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Chapte
Convex Sets

The concept of convexity is of great importance in the study of optimization
problems. Convex sets, polyhedral sets, and separation of disjoint convex sets
are used frequently in the analysis of mathematical programming problems, the
characterization of their optimal solutions, and the development of computa-
tional procedures.

The foIlowing is an outline of the chapter.

SECTION 2.1: Convex Hulls This section is elementary. It presents some
examples of convex sets and defines convex hulls. Readers with previous
knowledge of convex sets may skip this section (possibly with the exception of
Carathéodory theorem).

SECTION 2.2: Closure and Interior of a Convex Set Some topological prop-
erties of convex sets, related to interior, boundary, and closure points, are
discussed.
SECl"ION 2.3: Separation and Support of Convex Sets This section is impor-
tant, since the notions of separation and support of convex sets are frequently
used in optimization. A careful study of this section is recommended.

SECTION 2.4: Convex Cones and Polarity This is a short section mainly
dealing with polar cones. This section rnay be skipped without loss of con-
tinuity.

SECTION 2.5: Polyhedral Sets, Extreme Points, and Extreme Directions
This section. treats the special important case of polyhedral sets. Characteri-
zation of extreme points and extreme directions of polyhedral sets is developed.
AIso, the representation of a polyhedral set in terms of its extrerne points and
extreme directions is proved.
SECTION 2.6: Linear Programming and the Simplex Method The well-
known simplex method is developed as a natural extension of the material in the
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previous section. Readers who are familiar with the simplex method may skip
this section.

2.1 Convex Hulls

In this section we first introduce the notions of convex sets and convex hulls.
We then demonstrate that any point in the convex hull of a set S can be
represented in terms of n + 1 points in the set S.

2.1.1 Definition
A nonempty set S in E; is said to be convex if the line segment joining any two
points of the set also belongs to the set. In other words, if XI and x2 are in S,
then AXI + (1- A)x2 must also belong to S for each A E [0, 1]. Points of the form
AXI + (1- A)x2, where A E [0, 1], are also referred to as convex conbinations of
XI and x2•

Figure 2.1 below illustrates the notion of a convex set. Note that in Figure
2.1 b, the line segment joining X I and X2 does not entirely lie in the set.

(a) Convex (b) Not convex

Figure 2.1 IlIustration of convex sets.

The following are some examples of convex sets.
1. S = {(XI>x2, x3): XI +2x2 -x3 = 4}c E3

This is an equation of a plane in E3' In general, S = {x:p' X = a} is called a
hyperplane in En, where p is a nonzero vector in En, usually referred to as the
normal to the hyperplane, and a is a scalar.
2. S = {(XI>X2, x3): XI +2X2-X3S;4}c E3

These are points on one side of the hyperplane defined above. These points
form a half space. In general, a half space S = {x:p'x -s a} in En is a convex set.
3. S = {(XI>X2,X3):xl+2x2-x3::;;4, 2xt-X2+x3s;6}cE3

This set is the intersection of two half spaces. In general, the set S =
{x: Ax s; b} is a convex set, where A is an m X n matrix, and b is an m vector.

\
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This set is the intersection of m half spaces and is usually called a polyhedral
set.

4. S = {(XI, x2): X2~ Ixtl}c E2

This set represents a convex cone in E2·

5. S={(xl, X2):XI2+X/s;4}cE2
This set represents points on and inside a circle with center (O,O)and radius 2.

6. S = {x:xsolves ProblemPbelow}

Problem P
Minimize c' x
subject to Ax = b

x~o
Here c is an n vector, b is an m vector, A is an m X n metrix, and x is an n

vector. The set S gives ali optimal solutions of the linear programming problem
of minimizing the linear function c'x over the polyhedral region defined by
Ax=b and x~O.

The following lemma is an immediate consequence of the definition of
convexity. It states that the intersection of two convex sets is convex and that
the algebraic sum of two convex sets is also convexo The proof is left as an
exercise.

2.1.2 Lemma
Let SI and S2 be convex sets in En. Then

1. SI nS2 is convexo
2. SI+S2={Xt+X2:XtES\>X2ES2} is convexo
3. SI - S2 = {XI - x2: XI E SI> X2E S2} is convexo

Convex Hulls
Given an arbitrary set S in En, different convex sets can be gcnerated from S.
In particular, we discuss below the convex hull of S.

2.1.3 Definition
Let S be an arbitrary set in En. The convex hul/ of S, denoted by H(S), is the
collection of ali convex combinations of S. In.other words x E H(S) if and only if
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x can be represented as
k

x= L \Xj
j=1

k

L \=1
;=1

Aj2= 0, for j = 1, ... , k

where k is a positive integer and x I, ... , Xk E S.

ttiIJ ..S •
•.~

H<S)

H(S)

• •

.~

H(S)

Figure 2.2 Examples of convex hulls.

Figure 2.2 shows some examples of convex hulls. Actually, we see that in
each case, H(S) is the minimal convex set that contains S. This is indeed the
case in general, as given in Lemma 2.1.4. The proof is left as an exercise.

2.1.4 Lemma

Let S be an arbitrary set in En" Then H(S) is the smallest convex set containing
S. Indeed, H(S) is the intersection of ali convex sets containing S.

We have disucssed above the convex hull of an arbitrary set S. The convex
hull of a finite number of points leads to the definitions of a polytope and a
simplex.

2.1.5 Definition

The convex hull of a finite number of points XI' ... ,Xk+1 in En is called a
polytoie. If X2 -Xl> X3 -Xl> ..• , Xk+1 -XI are linearly independent, then
H(x» ... ,Xk+I), the convex hull of Xl> •.. , Xk+l> is called a simplex with
vertices XI' .•. 'Xk+l.

t
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X4
X3

~
~X2

"s
X2

x,

x,

Polytope Simplex

Figure 2.3 Examples of a polytope and a simplex.

Figure 2.3 shows examples of a polytope and a simplex in E". Note that the
maximum number of linearly independent vectors in E" is n, and hence, there
could be no simplex in E; with more than n + 1 vertices .

Carathéodory Theorem

By definition, a point in the convex hull of a set can be represented as a convex
combination of a finite number of points in the set. The following theorem
shows that any point X in the convex hull of a set S can be represented as a
convex conbination of, at most, n + 1 points in S. The theorem is trivially true
for XE S. .

2.1.6 Theorem
Let S be an arbitrary set in En" If xEH(S), then xEH(xl, ... ,Xn+I), where
Xj E S for j = 1, ... , n + 1. In other words, X can be represcnted as

n+1

x= " AxL... J J

;=1
n+l

L A;=1
;=1

A; 2= 0,

XjES,

for j = 1, ... , n + 1

for j = 1, ...• n + 1

Proof

Since X E H(S), then X = If= I Ajxj, where Àj >O for j = 1, ... ,k. Xj E S for
j = 1, ... , k, and If= I \ = 1. If k s: n + 1, the result is at hand. Now suppose
that k>n+1. Note that X2-XI,X3-XI,.,.,Xk-XI are lincarly dependent.
Thus there exist scalars J.L2. 1-'-3 •••• ,J.Lk not ali zero such that L~-2 I-'-j(X/ - XI) =
O. Letting J.Ll=-I7-2I-'-j, it folIows that If-l I-'-jXj=O. If=1 i-Lj=O, and not all
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the I-Lj'S are equal to zero. Note that at least one I-Lj>O. Then
k k k k

x= L \xJ+O= L ÀjXj-a L I-LjXj= L (\-al-Lj)xj
j=l j=l j=l j=l

for any real a. Now choose a as follows:

{
À } Àa = minimum -1.: I-Lj> O =--.!.

Isjsk ILj lLi

Note that a> O. If ILj :5 O, then \ - alLj > O, and if I-Lj> O, then \/ ILj 2:: ÀJ lLi = a,
and hence \ - alLj 2:: O. In other words, Àj - alLj 2:: O for all j = 1, ... , k. In
particul~r, Ài - au, = O by definition of a. Therefore, x = 2:7= I (Ài - alLi)xi, where
Ài - alLj 2:: O for j = 1, ... , k, 2:7=1 (Ài - alL) = 1, and furthermore, Ài - au, = O.
In other words, x is represented as a convex combination of, at most, k-1
points in S. The process is repeated until x is represented as a convex
combination of n + 1 points in S. This completes the proof.

for some j E{1, ... , k}

2.2 Closure and Interior of a Convex Set
In this section we develop some topological properties of convex sets. Recall
that given a point x in E,,, an s-neighborhood around it is the set N. (x) =
{y : lIy- xII< e}. Let us first review the definitions of closure, interior, and
boundary of an arbitrary set in En.

2.2.1 Definition

Let S be an arbitrary set in En- A point x is said to be in the closure of S,
denoted by cl S, if S nN. (x) -I0 for every e> O. If S = cl S, then S is called
closed. x is said to be in the interior of S, denoted by int S, if N. (x)c S for some
e> O. If S = int S, then S is called open. Finally, x is said to be in the boundary
of S, denoted by as, if N. (x) contains at least one point in S and one point not
in S for every e> O.

To illustrate, consider S = {(XI' x2): x/ +x} :51}, which represents all points
within a circle with center (O,O) and radius 1. It can be easily verified that S is
closed; that is, S = cl S. Furthermore, int S consists of all points inside the
circle; that is, int S = {(XI' x2): XI2 + x} < 1}. Finally, as consists of points on the
circle; that is, as = {(XI, X2): x/ +x} = 1}.

Une Segment Between Closure and Interior Points

Given a convex set with a nonempty interior, the line segment (excluding the
endpoints) joining a point in the interior of the set and a point in the closure of
the set belongs to the interior of the set. This result is proved below.
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2.2.2 Theorem
Let S be a convex set E; with a nonempty interior. Let XI E cl S and X2E int S.
Then ÀXI + (1- À)X2E int S for each À E (0, 1).

Proof

Since x2E int S, there exists an e> O such that {z: Ilz- x211< e}c S. Let y be such
that

y = À x I + (1- À )X2 (2.1)
where À E (O, 1). To prove that y belongs to int S, it suíficcs to construct a
neighborhood about y that also belongs to S. In particular, we show that
{z: IIz- yll< (l-À)e} c S. Let z be such that IIz-yll< (1- À)t: and rcfer to Figure

Figure 2.4 Line segment joining closure
and interior points.

2.4. Since XI E cl S, then

{ x : IIx- xIII < (1- À)e
À
-lIz - YII}n S

is not empty. In particular, there exists a Zl E S such that

11 _ 11 (1- À)e -lIz - yllz. XI < À

z-Àz
Now let Z2= __ 1. From (2.1), the Schwartz inequality, and (2.2), we getl-À

(2.2)

IIz2-x21!= \\Z;:;I-X2\\ = \\(Z- ÀZI;=~-ÀXI)\\

1
= l-À l!(z-y)+À(xl-z,)1I

I .
:5 1_ À Giz- yll + À IIx, - z111)

<e
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Therefore Z2E S. By definition of Z2' note that z = AZl + ( 1 - A)Z2' and since both
ZI and Z2 belong to S, then Z also belongs to S. We showed that any Z with
Ilz-yll<(1-A)e belongs to S. Therefore y e int S and the proof is complete.

Corollary 1

Let S be a convex set. Then int S is convexo

Corollary 2

Let S be a convex set with a nonempty interior. Then c1 S is convexo

Proof

Let XI' X2E c1 S. Pick ZE int S (by assumption int S"'" O). By the theorem,
Ax2+(1-A)zEintS for each AE(O, 1). Now fix /-LE(O, 1). By the theorem,
/-LXI+ (1- /-L)[Ax2+ (I - A)z] E int S c S for each A E (0, 1). If we take the limit as
A approaches 1, it follows that /-LXI+ (1- /-L)x2E c1 S, and the proof is complete.

Corollary 3

Let S be a convex set with a nonempty interior. Then, c1 (int S) = c1 S.

Proof
•

Clearly c1 (int S) c c1 S. Now let XE c1 S, and pick YE int S (by assumption
int Ss« O). Then Ax+(1-A)YEintS for each ÀE(O, 1). Letting A~1, it Iol-
lows that XE c1 (int S).

Corollary 4

Let 5 be a convex set with a nonempty interior. Then int (cl 5) = int 5.

Proof

Note that int Se int (cl 5). Let XI E int (cl 5). We need to show that Xl E int S.
There exists an e >0 such that Ily-xlll< e implies that y e c1 5. Now let x2 ","XI

belong to int 5 and let y = (1 + .:l)Xl - .:lx2, where .:l ~ 211x
l

e
- x

2
11.Since Ily- xIII=

e/2, then y e cl 5. But XI =Ay+(1-À)x2, where.À = l/(1+.:l)E(O, 1). Since
y E c\ S and X2E int 5, then by the theorem, XI E int S, and the proof is complete.

The above theorem and its corollaries can be considerably strengthened by
using the notion of rei ative interiors (se e the Notes and References section at
the end of the chapter).
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2.3 Separation and Support of Convex Sets

The notions of supporting hyperplanes and separation of disjoint convex sets
are very important in optimization. Almost ali optimality conditions and
duality telationships use some sort of separation or support of convex sets. The
results of this section are based on the following geometric fact: given a closed
convex set 5 and a point y rt S, there exist a unique point i E 5 with minimum
distance from y and a hyperplane that separates y and 5.

Minimum Distance from a Point to a Convex Set

ln order to establish the above important result, the following paralletogram
law is needed. Let a and b be two vectors in E". Then

lia+ bl12= IIal12+ IIbl12+ 2a' b

lia- bl12= 118112+ IIbl12
- 2a'b

By adding, we get

lia+ bl12+ lia- bl12= 211al12+ 211bl12

This result is illustrated in Figure 2.5 and ean be interpreted as follows: the
sum of squared norms of the diagonals of a parallelograrn is equal to the sum
of squared norms of its sides.

Figure 2.5 Parallelogram law.

2.3.1 Theorem
Let S be a closed convex set in E" and y rt S. Then there exists a unique point
XE S with minirnurn distance frorn y. Furtherrnore, i is lhe minimizing point if
and only if (x-i)'(x-y)::::::O for all XE 5.

Proof
Let inf {lIy- xii: XE 5} = l' >O. There exists a sequence {x, f in 5 such that
lIy- xkl!~ Y. We show that {xk} has a lirnit x E 5 by showing that {xd is a
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Cauchy sequence. By the parallelogram law, we have

Ilxk - Xm112= 211xk- ylj2+ 211xrn- yl12-llxk + Xm - 2yl12

= 211xk- yl12+ 211xrn- yl12- 411
Xk

; X
m

-y Ir
.. Ilxk+Xm

11

2
2Note tha,t (x, +Xm)/2E S, and by definition of 'Y we have --2--Y ~ 'Y .

Therefore Ilxk -XrnI12:5211xk_y1l2+ 211xrn_y112- 4'Y2. By choosing k and m
sufficiently large, Ilxk - yl12and Ilxm- yl12can be made sufficiently close to 'Y2,
and hence Ilxk -xm112 can be made sufficiently close to zero. Therefore {Xk} is
a Cauchy sequence and has a limit x. Since S is closed, x E S. To show
uniqueness, suppose that there is an x' E S such that lIy-xll = lIy-x'll = 'Y. By
convexity of S, (i+i')/2E S. By Schwartz inequality, we get

II
i+i'llY--2- :5! lIy-ill+! lIy-i'll = 'Y

If strict inequality holds, we violate the definition of 1- Therefore equality
holds, and we must have y - x = A(y - x') for some A. Since Ily- xii = Ily- x'll =
'Y,IA1= 1.Clearly, A cF- -1, because otherwise y = (x+x')/2 E S, contradicting the
assumption that y ri S. So A = 1, i' = i, and uniqueness is established.

To complete the proof, we need to show that (x - x)' (x - y) ~ O for ali x E S is
both a necessary and sufficient condition for x to be the point in S closest to y.

To prove sufficiency, let XE S. Then,

Ily-xl12 = Ily-x+x-xI12 = lIy-xl12 +llx-xII2 +2(x-x)'(y-i)

Since lIi - xI12~ O and (x - x)' (y - x) ~ O by assumption, Ily - xI12~ Ily - x112,and x is
the minimizing point. Conversely, assume that Ily-xI12~lIy-xI12 for ali XE S. Let
x E S and note that x + A(x - x) E S for A> O and sufficiently small. Therefore,

Ily - i - A(x - i)1I2~ Ily- ill2 (2.3)

Also
Ily-i- A(x-i)1I2 = Ily-il12 + A211x-x112+2A(x-x)'(x-y)

From (2.3) and (2.4), we get

A21Ix-xI12+2A(x-x)'(x-y) ~O

for ali A > O and sufficiently small. Oividing by A > O and letting A- O, the
result follows.

(2.4)

The above theorem is illustrated in Figure 2.6. Note that the angle between
x-x and x-y for any point x in S is less than or equal to 90° and hence
(x-x)'(x-y)~O.

/ I'
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y
s

Figure 2.6 Minimum distance to a
closed convex set.

Hyperplanes and Separation of Two Sets

Since we shall be dealing with separating and supporting hypcrplanes, precise
definitions of hyperplanes and half spaces are given below.

2.3.2 Definition
A hyperplane H in E; is a collection of points of the form {x: p'x = a}, where p
is a nonzero vector in En and a is a scalar. The vector p is called the normal
vector of the hyperplane. A hyperplane H defines two closeâ half spaces
H+={x:p'x~a} and H-={x:p'x:5a} and the two open hal] spaces {x:p'x>
a} and {x:p'x<a}.

Note that any point in E; lies in H+, in HO-, or in both. Also, a hyperplane H
and the corresponding half spaces can be written in rcf'crencc to a fixed point,
say xEH. If xEH, then p'x=a, and hence any point xEH must satisfy
p'x-p'i= a - a = O; that is, p'(x-x) = O. Accordingly, H' = {x :p'(x-i)~ O}
and H-={x:p'(x-x):50}. Figure 2.7 shows a hyperplane H passing through i
and having a normal vector p.

\\\\
H'

p

Figure 2.7 An example of a hyperplane and
corresponding half spaces.
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As an example, consider H = {(Xl> X2' X3, X4): Xl + X2 - X3 + 2x4 = 4}. The nor-
mal vector p = (1, 1, -1,2)'. Alternatively the hyperplane can be written in
reference to any point in H, for example, x = (0, 6, 0, -1)'. ln this case, we
write H = {(Xl> X2' X3, x4): X) +(x2-6)- X3+2(X4 + 1) = O}.

2.3.3 Definition
Let SI and S2 be nonempty sets in En- A hyperplane H = {x: p'x = a} is said to
separate SI and S2 if p'x~a for each XESl and p'X:5a for each XES2. If,
in addition, SI U S21- H, then H is said to properly separate SI and S2' The
hyperplane H is said to strictly separate SI and S2 if p'x> a for each XE S}"and
p'x< a for each XE S2' The hyperplane H is said to strongly separate SI and S2
if p'x~a+e for each XES1 and p'X:5a for each XES2, where e is a positive
scalar.

Figure 2.8 shows various types of separation. Of course, strong separation
impliesstrict separation, which implies proper separation, which in turn implies
separation. Improper separation is usually of little value, since it corresponds to
a hyperplane containing both S) and S2 as shown in Figure 2.8.

H H

Improper separation Proper separation

fi

H

Strict separation Strong separation

Figure 2.8 Various types of separation.

I \
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Separation of a Convex Set and a Point

We shall now present the first and most fundamental separation theorem.
Other separation and support theorems will follow from this basic resulto

2.3.4 Theorem
Let S be a nonempty c\osed convex set in E" and y ~ S. Then there exists a
nonzero vector p and a scalar a such that p'y> a and p'X:5 a for each XE S.

Proof

The set S is a nonempty closed convex set and Y'Í- S. Hence by Theorem 2.3.1,
there exists a unique minimizing point x E S such that (x - x)' (y - i):5 () for each
x E S. Note that

Ily-il12 = (y-x)'(y-i) = y'(y-i)-x'(y- x) (2.5)

But since -i'(y-x):5 -x'(y-i) for any XE S, then (2.5) implies that p'(y-x)~
Ily- ill2 for each x E S, where p = y - x ~ O. This shows that p' y ~ p' x + Ily- il12 for
each x E S. Letting a = sup {P'X: x E S}, the result follows.

Corollary

Let S be a c\osed convex set in E". Then S is the intersection of all half spaces
containing S.

Proof

Obviously S is contained in the intersection of ali half spaces containing it. To
the contrary of the desired result, suppose that thcrc is a point y in the
intersection of these half spaces but not in S. By the theorern. there exists a
half space that contains S but not y. This contradiction proves the corollary .

. The following statements are equivalent to the conclusion of the theorem.
The reader is asked to verify this equivalence. Note that statements 1 and 2 are

. equivalent only in this special case since y is a point.

1. There exists a hyperplane that strictly separares S and y.
,2. There exists a hyperplane that strongly separares S and y.
3. There exists a vector p such that p'yc-sup Ip'x.x e S}.
4. There exists a vector p such that p'y-c inf'{p'x ix e S].

Farkas' Theorem as a Consequence of Theorem 2.3.4

Farkas' theorem has been used extensively in lhe dcrivation of optimality
conditions of linear and nonlinear programming problems. The theorem can be
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~ftX2

s

x

Figure 2.10 Examples of supporting hyperplanes.

Figure 2.10 shows some examples of supporting hyperplanes. The figure
illustrates the cases of a unique supporting hyperplane at a boundary point, an
infinite number of supporting hyperplanes at a boundary point, a hyperplane
that supports the set at more than one point, and finally an improper
supporting hyperplane that contains the whole set.

We now prove that a convex set has a supporting hyperplane at each
boundary point (see Figure 2.11). As a corollary, a result similar to Theorem
2.3.4, where S is not required to be closed, follows.

H
p

Figure 2.11 Supporting hyperplane.

2.3.7 Theorem

Let S be a nonempty convex set in En, and let x Eas. Then, there exists a
hyperplane that supports S at x; that is, there exists a nonzero vector p such
that p'(x-x):sO for each x s cl S.

Proof

Since XEaS, there exists a sequence {Yk}not in clS such that Yk~X, By
Theorem 2.3.4, corresponding to each Yk there exists a Pk with norm 1 such
that P~Yk> p~x for each x E cl S. (In Theorem 2.3.4, the normal vector can be
normalized by dividing it by its norm, so that Ilpkll= 1.) Since {pd is bounded, it
has a convergent subsequence {pdx with limit p whose norm is equal to one.

) )) ) \ )
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Considering this subsequence we have P~k > p~x for each x EcI S. Fix x EcI S
and take the limit as k E'J{ approaches 00. Then p' (x - i):S O. Since this is true
for each x Ecl S, the result follows.

I
I

I

Corollary
Let S be a nonempty convex set in E; and i ~S. Then there is a nonzero vector
p such that p' (x - i):s O for each x E cl S.

Proof

If x~cl S, then the corollary íollows from Theorem 2.3.4. On the other hand, if
XEas, the corollary reduces to the above theorem.

Separation of Two Convex Sets

_ So far, we have discussed separation of a convex set and a point not in the set
and have also discussed support of convex sets at boundary points. In addition,
if we have two disjoint convex sets, they can be separated by a hyperplane H
such that one of the sets belongs to H+ and the other set belongs to H-. In
fact, this result holds true even if the two sets have some points in common, as
long as their interiors are disjoint. This result is made precise by the following
theorem.

2.3.8 Theorem
Let S, and S2 be nonempty convex sets in En and suppose that SI nS2 is
empty. Then there exists a hyperplane that separates SI and S2; that is, there
exists a nonzero vector p in E; such that

inf {p'x: XESI}~sup {p'x: XES2}
Proof

Let S = S1- S2= {Xl - X2:XlE S1 and X2E S2}' Note that S is convexo
Furthermore, O~ S because otherwise SI nS2 will be nonempty. By the corol-
lary of Theorem 2.3.7, there exists a nonzero p E E; such that p'x ~ O for ali
XES. This means that P'X1~P'X2 for all X1ESI and X2ES2, and the result
follows.

Corollary 1
Let S1 and S2 be nonempty convex sets in En. Suppose that int S2 is not empty
and that Sl n int S2 is empty. Then there exists a nonzero p such that

inf {p'X:XE SI}~SUP {p'X:XE S2}
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Proof
Replace S2 by int S2, apply the theorem, and note that

sup {p'x: x E S2} = sup {p'x: x E int S2}

Corollary 2
Let S, and S2 be convex sets with nonempty interiors. Suppose that int SI n
int S2 = 0. Then there exists a nonzero p such that

inf {P'X:XE S2}2:SUP {P'X:XS2}'

Gordan's Theorem as a consequence of Theorem 2.3.8

We shall now derive a theorem credited to Gordan based on the existence of a
hyperplane that separates two disjoint convex sets. This theorem is frequently
used in nonlinear prograrnming. Like the Farkas' theorem, Gordan's theorem
states that exactly one of two systems only has a solution.

2.3.9 Theorem (Gordan's Theorem)
Let A be an m x n matrix. Exactly one of the following systems has a solution:

System 1 Ax <O
System 2 .,A'p = O and p 2: O

for some x E En
for some nonzero p E Em

Proof

We shall first prove that if System 1 has a solution X, theo we cannot have a
solution to A'p = O,P 2: O, p nonzero. Suppose, on the contrary, that a solution
p exists. Then, since Ax <O,p 2: O, and p ~ O, we have p' Ai <O, that is,
x' A'p < O. But A'p = O by assumptioo. Hence, x' A'p = O, a contradiction.
Hence, System 2 cannot have a solution.

Now assume that System 1 has no solution. Consider the following two sets:

SI ={z:Z=Ax,XEEn}
S2 ={z: z<O}

Note that SI and S2 are nonempty convex sets such that SI nS2 = 0. Then, by
Theorem 2.3.8, there exists a hyperplane that separates SI and S2; that is,
there exists a nonzero vector p such that

p' Ax e p'z for each x E En and z E cl S2

Since each component of z could be made ao arbitrarily large negative number,
it follows that p 2: O. Also, by letting z = O, we must have p' Ax 2: O for each
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XEEn- By choosing x= -A'p, it then follows that -IIA'pI122:0, and thus
A'p = O. Hence, System 2 has a solution, and the proof is complete.

The separation theorem 2.3.8 can be strengthened to avoid trivial separation
where both SI and S2 are contained in the separating hyperplane.

'f- 2.3.10 Theorem (Strong Separation)
Let SI and S2 be a closed convex sets, and suppose that S, is bounded. If
S, nS2 is empty, then there exists a nonzero p and e> O such that

inf {p'x: XE SJ2: e +sup [p'x :XE S2}

Proof
Let S = SI - S2 and note that S is convex and that Ori:. S. We shall show that S is
closed. Let {Xk} in S converge to x. By definition of S, xk = Yk - Zk, where
Y« E SI and Zk E S2' Since SI is compact, there is a subsequence {Yk Lr with limit
y in SI' Since Yk-Zk~X and Yk~Y for kEX, then Zk~Z, Since S2 is c1osed,
ZE S2' Therefore x = Y- Z with YE SI and ZE S2' Therefore, x E S, and hcnce S is
closed. By Theorem 2.3.4, there is a nonzero p and an e such that p'X2: e for
each x E S and pIO < e. Therefore, e> O. By the definition of S, wc conclude
that p'x, 2: e +p'x2 for each XIE SI and X2E S2, and the result follows.

2.4 Convex Cones and Polarity

ln this section, we briefiy discuss the notions of convex cones and polar
cones. This section rnay be skipped without loss of continuity.

2.4.1 Definition
A nonempty set C in E" is called a cone with vertex zero if Z E C implies that
ÀxE C for ali À2: O. Ií, in addition, eis coovex, then eis called a cOl/vex cone.

Figure 2.12 shows an example of a convex cone and an example of a
nonconvex cone.

o
o

Convex cone Nonconvux cone

Figure 2.12 Examples of cones.
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Figure 2.13 Examples of polar cones.

An important special cJass of convex cones is that of polar cones defined
below and ilJustrated in Figure 2.13.

2.4.2 Definition
Let S be a nonempty set in E". Then the polar cone of S, denoted by S*, is
given by {p:p'xs;O for alJ XES}. If S is empty, S* will be interpreted as E".

The folJowing lemma, the proof of which is left as an exercise, summarizes
some facts about polar cones.

2.4.3 Lemma

Let S, SI' and S2 be nonempty sets in E". Then the following statements hold
true.

1. S* is a closed convex cone.
2. Se S**, where S** is the polar cone of S*.
3. S I C S2 implies that S! c Sf.

We now prove an important theorem for cJosed convex cones. As an
application of the theorem, we give another derivation of Farkas' theorem.

2.4.4 Tbeorem
Let C be a nonempty cJosed convex cone. Then C = C**.

Proof
Clear1y Cc C**. Now let XE C**, and suppose, by contradiction, that xrf:.C. By
Theorem 2.3.4, there exists a nonzero vector p and a scalar a such that p'y S; a
for ali yEC and p'x>a. But since y=OEC, then a~O, and so p'x>O. We
now show that p s C*. If not, then p'y>O for some yE C, and p'(Ay) can be
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made arbitrarily large by choosing A arbitrari1y large. This contradicts the fact
that p'y S; a for ali y E C. Therefore, p E C*. Since x E C**, then p'x s; O. This
contradicts the fact that p'x > O, and we concJude that x E C. This completes the
proof.

Farkas' Theorem as a consequence of Theorem 2.4.4

Let A be an m x n matrix, and let C={A'y:y~O}. Note that C is a closed
convex cone. It can be easily verified that C* = {x: Ax s; O}. By the theorem,
CE C** if and only if CE C. But CE C** means that whenever XE C* then
c'xs;O, or equivalently, Axs;O implies that c'xs;O. By definition of C, CE C
means that c=A'y and y~O. Thus the result C= C** could be stated as
follows: System 1below is consistent if and only if System 2 has a solution y.

System 1

System 2
Ax s; O implies c'x s; O.

A'y=c, y~O.

This statement can be put in the more usual and equivalent form of Farkas'
theorem. Exactly one of the following two systems has a solution:

System 1 Axs;O,c'x>O

System 2 A'y=c,y~O

(that is, ci C** = C).

(that is, CE C).

2.5 Polyhedral Sets, Extreme Points, and Extreme Direc-
tions.. In this section we introduce the notions of extreme points and extreme
directions for convex sets. We then discuss in more detail their use for the
special important case of polyhedral sets.

Polyhedral Sets

Polyhedral sets represent an important special case of convex sets. We have
seen from the corollary to Theorem 2.3.4 that any closed convcx set is the
intersection of ali ciosed half spaces containing it. I n the case of polyhedral
sets, only a finite number of half spaces is needed to represent lhe sct.

2.5.1 Definition
A nonempty set S in E" is called a polyhedral set if it is the intersection of a
finite number of closed half spaces; that is, S = {x: P:x s; ai for i= 1, ... , m},
where Pi is a nonzero vector and ai is a scalar for i= 1, ... , m.
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Note that a polyhderal set is a closed convex set. Since an equation can be
represented by two inequalities, a polyhedral set can be represented by a finite
number of inequalities and/or equations. The following are some typical
examples of polyhedral sets, where A is ao m x n matrix and b is an m vector.

S={x:Ax:S:b}

S = {x : Ax = b, x 2:: O}

S = {x : Ax 2:: b, x 2:: O}

Figure 2.14 illustrates the polyhedral set

S = {(Xl>x2): - Xl + x2:S; 2, X2:S; 4, X1 2:: 0, X2 2:: O}

X2

Figure 2.14 A polyhedral set.

Extreme Points and Extreme Directions

We now introduce the concepts of extreme points and extreme directions for
convex sets. We then give their full characterizations in the case of polyhedral
sets.

2.5.2 Definition

Let S be a nonempty convex set in E". A vector x E S is called an extreme point
of S if x=Ax, +(1-A)x2 with X1,X2ES, and A E(O, 1) implies that X=XI =X2.

The following are some examples of extreme points of convex sets. We
denote the set of extreme points by E and illustrate them in Figure 2.15 by
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Figure 2.15 Examples of extreme points.

dark points or dark lines.

1. S={(XI,X2):XI2+X/:S;1}

E = {(x 1, x2) : x / + x/ = I}
2. S ={(xI, x2): XI+x2:s;2, -XI +2x2:S;2, XI>X22::0}

E = {(O, O)', (0, 1)', (2/3, 413)', (2, O)'}

3. S is the polytope generated by (0,0)',0,1)',(1,3)',(-2,4)', and (0,2)'

E = {(O, O)', (1, 1)', (1, 3)', (-2, 4)'}

From Figure 2.15, we see that any point of the convex set S can be
represented as a convex combination of the extreme points. This turns out to
be true for compact convex sets. However, for unbounded sets, we rnay not be
able to represent every point in the set as a convex combination of its extreme
points. To illustrate, let S = {(x I' x2): X2 2::!xI[]. Note that S is convcx and
closed. However, S contains on1y one extrerne point, narncly thc origin, and
obvious1y S is not equal to the collection of convex cornbinations of its cxtreme
points. In order to deal with unbounded sets, the notion of cxtrernc dircctions
is needed.

2.5.3 Definition
Let S be a closed convex set in E". A nonzero vcctor d in E" is called a
direction of S if for each x E S, X+ Ad E S for ali A 2:: O. Two directions di and d:!
of Sare called distinctif d, cF- ad2 for any a> O. A direction d of S is callcd
an extreme direction if it cannot be written as a positive linear combination 01'
two distinct directions, that is, if d = A,d, +À2d2 for AI' À2>O then di = ad2 for
some a >0.

To illustrate, consider S={(xI>X2):X22::!xl!l shown in Figure 2.16. The
directions of Sare nonzero vectors that make an angle less than or cqual to 45°
with the vector (0, 1)'. In particular, di = (I, I)' and d2 = (- I, I)' are two
extreme directions of S. Any other direction of S can be represcnted as a
positive linear combination of di and d2•
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(o. O)

Figure 2.16 Example of extreme directions.

Characterization of Extreme Points and Extreme Directions for Polyhedral
Sets

Consider the polyhedral set S = {x : Ax = b, x2= O}, where Ais an m x n matrix
and bis an m vector. We assume that the rank of A is m. If not, we can throw
away any redundant equations.

Extreme Points Rearrange the columns of A so that A = [B, N], where B is
an m x m matrix of full rank, and N is an m x n - m matrix. Let XB and xN be
the vectors corresponding to B and N, respectively. Then Ax = b and x 2=O can
be rewritten as follows:

BxB+NxN=b and XB 2=O, xN 2=O

The following theorern gives a necessary and sufficient characterization of an
extreme point of S.

2.5.4 Theorem (Characterizationof Extreme Points)
Let S = [x: Ax = b, x 2=O}, where A is an m x n matrix of rank m, and b is an m
vector. A point x is an extreme point of S if and only if A can be decomposed
into [B, N] such that:

x=[::]= [B~lb]

where B is an m x m invertible matrix .atisfying B-1b 2=O.

Proof

[
B-1b]Suppose that A can De decomposed into [B, N] with x = O and B-Ib 2=O.

) J )} )}) \ »
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It is obvious that x E S. Now suppose that x = À XI+ (1- À )X2 with XI' X2E S for
some À E (0,1). In particular, let x~ = (X~l' X~2)and x~ = (x~1>X~2)' Then

[ B-I b] = À [X I1 ] + (1_ À ) [X2I ] .
O XI2 X22

Since X12'X222=Oand À E (0,1), it follows that XI2= X22= O. But this implies that
XII =X21 =B-Ib, and hence X=X1 =x2. This shows that X is an extreme point of
S. Conversely, suppose that X is an extreme point of S. Without !oss of
generality, suppose that x = (XI> .•. , Xk, 0, .... ,O)', where x I' ... 'Xk are posi-
tive. We shall first show that a., ... ,ak are linearly independent. By contradic-
tion, suppose that there exist sc.alars À I, ... ,Àk not ali zero such that
2:7=1Àjaj = O. Let À. = (Àl> ... , Àk,O, ... ,O)'. Construct the fol!owing two vec-
tors where a> ° is chosen such that XI, X22=O:

XI =x+aÀ and X2 = x-aÀ

Note that
k k k

Axl= L (xj+aÀ;)aj= L xjaj+a L À;aj=b
j=1 j=1 j-I

and similarly AX2 = b. Therefore XI>X2E S and since a> O, XI and X2 are
distinct. Moreover, x =~XI +~X2' This contradicts the fact that x is an extrerne
point. Thus a., ... ,8k are linearly independent and /ti - k columns out of the
last n - k columns may be chosen such that they, together with lhe first k
columns, form a linearly independent set of vectors. To simplify the notation,
suppose that these columns are ak+I>"" amo Thus, A can bc written as
A = [B, N], where B = [aI, ... ,am] is of ful! rank. Furthermore B·lb =
(Xl>,,,,Xk>0, ••. .D)', and since Xj>O for j=l, ... ,k, then B Ib2=O. This
completes the proof.

Corollary
The number of extreme points of S is finite.

.

Proof

The number of extreme points is less than or equal to ( n ) = ( n! ) which
m m! n-m!

is the maximum number of possible ways to choose m columns of A to form B.

From the above theorem, it is clear that a po!yhedra! set of the Iorrn
[x : Ax = b, x 2=O} has a finite number of extreme points. The following theorem
shows that every nonempty polyhedral set of this form must have at least one
extreme point.
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2.5.5 Theorem (Existence of Extreme Points)

Let S = {x:Ax = b, x 2:O}be nonempty, where A is an m x n matrix of rank m,
and b is an m vector. Then S has at least one extreme point.

Proof

Let x E S, and without loss of generality, suppose that X = (X I' ... , Xk, O, ... , O)',
where Xj > O for j = 1, ... , k. If a., ... , a, are linearly independent, then k s; m,
and x is an extreme point. Otherwise, there exist scalars À1, ..• , Àk with at least
one positive component such that L7= I \aj = O. Define a> O as follows.

. . {Xj } X·a =rnrrumum -:\>0 =-'-
Isjsk Àj Aj

Consider the point x' whose jth component xj is given by

xi = {Xj -aÀj
O

for j = 1, ... , k

for j = k + 1, ... , n

Note xi 2:O for j = 1, ... , k and xi = O for j = k + 1, ... , n. Moreover, x; = O,
and

n k k k

L ajxj= L aj(xj-a\)= L ajxj-a L alj =b-O=b
j=1 j=1 j=1 j=1

So íar, we have constructed a new point x' with, at most, k -1 positive
components. The process is continued until the positive components corres-
pond to linearly independent columns, which resuIts in an extreme point. Thus,
we have shown that S has at least one extreme point, and the proof is
complete.

Extreme Directions Let S = {x: Ax = b, x 2:O},where A is an m x n matrix of
rank m. By definition, a nonzero vector d is a direction of S if x + Ad E S for
each x E S and each A2: O. Noting the structure of S, it is cJear that d ;6O is a
direction of S if and only if

Ad=O, d2:0

In particular, we are interested in the characterization of extreme directions of
S.

2.5.6 Theorem (Characterization 01 Extreme Directions)

Let S = {x:Ax = b, x2: O},where A is an m x n matrix of rank m, and bis an m
vector. A vector d is an extreme direction of S if and only if A can be
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decomposed into [B, N] such that B-laj::50 for some column aj of N, ano d is a

positive multiple of d = (- ~-Iaj), where ej is an n - m vector of zeros except
1

for a 1 in position j. '

Proof

If B-1aj::5 O, then d 2: O. Furthermore, Ad = O, so that d is a direction of S. We
now show that d is indeed an extreme direction. Suppose that d = À.d 1+ À2d2,

where ÀI' À2>O and d., d2 are directions of S. Noting that n - m - 1 compo-
nents of dare equal to zero, then the corresponding components of di and d2

must also be equal to zero. Thus, di and d2 could be writtcn as foJlows:

(d
ll)dI =al e
j

(d21)d2 = a2 e
j

where a I> a2 >O. Noting that Ad, = Ad2 = O, it can easily be verified that
dll = d21 = - B-Iaj. Thus, di and d2 are not distinct, which implies that d is an
extreme direction. Since d is a positive multiple of d, it is also an extreme
direction.

Conversely, suppose that d is an extreme direction of S. Without loss of
generality, suppose that

d = (dj, ••• , ã; O, ... , dj' ... , O)'

where dj >Ofor i = 1, ... , k and for i = j. We claim that 81, ••• ,8" are linearly
independent. By contradiction, suppose that this were not thc case. Then there
would exist scalars ÀI"'" Àk not ali zero such that L~~I Àja, =0. Let À=
(ÀI' ... , Àk, O, ... , O)' and choose a> O sufficiently small such that both

di =d+aÀ and d2=d-aÀ

are nonnegative. Note that
k

Ad) =Ad+aAÀ=O+a L ajAj=0
1=1

Similarly Ad2 = O. Since di, d22: O, they are both directions of S. Note also that
they are distinct, since a> O and À;6 O. Furthermore, d = ~dl + id2, contradict-
ing the assumption that d is an extrerne direction. Thus, ai" .. , a, are linearly
independent, and since rank A is equal to m, it is elear that k ::5m. Then there
must exist m - k vectors from among the set of vectors {a, : i= k + 1, ... , 11; ir= j}
which, together with ai" .. , ab form a linearly indcpcndcnt sct of vectors,
Without loss of generality, suppose that these are U I' ... , a,,,, Denote
[ai,' .. , a,,,] by B, and note that Bis invertible. Thus, 0= Ad = Rd I-ajdj, where
d is the first m components of d. Therefore, d = -djR-Iuj, ano hcncc thc vcctor
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d· is of the form d = dj( - ~-Iaj). Noting that d~ O and that ~ > O, then
J

B-Iaj:s O, and the proof is complete.

Corollary
The number of extreme directions of S is finite.

Proof
For each choice of a matrix B from A, there is n - m possible ways to extract
the column aj from N. Therefore, the maximum number of extreme directions

is bounded by (n _ m) (n) = (n! ) .
m m! n-m-1 !

The Representation of Polyhedral Sets in Terms of Extreme Points and
Extreme Directions
By definition, a polyhedral set is the intersection of a finite number of half
spaces. This representation may be thought of as an outer representation. A
polyhedral set can also be described fully by an inner representation by means
of its extreme points and extreme directions. This fact is fundamental to several
linear and nonlinear programming procedures.

The main result can be stated as follows. Let S be a polyhedral set of the
form {x: Ax = b, x ~ O}. Then, any point in S can be represented as a convex
combination of its extreme points plus a nonnegative linear combination of its
extreme directions. Of course, if S is bounded, then it contains no directions,
and so any point in S can be described as a convex combination of its extreme
points.

In Theorem 2.5.7 below, it is implicitly assumed that the extreme points and
the extreme directions of Sare finite in number. This fact follows from the
corollaries to Theorems 2.5.4 and 2.5.6.

2.5.7 Theorem (Representation Theorem)
Let S be a nonempty polyhedral set in E" of the form {x:Ax=b and x?:O},
where A is an m x n matrix with rank m. Let XI' ... .x, be the extreme points
of S and di, ... ,dI be the extreme directions of S. Then X E S if and only if X

can be written as
k I

X = L ÀjXj + L I1-jdj
j=1 j=1

k

L \=1
j=1 •

Àj~O

I1-j ~ O

(2.6)

(2.7)

(2.8)
for j = 1, , k
for j = 1, , 1
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Proof
Construct the following set:

{

k J k }

A = j~l ÀjXj + j~l I1-A: j~l Àj = 1, \ ~ O for ali j, l1-i ~ O for ali j

Note that A is a closed convex set. Furthermore, by Theorem 2.5.5, S has at
least one extreme point, and hence A is not empty. AIso note that A c S. To
show that S c A, suppose by contradiction that there is a Z E S such that z ri:. A.
By Theorem 2.3.4, there exists a scalar a and a nonzero vector p in E; such
that

p'z>a

P'(tl ÀjXj +itl I1-jdj):S a

for À;'s and I1-;'S, satisfying (2.6), (2.7), and (2.8). Since I1-j can be made
arbitrarily large, (2.9) holds true only if p'dj:S O for j = 1, ... , I. From (2.9), by
letting I1-j = O for ali j, \ = 1, and Ài= O for i,t. j, it follows that p' xj :S a for each
j = 1, ... , k. Since p'z> a, we have p'z>p'xj for ali j. Summarizing, there
exists a nonzero vector p such that

(2.9)

p'z>P'Xj

p'd, :s0

for j = 1, , k

for j = 1, , I

(2.10)

(2.11 )

Consider the extreme point i defined as follows:

p'i=maximum p'xJ
ISjsk

(2.12)

Since i is an extreme p~int, by Theorem 2.5.4, i = (B Olb) whcre A = [B, N]

and B-1b?: O. Without loss of generality assume~hat B--1b> O (see Exercise
2.42). Since ZE S, then Az = b and z?: O. Therefore, BZn + NZN = b and hence
ZB = B-1b- B-1NzN, where z' is decomposed into (z~j, z~). Frorn (2.10), we
have p'z-p'i>O, and decomposing p' into (p~, p:-"), we get

O<p'z-p'i

= p~(B-lb - B-1NzN) + P:-"ZN- p~B-lb

= (p:"- p~B-JN)ZN (2.13)

Since ZN~ O, from (2.13) it follows that there is a component j ~ m + I such
that zi > O and Pi -p~B-Jaj > O. We first show that YJ = B-1aA; o. By contradic-

tion, suppose that y;:s O. .Consider the vector dj = [~~JJ. where ej is an n - m
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dimensional unit vector with 1 at position j. By Theorem 2.5.6, d, is an
extreme direction of S. From (2.11) p'd. es O, that is, -p~B-Iaj+pj:SO, which
contradicts the assertion that Pj - p~B-Iaj > O. Therefore Yj:$ O, and we can
construct the following vector:

x = (~) + A( ~Yj)
)

where b is given by B-Ib, and A is given by

. . {~ O} br OA =rrummum -: »> =->
I"""'m Yij Yrj

Note that x ~ O has, at most, m positive components, where the rth component
drops to zero and the jth component is given by A. The vector x belongs to S,
since Ax=B(B-Ib-AB-Iaj)+Aaj=b. Since Yrj~O, it can be shown that the
vectors ai"", ar-I, ar+I, ... , am, aj are linearly independent. Therefore, by
Theorem 2.5.4, x is an extreme point; that is, XE {x., x2, ••• , xd. Furthermore,

p'x = (p~,p~) (b~:Yj)
)

= p~b- A P~Yj + Apj
= p'x+ A(pj - p~B-laj)

Since A >0 and Pj-p~B-Iaj>O, theo p'x>p'xj' Thus, we have constructed ao
extreme point x such that p'x > p'x, which contradicts (2.12). This contradiction
asserts that z must belong to /\, and the proof is complete.

Corollary (Existence of Extreme Directions)

Let S be a nonempty polyhedral set of the form {x: Ax = b, x ~ O}where A is an
m x n matrix with rank m. Then S has at least one extreme direction .if and
ooly if it is unbounded.

Proof

If S has an extreme direction, then it is obviously unbounded. Now suppose
that S is unbounded, and by contradiction, suppose that S has no extreme
directions. Using the theorem and Schwartz inequality, it follows that

Ilxll= II i AjXjll:si Aj IIx;!I:SI Ilxjll
)=1 )=1 )=1.'

for any XE S. However, this violates the unboundedness assumption. Therefore,
S has at least one extreme direction and the proof is complete.

'l 2.6 Linear Programming and the Simplex Method 63

2.6 Linear Programming and the Simplex Method

A linear programming problem is the minimization or the maximization of a
linear function over a polyhedral set. Many problems can be formulated as, or
approximated by, linear prograrns. Also, linear programming is often used in
the process of solving nonlinear and discrete problems. In this section, we
describe the well-known simplex method for solving linear programming
problems. The method is mainly based on exploiting the extreme points and
directions of the polyhedral set defining the problem.

Consider the following linear programming problem:

Minimize c'x

subject to x E S

where S is a polyhedral set in E". The set S is called the constraint set or the
feasible region, and the linear function c'x is called the objective [unction.

The optimum objective function value of a linear programming problem may
be finite or unbounded. We give below a necessary and suíficicnt condition for
a finite optimal solution. The importance of the conccpts 01' cxtrerne points anel
extreme directions in linear programming will be evident frorn thc thcorern.

2.6.1 Theorem (Optimality Conditions in Linear Programming)

Consider the following linear programming probJem: Minimize c'x, subject to
Ax= b, x~O. Here, eis an n vector, A is an m x /I matrix of rank 111, ano b is
an m vector. Suppose that the feasible region is not ernpty, and let
x" x2, ••• , xk be the extreme poiots and di" .. , d. be lhe extreme directions of
the feasible rcgion. A necessary and sufficient condition for a finite optimal
solution is that c'd, ~ O for j = 1, ... , I. If this were lhe case, then therc exists
ao extreme point Xi that solves the problem.•Proof

-- By Theorem 2.5.7, Ax=b and x~O if and only if

k I

x= L A;Xj + L ILjdj
j=1 j=1

kL Aj= I
j=1

Aj~ O

ILj ~O

for j = 1, , k

for j = I, , 1
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Therefore the linear programming problem can be stated as follows:

Minimize C'(tl \xj + jt ILjdi)

subject to
k

L Aj=l
j~1

x, 2:0
ILj2: O

for j = 1, , k

for j = 1, ,1

Note that if c'd, <O for some j, then ILjcan be chosen arbitrarily large, leading
to an unbounded optimal objective value. This shows that a necessary and
sufficient condition for a finite optimal is c'd, 2: O for j = 1, ... , l. If this were
the case, then in order to minimize the objective function, we may choose
ILj= O for j = 1,... ,I, and the problem reduces to minimizing C'(L~~lÀjXj)
subject to L;~l Aj= 1 and Àj2: O for j = 1, ... ,k. It is c1ear that the optimal
solution to this latter problem is finite and found by letting Àj= 1and Aj= ° for
j ~i,where the index i is given by c'x, = minimumlSjSk c'x., Thus, there exists
an optimal extreme point, and the proof is complete.

From the above theorem, at least for the case in which the feasible region is
bounded, one may be tempted to. calcula te c'x, for j = 1, ... , k and then find
minimumlSjSk c'x, Even though this is theoretically possible, it is cornputation-
ally not feasible because the number of extreme points is usually large.

The Simplex Method

The simplex method is a systematic procedure for solving a linear programming
problem by moving from an extreme point to an extreme point with a better (at
least not worse) objective function value. This process continues until an
optimal extreme point is reached or else until an extreme direction d with
c'd <Ois found. In the latter case, we conc1ude that the optimal objective value
is unbounded.

Consider the following linear programming problem in which the polyhedral
set is defined in terms of equations and variables that are restricted to be
nonnegative.

Minimize c'x
subject to Ax=b

x2:0

Note that any polyhedral set can be put in the above standard formato For
example, an inequality of the form Lí'~l ajjxj:s bj can be transformed into an

t

l:

~,,
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equation by adding the nonnegative slack variable Sj, so that Lí'= 1ajjxj + Sj = b..
Also, an unrestricted variable Xj can be replaced by the difference of two
nonnegative variables; that is, xj = x/ - xj-, where x/' xj- 2: O. These and other
manipulations could be used to put the problem in the above format. We shall
assume for the time being that the constraint set admits at least one feasible
point and that the rank of A is equal to m.

By Theorem 2.6.1, at least in the case of a finite optimal solution, it suffices
to concentrate on extreme points. Suppose that we have an extreme point i. By
Theorem 2.5.4, this point is characterized by a decomposition of A into [B, N],
where B = [aB , ... ,aB ] is an m x m matrix of full rank called the basis, and N, m

is an m x n - m matrix. By Theorem 2.5.4, note that i could be written as
i' = (i~, i~) = (b', O'), where b = B-Ib 2: O. The variables corresponding to the
basis B are caUed basic oariables and are denoted by xB" ••• , xB •••' whereas the
variables corresponding to N are called nonbasic variables. Now let us consider
a point x satisfying Ax = b and x 2: O. Decompose x' into (x~, x~) and note that
xB, xN 2: O. Also Ax = b can be written as BXB+NXN= b. Hence,

xB =B-1b-B-1NxN (2.14)

Then, using (2.14),

c'x = C~XB+ C~XN
= C~B-Ib + (c~- C~B-IN)XN

1- +( I I B-1N)=cx CN-CB xN (2.15)

Hence c'x 2: cli if c~- C~B-IN 2: O, since XN2: O, and i is an optimal extreme
point. On the other hand, suppose c~- C~B-IN *O. In particular, suppose
that the jth component cj - c~B-Iaj is negative. Consider x = i + Adj, where

_ (- B-Ia)dj- I

ej

where ej is an n - m unit vector with a 1 at position j. Then, from (2.15),

e'x = c'i + A(cj - c~B-Iaj) (2.16)

and c~x< cli for A> 0, since cj - c~B-Iaj <O. We now consider the following
two cases, where Yj= B-1aj.

Case 1: Yj::SO. Note that Ad, = O and since Ai = b, then Ax = b for x = i + Adj
and for all values of À. Hence, x is feasible if and only if x 2: O. This obviously
holds true for ali À2: O if Yj::SO.Thus, frorn (2.16), the objective function value
is unbourrded, In this case we have found an extreme direction d, with
cldi=Cj-c~B-laj<O (see Theorems 2.6.1 and 2.5.6).
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Case 2: Yj:f;O. Let B-1b = b, and let A be defined by

À .. { b; o} br O=rmrnmum -:Yij> =-2:
ISlSm Yij Yrj

\

where Yij is the ith component of Yj' In this case the components of x = x +Àdj

are given by

(2.17)

- b- br
XBi - i --Yij

Yrj
Xi = b,/yri

ali other Xi 's are equal to zero.

for i = 1, ... , m
(2.18)

The positive components of x can only be XB" ..• ,XB,_" XB,+" ••• ,xB", and Xj'

Hence, at most, m components of x are positive. It is easy to verify that their
corresponding columns in A are Iinearly independent. Therefore, by Theorem
2.5.4, the point x is itself an extreme point. In this case we say that the basic
variable xB, left the basis and the nonbasic variable xi entered instead.

So far we have shown that, given an extreme point, we can check its
optimality and stop, or find an extreme direction leading to an unbounded
solution, or find an extreme point with a better objective value. The process is
then repeated.

Summary of the Simplex Algorithm

Outlined below is a sumrnary of the simplex algorithm for a minimization
problem of the form to minimize c' x subject to Ax = b, x 2: O. A maximization
problem can be either transformed into a minimization problem or else we
have to modify step 1 such that we stop if C~B-IN-C~2:0, and introduce xj into
the basis if C~B-18j- cj < O.

Initialization Step Find a starting extreme point x with basis B. If such a
point is not readily available, then use artificial variables as discussed later in
the section.

Main Step 1. Let li( be an extreme point with basis B. Calculate C~B-IN-
c~. If this vector is nonpositive, then stop; li( is an optimal extreme point.
Otherwise pick the most positive cornponerrt c~B-Iaj - Cj' If Yj= B-1a;:5 0,
then stop; the optimal objective value is unbounded along the ray

{X+A(-:;):À 2:0}
J

where ej is a vector of zeros except for a 1 in position j. If on the other hand,
y;:f;O, then go to step 2.

I
I
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2. Compute the index r from (2.17) and form the new extrerne point x in
(2.18). Forrn the new basis by deleting the column 8u, from B and introclucing
aj instead. Repeat step 1.

Finite Convergence of the Simplex Method

If at each iteration, that is, one pass through the main step, we have b = B Ib >
O, then À, defined by (2.17), would be strictly positive, and the objective value
at the current extreme point would be strictly less than that at any of the
previous iterations. This would imply that the current point is distinct from
those previously generated. Since we have a finite number of extreme points,
the simplex algorithm must stop in a finite number of iterations. lf, on the
other hand, br = O, then À = O, and we would remain at the sarne cxtrcme point
but with a different basis. ln theory, this could happen an infinito numbcr of
times and may cause nonconvergence. This phenomena is called cvciing and
rarely occurs in practice. The problern of cycling can be ovcrcornc, but this topic
will not be discussed here. Most textbooks on linear programming givc dctailed
procedures for avoiding cycling.

Tableau Format of the Simplex Method

Suppose that we have the starting basis B corresponding to an initial cxtrerne
point. The objective function and the constraints could be writren as

Objective row:

Constraint rows:

f - C~XB - C~XN = O

BXB + NXN = b

These equations could be displayed in the following simplex tableau where the
entries in the RHS column are the right-hand-side constants.

f ~ x~ RHS

tE:" I -~ I ~ I
The constraint rows are updated by multiplying by 0-', and lhe objective row
is updated by adding to it c~ times the new constraint rows. Wc the n get the
following updated tableau. Note that the basic variables are indicatcd on the
left-hand side.

f x~ x~ RHS

f 1 O' C~B-IN - c~ c~b

O I B-'N 6XB
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Note that the values of the basic variables and that of f are recorded on the
right-hand side of the tableau. Also, the vector C~B-IN - c~ and the matrix
B-IN are conveniently stored under the nonbasic variables.

The above tableau displays ali the information needed to perform step 1 of
the simplex method. If C~B-IN - C~::5O, then we stop; the current extreme
point is optimal. Otherwise, upon examining the objective row, we can pick a
nonbasic variable with nega tive c~B-laj - cj. If B-Iaj::5 O, then we stop; the
optimal solutiorr is unbounded. Now suppose that Yj = B-Iaj=f;O. Since b and Yj
are recorded under RHS and Xj' respectively, then À in (2.17) can be easily
calculated frorn the tableau. The basic variable XB corresponding to the
minimum ratio of (2.17) leaves the basis and xj enters the basis.

Now we would like to update the tableau to reftect the new basis. This can
be done by piooting at the xB, row and the xj column, that is, at Yrj, as follows:

1. Divide the rth row corresponding to xB, by Yrj'

2. Multiply the new rth row by Yij and subtract from the ith constraint row,
for i=1, ... , m, i~r.

3. Multiply the new rth row by c~B-Iaj - cj and subtract from the objective
row.

The reader can easily verify that the above pivoting operation will update the
tableau to reftect the new basis (see Exercise 2.48).

2.6.2 Example
Minimize xl-3x2

- X I +2x2 ::5 6

XI + x2::5 5

Xl' X22:: °
subject to

The problem is illustrated in Figure 2.17. It is clear that the optimal point is
(~, lf) and that the corresponding value of the objective function is -~ ..

In order to use the simplex method, we now introduce the twoslack
variables x3 and x4 2::O. This leads to the following standard format.

Minimize xl-3x2

-xl+2x2+X3 =6
Xl + X2 + X4 = 5

subject to

Xl> X2, X3, x42:: °
Note that c=(1, -3,0,0)', b=G), and A=[-~

2
1

1 0J h'° 1 . By c oosmg

)
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X2

[g]

./

r4/3J -:
lJl/3 ",,/' -: \

/' /'
./ /' .

./ /' ./ ~'" -: j decreases

",/' /'./ ./ "'../ I ././././ /'/''''
./ /'

-: -:
././

/'

""
/'

-c
/' 'c
",,/~ ~ ~[~]

Figure 2.17 A linear programming example.

B=[a3, a4]=[~ ~J.we note that B-lb=b2::0, and hence we have a starting

extreme point. The corresponding tableau is displayed below.

f RHSX2 X3 X4XI

f 1 -1 3 ° ° O

O -1 ® 1 O 6
O 1 1 O 1 5

X3

X4

Note that x2 enters and X3 leaves the basis. The new basis B = [a2>aJ.
f X4 RHSXI X2 X3

f 1 I ° _;l ° -92" 2

O cb 1 O 3
O ° - 1 2

X2
X4

Now XI enters and X4 leaves the basis. The new basis B= [a2, aI].

f RHSX2 X3 x .•XI

f 1 O O 4 I 29-3 -3 -~1-

O ° 1 11
3

O 1 O - 4:1
X2

Xl
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This solution is optimal since C~B-IN - c:-,s O. The three points corresponding
to the three tableaux are shown in the (x,; X2) space in Figure 2.17. We see that
the simplex method moved from one extreme point to another until the
optimal point is reached.

The Initial Extreme Point

RecaI! that the simplex method starts with an initial extreme point. From
Theorem 2.5.4, finding an initial extreme point of the set S = {x: Ax = b, x ~ O}
involves decomposing A into B and N with B-Ib~O. In Example 2.6.2 above,
an initial extreme point was immediately available. However, in many cases, an
initial extreme point may not be conveniently available. This difficulty can be
overcome by introducing artificial variables.

We discuss briefly two procedures for obtaining the initial extreme point.
These are the two-phase method and the big-M method. For both methods the
problem is first put in the standard format Ax = b and x ~ O,with the additional
requirement that b ~ O(if b, <0, then the ith constraint is multiplied by -1).

The Two-Phase Method In this method, the constraints of the problem are
altered by the use of artificial variables so that an extreme point of the new
system is at hand. In particular the constraint system is modified to

Ax+xa =b
x, x, ~O

where xa is an artificial vector. Obviously x = Oand Xa = b represent an extreme
point of the above system. Since a feasible solution of the original system will
be obtained only if x, = O,we can use the simplex method itself to minimize the
sum of the artificial variables starting from the above extreme point. This leads
to the following Phase I problem.

l'x,
Ax +x, =b

x, x, ~O

Minimize
subject to

where I is a vector of ones. At the end of Phase I, either xa -F- Oor xa = O. In the
former case we conclude that the original system is inconsistent; that is, the
feasible region is empty. In the latter case the artificial variables would drop
from the basis," and hence we would obtain an extreme point of the original
system. Starting with this extreme point, Phase II of the simplex method
minimizes the original objective CIX.

tIt is possible that some of the artificial variables remain in the basis at zero levei at the end of
Phase I. This case can be easily treated (see Chames and Cooper [1961] and Dantzig [1963]).
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The Big-M Method As in the two-phase method, the constraints are mod-
ified by the use of artificial variables so that an extreme point of the new
system is immediately available. A large positive cost coefficient M is assigned
to each artificial variable so that they will drop to zero leveI. This leads to the
following problem.

Minimize c'x+ MIlxa

subject to Ax +x, = b
x, xa ~O

If at termination x, = O, then we have an optimal solution of the original
problem. Otherwise, if x, -F- O at termination of the simplex method, and
provided that the variable entering the basis is the one with the most positive
coefficient in the objective row, we conclude that the system Ax = b and x ~ O
admits no feasible solutions.
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Exercises

2.1 Let S be a nonempty set in E,.. Show that S is convex if and only if for each
integer k ~ 2, the following holds true: X••... , XkE S implies that I~~IAIXj E S,
where If-1Aj = 1 and Aj~ O for j = 1, ... , k.

2.2 Let S be a convex set in E,,, A be an m x n matrix, and a be a scalar. Show that
the following two sets are convexo
a. AS={y:y=Ax,XES}
b. «S ={ax:xE S}

2.3 Let SI={x:xl=O,005x2o51} and S2={X:005x1o51,X2=2}. Describe SI+S2 and
SI-S2.

2.4 Prove Lemma 2.1.2.
2.5 Let S be a closed set. Is it necessari1y true that H(S) is also closed? If it is not

true in general, specify a sufficient condition so that H(S) is closed.
(Hint: Suppose that S is compact.)

2.6 Let SI and S2 be nonempty sets in En. Show that H(S1 n S2) c H(SI) n H(S2). Is
H(S1 n S2) = H(SI) n H(SI) true in general? If not, give a counter example.

" 2.7 Prove Lemma 2.1.4.
2.8 Let S be a polytope in En. Show that S is a closed, bounded convex set.
2.9 Let SI and S2 be closed convex sets. Prove that SI + S2 is convexo Show by an

example that SI +S2 is not necessarily closed. Prove that compactness of SI or
S2 is a sufficient condition for S1 + S2 to be dosed.

2.10 Let S1 = {Ad, : A ~ O} and S2 = {Ad2: A ~ O},where di and d2 are nonzero vectors in
En. Show that SI + S2 is a closed convex set.

2.11 A linear subspace L of E; is a subset of E; such that XI, X2 E L implies that
AIXI+ A2X2E L for ali scalars AI and A2. The orthogonal complement L-'-is defined
by U· = {y: y'x = O for ali x E L}. Show that any vector x in E.. could be
represented uniquely as XI + X2, where XI E L and X2E L-'-.IlIustrate by writing the
vector (1,2,3) as the sum of two vectors in L and L-'-, respectively, where
L = {(Xl> X2, X3): 2X1 +X2 - X3 = O}.

2.12 Let S be a polytope in E; and let S, = {Adj : A ~ O}, where dJ is a nonzero vector
in E" for j = 1,2, ... , k. Show that S + If-I SI is a closed convex set.
(Note that Exercises 2.8 and 2.12 show that the set /\ in the proof of Theorem
2.5.7 is closed.)

2.13 Identify the c\osure, interior, and boundary of each of the following convex sets.
a. S = {x: x/+ x/o5 X3}
b. S = [x: 1$ xI:S 2, X2 = 3}
c. S ={X:XI +x2053, -XI +X2+X3:s5, X•• X2, X3~O}
d. S ={X:XI +X2 =3, XI +X2+X3056}
e. S={x:xI2+x/+x/o54,X1+X3=1}

2.14 Let S={X:X12+X22+X32051,X12_X2o50} and y=(1,O,2)'. Find the mmimum
distance frorn y to S, the unique minimizing point, and a separating hyperplane.

2.15 Prove that exactiy one of the following two systems has a solution.
a. Ax~O,x~O, and c'x>O
b. A'y~c and yo5O
(Hint: Use Farkas' theorem.)

2.16 Show that the system Ax:sO and c'x>O has a solution x in. E3, where A=

[
1 -1 -1]
2 2 O and c= (1, O, 5)'.
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2.18

Let A be an m x n matrix. Using Farkas' theorem, prove that exactIy one of the
following two systems has a solution.
System 1 Ax> O
System 2 A'y=O,y~O, y~O
(This is Gordan's theorem developed in the text using Theorem 2.3.8.)
Let A be an m x n matrix and c be an n vector. Show that exactiy one of the
following two systems has a solution.
System 1 Ax = c
System 2 A'y = O, c'y = 1
(This is a theorem of the alterna tive credited to Gale.)
Let A be an m x n matrix. Show that the following two systems have solutions i
and y such that Ai+y>O ..
System 1 Ax~O .
System 2 A'y=O,y~O
(This is an e~istence theorem credited to Tucker.)
Let A be a p x n matrix and B be a q x n matrix. Show that if System 1 below has
no solution, then System 2 has a solution.
System 1 Ax<O Bx = O for some XE E••
System 2 A'u+B'v=O for some nonzero (u, v) with u~O.
Furthermore, show that if B has full rank, then exactly one of the systems has a
solution. Is this necessari1y true if B is not of full rank? Prove or give a
counter example.
Let A be a p x n matrix, and B be a q x n matrix. Show that exact1y one of the
following systems has a solution.
System 1 Ax<O Bx = O for some XE E"
System 2 A' u + B'v = O for some (u, v), u ~ O, o ~ O.

Let S1 and S2 be convex sets in E". Show that there exists a hyperplane that
strongly separates SI and S2 if and only if

inf {Ilxl - x211: XI E S2' X2E S2} >O

2.20

2.22

2.24

Let SI = {X: X2 ~ e-X,} and S2 = {X: X2 $ -e-X,}. Show that SI and S2 are disjoint
convex sets, and then find a hyperplane that separates them. Does there exist a
hyperplane that strongly separates SI and S2?
Let SI and S2 be nonempty disjoint convex sets in En- Prove that there exist two
nonzero vectors P1 and P2 such that

P~X1+ P~X2~ O for ali XIE S1 and ali X2E S2

2.26

Can you generalize the result for three or more disjoint convex sets?
Consider S = {x: X12 + X22 o51}. Represent S as the intersection of a collection of
half spaces. Find the half spaces explicit1y.

Let C be a nonempty set in En. Show that C is a convex cone if and only if
x •• X2E C implies that A1xI + A2X2E C for ali A•• A2~ O.
Let Cl and C2 be convex cones in E". Show that C1 + C2 is also a convex cone
and that C1 + C2 = H(C1 U C2).
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2.28 Let S be a nonempty set in En and let x E S. Consider the set C =
{y:y= À(x-x), À :::::0, XE S}.
a. Show that C is a cone and interpret it geometrically.
b. Show that C is convex if S is convexo
C. Suppose that S is closed. Is it necessarily true that C is closed? If not, under

what conditions would C be closed?
Let C. = {y: y = À(x - x), À :::::O, x E S nN. (x)}, where N. (x) is an e -neighborhood
around X. Let T be the intersection of ali such cones, that is, T = n{C. :e >O}.
Interpret the cone T geometrically.
(T is called the cone of tangents of S at x and will be discussed in more detail in
Chapter 5.)
Derive an explicit form of the polar C* of the following cones:
a. C={(x" X2):0::5 X2::5x,}
b. C = {(x" X2): X2:::::-lx,l}
C. C={~:x=Ap,p:::::O}
Let S be a nonempty set in En. The polar set of S, denotéd by Sp is given by
{y : y' xs 1 for ali xE S}.
a. Find the polar sets of the following two sets:

{(x" x2):x/+x22::51}, and {(x" X2):X, +x2::52, -x, +2x2::51, x" X2:::::0}
b. Show that S; is a convex set. Is it necessarily closed?
C. lf S is a polyhedral set, is it necessarily true that Sp is also a polyhedral set?
d. Show that if S is a polyhedral set containing the origin then S = Sppo
Let C be a nonempty convex cone in En. Show that C + C* = En; that is, any
point in Eu can be written as a point in the cone C plus a point in its polar cone
C*. Is the representation unique? What if C,is a linear subspace?
Identify the extreme points and extreme directions of the following sets.
a. S={x:x220x,2,x,+x2+x3::51}
b. S = [x : x, + X2+ X3::52, x, + X2 = 1, X" X2, x3:::::O}
C. S={x:x2:::::lx,I,x,2+x/::51}
Consider the set S={x:-x,+2X2::53,x,+x2::52,x2::51,x"x2:::::O}. Identify ali
extreme points and extreme directions. Represent the point (I,!) as a convex
combination of the extreme points plus a nonnegative combination of the
extreme directions.
Let S be a simplex in Eu with vertices x., x2, ... ,Xk+l• Show that the extreme
points of S consist of its vertices.
Establish the set of directions for each of the following convex sets:
a. S={(X"X2):X2:::::X,2}
b. S={(x"x2):x,x2:::::1,x,>O}
C. S ={(x" x2):lx,I+lx2I::51}
Let S be a closed convex set in Eu and let x E S. Suppose that d is a nonzero
vector in Eu and that x + Àd E S for ali À:::::O. Show that d is a direction of S.
Find the extreme points and directions of the following polyhedral sets:
a. S ={x:x, +x2+x3:$10, -Xl +2x2 =4, X" X2, X3:::::0}
b. S={X:X,+2X2:::::2, -x,+x2=4,x"X2:::::0}
Show that C = {x: Ax:$ O}, where A is an m x n matrix, has at most one extreme
point, namely the origino
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2.40 Let S = {x: x, + x2:$ I}. Find the extreme points and directions of S. Can you
represent any point in S as a convex combination of its cxtremc points plus a
nonnegative linear combination of its extreme directions? lf not, discuss in
relation to Theorem 2.5.7.
Consider the nonempty unbounded polyhedral set S = {x : Ax = b, x:::::O}, wherc A
is an m x n matrix of rank m. Prove dircctly that S has at least one extrerne
direction.
(Hint: Starting with a direction, use the characterization of Theorem 2.5.6 to
construct an extreme direction.)
Prove Theorcm 2.5.7 if the nondegeneracy assumption R- 'b> O is dropped.
Consider the following problem.
Minimize e'x
subject to Ax = b

x::::: O
where A is an m x n matrix with rank m. Let x be an extreme point with
corresponding basis R. Furthermore, suppose that R-'b >O. Use Farkas' theorern
to show that x is an optimal point if and only if c;" - c~R-' N:::::O.
Consider the following problem.

Minimize c'x
subject to Ax = b

x::::: O
where A is an m x n matrix with rank m. Let x be an extreme point with basis R,
and let jj =.R-'b. Furthermore, suppose that ili = O for some componcnt ;. Is it
possible that x is an optimal solution even if Cj-c~JB·-'a/ <O for some nonbasic
Xj? Discuss and give an example if this were possible.

Solv~ the following problem by lhe simplex method.

Minimize x, +3X2+ x)

2.41

2.42
2.43

2.44

2.45

subject to x,+4x2+3x3:$12
-X,+2X2- x3:$4

x" Xl, x3:::::O

2.46 Consider the set {x: Ax:$ b, x:::::O}, where A is an m x n matrix and b is an
m vector. Show that a nonzero vector d is a direction of the set if and only if
Ad es O and d:::::O. Show how the simplex method can be used to gcncrate such a
direction.
Consider the following problem:2.47

X, -6x2
x,+ x2:$12

-x,+2x2:$4

x2:$6
Find the optimal solution geometrica\ly and verify its optimality by showing
that c;"-C~R-IN:::::O.

Minimize

subject to
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2.48 Show in detail that pivoting at Y'j updates the simplex tab1eau.
2.49 Solve the following problem by the two-phase simplex method and by the big-M

method.

Maximize

subject to

-X,-2x2+X3

X, +3X2+X3~4

X, +2X2-X3~6

X, +x3:S12

X" X2, X3~O

Notes and References

In this chapter we treat the topic of convex sets. This subject was first studied
systematically by Minkowski [1911] whose work contains the essence of the
important results in this area. The topic of convexity is fully developed in a
variety of good texts, and the interested reader may refer to Eggleston [1958],
Rockafellar [1970], Stoer and Witzgall [1970], and Valentine [1964] for a
more detailed anlysis of convex sets.

__ Section 2.1 presents some basic definitions and develops the Carathéodory
theorem, which states that each point in the convex hull of any given set can be
represented as the convex combination of n + 1- points in the sct. This rcsult
can be sharpened by using the notion of dimension of the set. Using this
notion, several Carathéodory-type theorems can be developed. See, for exarn-
pie, Bazaraa and Shetty [1976], Eggleston [1958], and Rockafellar [1970].

In Section 2.2 we develop some topological properties of convex sets rclated
to interior and closure points. Section 2.3 presents various types of theorerns
that separate disjoint convex sets. Support and separation theorems are of
special importance in the area of optimization, and are also widely used in
game theory, functional analysis, and optimal control theory. An interesting
application is the use of these results in coloring problems in graph theory. For
further reading on support and separation of convex sets, see Eggleston [1958],
Klee [1969], Mangasarian [1969a], Rockafellar [1970], Stoer and Witzgall
[1970], and Valentine [1964]. Many of the results in Sections 2.2 and 2.3 can be
strengthened by using the notion of re/ative interior. For example, every
nonempty convex set has a nonempty relative interior. Furthermore, a hyper-
plane that properly separates two convex sets exists provided that they have
disjoint rei ative interiors. AIso Theorem 2.2.2 and sevcral of its corolluries cun
be sharpened using this concept. For a good discussion of relative interiors. see
Eggleston [1958], Rockafellar [1970], and Valentine [1964].

In Section 2.4, a brief introduction to polar cones is given. For more dctails,
see Rockafellar [1970]. ln Section 2.5 we treat the important special case of
polyhedral sets and prove the representation theorem, which states that every
point in the set can be represented as a convex combination of the extreme
points plus a nonnegative linear combination of the extrcrne dircctions. This
result was first provided by Motzkin [1936] using a ditferent approach. The
representation theorem is also true for closed convex sets that contain no lines.
For a proof of this result, see Bazaraa and Shetty [1976] and Rockafcllar
[1970]. An exhaustive treatment of convex polytopcs is givcn by Grünbaum
[1967].

In Section 2.6 we present the simplex algorithm for solving linear prograrn-
ming problems. The simplex algorithm was developed by Dantzig in 1947. The
efficiency of the simplex algorithm, the advances in computer tcchnology, and
the ability of linear programming to model large anel complex problems led to
the popularity of the simplex method and linear programming. The prescrita-
tion of the simplex method in Section 2.6 is a natural extension of the material


