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Chapter 2

Convex Sets

The concept of convexity is of great importance in the study of optimization
problems. Convex sets, polyhedral sets, and separation of disjoint convex sets
are used frequently in the analysis of mathematical programming problems, the
characterization of their optimal solutions, and the development of computa-
tional procedures.

The following is an outline of the chapter.

SECTION 2.1: Convex Hulls This section is elementary. It presents some
examples of convex sets and defines convex hulls. Readers with previous
knowledge of convex sets may skip this section (possibly with the exception of
Carathéodory theorem).

SECTION 2.2: Closure and Interior of a Convex Set Some topological prop-
erties of convex sets, related to interior, boundary, and closure points, are
discussed.

SECTION 2.3: Separation and Support of Convex Sets This section is impor-
tant, since the notions of separation and support of convex sets are frequently
used in optimization. A careful study of this section is recommended.

SECTION 2.4: Convex Cones and Polarity This is a short section mainly
dealing with polar cones. This section may be skipped without loss of con-
tinuity.

SECTION 2.5: Polyhedral Sets, Extreme Points, and Extreme Directions
This section.treats the special important case of polyhedral sets. Characteri-
zation of extreme points and extreme directions of polyhedral sets is developed.
Also, the representation of a polyhedral set in terms of its extreme points and
extreme directions is proved.

SECTION 2.6: Linear Programming and the Simplex Method The well-
known simplex method is developed as a natural extension of the material in the
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previous section. Readers who are familiar with the simplex method may skip
this section.

2.1 Convex Hulls

In this section we first introduce the notions of convex sets and convex hulls.
We then demonstrate that any point in the convex hull of a set S can be
represented in terms of n+1 points in the set S.

2.1.1 Definition

A nonempty set S in E, is said to be convex if the line segment joining any two
points of the set also belongs to the set. In other words, if x, and x, are in S,
then Ax, +(1 —A)x, must also belong to S for each A €[0, 1]. Points of the form

Ax; +(1—A)x,, where A €[0, 1], are also referred to as convex conbinations of
X, and x,.

Figure 2.1 below illustrates the notion of a convex set. Note that in Figure
2.1b, the line segment joining x, and x, does not entirely lie in the set.

(a) Convex (b) Not convex

Figure 2.1 lllustration of convex sets.

The following are some examples of convex sets.
1. S={(xy, x5, X3): X, +2x,—x3=4}< E,
This is an equation of a plane in E;. In general, S ={x:p'x=a} is called a

hyperplane in E,, where p is a nonzero vector in E,, usually referred to as the
normal to the hyperplane, and « is a scalar.

2. S={(xy, X5, X3): X, +2x,—x, =4} < E,

These are points on one side of the hyperplane defined above. These points
form a half space. In general, a half space S ={x:p'x=a} in E, is a convex set.

3. S={(x1, x2, X3):x1+2x2_X3$4, 2.)‘51'—'X2+x356}c E3

This set is the intersection of two half spaces. In general, the set S=
{x: Ax=<b} is a convex set, where A is an m X n matrix, and b is an m vector.
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This set is the intersection of m half spaces and is usually called a polyhedral
set.

4. S={(x;, %): %= |x;|} < E,

This set represents a convex cone in E,.

5. S={(x,, x;): x,2+x,2=4}c E,

This set represents points on and inside a circle with center (0, 0) and radius 2.

6. S ={x:xsolves Problem Pbelow}

Problem P

Minimize ¢'x

subjectto Ax=b
x=0

Here c is an n vector, b is an m vector, A is an m X n metrix, and x is an n
vector. The set S gives all optimal solutions of the linear programming problem
of minimizing the linear function ¢'x over the polyhedral region defined by
Ax=Db and x=0.

The following lemma is an immediate consequence of the definition of
convexity. It states that the intersection of two convex sets is convex and that
the algebraic sum of two convex sets is also convex. The proof is left as an
exercise.

2.1.2 Lemma
Let S, and S, be convex sets in E,. Then

1. S§;NS, is convex.
2. §,+S,={x,+x,:x,€85,,X%,€S,} is convex.
3. S,—S,={x,—x,:X,€S;, X, €S,} is convex.

Convex Hulls

Given an arbitrary set S in E,, different convex sets can be generated from S.
In particular, we discuss below the convex hull of S.

2.1.3 Definition

Let S be an arbitrary set in E,. The convex hull of S, denoted by H(S), is thf:
collection of all convex combinations of S. In.other words x € H(S) if and only if
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x can be represented as

-

k

x= ) Ax
=1

k

Z A=1
i=1

A =0, forj=1,...,k

where k is a positive integer and x,,...,x, € S.

[,
U
p N Y, o
H(S) H(S)

H(S)

Figure 2.2 Examples of convex hulls.

Figure 2.2 shows some examples of convex hulls. Actually, we see that in
each case, H(S) is the minimal convex set that contains S. This is indeed the
case in general, as given in Lemma 2.1.4. The proof is left as an exercise.

2.1.4 Lemma

Let S be an arbitrary set in E,. Then H(S) is the smallest convex set containing
S. Indeed, H(S) is the intersection of all convex sets containing S. '

We have disucssed above the convex hull of an arbitrary set S. The convex
hull of a finite number of points leads to the definitions of a polytope and a
simplex.

2.1.5 Definition

The convex hull of a finite number of points x,,...,x,,, in E, is called a
polytope. If X,—X,,X;—X;,...,X,;—X,; are linearly independent, then
H(x,, ..., %), the convex hull of x,,...,x.,,, is called a simplex with
vertices Xy, . .., Xp 4.
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X, X3
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X4
Polytope . Simplex

Figure 2.3 Examples of a polytope and a simplex.

Figure 2.3 shows examples of a polytope and a simplex in E,. Note that the
maximum number of linearly independent vectors in E,, is n, and hence, there
could be no simplex in E, with more than n+1 vertices.

Carathéodory Theorem

By definition, a point in the convex hull of a set can be represented as a convex
combination of a finite number of points in the set. The following theorem
shows that any point x in the convex hull of a set S can be represented as a
convex conbination of, at most, n+1 points in S. The theorem is trivially true
for xe S. \

2.1.6 Theorem

Let S be an arbitrary set in E,. If xe H(S), then xe H(x,,...,x,.,), where
x;eS8 for j=1,...,n+1. In other words, x can be represented as

n+1

X = z Ajx;
i=1

A =0, for j=1,...,n+1
X €S, for j=1,...,n+1

Proof

Since xe H(S), then x=Y}_, A;x;, where A\,>0 for j=1,...,k x,€S8 for
j=1,...,k and Y., A;=1. If k=n+1, the result is at hand. Now suppose
that k>n+1. Note that x,—x,,X3—X,,...,x,—x, are lincarly dependent.
Thus there exist scalars p,, 1, . . ., p not all zero such that Y, p,(x, —x,)=
0. Letting p,=—Y_, u; it follows that Y}, ux;=0, Y.<, u; =0, and not all
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the w,;’s are equal to zero. Note that at least one w;>0. Then

k k k k
x= 3 Ax+0=Y Axj—a ) puxi= ) (G —aw)x
j=1 ji=1 ji=1 j=1
for any real . Now choose « as follows:

o = minimum {ﬁ:u,->0}=ﬁ for some ie{l, ..., k}
1=j=k ] Ly

Note that a > 0. If u; <0, then A\;— ap; >0, and if u; >0, then A/u; = A/, = a,
and hence A;—au;=0. In other words, A\;—au; =0 for all j=1,...,k In
particular, A; — au; = 0 by definition of a. Therefore, x=Y_, (A, — ap;)x;, where
A—ap; =0 for j=1,...,k Y&, (A, —aw)=1, and furthermore, A, —ay, =0.
In other words, x is represented as a convex combination of, at most, k—1
points in S. The process is repeated until x is represented as a convex
combination of n+1 points in S. This completes the proof.

2.2 Closure and Interior of a Convex Set

In this 3ection we develop some topological properties of convex sets. Recall
that given a point x in E,, an e-neighborhood around it is the set N,(x)=
{y:lly—x||<e}. Let us first review the definitions of closure, interior, and
boundary of an arbitrary set in E,.

2.2.1 Definition

Let S be an arbitrary set in E,. A point x is said to be in the closure of S,
denoted by cl S, if SN N,(x)# & for every e>0. If S=cl S, then S is called
closed. x is said to be in the interior of S, denoted by int S, if N, (x) < S for some
e>0.If S=int S, then S is called open. Finally, x is said to be in the boundary
of S, denoted by a5, if N,(x) contains at least one point in S and one point not
in S for every € >0.

To illustrate, consider S ={(x,, x,): x,>+ x,%>= 1}, which represents all points
within a circle with center (0, 0) and radius 1. It can be easily verified that S is
closed; that is, S =cl S. Furthermore, int S consists of all points inside the
circle; that is, int S ={(x,, x,) : x,>+ x,> < 1}. Finally, 8S consists of points on the
circle; that is, 88 ={(x,, x,): x>+ x,>=1}.

Line Segment Between Closure and Interior Points

Given a convex set with a nonempty interior, the line segment (excluding the
endpoints) joining a point in the interior of the set and a point in the closure of
the set belongs to the interior of the set. This result is proved below.
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2.2.2 Theorem

Let S be a convex set E, with a nonempty interior. Let x, €cl S and x,€int S.
Then Ax, +(1—A)x,€int S for each A €(0, 1).

Proof

Since x, € int S, there exists an & >0 such that {z:||z—x,||< e} < S. Let y be such
that :

y=Ax;+(1-A)x, (2.1)

where A €(0,1). To prove that y belongs to int S, it suffices to construct a
neighborhood about y that also belongs to S. In particular, we show that
{z:|lz— y|<(1—=A)e}< S. Let z be such that |lz—y||< (1= A)e and refer to Figure

N~

Figure 2.4 Line segment joining closure
and interior points.

2.4. Since x, ecl S, then
1-MNe—|z—
{x:l|x—x,l|<%ﬂ]ﬁs

is not empty. In particular, there exists a z, € § such that

1-M)e —lz—yll

e 2.2)

—A
Now let z2=z1 _:‘. From (2.1), the Schwartz inequality, and (2.2), we get

Z-‘/\Zl

. |@=Az)—(y—Ax)
1-A 72

l 1—A

llz> — x| =

) Al )

1
1-A
<eg

=

(2= ¥+ A flx, =)
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Therefore z, € S. By definition of z,, note that z= Az, + (1 —A)z,, and since both
z, and z, belong to S, then z also belongs to S. We showed that any z with
lz—yl <(1—A)e belongs to S. Therefore yeint S and the proof is complete,

\

~ Corollary 1

Let S be a convex set. Then int S is convex.

Corollary 2

Let S be a convex set with a nonempty interior. Then cl S is convex.

Proof

Let x;,x,€cl S. Pick zeintS (by assumption int S# ). By the theorem,
Ax;+(1—=A)zeint S for each A €(0,1). Now fix we(0,1). By the theorem,
px; +(1—p)[Ax,+(1=A)z]eint S < S for each A €(0, 1). If we take the limit as
A approaches 1, it follows that ux, +(1—pu)x, ecl S, and the proof is complete.

Corollary 3

Let S be a convex set with a nonempty interior. Then, cl (int S)=clS.
Proof

Clearlyy cl(intS)<clS. Now let xeclS, and pick yeintS (by assumption
int $# J). Then Ax+(1—A)yeint S for each A € (0, 1). Letting A — 1, it fol-
lows that xecl (int S).

Corollary 4

Let S be a convex set with a nonempty interior. Then int (cl S) =int S.

Proof

Note that int Scint (cl S). Let x, eint(cl S). We need to show that X, €int S.

There exists an & >0 such that |ly—x,|| < implies that yecl S. Now let x, #x;

belong to int S and let y = (1+ A)x, — Ax,, where A=We—ﬂ. Since |ly —x,|| =
L Xy T X

€/2, then yeclS. But x,=Ay+(1—-A)x,, where A= 1/(1+A)e(0,1). Since

yecl S and x, eint S, then by the theorem, x, €int S, and the proof is complete.

The above theorem and its corollaries can be considerably strengthened by

using the notion of relative interiors (see the Notes and References section at
the end of the chapter).
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2.3 Separation and Support of Convex Sets

The notions of supporting hyperplanes and separation of disjoint convex sets
are very important in optimization. Almost all optimality conditions and
duality relationships use some sort of separation or support of convex sets. The
results of this section are based on the following geometric fact: given a closed
convex set S and a point y¢ S, there exist a unique point X€ $ with minimum
distance from y and a hyperplane that separates y and S.

Minimum Distance from a Point to a Convex Set

In order to establish the above important result, the following parallelogram
law is needed. Let a and b be two vectors in E,. Then

lla+bl|* = [lal* + [[b]* + 2a‘b
lla—bl* = |lal|*+ Ib][* — 2a'b
By adding, we get _
lla+bl* +[la —bi* = 2 [lal|* + 2 [|b]*

This result is illustrated in Figure 2.5 and can be interpreted as follows: the
sum of squared norms of the diagonals of a parallelogram is equal to the sum
of squared norms of its sides.

Figure 2.5 Parallelogram law.

2.3.1 Theorem

Let S be a closed convex set in E, and y¢ S. Then there exists a unique poiqt
xe S with minimum distance from y. Furthermore, X is the minimizing point if
and only if (x—X)'(x—y)=0 for all xe S.

Proof

Let inf{|ly — x||:x€ S}=y>0. There exists a sequence {x,} in S such Fhat
lly—x,'=v. We show that {x,} has a limit X€ S by showing that {x,} is a
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Cauchy sequence. By the parallelogram law, we have

Ik =X = 2 flxic = ¥1* + 2 1% = ¥ = [l + %, =2

X, T X, &
=2~y +2 Ik, ¥ -4 | =5y
. X X, g,
Note that (x, +x,)/2€ S, and by definition of y we have > Y =y°,

Therefore |jx, —x,.J?=<2|x. —y|?+2|x,. —y|*—47> By choosing k and m
sufficiently large, |x, —y|* and |x,, —y|* can be made sufficiently close to y?,
and hence |x, —x,|]* can be made sufficiently close to zero. Therefore {x,} is
a Cauchy sequence and has a limit k. Since S is closed, X€ S. To show
uniqueness, suppose that there is an %X'e€ S such that |ly—%|=|y—x||=v. By
convexity of S, (x+X')/2€ S. By Schwartz inequality, we get

“ X+x

2

If strict inequality holds, we violate the definition of y. Therefore equality
holds, and we must have y—x=A(y—X) for some A. Since |ly—x%|=|y—X/|=
v, || = 1. Clearly, A # — 1, because otherwise y = (X+X')/2 € S, contradicting the
assumption that y¢ S. So A =1, X' =X, and uniqueness is established.
To complete the proof, we need to show that (x—X)'(x—y)=0 for all xe S is
both a necessary and sufficient condition for X to be the point in S closest to y.
To prove sufficiency, let xe S. Then,

=sly—x|+3lly-%|="~

ly —xI* =lly —%+%—x* =[ly - XI* + [k — x| + 2R — %) (y — %)
Since [k —x|*=0 and (x—x)'(y—X%) =0 by assumption, |ly —x||*=|ly —x||>, and X is
the minimizing point. Conversely, assume that |y —x||* = |ly — x||* for all xe S. Let
x€ S and note that X+ A(x—%)e S for A >0 and sufficiently small. Therefore,
lly —%—A(x—%)|* =[ly — %> (2.3)

Also

ly =% —Ax=%)|* = |ly =%+ A* [x — %" + 2A (x—%)* (X —y) (2.4)
From (2.3) and (2.4), we get

Ak =% +2A(x—%)' (x—y)=0

for all A >0 and sufficiently small. Dividing by A>0 and letting A —0, the
result follows.

The above theorem is illustrated in Figure 2.6. Note that the angle between

x—X and X—y for any point x in S is less than or equal to 90° and hence
(x—%)'(x—y)=0.
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Figure 2.6 Minimum distance to a
closed convex set.

Hyperplanes and Separation of Two Sets

Since we shall be dealing with separating and supporting hyperplanes, precise
definitions of hyperplanes and half spaces are given below.

2.3.2 Definition

A hyperplane H in E, is a collection of points of the form {x:p'x=a}, where p
is a nonzero vector in E, and a is a scalar. The vector p is called the normal
vector of the hyperplane. A hyperplane H defines two closed half spaces
H*={x:p'x=a} and H" ={x:p'x=a} and the two open half spaces {x:p'x>
a} and {x:p'x<a}.

Note that any point in E, lies in H*, in H™, or in both. Also, a hyperplane H
and the corresponding half spaces can be written in reference to a fixed point,
say xe H. If Xe H, then p'k=a, and hence any point xe H must satisfy
p'x—p'k=a—a=0; that is, p'(x—X)=0. Accordingly, H' ={x:p'(x—X)=0}
and H™ ={x:p'(x—%)=0}. Figure 2.7 shows a hyperplane H passing through X
and having a normal vector p.

H

Figure 2.7 An example of a hyperplane and
corresponding half spaces.
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As an example, consider H ={(x,, x,, x5, X;): X; + X, — X3+ 2x, = 4}. The nor-
mal vector p=(1, 1, —1, 2)". Alternatively the hyperplane can be written in
reference to any point in H, for example, x=(0, 6,0, —1)'. In this case, we
write H ={(x,, x5, X3, X4): X; +(x,—6) — x5+ 2(x,+1)=0}.

2.3.3 Definition

Let S; and S, be nonempty sets in E,. A hyperplane H ={x:p‘x = a} is said to
separate S, and S, if p'x=a for each xe S, and p'’x=a for each xe S,. If,
in addition, S;US, ¢ H, then H is said to properly separate S; and S,.. The
hyperplane H is said to strictly separate S, and S, if p'x> « for each x€ S, and
p'x<a for each xe S,. The hyperplane H is said to strongly separate S; and S,

if p'’x=a +¢ for each xe S, and p'x=<« for each xe S,, where ¢ is a positive
scalar.

Figure 2.8 shows various types of separation. Of course, strong separation
implies strict separation, which implies proper separation, which in turn implies
separation. Improper separation is usually of little value, since it corresponds to
a hyperplane containing both S, and S, as shown in Figure 2.8.

S2

S

Improper separation Proper separation

<

Strict separation Strong separation

Figure 2.8 Various types of separation.
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Separation of a Convex Set and a Point

We shall now present the first and most fundamental separation theorem.
Other separation and support theorems will follow from this basic result.

2.3.4 Theorem

Let S be a nonempty closed convex set in E, and y¢ S. Then there exists a
nonzero vector p and a scalar a such that p'y>a and p'x=a for each xe S.

Proof

The set S is a nonempty closed convex set and y ¢ S. Hence by Theorem 2.3.1,
there exists a unique minimizing point X€ S such that (x—x)'(y—%) =0 for each

xe€ S. Note that

ly %P =(y—%)'(y—0) =y (y—%) —&'(y— %) (2.5)
But since —Xx‘(y—X)= —x'(y—Xx) for any x€ S, then (2.5) implies that p'(y—x) =
lly —x||* for each xe S, where p =y—xX # 0. This shows that p'y=p'x+|ly — X||* for
each xe S. Letting a =sup {p'x:xe S}, the result follows.

Corollary

Let S be a closed convex set in E,. Then S is the intersection of all half spaces
containing S.

Proof

Obviously S is contained in the intersection of all half spaces containing it. To
the contrary of the desired result, suppose that there is a point y in the
intersection of these half spaces but not in S. By the theorem, there exists a
half space that contains S but not y. This contradiction proves the corollary.

- The following statements are equivalent to the conclusion of the theorem.
The reader is asked to verify this equivalence. Note that statements 1 and 2 are

- equivalent only in this special case since y is a point.

1. There exists a hyperplane that strictly separates S and y.

2. There exists a hyperplane that strongly separates S and vy.

3. There exists a vector p such that p'y>sup {p'x:xe S}.
4. There exists a vector p such that p'y<inf {p'x:xe S}.

Farkas’ Theorem as a Consequence of Theorem 2.3.4

Farkas’ theorem has been used extensively in the derivation of optimality
conditions of linear and nonlinear programming problems. The theorem can be
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1

X

x|
N

J Figure 2.10 Examples of supporting hyperplanes.

Figure 2.10 shows some examples of supporting hyperplanes. The figure
 illustrates the cases of a unique supporting hyperplane at a boundary point, an
. infinite number of supporting hyperplanes at a boundary point, a hyperplane

that supports the set at more than one point, and finally an improper
. supporting hyperplane that contains the whole set.

We now prove that a convex set has a supporting hyperplane at each
boundary point (see Figure 2.11). As a corollary, a result similar to Theorem
2.3.4, where S is not required to be closed, follows.

N

H
p

Figure 2.11 Supporting hyperplane.

2.3.7 Theorem

Let S§ be a nonempty convex set in E,, and let X€dS. Then, there exists a

hyperplane that supports S at X; that is, there exists a nonzero vector p such
that p'(x—X) =0 for each.xecl S.

Proof

Since X€dS, there exists a sequence {y,} not in ¢l S such that y,—%. By
Theorem 2.3.4, corresponding to each y, there exists a p, with norm 1 such
that piy, >pix for each xecl S. (In Theorem 2.3.4, the normal vector can be
normalized by dividing it by its norm, so that [p, || = 1.) Since {p, } is bounded, it
has a convergent subsequence {p,}5 with limit p whose norm is equal to one.
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Considering this subsequence we have piy, > pix for each xecl S. Fix xecl S
and take the limit as k € ¥ approaches «. Then p‘(x—x)=0. Since this is true
for each xecl S, the result follows.

Corollary

Let S be a nonempty convex set in E, and X ¢ S. Then there is a nonzero vector
p such that p'(x—%)=0 for each xecl S.

Proof
If X ¢ cl S, then the corollary follows from Theorem 2.3.4. On the other hand, if

x€aS, the corollary reduces to the above theorem.

Separation of Two Convex Sets

_So far, we have discussed separation of a convex set and a point not in the set

and have also discussed support of convex sets at boundary points. In addition,
if we have two disjoint convex sets, they can be separated by a hyperplane H
such that one of the sets belongs to H* and the other set belongs to H™. In
fact, this result holds true even if the two sets have some points in common, as
long as their interiors are disjoint. This result is made precise by the following
theorem.

2.3.8 Theorem

Let S, and S, be nonempty convex sets in E, and suppose that §, NS, is
empty. Then there exists a hyperplane that separates S, and S,; that is, there
exists a nonzero vector p in E, such that

inf {p'x:xe S} =sup {p'x:xe S}
Proof

Let $=85,-S,={x,—x,:x,€S, and x,€S,}. Note that S is convex.
Furthermore, 0 ¢ S because otherwise S, N S, will be nonempty. By the corol-
lary of Theorem 2.3.7, there exists a nonzero pe E, such that p'x=0 for all
x€ S. This means that p'x, =p'x, for all x,€S, and x,€S,, and the result
follows.

Corollary 1

Let S, and S, be nonempty convex sets in E,. Suppose that int S, is not empty
and that S, Nint S, is empty. Then there exists a nonzero p such that

inf{p'x:xe S,}=sup {p'x:xe S.}
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Proof
Replace S, by int S,, apply the theorem, and note that
sup {p‘x:xe S,} =sup {p‘x:x€int S,}

Corollary 2

Let S, and S, be convex sets with nonempty interiors. Suppose that int S; N
int S, = . Then there exists a nonzero p such that

inf {p'x:x€ S,} =sup {p'x:xS,}.

Gordan’s Theorem as a consequence of Theorem 2.3.8

We shall now derive a theorem credited to Gordan based on the existence of a
hyperplane that separates two disjoint convex sets. This theorem is frequently
used in nonlinear programming. Like the Farkas’ theorem, Gordan’s theorem
states that exactly one of two systems only has a solution.

2.3.9 Theorem (Gordan’s Theorem)

Let A be an m X n matrix. Exactly one of the following systems has a solution:
System I  Ax<0

System 2 . A'p=0andp=0

for some x€ E,

for some nonzero pe E,,

Proof

We shall first prove that if System 1 has a solution %, then we cannot have a
solution to A'p=0, p=0, p nonzero. Suppose, on the contrary, that a solution
p exists. Then, since Ax<0,p=0, and p#0, we have p'AX<0, that is,
XA'p<0. But A'p=0 by assumption. Hence, X'A'p=0, a contradiction.
Hence, System 2 cannot have a solution.

Now assume that System I has no solution. Consider the following two sets:

S,={z:z=Ax,xeE,}
S,={z:2< 0}

Note that S, and S, are nonempty convex sets such that S; N S, = . Then, by
Theorem 2.3.8, there exists a hyperplane that separates S, and S,; that is,
there exists a nonzero vector p such that

p'Ax=p'z for each xe E, and zecl S,

Since each component of z could be made an arbitrarily large negative number,
it follows that p=0. Also, by letting z=0, we must have p'Ax=0 for each
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x€ E,. By choosing x=—A'p, it then follows that —||A'p|*=0, and thus
A'p=0. Hence, System 2 has a solution, and the proof is complete.

The separation theorem 2.3.8 can be strengthened to avoid trivial separation
where both $; and S, are contained in the separating hyperplane.

2.3.10 Theorem (Strong Separation)

Let S, and S, be a closed convex sets, and suppose that S, is bounded. If
$,NS, is empty, then there exists a nonzero p and & >0 such that

inf {p'x:xe S,}=¢ +sup {p'x:xe S,}
Proof

Let $=8,—S, and note that S is convex and that 0 ¢ S. We shall show that S is
closed. Let {x,} in S converge to x. By definition of S, x, =y, —2,, Where
Y €S, and z, € S,. Since S, is compact, there is a subsequence {y, },, with limit
y in S,. Since y, —z,—>x and y, —y for k€ ¥, then z, —z. Since S, is closed,
2€ S,. Therefore x=y—z with ye S, and z€ S,. Therefore, xe S, and hence S is
closed. By Theorem 2.3.4, there is a nonzero p and an & such that p'x= ¢ for
each xe S and p'0<e. Therefore, £ >0. By the definition of S, we conclude
that p'x, = € +p'x, for each x, €S, and x,€ S,, and the result follows.

2.4 Convex Cones and Polarity

In this section, we briefly discuss the notions of convex cones and polar
cones. This section may be skipped without loss of continuity.

2.4.1 Definition

A nonempty set C in E, is called a cone with vertex zero if ze C implies that
Axe Cforall A =0. If, in addition, C is convex, then C is called a convex cone.

Figure 2.12 shows an example of a convex cone and an example of a
nonconvex cone.

[0}

Convex cone Nonconvex cone

Figure 2.12 Examples of cones.
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S

. O

Figure 2.13 Examples of polar cones.

An important special class of convex cones is that of polar cones defined
below and illustrated in Figure 2.13.

2.4.2 Definition

Let S be a nonempty set in E,. Then the polar cone of S, denoted by S*, is
given by {p:p'x=0 for all xe S}. If S is empty, S* will be interpreted as E,.

The following lemma, the proof of which is left as an exercise, summarizes
some facts about polar cones.

2.4.3 Lemma

Let S, S, and S, be nonempty sets in E,. Then the following statements hold
true.

1. S*is a closed convex cone.
2. Sc S§* where $** is the polar cone of S*.
3. S,c S, implies that S¥ < SF,

We now prove an important theorem for closed convex cones. As an
application of the theorem, we give another derivation of Farkas’ theorem.

2.4.4 Theorem

Let C be a nonempty closed convex cone. Then C = C**,

Proof

Clearly C < C**. Now let xe C**, and suppose, by contradiction, that x¢ C. By
Theorem 2.3.4, there exists a nonzero vector p and a scalar « such thatp'y=«
for all ye C and p‘x> a. But since y=0€ C, then a =0, and so p'x>0. We
now show that pe C*. If not, then p'y>0 for some ye C, and p'(Ay) can be
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made arbitrarily large by choosing A arbitrarily large. This contradicts the fact
that p'y=<a for all ye C. Therefore, pe C*. Since xe C**, then p'x=0. This

contradicts the fact that p‘x> 0, and we conclude that x e C. This completes the
proof.

Farkas’ Theorem as a consequence of Theorem 2.4.4

Let A be an m X n matrix, and let C={A'y:y=0}. Note that C is a closed
convex cone. It can be easily verified that C* ={x: Ax=<0}. By the theorem,
ce C** if and only if ce C. But ¢ce C** means that whenever xe C* then
¢'x=0, or equivalently, Ax=0 implies that ¢'x=0. By definition of C, ce C
means that ¢=A'y and y=0. Thus the result C=C** could be stated as
follows: System 1 below is consistent if and only if System 2 has a solution y.

System 1 Ax=0 implies ¢’x=0.

System 2 A'y=c¢, y=0.

This statement can be put in the more usual and equivalent form of Farkas’
theorem. Exactly one of the following two systems has a solution:

System 1 Ax=0,c'x>0 (that is, ¢ & C** = C).
System 2 A'y=¢,y=0 (that is, ce C).

2.5 Polyhedral Sets, Extreme Points, and Extreme Direc-
tions

In this section we introduce the notions of extreme points and extreme
directions for convex sets. We then discuss in more detail their use for the
special important case of polyhedral sets.

Polyhedral Sets

Polyhedral sets represent an important special case of convex sets. We have
seen from the corollary to Theorem 2.3.4 that any closed convex set is the
intersection of all closed half spaces containing it. In the case of polyhedral
sets, only a finite number of half spaces is needed to represent the set.

2.5.1 Definition

A nonempty set S in E, is called a polyhedral set if it is the intersection of a
finite number of closed half spaces; that is, S={x:px=<q; for i=1,..., m},
where p, is a nonzero vector and «; is a scalar for i=1,...,m.
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Note that a polyhderal set is a closed convex set. Since an equation can be
represented by two inequalities, a polyhedral set can be represented by a finite
number of inequalities and/or equations. The following are some typical
examples of polyhedral sets, where A is an m X n matrix and b is an m vector.

S={x:Ax=h}
S={x:Ax=b,x=0}
S={x:Ax=b,x=0}

Figure 2.14 illustrates the polyhedral set

S ={(x1, Xz):i =Xt x,<2, X2 =4, x,=0, x, =0}

R

%2

e

.

e

%4

o
Lo
[-§
I
—
=

]

Figure 2.14 A polyhedral set.

Extreme Points and Extreme Directions

We now introduce the concepts of extreme points and extreme directions for

convex sets. We then give their full characterizations in the case of polyhedral
sets.

2.5.2 Definition

Let S be a nonempty convex set in E,. A vector xe S is called an extreme point
of S if x=Ax,+(1—A)x, with x;,x,€ S, and A €(0, 1) implies that x=x, =X,.

The following are some examples of extreme points of convex sets. We
denote the set of extreme points by E and illustrate them in Figure 2.15 by

2.5 Polyhedral Sets, Extreme Points, and Extreme Directions 55

2/3]
4/3

Figure 2.15 Examples of extreme points.
dark points or dark lines.
1. S={(x1, x2)1x12+x22_<.1}
E={(x1, x2): x> +x,° =1}
2. S={lx %) %+ =2, — %, +2x,= 2, Xy; %> =0}
E ={(0,0)', (0, 1), (2/3, 4/3), (2, 0)'}
3. S is the polytope generated by (0, 0), (1, D)4 (1, 3), (=2, 4), and (0, 2)*
E={(0,0), (1, 1), (1, 3),, (-2,4)'}

_From Figure 2.15, we see that any point of the convex set S can be
represented as a convex combination of the extreme points. This turns out to
be true for compact convex sets. However, for unbounded sets, we may not be
able to represent every point in the set as a convex combination of its extreme
points. To illustrate, let S={(x,, x,):x,=|x,|}. Note that S is convex and
closed. However, S contains only one extreme point, namely the origin, and
obviously S is not equal to the collection of convex combinations of its extreme

points. In order to deal with unbounded sets, the notion of extreme directions
is needed.

2.5.3 Definition

Let S be a closed convex set in E,. A nonzero vector d in E, is called a
direction of S if for each xe S, x+Ade S for all A =0. Two directions d, and d,
of S are called distinct if d, # ad, for any a>0. A direction d of S is called
an extreme direction if it cannot be written as a positive linear combination of
two distinct directions, that is, if d = A,d, + A,d, for A,, A, >0 then d, = ad, for
some a > 0.

To illustrate, consider S={(x,, x,):x,=|x,|} shown in Figurec 2.16. The
directions of S are nonzero vectors that make an angle less than or equal to 45°
with the vector (0,1)". In particular, d,=(1,1)" and d,=(—1,1)" are two
extreme directions of S. Any other direction of S can be represented as a
positive linear combination of d, and d,.
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/ |

(0, O)
Figure 2.16 Example of extreme directions.

Characterization of Extreme Points and Extreme Directions for Polyhedral
Sets

Consider the polyhedral set S ={x: Ax=Mh, x=0}, where A is an m X n matrix

and b is an m vector. We assume that the rank of A is m. If not, we can throw
away any redundant equations.

Extreme Points Rearrange the columns of A so that A = [B, N], where B is
an m X m matrix of full rank, and N is an m X n —m matrix. Let xg and x, be

the vectors corresponding to B and N, respectively. Then Ax=b and x= 0 can
be rewritten as follows:

Bx; +Nx, =b and x5 =0,x,=0

The following theorem gives a necessary and sufficient characterization of an
extreme point of S.

2.5.4 Theorem (Characterization of Extreme Points)

Let S ={x:Ax=b, x>0}, where A is an m X n matrix of rank m, and b is an m
vector. A point x is an extreme point of S if and only if A can be decomposed

into [B, N] such that:
-1
SNy
XN 0

where B is an m X m invertible matrix satisfying B~'b = 0.

Proof
-1

Suppose that A can be decomposed into [B, N] with x = [B 0

b
] and B 'b=0.

) ") )t ) )

2.5 Polyhedral Sets, Extreme Points, and Extreme Directions 57

It is obvious that xe S. Now suppose that x= Ax, +(1 —A)x, with x,,x,€ S for
some A € (0, 1). In particular, let xj = (x},, x},) and x5 = (x},, x5,). Then

"]k ea-n 2]
0 X12 X22
Since x,,, x22_0 and A €(0, 1), it follows that x,, = x,, = 0. But this implies that

X,; =X,, = B7'b, and hence x =x, =x,. This shows that x is an extreme point of
S. Conversely, suppose that x is an extreme point of S. Without loss of

generality, suppose that x=(x,..., x,0,...,0)', where x,,..., x, are posi-
tive. We shall first show that a,, ..., a, are linearly independent. By contradic-
tion, suppose that there exist scalars A,,...,A, not all zero such that

Yoo Aa=0. Let A=(Ay,..., A, 0,...,0). Construct the following two vec-
tors where a >0 is chosen such that x;, x,=0:

X, =X+ak and X, =X—aX
Note that

k k k
Ax, = Z (x;+aA)a; = Z x;a; +a Z Aa;=b
j=1 i=1 j=1

and similarly Ax,=Db. Therefore x,,x,€S and since a«>0, x, and x, are
distinct. Moreover, x = 3x, +3x,. This contradicts the fact that x is an extreme
point. Thus a,, ..., a, are linearly independent and m —k columns out of the
last n—k columns may be chosen such that they, together with the first k
columns, form a linearly independent set of vectors. To simplify the notation,

suppose that these columns are a,.,,,...,a,. Thus, A can be written as
A=[B,N], where B=[a,,...,a,] is of full rank. Furthermore B 'b=
(x%1,...,%,0,...,0), and since x;>0 for j=1,...,k, then B 'b=0. This

completes the proof.

Corollary

The number of extreme points of S is finite.

Proof

. n n! S
The number of extreme points is less than or equal to ( ) =————— which
H m!(n—m)!

is the maximum number of possible ways to choose m columns of A to form B.

From the above theorem, it is clear that a polyhedral set of the form
{x: Ax=Db, x=0} has a finite number of extreme points. The following theorem
shows that every nonempty polyhedral set of this form must have at least one
extreme point.
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2.5.5 Theorem (Existence of Extreme Points)

Let S={x:Ax=b,x=0} be nonempty, where A is an m X n matrix of rank m,
and b is an m vector. Then S has at least one extreme point.

Proof

Let xe S, and without loss of generality, suppose that x = (x,, . . ., X, 0,...,0),
where x;>0for j=1,..., k. Ifa,,...,a, are linearly independent, then k = m,
and x is an extreme point. Otherwise, there exist scalars A, . . ., A, with at least

one positive, component such that }¥_, A;a; =0. Define a >0 as follows.
a = minimum {ﬁ A> 0} =X
1sj=k j /\.‘
Consider the point x' whose jth component x! is given by
xe:{xi_a)‘i forj=1,...,k
o forj=k+1,...,n

Note x/=0 for j=1,...,k and x/=0 for j=k+1,..., n. Moreover, x!=0,
and

k k k
Yaxi=) a(x—ar)=) ax—a) ar=b—0=b
j i j=1 i=1

So far, we have constructed a new point x' with, at most, k—1 positive
components. The process is continued until the positive components corres-
pond to linearly independent columns, which results in an extreme point. Thus,

we have shown that S has at least one extreme point, and the proof is
complete. '

Extreme Directions Let S={x:Ax=b, x>0}, where A is an m X n matrix of
rank m. By definition, a nonzero vector d is a direction of S if x+Ade S for
each xe S and each A =0. Noting the structure of S, it is clear that d# 0 is a
direction of S if and only if

Ad=0, d=0

In particular, we are interested in the characterization of extreme directions of
S.

2.5.6 Theorem (Characterization of Extreme Directions)

Let S={x:Ax= b,}z 0}, where A is an m X n matrix of rank m, and b is an m
vector. A vector d is an extreme direction of S if and only if A can be
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decomposed into [B, N] such that B™'a, = 0 for some column a; of N, and disa
—Bgla,-

€;

positive multiple of d = ( ), where e; is an n —m vector of zeros except

for a 1 in position j. '

Proof

If B 'a; <0, then d=0. Furthermore, Ad=0, so that d is a direction of S. We
now show that d is indeed an extreme direction. Suppose that d = A,d, +A.d,,
where A, A, >0 and d,, d, are directions of S. Noting that n —m —1 compo-
nents of d are equal to zero, then the corresponding components of d, and d,
must also be equal to zero. Thus, d, and d, could be written as follows:

d d
d1=‘7‘1<e”> d2=a2<:l>
J i

where a,, @;>0. Noting that Ad, =Ad, =0, it can easily be verified that
d,, =d,, = =B 'a, Thus, d, and d, are not distinct, which implies that d is an
extreme direction. Since d is a positive multiple of d, it is also an extreme
direction.

Conversely, suppose that d is an extreme direction of S. Without loss of
generality, suppose that

d=(d,,...,d,0,...,d,...,0)

where d,>0for i=1,...,k and for i = j. We claim that a,, ..., a, are linearly
independent. By contradiction, suppose that this were not the case. Then there
would exist scalars A;,..., A, not all zero such that Y* , Aa =0. Let A=

(A, oo, 0, 0,...,0) and choose a>0 sufficiently small such that both
d,=d+aN and d,=d-—al)

are nonnegative. Note that

k
Ad,=Ad+aAN=0+a ) a), =0

i=1
Similarly Ad, = 0. Since d,, d, =0, they are both directions of S. Note also that
they are distinct, since a >0 and A # 0. Furthermore, d = !d, + }d,, contradict-
ing the assumption that d is an extreme direction. Thus, a,, ..., a, are linearly
independent, and since rank A is equal to m, it is clear that k = m. Then there
must exist m — k vectors from among the set of vectors {a;:i=k+1,..., n;i#j}
which, together with a,,...,a,, form a linearly independent sct of vectors.
Without loss of generality, suppose that these are a,,...,a,. Denote
[a,,...,a,] by B, and note that B is invertible. Thus, 0 = Ad=Bd +a,d, where

- A - f Ay &
d is the first m components of d. Therefore, d = —d;B 'a;, and hence the vector
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R g _ _

d is of the form c-i=<fj.< l: a’). Noting that d=0 and that d;>0, then
j

B 'a; <0, and the proof is complete.

Corollary

The number of extreme directions of S is finite.

Proof

For each choice of a matrix B from A, there is n —m possible ways to extract
the column a; from N. Therefore, the maximum number of extreme directions

is bounded by (n—m) (n)______ri__
y m) m'(n-m-1)!"

The Representation of Polyhedral Sets in Terms of Extreme Points and
Extreme Directions

By definition, a polyhedral set is the intersection of a finite number of half
spaces. This representation may be thought of as an outer representation. A
polyhedral set can also be described fully by an inner representation by means
of its extreme points and extreme directions. This fact is fundamental to several
linear and nonlinear programming procedures.

The main result can be stated as follows. Let S be a polyhedral set of the
form {x:Ax=b,x=0}. Then, any point in S can be represented as a convex
combination of its extreme points plus a nonnegative linear combination of its
extreme directions. Of course, if S is bounded, then it contains no directions,
and so any point in S can be described as a convex combination of its extreme
points.

In Theorem 2.5.7 below, it is implicitly assumed that the extreme points and
the extreme directions of S are finite in number. This fact follows from the
corollaries to Theorems 2.5.4 and 2.5.6.

2.5.7 Theorem (Representation Theorem)

Let S be a nonempty polyhedral set in E, of the form {x: Ax=b and x=0},
where A is an m X n matrix with rank m. Let x,, ..., x, be the extreme points

of Sand d,,...,d, be the extreme directions of S. Then xe S if and only if x
can be written as

X

Il
I M=

I

l
1 Ax;+ _Zl w;d;
=

I M=

A=1 (2.6)
j=1 '
=0 forj=1,...,k (2.7)
w; =0 forj=1,...,1 (2.8)

[ ! 4 /
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Proof

Construct the following set:
k ] k
/\={Z Ax+ Y wds Y A =1,A,=0 for all j, ;=0 for all j]
j=1 j=1 ji=1

Note that /\ is a closed convex set. Furthermore, by Theorem 2.5.5, S has at
least one extreme point, and hence A is not empty. Also note that A < S. To
show that S < A, suppose by contradiction that there is a z€ S such that z¢ A.
By Theorem 2.3.4, there exists a scalar a and a nonzero vector p in E, such

that
p'z>«

k 1
P'(Z Ax;+ Y I“‘idi>5a (2.9)
j=1 i=1
for A’s and u;’s, satisfying (2.6), (2.7), and (2.8). Since w; can be made

arbitrarily large, (2.9) holds true only if p'd; =<0 for j=1, ..., . From (2.9), by
letting p; =0 for all j,A; =1, and A; =0 for i# j, it follows that p'x; = « for each

j=1,...,k Since p‘z>a, we have p‘z>p'x; for all j. Summarizing, there
exists a nonzero vector p such that
p'z>p'x; forj=1,...,k (2.10)
p'd,=0 forj=1,...,1 (2.11)

Consider the extreme point X defined as follows:

p'X =maximum p'x; (2.12)
Isj=k

) B 'b
Since X is an extreme point, by Theorem 2.5.4, i=( 0 ) where A =[B, N]

and B 'b=0. Without loss of generality assume*hat B 'b>0 (see Exercise
2.42). Since z€ S, then Az=b and z=0. Therefore, Bz, + Nz, =b and hence
zg =B 'b—B 'Nz,, where z' is decomposed into (z, zy). From (2.10), we
have p‘z—p'k>0, and decomposing p' into (ps, Pn), We get

0<p'z—p'x
=p5(B~'b— B 'Nzy)+phzny —psB'b
= (pn—PsB ' N)zy (2.13)

Since zy =0, from (2.13) it follows that there is a component j=m+ 1 such
that z;>0 and p;—pB ™ 'a;>0. We first show thaty, =B 'a;£0. By contradic-
Yy

tion, suppose that y; =0. Consider the vector d; = [
!

], where e; is an n—m
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dimensional unit vector with 1 at position j. By Theorem 2.5.6, d; is an
extreme direction of S. From (2.11) p'd; <0, that is, —p‘BB“a,-+p,-$0, which

contradicts the assertion that p,—pzB~'a;>0. Therefore y;%0, and we can
construct the following vector:

b —y.
x=(o) (o)
0 €
where b is given by B~'b, and A is given by
- b, b,
A = minimum {——i:y,-,.>0}=ﬁ>()
l=i=m Yij Yri

Note that x=0 has, at most, m positive components, where the rth component
d.rops to zero and the jth component is given by A. The vector x belongs to S,
since Ax=B(B“b—AB"‘aj)+Aa,=b. Since y,;#0, it can be shown that the

vectors ay,...,8,_q, &,4y,...,4,, 4; are linearly independent. Therefore, by
Theorem 2.5.4, x is an extreme point; that is, x € {x,, x,, . . . , Xi.}. Furthermore,
b—y,
P'x=(ps, pk)( . ’)
Ae

]
=pib— Aphy; + Ap;
=p'X+A(p;—psB'a))

Since A>0 and p;—pEB~'a; >0, then p'x>p'%,. Thus, we have constructed an
extreme point x such that p‘x > p‘X, which contradicts (2.12). This contradiction
asserts that z must belong to /\, and the proof is complete.

Corollary (Existence of Extreme Directions)

Let S be a nonempty polyhedral set of the form {x: Ax =b, x=0} where A is an
m X n matrix with rank m. Then S has at least one extreme direction if and
only if it is unbounded.

Proof

If S has an extreme direction, then it is obviously unbounded. Now suppose
that S is unbounded, and by contradiction, suppose that S has no extreme
directions. Using the theorem and Schwartz inequality, it follows that

k
Z AiX;

J=1

it

|

k k
< 3 Alli= Y I
Xl

for any x € S. However, this violates the unboundedness assumption. Therefore,
S has at least one extreme direction and the proof is complete.
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2.6 Linear Programming and the Simplex Method

A linear programming problem is the minimization or the maximization of a
linear function over a polyhedral set. Many problems can be formulated as, or
approximated by, linear programs. Also, linear programming is often used in
the process of solving nonlinear and discrete problems. In this section, we
describe the well-known simplex method for solving linear programming
problems. The method is mainly based on exploiting the extreme points and
directions of the polyhedral set defining the problem.
Consider the following linear programming problem:

Minimize c'x

subject to Xxe S

where S is a polyhedral set in E,. The set S is called the constraint set or the
feasible region, and the linear function ¢‘x is called the objective function.
The optimum objective function value of a linear programming problem may
be finite or unbounded. We give below a necessary and sufficient condition for
a finite optimal solution. The importance of the concepts of extreme points and
extreme directions in linear programming will be evident from the theorem.

2.6.1 Theorem (Optimality Conditions in Linear Programming)

Consider the following linear programming problem: Minimize ¢'x, subject to
Ax=Db,x=0. Here, ¢ is an n vector, A is an m X n matrix of rank m, and b is
an m vector. Suppose that the feasible region is not empty, and let
X, X5, . . ., X, be the extreme points and d,, . . ., d, be the extreme directions of
the feasible region. A necessary and sufficient condition for a finite optimal
solution is that ¢'d; =0 for j=1,..., L If this were the case, then there exists
an extreme point x; that solves the problem.

[}

Proof

By Theorem 2.5.7, Ax=b and x=0 if and only if
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Therefore the linear programming problem can be stated as follows:
k 1
Minimize c‘(Z A+ Z p.jdj>
j=1 ji=1
k
subject to Z =1
i=1

A=0  forj=1,...,k
;=0 forj=1,...,1

Note that if ¢'d; <O for some j, then u; can be chosen arbitrarily large, leading
to an unbounded optimal objective value. This shows that a necessary and
sufficient condition for a finite optimal is ¢'d;=0 for j=1,..., L If this were
the case, then in order to minimize the objective function, we may choose
n; =0 for j=1,...,1 and the problem reduces to minimizing ¢ ( }., A;x;)
subject to Y} ; A;=1 and A;=0 for j=1,..., k. It is clear that the optimal
- solution to this latter problem is finite and found by letting A; =1 and A; =0 for
~ j#i, where the index i is given by ¢'x; = minimum, _;, ¢'x;. Thus, there exists
an optimal extreme point, and the proof is complete.

From the above theorem, at least for the case in which the feasible region is
bounded, one may be tempted to calculate ¢‘x; for j=1,..., k and then find
minimum, ;- ¢'x;. Even though this is theoretically possible, it is computation-
ally not feasible because the number of extreme points is usually large.

The Simplex Method

The simplex method is a systematic procedure for solving a linear programming
problem by moving from an extreme point to an extreme point with a better (at
least not worse) objective function value. This process continues until an
optimal extreme point is reached or else until an extreme direction d with

¢'d<0 is found. In the latter case, we conclude that the optimal objective value
is unbounded.

Consider the following linear programming problem in which the polyhedral
set is defined in terms of equations and variables that are restricted to be
nonnegative.

Minimize c'x
subject to Ax=b
x=0

Note that any polyhedral set can be put in the above standard format. For
example, an inequality of the form }}_, a,x;<b, can be transformed into an
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equation by adding the nonnegative slack variable s, so that Y/, a,x;+s, = b,
Also, an unrestricted variable x; can be replaced by the difference of two
nonnegative variables; that is, x; = x;" —x;~, where x;*, x;” = 0. These and other
manipulations could be used to put the problem in the above format. We shall
assume for the time being that the constraint set admits at least one feasible
point and that the rank of A is equal to m.

By Theorem 2.6.1, at least in the case of a finite optimal solution, it suffices
to concentrate on extreme points. Suppose that we have an extreme point X. By
Theorem 2.5.4, this point is characterized by a decomposition of A into [B, NJ,
where B=[ag,...,ag ]is an m X m matrix of full rank called the basis, and N
is an m Xn—m matrix. By Theorem 2.5.4, note that X could be written as
%' = (x4, &) = (b, 0'), where b=B"'b=0. The variables corresponding to the
basis B are called basic variables and are denoted by xg,,. .., xg,_, Whereas the
variables corresponding to N are called nonbasic variables. Now let us consider
a point x satisfying Ax=b and x=0. Decompose x‘ into (xj, xy) and note that
Xp, Xy =0. Also Ax=Db can be written as Bxg +Nx, =b. Hence,

xB =B“1b_B‘leN (214)
Then, using (2.14),

¢'x = ¢chXxp +chxpy
=c4B7 b+ (ch— kB 'N)xy
=¢'x +(cy—cxB 'N)xy (2.15)

Hence ¢'x=c¢'x if cy—cxB 'N=0, since xy =0, and X is an optimal extreme
point. On the other hand, suppose ey—cEB 'N+0. In particular, suppose
that the jth component ¢;—czB™a; is negative. Consider x =X+ Ad;, where

’ e -1
‘a2
€

where e; is an n—m unit vector with a 1 at position j. Then, from (2.15),
ex=c¢'%+A(c;—c5B 'a)) (2.16)

and ¢'x<c¢'x for A >0, since ¢;—cgB 'a; <0. We now consider the following
two cases, where y; =B 'a;.

Case 1: y;=0. Note that Ad; = 0 and since AX=b, then Ax=b for x=X+Ad,
and for all values of A. Hence, x is feasible if and only if x=0. This obviously
holds true for all A =0 if y; =0. Thus, from (2.16), the objective function value
is unbounded. In this case we have found an extreme direction d; with
¢'d, = ¢;— cpB 'a; <0 (see Theorems 2.6.1 and 2.5.6).
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Case 2: y,£0. Let B"'b=b, and let A be defined by

b, b,
A =minimum{——': yu>0} =—=0 (2.17)

l<i=m i Yri ,
where y; is the ith component of y;. In this case the components of x =%+ Ad;
are given by

xBi=5,~—£y,-j fori=1,...,m

Y (2.18)
xi = br/Yri
all other x;’s are equal to zero.

The positive components of x can only be xg,...,Xg_,,Xp_,,...,Xg, and x;.
Hence, at most, m components of x are positive. It is easy to verify that their
corresponding columns in A are linearly independent. Therefore, by Theorem
2.5.4, the point x is itself an extreme point. In this case we say that the basic

variable xp left the basis and the nonbasic variable x; entered instead.

So far we have shown that, given an extreme point, we can check its
optimality and stop, or find an extreme direction leading to an unbounded
solution, or find an extreme point with a better objective value. The process is
then repeated.

Summary of the Simplex Algorithm

Outlined below is a summary of the simplex algorithm for a minimization
problem of the form to minimize ¢'x subject to Ax=b,x=0. A maximization
problem can be either transformed into a minimization problem or else we
have to modify step 1 such that we stop if ¢gB™'N—¢\=0, and introduce x; into
the basis if c;B™'a; — ¢; <0.

Initialization Step Find a starting extreme point x with basis B. If such a
point is not readily available, then use artificial variables as discussed later in
the section. :

Main Step 1. Let x be an extreme point with basis B. Calculate ¢zB™'N—
cn. If this vector is nonpositive, then stop; x is an optimal extreme point.
Otherwise pick the most positive componert ¢gB 'a;—c;. If y,=B7'a;<0,
then stop; the optimal objective value is unbounded along the ray

(2=

where e; is a vector of zeros except for a 1 in position j. If on the other hand,
y;$0, then go to step 2.
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2. Compute the index r from (2.17) and form the new extreme point x in
(2.18). Form the new basis by deleting the column a, from B and introducing
a; instead. Repeat step 1.

Finite Convergence of the Simplex Method

If at each iteration, that is, one pass through the main step, we have b=B 'b>
0, then A, defined by (2.17), would be strictly positive, and the objective value
at the current extreme point would be strictly less than that at any of the
previous iterations. This would imply that the current point is distinct from
those previously generated. Since we have a finite number of extreme points,
the simplex algorithm must stop in a finite number of iterations. If, on the
other hand, 5, =0, then A =0, and we would remain at the same extreme point
but with a different basis. In theory, this could happen an infinite number of
times and may cause nonconvergence. This phenomena is called cycling and
rarely occurs in practice. The problem of cycling can be overcome, but this topic
will not be discussed here. Most textbooks on linear programming give detailed
procedures for avoiding cycling.

Tableau Format of the Simplex Method

Suppose that we have the starting basis B corresponding to an initial extreme
point. The objective function and the constraints could be written as

Objective row: f—cgxg—cnxn =0

Constraint rows: Bx; + Nxy=b

These equations could be displayed in the following simplex tableau where the
entries in the RHS column are the right-hand-side constants.

f Xg XN RHS
1| e, ~el, 0 |
0 B N b ‘

The constraint rows are updated by multiplying by B, and the objective row
is updated by adding to it ¢ times the new constraint rows. We then get the
following updated tableau. Note that the basic variables are indicated on the
left-hand side.

f X5 Xiy RHS
fl1 0" cuB 'N—cl cib
x5/ 0 1 B 'N b




/
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Note that the values of the basic variables and that of f are recorded on the
right-hand side of the tableau. Also, the vector ¢gB 'N—¢j and the matrix
BN are conveniently stored under the nonbasic variables.

The above tableau displays all the information needed to perform step 1 of
the simplex method. If ¢gB 'N—¢jy=0, then we stop; the current extreme
point is optimal. Otherwise, upon examining the objective row, we can pick a
nonbasic variable with negative ¢zB 'a;—¢. If B 'a;=<0, then we stop; the
optimal solution'is unbounded. Now suppose that y; =B~ 'a;+ 0. Since b and y;
are recorded under RHS and x;, respectively, then A in (2.17) can be easily
calculated from the tableau. The basic variable xz corresponding to the
minimum ratio of (2.17) leaves the basis and x; enters the basis.

Now we would like to update the tableau to reflect the new basis. This can
be done by pivoting at the xz row and the x; column, that is, at y,;, as follows:

1. Divide the rth row corresponding to xg by y,;.
2. Multiply the new rth row by y; and subtract from the ith constraint row,

fori=1,...,m, i#r.
3. Multiply the new rth row by ¢zB™'a;—¢; and subtract from the objective
Tow.

The reader can easily verify that the above pivoting operation will update the
tableau to reflect the new basis (see Exercise 2.48).

2.6.2 Example

Minimize X1—3x,

subject to —x,+2x,<6
X1+ X5
Xy, X,=0

The problem is illustrated in Figure 2.17. It is clear that the optimal point is

4 11y and that the corresponding value of the objective function is —%

In order to use the simplex method, we now introduce the two slack
variables x, and x,=0. This leads to the following standard format.

Minimize X, —3x,

subject to —%5 2% + %5 =6

Xy¥ % +x,=5

Xi, Xy X3, X,=0

0

- 6 -1 2 1 .
Note that ¢=(1, —3,0, 0)', b—~(5>, and A—[ 11 0 1]. By choosing
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X2

f decreases

x4
3
0
Figure 2.17 A linear programming example.
1 0 .
B=[a,, a,]= [0 1], we note that B"'b=b=0, and hence we have a starting

extreme point. The corresponding tableau is displayed below.

— f Xy X2 X3 X4 RHS
fli] -1 3 o0 0 0
|0 -1 (2@ 1 0 6
|0l 1 1T o0 1 5

Note that x, enters and x; leaves the basis. The new basis B =[a,, a,].

f Xy X2 X3 X4 RHS
fl1 % 0 —% 0 -9
x, | O -1 1 5 0 3
% | O @ 0 -—% 1 2

Now x, enters and x, leaves the basis. The new basis B=[a,, a,].

f Xy X2 X3 Xy RHS
ffilo o 4 4] -%
x, | 0 0 1 i l u
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This solution is optimal since ¢zgB™'N—c¢jy= 0. The three points corresponding
to the three tableaux are shown in the (x;, x,) space in Figure 2.17. We see that
the simplex method moved from one extreme point to another until the
optimal point is reached.

\

The Initial Extreme Point

Recall that the simplex method starts with an initial extreme point. From
Theorem 2.5.4, finding an initial extreme point of the set S ={x:Ax=b, x=0}
involves decomposing A into B and N with B"'b=0. In Example 2.6.2 above,
an initial extreme point was immediately available. However, in many cases, an
initial extreme point may not be conveniently available. This difficulty can be
overcome by introducing artificial variables.

We discuss briefly two procedures for obtaining the initial extreme point.
These are the two-phase method and the big-M method. For both methods the
problem is first put in the standard format Ax=b and x=0, with the additional
requirement that b= 0 (if b, <0, then the ith constraint is multiplied by —1).

The Two-Phase Method In this method, the constraints of the problem are
altered by the use of artificial variables so that an extreme point of the new
system is at hand. In particular the constraint system is modified to

Ax+x,=b
X, X, =0

where x, is an artificial vector. Obviously x = 0 and x, =b represent an extreme
point of the above system. Since a feasible solution of the original system will
be obtained only if x, =0, we can use the simplex method itself to minimize the
sum of the artificial variables starting from the above extreme point. This leads
to the following Phase I problem.

Minimize I'x,
subject to Ax+x,=b
x, x,=0

where 1 is a vector of ones. At the end of Phase I, either x,# 0 or x, =0. In the
former case we conclude that the original system is inconsistent; that is, the
feasible region is empty. In the latter case the artificial variables would drop
from the basis,” and hence we would obtain &n extreme point of the original
system. Starting with this extreme point, Phase II of the simplex method
minimizes the original objective ¢'x.

T1t is possible that some of the artificial variables remain in the basis at zero level at the end of
Phase I. This case can be easily treated (see Charnes and Cooper [1961] and Dantzig [1963]).

2.6 Linear Programming and the Simplex Method 71

The Big-M Method As in the two-phase method, the constraints are mod-
ified by the use of artificial variables so that an extreme point of the new
system is immediately available. A large positive cost coefficient M is assigned

to each artificial variable so that they will drop to zero level. This leads to the
following problem.

Minimize c'x+MI'x,
subject to Ax+x,=b
X, X, =0

If at termination x, =0, then we have an optimal solution of the original
problem. Otherwise, if x,#0 at termination of the simplex method, and

-provided that the variable entering the basis is the one with the most positive

coefficient in the objective row, we conclude that the system Ax=b and x=0
admits nq feasible solutions.
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Let S be a nonempty set in E,. Show that S is convex if and only if for each
integer k=2, the following holds true: x;,...,x, €S implies that Z}i,)\,x- €S,
where Yf_;A;=1and \;=0 for j=1,..., k.

Let S be a convex set in E,, A be an m >< n matrix, and « be a scalar. Show that
the following two sets are convex.

a. AS={y:y=Ax, xe S}

b. aS={ax:xe S} ¥
Let S, ={x:x,=0,0=x,=<1}and S,={x:0=x,=<1, x, =2}. Describe S;+S, and
S, —8S..

Prove Lemma 2.1.2.

Let S be a closed set. Is it necessarily true that H(S) is also closed? If it is not
true in general, specify a sufficient condition so that H(S) is closed.

(Hint: Suppose that S is compact.)

Let S, and S, be nonempty sets in E,. Show that H(S, N S,)< H(S,) N H(S,). Is
H(S,NS,)=H(S,)NH(S,) true in general? If not, give a counter example.
Prove Lemma 2.1.4.

Let S be a polytope in E,. Show that S is a closed, bounded convex set.

Let S, and S, be closed convex sets. Prove that S,+S, is convex. Show by an
example that S,+S, is not necessarily closed. Prove that compactness of S; or
S, is a sufficient condition for S;+ S, to be closed.

Let S, ={Ad,:A =0} and S, ={Ad,: A =0}, where d, and d, are nonzero vectors in
E,. Show that S, +S, is a closed convex set.

A linear subspace L of E, is a subset of E, such that x,,x,€ L implies that
A X, +A,x, € L for all scalars A, and A,. The orthogonal complement L* is defined
by L*={y:y'x=0 for all xeL}. Show that any vector x in E, could be
represented uniquely as x, +x,, where x, € L and x, € L*. lllustrate by writing the
vector (1,2,3) as the sum of two vectors in L and L*, respectively, where
L ={(x1, x5, x3): 2%, + x,— x3=0}.

Let S be a polytope in E, and let S;={Ad,: A =0}, where d, is a nonzero vector
in E, for j=1,2,..., k. Show that S+Z;‘_. S; is a closed convex set.

(Note that Exercises 2.8 and 2.12 show that the set A in the proof of Theorem
2.5.7 is closed.)

Identify the closure, interior, and boundary of each of the following convex sets.
a. S={x:x.2+x2=<x,}

b. S={x:1=x,=<2,x,=3}

C. S={x:x,+x,=<3, —x,+x,+x3=5, x;, X5, x3=0}

d. S={x:x;+x,=3, x; +x,+x3=<6}

e. S={x:x2+x2+x°=<4, x,+x3=1}

Let S={x:x2+x>2+x°=<1,x,>—x,=<0} and y=(1,0,2)". Find the minimum
distance from y to S, the unique minimizing point, and a separating hyperplane.
Prove that exactly one of the following two systems has a solution.

a. Ax=0,x=0, and ¢'x>0

b. A'ly=cand y=0

(Hint: Use Farkas’ theorem.)

Show that the system Ax=0 and ¢'x>0 has a solution x in. E;, where A=

1 -1 -1
=@1,0,5).
[2 2 o]a"dc (150, 5)

+ 217

2.18

1 219

2.20

< 221

2.22

L 223

2.24

{225
2.26

{\ 2.27

Exercises 74

Let A be an m X n matrix. Using Farkas’ theorem, prove that exactly one of the
following two systems has a solution.

System 1 Ax>0

System 2 A'y=0,y=0,y#0

(This is Gordan’s theorem developed in the text using Theorem 2.3.8.)

Let A be an m Xn matrix and ¢ be an n vector. Show that exactly one of the
following two systems has a solution.

System 1 Ax=c¢

System 2 A'y=0,c'y=1

(This is a theorem of the alternative credited to Gale.)

Let A be an m X n matrix. Show that the following two systems have solutions X
and ¥y such that Ax+y>0..

System 1 Ax=0

System 2 A'y=0,y=0

(This is an existence theorem credited to Tucker.)

Let A be a p X n matrix and B be a g X n matrix. Show that if System 1 below has
no solution, then System 2 has a solution.

System 1 Ax<0 Bx=0 for some x€ E,

System 2 A'u+B'v=0 for some nonzero (u, v) with u=0.
Furthermore, show that if B has full rank, then exactly one of the systems has a
solution. Is this necessarily true if B is not of full rank? Prove or give a
counter example.

Let A be a pXxXn matrix, and B be a q X n matrix. Show that exactly one of the
following systems has a solution.
System 1 Ax<0 Bx=0
System 2 A'u+B'v=0

Let S, and S, be convex sets in E,. Show that there exists a hyperplane that
strongly separates S, and S, if and only if

for some x€ E,
for some (u,v),u#0,u=0.

inf {"xl —x2|| X, €8,,%€85,}>0

Let S;={x:x;=e ™} and S,={x:x,=—e ™}. Show that S, and S, are disjoint
convex sets, and then find a hyperplane that separates them. Does there exist a
hyperplane that strongly separates S, and S,?

Let S, and S, be nonempty disjoint convex sets in E,. Prove that there exist two
nonzero vectors p, and p, such that

piX; +pix, =0 for all x, € S; and all x,€ S,

Can you generalize the result for three or more disjoint convex sets?

Consider S ={x:x,>+x,°=<1}. Represent S as the intersection of a collection of
half spaces. Find the half spaces explicitly.

Let C be a nonempty set in E,. Show that C is a convex cone if and only if
X;, X; € C implies that A;x; +A,x, € C for all Ay, A,=0.

Let C, and C, be convex cones in E,. Show that C,+C, is also a convex cone
and that C,+ C,=H(C, U C,).
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2.28

229
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2.33

2.34

- 2.35

2.36
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2.39

Let § be a nonempty set in E, and let XxeS. Consider the set C=

{y:y=A(x—%),A=0,xe S}.

a. Show that C is a cone and interpret it geometrically.

b. Show that C is convex if S is convex.

¢. Suppose that S is closed. Is it necessarily true that C is closed? If not, under
what conditions would C be closed?

Let C, ={y:y=A(x—%),A=0,xe SN N, (%)}, where N,(X) is an e-neighborhood

around x. Let T be the intersection of all such cones, that is, T= N{C, : £ >0}.

Interpret the cone T geometrically.

(T is called the cone of tangents of S at X and will be discussed in more detail in

Chapter 5.)

Derive an explicit form of the polar C* of the following cones:

a. C={(x, x2):0=x,<x,}

b. C={(xy, x2): x,= _|x1|}

c. C={x:x=Ap, p=0}

Let S be a nonempty set in E,. The polar set of S, denotéd by S, is given by

{y:y'x=1 for all xe S}.

a. Find the polar sets of the following two sets:

{(x1, x2): x>+ x> =<1}, and {(xy, %) 1%, + X, =2, —x; +2x, =1, x;, X, =0}
b. Show that S, is a convex set. Is it necessarily closed?
c. If S is a polyhedral set, is it necessarily true that S, is also a polyhedral set?
d. Show that if S is a polyhedral set containing the origin then S = Spp-
Let C be a nonempty convex cone in E,. Show that C+ C*=E,; that is, any
point in E, can be written as a point in the cone C plus a point in its polar cone
C*. Is the representation unique? What if C,is a linear subspace?
Identify the extreme points and extreme directions of the following sets
a. S={x:x=x2 x,+x,+x;=1}
b. S={x:x;+x+x;=2, x;+x,=1, xy, X5, x3=0}
c. S={x:x=|x|, x>+ x,2 =1}
Consider the set S={x:—x;+2x,=<3,x,+x,=<2,x,=1, x;, x,=0}. Identify all
extreme points and extreme directions. Represent the point (1,3) as a convex
combination of the extreme points plus a nonnegative combination of the
extreme directions.
Let S be a simplex in E, with vertices X,,X,, . .., Xc4+;. Show that the extreme
points of S consist of its vertices.
Establish the set of directions for each of the following convex sets:
a. S={(x;, x2):x= x,%}
b. S={(xy, x2):xx2=1, x;> 0}
c. S={(xy, x2):|x;| + x| = 1}
Let S be a closed convex set in E, and let X€ S. Suppose that d is a nonzero
vector in E, and that X+Ade S for all A =0. Show that d is a direction of S.
Find the extreme points and directions of the following polyhedral sets:
a. S={x:x,+x,+x3=10, —x,+2x, =4, X;, X, X3 =0}
b. S={x:x,+2x,=2, —x, +x,=4, x,, X,=0}
Show that C ={x: Ax=<0}, where A is an m X n matrix, has at most one extreme
point, namely the origin.
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Let S={x:x,+x,=1}. Find the extreme points and directions of S. Can you
represent any point in S as a convex combination of its extreme points plus a
nonnegative linear combination of its extreme directions? If not, discuss in
relation to Theorem 2.5.7.

Consider the nonempty unbounded polyhedral set S ={x:Ax=b, x= 0}, where A
is an m X n matrix of rank m. Prove directly that S has at least one extreme
direction.

(Hint: Starting with a direction, use the characterization of Theorem 2.5.6 to
construct an extreme direction.) .

Prove Theorem 2.5.7 if the nondegeneracy assumption B 'b> 0 is dropped.
Consider the following problem.

Minimize c'x
subject to Ax=Db
x=0

where A is an m Xn matrix with rank m. Let x be an extreme point with
corresponding basis B. Furthermore, suppose that B"'b> 0. Use Farkas’ theorem
to show that x is an optimal point if and only if ¢y—¢c,B'N=0.

Consider the following problem.

Minimize ¢'x
subject to Ax=b
x=0

where A is an m X n matrix with rank m. Let x be an extreme point with basis B,
and let b=B"'b. Furthermore, suppose that b, =0 for some component i. Is it
possible that x is an optimal solution even-if ¢;—¢uB 'a, <0 for some nonbasic
x;? Discuss and give an example if this were possible.

Solve the following problem by the simplex method.

Minimize X, +3x,+ x3

subject to Xy +4x,+3x,=<12

— X +2x,— x3=<4

Xy, X2, X3=0
Consider the set {x:Ax=<b,x=0}, where A is an m Xn matrix and b is an
m vector. Show that a nonzero vector d is a direction of the set if and only if

Ad=0 and d=0. Show how the simplex method can be used to generate such a
direction.

Consider the following problem:

Minimize xi—6x,
subject to Xyt Xp=12
=X, +2x:=4
X, =6

Find the optimal solution geometrically and verify its optimality by showing
that ¢y—czB 'N=0.
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2.48 Show in detail that pivoting at y, updates the simplex tableau. In this cbapter we treat the Fopic of convex sets. This squect was first studied

2.49 Solve the following problem by the two-phase simplex method and by the big-M §ystemaucally by Mmk,OWSkl [1911] WbOSC work C(.)nta.lns the essence ()f.lhe

method. important results in this area. The topic of convexity is fully developed in a

. variety of good texts, and the interested reader may refer to Eggleston [1958],

Daximize: =3 =2%% Rockafellar [1970], Stoer and Witzgall [1970], and Valentine [1964] for a
subject to x;+3x,+x3=4 more detailed anlysis of convex sets.

X, +2X,—x3=6 __ Section 2.1 presents some basic definitions and develops the Carathéodory

% s ' theorem, which states that each ppint_ in the convex hull qf any given se't can be

i X %20 ' represented as the convex combination of n+ 1 points in the set. This result

can be sharpened by using the notion of dimension of the set. Using this
notion, several Carathéodory-type theorems can be developed. See, for exam-
ple, Bazaraa and Shetty [1976], Eggleston [1958], and Rockafellar [1970].
In Section 2.2 we develop some topological properties of convex sets related
1 to interior and closure points. Section 2.3 presents various types of theorems
that separate disjoint convex sets. Support and separation theorems are of
special importance in the area of optimization, and are also widely used in
game theory, functional analysis, and optimal control theory. An interesting
application is the use of these results in coloring problems in graph theory. For
further reading on support and separation of convex sets, see Eggleston [1958],
Klee [1969], Mangasarian [1969a], Rockafellar [1970], Stoer and Witzgall
[1970], and Valentine [1964]. Many of the results in Sections 2.2 and 2.3 can be
strengthened by using the notion of relative interior. For example, every
nonempty convex set has a nonempty relative interior. Furthermore, a hyper-
plane that properly separates two convex sets exists provided that they have
disjoint relative interiors. Also Theorem 2.2.2 and several of its corollaries can
be sharpened using this concept. For a good discussion of relative interiors, see
Eggleston [1958], Rockafellar [1970], and Valentine [1964].

In Section 2.4, a brief introduction to polar cones is given. For more details,
see Rockafellar [1970]. In Section 2.5 we treat the important special case of
polyhedral sets and prove the representation theorem, which states that every
point in the set can be represented as a convex combination of the extreme
points plus a nonnegative linear combination of the extreme directions. This
result was first provided by Motzkin [1936] using a different approach. The
representation theorem is also true for closed convex sets that contain no lines.
For a proof of this result, see Bazaraa and Shetty [1976] and Rockafellar
[1970]. An exhaustive treatment of convex polytopes is given by Griinbaum
[1967].

In Section 2.6 we present the simplex algorithm for solving linear program-
ming problems. The simplex algorithm was developed by Dantzig in 1947, The
efficiency of the simplex algorithm, the advances in computer technology, and

" the ability of linear programming to model large and complex problems led to
the popularity of the simplex method and linear programming. The presenta-
tion of the simplex method in Section 2.6 is a natural extension of the material




