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CHAPTER 6: SOLUTION MANUAL

6.1

Show that the dual of the (infeasible) linear program

minimize x1 − x2

subject to x ∈ X = {x | x1 ≥ 0, x2 ≥ 0}, x1 + 1 ≤ 0, 1− x1 − x2 ≤ 0

is the (infeasible) linear program

maximize µ1 + µ2

subject to µ1 ≥ 0, µ2 ≥ 0, −µ1 + µ2 − 1 ≤ 0, µ2 + 1 ≤ 0.

Solution: We consider the dual function

q(µ1, µ2) = inf
x1≥0, x2≥0

{
x1 − x2 + µ1(x1 + 1) + µ2(1− x1 − x2)

}
= inf

x1≥0, x2≥0

{
x1(1 + µ1 − µ2) + x2(−1− µ2) + µ1 + µ2

}
.

It can be seen that if −µ1 + µ2 − 1 ≤ 0 and µ2 + 1 ≤ 0, then the infimum above
is attained at x1 = 0 and x2 = 0. In this case, the dual function is given by
q(µ1, µ2) = µ1 + µ2. On the other hand, if 1 + µ1 − µ2 < 0 or −1− µ2 < 0, then
we have q(µ1, µ2) = −∞. Thus, the dual problem is

maximize µ1 + µ2

subject to µ1 ≥ 0, µ2 ≥ 0, −µ1 + µ2 − 1 ≤ 0, µ2 + 1 ≤ 0.

6.2 (Extended Representation)

Consider problem (P) and assume that the set X is described by equality and
inequality constraints as

X =
{
x | hi(x) = 0, i = m + 1, . . . , m, gj(x) ≤ 0, j = r + 1, . . . , r

}
.

Then the problem can alternatively be described without an abstract set con-
straint, in terms of all of the constraint functions

hi(x) = 0, i = 1, . . . , m, gj(x) ≤ 0, j = 1, . . . , r.
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We call this the extended representation of (P). Show if there exists a geometric
multiplier for the extended representation, there exists a geometric multiplier for
the original problem (P).

Solution: Assume that there exists a geometric multiplier in the extended repre-
sentation. This implies that there exist nonnegative scalars λ∗1, . . . , λ

∗
m, λ∗m+1, . . . , λ

∗
m

and µ∗1, . . . , µ
∗
r , µ∗r+1, . . . , µ

∗
r such that

f∗ = inf
x∈<n

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗j gj(x)

}
,

implying that

f∗ ≤ f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗j gj(x), ∀ x ∈ <n.

For any x ∈ X, we have hi(x) = 0 for all i = m + 1, . . . , m, and gj(x) ≤ 0 for all
j = r + 1, . . . , r, so that µ∗j gj(x) ≤ 0 for all j = r + 1, . . . , r. Therefore, it follows
from the preceding relation that

f∗ ≤ f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗j gj(x), ∀ x ∈ X.

Taking the infimum over all x ∈ X, it follows that

f∗ ≤ inf
x∈X

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗j gj(x)

}

≤ inf
x∈X, hi(x)=0, i=1,...,m

gj(x)≤0, j=1,...,r

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗j gj(x)

}

≤ inf
x∈X, hi(x)=0, i=1,...,m

gj(x)≤0, j=1,...,r

f(x)

=f∗.

Hence, equality holds throughout above, showing that the scalars λ∗1, . . . , λ
∗
m,

µ∗1, . . . , µ
∗
r constitute a geometric multiplier for the original representation.

6.3 (Quadratic Programming Duality)

This exercise is an extension of Prop. 6.3.1. Consider the quadratic program

minimize c′x + 1
2
x′Qx

subject to x ∈ X, a′jx ≤ bj , j = 1, . . . , r,
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where X is a polyhedral set, Q is a symmetric positive semidefinite n×n matrix,
c, a1, . . . , ar are vectors in <n, and b1, . . . , br are scalars, and assume that its
optimal value is finite. Then there exist at least one optimal solution and at least
one geometric multiplier. Hint : Use the extended representation of Exercise 6.2.

Solution: Consider the extended representation of the problem in which the lin-
ear inequalities that represent the polyhedral part are lumped with the remaining
linear inequality constraints. From Prop. 6.3.1, finiteness of the optimal value
implies that there exists an optimal solution and a geometric multiplier. From
Exercise 6.2, it follows that there exists a geometric multiplier for the original
representation of the problem.

6.4 (Sensitivity)

Consider the class of problems

minimize f(x)

subject to x ∈ X, gj(x) ≤ uj , j = 1, . . . , r,

where u = (u1, . . . , ur) is a vector parameterizing the right-hand side of the con-
straints. Given two distinct values ū and ũ of u, let f̄ and f̃ be the corresponding
optimal values, and assume that −∞ < f̄ < ∞ and −∞ < f̃ < ∞, and that µ̄
and µ̃ are corresponding geometric multipliers. Show that

µ̃′(ũ− ū) ≤ f̄ − f̃ ≤ µ′(ũ− ū).

Solution: We have
f = inf

x∈X

{
f(x) + µ′

(
g(x)− u

)}
,

f̃ = inf
x∈X

{
f(x) + µ̃′

(
g(x)− ũ

)}
.

Let q(µ) denote the dual function of the problem corresponding to u:

q(µ) = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
.

We have

f − f̃ = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
− inf

x∈X

{
f(x) + µ̃′

(
g(x)− ũ

)}
= inf

x∈X

{
f(x) + µ′

(
g(x)− u

)}
− inf

x∈X

{
f(x) + µ̃′

(
g(x)− u

)}
+ µ̃′(ũ− u)

= q(µ)− q(µ̃) + µ̃′(ũ− u)

≥ µ̃′(ũ− u),

where the last inequality holds because µ maximizes q.
This proves the left-hand side of the desired inequality. Interchanging the

roles of f , u, µ, and f̃ , ũ, µ̃, shows the desired right-hand side.
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6.5

Verify the linear programming duality relations

min
A′x≥b

c′x ⇐⇒ max
Aµ=c, µ≥0

b′µ,

min
A′x≥b, x≥0

c′x ⇐⇒ max
Aµ≤c, µ≥0

b′µ,

show that they are symmetric, and derive the corresponding complementary
slackness conditions [cf. Eqs. (6.13) and (6.14)].

Solution: We first consider the relation

(P ) min
A′x≥b

c′x ⇐⇒ max
Aµ=c,µ≥0

b′µ. (D)

The dual problem to (P ) is

max
µ≥0

q(µ) = max
µ≥0

inf
x∈<n

{
n∑

j=1

(
cj −

m∑
i=1

µiaij

)
xj +

m∑
i=1

µibi

}
.

If cj −
∑m

i=1
µiaij 6= 0, then q(µ) = −∞. Thus the dual problem is

maximize

m∑
i=1

µibi

subject to

m∑
i=1

µiaij = cj , j = 1, . . . , n, µ ≥ 0.

To determine the dual of (D), note that (D) is equivalent to

min
Aµ=c,µ≥0

−b′µ,

and so its dual problem is

max
x∈<n

p(x) = max
x

inf
µ≥0

{
(Ax− b)′µ− c′x

}
.

If a′ix− bi < 0 for any i, then p(x) = −∞. Thus the dual of (D) is

maximize − c′x

subject to A′x ≥ b,

or
minimize c′x

subject to A′x ≥ b.
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The Lagrangian optimality condition for (P ) is

x∗ = arg min
x

{(
c−

m∑
i=1

µ∗i ai

)′
x +

m∑
i=1

µ∗i bi

}
,

from which we obtain the complementary slackness conditions for (P ):

Aµ = c.

The Lagrangian optimality condition for (D) is

µ∗ = arg min
µ≥0

{(Ax∗ − b)′µ− c′x∗},

from which we obtain the complementary slackness conditions for (D):

Ax∗ − b ≥ 0, (Ax∗ − b)iµ
∗
i = 0, ∀ i.

Next, consider

(P ) min
A′x≥b,x≥0

c′x ⇐⇒ max
Aµ≤c,µ≥0

b′µ. (D)

The dual problem to (P ) is

max
µ≥0

q(µ) = max
µ≥0

inf
x≥0

{
n∑

j=1

(
cj −

m∑
i=1

µiaij

)
xj +

m∑
i=1

µibi

}
.

If cj −
∑m

i=1
µiaij < 0, then q(µ) = −∞. Thus the dual problem is

maximize

m∑
i=1

µibi

subject to

m∑
i=1

µiaij ≤ cj , j = 1, . . . , n, µ ≥ 0.

To determine the dual of (D), note that (D) is equivalent to

min
Aµ≤c,µ≥0

−b′µ,

and so its dual problem is

max
x≥0

p(x) = max
x≥0

inf
µ≥0

{
(Ax− b)′µ− c′x

}
.

If a′ix− bi < 0 for any i, then p(x) = −∞. Thus the dual of (D) is

maximize − c′x

subject to A′x ≥ b, x ≥ 0
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or
minimize c′x

subject to A′x ≥ b, x ≥ 0.

The Lagrangian optimality condition for (P ) is

x∗ = arg min
x≥0

{(
c−

m∑
i=1

µ∗i ai

)′
x +

m∑
i=1

µ∗i bi

}
,

from which we obtain the complementary slackness conditions for (P ):(
cj −

m∑
i=1

µ∗i aij

)
x∗j = 0, x∗j ≥ 0, ∀ j = 1, . . . , n,

c−
m∑

i=1

µ∗i ai ≥ 0.

The Lagrangian optimality condition for (D) is

µ∗ = arg min
µ≥0

{
(Ax∗ − b)′µ− c′x∗

}
,

from which we obtain the complementary slackness conditions for (D):

Ax∗ − b ≥ 0, (Ax∗ − b)iµ
∗
i = 0, ∀ i.

6.6 (Duality and Zero Sum Games)

Let A be an n×m matrix, and let X and Z be the unit simplices in <n and <m,
respectively:

X =

{
x

∣∣∣ n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

}
,

Z =

{
z

∣∣∣ m∑
j=1

zj = 1, zj ≥ 0, j = 1, . . . , m

}
.

Show that the minimax equality

max
z∈Z

min
x∈X

x′Az = min
x∈X

max
z∈Z

x′Az

is a special case of linear programming duality. Hint : For a fixed z, minx∈X x′Az
is equal to the minimum component of the vector Az, so

max
z∈Z

min
x∈X

x′Az = max
z∈Z

min
{
(Az)1, . . . , (Az)n

}
= max

ξe≤Az, z∈Z
ξ, (6.76)
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where e is the unit vector in <n (all components are equal to 1). Similarly,

min
x∈X

max
z∈Z

x′Az = min
ζe≥A′x, x∈X

ζ. (6.77)

Show that the linear programs in the right-hand sides of Eqs. (6.76) and (6.77)
are dual to each other.

Solution: Consider the linear program

min
ζe≥A′x∑n

i=1
xi=1, xi≥0

ζ,

whose optimal value is equal to minx∈X maxz∈Z x′Az. Introduce dual variables
z ∈ <m and ξ ∈ <, corresponding to the constraints A′x− ζe ≤ 0 and

∑n

i=1
xi =

1, respectively. The dual function is

q(z, ξ) = inf
xi≥0, i=1,...,n

{
ζ + z′(A′x− ζe) + ξ

(
1−

n∑
i=1

xi

)}

= inf
xi≥0, i=1,...,n

{
ζ

(
1−

m∑
j=1

zj

)
+ x′(Az − ξe) + ξ

}
=
{

ξ if
∑m

j=1
zj = 1, ξe−Az ≤ 0,

−∞ otherwise.

Thus the dual problem, which is to maximize q(z, ξ) subject to z ≥ 0 and ξ ∈ <,
is equivalent to the linear program

max
ξe≤Az, z∈Z

ξ,

whose optimal value is equal to maxz∈Z minx∈X x′Az.

6.7 (Goldman-Tucker Complementarity Theorem [GoT56])

Consider the linear programming problem

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

where A is an m×n matrix, c is a vector in <n, and b is a vector in <m. Consider
also the dual problem

maximize b′λ

subject to A′λ ≤ c.
(DLP)

Assume that the sets of optimal solutions of LP and DLP, denoted X∗ and Λ∗,
respectively, are nonempty. Show that the index set {1, . . . , n} can be partitioned
into two disjoint subsets I and I with the following two properties:
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(1) For all x∗ ∈ X∗ and λ∗ ∈ Λ∗, we have

x∗i = 0, ∀ i ∈ I, (A′λ∗)i = ci, ∀ i ∈ I,

where x∗i and (A′λ∗)i are the ith components of x∗ and A′λ∗, respectively.

(2) There exist vectors x∗ ∈ X∗ and λ∗ ∈ Λ∗ such that

x∗i > 0, ∀ i ∈ I, x∗i = 0, ∀ i ∈ I,

(A′λ∗)i = ci, ∀ i ∈ I, (A′λ∗)i < ci, ∀ i ∈ I.

Hint : Apply the Tucker Complementarity Theorem (Exercise 3.32).

Solution: Consider the subspace

S =
{
(x, w) | bw −Ax = 0, c′x = wv, x ∈ <n, w ∈ <

}
,

where v is the optimal value of (LP). Its orthogonal complement is the range of
the matrix [

−A′ c
b −v

]
,

so it has the form

S⊥ =
{
(cζ −A′λ, b′λ− vζ) | λ ∈ <m, ζ ∈ <

}
.

Applying the Tucker Complementarity Theorem (Exercise 3.32) for this choice of
S, we obtain a partition of the index set {1, . . . , n + 1} in two subsets. There are
two possible cases: (1) the index n+1 belongs to the first subset, or (2) the index
n + 1 belongs to the second subset. Since the vectors (x, 1) such that x ∈ X∗

satisfy Ax− bw = 0 and c′x = wv, we see that case (1) holds, i.e., the index n+1
belongs to the first index subset. In particular, we have that there exist disjoint
index sets I and I such that I ∪ I = {1, . . . , n} and the following properties hold:

(a) There exist vectors (x, w) ∈ S and (λ, ζ) ∈ <m+1 with the property

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I, w > 0, (6.1)

ciζ − (A′λ)i = 0, ∀ i ∈ I, ciζ − (A′λ)i > 0, ∀ i ∈ I, b′λ = vζ.
(6.2)

(b) For all (x, w) ∈ S with x ≥ 0, and (λ, ζ) ∈ <m+1 with cζ − A′λ ≥ 0,
vζ − b′λ ≥ 0, we have

xi = 0, ∀ i ∈ I,

ciζ − (A′λ)i = 0, ∀ i ∈ I, b′λ = vζ.

By dividing (x, w) by w, we obtain [cf. Eq. (6.1)] an optimal primal solution
x∗ = x/w such that

x∗i > 0, ∀ i ∈ I, x∗i = 0, ∀ i ∈ I.
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Similarly, if the scalar ζ in Eq. (6.2) is positive, by dividing with ζ in Eq. (6.2),
we obtain an optimal dual solution λ∗ = λ/ζ, which satisfies the desired property

ci − (A′λ∗)i = 0, ∀ i ∈ I, ci − (A′λ∗)i > 0, ∀ i ∈ I.

If the scalar ζ in Eq. (6.2) is nonpositive, we choose any optimal dual solution
λ∗, and we note, using also property (b), that we have

ci−(A′λ∗)i = 0, ∀ i ∈ I, ci−(A′λ∗)i ≥ 0, ∀ i ∈ I, b′λ∗ = v. (6.3)

Consider the vector

λ̃ = (1− ζ)λ∗ + λ.

By multiplying Eq. (6.3) with the positive number 1 − ζ, and by combining it
with Eq. (6.2), we see that

ci − (A′λ̃)i = 0, ∀ i ∈ I, ci − (A′λ̃)i > 0, ∀ i ∈ I, b′λ̃ = v.

Thus, λ̃ is an optimal dual solution that satisfies the desired property.

6.8

Use duality to show that in three-dimensional space, the (minimum) distance
from the origin to a line is equal to the maximum over all (minimum) distances
of the origin from planes that contain the line.

Solution: The problem of finding the minimum distance from the origin to a
line is written as

min 1
2
‖x‖2

subject to Ax = b,

where A is a 2×3 matrix with full rank, and b ∈ <2. Let f∗ be the optimal value
and consider the dual function

q(λ) = min
x

{
1
2
‖x‖2 + λ′(Ax− b)

}
.

By Prop. 6.3.1, since the optimal value is finite, it follows that this problem
has no duality gap.
Let V ∗ be the supremum over all distances of the origin from planes that

contain the line {x | Ax = b}. Clearly, we have V ∗ ≤ f∗, since the distance to the
line {x | Ax = b} cannot be smaller than the distance to the plane that contains
the line.

We now note that any plane of the form {x | p′Ax = p′b}, where p ∈ <2,
contains the line {x | Ax = b}, so we have for all p ∈ <2,

V (p) ≡ min
p′Ax=p′x

1
2
‖x‖2 ≤ V ∗.
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On the other hand, by duality in the minimization of the preceding equation, we
have

U(p, γ) ≡ min
x

{
1
2
‖x‖2 + γ(p′Ax− p′x)

}
≤ V (p), ∀ p ∈ <2, γ ∈ <.

Combining the preceding relations, it follows that

sup
λ

q(λ) = sup
p,γ

U(p, γ) ≤ sup
p

U(p, 1) ≤ sup
p

V (p) ≤ V ∗ ≤ f∗.

Since there is no duality gap for the original problem, we have supλ q(λ) = f∗, it
follows that equality holds throughout above. Hence V ∗ = f∗, which was to be
proved.

6.9

Consider the problem

minimize

m∑
i=0

fi(x)

subject to x ∈ Xi, i = 0, 1, . . . , m,

where fi : <n 7→ < are convex functions and Xi are bounded polyhedral subsets
of <n with nonempty intersection. Show that a dual problem is given by

maximize q0(λ1 + · · ·+ λm) +

m∑
i=1

qi(λi)

subject to λi ∈ <n, i = 1, . . . , m,

where the functions qi : <n 7→ < are given by

q0(λ) = min
x∈X0

{
f0(x)− λ′x

}
,

qi(λ) = min
x∈Xi

{
fi(x) + λ′x

}
, i = 1, . . . , m.

Show also that the primal and dual problems have optimal solutions, and that
there is no duality gap. Hint : Introduce artificial optimization variables z1, . . . , zm

and the linear constraints x = zi, i = 1, . . . , m.

Solution: We introduce artificial variables x0, x1, . . . , xm, and we write the prob-
lem in the equivalent form

minimize

m∑
i=0

fi(xi)

subject to xi ∈ Xi, i = 0, . . . , m xi = x0, i = 1, . . . , m.

(6.4)
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By relaxing the equality constraints, we obtain the dual function

q(λ1, . . . , λm) = inf
xi∈Xi, i=0,...,m

{
m∑

i=0

fi(xi) + λ′i(xi − x0)

}

= inf
x∈X0

{
f0(x)− (λ1 + · · ·λm)′x

}
+

m∑
i=1

inf
x∈Xi

{
fi(x) + λ′ix

}
,

which is of the form given in the exercise. Note that the infima above are attained
since fi are continuous (being convex functions over <n) and Xi are compact
polyhedra.

Because the primal problem involves minimization of the continuous func-
tion

∑m

i=0
fi(x) over the compact set ∩m

i=0Xi, a primal optimal solution exists.
Applying Prop. 6.4.2 to problem (6.4), we see that there is no duality gap and
there exists at least one geometric multiplier, which is a dual optimal solution.

6.10

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

and assume that f∗ is finite, X is convex, and the functions f : <n 7→ < and
gj : <n 7→ < are convex over X. Show that if the set of geometric multipliers is
nonempty and compact, then the Slater condition holds.

Solution: Let M denote the set of geometric multipliers, i.e.,

M =
{

µ ≥ 0
∣∣ f∗ = inf

x∈X

{
f(x) + µ′g(x)

}}
.

We will show that if the set M is nonempty and compact, then the Slater condi-
tion holds. Indeed, if this were not so, then 0 would not be an interior point of
the set

D =
{
u | there exists some x ∈ X such that g(x) ≤ u

}
.

By a similar argument as in the proof of Prop. 6.6.1, it can be seen that D is
convex. Therefore, we can use the Supporting Hyperplane Theorem to assert the
existence of a hyperplane that passes through 0 and contains D in its positive
halfspace, i.e., there is a nonzero vector µ such that µ′u ≥ 0 for all u ∈ D. This
implies that µ ≥ 0, since for each u ∈ D, we have that (u1, . . . , uj +γ, . . . , ur) ∈ D
for all γ > 0 and j. Since g(x) ∈ D for all x ∈ X, it follows that

µ′g(x) ≥ 0, ∀ x ∈ X.

Thus, for any µ ∈ M , we have

f(x) + (µ + γµ)′g(x) ≥ f∗, ∀ x ∈ X, ∀ γ ≥ 0.

Hence, it follows that (µ + γµ) ∈ M for all γ ≥ 0, which contradicts the bound-
edness of M .
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6.11 (Inconsistent Convex Systems of Inequalities)

Let gj : <n 7→ <, j = 1, . . . , r, be convex functions over the nonempty convex
subset of <n. Show that the system

gj(x) < 0, j = 1, . . . , r,

has no solution within X if and only if there exists a vector µ ∈ <r such that

r∑
j=1

µj = 1, µ ≥ 0,

µ′g(x) ≥ 0, ∀ x ∈ X.

Hint: Consider the convex program

minimize y

subject to x ∈ X, y ∈ <, gj(x) ≤ y, j = 1, . . . , r.

Solution: The dual function for the problem in the hint is

q(µ) = inf
y∈<, x∈X

{
y +

r∑
j=1

µj

(
gj(x)− y

)}

=

{
infx∈X

∑r

j=1
µjgj(x) if

∑r

j=1
µj = 1,

−∞ if
∑r

j=1
µj 6= 1.

The problem in the hint satisfies Assumption 6.4.2, so by Prop. 6.4.3, the dual
problem has an optimal solution µ∗ and there is no duality gap.

Clearly the problem in the hint has an optimal value that is greater or
equal to 0 if and only if the system of inequalities

gj(x) < 0, j = 1, . . . , r,

has no solution within X. Since there is no duality gap, we have

max
µ≥0,

∑r

j=1
µj=1

q(µ) ≥ 0

if and only if the system of inequalities gj(x) < 0, j = 1, . . . , r, has no solution
within X. This is equivalent to the statement we want to prove.
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6.12

This exercise is a refinement of the Enhanced Farkas’ Lemma (Prop. 5.4.2). Let
N be a closed cone in <n, let a1, . . . , ar be vectors in <n, and let c be a vector
in cone

(
{a1, . . . , ar}

)
+ ri(N) such that c /∈ N . Show that there is a nonempty

index set J ⊂ {1, . . . , r} such that:

(1) The vector c can be represented as a positive combination of the vectors
aj , j ∈ J , plus a vector in N .

(2) There is a hyperplane that passes through the origin, and contains the
vectors aj , j ∈ J , in one of its open halfspaces and the vectors aj , j /∈ J ,
in the complementary closed halfspace.

Hint : Combine Example 6.4.2 with Lemma 5.3.1.

Solution: Since c ∈ cone{a1, . . . , ar} + ri(N), there exists a vector µ ≥ 0 such
that

−

(
−c +

r∑
j=1

µjaj

)
∈ ri(N).

By Example 6.4.2, this implies that the problem

minimize − c′d + 1
2

∑r

j=1

(
(a′jd)+

)2
subject to d ∈ N∗,

has an optimal solution, which we denote by d∗. Consider the set

M =

{
µ ≥ 0

∣∣∣ −(−c +

r∑
j=1

µjaj

)
∈ N

}
,

which is nonempty by assumption. Let µ∗ be the vector of minimum norm in M
and let the index set J be defined by

J = {j | µ∗j > 0}.

Then, it follows from Lemma 5.3.1 that

a′jd
∗ > 0, ∀ j ∈ J,

and

a′jd
∗ ≤ 0, ∀ j /∈ J,

thus proving that the properties (1) and (2) of the exercise hold.
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6.13 (Pareto Optimality)

A decisionmaker wishes to choose a vector x ∈ X, which keeps the values of two
cost functions f1 : <n 7→ < and f2 : <n 7→ < reasonably small. Since a vector x∗

minimizing simultaneously both f1 and f2 over X need not exist, he/she decides
to settle for a Pareto optimal solution, i.e., a vector x∗ ∈ X with the property
that there does not exist any vector x̄ ∈ X that is strictly better than x∗, in the
sense that either

f1(x̄) ≤ f1(x
∗), f2(x̄) < f2(x

∗),

or
f1(x̄) < f1(x

∗), f2(x̄) ≤ f2(x
∗).

(a) Show that if x∗ is a vector in X, and λ∗1 and λ∗2 are two positive scalars
such that

λ∗1f1(x
∗) + λ∗2f2(x

∗) = min
x∈X

{
λ∗1f1(x) + λ∗2f2(x)

}
,

then x∗ is a Pareto optimal solution.

(b) Assume that X is convex and f1, f2 are convex over X. Show that if x∗

is a Pareto optimal solution, then there exist non-negative scalars λ∗1, λ∗2,
not both zero, such that

λ∗1f1(x
∗) + λ∗2f2(x

∗) = min
x∈X

{
λ∗1f1(x) + λ∗2f2(x)

}
.

Hint: Consider the set

A =
{
(z1, z2) | there exists x ∈ X such that f1(x) ≤ z1, f2(x) ≤ z2

}
and show that it is a convex set. Use hyperplane separation arguments.

(c) Generalize the results of (a) and (b) to the case where there are m cost
functions rather than two.

Solution: (a) Assume that x∗ is not a Pareto optimal solution. Then there is a
vector x ∈ X such that either

f1(x̄) ≤ f1(x
∗), f2(x̄) < f2(x

∗),

or
f1(x̄) < f1(x

∗), f2(x̄) ≤ f2(x
∗).

Multiplying the left equation by λ∗1, the right equation by λ∗2, and adding the
two in either case yields

λ∗1f1(x̄) + λ∗2f2(x̄) < λ∗1f1(x
∗) + λ∗2f2(x

∗),

yielding a contradiction. Therefore x∗ is a Pareto optimal solution.
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(b) Let

A =
{
(z1, z2)| there exists x ∈ X such that f1(x) ≤ z1, f2(x) ≤ z2

}
.

We first show that A is convex. Indeed, let (a1, a2), and (b1, b2) be elements of
A, and let (c1, c2) = α(a1, a2) + (1− α)(b1, b2) for any α ∈ [0, 1]. Then for some
xa ∈ X, xb ∈ X, we have f1(xa) ≤ a1, f2(xa) ≤ a2, f1(xb) ≤ b1, and f2(xb) ≤ b2.
Let xc = αxa + (1− α)xb. Since X is convex, xc ∈ X. Since f is convex, we also
have

f1(xc) ≤ c1, and f2(xc) ≤ c2.

Hence, (c1, c2) ∈ A and it follows that A is a convex set.
For any x ∈ X, we have

(
f1(x), f2(x)

)
∈ A. In addition,

(
f1(x

∗), f2(x
∗)
)

is in the boundary of A. [If this were not the case, then either (1) or (2) would
hold and x∗ would not be Pareto optimal.] Then by the Supporting Hyperplane
Theorem, there exists λ∗1 and λ∗2, not both equal to 0, such that

λ∗1z1 + λ∗2z2 ≥ λ∗1f1(x
∗) + λ∗2f2(x

∗), ∀ (z1, z2) ∈ A.

Since z1 and z2 can be made arbitrarily large, we must have λ∗1, λ
∗
2 ≥ 0. Since(

f1(x), f2(x)
)
∈ A, the above equation yields

λ∗1f1(x) + λ∗2f2(x) ≥ λ∗1f1(x
∗) + λ∗2f2(x

∗), ∀x ∈ X,

or, equivalently,

min
x∈X

{
λ∗1f1(x) + λ∗2f2(x)

}
≥ λ∗1f1(x

∗) + λ∗2f2(x
∗).

Combining this with the fact that

min
x∈X

{
λ∗1f1(x) + λ∗2f2(x)

}
≤ λ∗1f1(x

∗) + λ∗2f2(x
∗)

yields the desired result.

(c) Generalization of (a): If x∗ is a vector in X, and λ∗1, . . . , λ
∗
m are positive

scalars such that
m∑

i=1

λ∗i fi(x
∗) = min

x∈X

{
m∑

i=1

λ∗i fi(x)

}
,

then x∗ is a Pareto optimal solution.
Generalization of (b): Assume that X is convex and f1, . . . , fm are convex over
X. If x∗ is a Pareto optimal solution, then there exist non-negative scalars
λ∗1, . . . , λ

∗
m, not all zero, such that

m∑
i=1

λ∗i fi(x
∗) = min

x∈X

{
m∑

i=1

λ∗i fi(x)

}
.
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6.14 (Polyhedral Programming)

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a polyhedral set, and f and gj are real-valued polyhedral functions.
Assume that the optimal value is finite. Show that the primal function is proper
and polyhedral.

Solution: Using Prop. 3.2.3, it follows that

gj(x) = max
i=1,...,m

{
a′ijx + bij

}
,

where aij are vectors in <n and bij are scalars. Hence the constraint functions
can equivalently be represented as

a′ijx + bij ≤ 0, ∀ i = 1, . . . , m, ∀ j = 1, . . . , r.

By assumption, the set X is a polyhedral set, and the cost function f is a poly-
hedral function, hence convex over <n. Therefore, we can use the Strong Duality
Theorem for linear constraints (cf. Prop. 6.4.2) to conclude that there is no du-
ality gap and there exists at least one geometric multiplier, i.e., there exists a
nonnegative vector µ such that

f∗ = inf
x∈X

{
f(x) + µ′g(x)

}
.

Let p(u) denote the primal function for this problem. The preceding relation
implies that

p(0)− µ′u = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
≤ inf

x∈X, g(x)≤u

{
f(x) + µ′

(
g(x)− u

)}
≤ inf

x∈X, g(x)≤u
f(x)

= p(u),

which, in view of the assumption that p(0) is finite, shows that p(u) > −∞ for
all u ∈ <r.

The primal function can be obtained by partial minimization as

p(u) = inf
x∈<n

F (x, u),

where

F (x, u) =
{

f(x) if gj(x) ≤ uj ∀ j, x ∈ X,
∞ otherwise.

Since, by assumption f is polyhedral, the gj are polyhedral (which implies that
the level sets of the gj are polyhedral), and X is polyhedral, it follows that
F (x, u) is a polyhedral function. Since we have also shown that p(u) > −∞ for
all u ∈ <r, we can use Exercise 3.13 to conclude that the primal function p is
polyhedral, and therefore also closed. Since p(0), the optimal value, is assumed
finite, it follows that p is proper.
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