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1.3.4
Without loss of generality we assume that z* = 0, so the iteration is written as

" = b — s(Qa" + €F) = (I — sQ)a" — se”.

Thus, we have
[ < 17— sQ)x* || + slle®|| < qlla®[| + sd.

Applying sequentially this inequality, we obtain
l2*] < " [la”]| + s0(1 + g + -+ ¢"7),
from which

so
1—¢q

Iz < ¢* [l +

1.4.1
Consider the problem

minh(y) = f(Sy).
Newton’s method generates a sequence according to
k1 k k(o2 (k) k
= yF —of (VPh(yh)) VA,

We have
Vh(y) = S'Vf(Sy),

V?h(y) = S'VZf(Sy)S.

So Newton’s method in the space of y can be re-written as
Syktl = SyF —aFs (VQh(ykD_l Vh(y"*)
= Syt — a5 (5'V? f(Syk)S)_l S'V[(Sy*)
= Syf —akssTH (VP F(Syh) T (9) 7SV A(SyY)
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= SyF —a* (V2f(Sy")) " VF(SyF)

By replacing Sy* with 2*, we have
k+1 k k(o2 (o ky) k
P =gk — ok (VEF(N)) T V"),
which is Newton’s method in the space of the variables z.

1.4.8
(a) We have

Vf(z) = Blla|" 2z,
V2 f(x) = B(B — 2)|l2|” 2z’ + Blla||"*1.
We guess that the Newton direction has the form d = —vz, where 7 is a scalar, and we check

the equation V2f(x)d = —V f(z) to determine the appropriate value of v. In this way, we
obtain

’Y:—ﬁ-

Alternatively, we could use the formula
(A+COBCY '=A"—A'C(B +C'ATI OO’ AT
[Eq. (A.11) from Appendix A] to find the inverse of V?f(z). Thus Newton’s method has the

form ) 59
PR — gk E_ k

-1t T -1t

Therefore 5
-2
o = [ =3 i

Hence, if 5 > 3/2 then %‘ < 1 and the method converges to 0 for any initial point z°. In
particular, for 5 = 2 it converges in one step as expected. If § = 3/2, the method generates
the points #* on the sphere S = {z | ||z|| = ||2°||} and does not converge for any initial point
2% #0. For 1 < 8 < 3/2, we have ‘%’ > 1 and the method diverges for all 2° # 0.

Now let’s look at the case when § < 1. Since

2pen) e L [y P2
1™ = g (- 521 o)

we see that (V2f(z))~! does not exist for 3 = 1. If 3 < 1, then ’%‘ = % > 1 and the
method diverges for any initial point.
(b) With the Armijo rule we have

o+ = \1 _




At each step, Armijo rule sets the stepsize o = a™s, where s is the initial stepsize, a is the

reduction factor, and m is the smallest nonnegative integer for which

f@™h) = f(@*) < 0a™sV f(2") d*

For this problem, this test becomes

B (|- a™s
||x||( I

- -1’

B
) . 5|| il

which implies that the stepsize is the same at each iteration, i.e., a* = o for all k. Hence we
have
k+1 @ k
x =\1- T
o = |- 2
and also ’1 — ﬁ‘ < 1, therefore the method converges for any starting point when g > 1.
1.5.1
(a) We have

fx) = *Hg II* = Zng I

The Hessian matrix is given by
Vif(@") = Vg(a") V(@) + > Vig(z")gi(a").
i=1

At any optimal solution z* for which g(z*) = 0, we have that g;(z*) = 0 for 1 < i < m.
Hence, at such points the Hessian has the following form

V2 f(z*) = Vg(a*)Vg(z")'.

Note that g(z*) is an n x m matrix. Then Ra(Vg(z*)’) has dimension at most m, where
Ra(A) denotes the range of the matrix A (the linear space spanned by the columns of A).
Consequently, the dimension of the null space of A is at least n —m > 0. Hence, there is a
vector v # 0 for which Vg(z*)'v = 0. This implies V2f(z*)v = 0, i.e. V2f(z*) is singular.

(b) The function f(z) = ||z — Az||* attains a minimum at z*, since it is positive semidef-
inite and bounded from below (see Section 1.1). Since Ra(A) has dimension at most m, the
null space of A has dimension at least n — m > 0. Therefore, there exists a nonzero vector
v for which Av = 0. Let z* be a solution to the problem. Then, for any scalar \ the vector
x* + v is also solution, since

1
flx™+ ) = in — Az* — No|]* = ||z — Az*|]* = f(2*).

Thus, there are infinitely many optimal solutions.
When A has linearly independent rows, then AA’ is an invertible m x m matrix so that
the point z* = A’(AA")~'z is well defined. For this point we have

Vf(*) = A'Ax* — Az = AAA (AA) 12— Az = 0.
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Since V2f(x) = A’A > 0 for all z, the first order necessary optimality conditions are also
sufficient, i.e. z* = A’(AA’)z is one of the solutions for the given problem.

1.5.5
We have

M — 2t =ab —aQpa® — 1" = (I — aQy)(a" — 2%) — aV fi(a),
since Qrx* = V fi.(z*). We then have
12" — 2| < (7 = a@r) (=" — 2" + |V fil(a") |

< (I = aQp) (2" — )| + e
< |- onkHka —z*|| + ae.

Note that ||I — aQy| = max{|1 — av|,|1 — al'|}. Analyzing these terms individually, we have

2 I'—
l—ay>1——1=—"T>y
vy+I' T+~
so |1 — ay| =1 — av. On the other hand,

-

l—al > 1

v+ T
and combining these facts, we have that ||[I — aQy| = 1 — ay. We now distinguish the two

cases.
Case 1: ||z% — 2% > 2¢/7 = ae < ay/2||z* — z*||. So we have
ary

— ' < (1= a)lla® —2"| + 7 ll2* — 27

H$k+1

ary *
= (1= Dt - o)

Case 2: ||2* — 2*|| < 2¢/v. This gives us
2
Ja**t = 2] < (1 ay) ™ +ac
f)/

2€ 2¢
= — —ae < —.

v v

The desired result now follows: ||z¥ — 2*|| decreases geometrically until we have ||z* — z*| <
2¢/7, after which we are guaranteed to remain in this “close” region.



