6.252 NONLINEAR PROGRAMMING

LECTURE 10

ALTERNATIVES TO GRADIENT PROJECTION

LECTURE OUTLINE

- Three Alternatives/Remedies for Gradient Projection
- Two-Metric Projection Methods
- Manifold Suboptimization Methods
- Affine Scaling Methods

Scaled GP method with scaling matrix $H^{k}>0$:

$$
\begin{gathered}
x^{k+1}=x^{k}+\alpha^{k}\left(\bar{x}^{k}-x^{k}\right), \\
\bar{x}^{k}=\arg \min _{x \in X}\left\{\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2 s^{k}}\left(x-x^{k}\right)^{\prime} H^{k}\left(x-x^{k}\right)\right\} .
\end{gathered}
$$

- The QP direction subproblem is complicated by:
- Difficult inequality (e.g., nonorthant) constraints
- Nondiagonal H^{k}, needed for Newton scaling

THREE WAYS TO DEAL W/ THE DIFFICULTY

- Two-metric projection methods:

$$
x^{k+1}=\left[x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)\right]^{+}
$$

- Use Newton-like scaling but use a standard projection
- Suitable for bounds, simplexes, Cartesian products of simple sets, etc
- Manifold suboptimization methods:
- Use (scaled) gradient projection on the manifold of active inequality constraints
- Each QP subproblem is equality-constrained
- Need strategies to cope with changing active manifold (add-drop constraints)
- Affine Scaling Methods
- Go through the interior of the feasible set
- Each QP subproblem is equality-constrained, AND we don't have to deal with changing active manifold

TWO-METRIC PROJECTION METHODS

- In their simplest form, apply to constraint: $x \geq 0$, but generalize to bound and other constraints
- Like unconstr. gradient methods except for [.]+

$$
x^{k+1}=\left[x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)\right]^{+}, \quad D^{k}>0
$$

- Major difficulty: Descent is not guaranteed for D^{k} : arbitrary

- Remedy: Use D^{k} that is diagonal w/ respect to indices that "are active and want to stay active"

$$
I^{+}\left(x^{k}\right)=\left\{i \mid x_{i}^{k}=0, \partial f\left(x^{k}\right) / \partial x_{i}>0\right\}
$$

PROPERTIES OF 2-METRIC PROJECTION

- Suppose D^{k} is diagonal with respect to $I^{+}\left(x^{k}\right)$, i.e., $d_{i j}^{k}=0$ for $i, j \in I^{+}\left(x^{k}\right)$ with $i \neq j$, and let

$$
x^{k}(a)=\left[x^{k}-\alpha D^{k} \nabla f\left(x^{k}\right)\right]^{+}
$$

- If x^{k} is stationary, $x^{k}=x^{k}(\alpha)$ for all $\alpha>0$.
- Otherwise $f(x(\alpha))<f\left(x^{k}\right)$ for all sufficiently small $\alpha>0$ (can use Armijo rule).
- Because $I^{+}(x)$ is discontinuous w/ respect to x, to guarantee convergence we need to include in $I^{+}(x)$ constraints that are " ϵ-active" [those w/ $x_{i}^{k} \in[0, \epsilon]$ and $\left.\partial f\left(x^{k}\right) / \partial x_{i}>0\right]$.
- The constraints in $I^{+}\left(x^{*}\right)$ eventually become active and don't matter.
- Method reduces to unconstrained Newton-like method on the manifold of active constraints at x^{*}.
- Thus, superlinear convergence is possible w/ simple projections.

MANIFOLD SUBOPTIMIZATION METHODS

- Feasible direction methods for

$$
\min f(x) \quad \text { subject to } a_{j}^{\prime} x \leq b_{j}, \quad j=1, \ldots, r
$$

- Gradient is projected on a linear manifold of active constraints rather than on the entire constraint set (linearly constrained QP).

(b)
- Searches through sequence of manifolds, each differing by at most one constraint from the next.
- Potentially many iterations to identify the active manifold; then method reduces to (scaled) steepest descent on the active manifold.
- Well-suited for a small number of constraints, and for quadratic programming.

OPERATION OF MANIFOLD METHODS

- Let $A(x)=\left\{j \mid a_{j}^{\prime} x=b_{j}\right\}$ be the active index set at x. Given x^{k}, we find

$$
d^{k}=\arg \min _{a_{j}^{\prime} d=0, j \in A\left(x^{k}\right)} \nabla f\left(x^{k}\right)^{\prime} d+\frac{1}{2} d^{\prime} H^{k} d
$$

- If $d^{k} \neq 0$, then d^{k} is a feasible descent direction. Perform feasible descent on the current manifold.
- If $d^{k}=0$, either (1) x^{k} is stationary or (2) we enlarge the current manifold (drop an active constraint). For this, use the scalars μ_{j} such that

$$
\nabla f\left(x^{k}\right)+\sum_{j \in A\left(x^{k}\right)} \mu_{j} a_{j}=0
$$

If $\mu_{j} \geq 0$ for all j, x^{k} is
 stationary, since for all feasible $x, \nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)$ is equal to

$$
-\sum_{j \in A\left(x^{k}\right)} \mu_{j} a_{j}^{\prime}\left(x-x^{k}\right) \geq 0
$$

Else, drop a constraint j with $\mu_{j}<0$.

AFFINE SCALING METHODS FOR LP

- Focus on the LP $\min _{A x=b, x \geq 0} c^{\prime} x$, and the scaled gradient projection $x^{k+1}=x^{k}+\alpha^{k}\left(\bar{x}^{k}-x^{k}\right)$, with
$\bar{x}^{k}=\arg \min _{A x=b, x \geq 0} c^{\prime}\left(x-x^{k}\right)+\frac{1}{2 s^{k}}\left(x-x^{k}\right)^{\prime} H^{k}\left(x-x^{k}\right)$
- If $x^{k}>0$ then $\bar{x}^{k}>0$ for s^{k} small enough, so $\bar{x}^{k}=x^{k}-s^{k}\left(H^{k}\right)^{-1}\left(c-A^{\prime} \lambda^{k}\right)$ with

$$
\lambda^{k}=\left(A\left(H^{k}\right)^{-1} A^{\prime}\right)^{-1} A\left(H^{k}\right)^{-1} c
$$

Lumping s^{k} into α^{k} :

$$
x^{k+1}=x^{k}-\alpha^{k}\left(H^{k}\right)^{-1}\left(c-A^{\prime} \lambda^{k}\right),
$$

where α^{k} is small enough to ensure that $x^{k+1}>0$

Importance of using timevarying H^{k} (should bend $\bar{x}^{k}-x^{k}$ away from the boundary)

AFFINE SCALING

- Particularly interesting choice (affine scaling)

$$
H^{k}=\left(X^{k}\right)^{-2},
$$

where X^{k} is the diagonal matrix having the (positive) coordinates x_{i}^{k} along the diagonal:
$x^{k+1}=x^{k}-\alpha^{k}\left(X^{k}\right)^{2}\left(c-A^{\prime} \lambda^{k}\right), \lambda^{k}=\left(A\left(X^{k}\right)^{2} A^{\prime}\right)^{-1} A\left(X^{k}\right)^{2} c$

- Corresponds to unscaled gradient projection iteration in the variables $y=\left(X^{k}\right)^{-1} x$. The vector x^{k} is mapped onto the unit vector $y^{k}=(1, \ldots, 1)$.

- Extensions, convergence, practical issues.

