivadas parciais de todas as ordens contínuas;

 

b) Para todo ponto q=(u,v) ϵ U, a diferencial de F em q denotada por dFq:R² R³ é injetora (ou equivalente: que possui Plano Tangente neste ponto q.

_____________

 

Melhoraremos a notação por conta de nosso EDITOR DE TEXTO não ser muito amigável com SUBSCRITOS e SOBRESCRITOS e SÍMBOLOS. Também, em Geometria Diferencial daremos uma definição alternativa (Equivalente) de F ser Regular.

  A partir de 14 Jun de 2018

Você é o Visitante de Número

bottom of page