Problem Set 3 Solutions

March 3, 2005

1.3.4

Without loss of generality we assume that $x^* = 0$, so the iteration is written as

$$x^{k+1} = x^k - s(Qx^k + e^k) = (I - sQ)x^k - se^k$$

Thus, we have

$$|x^{k+1}|| \le ||(I - sQ)x^k|| + s||e^k|| \le q||x^k|| + s\delta.$$

Applying sequentially this inequality, we obtain

$$||x^{k}|| \le q^{k} ||x^{0}|| + s\delta(1 + q + \dots + q^{k-1}),$$

from which

$$||x^{k}|| \le q^{k}||x^{0}|| + \frac{s\delta}{1-q}$$

1.4.1

Consider the problem

$$\min_{y} h(y) = f(Sy).$$

Newton's method generates a sequence according to

$$y^{k+1} = y^k - \alpha^k \left(\nabla^2 h(y^k)\right)^{-1} \nabla h(y^k).$$

We have

$$\nabla h(y) = S' \nabla f(Sy),$$

$$\nabla^2 h(y) = S' \nabla^2 f(Sy) S.$$

So Newton's method in the space of y can be re-written as

$$Sy^{k+1} = Sy^k - \alpha^k S \left(\nabla^2 h(y^k)\right)^{-1} \nabla h(y^k)$$
$$= Sy^k - \alpha^k S \left(S' \nabla^2 f(Sy^k)S\right)^{-1} S' \nabla f(Sy^k)$$
$$= Sy^k - \alpha^k SS^{-1} \left(\nabla^2 f(Sy^k)\right)^{-1} (S')^{-1} S' \nabla f(Sy^k)$$

$$= Sy^k - \alpha^k \left(\nabla^2 f(Sy^k) \right)^{-1} \nabla f(Sy^k)$$

By replacing Sy^k with x^k , we have

$$x^{k+1} = x^k - \alpha^k \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k),$$

which is Newton's method in the space of the variables x.

1.4.8

(a) We have

$$\nabla f(x) = \beta \|x\|^{\beta-2} x,$$

$$\nabla^2 f(x) = \beta (\beta - 2) \|x\|^{\beta-4} x x' + \beta \|x\|^{\beta-2} I.$$

We guess that the Newton direction has the form $d = -\gamma x$, where γ is a scalar, and we check the equation $\nabla^2 f(x) d = -\nabla f(x)$ to determine the appropriate value of γ . In this way, we obtain

$$\gamma = -\frac{1}{\beta - 1}.$$

Alternatively, we could use the formula

$$(A + CBC')^{-1} = A^{-1} - A^{-1}C(B^{-1} + C'A^{-1}C)^{-1}C'A^{-1}$$

[Eq. (A.11) from Appendix A] to find the inverse of $\nabla^2 f(x)$. Thus Newton's method has the form

$$x^{k+1} = x^k - \frac{1}{\beta - 1}x^k = \frac{\beta - 2}{\beta - 1}x^k.$$

Therefore

$$||x^{k+1}|| = \left|\frac{\beta - 2}{\beta - 1}\right| ||x^k||.$$

Hence, if $\beta > 3/2$ then $\left|\frac{\beta-2}{\beta-1}\right| < 1$ and the method converges to 0 for any initial point x^0 . In particular, for $\beta = 2$ it converges in one step as expected. If $\beta = 3/2$, the method generates the points x^k on the sphere $S = \{x \mid ||x|| = ||x^0||\}$ and does not converge for any initial point $x^0 \neq 0$. For $1 < \beta < 3/2$, we have $\left|\frac{\beta-2}{\beta-1}\right| > 1$ and the method diverges for all $x^0 \neq 0$. Now let's look at the case when $\beta \leq 1$. Since

$$(\nabla^2 f(x))^{-1} = \frac{1}{\beta ||x||^{\beta-2}} \left(I - \frac{\beta - 2}{\beta - 1} \cdot \frac{xx'}{||x||^2} \right),$$

we see that $(\nabla^2 f(x))^{-1}$ does not exist for $\beta = 1$. If $\beta < 1$, then $\left|\frac{\beta-2}{\beta-1}\right| = \frac{2-\beta}{1-\beta} > 1$ and the method diverges for any initial point.

(b) With the Armijo rule we have

$$||x^{k+1}|| = \left|1 - \frac{\alpha^k}{\beta - 1}\right| ||x^k||,$$

At each step, Armijo rule sets the stepsize $\alpha^k = a^m s$, where s is the initial stepsize, a is the reduction factor, and m is the smallest nonnegative integer for which

$$f(x^{k+1}) - f(x^k) \le \sigma a^m s \nabla f(x^k)' d^k.$$

For this problem, this test becomes

$$\|x^k\|^{\beta}\left(1-\left|1-\frac{a^ms}{\beta-1}\right|^{\beta}\right) \ge \sigma a^m s \frac{\beta \|x^k\|^{\beta}}{\beta-1},$$

which implies that the stepsize is the same at each iteration, i.e., $\alpha^k = \alpha$ for all k. Hence we have

$$||x^{k+1}|| = \left|1 - \frac{\alpha}{\beta - 1}\right| ||x^k||,$$

and also $\left|1 - \frac{\alpha}{\beta - 1}\right| < 1$, therefore the method converges for any starting point when $\beta > 1$.

1.5.1

(a) We have

$$f(x) = \frac{1}{2}||g(x)||^2 = \frac{1}{2}\sum_{i=1}^{m}||g_i(x)||^2.$$

The Hessian matrix is given by

$$\nabla^2 f(x^*) = \nabla g(x^*) \nabla g(x^*)' + \sum_{i=1}^m \nabla^2 g_i(x^*) g_i(x^*).$$

At any optimal solution x^* for which $g(x^*) = 0$, we have that $g_i(x^*) = 0$ for $1 \le i \le m$. Hence, at such points the Hessian has the following form

$$\nabla^2 f(x^*) = \nabla g(x^*) \nabla g(x^*)'.$$

Note that $g(x^*)$ is an $n \times m$ matrix. Then $Ra(\nabla g(x^*)')$ has dimension at most m, where Ra(A) denotes the range of the matrix A (the linear space spanned by the columns of A). Consequently, the dimension of the null space of A is at least n - m > 0. Hence, there is a vector $v \neq 0$ for which $\nabla g(x^*)'v = 0$. This implies $\nabla^2 f(x^*)v = 0$, i.e. $\nabla^2 f(x^*)$ is singular.

(b) The function $f(x) = \frac{1}{2}||z - Ax||^2$ attains a minimum at x^* , since it is positive semidefinite and bounded from below (see Section 1.1). Since Ra(A) has dimension at most m, the null space of A has dimension at least n - m > 0. Therefore, there exists a nonzero vector v for which Av = 0. Let x^* be a solution to the problem. Then, for any scalar λ the vector $x^* + \lambda v$ is also solution, since

$$f(x^* + \lambda v) = \frac{1}{2}||z - Ax^* - \lambda Av||^2 = ||z - Ax^*||^2 = f(x^*).$$

Thus, there are infinitely many optimal solutions.

When A has linearly independent rows, then AA' is an invertible $m \times m$ matrix so that the point $x^* = A'(AA')^{-1}z$ is well defined. For this point we have

$$\nabla f(x^*) = A'Ax^* - A'z = A'AA'(AA')^{-1}z - A'z = 0.$$

Since $\nabla^2 f(x) = A'A \ge 0$ for all x, the first order necessary optimality conditions are also sufficient, i.e. $x^* = A'(AA')z$ is one of the solutions for the given problem.

1.5.5

We have

$$x^{k+1} - x^* = x^k - \alpha Q_k x^k - x^* = (I - \alpha Q_k)(x^k - x^*) - \alpha \nabla f_k(x^*),$$

since $Q_k x^* = \nabla f_k(x^*)$. We then have

$$||x^{k+1} - x^*|| \le ||(I - \alpha Q_k)(x^k - x^*)|| + \alpha ||\nabla f_k(x^*)||$$

$$\le ||(I - \alpha Q_k)(x^k - x^*)|| + \alpha \epsilon$$

$$\le ||I - \alpha Q_k|| ||x^k - x^*|| + \alpha \epsilon.$$

Note that $||I - \alpha Q_k|| = \max\{|1 - \alpha \gamma|, |1 - \alpha \Gamma|\}$. Analyzing these terms individually, we have

$$1 - \alpha \gamma \ge 1 - \frac{2\gamma}{\gamma + \Gamma} = \frac{\Gamma - \gamma}{\Gamma + \gamma} \ge 0,$$

so $|1 - \alpha \gamma| = 1 - \alpha \gamma$. On the other hand,

$$1 - \alpha \Gamma \ge \frac{\gamma - \Gamma}{\gamma + \Gamma},$$

and combining these facts, we have that $||I - \alpha Q_k|| = 1 - \alpha \gamma$. We now distinguish the two cases.

Case 1: $||x^k - x^*|| > 2\epsilon/\gamma \Rightarrow \alpha \epsilon < \alpha \gamma/2 ||x^k - x^*||$. So we have

$$\begin{aligned} \|x^{k+1} - x^*\| &< (1 - \alpha \gamma) \|x^k - x^*\| + \frac{\alpha \gamma}{2} \|x^k - x^*\| \\ &= (1 - \frac{\alpha \gamma}{2}) \|x^k - x^*\|. \end{aligned}$$

Case 2: $||x^k - x^*|| \le 2\epsilon/\gamma$. This gives us

$$\|x^{k+1} - x^*\| \le (1 - \alpha\gamma)\frac{2\epsilon}{\gamma} + \alpha\epsilon$$
$$= \frac{2\epsilon}{\gamma} - \alpha\epsilon \le \frac{2\epsilon}{\gamma}.$$

The desired result now follows: $||x^k - x^*||$ decreases geometrically until we have $||x^k - x^*|| \le 2\epsilon/\gamma$, after which we are guaranteed to remain in this "close" region.