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1.3.4
Without loss of generality we assume that x∗ = 0, so the iteration is written as

xk+1 = xk − s(Qxk + ek) = (I − sQ)xk − sek.

Thus, we have
‖xk+1‖ ≤ ‖(I − sQ)xk‖+ s‖ek‖ ≤ q‖xk‖+ sδ.

Applying sequentially this inequality, we obtain

‖xk‖ ≤ qk‖x0‖+ sδ(1 + q + · · ·+ qk−1),

from which

‖xk‖ ≤ qk‖x0‖+
sδ

1− q
.

1.4.1
Consider the problem

min
y

h(y) = f(Sy).

Newton’s method generates a sequence according to

yk+1 = yk − αk
(
∇2h(yk)

)−1∇h(yk).

We have
∇h(y) = S ′∇f(Sy),

∇2h(y) = S ′∇2f(Sy)S.

So Newton’s method in the space of y can be re-written as

Syk+1 = Syk − αkS
(
∇2h(yk)

)−1∇h(yk)

= Syk − αkS
(
S ′∇2f(Syk)S

)−1
S ′∇f(Syk)

= Syk − αkSS−1
(
∇2f(Syk)

)−1
(S ′)−1S ′∇f(Syk)
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= Syk − αk
(
∇2f(Syk)

)−1∇f(Syk)

By replacing Syk with xk, we have

xk+1 = xk − αk
(
∇2f(xk)

)−1∇f(xk),

which is Newton’s method in the space of the variables x.

1.4.8
(a) We have

∇f(x) = β‖x‖β−2x,

∇2f(x) = β(β − 2)‖x‖β−4xx′ + β‖x‖β−2I.

We guess that the Newton direction has the form d = −γx, where γ is a scalar, and we check
the equation ∇2f(x)d = −∇f(x) to determine the appropriate value of γ. In this way, we
obtain

γ = − 1

β − 1
.

Alternatively, we could use the formula

(A + CBC ′)−1 = A−1 − A−1C(B−1 + C ′A−1C)−1C ′A−1

[Eq. (A.11) from Appendix A] to find the inverse of ∇2f(x). Thus Newton’s method has the
form

xk+1 = xk − 1

β − 1
xk =

β − 2

β − 1
xk.

Therefore

||xk+1|| =
∣∣∣∣∣
β − 2

β − 1

∣∣∣∣∣ ||x
k||.

Hence, if β > 3/2 then
∣∣∣β−2
β−1

∣∣∣ < 1 and the method converges to 0 for any initial point x0. In

particular, for β = 2 it converges in one step as expected. If β = 3/2, the method generates
the points xk on the sphere S = {x | ||x|| = ||x0||} and does not converge for any initial point

x0 6= 0. For 1 < β < 3/2, we have
∣∣∣β−2
β−1

∣∣∣ > 1 and the method diverges for all x0 6= 0.
Now let’s look at the case when β ≤ 1. Since

(∇2f(x))−1 =
1

β||x||β−2

(
I − β − 2

β − 1
· xx′

||x||2
)

,

we see that (∇2f(x))−1 does not exist for β = 1. If β < 1, then
∣∣∣β−2
β−1

∣∣∣ = 2−β
1−β

> 1 and the
method diverges for any initial point.

(b) With the Armijo rule we have

‖xk+1‖ =

∣∣∣∣∣1−
αk

β − 1

∣∣∣∣∣ ‖x
k‖,
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At each step, Armijo rule sets the stepsize αk = ams, where s is the initial stepsize, a is the
reduction factor, and m is the smallest nonnegative integer for which

f(xk+1)− f(xk) ≤ σams∇f(xk)′dk.

For this problem, this test becomes

‖xk‖β


1−

∣∣∣∣∣1−
ams

β − 1

∣∣∣∣∣
β

 ≥ σams

β‖xk‖β

β − 1
,

which implies that the stepsize is the same at each iteration, i.e., αk = α for all k. Hence we
have

‖xk+1‖ =

∣∣∣∣∣1−
α

β − 1

∣∣∣∣∣ ‖x
k‖,

and also
∣∣∣1− α

β−1

∣∣∣ < 1 , therefore the method converges for any starting point when β > 1.

1.5.1
(a) We have

f(x) =
1

2
||g(x)||2 =

1

2

m∑

i=1

||gi(x)||2.

The Hessian matrix is given by

∇2f(x∗) = ∇g(x∗)∇g(x∗)′ +
m∑

i=1

∇2gi(x
∗)gi(x

∗).

At any optimal solution x∗ for which g(x∗) = 0, we have that gi(x
∗) = 0 for 1 ≤ i ≤ m.

Hence, at such points the Hessian has the following form

∇2f(x∗) = ∇g(x∗)∇g(x∗)′.

Note that g(x∗) is an n × m matrix. Then Ra(∇g(x∗)′) has dimension at most m, where
Ra(A) denotes the range of the matrix A (the linear space spanned by the columns of A).
Consequently, the dimension of the null space of A is at least n −m > 0. Hence, there is a
vector v 6= 0 for which ∇g(x∗)′v = 0. This implies ∇2f(x∗)v = 0, i.e. ∇2f(x∗) is singular.

(b) The function f(x) = 1
2
||z−Ax||2 attains a minimum at x∗, since it is positive semidef-

inite and bounded from below (see Section 1.1). Since Ra(A) has dimension at most m, the
null space of A has dimension at least n −m > 0. Therefore, there exists a nonzero vector
v for which Av = 0. Let x∗ be a solution to the problem. Then, for any scalar λ the vector
x∗ + λv is also solution, since

f(x∗ + λv) =
1

2
||z − Ax∗ − λAv||2 = ||z − Ax∗||2 = f(x∗).

Thus, there are infinitely many optimal solutions.
When A has linearly independent rows, then AA′ is an invertible m ×m matrix so that

the point x∗ = A′(AA′)−1z is well defined. For this point we have

∇f(x∗) = A′Ax∗ − A′z = A′AA′(AA′)−1z − A′z = 0.

3



Since ∇2f(x) = A′A ≥ 0 for all x, the first order necessary optimality conditions are also
sufficient, i.e. x∗ = A′(AA′)z is one of the solutions for the given problem.

1.5.5
We have

xk+1 − x∗ = xk − αQkx
k − x∗ = (I − αQk)(x

k − x∗)− α∇fk(x
∗),

since Qkx
∗ = ∇fk(x

∗). We then have

‖xk+1 − x∗‖ ≤ ‖(I − αQk)(x
k − x∗)‖+ α‖∇fk(x

∗)‖

≤ ‖(I − αQk)(x
k − x∗)‖+ αε

≤ ‖I − αQk‖‖xk − x∗‖+ αε.

Note that ‖I −αQk‖ = max{|1−αγ|, |1−αΓ|}. Analyzing these terms individually, we have

1− αγ ≥ 1− 2γ

γ + Γ
=

Γ− γ

Γ + γ
≥ 0,

so |1− αγ| = 1− αγ. On the other hand,

1− αΓ ≥ γ − Γ

γ + Γ
,

and combining these facts, we have that ‖I − αQk‖ = 1 − αγ. We now distinguish the two
cases.

Case 1: ‖xk − x∗‖ > 2ε/γ ⇒ αε < αγ/2‖xk − x∗‖. So we have

‖xk+1 − x∗‖ < (1− αγ)‖xk − x∗‖+
αγ

2
‖xk − x∗‖

= (1− αγ

2
)‖xk − x∗‖.

Case 2: ‖xk − x∗‖ ≤ 2ε/γ. This gives us

‖xk+1 − x∗‖ ≤ (1− αγ)
2ε

γ
+ αε

=
2ε

γ
− αε ≤ 2ε

γ
.

The desired result now follows: ‖xk − x∗‖ decreases geometrically until we have ‖xk − x∗‖ ≤
2ε/γ, after which we are guaranteed to remain in this “close” region.
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