6.252 NONLINEAR PROGRAMMING
LECTURE 10
ALTERNATIVES TO GRADIENT PROJECTION
LECTURE OUTLINE

e Three Alternatives/Remedies for Gradient Pro-
jection

— Two-Metric Projection Methods

— Manifold Suboptimization Methods

— Affine Scaling Methods

Scaled GP method with scaling matrix H* > 0:
rhtl = gk 4 ok (T — oF),

1
" = arg;réi)ré {Vf(xk)/(ac —zF) + g(a: — zF) H* (z — mk)} :

e The QP direction subproblem is complicated by:
— Difficultinequality (e.g., nonorthant) constraints
— Nondiagonal H*, needed for Newton scaling



THREE WAYS TO DEAL W/ THE DIFFICULTY

e Two-metric projection methods:

phtl =[xk — oszka(xk)}+

— Use Newton-like scaling but use a standard
projection
— Suitable for bounds, simplexes, Cartesian
products of simple sets, etc
e Manifold suboptimization methods:

— Use (scaled) gradient projection on the man-
ifold of active inequality constraints

— Each QP subproblem is equality-constrained
— Need strategies to cope with changing active
manifold (add-drop constraints)
e Affine Scaling Methods
— @Go through the interior of the feasible set

— Each QP subproblem is equality-constrained,
AND we don’t have to deal with changing ac-
tive manifold



TWO-METRIC PROJECTION METHODS

e Intheir simplest form, apply to constraint: x > 0,
but generalize to bound and other constraints

e Like unconstr. gradient methods except for ||+
phtl =[xk — osz’“Vf(:Ek‘)Tr, Dk >0

e Major difficulty: Descent is not guaranteed for
Dk arbitrary

e Remedy: Use D* that is diagonal w/ respect to
iIndices that “are active and want to stay active”

It(xk) = {’L

2k =0, 0f (ak) /0w, > 0}



PROPERTIES OF 2-METRIC PROJECTION

e Suppose D* is diagonal with respect to I+ (z*),
i.e., df; = 0fori,j € I't(xk) with i # j, and let

zk(a) = [zF — aDka(xk)}+

— If z* is stationary, =¥ = z*(«) for all o > 0.

— Otherwise f(z(a)) < f(z*)for all sufficiently
small o > 0 (can use Armijo rule).

e Because [+ (x) is discontinuous w/ respect to
x, to guarantee convergence we need to include
in I+ (x) constraints that are “ec-active” [those w/
¥ € 10,¢] and df (z*)/0x; > 0.

e The constraints in I+(z*) eventually become
active and don’t matter.

e Method reduces to unconstrained Newton-like
method on the manifold of active constraints at =*.

e Thus, superlinear convergence is possible w/
simple projections.



MANIFOLD SUBOPTIMIZATION METHODS

e Feasible direction methods for

min f(x) subjectto a’x <b;, j=1,...,r

e Gradient is projected on a linear manifold of ac-
tive constraints rather than on the entire constraint
set (linearly constrained QP).

(b)
e Searches through sequence of manifolds, each

differing by at most one constraint from the next.

e Potentially many iterations to identify the active
manifold; then method reduces to (scaled) steep-
est descent on the active manifold.

e Well-suited for a small number of constraints,
and for quadratic programming.



OPERATION OF MANIFOLD METHODS

o Let A(z) = {j | ajz = b;} be the active index
set at . Given z*, we find

dF = arg min Vf(zk)d+ 1d Hkd
a’d=0, jeA(z¥)
e If d* #£ 0, then d* is a feasible descent direction.
Perform feasible descent on the current manifold.

e If d* = 0, either (1) x* is stationary or (2) we
enlarge the current manifold (drop an active con-
straint). For this, use the scalars p; such that

If u; > 0 for all j, xF is
stationary, since for all fea-
sible z, V f(z*) (x —x") is

equal to
K / k

— Z pjas;(z—z") >0
JEA(zR)

Else, drop a constraint j
with pu; <O.




AFFINE SCALING METHODS FOR LP

e Focusonthe LPmin4,—s >0 ¢’x, andthe scaled
gradient projection zF+1 = gk 4 ok (T* — z¥), with

1
z° =arg min d(z —z®) +

kN rrk k
Ax=b, x>0 ﬁ(x_x )H (CU—CU )

o If zk > 0then z* > 0 for sk small enough, so
zF = ok — sk(HF)—1(c — A’\F) with

Mo = (A(HF)-1A") T A(HF)1c

Lumping s* into a:
gkl = gk — ok (HF)=1(c — A'\F),

where o* is small enough to ensure that z*+1 > 0

{XIAx=b, x= 0}

Importance of using time-

arying H* (should bend

zF —2F away from the bound-

ary)




AFFINE SCALING

e Particularly interesting choice (affine scaling)
HF = (X*)72,

where X% is the diagonal matrix having the (pos-
itive) coordinates z* along the diagonal:

—1
o xk—ak(Xk)2(C—A/>\k), 2\ — (A(Xk)QA/) A(Xk)QC

o Corresponds to unscaled gradient projection it-
eration in the variables y = (x*)~1z. The vector z*
IS mapped onto the unit vector % = (1,...,1).

o Extensions, convergence, practical issues.



