Problem Set 3 Solutions

March 3, 2005

1.3.4

Without loss of generality we assume that $x^{*}=0$, so the iteration is written as

$$
x^{k+1}=x^{k}-s\left(Q x^{k}+e^{k}\right)=(I-s Q) x^{k}-s e^{k} .
$$

Thus, we have

$$
\left\|x^{k+1}\right\| \leq\left\|(I-s Q) x^{k}\right\|+s\left\|e^{k}\right\| \leq q\left\|x^{k}\right\|+s \delta .
$$

Applying sequentially this inequality, we obtain

$$
\left\|x^{k}\right\| \leq q^{k}\left\|x^{0}\right\|+s \delta\left(1+q+\cdots+q^{k-1}\right)
$$

from which

$$
\left\|x^{k}\right\| \leq q^{k}\left\|x^{0}\right\|+\frac{s \delta}{1-q} .
$$

1.4.1

Consider the problem

$$
\min _{y} h(y)=f(S y) .
$$

Newton's method generates a sequence according to

$$
y^{k+1}=y^{k}-\alpha^{k}\left(\nabla^{2} h\left(y^{k}\right)\right)^{-1} \nabla h\left(y^{k}\right) .
$$

We have

$$
\begin{gathered}
\nabla h(y)=S^{\prime} \nabla f(S y), \\
\nabla^{2} h(y)=S^{\prime} \nabla^{2} f(S y) S
\end{gathered}
$$

So Newton's method in the space of y can be re-written as

$$
\begin{gathered}
S y^{k+1}=S y^{k}-\alpha^{k} S\left(\nabla^{2} h\left(y^{k}\right)\right)^{-1} \nabla h\left(y^{k}\right) \\
=S y^{k}-\alpha^{k} S\left(S^{\prime} \nabla^{2} f\left(S y^{k}\right) S\right)^{-1} S^{\prime} \nabla f\left(S y^{k}\right) \\
=S y^{k}-\alpha^{k} S S^{-1}\left(\nabla^{2} f\left(S y^{k}\right)\right)^{-1}\left(S^{\prime}\right)^{-1} S^{\prime} \nabla f\left(S y^{k}\right)
\end{gathered}
$$

$$
=S y^{k}-\alpha^{k}\left(\nabla^{2} f\left(S y^{k}\right)\right)^{-1} \nabla f\left(S y^{k}\right)
$$

By replacing $S y^{k}$ with x^{k}, we have

$$
x^{k+1}=x^{k}-\alpha^{k}\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right),
$$

which is Newton's method in the space of the variables x.

1.4 .8

(a) We have

$$
\begin{gathered}
\nabla f(x)=\beta\|x\|^{\beta-2} x \\
\nabla^{2} f(x)=\beta(\beta-2)\|x\|^{\beta-4} x x^{\prime}+\beta\|x\|^{\beta-2} I .
\end{gathered}
$$

We guess that the Newton direction has the form $d=-\gamma x$, where γ is a scalar, and we check the equation $\nabla^{2} f(x) d=-\nabla f(x)$ to determine the appropriate value of γ. In this way, we obtain

$$
\gamma=-\frac{1}{\beta-1}
$$

Alternatively, we could use the formula

$$
\left(A+C B C^{\prime}\right)^{-1}=A^{-1}-A^{-1} C\left(B^{-1}+C^{\prime} A^{-1} C\right)^{-1} C^{\prime} A^{-1}
$$

[Eq. (A.11) from Appendix A] to find the inverse of $\nabla^{2} f(x)$. Thus Newton's method has the form

$$
x^{k+1}=x^{k}-\frac{1}{\beta-1} x^{k}=\frac{\beta-2}{\beta-1} x^{k} .
$$

Therefore

$$
\left\|x^{k+1}\right\|=\left|\frac{\beta-2}{\beta-1}\right|\left\|x^{k}\right\|
$$

Hence, if $\beta>3 / 2$ then $\left|\frac{\beta-2}{\beta-1}\right|<1$ and the method converges to 0 for any initial point x^{0}. In particular, for $\beta=2$ it converges in one step as expected. If $\beta=3 / 2$, the method generates the points x^{k} on the sphere $S=\left\{x \mid\|x\|=\left\|x^{0}\right\|\right\}$ and does not converge for any initial point $x^{0} \neq 0$. For $1<\beta<3 / 2$, we have $\left|\frac{\beta-2}{\beta-1}\right|>1$ and the method diverges for all $x^{0} \neq 0$.

Now let's look at the case when $\beta \leq 1$. Since

$$
\left(\nabla^{2} f(x)\right)^{-1}=\frac{1}{\beta\|x\|^{\beta-2}}\left(I-\frac{\beta-2}{\beta-1} \cdot \frac{x x^{\prime}}{\|x\|^{2}}\right),
$$

we see that $\left(\nabla^{2} f(x)\right)^{-1}$ does not exist for $\beta=1$. If $\beta<1$, then $\left|\frac{\beta-2}{\beta-1}\right|=\frac{2-\beta}{1-\beta}>1$ and the method diverges for any initial point.
(b) With the Armijo rule we have

$$
\left\|x^{k+1}\right\|=\left|1-\frac{\alpha^{k}}{\beta-1}\right|\left\|x^{k}\right\|
$$

At each step, Armijo rule sets the stepsize $\alpha^{k}=a^{m} s$, where s is the initial stepsize, a is the reduction factor, and m is the smallest nonnegative integer for which

$$
f\left(x^{k+1}\right)-f\left(x^{k}\right) \leq \sigma a^{m} s \nabla f\left(x^{k}\right)^{\prime} d^{k}
$$

For this problem, this test becomes

$$
\left\|x^{k}\right\|^{\beta}\left(1-\left|1-\frac{a^{m} s}{\beta-1}\right|^{\beta}\right) \geq \sigma a^{m} s \frac{\beta\left\|x^{k}\right\|^{\beta}}{\beta-1}
$$

which implies that the stepsize is the same at each iteration, i.e., $\alpha^{k}=\alpha$ for all k. Hence we have

$$
\left\|x^{k+1}\right\|=\left|1-\frac{\alpha}{\beta-1}\right|\left\|x^{k}\right\|
$$

and also $\left|1-\frac{\alpha}{\beta-1}\right|<1$, therefore the method converges for any starting point when $\beta>1$.

1.5.1

(a) We have

$$
f(x)=\frac{1}{2}\|g(x)\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left\|g_{i}(x)\right\|^{2}
$$

The Hessian matrix is given by

$$
\nabla^{2} f\left(x^{*}\right)=\nabla g\left(x^{*}\right) \nabla g\left(x^{*}\right)^{\prime}+\sum_{i=1}^{m} \nabla^{2} g_{i}\left(x^{*}\right) g_{i}\left(x^{*}\right)
$$

At any optimal solution x^{*} for which $g\left(x^{*}\right)=0$, we have that $g_{i}\left(x^{*}\right)=0$ for $1 \leq i \leq m$. Hence, at such points the Hessian has the following form

$$
\nabla^{2} f\left(x^{*}\right)=\nabla g\left(x^{*}\right) \nabla g\left(x^{*}\right)^{\prime}
$$

Note that $g\left(x^{*}\right)$ is an $n \times m$ matrix. Then $R a\left(\nabla g\left(x^{*}\right)^{\prime}\right)$ has dimension at most m, where $R a(A)$ denotes the range of the matrix A (the linear space spanned by the columns of A). Consequently, the dimension of the null space of A is at least $n-m>0$. Hence, there is a vector $v \neq 0$ for which $\nabla g\left(x^{*}\right)^{\prime} v=0$. This implies $\nabla^{2} f\left(x^{*}\right) v=0$, i.e. $\nabla^{2} f\left(x^{*}\right)$ is singular.
(b) The function $f(x)=\frac{1}{2}\|z-A x\|^{2}$ attains a minimum at x^{*}, since it is positive semidefinite and bounded from below (see Section 1.1). Since $\operatorname{Ra}(A)$ has dimension at most m, the null space of A has dimension at least $n-m>0$. Therefore, there exists a nonzero vector v for which $A v=0$. Let x^{*} be a solution to the problem. Then, for any scalar λ the vector $x^{*}+\lambda v$ is also solution, since

$$
f\left(x^{*}+\lambda v\right)=\frac{1}{2}\left\|z-A x^{*}-\lambda A v\right\|^{2}=\left\|z-A x^{*}\right\|^{2}=f\left(x^{*}\right) .
$$

Thus, there are infinitely many optimal solutions.
When A has linearly independent rows, then $A A^{\prime}$ is an invertible $m \times m$ matrix so that the point $x^{*}=A^{\prime}\left(A A^{\prime}\right)^{-1} z$ is well defined. For this point we have

$$
\nabla f\left(x^{*}\right)=A^{\prime} A x^{*}-A^{\prime} z=A^{\prime} A A^{\prime}\left(A A^{\prime}\right)^{-1} z-A^{\prime} z=0
$$

Since $\nabla^{2} f(x)=A^{\prime} A \geq 0$ for all x, the first order necessary optimality conditions are also sufficient, i.e. $x^{*}=A^{\prime}\left(A A^{\prime}\right) z$ is one of the solutions for the given problem.

1.5.5

We have

$$
x^{k+1}-x^{*}=x^{k}-\alpha Q_{k} x^{k}-x^{*}=\left(I-\alpha Q_{k}\right)\left(x^{k}-x^{*}\right)-\alpha \nabla f_{k}\left(x^{*}\right)
$$

since $Q_{k} x^{*}=\nabla f_{k}\left(x^{*}\right)$. We then have

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\| & \leq\left\|\left(I-\alpha Q_{k}\right)\left(x^{k}-x^{*}\right)\right\|+\alpha\left\|\nabla f_{k}\left(x^{*}\right)\right\| \\
& \leq\left\|\left(I-\alpha Q_{k}\right)\left(x^{k}-x^{*}\right)\right\|+\alpha \epsilon \\
& \leq\left\|I-\alpha Q_{k}\right\|\left\|x^{k}-x^{*}\right\|+\alpha \epsilon .
\end{aligned}
$$

Note that $\left\|I-\alpha Q_{k}\right\|=\max \{|1-\alpha \gamma|,|1-\alpha \Gamma|\}$. Analyzing these terms individually, we have

$$
1-\alpha \gamma \geq 1-\frac{2 \gamma}{\gamma+\Gamma}=\frac{\Gamma-\gamma}{\Gamma+\gamma} \geq 0
$$

so $|1-\alpha \gamma|=1-\alpha \gamma$. On the other hand,

$$
1-\alpha \Gamma \geq \frac{\gamma-\Gamma}{\gamma+\Gamma}
$$

and combining these facts, we have that $\left\|I-\alpha Q_{k}\right\|=1-\alpha \gamma$. We now distinguish the two cases.

Case 1: $\left\|x^{k}-x^{*}\right\|>2 \epsilon / \gamma \Rightarrow \alpha \epsilon<\alpha \gamma / 2\left\|x^{k}-x^{*}\right\|$. So we have

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|< & (1-\alpha \gamma)\left\|x^{k}-x^{*}\right\|+\frac{\alpha \gamma}{2}\left\|x^{k}-x^{*}\right\| \\
& =\left(1-\frac{\alpha \gamma}{2}\right)\left\|x^{k}-x^{*}\right\| .
\end{aligned}
$$

Case 2: $\left\|x^{k}-x^{*}\right\| \leq 2 \epsilon / \gamma$. This gives us

$$
\begin{gathered}
\left\|x^{k+1}-x^{*}\right\| \leq(1-\alpha \gamma) \frac{2 \epsilon}{\gamma}+\alpha \epsilon \\
=\frac{2 \epsilon}{\gamma}-\alpha \epsilon \leq \frac{2 \epsilon}{\gamma}
\end{gathered}
$$

The desired result now follows: $\left\|x^{k}-x^{*}\right\|$ decreases geometrically until we have $\left\|x^{k}-x^{*}\right\| \leq$ $2 \epsilon / \gamma$, after which we are guaranteed to remain in this "close" region.

