Convex Analysis and Optimization

Chapter 2 Solutions

Dimitri P. Bertsekas
with
Angelia Nedić and Asuman E. Ozdaglar

Massachusetts Institute of Technology

Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

LAST UPDATE October 8, 2005

CHAPTER 2: SOLUTION MANUAL

2.1

Let $f: \Re^{n} \mapsto \Re$ be a given function.
(a) Consider a vector x^{*} such that f is convex over a sphere centered at x^{*}. Show that x^{*} is a local minimum of f if and only if it is a local minimum of f along every line passing through x^{*} [i.e., for all $d \in \Re^{n}$, the function $g: \Re \mapsto \Re$, defined by $g(\alpha)=f\left(x^{*}+\alpha d\right)$, has $\alpha^{*}=0$ as its local minimum].
(b) Assume that f is not convex. Show that a vector x^{*} need not be a local minimum of f if it is a local minimum of f along every line passing through x^{*}. Hint: Use the function $f: \Re^{2} \mapsto \Re$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{2}-p x_{1}^{2}\right)\left(x_{2}-q x_{1}^{2}\right),
$$

where p and q are scalars with $0<p<q$, and $x^{*}=(0,0)$. Show that $f\left(y, m y^{2}\right)<0$ for $y \neq 0$ and m satisfying $p<m<q$, while $f(0,0)=0$.

Solution: (a) If x^{*} is a local minimum of f, evidently it is also a local minimum of f along any line passing through x^{*}.

Conversely, let x^{*} be a local minimum of f along any line passing through x^{*}. Assume, to arrive at a contradiction, that x^{*} is not a local minimum of f and that we have $f(\bar{x})<f\left(x^{*}\right)$ for some \bar{x} in the sphere centered at x^{*} within which f is assumed convex. Then, by convexity, for all $\alpha \in(0,1)$,

$$
f\left(\alpha x^{*}+(1-\alpha) \bar{x}\right) \leq \alpha f\left(x^{*}\right)+(1-\alpha) f(\bar{x})<f\left(x^{*}\right),
$$

so f decreases monotonically along the line segment connecting x^{*} and \bar{x}. This contradicts the hypothesis that x^{*} is a local minimum of f along any line passing through x^{*}.
(b) Consider the function $f\left(x_{1}, x_{2}\right)=\left(x_{2}-p x_{1}^{2}\right)\left(x_{2}-q x_{1}^{2}\right)$, where $0<p<q$ and let $x^{*}=(0,0)$.

We first show that $g(\alpha)=f\left(x^{*}+\alpha d\right)$ is minimized at $\alpha=0$ for all $d \in \Re^{2}$. We have
$g(\alpha)=f\left(x^{*}+\alpha d\right)=\left(\alpha d_{2}-p \alpha^{2} d_{1}^{2}\right)\left(\alpha d_{2}-q \alpha^{2} d_{1}^{2}\right)=\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)$.
Also,
$g^{\prime}(\alpha)=2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)$.

Thus $g^{\prime}(0)=0$. Furthermore,

$$
\begin{aligned}
g^{\prime \prime}(\alpha)= & 2\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right) \\
& +2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right) \\
& +2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right)
\end{aligned}
$$

Thus $g^{\prime \prime}(0)=2 d_{2}^{2}$, which is greater than 0 if $d_{2} \neq 0$. If $d_{2}=0, g(\alpha)=p q \alpha^{4} d_{1}^{4}$, which is clearly minimized at $\alpha=0$. Therefore, $(0,0)$ is a local minimum of f along every line that passes through $(0,0)$.

Let's now show that if $p<m<q, f\left(y, m y^{2}\right)<0$ if $y \neq 0$ and that $f\left(y, m y^{2}\right)=0$ otherwise. Consider a point of the form $\left(y, m y^{2}\right)$. We have $f\left(y, m y^{2}\right)=y^{4}(m-p)(m-q)$. Clearly, $f\left(y, m y^{2}\right)<0$ if and only if $p<m<q$ and $y \neq 0$. In any ϵ-neighborhood of $(0,0)$, there exists a $y \neq 0$ such that for some $m \in(p, q),\left(y, m y^{2}\right)$ also belongs to the neighborhood. Since $f(0,0)=0$, we see that $(0,0)$ is not a local minimum.

2.2 (Lipschitz Continuity of Convex Functions)

Let $f: \Re^{n} \mapsto \Re$ be a convex function and X be a bounded set in \Re^{n}. Show that f is Lipschitz continuous over X, i.e., there exists a positive scalar L such that

$$
|f(x)-f(y)| \leq L\|x-y\|, \quad \forall x, y \in X
$$

Solution: Let ϵ be a positive scalar and let C_{ϵ} be the set given by

$$
C_{\epsilon}=\{z \mid\|z-x\| \leq \epsilon, \text { for some } x \in \operatorname{cl}(X)\} .
$$

We claim that the set C_{ϵ} is compact. Indeed, since X is bounded, so is its closure, which implies that $\|z\| \leq \max _{x \in \operatorname{cl}(X)}\|x\|+\epsilon$ for all $z \in C_{\epsilon}$, showing that C_{ϵ} is bounded. To show the closedness of C_{ϵ}, let $\left\{z_{k}\right\}$ be a sequence in C_{ϵ} converging to some z. By the definition of C_{ϵ}, there is a corresponding sequence $\left\{x_{k}\right\}$ in $\operatorname{cl}(X)$ such that

$$
\begin{equation*}
\left\|z_{k}-x_{k}\right\| \leq \epsilon, \quad \forall k \tag{2.1}
\end{equation*}
$$

Because $\operatorname{cl}(X)$ is compact, $\left\{x_{k}\right\}$ has a subsequence converging to some $x \in \operatorname{cl}(X)$. Without loss of generality, we may assume that $\left\{x_{k}\right\}$ converges to $x \in \operatorname{cl}(X)$. By taking the limit in Eq. (2.1) as $k \rightarrow \infty$, we obtain $\|z-x\| \leq \epsilon$ with $x \in \operatorname{cl}(X)$, showing that $z \in C_{\epsilon}$. Hence, C_{ϵ} is closed.

We now show that f has the Lipschitz property over X. Let x and y be two distinct points in X. Then, by the definition of C_{ϵ}, the point

$$
z=y+\frac{\epsilon}{\|y-x\|}(y-x)
$$

is in C_{ϵ}. Thus

$$
y=\frac{\|y-x\|}{\|y-x\|+\epsilon} z+\frac{\epsilon}{\|y-x\|+\epsilon} x
$$

showing that y is a convex combination of $z \in C_{\epsilon}$ and $x \in C_{\epsilon}$. By convexity of f, we have

$$
f(y) \leq \frac{\|y-x\|}{\|y-x\|+\epsilon} f(z)+\frac{\epsilon}{\|y-x\|+\epsilon} f(x)
$$

implying that

$$
f(y)-f(x) \leq \frac{\|y-x\|}{\|y-x\|+\epsilon}(f(z)-f(x)) \leq \frac{\|y-x\|}{\epsilon}\left(\max _{u \in C_{\epsilon}} f(u)-\min _{v \in C_{\epsilon}} f(v)\right),
$$

where in the last inequality we use Weierstrass' theorem (f is continuous over \Re^{n} by Prop. 1.4.6 and C_{ϵ} is compact). By switching the roles of x and y, we similarly obtain

$$
f(x)-f(y) \leq \frac{\|x-y\|}{\epsilon}\left(\max _{u \in C_{\epsilon}} f(u)-\min _{v \in C_{\epsilon}} f(v)\right)
$$

which combined with the preceding relation yields $|f(x)-f(y)| \leq L\|x-y\|$, where $L=\left(\max _{u \in C_{\epsilon}} f(u)-\min _{v \in C_{\epsilon}} f(v)\right) / \epsilon$.

2.3 (Exact Penalty Functions)

Let $f: Y \mapsto \Re$ be a function defined on a subset Y of \Re^{n}. Assume that f is Lipschitz continuous with constant L, i.e.,

$$
|f(x)-f(y)| \leq L\|x-y\|, \quad \forall x, y \in Y
$$

Let also X be a nonempty closed subset of Y, and c be a scalar with $c>L$.
(a) Show that if x^{*} minimizes f over X, then x^{*} minimizes

$$
F_{c}(x)=f(x)+c \inf _{y \in X}\|y-x\|
$$

over Y.
(b) Show that if x^{*} minimizes $F_{c}(x)$ over Y, then $x^{*} \in X$, so that x^{*} minimizes f over X.

Solution: We note that by Weierstrass' Theorem, the minimum of $\|y-x\|$ over $y \in X$ is attained, so we can write $\min _{y \in X}\|y-x\|$ in place of $\inf _{y \in X}\|y-x\|$.
(a) By assumption, x^{*} minimizes f over X, so that $x^{*} \in X$, and we have for all $c>L, y \in X$, and $x \in Y$,

$$
F_{c}\left(x^{*}\right)=f\left(x^{*}\right) \leq f(y) \leq f(x)+L\|y-x\| \leq f(x)+c\|y-x\|
$$

where we use the Lipschitz continuity of f to get the second inequality. Taking the minimum over all $y \in X$, we obtain

$$
F_{c}\left(x^{*}\right) \leq f(x)+c \min _{y \in X}\|y-x\|=F_{c}(x), \quad \forall x \in Y .
$$

Hence, x^{*} minimizes $F_{c}(x)$ over Y for all $c>L$.
(b) It will suffice to show that $x^{*} \in X$. Suppose, to arrive at a contradiction, that x^{*} minimizes $F_{c}(x)$ over Y, but $x^{*} \notin X$.

We have that $F_{c}\left(x^{*}\right)=f\left(x^{*}\right)+c \min _{y \in X}\left\|y-x^{*}\right\|$. Let $\tilde{x} \in X$ be a point where the minimum of $\|y-x\|$ over $y \in X$ is attained. Then $\tilde{x} \neq x^{*}$, and we have

$$
\begin{aligned}
F_{c}\left(x^{*}\right) & =f\left(x^{*}\right)+c\left\|\tilde{x}-x^{*}\right\| \\
& >f\left(x^{*}\right)+L\left\|\tilde{x}-x^{*}\right\| \\
& \geq f(\tilde{x}) \\
& =F_{c}(\tilde{x})
\end{aligned}
$$

which contradicts the fact that x^{*} minimizes $F_{c}(x)$ over Y. (Here, the first inequality follows from $c>L$ and $\tilde{x} \neq x^{*}$, and the second inequality follows from the Lipschitz continuity of f.)

2.4 (Ekeland's Variational Principle [Eke74])

This exercise shows how ϵ-optimal solutions of optimization problems can be approximated by (exactly) optimal solutions of some other slightly perturbed problems. Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper function, and let $\bar{x} \in \Re^{n}$ be a vector such that

$$
f(\bar{x}) \leq \inf _{x \in \Re^{n}} f(x)+\epsilon,
$$

where $\epsilon>0$. Then, for any $\delta>0$, there exists a vector $\tilde{x} \in \Re^{n}$ such that

$$
\|\bar{x}-\tilde{x}\| \leq \frac{\epsilon}{\delta}, \quad f(\tilde{x}) \leq f(\bar{x})
$$

and \tilde{x} is the unique optimal solution of the perturbed problem of minimizing $f(x)+\delta\|x-\tilde{x}\|$ over \Re^{n}.

Solution: For some $\delta>0$, define the function $F: \Re^{n} \mapsto(-\infty, \infty]$ by

$$
F(x)=f(x)+\delta\|x-\bar{x}\| .
$$

The function F is closed in view of the assumption that f is closed. Hence, by Prop. 1.2.2(b), it follows that all the level sets of F are closed. The level sets are also bounded, since for all $\gamma>f^{*}$, we have

$$
\begin{equation*}
\{x \mid F(x) \leq \gamma\} \subset\left\{x \mid f^{*}+\delta\|x-\bar{x}\| \leq \gamma\right\}=B\left(\bar{x}, \frac{\gamma-f^{*}}{\delta}\right) \tag{2.2}
\end{equation*}
$$

where $B\left(\bar{x},\left(\gamma-f^{*}\right) / \delta\right)$ denotes the closed ball centered at \bar{x} with radius $(\gamma-$ $\left.f^{*}\right) / \delta$. Hence, it follows by Weierstrass' Theorem that F attains a minimum over \Re^{n}, i.e., the set $\arg \min _{x \in \Re^{n}} F(x)$ is nonempty and compact.

Consider now minimizing f over the set $\arg \min _{x \in \Re^{n}} F(x)$. Since f is closed by assumption, we conclude by using Weierstrass' Theorem that f attains a minimum at some \tilde{x} over the set $\arg \min _{x \in \Re^{n}} F(x)$. Hence, we have

$$
\begin{equation*}
f(\tilde{x}) \leq f(x), \quad \forall x \in \arg \min _{x \in \Re^{n}} F(x) . \tag{2.3}
\end{equation*}
$$

Since $\tilde{x} \in \arg \min _{x \in \Re^{n}} F(x)$, it follows that $F(\tilde{x}) \leq F(x)$, for all $x \in \Re^{n}$, and

$$
F(\tilde{x})<F(x), \quad \forall x \notin \arg \min _{x \in \Re^{n}} F(x)
$$

which by using the triangle inequality implies that

$$
\begin{align*}
f(\tilde{x}) & <f(x)+\delta\|x-\bar{x}\|-\delta\|\tilde{x}-\bar{x}\| \\
& \leq f(x)+\delta\|x-\tilde{x}\|, \quad \forall x \notin \arg \min _{x \in \Re^{n}} F(x) . \tag{2.4}
\end{align*}
$$

Using Eqs. (2.3) and (2.4), we see that

$$
f(\tilde{x})<f(x)+\delta\|x-\tilde{x}\|, \quad \forall x \neq \tilde{x},
$$

thereby implying that \tilde{x} is the unique optimal solution of the problem of minimizing $f(x)+\delta\|x-\tilde{x}\|$ over \Re^{n}.

Moreover, since $F(\tilde{x}) \leq F(x)$ for all $x \in \Re^{n}$, we have $F(\tilde{x}) \leq F(\bar{x})$, which implies that

$$
f(\tilde{x}) \leq f(\bar{x})-\delta\|\tilde{x}-\bar{x}\| \leq f(\bar{x})
$$

and also

$$
F(\tilde{x}) \leq F(\bar{x})=f(\bar{x}) \leq f^{*}+\epsilon .
$$

Using Eq. (2.2), it follows that $\tilde{x} \in B(\bar{x}, \epsilon / \delta)$, proving the desired result.

2.5 (Approximate Minima of Convex Functions)

Let X be a closed convex subset of \Re^{n}, and let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed convex function such that $X \cap \operatorname{dom}(f) \neq \varnothing$. Assume that f and X have no common nonzero direction of recession. Let X^{*} be the set of global minima of f over X (which is nonempty and compact by Prop. 2.3.2), and let $f^{*}=$ $\inf _{x \in X} f(x)$. Show that:
(a) For every $\epsilon>0$ there exists a $\delta>0$ such that every vector $x \in X$ with $f(x) \leq f^{*}+\delta$ satisfies $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$.
(b) If f is real-valued, for every $\delta>0$ there exists a $\epsilon>0$ such that every vector $x \in X$ with $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$ satisfies $f(x) \leq f^{*}+\delta$.
(c) Every sequence $\left\{x_{k}\right\} \subset X$ satisfying $f\left(x_{k}\right) \rightarrow f^{*}$ is bounded and all its limit points belong to X^{*}.

Solution: (a) Let $\epsilon>0$ be given. Assume, to arrive at a contradiction, that for any sequence $\left\{\delta_{k}\right\}$ with $\delta_{k} \downarrow 0$, there exists a sequence $\left\{x_{k}\right\} \in X$ such that for all k

$$
f^{*} \leq f\left(x_{k}\right) \leq f^{*}+\delta_{k}, \quad \min _{x^{*} \in X^{*}}\left\|x_{k}-x^{*}\right\| \geq \epsilon
$$

It follows that, for all k, x_{k} belongs to the set $\left\{x \in X \mid f(x) \leq f^{*}+\delta_{0}\right\}$, which is compact since f and X are closed and have no common nonzero direction of
recession. Therefore, the sequence $\left\{x_{k}\right\}$ has a limit point $\bar{x} \in X$, which using also the lower semicontinuity of f, satisfies

$$
f(\bar{x}) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)=f^{*}, \quad\left\|\bar{x}-x^{*}\right\| \geq \epsilon, \quad \forall x^{*} \in X^{*},
$$

a contradiction.
(b) Let $\delta>0$ be given. Assume, to arrive at a contradiction, that there exist sequences $\left\{x_{k}\right\} \subset X,\left\{x_{k}^{*}\right\} \subset X^{*}$, and $\left\{\epsilon_{k}\right\}$ with $\epsilon_{k} \downarrow 0$ such that

$$
f\left(x_{k}\right)>f^{*}+\delta, \quad\left\|x_{k}-x_{k}^{*}\right\| \leq \epsilon_{k}, \quad \forall k=0,1, \ldots
$$

(here x_{k}^{*} is the projection of x_{k} on X^{*}). Since X^{*} is compact, there is a subsequence $\left\{x_{k}^{*}\right\}_{\mathcal{K}}$ that converges to some $x^{*} \in X^{*}$. It follows that $\left\{x_{k}\right\}_{\mathcal{K}}$ also converges to x^{*}. Since f is real-valued, it is continuous, so we must have $f\left(x_{k}\right) \rightarrow f\left(x^{*}\right)$, a contradiction.
(c) Let \bar{x} be a limit point of the sequence $\left\{x_{k}\right\} \subset X$ satisfying $f\left(x_{k}\right) \rightarrow f^{*}$. By lower semicontinuity of f, we have that

$$
f(\bar{x}) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)=f^{*} .
$$

Because $\left\{x_{k}\right\} \subset X$ and X is closed, we have $\bar{x} \in X$, which in view of the preceding relation implies that $f(\bar{x})=f^{*}$, i.e., $\bar{x} \in X^{*}$.

2.6 (Directions Along Which a Function is Flat)

The purpose of the exercise is to provide refinements of results relating to set intersections and existence of optimal solutions (cf. Props. 1.5.6 and 2.3.3). Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper convex function, and let F_{f} be the set of all directions y such that for every $x \in \operatorname{dom}(f)$, the limit $\lim _{\alpha \rightarrow \infty} f(x+\alpha y)$ exists. We refer to F_{f} as the set of directions along which f is flat. Note that

$$
L_{f} \subset F_{f} \subset R_{f},
$$

where L_{f} and R_{f} are the constancy space and recession cone of f, respectively. Let X be a subset of \Re^{n} specified by linear inequality constraints, i.e.,

$$
X=\left\{x \mid a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r\right\}
$$

where a_{j} are vectors in \Re^{n} and b_{j} are scalars. Assume that

$$
R_{X} \cap F_{f} \subset L_{f}
$$

where R_{X} is the recession cone of X.
(a) Let

$$
C_{k}=\left\{x \mid f(x) \leq w_{k}\right\},
$$

where $\left\{w_{k}\right\}$ is a monotonically decreasing and convergent scalar sequence, and assume that $X \cap C_{k} \neq \varnothing$ for all k. Show that

$$
X \cap\left(\cap_{k=0}^{\infty} C_{k}\right) \neq \varnothing
$$

(b) Show that if $\inf _{x \in X} f(x)$ is finite, the function f attains a minimum over the set X.
(c) Show by example that f need not attain a minimum over X if we just assume (as in Prop. 2.3.3) that $X \cap \operatorname{dom}(f) \neq \varnothing$.

Solution: (a) We will follow the line of proof of Prop. 1.5.6, with a modification to use the condition $R_{X} \cap F_{f} \subset L_{f}$ in place of the condition $R_{X} \cap R_{f} \subset L_{f}$.

We use induction on the dimension of the set X. Suppose that the dimension of X is 0 . Then X consists of a single point. This point belongs to $X \cap C_{k}$ for all k, and hence belongs to the intersection $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$.

Assume that, for some $l<n$, the intersection $\bar{X} \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ is nonempty for every set \bar{X} of dimension less than or equal to l that is specified by linear inequality constraints, and is such that $\bar{X} \cap C_{k}$ is nonempty for all k and $R_{\bar{X}} \cap F_{f} \subset$ L_{f}. Let X be of the form

$$
X=\left\{x \mid a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r\right\}
$$

and be such that $X \cap C_{k}$ is nonempty for all k, satisfy $R_{X} \cap F_{f} \subset L_{f}$, and have dimension $l+1$. We will show that the intersection $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ is nonempty.

If $L_{X} \cap L_{f}=R_{X} \cap R_{f}$, then by Prop. 1.5.5 applied to the sets $X \cap C_{k}$, we have that $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ is nonempty, and we are done. We may thus assume that $L_{X} \cap L_{f} \neq R_{X} \cap R_{f}$. Let $\bar{y} \in R_{X} \cap R_{f}$ with $-\bar{y} \notin R_{X} \cap R_{f}$.

If $\bar{y} \notin F_{f}$, then, since $\bar{y} \in R_{X} \cap R_{f}$, for all $x \in X \cap \operatorname{dom}(f)$ we have $\lim _{\alpha \rightarrow \infty} f(x+\alpha y)=-\infty$ and $x+\alpha y \in X$ for all $\alpha \geq 0$. Therefore, $x+\alpha y \in$ $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ for sufficiently large α, and we are done.

We may thus assume that $\bar{y} \in F_{f}$, so that $\bar{y} \in R_{X} \cap F_{f}$ and therefore also $\bar{y} \subset L_{f}$, in view of the hypothesis $R_{X} \cap F_{f} \subset L_{f}$. Since $-\bar{y} \notin R_{X} \cap R_{f}$, it follows that $-\bar{y} \notin R_{X}$. Thus, we have

$$
\bar{y} \in R_{X}, \quad-\bar{y} \notin R_{X}, \quad \bar{y} \in L_{f}
$$

From this point onward, the proof that $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right) \neq \varnothing$ is nearly identical to the corresponding part of the proof of Prop. 1.5.6.

Using Prop. 1.5.1(e), it is seen that the recession cone of X is

$$
R_{X}=\left\{y \mid a_{j}^{\prime} y \leq 0, j=1, \ldots, r\right\},
$$

so the fact $\bar{y} \in R_{X}$ implies that

$$
a_{j}^{\prime} \bar{y} \leq 0, \quad \forall j=1, \ldots, r,
$$

while the fact $-\bar{y} \notin R_{X}$ implies that the index set

$$
J=\left\{j \mid a_{j}^{\prime} \bar{y}<0\right\}
$$

is nonempty.
Consider a sequence $\left\{x_{k}\right\}$ such that

$$
x_{k} \in X \cap C_{k}, \quad \forall k .
$$

We then have

$$
a_{j}^{\prime} x_{k} \leq b_{j}, \quad \forall j=1, \ldots, r, \quad \forall k .
$$

We may assume that

$$
a_{j}^{\prime} x_{k}<b_{j}, \quad \forall j \in J, \quad \forall k ;
$$

otherwise we can replace x_{k} with $x_{k}+\bar{y}$, which belongs to $X \cap C_{k}$ (since $\bar{y} \in R_{X}$ and $\left.\bar{y} \in L_{f}\right)$.

Suppose that for each k, we start at x_{k} and move along $-\bar{y}$ as far as possible without leaving the set X, up to the point where we encounter the vector

$$
\bar{x}_{k}=x_{k}-\beta_{k} \bar{y},
$$

where β_{k} is the positive scalar given by

$$
\beta_{k}=\min _{j \in J} \frac{a_{j}^{\prime} x_{k}-b_{j}}{a_{j}^{\prime} \bar{y}} .
$$

Since $a_{j}^{\prime} \bar{y}=0$ for all $j \notin J$, we have $a_{j}^{\prime} \bar{x}_{k}=a_{j}^{\prime} x_{k}$ for all $j \notin J$, so the number of linear inequalities of X that are satisfied by \bar{x}_{k} as equalities is strictly larger than the number of those satisfied by x_{k}. Thus, there exists $j_{0} \in J$ such that $a_{j_{0}}^{\prime} \bar{x}_{k}=b_{j_{0}}$ for all k in an infinite index set $\mathcal{K} \subset\{0,1, \ldots\}$. By reordering the linear inequalities if necessary, we can assume that $j_{0}=1$, i.e.,

$$
a_{1}^{\prime} \bar{x}_{k}=b_{1}, \quad a_{1}^{\prime} x_{k}<b_{1}, \quad \forall k \in \mathcal{K} .
$$

To apply the induction hypothesis, consider the set

$$
\bar{X}=\left\{x \mid a_{1}^{\prime} x=b_{1}, a_{j}^{\prime} x \leq b_{j}, j=2, \ldots, r\right\},
$$

and note that $\left\{\bar{x}_{k}\right\}_{\mathcal{K}} \subset \bar{X}$. Since $\bar{x}_{k}=x_{k}-\beta_{k} \bar{y}$ with $x_{k} \in C_{k}$ and $\bar{y} \in L_{f}$, we have $\bar{x}_{k} \in C_{k}$ for all k, implying that $\bar{x}_{k} \in \bar{X} \cap C_{k}$ for all $k \in \mathcal{K}$. Thus, $\bar{X} \cap C_{k} \neq \varnothing$ for all k. Because the sets C_{k} are nested, so are the sets $\bar{X} \cap C_{k}$. Furthermore, the recession cone of \bar{X} is

$$
R_{\bar{X}}=\left\{y \mid a_{1}^{\prime} y=0, a_{j}^{\prime} y \leq 0, j=2, \ldots, r\right\},
$$

which is contained in R_{X}, so that

$$
R_{\bar{X}} \cap F_{f} \subset R_{X} \cap F_{f} \subset L_{f}
$$

Finally, to show that the dimension of \bar{X} is smaller than the dimension of X, note that the set $\left\{x \mid a_{1}^{\prime} x=b_{1}\right\}$ contains \bar{X}, so that a_{1} is orthogonal to the subspace $S_{\bar{X}}$ that is parallel to aff (\bar{X}). Since $a_{1}^{\prime} \bar{y}<0$, it follows that $\bar{y} \notin S_{\bar{X}}$. On the
other hand, \bar{y} belongs to S_{X}, the subspace that is parallel to aff (X), since for all k, we have $x_{k} \in X$ and $x_{k}-\beta_{k} \bar{y} \in X$.

Based on the preceding, we can use the induction hypothesis to assert that the intersection $\bar{X} \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ is nonempty. Since $\bar{X} \subset X$, it follows that $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$ is nonempty.
(b) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (2)]. Denote

$$
f^{*}=\inf _{x \in X} f(x)
$$

and assume without loss of generality that $f^{*}=0$ [otherwise, we replace $f(x)$ by $\left.f(x)-f^{*}\right]$. We choose a scalar sequence $\left\{w_{k}\right\}$ such that $w_{k} \downarrow f^{*}$, and we consider the (nonempty) level sets

$$
C_{k}=\left\{x \in \Re^{n} \mid f(x) \leq w_{k}\right\} .
$$

The set $X \cap C_{k}$ is nonempty for all k. Furthermore, by assumption, $R_{X} \cap F_{f} \subset L_{f}$ and X is specified by linear inequality constraints. By part (a), it follows that $X \cap\left(\cap_{k=0}^{\infty} C_{k}\right)$, the set of minimizers of f over X, is nonempty.
(c) Let $X=\Re$ and $f(x)=x$. Then

$$
F_{f}=L_{f}=\{y \mid y=0\}
$$

so the condition $R_{X} \cap F_{f} \subset L_{f}$ is satisfied. However, we have $\inf _{x \in X} f(x)=-\infty$ and f does not attain a minimum over X. Note that Prop. 2.3.3 [under condition (2)] does not apply here, because the relation $R_{X} \cap R_{f} \subset L_{f}$ is not satisfied.

2.7 (Bidirectionally Flat Functions)

The purpose of the exercise is to provide refinements of the results involving convex quadratic functions and relating to set intersections, closedness under linear transformations, existence of optimal solutions, and closedness under partial minimization [cf. Props. 1.5.7, 1.5.8(c), 1.5.9, 2.3.3, and 2.3.9].

Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper convex function, and let F_{f} be the set of directions along which f is flat (cf. Exercise 2.6). We say that f is bidirectionally flat if $L_{f}=F_{f}$ (i.e., if it is flat in some direction it must be flat, and hence constant, in the opposite direction). Note that every convex quadratic function is bidirectionally flat. More generally, a function of the form

$$
f(x)=h(A x)+c^{\prime} x
$$

where A is an $m \times n$ matrix and $h: \Re^{m} \mapsto(-\infty, \infty]$ is a coercive closed proper convex function, is bidirectionally flat. In this case, we have

$$
L_{f}=F_{f}=\left\{y \mid A y=0, c^{\prime} y=0\right\}
$$

Let $g_{j}: \Re^{n} \mapsto(-\infty, \infty], j=0,1, \ldots, r$, be closed proper convex functions that are bidirectionally flat.
(a) Assume that each vector x such that $g_{0}(x) \leq 0$ belongs to $\cap_{j=1}^{r} \operatorname{dom}\left(g_{j}\right)$, and that for some scalar sequence $\left\{w_{k}\right\}$ with $w_{k} \downarrow 0$, the set

$$
C_{k}=\left\{x \mid g_{0}(x) \leq w_{k}, g_{j}(x) \leq 0, j=1, \ldots, r\right\}
$$

is nonempty for each k. Show that the intersection $\cap_{k=0}^{\infty} C_{k}$ is nonempty.
(b) Assume that each $g_{j}, j=1, \ldots, r$, is real-valued and the set

$$
C=\left\{x \mid g_{j}(x) \leq 0, j=1, \ldots, r\right\}
$$

is nonempty. Show that for any $m \times n$ matrix A, the set $A C$ is closed.
(c) Show that a closed proper convex function $f: \Re^{n} \mapsto(-\infty, \infty]$ that is bidirectionally flat attains a minimum over the set C of part (b), provided that $\inf _{x \in C} f(x)$ is finite.
(d) Let $F: \Re^{n+m} \mapsto(-\infty, \infty]$ be a function of the form

$$
F(x, z)= \begin{cases}\bar{F}(x, z) & \text { if }(x, z) \in C \\ \infty & \text { otherwise }\end{cases}
$$

where \bar{F} is a bidirectionally flat real-valued convex function on \Re^{n+m} and C is a subset of \Re^{n+m} that is specified by r convex inequalities involving bidirectionally flat real-valued convex functions on \Re^{n+m} [cf. part (b)]. Consider the function

$$
p(x)=\inf _{z \in \Re^{m}} F(x, z) .
$$

Assume that there exists a vector $\bar{x} \in \Re^{n}$ such that $-\infty<p(\bar{x})<\infty$. Show that p is convex, closed, and proper. Furthermore, for each $x \in \operatorname{dom}(p)$, the set of points that attain the infimum of $F(x, \cdot)$ over \Re^{m} is nonempty.

Solution: (a) As a first step, we will show that either $\cap_{k=1}^{\infty} C_{k} \neq \varnothing$ or else

$$
\text { there exists } \bar{j} \in\{1, \ldots, r\} \text { and } y \in \cap_{j=0}^{r} R_{g_{j}} \text { with } y \notin F_{g_{\bar{j}}}
$$

Let \bar{x} be a vector in C_{0}, and for each $k \geq 1$, let x_{k} be the projection of \bar{x} on C_{k}. If $\left\{x_{k}\right\}$ is bounded, then since the g_{j} are closed, any limit point \tilde{x} of $\left\{x_{k}\right\}$ satisfies

$$
g_{j}(\tilde{x}) \leq \liminf _{k \rightarrow \infty} g_{j}\left(x_{k}\right) \leq 0
$$

so $\tilde{x} \in \cap_{k=1}^{\infty} C_{k}$, and $\cap_{k=1}^{\infty} C_{k} \neq \varnothing$. If $\left\{x_{k}\right\}$ is unbounded, let y be a limit point of the sequence $\left\{\left(x_{k}-\bar{x}\right) /\left\|x_{k}-\bar{x}\right\| \mid x_{k} \neq \bar{x}\right\}$, and without loss of generality, assume that

$$
\frac{x_{k}-\bar{x}}{\left\|x_{k}-\bar{x}\right\|} \rightarrow y .
$$

We claim that

$$
y \in \cap_{j=0}^{r} R_{g_{j}} .
$$

Indeed, if for some j, we have $y \notin R_{g_{j}}$, then there exists $\alpha>0$ such that $g_{j}(\bar{x}+\alpha y)>w_{0}$. Let

$$
z_{k}=\bar{x}+\alpha \frac{x_{k}-\bar{x}}{\left\|x_{k}-\bar{x}\right\|},
$$

and note that for sufficiently large k, z_{k} lies in the line segment connecting \bar{x} and x_{k}, so that $g_{1}\left(z_{k}\right) \leq w_{0}$. On the other hand, we have $z_{k} \rightarrow \bar{x}+\alpha y$, so using the closedness of g_{j}, we must have

$$
g_{j}(\bar{x}+\alpha y) \leq \liminf _{k \rightarrow \infty} g_{1}\left(z_{k}\right) \leq w_{0},
$$

which contradicts the choice of α to satisfy $g_{j}(\bar{x}+\alpha y)>w_{0}$.
If $y \in \cap_{j=0}^{r} F_{g_{j}}$, since all the g_{j} are bidirectionally flat, we have $y \in \cap_{j=0}^{r} L_{g_{j}}$. If the vectors \bar{x} and $x_{k}, k \geq 1$, all lie in the same line [which must be the line $\{\bar{x}+\alpha y \mid \alpha \in \Re\}]$, we would have $g_{j}(\bar{x})=g_{j}\left(x_{k}\right)$ for all k and j. Then it follows that \bar{x} and x_{k} all belong to $\cap_{k=1}^{\infty} C_{k}$. Otherwise, there must be some x_{k}, with k large enough, and such that, by the Projection Theorem, the vector $x_{k}-\alpha y$ makes an angle greater than $\pi / 2$ with $x_{k}-\bar{x}$. Since the g_{j} are constant on the line $\left\{x_{k}-\alpha y \mid \alpha \in \Re\right\}$, all vectors on the line belong to C_{k}, which contradicts the fact that x_{k} is the projection of \bar{x} on C_{k}.

Finally, if $y \in R_{g_{0}}$ but $y \notin F_{g_{0}}$, we have $g_{0}(x+\alpha y) \rightarrow-\infty$ as $\alpha \rightarrow \infty$, so that $\cap_{k=1}^{\infty} C_{k} \neq \emptyset$. This completes the proof that

$$
\begin{equation*}
\cap_{k=1}^{\infty} C_{k}=\varnothing \Rightarrow \text { there exists } \bar{j} \in\{1, \ldots, r\} \text { and } y \in \cap_{j=0}^{r} R_{j} \text { with } y \notin F_{g_{\bar{j}}} . \tag{1}
\end{equation*}
$$

We now use induction on r. For $r=0$, the preceding proof shows that $\cap_{k=1}^{\infty} C_{k} \neq \varnothing$. Assume that $\cap_{k=1}^{\infty} C_{k} \neq \varnothing$ for all cases where $r<\bar{r}$. We will show that $\cap_{k=1}^{\infty} C_{k} \neq \emptyset$ for $r=\bar{r}$. Assume the contrary. Then, by Eq. (1), there exists $\bar{j} \in\{1, \ldots, r\}$ and $y \in \cap_{j=0}^{r} R_{j}$ with $y \notin F_{g_{\bar{j}}}$. Let us consider the sets

$$
\bar{C}_{k}=\left\{x \mid g_{0}(x) \leq w_{k}, g_{j}(x) \leq 0, j=1, \ldots, r, j \neq \bar{j}\right\} .
$$

Since these sets are nonempty, by the induction hypothesis, $\cap_{k=1}^{\infty} \bar{C}_{k} \neq \varnothing$. For any $\tilde{x} \in \cap_{k=1}^{\infty} \bar{C}_{k}$, the vector $\tilde{x}+\alpha y$ belongs to $\cap_{k=1}^{\infty} \bar{C}_{k}$ for all $\alpha>0$, since $y \in \cap_{j=0}^{r} R_{j}$. Since $g_{0}(\tilde{x}) \leq 0$, we have $\tilde{x} \in \operatorname{dom}\left(g_{\bar{j}}\right)$, by the hypothesis regarding the domains of the g_{j}. Since $y \in \cap_{j=0}^{r} R_{j}$ with $y \notin F_{g_{\bar{j}}}$, it follows that $g_{\bar{j}}(\tilde{x}+\alpha y) \rightarrow-\infty$ as $\alpha \rightarrow \infty$. Hence, for sufficiently large α, we have $g_{\bar{j}}(\tilde{x}+\alpha y) \leq 0$, so $\tilde{x}+\alpha y$ belongs to $\cap_{k=1}^{\infty} C_{k}$.
Note: To see that the assumption

$$
\left\{x \mid g_{0}(x) \leq 0\right\} \subset \cap_{j=1}^{r} \operatorname{dom}\left(g_{j}\right)
$$

is essential for the result to hold, consider an example in \Re^{2}. Let

$$
g_{0}\left(x_{1}, x_{2}\right)=x_{1}, \quad g_{1}\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right)-x_{2}
$$

where the function $\phi: \Re \mapsto(-\infty, \infty]$ is convex, closed, and coercive with $\operatorname{dom}(\phi)=(0,1)$ [for example, $\phi(t)=-\ln t-\ln (1-t)$ for $0<t<1$]. Then
it can be verified that $C_{k} \neq \varnothing$ for every k and sequence $\left\{w_{k}\right\} \subset(0,1)$ with $w_{k} \downarrow 0$ [take $x_{1} \downarrow 0$ and $\left.x_{2} \geq \phi\left(x_{1}\right)\right]$. On the other hand, we have $\cap_{k=0}^{\infty} C_{k}=\varnothing$. The difficulty here is that the set $\left\{x \mid g_{0}(x) \leq 0\right\}$, which is equal to

$$
\left\{x \mid x_{1} \leq 0, x_{2} \in \Re\right\},
$$

is not contained in $\operatorname{dom}\left(g_{1}\right)$, which is equal to

$$
\left\{x \mid 0<x_{1}<1, x_{2} \in \Re\right\}
$$

(in fact the two sets are disjoint).
(b) We will use part (a) and the line of proof of Prop. 1.5.8(c). In particular, let $\left\{y_{k}\right\}$ be a sequence in $A C$ converging to some $\bar{y} \in \Re^{n}$. We will show that $\bar{y} \in A C$. We let

$$
g_{0}(x)=\|A x-\bar{y}\|^{2}, \quad w_{k}=\left\|y_{k}-\bar{y}\right\|^{2},
$$

and

$$
C_{k}=\left\{x \mid g_{0}(x) \leq w_{k}, g_{j}(x) \leq 0, j=1, \ldots, r\right\} .
$$

The functions involved in the definition of C_{k} are bidirectionally flat, and each C_{k} is nonempty by construction. By applying part (a), we see that the intersection $\cap_{k=0}^{\infty} C_{k}$ is nonempty. For any x in this intersection, we have $A x=\bar{y}$ (since $y_{k} \rightarrow \bar{y}$), showing that $\bar{y} \in A C$.
(c) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (3)]. Denote

$$
f^{*}=\inf _{x \in C} f(x),
$$

and assume without loss of generality that $f^{*}=0$ [otherwise, we replace $f(x)$ by $\left.f(x)-f^{*}\right]$. We choose a scalar sequence $\left\{w_{k}\right\}$ such that $w_{k} \downarrow f^{*}$, and we consider the (nonempty) sets

$$
C_{k}=\left\{x \in \Re^{n} \mid f(x) \leq w_{k}, g_{j}(x) \leq 0, j=1, \ldots, r\right\} .
$$

By part (a), it follows that $\cap_{k=0}^{\infty} C_{k}$, the set of minimizers of f over C, is nonempty.
(d) Use the line of proof of Prop. 2.3.9.

2.8 (Minimization of Quasiconvex Functions)

We say that a function $f: \Re^{n} \mapsto(-\infty, \infty]$ is quasiconvex if all its level sets

$$
V_{\gamma}=\{x \mid f(x) \leq \gamma\}
$$

are convex. Let X be a convex subset of \Re^{n}, let f be a quasiconvex function such that $X \cap \operatorname{dom}(f) \neq \emptyset$, and denote $f^{*}=\inf _{x \in X} f(x)$.
(a) Assume that f is not constant on any line segment of X, i.e., we do not have $f(x)=c$ for some scalar c and all x in the line segment connecting
any two distinct points of X. Show that every local minimum of f over X is also global.
(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of all $\gamma>f^{*}$, and denote

$$
R_{f}=\cap_{\gamma \in \Gamma} R_{\gamma}, \quad L_{f}=\cap_{\gamma \in \Gamma} L_{\gamma},
$$

where R_{γ} and L_{γ} are the recession cone and the lineality space of V_{γ}, respectively. Use the line of proof of Prop. 2.3.3 and Exercise 2.7 to show that f attains a minimum over X if any one of the following conditions holds:
(1) $R_{X} \cap R_{f}=L_{X} \cap L_{f}$.
(2) $R_{X} \cap R_{f} \subset L_{f}$, and the set X is of the form

$$
X=\left\{x \mid a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r\right\}
$$

where a_{j} are vectors in \Re^{n} and b_{j} are scalars.
(3) $f^{*}>-\infty$, the set X is of the form

$$
X=\left\{x \mid x^{\prime} Q_{j} x+a_{j}^{\prime} x+b_{j} \leq 0, j=1, \ldots, r\right\},
$$

where Q_{j} are symmetric positive semidefinite $n \times n$ matrices, a_{j} are vectors in \Re^{n}, and b_{j} are scalars, and for some $\bar{\gamma} \in \Gamma$ and all $\gamma \in \Gamma$ with $\gamma \leq \bar{\gamma}$, the level sets V_{γ} are of the form

$$
V_{\gamma}=\left\{x \mid x^{\prime} Q x+c^{\prime} x+b(\gamma) \leq 0\right\},
$$

where Q is a symmetric positive semidefinite $n \times n$ matrix, c is a vector in \Re^{n}, and $b(\gamma)$ is a monotonically nondecreasing function of γ, such that the set $\left\{b(\gamma) \mid f^{*}<\gamma \leq \bar{\gamma}\right\}$ is bounded.
(4) $f^{*}>-\infty$, the set X is of the form

$$
X=\left\{x \mid g_{j}(x) \leq 0, j=1, \ldots, r\right\}
$$

and for some $\bar{\gamma} \in \Gamma$ and all $\gamma \in \Gamma$ with $\gamma \leq \bar{\gamma}$, the level sets V_{γ} are of the form

$$
V_{\gamma}=\left\{x \mid g_{0}(x)+b(\gamma) \leq 0\right\}
$$

where $g_{j}, j=0,1, \ldots, r$, are real-valued, convex, and bidirectionally flat functions (cf. Exercise 2.7), and $b(\gamma)$ is a monotonically nondecreasing function of γ, such that the set $\left\{b(\gamma) \mid f^{*}<\gamma \leq \bar{\gamma}\right\}$ is bounded.

Solution: (a) Let x^{*} be a local minimum of f over X and assume, to arrive at a contradiction, that there exists a vector $\bar{x} \in X$ such that $f(\bar{x})<f\left(x^{*}\right)$. Then, \bar{x} and x^{*} belong to the set $X \cap V_{\gamma^{*}}$, where $\gamma^{*}=f\left(x^{*}\right)$. Since this set is convex, the line segment connecting x^{*} and \bar{x} belongs to the set, implying that

$$
\begin{equation*}
f\left(\alpha \bar{x}+(1-\alpha) x^{*}\right) \leq f\left(x^{*}\right), \quad \forall \alpha \in[0,1] . \tag{1}
\end{equation*}
$$

For each integer $k \geq 1$, there exists an $\alpha_{k} \in(0,1 / k]$ such that

$$
\begin{equation*}
f\left(\alpha_{k} \bar{x}+\left(1-\alpha_{k}\right) x^{*}\right)<f\left(x^{*}\right), \quad \text { for some } \alpha_{k} \in(0,1 / k] ; \tag{2}
\end{equation*}
$$

otherwise, in view of Eq. (1), we would have that $f(x)$ is constant for x on the line segment connecting x^{*} and $(1 / k) \bar{x}+(1-(1 / k)) x^{*}$. Equation (2) contradicts the local optimality of x^{*}.
(b) We consider the level sets

$$
V_{\gamma}=\{x \mid f(x) \leq \gamma\}
$$

for $\gamma>f^{*}$. Let $\left\{\gamma^{k}\right\}$ be a scalar sequence such that $\gamma^{k} \downarrow f^{*}$. Using the fact that for two nonempty closed convex sets C and D such that $C \subset D$, we have $R_{C} \subset R_{D}$, it can be seen that

$$
R_{f}=\cap_{\gamma \in \Gamma} R_{\gamma}=\cap_{k=1}^{\infty} R_{\gamma^{k}}
$$

Similarly, L_{f} can be written as

$$
L_{f}=\cap_{\gamma \in \Gamma} L_{\gamma}=\cap_{k=1}^{\infty} L_{\gamma^{k}} .
$$

Under each of the conditions (1)-(4), we show that the set of minima of f over X, which is given by

$$
X^{*}=\cap_{k=1}^{\infty}\left(X \cap V_{\gamma^{k}}\right)
$$

is nonempty.
Let condition (1) hold. The sets $X \cap V_{\gamma^{k}}$ are nonempty, closed, convex, and nested. Furthermore, for each k, their recession cone is given by $R_{X} \cap R_{\gamma^{k}}$ and their lineality space is given by $L_{X} \cap L_{\gamma^{k}}$. We have that

$$
\cap_{k=1}^{\infty}\left(R_{X} \cap R_{\gamma^{k}}\right)=R_{X} \cap R_{f}
$$

and

$$
\cap_{k=1}^{\infty}\left(L_{X} \cap L_{\gamma^{k}}\right)=L_{X} \cap L_{f}
$$

while by assumption $R_{X} \cap R_{f}=L_{X} \cap L_{f}$. Then it follows by Prop. 1.5.5 that X^{*} is nonempty.

Let condition (2) hold. The sets $V_{\gamma^{k}}$ are nested and the intersection $X \cap V_{\gamma^{k}}$ is nonempty for all k. We also have by assumption that $R_{X} \cap R_{f} \subset L_{f}$ and X is specified by linear inequalities. By Prop. 1.5.6, it follows that X^{*} is nonempty.

Let condition (3) hold. The sets $V_{\gamma^{k}}$ have the form

$$
V_{\gamma^{k}}=\left\{x \in \Re^{n} \mid x^{\prime} Q x+c^{\prime} x+b\left(\gamma^{k}\right) \leq 0\right\} .
$$

In view of the assumption that $b(\gamma)$ is bounded for $\gamma \in\left(f^{*}, \bar{\gamma}\right]$, we can consider a subsequence $\left\{b\left(\gamma^{k}\right)\right\}_{\mathcal{K}}$ that converges to a scalar. Furthermore, X is specified by convex quadratic inequalities, and the intersection $X \cap V_{\gamma^{k}}$ is nonempty for all $k \in \mathcal{K}$. By Prop. 1.5.7, it follows that X^{*} is nonempty.

Similarly, under condition (4), the result follows using Exercise 2.7(a).

2.9 (Partial Minimization)

(a) Let $f: \Re^{n} \mapsto[-\infty, \infty]$ be a function and consider the subset of \Re^{n+1} given by

$$
E_{f}=\{(x, w) \mid f(x)<w\}
$$

Show that E_{f} is related to the epigraph of f as follows:

$$
E_{f} \subset \operatorname{epi}(f) \subset \operatorname{cl}\left(E_{f}\right)
$$

Show also that f is convex if and only if E_{f} is convex.
(b) Let $F: \Re^{m+n} \mapsto[-\infty, \infty]$ be a function and let

$$
f(x)=\inf _{z \in \Re^{m}} F(x, z), \quad x \in \Re^{n} .
$$

Show that E_{f} is the projection of the set $\{(x, z, w) \mid F(x, z)<w\}$ on the space of (x, w).
(c) Use parts (a) and (b) to show that convexity of F implies convexity of f (cf. Prop. 2.3.5).

Solution: (a) The epigraph of f is given by

$$
\operatorname{epi}(f)=\{(x, w) \mid f(x) \leq w\}
$$

If $(x, w) \in E_{f}$, then it follows that $(x, w) \in \operatorname{epi}(f)$, showing that $E_{f} \subset \operatorname{epi}(f)$. Next, assume that $(x, w) \in \operatorname{epi}(f)$, i.e., $f(x) \leq w$. Let $\left\{w_{k}\right\}$ be a sequence with $w_{k}>w$ for all k, and $w_{k} \rightarrow w$. Then we have, $f(x)<w_{k}$ for all k, implying that $\left(x, w_{k}\right) \in E_{f}$ for all k, and that the limit $(x, w) \in \operatorname{cl}\left(E_{f}\right)$. Thus we have the desired relations,

$$
\begin{equation*}
E_{f} \subset \operatorname{epi}(f) \subset \operatorname{cl}\left(E_{f}\right) \tag{2.5}
\end{equation*}
$$

We next show that f is convex if and only if E_{f} is convex. By definition, f is convex if and only if epi (f) is convex. Assume that epi (f) is convex. Suppose, to arrive at a contradiction, that E_{f} is not convex. This implies the existence of vectors $\left(x_{1}, w_{1}\right) \in E_{f},\left(x_{2}, w_{2}\right) \in E_{f}$, and a scalar $\alpha \in(0,1)$ such that $\alpha\left(x_{1}, w_{1}\right)+$ $(1-\alpha)\left(x_{2}, w_{2}\right) \notin E_{f}$, from which we get

$$
\begin{align*}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) & \geq \alpha w_{1}+(1-\alpha) w_{2} \tag{2.6}\\
& >\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
\end{align*}
$$

where the second inequality follows from the fact that $\left(x_{1}, w_{1}\right)$ and $\left(x_{2}, w_{2}\right)$ belong to E_{f}. We have $\left(x_{1}, f\left(x_{1}\right)\right) \in \operatorname{epi}(f)$ and $\left(x_{2}, f\left(x_{2}\right)\right) \in \operatorname{epi}(f)$. In view of the convexity assumption of epi (f), this yields $\alpha\left(x_{1}, f\left(x_{1}\right)\right)+(1-\alpha)\left(x_{2}, f\left(x_{2}\right)\right) \in$ epi (f) and therefore,

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

Combined with Eq. (2.6), the preceding relation yields a contradiction, thus showing that E_{f} is convex.

Next assume that E_{f} is convex. We show that epi (f) is convex. Let $\left(x_{1}, w_{1}\right)$ and $\left(x_{2}, w_{2}\right)$ be arbitrary vectors in epi (f). Consider sequences of vectors $\left(x_{1}, w_{1}^{k}\right)$ and $\left(x_{2}, w_{2}^{k}\right)$ such that $w_{1}^{k}>w_{1}, w_{2}^{k}>w_{2}$, and $w_{1}^{k} \rightarrow w_{1}, w_{2}^{k} \rightarrow$ w_{2}. It follows that for each $k,\left(x_{1}, w_{1}^{k}\right)$ and $\left(x_{2}, w_{2}^{k}\right)$ belong to E_{f}. Since E_{f} is convex by assumption, this implies that for each $\alpha \in[0,1]$ and all k, the vector $\left(\alpha x_{1}+(1-\alpha) x_{2}, \alpha w_{1}^{k}+(1-\alpha) w_{2}^{k}\right) \in E_{f}$, i.e., we have for each k

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<\alpha w_{1}^{k}+(1-\alpha) w_{2}^{k} .
$$

Taking the limit in the preceding relation, we get

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha w_{1}+(1-\alpha) w_{2},
$$

showing that $\left(\alpha x_{1}+(1-\alpha) x_{2}, \alpha w_{1}+(1-\alpha) w_{2}\right) \in \operatorname{epi}(f)$. Hence epi (f) is convex.
(b) Let T denote the projection of the set $\{(x, z, w) \mid F(x, z)<w\}$ on the space of (x, w). We show that $E_{f}=T$. Let $(x, w) \in E_{f}$. By definition, we have

$$
\inf _{z \in \Re^{m}} F(x, z)<w
$$

which implies that there exists some $\bar{z} \in \Re^{m}$ such that

$$
F(x, \bar{z})<w,
$$

showing that (x, \bar{z}, w) belongs to the set $\{(x, z, w) \mid F(x, z)<w\}$, and $(x, w) \in T$. Conversely, let $(x, w) \in T$. This implies that there exists some z such that $F(x, z)<w$, from which we get

$$
f(x)=\inf _{z \in \Re^{m}} F(x, z)<w,
$$

showing that $(x, w) \in E_{f}$, and completing the proof.
(c) Let F be a convex function. Using part (a), the convexity of F implies that the set $\{(x, z, w) \mid F(x, z)<w\}$ is convex. Since the projection mapping is linear, and hence preserves convexity, we have, using part (b), that the set E_{f} is convex, which implies by part (a) that f is convex.

2.10 (Partial Minimization of Nonconvex Functions)

Let $f: \Re^{n} \times \Re^{m} \mapsto(-\infty, \infty]$ be a closed proper function. Assume that f has the following property: for all $u^{*} \in \Re^{m}$ and $\gamma \in \Re$, there exists a neighborhood N of u^{*} such that the set $\{(x, u) \mid u \in N, f(x, u) \leq \gamma\}$ is bounded, i.e., $f(x, u)$ is level-bounded in x locally uniformly in u. Let

$$
p(u)=\inf _{x} f(x, u), \quad P(u)=\arg \min _{x} f(x, u), \quad u \in \Re^{m}
$$

(a) Show that the function p is closed and proper. Show also that for each $u \in \operatorname{dom}(p)$, the set $P(u)$ is nonempty and compact.
(b) Consider the following weaker assumption: for all $u \in \Re^{m}$ and $\gamma \in \Re$, the set $\{x \mid f(x, u) \leq \gamma\}$ is bounded. Show that this assumption is not sufficient to guarantee the closedness of p.
(c) Let $\left\{u_{k}\right\}$ be a sequence such that $u_{k} \rightarrow u^{*}$ for some $u^{*} \in \operatorname{dom}(p)$, and assume that $p\left(u_{k}\right) \rightarrow p\left(u^{*}\right)$ (which holds when p is continuous at u^{*}). Let also $x_{k} \in P\left(u_{k}\right)$ for all k. Show that the sequence $\left\{x_{k}\right\}$ is bounded and all its limit points lie in $P\left(u^{*}\right)$.
(d) Show that a sufficient condition for p to be continuous at u^{*} is the existence of some $x^{*} \in P\left(u^{*}\right)$ such that $f\left(x^{*}, \cdot\right)$ is continuous at u^{*}.

Solution: (a) For each $u \in \Re^{m}$, let $f_{u}(x)=f(x, u)$. There are two cases; either $f_{u} \equiv \infty$, or f_{u} is lower semicontinuous with bounded level sets. The first case, which corresponds to $p(u)=\infty$, can't hold for every u, since f is not identically equal to ∞. Therefore, $\operatorname{dom}(p) \neq \varnothing$, and for each $u \in \operatorname{dom}(p)$, we have by Weierstrass' Theorem that $p(u)=\inf _{x} f_{u}(x)$ is finite [i.e., $p(u)>-\infty$ for all $u \in \operatorname{dom}(p)]$ and the set $P(u)=\arg \min _{x} f_{u}(x)$ is nonempty and compact.

We now show that p is lower semicontinuous. By assumption, for all $\bar{u} \in$ \Re^{m} and for all $\alpha \in \Re$, there exists a neighborhood \bar{N} of \bar{u} such that the set $\{(x, u) \mid f(x, u) \leq \alpha\} \cap\left(\Re^{n} \times \bar{N}\right)$ is bounded in $\Re^{n} \times \Re^{m}$. We can choose a smaller closed set N containing \bar{u} such that the set $\{(x, u) \mid f(x, u) \leq \alpha\} \cap$ $\left(\Re^{n} \times N\right)$ is closed (since f is lower semicontinuous) and bounded. In view of the assumption that f_{u} is lower semicontinuous with bounded level sets, it follows using Weierstrass' Theorem that for any scalar α,

$$
p(u) \leq \alpha \text { if and only if there exists } x \text { such that } f(x, u) \leq \alpha
$$

Hence, the set $\{u \mid p(u) \leq \alpha\} \cap N$ is the image of the set $\{(x, u) \mid f(x, u) \leq$ $\alpha\} \cap\left(\Re^{n} \times N\right)$ under the continuous mapping $(x, u) \mapsto u$. Since the image of a compact set under a continuous mapping is compact [cf. Prop. 1.1.9(d)], we see that $\{u \mid p(u) \leq \alpha\} \cap N$ is closed.

Thus, each $\bar{u} \in \Re^{m}$ is contained in a closed set whose intersection with $\{u \mid p(u) \leq \alpha\}$ is closed, so that the set $\{u \mid p(u) \leq \alpha\}$ itself is closed for all scalars α. It follows from Prop. 1.2.2 that p is lower semicontinuous.
(b) Consider the following example

$$
f(x, u)= \begin{cases}\min \{|x-1 / u|, 1+|x|\} & \text { if } u \neq 0, x \in \Re \\ 1+|x| & \text { if } u=0, x \in \Re\end{cases}
$$

where x and u are scalars. This function is continuous in (x, u) and the level sets are bounded in x for each u, but not locally uniformly in u, i.e., there does not exists a neighborhood N of $u=0$ such that the set $\{(x, u) \mid u \in N, f(x, u) \leq \alpha\}$ is bounded for some $\alpha>0$.

For this function, we have

$$
p(u)= \begin{cases}0 & \text { if } u \neq 0 \\ 1 & \text { if } u=0\end{cases}
$$

Hence, the function p is not lower semicontinuous at 0 .
(c) Let $\left\{u_{k}\right\}$ be a sequence such that $u_{k} \rightarrow u^{*}$ for some $u^{*} \in \operatorname{dom}(p)$, and also $p\left(u_{k}\right) \rightarrow p\left(u^{*}\right)$. Let α be any scalar such that $p\left(u^{*}\right)<\alpha$. Since $p\left(u_{k}\right) \rightarrow p\left(u^{*}\right)$, we obtain

$$
\begin{equation*}
f\left(x_{k}, u_{k}\right)=p\left(u_{k}\right)<\alpha, \tag{2.7}
\end{equation*}
$$

for all k sufficiently large, where we use the fact that $x_{k} \in P\left(u_{k}\right)$ for all k. We take N to be a closed neighborhood of u^{*} as in part (a). Since $u_{k} \rightarrow u^{*}$, using Eq. (2.7), we see that for all k sufficiently large, the pair (x_{k}, u_{k}) lies in the compact set

$$
\{(x, u) \mid f(x, u) \leq \alpha\} \cap\left(\Re^{n} \times N\right)
$$

Hence, the sequence $\left\{x_{k}\right\}$ is bounded, and therefore has a limit point, call it x^{*}. It follows that

$$
\left(x^{*}, u^{*}\right) \in\{(x, u) \mid f(x, u) \leq \alpha\}
$$

Since this is true for arbitrary $\alpha>p\left(u^{*}\right)$, we see that $f\left(x^{*}, u^{*}\right) \leq p\left(u^{*}\right)$, which, by the definition of $p(u)$, implies that $x^{*} \in P\left(u^{*}\right)$.
(d) By definition, we have $p(u) \leq f\left(x^{*}, u\right)$ for all u and $p\left(u^{*}\right)=f\left(x^{*}, u^{*}\right)$. Since $f\left(x^{*}, \cdot\right)$ is continuous at u^{*}, we have for any sequence $\left\{u_{k}\right\}$ converging to u^{*}

$$
\limsup _{k \rightarrow \infty} p\left(u_{k}\right) \leq \limsup _{k \rightarrow \infty} f\left(x^{*}, u_{k}\right)=f\left(x^{*}, u^{*}\right)=p\left(u^{*}\right),
$$

thereby implying that p is upper semicontinuous at u^{*}. Since p is also lower semicontinuous at u^{*} by part (a), we conclude that p is continuous at u^{*}.

2.11 (Projection on a Nonconvex Set)

Let C be a nonempty closed subset of \Re^{n}.
(a) Show that the distance function $d_{C}(x): \Re^{n} \mapsto \Re$, defined by

$$
d_{C}(x)=\inf _{w \in C}\|w-x\|
$$

is a continuous function of x.
(b) Show that the projection set $P_{C}(x)$, defined by

$$
P_{C}(x)=\arg \min _{w \in C}\|w-x\|,
$$

is nonempty and compact.
(c) Let $\left\{x_{k}\right\}$ be a sequence that converges to a vector x^{*} and let $\left\{w_{k}\right\}$ be a sequence with $w_{k} \in P_{C}\left(x_{k}\right)$. Show that the sequence $\left\{w_{k}\right\}$ is bounded and all its limit points belong to the set $P_{C}\left(x^{*}\right)$.

Solution: We define the function f by

$$
f(w, x)= \begin{cases}\|w-x\| & \text { if } w \in C \\ \infty & \text { if } w \notin C\end{cases}
$$

With this identification, we get

$$
d_{C}(x)=\inf _{w} f(w, x), \quad P_{C}(x)=\arg \min _{w} f(w, x) .
$$

We now show that $f(w, x)$ satisfies the assumptions of Exercise 2.10, so that we can apply the results of this exercise to this problem.

Since the set C is closed by assumption, it follows that $f(w, x)$ is lower semicontinuous. Moreover, by Weierstrass' Theorem, we see that $f(w, x)>-\infty$ for all x and w. Since the set C is nonempty by assumption, we also have that $\operatorname{dom}(f)$ is nonempty. It is also straightforward to see that the function $\|\cdot\|$, and therefore the function f, satisfies the locally uniformly level-boundedness assumption of Exercise 2.10.
(a) Since the function $\|\cdot\|$ is lower semicontinuous and the set C is closed, it follows from Weierstrass' Theorem that for all $x^{*} \in \Re^{n}$, the infimum $\operatorname{in~}_{\inf }^{w}$ f(w,x) is attained at some w^{*}, i.e., $P\left(x^{*}\right)$ is nonempty. Hence, we see that for all $x^{*} \in \Re^{n}$, there exists some $w^{*} \in P\left(x^{*}\right)$ such that $f\left(w^{*}, \cdot\right)$ is continuous at x^{*}, which follows by continuity of the function $\|\cdot\|$. Hence, the function $f(w, x)$ satisfies the sufficiency condition given in Exercise 2.10(d), and it follows that $d_{C}(x)$ depends continuously on x.
(b) This part follows from part (a) of Exercise 2.10.
(c) This part follows from part (c) of Exercise 2.10.

2.12 (Convergence of Penalty Methods [RoW98])

Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper function, let $F: \Re^{n} \mapsto \Re^{m}$ be a continuous function, and let $D \subset \Re^{m}$ be a nonempty closed set. Consider the problem

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } F(x) \in D .
\end{aligned}
$$

Consider also the following approximation of this problem:

$$
\begin{align*}
& \operatorname{minimize} f(x)+\theta(F(x), c) \tag{c}\\
& \text { subject to } x \in \Re^{n},
\end{align*}
$$

with $c \in(0, \infty)$, where the function $\theta: \Re^{m} \times(0, \infty) \mapsto(-\infty, \infty]$ is lower semicontinuous, monotonically increasing in c for each $u \in \Re^{m}$, and satisfies

$$
\lim _{c \rightarrow \infty} \theta(u, c)= \begin{cases}0 & \text { if } u \in D \\ \infty & \text { if } u \notin D\end{cases}
$$

Assume that for some $\bar{c} \in(0, \infty)$ sufficiently large, the level sets of the function $f(x)+\theta(F(x), \bar{c})$ are bounded, and consider any sequence of parameter values $c_{k} \geq \bar{c}$ with $c_{k} \rightarrow \infty$. Show the following:
(a) The sequence of optimal values of the approximate problems $\left(P_{c_{k}}\right)$ converges to the optimal value of the original problem.
(b) Any sequence $\left\{x_{k}\right\}$, where x_{k} is an optimal solution of the approximate problem $\left(P_{c_{k}}\right)$, is bounded and each of its limit points is an optimal solution of the original problem.

Solution: (a) We set $\bar{s}=1 / \bar{c}$ and consider the function $g(x, s): \Re^{n} \times \Re \mapsto$ $(-\infty, \infty]$ defined by

$$
g(x, s)=f(x)+\tilde{\theta}(F(x), s),
$$

with the function $\tilde{\theta}$ given by

$$
\tilde{\theta}(u, s)= \begin{cases}\theta(u, 1 / s) & \text { if } s \in(0, \bar{s}] \\ \delta_{D}(u) & \text { if } s=0 \\ \infty & \text { if } s<0 \text { or } s>\bar{s}\end{cases}
$$

where

$$
\delta_{D}(u)= \begin{cases}0 & \text { if } u \in D \\ \infty & \text { if } u \notin D .\end{cases}
$$

We identify the original problem with that of minimizing $g(x, 0)$ in $x \in \Re^{n}$, and the approximate problem for parameter $s \in(0, \bar{s}]$ with that of minimizing $g(x, s)$ in $x \in \Re^{n}$ where $s=1 / c$. With the notation introduced in Exercise 2.10, the optimal value of the original problem is given by $p(0)$ and the optimal value of the approximate problem is given by $p(s)$. Hence, we have

$$
p(s)=\inf _{x \in \Re^{n}} g(x, s)
$$

We now show that, for the function $g(x, s)$, the assumptions of Exercise 2.10 are satisfied.

We have that $g(x, s)>-\infty$ for all (x, s), since by assumption $f(x)>-\infty$ for all x and $\theta(u, s)>-\infty$ for all (u, s). The function $\tilde{\theta}$ is such that $\tilde{\theta}(u, s)<\infty$ at least for one vector (u, s), since the set D is nonempty. Therefore, it follows that $g(x, s)<\infty$ for at least one vector (x, s), unless $g \equiv \infty$, in which case all the results of this exercise follow trivially.

We now show that the function $\tilde{\theta}$ is lower semicontinuous. This is easily seen at all points where $s \neq 0$ in view of the assumption that the function θ is lower semicontinuous on $\Re^{m} \times(0, \infty)$. We next consider points where $s=0$. We claim that for any $\alpha \in \Re$,

$$
\begin{equation*}
\{u \mid \tilde{\theta}(u, 0) \leq \alpha\}=\bigcap_{s \in(0, \bar{s}]}\{u \mid \tilde{\theta}(u, s) \leq \alpha\} . \tag{2.8}
\end{equation*}
$$

To see this, assume that $\tilde{\theta}(u, 0) \leq \alpha$. Since $\tilde{\theta}(u, s) \uparrow \tilde{\theta}(u, 0)$ as $s \downarrow 0$, we have $\tilde{\theta}(u, s) \leq \alpha$ for all $s \in(0, \bar{s}]$. Conversely, assume that $\tilde{\theta}(u, s) \leq \alpha$ for all $s \in(0, \bar{s}]$. By definition of $\tilde{\theta}$, this implies that

$$
\theta(u, 1 / s) \leq \alpha, \quad \forall s \in\left(0, s_{0}\right] .
$$

Taking the limit as $s \rightarrow 0$ in the preceding relation, we get

$$
\lim _{s \rightarrow 0} \theta(u, 1 / s)=\delta_{D}(u)=\tilde{\theta}(u, 0) \leq \alpha
$$

thus, proving the relation in (2.8). Note that for all $\alpha \in \Re$ and all $s \in(0, \bar{s}]$, the set

$$
\{u \mid \tilde{\theta}(u, s) \leq \alpha\}=\{u \mid \theta(u, 1 / s) \leq \alpha\},
$$

is closed by the lower semicontinuity of the function θ. Hence, the relation in Eq. (2.8) implies that the set $\{u \mid \tilde{\theta}(u, 0) \leq \alpha\}$ is closed for all $\alpha \in \Re$, thus showing that the function $\tilde{\theta}$ is lower semicontinuous everywhere (cf. Prop. 1.2.2). Together with the assumptions that f is lower semicontinuous and F is continuous, it follows that g is lower semicontinuous.

Finally, we show that g satisfies the locally uniform level boundedness property given in Exercise 2.10, i.e., for all $s^{*} \in \Re$ and for all $\alpha \in \Re$, there exists a neighborhood N of s^{*} such that the set $\{(x, s) \mid s \in N, g(x, s) \leq \alpha\}$ is bounded. By assumption, we have that the level sets of the function $g(x, \bar{s})=$ $f(x)+\tilde{\theta}(F(x), 1 / \bar{s})$ are bounded. The definition of $\tilde{\theta}$, together with the fact that $\tilde{\theta}(u, s)$ is monotonically increasing as $s \downarrow 0$, implies that g is indeed level-bounded in x locally uniformly in s.

Therefore, all the assumptions of Exercise 2.10 are satisfied and we get that the function p is lower semicontinuous in s. Since $\tilde{\theta}(u, s)$ is monotonically increasing as $s \downarrow 0$, it follows that p is monotonically nondecreasing as $s \downarrow 0$. This implies that

$$
p(s) \rightarrow p(0), \quad \text { as } s \downarrow 0
$$

Defining $s_{k}=1 / c_{k}$ for all k, where $\left\{c_{k}\right\}$ is the given sequence of parameter values, we get

$$
p\left(s_{k}\right) \rightarrow p(0)
$$

thus proving that the optimal value of the approximate problem converges to the optimal value of the original problem.
(b) We have by assumption that $s_{k} \rightarrow 0$ with $x_{k} \in P_{1 / s_{k}}$. It follows from part (a) that $p\left(s_{k}\right) \rightarrow p(0)$, so Exercise 2.10(b) implies that the sequence $\left\{x_{k}\right\}$ is bounded and all its limit points are optimal solutions of the original problem.

2.13 (Approximation by Envelope Functions [RoW98])

Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper function. For a scalar $c>0$, define the corresponding envelope function $e_{c} f$ and the proximal mapping $P_{c} f$ by

$$
\begin{gathered}
e_{c} f(x)=\inf _{w}\left\{f(w)+\frac{1}{2 c}\|w-x\|^{2}\right\}, \\
P_{c} f(x)=\arg \min _{w}\left\{f(w)+\frac{1}{2 c}\|w-x\|^{2}\right\} .
\end{gathered}
$$

Assume that there exists some $c>0$ with $e_{c} f(x)>-\infty$ for some $x \in \Re^{n}$. Let c_{f} be the supremum of the set of all such c. Show the following:
(a) For every $c \in\left(0, c_{f}\right)$, the set $P_{c} f(x)$ is nonempty and compact, while the value $e_{c} f(x)$ is finite and depends continuously on (x, c) with

$$
e_{c} f(x) \uparrow f(x) \text { for all } x, \text { as } c \downarrow 0
$$

(b) Let $\left\{w_{k}\right\}$ be a sequence such that $w_{k} \in P_{c_{k}} f\left(x_{k}\right)$ for some sequences $\left\{x_{k}\right\}$ and $\left\{c_{k}\right\}$ such that $x_{k} \rightarrow x^{*}$ and $c_{k} \rightarrow c^{*} \in\left(0, c_{f}\right)$. Then $\left\{w_{k}\right\}$ is bounded and all its limit points belong to the set $P_{c^{*}} f\left(x^{*}\right)$.
[Note: The approximation $e_{c} f$ is an underestimate of the function f, i.e., $e_{c} f(x) \leq$ $f(x)$ for all $x \in \Re^{n}$. Furthermore, $e_{c} f$ is a real-valued continuous function, whereas f itself may only be extended real-valued and lower semicontinuous.]

Solution: (a) We fix a $c_{0} \in\left(0, c_{f}\right)$ and consider the function

$$
h(w, x, c)= \begin{cases}f(w)+\left(\frac{1}{2 c}\right)\|w-x\|^{2} & \text { if } c \in\left(0, c_{0}\right] \\ f(x) & \text { if } c=0 \text { and } w=x \\ \infty & \text { otherwise }\end{cases}
$$

We consider the problem of minimizing $h(w, x, c)$ in w. With this identification and using the notation introduced in Exercise 2.10, for some $c \in\left(0, c_{0}\right)$, we obtain

$$
e_{c} f(x)=p(x, c)=\inf _{w} h(w, x, c),
$$

and

$$
P_{c} f(x)=P(x, c)=\arg \min _{w} h(w, x, c) .
$$

We now show that, for the function $h(w, x, c)$, the assumptions given in Exercise 2.10 are satisfied.

We have that $h(w, x, c)>-\infty$ for all (w, x, c), since by assumption $f(x)>$ $-\infty$ for all $x \in \Re^{n}$. Furthermore, $h(w, x, c)<\infty$ for at least one vector (w, x, c), since by assumption $f(x)<\infty$ for at least one vector $x \in X$.

We next show that the function h is lower semicontinuous in (w, x, c). This is easily seen at all points where $c \in\left(0, c_{0}\right]$ in view of the assumption that f is lower semicontinuous and the function $\|\cdot\|^{2}$ is lower semicontinuous. We now consider points where $c=0$ and $w \neq x$. Let $\left\{\left(w_{k}, x_{k}, c_{k}\right)\right\}$ be a sequence that converges to some ($w, x, 0$) with $w \neq x$. We can assume without loss of generality that $w_{k} \neq x_{k}$ for all k. Note that for some k, we have

$$
h\left(w_{k}, x_{k}, c_{k}\right)= \begin{cases}\infty & \text { if } c_{k}=0 \\ f\left(w_{k}\right)+\left(\frac{1}{2 c_{k}}\right)\left\|w_{k}-x_{k}\right\|^{2} & \text { if } c_{k}>0\end{cases}
$$

Taking the limit as $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty} h\left(w_{k}, x_{k}, c_{k}\right)=\infty \geq h(w, x, 0)
$$

since $w \neq x$ by assumption. This shows that h is lower semicontinuous at points where $c=0$ and $w \neq x$. We finally consider points where $c=0$ and $w=x$. At these points, we have $h(w, x, c)=f(x)$. Let $\left\{\left(w_{k}, x_{k}, c_{k}\right)\right\}$ be a sequence that converges to some $(w, x, 0)$ with $w=x$. Considering all possibilities, we see that the limit inferior of the sequence $\left\{h\left(w_{k}, x_{k}, c_{k}\right)\right\}$ cannot be less than $f(x)$, thus showing that h is also lower semicontinuous at points where $c=0$ and $w=x$.

Finally, we show that h satisfies the locally uniform level-boundedness property given in Exercise 2.10, i.e., for all $\left(x^{*}, c^{*}\right)$ and for all $\alpha \in \Re$, there exists a
neighborhood N of $\left(x^{*}, c^{*}\right)$ such that the set $\{(w, x, c) \mid(x, c) \in N, h(w, x, c) \leq$ $\alpha\}$ is bounded. Assume, to arrive at a contradiction, that there exists a sequence $\left\{\left(w_{k}, x_{k}, c_{k}\right)\right\}$ such that

$$
\begin{equation*}
h\left(w_{k}, x_{k}, c_{k}\right) \leq \alpha<\infty \tag{2.9}
\end{equation*}
$$

for some scalar α, with $\left(x_{k}, c_{k}\right) \rightarrow\left(x^{*}, c^{*}\right)$, and $\left\|w_{k}\right\| \rightarrow \infty$. Then, for sufficiently large k, we have $w_{k} \neq x_{k}$, which in view of Eq. (2.9) and the definition of the function h, implies that $c_{k} \in\left(0, c_{0}\right]$ and

$$
f\left(w_{k}\right)+\frac{1}{2 c_{k}}\left\|w_{k}-x_{k}\right\|^{2} \leq \alpha
$$

for all sufficiently large k. In particular, since $c_{k} \leq c_{0}$, it follows from the preceding relation that

$$
\begin{equation*}
f\left(w_{k}\right)+\frac{1}{2 c_{0}}\left\|w_{k}-x_{k}\right\|^{2} \leq \alpha \tag{2.10}
\end{equation*}
$$

The choice of c_{0} ensures, through the definition of c_{f}, the existence of some $c_{1}>c_{0}$, some $\bar{x} \in \Re^{n}$, and some scalar β such that

$$
f(w) \geq-\frac{1}{2 c_{1}}\|w-\bar{x}\|^{2}+\beta, \quad \forall w .
$$

Together with Eq. (2.10), this implies that

$$
-\frac{1}{2 c_{1}}\left\|w_{k}-\bar{x}\right\|^{2}+\frac{1}{2 c_{0}}\left\|w_{k}-x_{k}\right\|^{2} \leq \alpha-\beta,
$$

for all sufficiently large k. Dividing this relation by $\left\|w_{k}\right\|^{2}$ and taking the limit as $k \rightarrow \infty$, we get

$$
-\frac{1}{2 c_{1}}+\frac{1}{2 c_{0}} \leq 0
$$

from which it follows that $c_{1} \leq c_{0}$. This is a contradiction by our choice of c_{1}. Hence, the function $h(w, x, c)$ satisfies all the assumptions of Exercise 2.10.

By assumption, we have that $f(\bar{x})<\infty$ for some $\bar{x} \in \Re^{n}$. Using the definition of $e_{c} f(x)$, this implies that

$$
\begin{aligned}
e_{c} f(x) & =\inf _{w}\left\{f(w)+\frac{1}{2 c}\|w-x\|^{2}\right\} \\
& \leq f(\bar{x})+\frac{1}{2 c}\|\bar{x}-x\|^{2}<\infty, \quad \forall x \in \Re^{n},
\end{aligned}
$$

where the first inequality is obtained by setting $w=\bar{x}$ in $f(w)+\frac{1}{2 c}\|w-x\|^{2}$. Together with Exercise 2.10(a), this shows that for every $c \in\left(0, c_{0}\right)$ and all $x \in \Re^{n}$, the function $e_{c} f(x)$ is finite, and the set $P_{c} f(x)$ is nonempty and compact. Furthermore, it can be seen from the definition of $h(w, x, c)$, that for all $c \in\left(0, c_{0}\right)$, $h(w, x, c)$ is continuous in (x, c). Therefore, it follows from Exercise 2.10(d) that for all $c \in\left(0, c_{0}\right), e_{c} f(x)$ is continuous in (x, c). In particular, since $e_{c} f(x)$ is a monotonically decreasing function of c, it follows that

$$
e_{c} f(x)=p(x, c) \uparrow p(x, 0)=f(x), \quad \forall x \text { as } c \downarrow 0
$$

This concludes the proof for part (a).
(b) Directly follows from Exercise 2.10(c).

2.14 (Envelopes and Proximal Mappings under Convexity [RoW98])

Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a closed proper convex function. For $c>0$, consider the envelope function $e_{c} f$ and the proximal mapping $P_{c} f$ (cf. Exercise 2.13). Show the following:
(a) The supremum of the set of all $c>0$ such that $e_{c} f(x)>-\infty$ for some $x \in \Re^{n}$, is ∞.
(b) The proximal mapping $P_{c} f$ is single-valued and is continuous in the sense that $P_{c} f(x) \rightarrow P_{c^{*}} f\left(x^{*}\right)$ whenever $(x, c) \rightarrow\left(x^{*}, c^{*}\right)$ with $c^{*}>0$.
(c) The envelope function $e_{c} f$ is convex and smooth, and its gradient is given by

$$
\nabla e_{c} f(x)=\frac{1}{c}\left(x-P_{c} f(x)\right) .
$$

Note: The envelope function $e_{c} f$ is smooth, regardless of whether f is nonsmooth.
Solution: We consider the function g_{c} defined by

$$
g_{c}(x, w)=f(w)+\frac{1}{2 c}\|w-x\|^{2} .
$$

In view of the assumption that f is lower semicontinuous, it follows that $g_{c}(x, w)$ is lower semicontinuous. We also have that $g_{c}(x, w)>-\infty$ for all (x, w) and $g_{c}(x, w)<\infty$ for at least one vector (x, w). Moreover, since $f(x)$ is convex by assumption, $g_{c}(x, w)$ is convex in (x, w), even strictly convex in w.

Note that by definition, we have

$$
\begin{aligned}
& e_{c} f(x)=\inf _{w} g_{c}(x, w), \\
& P_{c} f(x)=\arg \min _{w} g_{c}(x, w) .
\end{aligned}
$$

(a) In order to show that c_{f} is ∞, it suffices to show that $e_{c} f(0)>-\infty$ for all $c>0$. This will follow from Weierstrass' Theorem, once we show the boundedness of the level sets of $g_{c}(0, \cdot)$. Assume the contrary, i.e., there exists some $\alpha \in \Re$ and a sequence $\left\{x_{k}\right\}$ such that $\left\|x_{k}\right\| \rightarrow \infty$ and

$$
\begin{equation*}
g_{c}\left(0, x_{k}\right)=f\left(x_{k}\right)+\frac{1}{2 c}\left\|x_{k}\right\|^{2} \leq \alpha, \quad \forall k . \tag{2.11}
\end{equation*}
$$

Assume without loss of generality that $\left\|x_{k}\right\|>1$ for all k. We fix an x_{0} with $f\left(x_{0}\right)<\infty$. We define

$$
\tau_{k}=\frac{1}{\left\|x_{k}\right\|} \in(0,1)
$$

and

$$
\bar{x}_{k}=\left(1-\tau_{k}\right) x_{0}+\tau_{k} x_{k} .
$$

Since $\left\|x_{k}\right\| \rightarrow \infty$, it follows that $\tau_{k} \rightarrow 0$. Using Eq. (2.11) and the convexity of f, we obtain

$$
\begin{aligned}
f\left(\bar{x}_{k}\right) & \leq\left(1-\tau_{k}\right) f\left(x_{0}\right)+\tau_{k} f\left(x_{k}\right) \\
& \leq\left(1-\tau_{k}\right) f\left(x_{0}\right)+\tau_{k} \alpha-\frac{\tau_{k}}{2 c}\left\|x_{k}\right\|^{2} .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ in the above equation, we see that $f\left(\bar{x}_{k}\right) \rightarrow-\infty$. It follows from the definitions of τ_{k} and \bar{x}_{k} that

$$
\begin{aligned}
\left\|\bar{x}_{k}\right\| & \leq\left\|1-\tau_{k}\right\|\left\|x_{0}\right\|+\left\|\tau_{k}\right\|\left\|x_{k}\right\| \\
& \leq\left\|x_{0}\right\|+1
\end{aligned}
$$

Therefore, the sequence $\left\{\bar{x}_{k}\right\}$ is bounded. Since f is lower semicontinuous, Weierstrass' Theorem suggests that f is bounded from below on every bounded subset of \Re^{n}. Since the sequence $\left\{\bar{x}_{k}\right\}$ is bounded, this implies that the sequence $f\left(\bar{x}_{k}\right)$ is bounded from below, which contradicts the fact that $f\left(\bar{x}_{k}\right) \rightarrow \infty$. This proves that the level sets of the function $g_{c}(0, \cdot)$ are bounded. Therefore, using Weierstrass' Theorem, we have that the infimum in $e_{c} f(0)=\inf _{w} g_{c}(0, w)$ is attained, and $e_{c} f(0)>-\infty$ for every $c>0$. This shows that the supremum c_{f} of all $c>0$, such that $e_{c} f(x)>-\infty$ for some $x \in \Re^{n}$, is ∞.
(b) Since the value c_{f} is equal to ∞ by part (a), it follows that $e_{c} f$ and $P_{c} f$ have all the properties given in Exercise 2.13 for all $c>0$: The set $P_{c} f(x)$ is nonempty and compact, and the function $e_{c} f(x)$ is finite for all x, and is continuous in (x, c). Consider a sequence $\left\{w_{k}\right\}$ with $w_{k} \in P_{c_{k}} f\left(x_{k}\right)$ for some sequences $x_{k} \rightarrow x^{*}$ and $c_{k} \rightarrow c^{*}>0$. Then, it follows from Exercise 2.13(b) that the sequence $\left\{w_{k}\right\}$ is bounded and all its limit points belong to the set $P_{c^{*}} f\left(x^{*}\right)$. Since $g_{c}(x, w)$ is strictly convex in w, it follows from Prop. 2.1.2 that the proximal mapping $P_{c} f$ is single-valued. Hence, we have that $P_{c} f(x) \rightarrow P_{c^{*}} f\left(x^{*}\right)$ whenever $(x, c) \rightarrow\left(x^{*}, c^{*}\right)$ with $c^{*}>0$.
(c) The envelope function $e_{c} f$ is convex by Exercise 2.15 [since $g_{c}(x, w)$ is convex in (x, w)], and continuous by Exercise 2.13. We now prove that it is differentiable. Consider any point \bar{x}, and let $\bar{w}=P_{c} f(\bar{x})$. We will show that $e_{c} f$ is differentiable at \bar{x} with

$$
\nabla e_{c} f(\bar{x})=\frac{(\bar{x}-\bar{w})}{c}
$$

Equivalently, we will show that the function h given by

$$
\begin{equation*}
h(u)=e_{c} f(\bar{x}+u)-e_{c} f(\bar{x})-\frac{(\bar{x}-\bar{w})^{\prime}}{c} u \tag{2.12}
\end{equation*}
$$

is differentiable at 0 with $\nabla h(0)=0$. Since $\bar{w}=P_{c} f(\bar{x})$, we have

$$
e_{c} f(\bar{x})=f(\bar{w})+\frac{1}{2 c}\|\bar{w}-\bar{x}\|^{2}
$$

whereas

$$
e_{c} f(\bar{x}+u) \leq f(\bar{w})+\frac{1}{2 c}\|\bar{w}-(\bar{x}+u)\|^{2}, \quad \forall u
$$

so that

$$
\begin{equation*}
h(u) \leq \frac{1}{2 c}\|\bar{w}-(\bar{x}+u)\|^{2}-\frac{1}{2 c}\|\bar{w}-\bar{x}\|^{2}-\frac{1}{c}(\bar{x}-\bar{w})^{\prime} u=\frac{1}{2 c}\|u\|^{2}, \forall u . \tag{2.13}
\end{equation*}
$$

Since $e_{c} f$ is convex, it follows from Eq. (2.12) that h is convex, and therefore,

$$
0=h(0)=h\left(\frac{1}{2} u+\frac{1}{2}(-u)\right) \leq \frac{1}{2} h(u)+\frac{1}{2} h(-u),
$$

which implies that $h(u) \geq-h(-u)$. From Eq. (2.13), we obtain

$$
-h(-u) \geq-\frac{1}{2 c}\|-u\|^{2}=-\frac{1}{2 c}\|u\|^{2}, \quad \forall u
$$

which together with the preceding relation yields

$$
h(u) \geq-\frac{1}{2 c}\|u\|^{2}, \quad \forall u
$$

Thus, we have

$$
|h(u)| \leq \frac{1}{2 c}\|u\|^{2}, \quad \forall u
$$

which implies that h is differentiable at 0 with $\nabla h(0)=0$. From the formula for $\nabla e_{c} f(\cdot)$ and the continuity of $P_{c} f(\cdot)$, it also follows that e_{c} is continuously differentiable.

2.15

(a) Let C_{1} be a convex set with nonempty interior and C_{2} be a nonempty convex set that does not intersect the interior of C_{1}. Show that there exists a hyperplane such that one of the associated closed halfspaces contains C_{2}, and does not intersect the interior of C_{1}.
(b) Show by an example that we cannot replace interior with relative interior in the statement of part (a).

Solution: (a) In view of the assumption that $\operatorname{int}\left(C_{1}\right)$ and C_{2} are disjoint and convex [cf Prop. 1.2.1(d)], it follows from the Separating Hyperplane Theorem that there exists a vector $a \neq 0$ such that

$$
a^{\prime} x_{1} \leq a^{\prime} x_{2}, \quad \forall x_{1} \in \operatorname{int}\left(C_{1}\right), \quad \forall x_{2} \in C_{2}
$$

Let $b=\inf _{x_{2} \in C_{2}} a^{\prime} x_{2}$. Then, from the preceding relation, we have

$$
\begin{equation*}
a^{\prime} x \leq b, \quad \forall x \in \operatorname{int}\left(C_{1}\right) \tag{2.14}
\end{equation*}
$$

We claim that the closed halfspace $\left\{x \mid a^{\prime} x \geq b\right\}$, which contains C_{2}, does not intersect $\operatorname{int}\left(C_{1}\right)$.

Assume to arrive at a contradiction that there exists some $\bar{x}_{1} \in \operatorname{int}\left(C_{1}\right)$ such that $a^{\prime} \bar{x}_{1} \geq b$. Since $\bar{x}_{1} \in \operatorname{int}\left(C_{1}\right)$, we have that there exists some $\epsilon>0$ such that $\bar{x}_{1}+\epsilon a \in \operatorname{int}\left(C_{1}\right)$, and

$$
a^{\prime}\left(\bar{x}_{1}+\epsilon a\right) \geq b+\epsilon\|a\|^{2}>b
$$

This contradicts Eq. (2.14). Hence, we have

$$
\operatorname{int}\left(C_{1}\right) \subset\left\{x \mid a^{\prime} x<b\right\}
$$

(b) Consider the sets

$$
\begin{aligned}
& C_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=0\right\} \\
& C_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>0, x_{2} x_{1} \geq 1\right\}
\end{aligned}
$$

These two sets are convex and C_{2} is disjoint from ri $\left(C_{1}\right)$, which is equal to C_{1}. The only separating hyperplane is the x_{2} axis, which corresponds to having $a=(0,1)$, as defined in part (a). For this example, there does not exist a closed halfspace that contains C_{2} but is disjoint from $\operatorname{ri}\left(C_{1}\right)$.

2.16

Let C be a nonempty convex set in \Re^{n}, and let M be a nonempty affine set in \Re^{n}. Show that $M \cap \operatorname{ri}(C)=\varnothing$ is a necessary and sufficient condition for the existence of a hyperplane H containing M, and such that $\operatorname{ri}(C)$ is contained in one of the open halfspaces associated with H.

Solution: If there exists a hyperplane H with the properties stated, the condition $M \cap \operatorname{ri}(C)=\varnothing$ clearly holds. Conversely, if $M \cap \operatorname{ri}(C)=\varnothing$, then M and C can be properly separated by Prop. 2.4.5. This hyperplane can be chosen to contain M since M is affine. If this hyperplane contains a point in ri (C), then it must contain all of C by Prop. 1.4.2. This contradicts the proper separation property, thus showing that $\operatorname{ri}(C)$ is contained in one of the open halfspaces.

2.17 (Strong Separation)

Let C_{1} and C_{2} be nonempty convex subsets of \Re^{n}, and let B denote the unit ball in $\Re^{n}, B=\{x \mid\|x\| \leq 1\}$. A hyperplane H is said to separate strongly C_{1} and C_{2} if there exists an $\epsilon>0$ such that $C_{1}+\epsilon B$ is contained in one of the open halfspaces associated with H and $C_{2}+\epsilon B$ is contained in the other. Show that:
(a) The following three conditions are equivalent.
(i) There exists a hyperplane separating strongly C_{1} and C_{2}.
(ii) There exists a vector $a \in \Re^{n}$ such that $\inf _{x \in C_{1}} a^{\prime} x>\sup _{x \in C_{2}} a^{\prime} x$.
(iii) $\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0$, i.e., $0 \notin \operatorname{cl}\left(C_{2}-C_{1}\right)$.
(b) If C_{1} and C_{2} are disjoint, any one of the five conditions for strict separation, given in Prop. 2.4.3, implies that C_{1} and C_{2} can be strongly separated.

Solution: (a) We first show that (i) implies (ii). Suppose that C_{1} and C_{2} can be separated strongly. By definition, this implies that for some nonzero vector $a \in \Re^{n}, b \in \Re$, and $\epsilon>0$, we have

$$
\begin{aligned}
& C_{1}+\epsilon B \subset\left\{x \mid a^{\prime} x>b\right\}, \\
& C_{2}+\epsilon B \subset\left\{x \mid a^{\prime} x<b\right\},
\end{aligned}
$$

where B denotes the closed unit ball. Since $a \neq 0$, we also have

$$
\inf \left\{a^{\prime} y \mid y \in B\right\}<0, \quad \sup \left\{a^{\prime} y \mid y \in B\right\}>0
$$

Therefore, it follows from the preceding relations that

$$
\begin{aligned}
& b \leq \inf \left\{a^{\prime} x+\epsilon a^{\prime} y \mid x \in C_{1}, y \in B\right\}<\inf \left\{a^{\prime} x \mid x \in C_{1}\right\}, \\
& b \geq \sup \left\{a^{\prime} x+\epsilon a^{\prime} y \mid x \in C_{2}, y \in B\right\}>\sup \left\{a^{\prime} x \mid x \in C_{2}\right\} .
\end{aligned}
$$

Thus, there exists a vector $a \in \Re^{n}$ such that

$$
\inf _{x \in C_{1}} a^{\prime} x>\sup _{x \in C_{2}} a^{\prime} x
$$

proving (ii).
Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector $a \in \Re^{n}$ such that

$$
\begin{equation*}
\inf _{x \in C_{1}} a^{\prime} x>\sup _{x \in C_{2}} a^{\prime} x \tag{2.15}
\end{equation*}
$$

Using the Schwartz inequality, we see that

$$
\begin{aligned}
0 & <\inf _{x \in C_{1}} a^{\prime} x-\sup _{x \in C_{2}} a^{\prime} x \\
& =\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}} a^{\prime}\left(x_{1}-x_{2}\right), \\
& \leq \inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\|a\|\left\|x_{1}-x_{2}\right\| .
\end{aligned}
$$

It follows that

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0,
$$

thus proving (iii).
Finally, we show that (iii) implies (i). If (iii) holds, we have for some $\epsilon>0$,

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>2 \epsilon>0
$$

From this we obtain for all $x_{1} \in C_{1}$, all $x_{2} \in C_{2}$, and for all y_{1}, y_{2} with $\left\|y_{1}\right\| \leq \epsilon$, $\left\|y_{2}\right\| \leq \epsilon$,

$$
\left\|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right\| \geq\left\|x_{1}-x_{2}\right\|-\left\|y_{1}\right\|-\left\|y_{2}\right\|>0,
$$

which implies that $0 \notin\left(C_{1}+\epsilon B\right)-\left(C_{2}+\epsilon B\right)$. Therefore, the convex sets $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ are disjoint. By the Separating Hyperplane Theorem, we see that $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ can be separated, i.e., $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ lie in opposite closed halfspaces associated with the hyperplane that separates them. Then, the sets $C_{1}+(\epsilon / 2) B$ and $C_{2}+(\epsilon / 2) B$ lie in opposite open halfspaces, which by definition implies that C_{1} and C_{2} can be separated strongly.
(b) Since C_{1} and C_{2} are disjoint, we have $0 \notin\left(C_{1}-C_{2}\right)$. Any one of conditions (2)-(5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion in the proof of Prop. 2.4.3), which states that the set $C_{1}-C_{2}$ is closed, i.e.,

$$
\operatorname{cl}\left(C_{1}-C_{2}\right)=C_{1}-C_{2}
$$

Hence, we have $0 \notin \mathrm{cl}\left(C_{1}-C_{2}\right)$, which implies that

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0 .
$$

From part (a), it follows that there exists a hyperplane separating C_{1} and C_{2} strongly.

2.18

Let C_{1} and C_{2} be nonempty convex subsets of \Re^{n} such that C_{2} is a cone.
(a) Suppose that there exists a hyperplane that separates C_{1} and C_{2} properly. Show that there exists a hyperplane which separates C_{1} and C_{2} properly and passes through the origin.
(b) Suppose that there exists a hyperplane that separates C_{1} and C_{2} strictly. Show that there exists a hyperplane that passes through the origin such that one of the associated closed halfspaces contains the cone C_{2} and does not intersect C_{1}.

Solution: (a) If C_{1} and C_{2} can be separated properly, we have from the Proper Separation Theorem that there exists a vector $a \neq 0$ such that

$$
\begin{align*}
& \inf _{x \in C_{1}} a^{\prime} x \geq \sup _{x \in C_{2}} a^{\prime} x, \tag{2.16}\\
& \sup _{x \in C_{1}} a^{\prime} x>\inf _{x \in C_{2}} a^{\prime} x . \tag{2.17}
\end{align*}
$$

Let

$$
\begin{equation*}
b=\sup _{x \in C_{2}} a^{\prime} x . \tag{2.18}
\end{equation*}
$$

and consider the hyperplane

$$
H=\left\{x \mid a^{\prime} x=b\right\} .
$$

Since C_{2} is a cone, we have

$$
\lambda a^{\prime} x=a^{\prime}(\lambda x) \leq b<\infty, \quad \forall x \in C_{2}, \forall \lambda>0 .
$$

This relation implies that $a^{\prime} x \leq 0$, for all $x \in C_{2}$, since otherwise it is possible to choose λ large enough and violate the above inequality for some $x \in C_{2}$. Hence, it follows from Eq. (2.18) that $b \leq 0$. Also, by letting $\lambda \rightarrow 0$ in the preceding
relation, we see that $b \geq 0$. Therefore, we have that $b=0$ and the hyperplane H contains the origin.
(b) If C_{1} and C_{2} can be separated strictly, we have by definition that there exists a vector $a \neq 0$ and a scalar β such that

$$
\begin{equation*}
a^{\prime} x_{2}<\beta<a^{\prime} x_{1}, \quad \forall x_{1} \in C_{1}, \quad \forall x_{2} \in C_{2} . \tag{2.19}
\end{equation*}
$$

We choose b to be

$$
\begin{equation*}
b=\sup _{x \in C_{2}} a^{\prime} x, \tag{2.20}
\end{equation*}
$$

and consider the closed halfspace

$$
K=\left\{x \mid a^{\prime} x \leq b\right\},
$$

which contains C_{2}. By Eq. (2.19), we have

$$
b \leq \beta<a^{\prime} x, \quad \forall x \in C_{1},
$$

so the closed halfspace K does not intersect C_{1}.
Since C_{2} is a cone, an argument similar to the one in part (a) shows that $b=0$, and hence the hyperplane associated with the closed halfspace K passes through the origin, and has the desired properties.

2.19 (Separation Properties of Cones)

Define a homogeneous halfspace to be a closed halfspace associated with a hyperplane that passes through the origin. Show that:
(a) A nonempty closed convex cone is the intersection of the homogeneous halfspaces that contain it.
(b) The closure of the convex cone generated by a nonempty set X is the intersection of all the homogeneous halfspaces containing X.

Solution: (a) C is contained in the intersection of the homogeneous closed halfspaces that contain C, so we focus on proving the reverse inclusion. Let $x \notin C$. Since C is closed and convex by assumption, by using the Strict Separation Theorem, we see that the sets C and $\{x\}$ can be separated strictly. From Exercise 2.18(c), this implies that there exists a hyperplane that passes through the origin such that one of the associated closed halfspaces contains C, but is disjoint from x. Hence, if $x \notin C$, then x cannot belong to the intersection of the homogeneous closed halfspaces containing C, proving that C contains that intersection.
(b) A homogeneous halfspace is in particular a closed convex cone containing the origin, and such a cone includes X if and only if it includes $\operatorname{cl}(\operatorname{cone}(X))$. Hence, the intersection of all closed homogeneous halfspaces containing X and the intersection of all closed homogeneous halfspaces containing $\operatorname{cl}(\operatorname{cone}(X))$ coincide. From what has been proved in part(a), the latter intersection is equal to $\mathrm{cl}(\operatorname{cone}(X))$.

2.20 (Convex System Alternatives)

Let $g_{j}: \Re^{n} \mapsto(-\infty, \infty], j=1, \ldots, r$, be closed proper convex functions, and let X be a nonempty closed convex set. Assume that one of the following four conditions holds:
(1) $R_{X} \cap R_{g_{1}} \cap \cdots \cap R_{g_{r}}=L_{X} \cap L_{g_{1}} \cap \cdots \cap L_{g_{r}}$.
(2) $R_{X} \cap R_{g_{1}} \cap \cdots \cap R_{g_{r}} \subset L_{g_{1}} \cap \cdots \cap L_{g_{r}}$ and X is specified by linear inequality constraints.
(3) Each g_{j} is a convex quadratic function and X is specified by convex quadratic inequality constraints.
(4) Each g_{j} is a convex bidirectionally flat function (see Exercise 2.7) and X is specified by convex bidirectionally flat functions.

Show that:
(a) If there is no vector $x \in X$ such that

$$
g_{1}(x) \leq 0, \ldots, g_{r}(x) \leq 0,
$$

then there exist a positive scalar ϵ, and a vector $\mu \in \Re^{r}$ with $\mu \geq 0$, such that

$$
\mu_{1} g_{1}(x)+\cdots+\mu_{r} g_{r}(x) \geq \epsilon, \quad \forall x \in X
$$

Hint: Show that under any one of the conditions (1)-(4), the set

$$
C=\left\{u \mid \text { there exists an } x \in X \text { such that } g_{j}(x) \leq u_{j}, j=1, \ldots, r\right\}
$$

is closed, by viewing it as the projection of the set

$$
\left\{(x, u) \mid x \in X, g_{j}(x) \leq u_{j}, j=1, \ldots, r\right\}
$$

on the space of u. Furthermore, the origin does not belong to C, so it can be strictly separated from C by a hyperplane. The normal of this hyperplane provides the desired vector μ.
(b) If for every $\epsilon>0$, there exists a vector $x \in X$ such that

$$
g_{1}(x)<\epsilon, \ldots, g_{r}(x)<\epsilon
$$

then there exists a vector $x \in X$ such that

$$
g_{1}(x) \leq 0, \ldots, g_{r}(x) \leq 0
$$

Hint: Argue by contradiction and use part (a).
Solution: (a) Consider the set

$$
C=\left\{u \mid \text { there exists an } x \in X \text { such that } g_{j}(x) \leq u_{j}, j=1, \ldots, r\right\},
$$

which may be viewed as the projection of the set

$$
M=\left\{(x, u) \mid x \in X, g_{j}(x) \leq u_{j}, j=1, \ldots, r\right\}
$$

on the space of u. Let us denote this linear transformation by A. It can be seen that

$$
R_{M} \cap N(A)=\left\{(y, 0) \mid y \in R_{X} \cap R_{g_{1}} \cdots \cap R_{g_{r}}\right\},
$$

where R_{M} denotes the recession cone of set M. Similarly, we have

$$
L_{M} \cap N(A)=\left\{(y, 0) \mid y \in L_{X} \cap L_{g_{1}} \cdots \cap L_{g_{r}}\right\},
$$

where L_{M} denotes the lineality space of set M. Under conditions (1), (2), and (3), it follows from Prop. 1.5.8 that the set $A M=C$ is closed. Similarly, under condition (4), it follows from Exercise $2.7(\mathrm{~b})$ that the set $A M=C$ is closed.

By assumption, there is no vector $x \in X$ such that

$$
g_{1}(x) \leq 0, \ldots, g_{r}(x) \leq 0 .
$$

This implies that the origin does not belong to C. Therefore, by the Strict Separation Theorem, it follows that there exists a hyperplane that strictly separates the origin and the set C, i.e., there exists a vector μ such that

$$
\begin{equation*}
0<\epsilon \leq \mu^{\prime} u, \quad \forall u \in C . \tag{2.21}
\end{equation*}
$$

This equation implies that $\mu \geq 0$ since for each $u \in C$, we have that ($u_{1}, \ldots, u_{j}+$ $\left.\gamma, \ldots, u_{r}\right) \in C$ for all j and $\gamma>0$. Since $\left(g_{1}(x), \ldots, g_{r}(x)\right) \in C$ for all $x \in X$, Eq. (2.21) yields

$$
\begin{equation*}
\mu_{1} g_{1}(x)+\cdots+\mu_{r} g_{r}(x) \geq \epsilon, \quad \forall x \in X \tag{2.22}
\end{equation*}
$$

(b) Assume that there is no vector $x \in X$ such that

$$
g_{1}(x) \leq 0, \ldots, g_{r}(x) \leq 0 .
$$

This implies by part (a) that there exists a positive scalar ϵ, and a vector $\mu \in \Re^{r}$ with $\mu \geq 0$, such that

$$
\mu_{1} g_{1}(x)+\cdots+\mu_{r} g_{r}(x) \geq \epsilon, \quad \forall x \in X
$$

Let x be an arbitrary vector in X and let $j(x)$ be the smallest index that satisfies $j(x)=\arg \max _{j=1, \ldots, r} g_{j}(x)$. Then Eq. (2.22) implies that for all $x \in X$

$$
\epsilon \leq \sum_{j=1}^{r} \mu_{j} g_{j}(x) \leq \sum_{j=1}^{r} \mu_{j} g_{j(x)}(x)=g_{j(x)}(x) \sum_{j=1}^{r} \mu_{j} .
$$

Hence, for all $x \in X$, there exists some $j(x)$ such that

$$
g_{j(x)}(x) \geq \frac{\epsilon}{\sum_{j=1}^{r} \mu_{j}}>0 .
$$

This contradicts the statement that for every $\epsilon>0$, there exists a vector $x \in X$ such that

$$
g_{1}(x)<\epsilon, \ldots, g_{r}(x)<\epsilon,
$$

and concludes the proof.

2.21

Let C be a nonempty closed convex subset of \Re^{n+1} that contains no vertical lines. Show that C is equal to the intersection of the closed halfspaces that contain it and correspond to nonvertical hyperplanes.

Solution: C is contained in the intersection of the closed halfspaces that contain C and correspond to nonvertical hyperplanes, so we focus on proving the reverse inclusion. Let $x \notin C$. Since by assumption C does not contain any vertical lines, we can apply Prop. 2.5.1, and we see that there exists a closed halfspace that correspond to a nonvertical hyperplane, containing C but not containing x. Hence, if $x \notin C$, then x cannot belong to the intersection of the closed halfspaces containing C and corresponding to nonvertical hyperplanes, proving that C contains that intersection.

2.22 (Min Common/Max Crossing Duality)

Consider the min common/max crossing framework, assuming that $w^{*}<\infty$.
(a) Assume that M is compact. Show that q^{*} is equal to the optimal value of the min common point problem corresponding to $\operatorname{conv}(M)$.
(b) Assume that M is closed and convex, and does not contain a halfline of the form $\{(x, w+\alpha) \mid \alpha \leq 0\}$. Show that \bar{M} is the epigraph of the function given by

$$
f(x)=\inf \{w \mid(x, w) \in M\}, \quad x \in \Re^{n}
$$

and that f is closed proper and convex.
(c) Assume that w^{*} is finite, and that \bar{M} is convex and closed. Show that $q^{*}=w^{*}$.

Solution: (a) Let us denote the optimal value of the min common point problem and the max crossing point problem corresponding to $\operatorname{conv}(M)$ by $w_{\operatorname{conv}(M)}^{*}$ and $q_{\mathrm{Conv}(M)}^{*}$, respectively. In view of the assumption that M is compact, it follows from Prop. 1.3.2 that the set $\operatorname{conv}(M)$ is compact. Therefore, by Weierstrass' Theorem, $w_{\operatorname{conv}(M)}^{*}$, defined by

$$
w_{\operatorname{conv}(M)}^{*}=\inf _{(0, w) \in \operatorname{conv}(M)} w
$$

is finite. It can also be seen that the set

$$
\overline{\operatorname{conv}(M)}=\{(u, w) \mid \text { there exists } \bar{w} \text { with } \bar{w} \leq w \text { and }(u, \bar{w}) \in \operatorname{conv}(M)\}
$$

is convex. Indeed, we consider vectors $(u, w) \in \overline{\operatorname{conv}(M)}$ and $(\tilde{u}, \tilde{w}) \in \overline{\operatorname{conv}(M)}$, and we show that their convex combinations lie in $\operatorname{conv}(M)$. The definition of $\overline{\operatorname{conv}(M)}$ implies that there exists some w_{M} and \tilde{w}_{M} such that

$$
w_{M} \leq w, \quad\left(u, w_{M}\right) \in \operatorname{conv}(M)
$$

$$
\tilde{w}_{M} \leq \tilde{w}, \quad\left(\tilde{u}, \tilde{w}_{M}\right) \in \operatorname{conv}(M)
$$

For any $\alpha \in[0,1]$, we multiply these relations with α and ($1-\alpha$), respectively, and add. We obtain

$$
\alpha w_{M}+(1-\alpha) \tilde{w}_{M} \leq \alpha w+(1-\alpha) \tilde{w}
$$

In view of the convexity of $\operatorname{conv}(M)$, we have $\alpha\left(u, w_{M}\right)+(1-\alpha)\left(\tilde{u}, \tilde{w}_{M}\right) \in$ $\operatorname{conv}(M)$, so these equations imply that the convex combination of (u, w) and (\tilde{u}, \tilde{w}) belongs to $\overline{\operatorname{conv}(M)}$. This proves the convexity of $\overline{\operatorname{conv}(M)}$.

Using the compactness of $\operatorname{conv}(M)$, it can be shown that for every sequence $\left\{\left(u_{k}, w_{k}\right)\right\} \subset \operatorname{conv}(M)$ with $u_{k} \rightarrow 0$, there holds $w_{\operatorname{conv}(M)}^{*} \leq \liminf _{k \rightarrow \infty} w_{k}$. Let $\left\{\left(u_{k}, w_{k}\right)\right\} \subset \operatorname{conv}(M)$ be a sequence with $u_{k} \rightarrow 0$. Since $\operatorname{conv}(M)$ is compact, the sequence $\left\{\left(u_{k}, w_{k}\right)\right\}$ has a subsequence that converges to some $(0, \bar{w}) \in \operatorname{conv}(M)$. Assume without loss of generality that $\left\{\left(u_{k}, w_{k}\right)\right\}$ converges to $(0, \bar{w})$. Since $(0, \bar{w}) \in \operatorname{conv}(M)$, we get

$$
w_{\operatorname{conv}(M)}^{*} \leq \bar{w}=\liminf _{k \rightarrow \infty} w_{k}
$$

Therefore, by Min Common/Max Crossing Theorem I, we have

$$
\begin{equation*}
w_{\operatorname{conv}(M)}^{*}=q_{\operatorname{conv}(M)}^{*} . \tag{2.23}
\end{equation*}
$$

Let q^{*} be the optimal value of the max crossing point problem corresponding to M, i.e.,

$$
q^{*}=\sup _{\mu \in \Re^{n}} q(\mu),
$$

where for all $\mu \in \Re^{n}$

$$
q(\mu)=\inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}
$$

We will show that $q^{*}=w_{\operatorname{conv}(M)}^{*}$. For every $\mu \in \Re^{n}, q(\mu)$ can be expressed as $q(\mu)=\inf _{x \in M} c^{\prime} x$, where $c=(\mu, 1)$ and $x=(u, w)$. From Exercise 2.23, it follows that minimization of a linear function over a set is equivalent to minimization over its convex hull. In particular, we have

$$
q(\mu)=\inf _{x \in X} c^{\prime} x=\inf _{x \in \operatorname{conv}(X)} c^{\prime} x,
$$

from which using Eq. (2.23), we get

$$
q^{*}=q_{\operatorname{conv}(M)}^{*}=w_{\operatorname{conv}(M)}^{*},
$$

proving the desired claim.
(b) The function f is convex by the result of Exercise 2.23. Furthermore, for all $x \in \operatorname{dom}(f)$, the infimum in the definition of $f(x)$ is attained. The reason is that, for $x \in \operatorname{dom}(f)$, the set $\{w \mid(x, w) \in M\}$ is closed and bounded below, since M is closed and does not contain a halfline of the form $\{(x, w+\alpha) \mid \alpha \leq 0\}$. Thus, we have $f(x)>-\infty$ for all $x \in \operatorname{dom}(f)$, while $\operatorname{dom}(f)$ is nonempty, since
M is nonempty in the min common/max crossing framework. It follows that f is proper. Furthermore, by its definition, \bar{M} is the epigraph of f. Finally, to show that f is closed, we argue by contradiction. If f is not closed, there exists a vector x and a sequence $\left\{x_{k}\right\}$ that converges to x and is such that

$$
f(x)>\lim _{k \rightarrow \infty} f\left(x_{k}\right)
$$

We claim that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)$ is finite, i.e., that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)>-\infty$. Indeed, by Prop. 2.5.1, the epigraph of f is contained in the upper halfspace of a nonvertical hyperplane of \Re^{n+1}. Since $\left\{x_{k}\right\}$ converges to x, the limit of $\left\{f\left(x_{k}\right)\right\}$ cannot be equal to $-\infty$. Thus the sequence $\left(x_{k}, f\left(x_{k}\right)\right)$, which belongs to M, converges to $\left(x, \lim _{k \rightarrow \infty} f\left(x_{k}\right)\right)$ Therefore, since M is closed, $\left(x, \lim _{k \rightarrow \infty} f\left(x_{k}\right)\right) \in M$. By the definition of f, this implies that $f(x) \leq \lim _{k \rightarrow \infty} f\left(x_{k}\right)$, contradicting our earlier hypothesis.
(c) We prove this result by showing that all the assumptions of Min Common/Max Crossing Theorem I are satisfied. By assumption, $w^{*}<\infty$ and the set \bar{M} is convex. Therefore, we only need to show that for every sequence $\left\{u_{k}, w_{k}\right\} \subset M$ with $u_{k} \rightarrow 0$, there holds $w^{*} \leq \liminf \inf _{k \rightarrow \infty} w_{k}$.

Consider a sequence $\left\{u_{k}, w_{k}\right\} \subset M$ with $u_{k} \rightarrow 0$. If $\lim \inf _{k \rightarrow \infty} w_{k}=\infty$, then we are done, so assume that $\lim _{\inf }{ }_{k \rightarrow \infty} w_{k}=\tilde{w}$ for some scalar \tilde{w}. Since $M \subset \bar{M}$ and \bar{M} is closed by assumption, it follows that $(0, \tilde{w}) \in \bar{M}$. By the definition of the set \bar{M}, this implies that there exists some \bar{w} with $\bar{w} \leq \tilde{w}$ and $(0, \bar{w}) \in M$. Hence we have

$$
w^{*}=\inf _{(0, w) \in M} w \leq \bar{w} \leq \tilde{w}=\liminf _{k \rightarrow \infty} w_{k}
$$

proving the desired result, and thus showing that $q^{*}=w^{*}$.

2.23 (An Example of Lagrangian Duality)

Consider the problem

```
minimize \(f(x)\)
subject to \(x \in X, \quad e_{i}^{\prime} x=d_{i}, \quad i=1, \ldots, m\),
```

where $f: \Re^{n} \mapsto \Re$ is a convex function, X is a convex set, and e_{i} and d_{i} are given vectors and scalars, respectively. Consider the min common/max crossing framework where M is the subset of \Re^{m+1} given by

$$
M=\left\{\left(e_{1}^{\prime} x-d_{1}, \ldots, e_{m}^{\prime} x-d_{m}, f(x)\right) \mid x \in X\right\}
$$

(a) Derive the corresponding max crossing problem.
(b) Show that the corresponding set \bar{M} is convex.
(c) Show that if $w^{*}<\infty$ and X is compact, then $q^{*}=w^{*}$.
(d) Show that if $w^{*}<\infty$ and there exists a vector $\bar{x} \in \operatorname{ri}(X)$ such that $e_{i}^{\prime} \bar{x}=d_{i}$ for all $i=1, \ldots, m$, then $q^{*}=w^{*}$ and the max crossing problem has an optimal solution.

Solution: (a) The corresponding max crossing problem is given by

$$
q^{*}=\sup _{\mu \in \Re^{m}} q(\mu)
$$

where $q(\mu)$ is given by

$$
q(\mu)=\inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}=\inf _{x \in X}\left\{f(x)+\sum_{i=1}^{m} \mu_{i}\left(e_{i}^{\prime} x-d_{i}\right)\right\}
$$

(b) Consider the set

$$
\bar{M}=\left\{\left(u_{1}, \ldots, u_{m}, w\right) \mid \exists x \in X \text { such that } e_{i}^{\prime} x-d_{i}=u_{i}, \forall i, f(x) \leq w\right\} .
$$

We show that \bar{M} is convex. To this end, we consider vectors $(u, w) \in \bar{M}$ and $(\tilde{u}, \tilde{w}) \in \bar{M}$, and we show that their convex combinations lie in \bar{M}. The definition of \bar{M} implies that for some $x \in X$ and $\tilde{x} \in X$, we have

$$
\begin{array}{ll}
f(x) \leq w, & e_{i}^{\prime} x-d_{i}=u_{i}, \\
f(\tilde{x}) \leq \tilde{w}, & e_{i}^{\prime} \tilde{x}-d_{i}=\tilde{u}_{i}, \\
i=1, \ldots, m
\end{array}
$$

For any $\alpha \in[0,1]$, we multiply these relations with α and $1-\alpha$, respectively, and add. By using the convexity of f, we obtain

$$
\begin{aligned}
& f(\alpha x+(1-\alpha) \tilde{x}) \leq \alpha f(x)+(1-\alpha) f(\tilde{x}) \leq \alpha w+(1-\alpha) \tilde{w} \\
& e_{i}^{\prime}(\alpha x+(1-\alpha) \tilde{x})-d_{i}=\alpha u_{i}+(1-\alpha) \tilde{u}_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

In view of the convexity of X, we have $\alpha x+(1-\alpha) \tilde{x} \in X$, so these equations imply that the convex combination of (u, w) and (\tilde{u}, \tilde{w}) belongs to \bar{M}, thus proving that \bar{M} is convex.
(c) We prove this result by showing that all the assumptions of Min Common/Max Crossing Theorem I are satisfied. By assumption, w^{*} is finite. It follows from part (b) that the set \bar{M} is convex. Therefore, we only need to show that for every sequence $\left\{\left(u_{k}, w_{k}\right)\right\} \subset M$ with $u_{k} \rightarrow 0$, there holds $w^{*} \leq$ $\liminf _{k \rightarrow \infty} w_{k}$.

Consider a sequence $\left\{\left(u_{k}, w_{k}\right)\right\} \subset M$ with $u_{k} \rightarrow 0$. Since X is compact and f is convex by assumption (which implies that f is continuous by Prop. 1.4.6), it follows from Prop. 1.1.9(c) that set M is compact. Hence, the sequence $\left\{\left(u_{k}, w_{k}\right)\right\}$ has a subsequence that converges to some $(0, \bar{w}) \in M$. Assume without loss of generality that $\left\{\left(u_{k}, w_{k}\right)\right\}$ converges to $(0, \bar{w})$. Since $(0, \bar{w}) \in M$, we get

$$
w^{*}=\inf _{(0, w) \in M} w \leq \bar{w}=\liminf _{k \rightarrow \infty} w_{k}
$$

proving the desired result, and thus showing that $q^{*}=w^{*}$.
(d) We prove this result by showing that all the assumptions of Min Common/Max Crossing Theorem II are satisfied. By assumption, w^{*} is finite. It follows from part (b) that the set \bar{M} is convex. Therefore, we only need to show that the set

$$
D=\left\{\left(e_{1}^{\prime} x-d_{1}, \ldots, e_{m}^{\prime} x-d_{m}\right) \mid x \in X\right\}
$$

contains the origin in its relative interior. The set D can equivalently be written as

$$
D=E \cdot X-d,
$$

where E is a matrix, whose rows are the vectors $e_{i}^{\prime}, i=1, \ldots, m$, and d is a vector with entries equal to $d_{i}, i=1, \ldots, m$. By Prop. 1.4.4 and Prop. 1.4.5(b), it follows that

$$
\operatorname{ri}(D)=E \cdot \operatorname{ri}(X)-d
$$

Hence the assumption that there exists a vector $\bar{x} \in \operatorname{ri}(X)$ such that $E \bar{x}-d=0$ implies that 0 belongs to the relative interior of D, thus showing that $q^{*}=w^{*}$ and that the max crossing problem has an optimal solution.

2.24 (Saddle Points in Two Dimensions)

Consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point $\left(x^{*}, z^{*}\right)$. Use this to investigate the existence of saddle points of $\phi(x, z)=x^{2}+z^{2}$ over $X=[0,1]$ and $Z=[0,1]$.

Solution: We consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. We assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$, and for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$,

$$
\hat{x}(z)=\arg \min _{x \in X} \phi(x, z), \quad \hat{z}(x)=\arg \max _{z \in Z} \phi(x, z) .
$$

Consider the composite function $f: X \mapsto X$ given by

$$
f(x)=\hat{x}(\hat{z}(x)),
$$

which is a continuous function in view of the assumption that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Assume that the compact interval X is given by $[a, b]$. We now show that the function f has a fixed point, i.e., there exists some $x^{*} \in[a, b]$ such that

$$
f\left(x^{*}\right)=x^{*}
$$

Define the function $g: X \mapsto X$ by

$$
g(x)=f(x)-x
$$

Assume that $f(a)>a$ and $f(b)<b$, since otherwise we are done. We have

$$
\begin{gathered}
g(a)=f(a)-a>0 \\
g(b)=f(b)-b<0 .
\end{gathered}
$$

Since g is a continuous function, the preceding relations imply that there exists some $x^{*} \in(a, b)$ such that $g\left(x^{*}\right)=0$, i.e., $f\left(x^{*}\right)=x^{*}$. Hence, we have

$$
\hat{x}\left(\hat{z}\left(x^{*}\right)\right)=x^{*} .
$$

Denoting $\hat{z}\left(x^{*}\right)$ by z^{*}, we get

$$
\begin{equation*}
x^{*}=\hat{x}\left(z^{*}\right), \quad z^{*}=\hat{z}\left(x^{*}\right) . \tag{2.24}
\end{equation*}
$$

By definition, a pair (\bar{x}, \bar{z}) is a saddle point if and only if

$$
\max _{z \in Z} \phi(\bar{x}, z)=\phi(\bar{x}, \bar{z})=\min _{x \in X} \phi(x, \bar{z}),
$$

or equivalently, if $\bar{x}=\hat{x}(\bar{z})$ and $\bar{z}=\hat{z}(\bar{x})$. Therefore, from Eq. (2.24), we see that $\left(x^{*}, z^{*}\right)$ is a saddle point of ϕ.

We now consider the function $\phi(x, z)=x^{2}+z^{2}$ over $X=[0,1]$ and $Z=$ $[0,1]$. For each $z \in[0,1]$, the function $\phi(\cdot, z)$ is minimized over $[0,1]$ at a unique point $\hat{x}(z)=0$, and for each $x \in[0,1]$, the function $\phi(x, \cdot)$ is maximized over $[0,1]$ at a unique point $\hat{z}(x)=1$. These two curves intersect at $\left(x^{*}, z^{*}\right)=(0,1)$, which is the unique saddle point of ϕ.

2.25 (Saddle Points of Quadratic Functions)

Consider a quadratic function $\phi: X \times Z \mapsto \Re$ of the form

$$
\phi(x, z)=x^{\prime} Q x+x^{\prime} D z-z^{\prime} R z
$$

where Q and R are symmetric positive semidefinite $n \times n$ and $m \times m$ matrices, respectively, D is some $n \times m$ matrix, and X and Z are subsets of \Re^{n} and \Re^{m}, respectively. Derive conditions under which ϕ has at least one saddle point.

Solution: Let X and Z be closed and convex sets. Then, for each $z \in Z$, the function $t_{z}: \Re^{n} \mapsto(-\infty, \infty]$ defined by

$$
t_{z}(x)=\left\{\begin{array}{lc}
\phi(x, z) & \text { if } x \in X \\
\infty & \text { otherwise }
\end{array}\right.
$$

is closed and convex in view of the assumption that Q is a positive semidefinite symmetric matrix. Similarly, for each $x \in X$, the function $r_{x}: \Re^{m} \mapsto(-\infty, \infty]$ defined by

$$
r_{x}(z)= \begin{cases}-\phi(x, z) & \text { if } z \in Z \\ \infty & \text { otherwise }\end{cases}
$$

is closed and convex in view of the assumption that R is a positive semidefinite symmetric matrix. Hence, Assumption 2.6.1 is satisfied. Let also Assumptions 2.6.2 and 2.6.3 hold, i.e,

$$
\inf _{x \in X} \sup _{z \in Z} \phi(x, z)<\infty
$$

and

$$
-\infty<\sup _{z \in Z} \inf _{x \in X} \phi(x, z)
$$

By the positive semidefiniteness of Q, it can be seen that, for each $z \in Z$, the recession cone of the function t_{z} is given by

$$
R_{t_{z}}=R_{X} \cap N(Q) \cap\left\{y \mid y^{\prime} D z \leq 0\right\},
$$

where R_{X} is the recession cone of the convex set X and $N(Q)$ is the null space of the matrix Q. Similarly, for each $z \in Z$, the constancy space of the function t_{z} is given by

$$
L_{t_{z}}=L_{X} \cap N(Q) \cap\left\{y \mid y^{\prime} D z=0\right\}
$$

where L_{X} is the lineality space of the set X. By the positive semidefiniteness of R, for each $x \in X$, it can be seen that the recession cone of the function r_{x} is given by

$$
R_{r_{x}}=R_{Z} \cap N(R) \cap\left\{y \mid x^{\prime} D y \geq 0\right\},
$$

where R_{Z} is the recession cone of the convex set Z and $N(R)$ is the null space of the matrix R. Similarly, for each $x \in X$, the constancy space of the function r_{x} is given by

$$
L_{r_{x}}=L_{Z} \cap N(R) \cap\left\{y \mid x^{\prime} D y=0\right\},
$$

where L_{Z} is the lineality space of the set Z.
If

$$
\begin{equation*}
\bigcap_{z \in Z} R_{t_{z}}=\{0\}, \quad \text { and } \bigcap_{x \in X} R_{r_{x}}=\{0\}, \tag{2.25}
\end{equation*}
$$

then it follows from the Saddle Point Theorem part (a), that the set of saddle points of ϕ is nonempty and compact. [In particular, the condition given in Eq. (2.25) holds when Q and R are positive definite matrices, or if X and Z are compact.]

Similarly, if

$$
\bigcap_{z \in Z} R_{t_{z}}=\bigcap_{z \in Z} L_{t_{z}}, \quad \text { and } \quad \bigcap_{x \in X} R_{r_{x}}=\bigcap_{x \in X} L_{r_{x}},
$$

then it follows from the Saddle Point Theorem part (b), that the set of saddle points of ϕ is nonempty.

