
6.252 NONLINEAR PROGRAMMING

LECTURE 10

ALTERNATIVES TO GRADIENT PROJECTION

LECTURE OUTLINE

• Three Alternatives/Remedies for Gradient Pro-
jection

− Two-Metric Projection Methods

− Manifold Suboptimization Methods

− Affine Scaling Methods

Scaled GP method with scaling matrix Hk > 0:

xk+1 = xk + αk(xk − xk),

xk = arg min
x∈X

{
∇f(xk)′(x − xk) +

1

2sk
(x − xk)′Hk(x − xk)

}
.

• The QP direction subproblem is complicated by:

− Difficult inequality (e.g., nonorthant) constraints

− Nondiagonal Hk, needed for Newton scaling



THREE WAYS TO DEAL W/ THE DIFFICULTY

• Two-metric projection methods:

xk+1 =
[
xk − αkDk∇f(xk)

]+

− Use Newton-like scaling but use a standard
projection

− Suitable for bounds, simplexes, Cartesian
products of simple sets, etc

• Manifold suboptimization methods:

− Use (scaled) gradient projection on the man-
ifold of active inequality constraints

− Each QP subproblem is equality-constrained

− Need strategies to cope with changing active
manifold (add-drop constraints)

• Affine Scaling Methods

− Go through the interior of the feasible set

− Each QP subproblem is equality-constrained,
AND we don’t have to deal with changing ac-
tive manifold



TWO-METRIC PROJECTION METHODS

• In their simplest form, apply to constraint: x ≥ 0,
but generalize to bound and other constraints

• Like unconstr. gradient methods except for [·]+

xk+1 =
[
xk − αkDk∇f(xk)

]+
, Dk > 0

• Major difficulty: Descent is not guaranteed for
Dk: arbitrary
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• Remedy: Use Dk that is diagonal w/ respect to
indices that “are active and want to stay active”

I+(xk) =
{

i
∣∣∣ xk

i = 0, ∂f(xk)/∂xi > 0
}



PROPERTIES OF 2-METRIC PROJECTION

• Suppose Dk is diagonal with respect to I+(xk),
i.e., dk

ij = 0 for i, j ∈ I+(xk) with i �= j, and let

xk(a) =
[
xk − αDk∇f(xk)

]+

− If xk is stationary, xk = xk(α) for all α > 0.

− Otherwise f
(
x(α)

)
< f(xk) for all sufficiently

small α > 0 (can use Armijo rule).

• Because I+(x) is discontinuous w/ respect to
x, to guarantee convergence we need to include
in I+(x) constraints that are “ε-active” [those w/
xk

i ∈ [0, ε] and ∂f(xk)/∂xi > 0].

• The constraints in I+(x∗) eventually become
active and don’t matter.

• Method reduces to unconstrained Newton-like
method on the manifold of active constraints at x∗.

• Thus, superlinear convergence is possible w/
simple projections.



MANIFOLD SUBOPTIMIZATION METHODS

• Feasible direction methods for

min f(x) subject to a′
jx ≤ bj , j = 1, . . . , r

• Gradient is projected on a linear manifold of ac-
tive constraints rather than on the entire constraint
set (linearly constrained QP).
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• Searches through sequence of manifolds, each
differing by at most one constraint from the next.

• Potentially many iterations to identify the active
manifold; then method reduces to (scaled) steep-
est descent on the active manifold.

• Well-suited for a small number of constraints,
and for quadratic programming.



OPERATION OF MANIFOLD METHODS

• Let A(x) = {j | a′
jx = bj} be the active index

set at x. Given xk, we find

dk = arg min
a′

j
d=0, j∈A(xk)

∇f(xk)′d + 1
2d

′Hkd

• If dk �= 0, then dk is a feasible descent direction.
Perform feasible descent on the current manifold.

• If dk = 0, either (1) xk is stationary or (2) we
enlarge the current manifold (drop an active con-
straint). For this, use the scalars µj such that

∇f(xk) +
∑

j∈A(xk)

µjaj = 0

∇f(xk)

a1

a2

 X

a1'x = b1

a2'x = b2

- µ2a2

- µ1a1

(µ1 < 0)

(µ2 > 0)

xk

If µj ≥ 0 for all j, xk is

stationary, since for all fea-

sible x, ∇f(xk)′(x−xk) is

equal to

−
∑

j∈A(xk)

µja′
j(x−xk) ≥ 0

Else, drop a constraint j

with µj < 0.



AFFINE SCALING METHODS FOR LP

• Focus on the LP minAx=b, x≥0 c′x, and the scaled
gradient projection xk+1 = xk + αk(xk − xk), with

xk = arg min
Ax=b, x≥0

c′(x − xk) +
1

2sk
(x − xk)′Hk(x − xk)

• If xk > 0 then xk > 0 for sk small enough, so
xk = xk − sk(Hk)−1(c − A′λk) with

λk =
(
A(Hk)−1A′

)−1
A(Hk)−1c

Lumping sk into αk:

xk+1 = xk − αk(Hk)−1(c − A′λk),

where αk is small enough to ensure that xk+1 > 0
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Importance of using time-

varying Hk (should bend

xk−xk away from the bound-

ary)



AFFINE SCALING

• Particularly interesting choice (affine scaling)

Hk = (Xk)−2,

where Xk is the diagonal matrix having the (pos-
itive) coordinates xk

i along the diagonal:

xk+1 = xk−αk(Xk)2(c−A′λk), λk =
(
A(Xk)2A′)−1

A(Xk)2c

• Corresponds to unscaled gradient projection it-
eration in the variables y = (Xk)−1x. The vector xk

is mapped onto the unit vector yk = (1, . . . , 1).
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y*= (Xk)-1 x*

yk= (Xk)-1 xk

• Extensions, convergence, practical issues.


