
~~~ ~~ 

NONLINEAR PROGRAMMING 
Theory and Algorithms 

Third Edition 

MOKHTAR S. BAZARAA 
Georgia Institute of Technology 
School of Industrial and Systems Engineering 
Atlanta, Georgia 

HANIF D. SHERALI 
Virginia Polytechnic Institute and State University 
Grado Department of Industrial and Systems Engineering 
Blacksburg, Virginia 

C. M. SHETTY 
Georgia Institute of Technology 
School of Industrial and Systems Engineering 
Atlanta, Georgia 

A JOHN WILEY & SONS, INC., PUBLICATION 



This Page Intentionally Left Blank



NONLINEAR PROGRAMMING 



This Page Intentionally Left Blank



~~~ ~~ 

NONLINEAR PROGRAMMING 
Theory and Algorithms 

Third Edition 

MOKHTAR S. BAZARAA 
Georgia Institute of Technology 
School of Industrial and Systems Engineering 
Atlanta, Georgia 

HANIF D. SHERALI 
Virginia Polytechnic Institute and State University 
Grado Department of Industrial and Systems Engineering 
Blacksburg, Virginia 

C. M. SHETTY 
Georgia Institute of Technology 
School of Industrial and Systems Engineering 
Atlanta, Georgia 

A JOHN WILEY & SONS, INC., PUBLICATION 



Copyright 0 2006 by John Wiley & Sons, Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 1 1 River Street, Hoboken, NJ 
07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book, they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages. 

For general information on our other products and services or for technical support, please contact our 
Customer Care Department within the United States at (800) 762-2974, outside the United States at 
(317) 572-3993 or fax (317) 572-4002. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may 
not be available in electronic format. For information about Wiley products, visit our web site at 
www.wiley.com. 

Library of Congress Cataloging-in-Pn blication Data: 

Bazaraa, M. S. 
Nonlinear programming : theory and algorithms / Mokhtar S. Bazaraa, Hanif D. Sherali, 

C. M. Shetty.-3rd ed. 

“Wiley-Interscience.” 
Includes bibliographical references and index. 
ISBN-13: 978-0-471-48600-8 (cloth: alk. paper) 
ISBN- 10: 0-47 1-48600-0 (cloth: alk. paper) 

Title. 

p. cm. 

1. Nonlinear programming. I. Sherali, Hanif D., 1952%. II. Shetty, C. M., 1929-. 111 

T57.8.B39 2006 
519.7‘6-dc22 

Printed in the United States of America. 

2005054230 

1 0 9 8 7 6 5 4 3 2 1  



Dedicated to our parents 



This Page Intentionally Left Blank



Contents 

Chapter 1 Introduction 1 
1.1 Problem Statement and Basic Definitions 2 
1.2 Illustrative Examples 4 
1.3 Guidelines for Model Construction 26 
Exercises 30 
Notes and References 34 

Part 1 Convex Analysis 37 

Chapter 2 Convex Sets 39 
2.1 Convex Hulls 40 
2.2 Closure and Interior of a Set 45 
2.3 Weierstrass’s Theorem 48 
2.4 Separation and Support of Sets 50 
2.5 Convex Cones and Polarity 62 
2.6 Polyhedral Sets, Extreme Points, and Extreme Directions 64 
2.7 Linear Programming and the Simplex Method 75 

Exercises 86 
Notes and References 93 

Chapter 3 Convex Functions and Generalizations 97 
3.1 Definitions and Basic Properties 98 
3.2 Subgradients of Convex Functions 103 
3.3 Differentiable Convex Functions 109 
3.4 Minima and Maxima of Convex Functions 123 
3.5 Generalizations of Convex Functions 134 

Exercises 147 
Notes and References 159 

Part 2 Optimality Conditions and Duality 163 

Chapter 4 The Fritz John and Karush-Kuhn-Tucker Optimality 
Conditions 165 
4.1 Unconstrained Problems 166 
4.2 Problems Having Inequality Constraints 174 
4.3 Problems Having Inequality and Equality Constraints 197 
4.4 Second-Order Necessary and Sufficient Optimality Conditions for 

Constrained Problems 2 1 1 
Exercises 220 
Notes and References 235 

Chapter 5 Constraint Qualifications 237 
5.1 Cone of Tangents 237 
5.2 Other Constraint Qualifications 241 
5.3 Problems Having Inequality and Equality Constraints 245 

Exercises 250 
Notes and References 256 

vii 



viii Contents 

Chapter 6 Lagrangian Duality and Saddle Point 

Optimality Conditions 257 
6.1 Lagrangian Dual Problem 258 
6.2 Duality Theorems and Saddle Point Optimality Conditions 263 
6.3 Properties of the Dual Function 276 
6.4 Formulating and Solving the Dual Problem 286 
6.5 Getting the Primal Solution 293 
6.6 Linear and Quadratic Programs 298 

Exercises 300 
Notes and References 3 13 

Part 3 Algorithms and Their Convergence 315 
Chapter 7 The Concept of an Algorithm 317 

7.1 Algorithms and Algorithmic Maps 3 17 
7.2 Closed Maps and Convergence 3 19 
7.3 Composition of Mappings 324 
7.4 Comparison Among Algorithms 329 

Exercises 332 
Notes and References 340 

Chapter 8 Unconstrained Optimization 343 
8.1 Line Search Without Using Derivatives 344 
8.2 Line Search Using Derivatives 356 
8.3 Some Practical Line Search Methods 360 
8.4 Closedness of the Line Search Algorithmic Map 363 
8.5 Multidimensional Search Without Using Derivatives 365 
8.6 Multidimensional Search Using Derivatives 384 
8.7 Modification of Newton’s Method: Levenberg-Marquardt and 

Trust Region Methods 398 
8.8 Methods Using Conjugate Directions: Quasi-Newton and 

Conjugate Gradient Methods 402 
8.9 Subgradient Optimization Methods 435 

Exercises 444 
Notes and References 462 

Chapter 9 Penalty and Barrier Functions 469 
9.1 Concept of Penalty Functions 470 
9.2 Exterior Penalty Function Methods 475 
9.3 

9.4 Barrier Function Methods 50 1 
9.5 

Exact Absolute Value and Augmented Lagrangian Penalty 
Methods 485 

Polynomial-Time Interior Point Algorithms for Linear 
Programming Based on a Barrier Function 
Exercises 520 
Notes and References 533 

509 

Chapter 10 Methods of Feasible Directions 537 
10.1 Method of Zoutendijk 538 
10.2 Convergence Analysis of the Method of Zoutendijk 557 
10.3 Successive Linear Programming Approach 568 
10.4 

10.5 Gradient Projection Method of Rosen 589 

Successive Quadratic Programming or Projected Lagrangian 
Approach 576 



Contents ix 

10.6 

10.7 Convex-Simplex Method of Zangwill 613 
10.8 

Reduced Gradient Method of Wolfe and Generalized Reduced 
Gradient Method 602 

Effective First- and Second-Order Variants of the Reduced 
Gradient Method 620 
Exercises 625 
Notes and References 649 

Chapter 11 Linear Complementary Problem, and Quadratic, Separable, 
Fractional, and Geometric Programming 655 
1 1. I Linear Complementary Problem 656 
1 1.2 Convex and Nonconvex Quadratic Programming: Global 

Optimization Approaches 667 
1 1.3 Separable Programming 684 
1 1.4 Linear Fractional Programming 703 
1 1.5 Geometric Programming 7 12 

Exercises 722 
Notes and References 745 

Appendix A Mathematical Review 751 

Appendix B Summary of Convexity, Optimality Conditions, and 
Duality 765 

Bibliography 779 
Index 843 



This Page Intentionally Left Blank



Preface 

Nonlinear programming deals with the problem of optimizing an objective 
function in the presence of equality and inequality constraints. If all the 
functions are linear, we obviously have a linear program. Otherwise, the 
problem is called a nonlinear program. The development of highly efficient and 
robust algorithms and software for linear programming, the advent of high- 
speed computers, and the education of managers and practitioners in regard to 
the advantages and profitability of mathematical modeling and analysis have 
made linear programming an important tool for solving problems in diverse 
fields. However, many realistic problems cannot be adequately represented or 
approximated as a linear program, owing to the nature of the nonlinearity of the 
objective function and/or the nonlinearity of any of the constraints. Efforts to 
solve such nonlinear problems efficiently have made rapid progress during the 
past four decades. This book presents these developments in a logical and self- 
contained form. 

The book is divided into three major parts dealing, respectively, with 
convex analysis, optimality conditions and duality, and computational methods. 
Convex analysis involves convex sets and convex functions and is central to the 
study of the field of optimization. The ultimate goal in optimization studies is to 
develop efficient computational schemes for solving the problem at hand. 
Optimality conditions and duality can be used not only to develop termination 
criteria but also to motivate and design the computational method itself. 

In preparing this book, a special effort has been made to make certain that 
it is self-contained and that it is suitable both as a text and as a reference. Within 
each chapter, detailed numerical examples and graphical illustrations have been 
provided to aid the reader in understanding the concepts and methods discussed. 
In addition, each chapter contains many exercises. These include (1) simple 
numerical problems to reinforce the material discussed in the text, (2) problems 
introducing new material related to that developed in the text, and (3) theoretical 
exercises meant for advanced students. At the end of each chapter, extensions, 
references, and material related to that covered in the text are presented. These 
notes should be useful to the reader for further study. The book also contains an 
extensive bibliography. 

Chapter 1 gives several examples of problems from different engineering 
disciplines that can be viewed as nonlinear programs. Problems involving 
optimal control, both discrete and continuous, are discussed and illustrated by 
examples from production, inventory control, and highway design. Examples of 
a two-bar truss design and a two-bearing journal design are given. Steady-state 
conditions of an electrical network are discussed from the point of view of 
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obtaining an optimal solution to a quadratic program. A large-scale nonlinear 
model arising in the management of water resources is developed, and nonlinear 
models arising in stochastic programming and in location theory are discussed. 
Finally, we provide an important discussion on modeling and on formulating 
nonlinear programs from the viewpoint of favorably influencing the 
performance of algorithms that will ultimately be used for solving them. 

The remaining chapters are divided into three parts. Part 1, consisting of 
Chapters 2 and 3, deals with convex sets and convex functions. Topological 
properties of convex sets, separation and support of convex sets, polyhedral sets, 
extreme points and extreme directions of polyhedral sets, and linear 
programming are discussed in Chapter 2. Properties of convex functions, 
including subdifferentiability and minima and maxima over a convex set, are 
discussed in Chapter 3. Generalizations of convex functions and their 
interrelationships are also included, since nonlinear programming algorithms 
suitable for convex functions can be used for a more general class involving 
pseudoconvex and quasiconvex functions. The appendix provides additional 
tests for checking generalized convexity properties, and we discuss the concept 
of convex envelopes and their uses in global optimization methods through the 
exercises. 

Part 2, which includes Chapters 4 through 6,  covers optimality conditions 
and duality. In Chapter 4, the classical Fritz John (FJ) and the Karush-Kuhn- 
Tucker (KKT) optimality conditions are developed for both inequality- and 
equality-constrained problems. First- and second-order optimality conditions are 
derived and higher-order conditions are discussed along with some cautionary 
examples. The nature, interpretation, and value of FJ and KKT points are also 
described and emphasized. Some foundational material on both first- and 
second-order constraint qualifications is presented in Chapter 5 .  We discuss 
interrelationships between various proposed constraint qualifications and 
provide insights through many illustrations. Chapter 6 deals with Lagrangian 
duality and saddle point optimality conditions. Duality theorems, properties of 
the dual function, and both differentiable and nondifferentiable methods for 
solving the dual problem are discussed. We also derive necessary and sufficient 
conditions for the absence of a duality gap and interpret this in terms of a 
suitable perturbation function. In addition, we relate Lagrangian duality to other 
special forms of duals for linear and quadratic programming problems. Besides 
Lagrangian duality, there are several other duality formulations in nonlinear 
programming, such as conjugate duality, min-max duality, surrogate duality, 
composite Lagrangian and surrogate duality, and symmetric duality. Among 
these, the Lagrangian duality seems to be the most promising in the areas of 
theoretical and algorithmic developments. Moreover, the results that can be 
obtained via these alternative duality formulations are closely related. In view of 
this, and for brevity, we have elected to discuss Lagrangian duality in the text 
and to introduce other duality formulations only in the exercises. 

Part 3, consisting of Chapters 7 through 11 , presents algorithms for 
solving both unconstrained and constrained nonlinear programming problems. 
Chapter 7 deals exclusively with convergence theorems, viewing algorithms as 
point-to-set maps. These theorems are used actively throughout the remainder of 
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the book to establish the convergence of the various algorithms. Likewise, we 
discuss the issue of rates of convergence and provide a brief discussion on 
criteria that can be used to evaluate algorithms. 

Chapter 8 deals with the topic of unconstrained optimization. To begin, 
we discuss several methods for performing both exact and inexact line searches, 
as well as methods for minimizing a function of several variables. Methods 
using both derivative and derivative-free information are presented. Newton's 
method and its variants based on trust region and the Levenberg-Marquardt 
approaches are discussed, Methods that are based on the concept of conjugacy 
are also covered. In particular, we present quasi-Newton (variable metric) and 
conjugate gradient (fixed metric) algorithms that have gained a great deal of 
popularity in practice. We also introduce the subject of subgradient optimization 
methods for nondifferentiable problems and discuss variants fashioned in the 
spirit of conjugate gradient and variable metric methods. Throughout, we 
address the issue of convergence and rates of convergence for the various 
algorithms, as well as practical implementation aspects. 

In Chapter 9 we discuss penalty and barrier function methods for solving 
nonlinear programs, in which the problem is essentially solved as a sequence of 
unconstrained problems. We describe general exterior penalty function methods, 
as well as the particular exact absolute value and the augmented Lagrangian 
penalty function approaches, along with the method of multipliers. We also 
present interior barrier function penalty approaches. In all cases, implementation 
issues and convergence rate characteristics are addressed. We conclude this 
chapter by describing a polynomial-time primal-dual path-following algorithm 
for linear programming based on a logarithmic barrier function approach. This 
method can also be extended to solve convex quadratic programs polynomially. 
More computationally effective predictor-corrector variants of this method are 
also discussed. 

Chapter 10 deals with the method of feasible directions, in which, given a 
feasible point, a feasible improving direction is first found and then a new, 
improved feasible point is determined by minimizing the objective function 
along that direction. The original methods proposed by Zoutendijk and 
subsequently modified by Topkis and Veinott to assure convergence are 
presented. This is followed by the popular successive linear and quadratic 
programming approaches, including the use of C ,  penalty functions either 

directly in the direction-finding subproblems or as merit functions to assure 
global convergence. Convergence rates and the Maratos effect are also 
discussed. This chapter also describes the gradient projection method of Rosen 
along with its convergent variants, the reduced gradient method of Wolfe and 
the generalized reduced gradient method, along with its specialization to 
Zangwill's convex simplex method. In addition, we unify and extend the 
reduced gradient and the convex simplex methods through the concept of 
suboptimization and the superbasic-basic-nonbasic partitioning scheme. 
Effective first- and second-order variants of this approach are discussed. 

Finally, Chapter 11 deals with some special problems that arise in 
different applications as well as in the solution of other nonlinear programming 
problems. In particular, we present the linear complementary, quadratic 
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separable, linear fractional, and geometric programming problems. 
Methodologies used for solving these problems, such as the use of Lagrangian 
duality concepts in the algorithmic development for geometric programs, serve 
to strengthen the ideas described in the preceding chapters. Moreover, in the 
context of solving nonconvex quadratic problems, we introduce the concept of 
the reformulation-linearizatiodconvexijication technique (RLT) as a global 
optimization methodology for finding an optimal solution. The RLT can also be 
applied to general nonconvex polynomial and factorable programming problems 
to determine global optimal solutions. Some of these extensions are pursued in 
the exercises in Chapter 1 1. The Notes and References section provides 
directions for further study. 

This book can be used both as a reference for topics in nonlinear 
programming and as a text in the fields of operations research, management 
science, industrial engineering, applied mathematics, and in engineering 
disciplines that deal with analytical optimization techniques. The material 
discussed requires some mathematical maturity and a working knowledge of 
linear algebra and calculus. For the convenience of the reader, Appendix A 
summarizes some mathematical topics used frequently in the book, including 
matrix factorization techniques. 

As a text, the book can be used (1) in a course on foundations of 
optimization and ( 2 )  in a course on computational methods as detailed below. It 
can also be used in a two-course sequence covering all the topics. 

1. Foundations of Optimization 

This course is meant for undergraduate students in applied mathematics and for 
graduate students in other disciplines. The suggested coverage is given 
schematically below, and it can be covered in the equivalent of a one-semester 
course. Chapter 5 could be omitted without loss of continuity. A reader familiar 
with linear programming may also skip Section 2.7. 

2. Computational Methods in Nonlinear Programming 

This course is meant for graduate students who are interested in algorithms for 
solving nonlinear programs. The suggested coverage is given schematically 
below, and it can be covered in the equivalent of a one-semester course. The 
reader who is not interested in convergence analyses may skip Chapter 7 and the 
discussion related to convergence in Chapters 8 through 11. The minimal 
background on convex analysis and optimality conditions needed to study 
Chapters 8 through 11 is summarized in Appendix B for the convenience of the 
reader. Chapter 1, which gives many examples of nonlinear programming 
problems, provides a good introduction to the course, but no continuity will be 
lost if this chapter is skipped. 
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Introduction 
Chapter 

1 

Operations research analysts, engineers, managers, and planners are traditionally 
confronted by problems that need solving. The problems may involve arriving at 
an optimal design, allocating scarce resources, planning industrial operations, or 
finding the trajectory of a rocket. In the past, a wide range of solutions was con- 
sidered acceptable. In engineering design, for example, it was common to 
include a large safety factor. However, because of continued competition, it is 
no longer adequate to develop only an acceptable design. In other instances, 
such as in space vehicle design, the acceptable designs themselves may be lim- 
ited. Hence, there is a real need to answer such questions as: Are we making the 
most effective use of our scarce resources? Can we obtain a more economical 
design? Are we taking risks within acceptable limits? In response to an ever- 
enlarging domain of such inquiries, there has been a very rapid growth of opti- 
mization models and techniques. Fortunately, the parallel growth of faster and 
more accurate sophisticated computing facilities has aided substantially in the 
use of the techniques developed. 

Another aspect that has stimulated the use of a systematic approach to 
problem solving is the rapid increase in the size and complexity of problems as a 
result of the technological growth since World War 11. Engineers and managers 
are called upon to study all facets of a problem and their complicated interrela- 
tionships. Some of these interrelationships may not even be well understood. 
Before a system can be viewed as a whole, it is necessary to understand how the 
components of the system interact. Advances in the techniques of measurement, 
coupled with statistical methods to test hypotheses, have aided significantly in 
this process of studying the interaction between components of the system. 

The acceptance of the field of operations research in the study of indus- 
trial, business, military, and governmental activities can be attributed, at least in 
part, to the extent to which the operations research approach and methodology 
have aided the decision makers. Early postwar applications of operations 
research in the industrial context were mainly in the area of linear programming 
and the use of statistical analyses. Since that time, efficient procedures and com- 
puter codes have been developed to handle such problems. This book is con- 
cerned with nonlinear programming, including the characterization of optimal 
solutions and the development of algorithmic procedures. 

In this chapter we introduce the nonlinear programming problem and 
discuss some simple situations that give rise to such a problem. Our purpose is 
only to provide some background on nonlinear problems; indeed, an exhaustive 
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2 Chapter 1 

discussion of potential applications of nonlinear programming can be the subject 
matter of an entire book. We also provide some guidelines here for constructing 
models and problem formulations from the viewpoint of enhancing algorithmic 
efficiency and problem solvability. Although many of these remarks will be 
better appreciated as the reader progresses through the book, it is best to bear 
these general fundamental comments in mind at the very onset. 

1.1 Problem Statement and Basic Definitions 

Consider the following nonlinear programming problem: 

Minimize f ( x )  

subject to g j ( x )  5 0 for i = I, ..., m 

hi(x) = 0 for i = I, ..., t 
X E X ,  

wheref; g, ,..., g,,,, h, ,..., h, are functions defined on R", X is a subset of R", 

and x is a vector of n components x,, ..., xn. The above problem must be solved 

for the values of the variables x l ,  ..., xn that satisfy the restrictions and mean- 
while minimize the function$ 

The function f is usually called the objective function, or the criterion 
function. Each of the constraints g,(x)  2 0 for i = 1 ,..., m is called an inequality 

constraint, and each of the constraints h,(x) = 0 for i = 1, ...,t is called an equal- 

ity constraint. The set X might typically include lower and upper bounds on the 
variables, which even if implied by the other constraints can play a useful role in 
some algorithms. Alternatively, this set might represent some specially struc- 
tured constraints that are highlighted to be exploited by the optimization routine, 
or it might represent certain regional containment or other complicating con- 
straints that are to be handled separately via a special mechanism. A vector 
x E X satisfying all the constraints is called a feasible solution to the problem. 
The collection of all such solutions forms the feasible region. The nonlinear 
programming problem, then, is to find a feasible point X such that f ( x )  2 f (X) 
for each feasible point x. Such a point SZ is called an optimal solution, or simply 
a solution, to the problem. If more than one optimum exists, they are referred to 
collectively as alternative optimal solutions. 

Needless to say, a nonlinear programming problem can be stated as a 
maximization problem, and the inequality constraints can be written in the form 
g,(x)  2 0 for i = 1, ..., m. In the special case when the objective function is linear 
and when all the constraints, including the set X, can be represented by linear 
inequalities andor  linear equations, the above problem is called a linear pro- 
gram. 

To illustrate, consider the following problem: 



2 2 Minimize (xl - 3) + (x2 - 2) 

subject to "12 - x2 - 3 I 0 

x2-110 

-XI 10. 

The objective function and the three inequality constraints are 

f (x1 , x2 1 = (Xl - 3>2 + (x2 - 212 
2 

gl(Xl,x2) = x1 -%-3  

g2(XlJ2) = x2 -1 

g3(xlrx2) = -XI- 

Figure 1.1 illustrates the feasible region. The problem, then, is to find a 
point in the feasible region having the smallest possible value of 

(xl - 3)2 + (x2 - 2)2. Note that points (xl , x2) with (xl - 3) + (x2 - 2) = c rep- 

resent a circle with radius & and center (3, 2). This circle is called the contour 
of the objective function having the value c. Since we wish to minimizef; we 
must find the contour circle having the smallest radius that intersects the feasible 
region. As shown in Figure 1.1, the smallest such circle has c = 2 and intersects 
the feasible region at the point (2, 1). Therefore, the optimal solution occurs at 
the point (2, 1) and has an objective value equal to 2. 

The approach used above is to fmd an optimal solution by determining the 
objective contour having the smallest objective value that intersects the feasible 
region. Obviously, this approach of solving the problem geometrically is only 
suitable for small problems and is not practical for problems having more than 
two variables or those having complicated objective and constraint functions. 

2 2 

.,,' Contours of the 
objective function 

Figure 1.1 Geometric solution of a nonlinear problem. 
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Notation 

The following notation is used throughout the book. Vectors are denoted by 
boldface lowercase Roman letters, such as x, y ,  and z. All vectors are column 
vectors unless stated explicitly otherwise. Row vectors are the transpose of col- 

umn vectors; for example, xf denotes the row vector (xl, ..., x,,). The n-dimen- 
sional real Euclidean space, composed of all real vectors of dimension n, is 

denoted by R". Matrices are denoted by boldface capital Roman letters, such as 
A and B. Scalar-valued functions are denoted by lowercase Roman or Greek 
letters, such as f; g, and 0. Vector-valued functions are denoted by boldface 
lowercase Roman or Greek letters, such as g and Y. Point-to-set maps are 
denoted by boldface capital Roman letters such as A and B. Scalars are denoted 
by lowercase Roman and Greek letters, such as k,  A, and a. 

1.2 Illustrative Examples 

In this section we discuss some example problems that can be formulated as 
nonlinear programs. In particular, we discuss optimization problems in the fol- 
lowing areas: 

A. Optimal control 
B. Structural design 
C. Mechanical design 
D. Electrical networks 
E. Water resources management 
F. Stochastic resource allocation 
G. Location of facilities 

A. Optimal Control Problems 

As we shall learn shortly, a discrete control problem can be stated as a nonlinear 
programming problem. Furthermore, a continuous optimal control problem can 
be approximated by a nonlinear programming problem. Hence, the procedures 
discussed later in the book can be used to solve some optimal control problems. 

Discrete Optimal Control 

Consider a fixed-time discrete optimal control problem of duration K periods. At 
the beginning of period k, the system is represented by the state vector Y k - 1 .  A 

control vector u k  changes the state of the system from Y k - 1  to y k  at the end of 
period k according to the following relationship: 

y k  = Yk-1 + b ( Y k - 1 ,  U k  ) for k = 1,. . . , K. 

Given the initial state y o ,  applying the sequence of controls u l ,  ..., uK 

would result in a sequence of state vectors y l  , . . . , y K  called the trajectory. This 
process is illustrated in Figure 1.2. 
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Figure 1.2 Discrete control system. 

A sequence of controls u1, ..., uK and a sequence of state vectors yo, 

y l ,  . . . , yK are called admissible or feasible if they satisfy the following restric- 
tions: 

for k = 1, ..., K 

for k = 1, ..., K 

where ,..., Y K ,  Ul ,..., U K ,  and D are specified sets, and Y is a known func- 
tion, usually called the trajectory constraint function. Among all feasible con- 
trols and trajectories, we seek a control and a corresponding trajectory that 
optimize a certain objective function. The discrete control problem can thus be 
stated as follows: 

Minimize a(y0 ,y1  ,..., yK ,u l , .  . . , u K )  

Y k  yk for k = I, ..., K 

U k  Euk for k = 1, ..., K 

subject to yk = Yk-1 + $k(Yk-l,Uk) for k = 1 ,..., K 

y ( Y O , . . . ,  Y K  ,Ul, . . . ,uK) E D. 

Combining y1 ,. . . , y K ,  u l , .  . . ,uK as the vector x, and by suitable choices of g, h, 
and X, it can easily be verified that the above problem can be stated as the 
nonlinear programming problem introduced in Section 1.1. 

We illustrate the formulation of a 
discrete control problem with the following production-inventory example. 
Suppose that a company produces a certain item to meet a known demand, and 
suppose that the production schedule must be determined over a total of K 
periods. The demand during any period can be met from the inventory at the 
beginning of the period and the production during the period. The maximum 
production during any period is restricted by the production capacity of the 
available equipment so that it cannot exceed b units. Assume that adequate tem- 
porary labor can be hired when needed and laid off if superfluous. However, to 
discourage heavy labor fluctuations, a cost proportional to the square of the dif- 
ference in the labor force during any two successive periods is assumed. Also, a 
cost proportional to the inventory carried forward from one period to another is 

Production-Inventory Example 
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incurred. Find the labor force and inventory during periods I ,  ..., K such that the 
demand is satisfied and the total cost is minimized. 

In this problem, there are two state variables, the inventory level 1, and 

the labor force Lk at the end of period k. The control variable U k  is the labor 

force acquired during period k (uk < 0 means that the labor is reduced by an 

amount - u k ) .  The production-inventory problem can thus be stated as follows: 

K 

k=l 
Minimize c (clui + czlk) 

subject to Lk = Lk-1 f U k  

o < L k  < b l p  

1, 2 0  

fork = I, ..., K 

1, = 1k-l + PLk-1 - dk for k = 1, ..., K 

fork = I, ..., K 

for k = I, ..., K ,  

where the initial inventory lo and the initial labor force are known, dk is the 
known demand during period k,  and p is the number of units produced per 
worker during any given period. 

Continuous Optimal Control 

In the case of a discrete control problem, the controls are exercised at discrete 
points. We now consider a fixed-time continuous control problem in which a 
control function, u, is to be exerted over the planning horizon [0, r ] .  Given the 
initial state y o ,  the relationship between the state vector y and the control vector 
u is governed by the following differential equation: 

Y(t) = 4[Y(t), u(t)l for t E [O,TI. 

The control function and the corresponding trajectory function are called admis- 
sible if the following restrictions hold true: 

Y(0 E y 
u ( t )  E U 

for t E [0, TI 

for t E [0, TI 

'Y(Y,U) E D. 

A typical example of the set U is the collection of piecewise continuous 
functions on [0, r]  such that a I u(t )  I b for t E [O,T]. The optimal control prob- 

lem can be stated as follows, where the initial state vector y(0) = yo is given: 

Minimize J~a[y( t ) ,u( t ) ]  dt 

subject to y ( t )  = $[y(t), u(t)]  for t E [0, TI 

Y(t) E y for t E [0, TI 
u ( t )  E u for t E [0, TI 

'Y(Y, u) E D. 
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A continuous optimal control problem can be approximated by a discrete 
problem. In particular, suppose that the planning region [0, r ]  is divided into K 
periods, each of duration A,  such that K A  = T. Denoting y(kA) by yk  and u(kA) 

by U k  , for k = 1, ..., K ,  the above problem can be approximated as follows, where 

the initial state y o  is given: 

K 

k = l  

yk  = Y k - 1  + @(Yk- i ,uk )  

Minimize 1 a ( Y k ,  u k )  

subject to for k = 1 ,..., K 

Y k E Y  for k = 1, ..., K 

U k  fork = I ,  ..., K 

y(YO 9 ...) Y K  7 u I >. . ., U K  ) D. 

Example of Rocker Launching Consider the problem of a rocket that 
is to be moved from ground level to a height 7 in time T. Let y ( t )  denote the 

height from the ground at time t ,  and let u(r) denote the force exerted in the ver- 
tical direction at time t. Assuming that the rocket has mass m, the equation of 
motion is given by 

my(t)  + mg = u(t)  fort E [0, TI,  

where j ( t )  is the acceleration at time t and g is the deceleration due to gravity. 

Furthermore, suppose that the maximum force that could be exerted at any time 
cannot exceed b. If the objective is to expend the smallest possible energy so 
that the rocket reaches an altitude v at time T, the problem can be formulated as 
follows: 

Minimize J l \u ( t ) l j ( t )  dt 

subject to m j ( t )  + mg = u( t )  for t E [0, T ]  

(4>( 5 b for t E [0, TI 

Y ( T )  = F> 
where y ( 0 )  = 0. This problem having a second-order differential equation can be 
transformed into an equivalent problem having two first-order differential 
equations. This can be done by the following substitution: yl = y and y2 = jl .  
Therefore, my + mg = u is equivalent to j l ,  = y2 and my, + mg = u. Hence, the 

problem can be restated as follows: 

Minimize l l (u ( t ) l y2( t )  dt 

subject to y, ( t )  = y2 ( t )  

mj2  ( t )  = u(t)  - mg 

lu(t>j 5 b 

for t E [0, T ]  

for t E [O,T] 

for t E [0, T ]  

Yl (TI = v? 
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where yl(0) = y2(0) = 0. Suppose that we divide the interval [0, 7'l into K 

periods. To simplify the notation, suppose that each period has length l. Denot- 

ing the force, altitude, and velocity at the end of period k by U k ,  yl,k, and y2,k, 

respectively, for k = 1, ..., K,  the above problem can be approximated by the fol- 
lowing nonlinear program, where yl,o = y2,0 = 0: 

subject to Yl,k - y1,k-1 = Y2,k-1 

I U k I s b  

fork = 1, ..., K 

for k = 1, ..., K 
m(y2.k -Y2,k-1)  = Uk -mg for k = 1 ,..., K 

YI ,K  = 7. 
The interested reader may refer to Luenberger 11969, 1973d19841 for this 
problem and other continuous optimal control problems. 

Suppose that a road is to be 
constructed over uneven terrain. The construction cost is assumed to be pro- 
portional to the amount of dirt added or removed. Let T be the length of the 
road, and let c(t) be the known height of the terrain at any given t E [0, TI. The 
problem is to formulate an equation describing the height of the road y(t)  for 
t E [0, TI. 

To avoid excessive slopes on the road, the maximum slope must not 
exceed 4 in magnitude; that is, I j(t) l< 4. In addition, to reduce the roughness 

of the ride, the rate of change of the slope of the road must not exceed 9 in 

magnitude; that is, I j ; ( t ) l Ib .  Furthermore, the end conditions y(0) = a and y(T) 

= b must be observed. The problem can thus be stated as follows: 

Minimize lLly(t) -c(t)ldf 

subject to /j(t)l < 4 for t E [0, TI 

for t E [0, TI 

Example of Highway Construction 

(Y(t ) l<  9 

y (T)  = 6. 
Y (0 )  = a 

Note that the control variable is the amount of dirt added or removed; that is, 

Now let y1 = y and y2 = y,  and divide the road length into K intervals. 

For simplicity, suppose that each interval has length C. Denoting c(k), y l (k) ,  and 

y2 (k), by ck , yl k , and y2 k ,  respectively, the above problem can be approxi- 

mated by the following nonlinear program: 

~ ( t )  =y(t)  - c(t). 
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The interested reader may refer to Citron [ 19691 for more details of this exam- 
ple. 

B. Structural Design 

Structural designers have traditionally endeavored to develop designs that could 
safely carry the projected loads. The concept of optimality was implicit only 
through the standard practice and experience of the designer. Recently, the 
design of sophisticated structures, such as aerospace structures, has called for 
more explicit consideration of optimality. 

The main approaches used for minimum weight design of structural sys- 
tems are based on the use of mathematical programming or other rigorous 
numerical techniques combined with structural analysis methods. Linear pro- 
gramming, nonlinear programming, and Monte Carlo simulation have been the 
principal techniques used for this purpose. 

As noted by Batt and Gellatly [ 19741: 

The total process for the design of a sophisticated aero- 
space structure is a multistage procedure that ranges from 
consideration of overall systems performance down to the 
detailed design of individual components. While all levels 
of the design process have some greater or lesser degree 
of interaction with each other, the past state-of-the-art in 
design has demanded the assumption of a relatively loose 
coupling between the stages. Initial work in structural 
optimization has tended to maintain this stratification of 
design philosophy, although this state of affairs has 
occurred, possibly, more as a consequence of the method- 
ology used for optimization than from any desire to per- 
petuate the delineations between design stages. 

The following example illustrates how structural analysis methods can be 
used to yield a nonlinear programming problem involving a minimum-weight 
design of a two-bar truss. 

Consider the planar truss shown in Figure 1.3. The 
truss consists of two steel tubes pinned together at one end and fixed at two 
pivot points at the other end. The span, that is, the distance between the two 
pivots, is fixed at 2s. The design problem is to choose the height of the truss and 

Two-Bar Truss 



10 Chapter 1 

the thickness and average diameter of the steel tubes so that the truss will sup- 
port a load of 2 W while minimizing the total weight of the truss. 

Denote the average tube diameter, tube thickness, and truss height by XI, 

x2, and x3, respectively. The weight of the steel truss is then given by 

2zpxlx2(s2 +x:)~’~, where p is the density of the steel tube. The following 
constraints must be observed: 

1. Because of space limitations, the height of the truss must not 
exceed 4 ; that is, x3 < 4 .  

The ratio of the diameter of the tube to the thickness of the tube 
must not exceed 9; that is, xllx2 2 9. 
The compression stress in the steel tubes must not exceed the steel 
yield stress. This gives the following constraint, where 4 is a con- 
stant: 

2. 

3. 

4. The height, diameter, and thickness must be chosen such that the tubes 
will not buckle under the load. This constraint can be expressed 
mathematically as follows, where b4 is a known parameter: 

2 
W ( S 2  + x 3 3 ’ 2  I b4X1X3(X? +x2). 

From the above discussion, the truss design problem can be stated as the 
following nonlinear programming problem: 

Load2W gx2 
Section at y - y  - 

f- Span 2s 

Figure 1.3 Two-bar truss. 
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C. Mechanical Design 

In mechanical design, the concept of optimization can be used in conjunction 
with the traditional use of statics, dynamics, and the properties of materials. 
Asimov [1962], Fox [1971], and Johnson [ 19711 give several examples of opti- 
mal mechanical designs using mathematical programming. As noted by Johnson 
[ 197 11, in designing mechanisms for high-speed machines, significant dynamic 
stresses and vibrations are inherently unavoidable. Hence, it is necessary to 
design certain mechanical elements on the basis of minimizing these undesirable 
characteristics. The following example illustrates an optimal design for a bear- 
ing journal. 

Consider a two-bearing journal, each of 
length L, supporting a flywheel of weight W mounted on a shaft of diameter D, 
as shown in Figure 1.4. We wish to determine L and D that minimize frictional 
moment while keeping the shaft twist angle and clearances within acceptable 
limits. 

A layer of oil film between the journal and the shaft is maintained by 
forced lubrication. The oil film serves to minimize the frictional moment and to 

Journal Design Problem 

Figure 1.4 Journal bearing assembly. 
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limit the heat rise, thereby increasing the life of the bearing. Let h, be the small- 
est oil film thickness under steady-state operation. Then we must have 

h, Ih, 5 6 ,  

where h, is the minimum oil film thickness to prevent metal-to-metal contact 

and S is the radial clearance specified as the difference between the journal 
radius and the shaft radius. A further limitation on h, is imposed by the 
following inequality: 

O < e < Z ,  

where e is the eccentricity ratio, defined by e = 1 - (h,/S),  and 2 is a prespecified 
upper limit. 

Depending on the point at which the torque is applied on the shaft, or the 
nature of the torque impulses, and on the ratio of the shear modulus of elasticity 
to the maximum shear stress, a constant k,  can be specified such that the angle 
of twist of the shaft is given by 

1 e=-. 
kl D 

Furthermore, the frictional moment for the two bearings is given by 

w 

SJ1-k D3L7 
A4 = k2 

where k2 is a constant that depends on the viscosity of the lubricating oil and w 

is the rotational speed. Also, based on hydrodynamic considerations, the safe 
load-carrying capacity of a bearing is given by 

w 
c = k3 7 DL34(e), 

S 

where k3 is a constant depending on the viscosity of the oil and 

[ ~ r ~ ( l - - e ~ ) + i 6 e ~ ] ~ ’ ~  
e 

+(e)  = ___ 
(1 - e2 l2 

Obviously, we need to have 2c 2 W to carry the weight W of the flywheel. 

Thus, if 6, 4, and Z are specified, one typical design problem is to find 

D, L,  and h, to minimize the frictional moment while keeping the twist angle 
within an acceptable limit a. The model is thus given by: 
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w 

s n  D3L 
Minimize 

I f f  subject to ~ 

1 

kl D 

k l -  O < l - - I e  
s 

D 2 0  

L 2 0. 

For a thorough discussion of this problem, the reader may refer to 
Asimov 119621. The reader can also formulate the model to minimize the twist 
angle subject to the frictional moment being within a given maximum limit M'. 
We could also conceive of an objective function involving both the frictional 
moment and the angle of twist, if proper weights for these factors are selected to 
reflect their relative importance. 

D. Electrical Networks 

It has been well recognized for over a century that the equilibrium conditions of 
an electrical or a hydraulic network are attained as the total energy loss is mini- 
mized. Dennis [ 19591 was perhaps the first to investigate the relationship 
between electrical circuit theory, mathematical programming, and duality. The 
following discussion is based on his pioneering work. 

An electrical circuit can be described by, for example, n brunches con- 
necting m nodes. In the following, we consider a direct-current network and 
assume that the nodes and each connecting branch are defined so that only one 
of the following electrical devices is encountered: 

1. A voltage source that maintains a constant branch voltage vs irre- 

spective of the branch current cs. Such a device absorbs power 

equal to -vscs. 

A diode that permits the branch current cd to flow in only one 
direction and consumes zero power regardless of the branch cur- 
rent or voltage. Denoting the latter by vd, this can be stated as 

2. 

3. A resistor that consumes power and whose branch current c, and 

branch voltage v, are related by 
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where r is the resistance of the resistor. The power consumed is 
given by 

The three devices are shown schematically in Figure 1.5. The current 
flow in the diagram is shown from the negative terminal of the branch to the 
positive terminal of the branch. The former is called the origin node, and the 
latter is the ending node of the branch. If the current flows in the opposite direc- 
tion, the corresponding branch current will have a negative value, which, inci- 
dentally, is not permissible for the diode. The same sign convention will be used 
for branch voltages. 

A network having a number of branches can be described by a node- 
branch incidence matrix N, whose rows correspond to the nodes and whose 
columns correspond to the branches. A typical element nU of N is given by 

-1 if branch j has node i as its origin 

n--  = 1 if branch j ends in node i 4 0 otherwise. 

For a network having several voltage sources, diodes, and resistors, let N s  
denote the node-branch incidence matrix for all the branches having voltage 
sources, N, denote the node-branch incidence matrix for all branches having 

diodes, and NR denote the node-branch incidence matrix for all branches having 
resistors. Then, without loss of generality, we can partition N as 

N = "s, N,, NR]. 

Similarly, the column vector c, representing the branch currents, can be parti- 
tioned as 

VS V r  

-t-y - 7- + -  - + - -----+ - 
CS Cd C r  

Voltage source Diode Resistor 

Figure 1.5 Typical electrical devices in a circuit. 
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and the column vector v, representing the branch voltages, can be written as 

Associated with each node i is a node potential pi. The column vector p, 
representing node potentials, can be written as 

Pf =[P;>Pb?Pkl. 

The following basic laws govern the equilibrium conditions of the net- 
work: 

Kirchhoff s node law. The sum of all currents entering a node is equal to the 
sum of all currents leaving the node. This can be written as Nc = 0, or 

N s c s  + NDcD + NRcR = 0. (1.4) 

Kirchhoffs loop law. The difference between the node potentials at the ends of 

each branch is equal to the branch voltage. This can be written as N'p = v, or 

Nbp = V D  

N i p  = V R  

In addition, we have the equations representing the characteristics of the electri- 
cal devices. From (1 .1  ), for the set of diodes, we have 

VD 20 ,  CD 2 0, V b C D  =o,  (1.6) 

and from (1.2), for the resistors, we have 

V R  = -RcR, 

where R is a diagonal matrix whose diagonal elements are the resistance values. 

we wish to find vD,  v R ,  c, and p satisfying these conditions. 

discussed in Section 1 1.2: 

Thus, (1.4) - (1.7) represent the equilibrium conditions of the circuit, and 

Now, consider the following quadratic programming problem, which is 

1 

2 
Nscs + NDcD + NRCR = 0 

Minimize -ckRcR - vies 
subject to 

-cD 5 0. 
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Here we wish to determine the branch currents cs ,  cD,  and C R  to minimize the 

sum of half the energy absorbed in the resistors and the energy loss of the 
voltage source. From Section 4.3 the optimality conditions for this problem are 

N ~ U - V ~  = 0 

N ~ U - I U ~  = o 
N ~ U + R C ~  = o 

NSCS +NDcD + N R c R  = 0 
t 

CDUO = 0 

cD,uO 2 O, 

where u and uo are column vectors representing the Lagrangian multipliers. It 

can readily be verified that letting vD = uo, p = u, and noting (1.7), the condi- 

tions above are precisely the equilibrium conditions (1.4) - (1.7). Note that the 
Lagrangian multiplier vector u is precisely the node potential vector p. 

Associated with the above problem is another problem, referred to as the 

dual problem (given below), where G = R-' is a diagonal matrix whose ele- 
ments are the conductances and where vs is fixed. 

1 t  Maximize --vRGvR 
2 

subject to N i p  = v s  

N ~ P - V ~  = O  

N ~ P - V ~  = o 
VD 2 0. 

Here, v$vR is the power absorbed by the resistors, and we wish to find the 

branch voltages vD and vR and the potential vector p. 

The optimality conditions for this problem also are precisely (1.4H1.7). 
Furthermore, the Lagrangian multipliers for this problem are the branch currents. 

It is interesting to note by Theorem 6.2.4, the main Lagrangian duality 
theorem, that the objective function values of the above two problems are equal 
at optimality; that is, 

1 1 I 
- C ~ R C ~  + - V ~ C V R  - VSCS = 0. 
2 2 

Since G = R-' and noting (1.6) and (1.7), the above equation reduces to 

t 
V k C R  + VbcD + V S C S  = 0, 

which is precisely the principle of energy conservation. 
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The reader may be interested in other applications of mathematical pro- 
gramming for solving problems associated with generation and distribution of 
electrical power. A brief discussion, along with suitable references, is given in  
the Notes and References section at the end of the chapter. 

E. Water Resources Management 

We now develop an optimization model for the conjunctive use of water 
resources for both hydropower generation and agricultural use. Consider the 
river basin depicted schematically in  Figure 1.6. 

A dam across the river provides the surface water storage facility to pro- 
vide water for power generation and agriculture. The power plant is assumed to 
be close to the dam, and water for agriculture is conveyed from the dam, directly 
or after power generation, through a canal. 

There are two classes of variables associated with the problem: 

1. Design variables: What should be the optimal capacity S of the 
reservoir, the capacity U of the canal supplying agricultural water, 
and the capacity E of the power plant? 

Operational variables: How much water should be released for 
agricultural power generation and for other purposes? 

From Figure 1.6, the following operational variables can readily be iden- 

2.  

tified for thejth period: 

x; = water released from the dam for agriculture 

x," = water released for power generation and then for agricultural 

use 

A 
J 

+ .r 

PM 

Figure 1.6 Typical river basin. 
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x;" = water released for power generation and then returned down- 

x y  = water released from the dam directly downstream. 

stream 

For the purpose of a planning model, we shall adopt a planning horizon of 
N periods, corresponding to the life span of major capital investments, such as 
that for the dam. The objective is to minimize the total discounted costs associ- 
ated with the reservoir, power plant, and canal, minus the revenues from power 
generation and agriculture. These costs and revenues are discussed below. 

Associated with the power plant, we have a cost of Power Plant: 

where C(E> is the cost of the power plant, associated structures, and transmis- 

sion facilities if the power plant capacity is E, and t e ( E )  is the annual opera- 

tion, maintenance, and replacement costs of the power facilities. Here, P, is a 

discount factor that gives the present worth of the cost in period j .  See 

Mobasheri [1968] for the nature of the functions C(E) and e e ( E ) .  

can be expressed as 
Furthermore, the discounted revenues associated with the energy sales 

where FJ is the known firm power demand that can be sold at p f  and fJ is the 

power production. Here 6 = 1 if f J  > F J ,  and the excess power fJ - FJ can be 

sold at a dump price of pd .  On the other hand, 6= 0 if fJ < FJ , and a penalty of 

p,(FJ - f J )  is incurred since power has to be bought from adjoining power net- 

works. 

Reservoir and Canal: The discounted capital costs are given by 

C,(S) + a c m ,  (1.10) 

where C,(S) is the cost of the reservoir if its capacity is S, and C,(U) is the 
capital cost of the main canal if its capacity is U Here a is a scalar to account 
for the lower life span of the canal compared to that of the reservoir. 

The discounted operational costs are given by 

(1.11) 
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The interested reader may refer to Maass et al. [I9671 and Mobasheri 
[ 19681 for a discussion on the nature of the functions discussed here. 

Irrigation Revenues: The crop yield from irrigation can be expressed as 
a function R of the water used for irrigation during periodj as shown by Minhas, 
et al. [ 19741. Thus, the revenue from agriculture is given by 

(1.12) 

Here, for convenience, we have neglected the water supplied through rainfall. 
Thus far we have discussed the various terms in the objective function. 

The model must also consider the constraints imposed on the design and 
decision variables. 

Clearly, the power generated cannot Power Generation Constraints: 
exceed the energy potential of the water supplied, so that 

(1.13) 

where Y ( s J )  is the head created by the water s, stored in the reservoir during 

period j ,  y is the power conversion factor, and e is the efficiency of the power 
system. (Refer to O'Laoghaine and Himmelblau I19741 for the nature of the 
function Y.) 

Similarly, the power generated cannot exceed the generating capacity of 
the plant, so that 

f J  ' EeHJ > (1.14) 

where aJ is the load factor defined as the ratio of the average daily production 

to the daily peak production and HJ is the number of operational hours. 

limits; that is, 
Finally, the capacity of the plant has to be within known acceptable 

E' 5 E 2 En. (1.15) 

If we neglect the evaporation losses, the amount 
of water y ,  flowing into the dam must be equal to the change in the amount 

stored in the dam and the water released for different purposes. This can be 
expressed as 

Reservoir Constraints: 

sj + x A  J + x y  + x y  + x y  = y j .  (1.16) 

A second set of constraints states that the storage of the reservoir should 
be adequate and be within acceptable limits; that is, 

s 2 s j  (1.17) 
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S' s s s S". 

Mandatory Water Release Consiraint: 

(1.18) 

It is usually necessary to specify 
that a certain amount of water M ,  is released to meet the downstream water 

requirements. This mandatory release requirement may be specified as 

(1.19) 

Finally, we need to specify that the canal capacity U 

x, M + x y  ' M J .  

x; +x," <u. (1.20) 

Canal Capacity: 
should be adequate to handle the agricultural water. Hence, 

The objective is, then, to minimize the net costs represented by the sum 
of (1 .S), (1. lo), and (1.1 l), minus the revenues given by (1.9) and (1.12). The 
constraints are given by (1.13) to (1.20), together with the restriction that all 
variables are nonnegative. 

F. Stochastic Resource Allocation 

Consider the following linear programming problem: 

Maximize C'X 

subject to A x  I b 
x 2 0, 

where c and x are n-vectors, b is an m-vector, and A = [a,, ..., a,] is an m x n 

matrix. The above problem can be interpreted as a resource allocation model as 
follows. Suppose that we have m resources represented by the vector b. Column 
a, of A represents an activityj, and the variable xJ represents the level of the 

activity to be selected. Activityj at level x, consumes aJxJ of the available 

resources; hence the constraint, A x  = C,"=,a,x, 5 b. If the unit profit of activity 

j is c,, the total profit is I;=, cJxJ = c'x. Thus, the problem can be interpreted 

as finding the best way of allocating the resource vector b to the various 
available activities so that the total profit is maximized. 

For some practical problems, the above deterministic model is not ade- 
quate because the profit coefficients cl, ..., c, are not fixed but are random vari- 

ables. We shall thus assume that c is a random vector with mean F = (5,  ..., 
c,)' and covariance matrix V. The objective function, denoted by z, will thus be 

a random variable with mean C'x and variance x'Vx. 
if we want to maximize the expected value of z ,  we must solve the fol- 

lowing problem: 

- 
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Maximize C'x 

subjectto Ax 5 b 

x 2 0, 

which is a linear programming problem discussed in Section 2.6. On the other 
hand, if the variance of z is to be minimized, we have to solve the problem 

Minimize x'Vx 

subjectto Ax I b 

x 2 0, 

which is a quadratic program as discussed in Section 1 1.2. 

Satisficing Criteria and Chance Constraints 

In maximizing the expected value, we have completely neglected the variance of 
the gain z. On the other hand, while minimizing the variance, we did not take 
into account the expected value of z. In a realistic problem, one would perhaps 
like to maximize the expected value and, at the same time, minimize the vari- 
ance. This is a multiple objective problem, and considerable research has been 
done on dealing with such problems (see Ehrgott [2004], Steur [1986], Zeleny 
[1974], and Zeleny and Cochrane [1973]). However, there are several other 
ways of considering the expected value and the variance simultaneously. 

Suppose one is interested in ensuring that the expected value should be at 
least equal to a certain value Z , frequently referred to as an aspiration level, or 
a satisficing level. The problem can then be stated as: 

Minimize x'Vx 

subjectto Ax 5 b 
- 
c t x  2 t 

x L 0, 

(1.21) 

which is again a quadratic programming problem. 
Another approach that can be adopted is as follows. Let 

a = Prob(c'x 2 Z); that is, a gives the probability that the aspiration level Z will 

be attained. Clearly, one would like to maximize a. Now, suppose that the vector 
of random variables c can be expressed as the function d + yf, where d and f a re  
fixed vectors and y is a random variable. Then 

a = Prob(d'x+yf'xLZ) 

if f'x > 0. Hence, in this case, the problem of maximizing a reduces to: 
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I - 
z - d  x 

Minimize 
f'x 

subject to Ax < b 

x 2 0. 

This is a linear fractional programming problem, a solution procedure for which 
is discussed in Section 1 1.4. 

Alternatively, if we wished to minimize the variance but we also wanted 

to include a constraint that required the probability of the profit cfx exceeding 
the desired value Z to be at least some specified value q, this could be incor- 
porated by using the following chance constraint: 

Now assuming that y is a continuously distributed random variable for which q& 

denotes the upper 1 O O q  percentile value, that is, ProbO, 2 q&) = q, the foregoing 

constraint can be written equivalently as 

This linear constraint can then be used to replace the expected value constraint 
in the model (1.2 1). 

Risk Aversion Model 

The approaches described above for handling the variance and the expected 
value of the return do not take into account the risk aversion behavior of 
individuals. For example, a person who wants to avoid risk may prefer a gain 
with an expected value of $100 and a variance of 10 to a gain with an expected 
value of $1 10 with variance of 30. A person who chooses the expected value of 
$100 is more averse to risk than a person who might choose the alternative with 
an expected value of $1 10. This difference in risk-taking behavior can be taken 
into account by considering the utility of money for the person. 

For most people the value of an additional dollar decreases as their total 
net worth increases. The value associated with a net worth z is called the utility 
of z. Frequently, it is convenient to normalize the utility u so that u = 0 for z = 0 
and u = 1 as z approaches the value a. The function u is called the person's 
utility function and is usually a nondecreasing continuous function. Figure 1.7 
gives two typical utility functions for two people. For person (a), a gain of Az 
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Utility 

TC 

z = Total worth 

Figure 1.7 Utility functions. 

increases the utility by A I  , and a loss of Az decreases the utility by A2. Since A2 

is larger than A, ,  this person would prefer a lower variance. Such a person is 
more averse to risk than a person whose utility function is as in (b) in Figure 1.7. 

Different curves, such as (a) or (b) in Figure 1.7, can be expressed mathe- 
matically as 

u(z)  = 1 -CkZ,  

where k > 0 is called a risk aversion constant. Note that a larger value of k 
results in a more risk-averse behavior. 

Now suppose that the current worth is zero, so that the total worth is 
equal to the gain z. Suppose that c is a normal random vector with mean C and 

covariance matrix V. Then z is a normal random variable with mean Z = C'x and 

variance o2 = xf Vx. In particular, the density function bo f  the gain is given by 

We wish to maximize the expected value of the utility given by 
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= I-exp - E + - k  (T . ( : 2 2 )  

Hence, maximizing the expected value of the utility is equivalent to maximizing 

E - (1 / 2 ) k 2 0 2 .  Substituting for Z and c2, we get the following quadratic pro- 

gram: 

1 

2 
Maximize kc'x -- k2x'Vx 

subject to Ax I b 

x 2 0 .  

Again, this can be solved by using the methods discussed in Chapter 11, 
depending on the nature of V. 

G. Location of Facilities 

A frequently encountered problem is the optimal location of centers of activities. 
This may involve the location of machines or departments in a factory, the 
location of factories or warehouses from which goods can be shipped to retailers 
or consumers, or the location of emergency facilities (i.e., fire or police stations) 
in an urban area. 

Consider the following simple case. Suppose that there are n markets with 
known demands and locations. These demands are to be met from m warehouses 
of known capacities. The problem is to determine the locations of the ware- 
houses so that the total distance weighted by the shipment from the warehouses 
to the markets is minimized. More specifically, let 

(x,, y , )  

c, 

= unknown location of warehouse i for i = 1 ,. . . , m 

= capacity of warehouse i for i = 1,. . . , m 

(a,,b,) = known location of marketj f o r j  = 1 ,..., n 

= known demand at marketj f o r j  = 1, ..., n 

= distance from warehouse i to market area j for i = 1 ,. . ., m; j = 

1, ..., n 
= units shipped from warehouse i to market a r ea j  for i = 1,. .., m; 

j =  I ,  ..., n 

r, 

d,, 

wy 

The problem of locating the warehouses and determining the shipping 
pattern can be stated as follows: 



Introduction 25 

m n  

i=l J = 1  
Minimize C C w,,dy 

n 
subject to 1 w,, 5 cI 

J = 1  

m 
1 w,, = rJ 
r = l  
w,, 2 0  

for i = I, ..., m 

for j = 1 ,  ..., n 

for i = l ,  ..., m ; j = l ,  ..., n. 

Note that both w,, and d,, are to be determined, and hence, the above problem is 

a nonlinear programming problem. Different measures of distance can be 
chosen, using the rectilinear, Euclidean, or C, norm metrics, where the value of 

p could be chosen to approximate particular city travel distances. These are 
given respectively by 

Each choice leads to a particular nonlinear problem in the variables xl, ..., xm, 
yl ,..., y,, wl ..., wmn. If the locations of the warehouses are fixed, the dU values 

are known, and the above problem reduces to a special case of a linear 
programming problem known as the transportation problem. On the other hand, 
for fixed values of the transportation variables, the problem reduces to a (pure) 
location problem. Consequently, the above problem is also known as a location- 
allocation problem. 

H. Miscellaneous Applications 

There are a host of other applications to which nonlinear programming models 
and techniques have been applied. These include the problems of chemical 
equilibrium and process control; gasoline blending; oil extraction, blending, and 
distribution; forest thinning and harvest scheduling; economic equilibration of 
supply and demand interactions under various market behavioral phenomena; 
pipe network design for reliable water distribution systems; electric utility 
capacity expansion planning and load management; production and inventory 
control in manufacturing concerns; least squares estimation of statistical param- 
eters and data fitting; and the design of engines, aircraft, ships, bridges, and 
other structures. The Notes and References section cites several references that 
provide details on these and other applications. 



26 Chapter 1 

1.3 Guidelines for Model Construction 

The modeling process is concerned with the construction of a mathematical 
abstraction of a given problem that can be analyzed to produce meaningful 
answers that guide the decisions to be implemented. Central to this process is the 
identrJication or the formulation of the problem. By the nature of human activi- 
ties, a problem is seldom isolated and crisply defined, but rather, interacts with 
various other problems at the fringes and encompasses various details 
obfuscated by uncertainty. For example, a problem of scheduling jobs on 
machines interacts with the problems of acquiring raw materials, forecasting 
uncertain demand, and planning for inventory storage and dissipation; and it 
must contend with machine reliability, worker performance and absenteeism, 
and insertions of spurious or rush-jobs. A modeler must therefore identify the 
particular scope and aspect of the problem to be explicitly considered in formu- 
lating the problem, and must make suitable simplifying assumptions so that the 
resulting model is a balanced compromise between representability and mathe- 
matical tractability. The model, being only an abstraction of the real problem, 
will yield answers that are only as meaningful as the degree of accuracy with 
which it represents the actual physical system. On the other hand, an unduly 
complicated model might be too complex to be analyzed mathematically for 
obtaining any credible solution for consideration at all! This compromise, of 
course, need not be achieved at a single attempt. Often, it is instructive to begin 
with a simpler model representation, to test it to gain insights into the problem, 
and then to guide the direction in which the model should be further refined to 
make it more representative while maintaining adequate tractability. While 
accomplishing this, it should be borne in mind that the answers from the model 
are meant to provide guidelines for making decisions rather than to replace the 
decision maker. The model is only an abstraction of reality and is not necessarily 
an equivalent representation of reality itself. At the same time, these guidelines 
need to be well founded and meaningful. Moreover, one important function of a 
model is to provide more information on system behavior through sensitivity 
analyses, in which the response of the system is studied under various scenarios 
related to perturbations in different problem parameters. To obtain reliable 
insights through such an analysis, it is important that a careful balance be struck 
between problem representation and tractability. 

Accompanying the foregoing process is the actual construction of a 
mathematical statement of the problem. Often, there are several ways in which 
an identified problem can be modeled mathematically. Although these alterna- 
tive forms may be mathematically equivalent, they might differ substantially in 
the felicity they afford to solution algorithms. Hence, some foresight into the 
operation and limitations of algorithms is necessary. For example, the restriction 
that a variable x should take on the values 0, 1, or 2 can be modeled ‘‘correctly’’ 
using the constraint x(x - I)(x - 2) = 0. However, the nonconvex structure of this 
constraint will impose far more difficulty for most algorithms (unless the algo- 
rithm is designed to exploit such a polynomial structure) than if this discrete 
restriction was handled separately and explicitly as in a branch-and-bound 
framework, for instance (see Nemhauser and Wolsey [I9981 or Parker and 
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Rardin [ 19881). As another example, a feasible region defined by the inequali- 
ties gi(x) 2 0 for i = I ,  ..., rn can be stated equivalently as the set of equality 

constraints g,(x) +si = 0 for i = I ,  ..., rn by introducing new (unrestricted) variables 

si,  i = I ,  ..., rn. Although this is sometimes done to extend a theory or technique 

for equality constraints to one for inequality constraints, blind application of this 
strategy can be disastrous for solution algorithms. Besides increasing the 
dimension with respect to nonlinearly appearing variables, this modeling 
approach injects nonconvexities into the problem by virtue of which the optimal- 
ity conditions of Chapter 4 can be satisfied at nonoptimal points, even though 
this might not have been the case with the original inequality-constrained 
problem. 

In the same spirit, the inequality and equality constraints of the nonlinear 
program stated in Section 1 .1  can be written equivalently as the single equality 
constraint 

2 

or as 

or 

m e 
C max2{gi(x),0}+ 2 h;(x) = 0. 
i=l J= l  

These different statements have different structural properties; and if they are 
not matched properly with algorithmic capabilities, one can obtain meaningless 
or arbitrary solutions, if any at all. However, although such an equivalent single 
constraint is rarely adopted in practice, the conceptual constructs of these refor- 
mulations are indeed very useful in devising penalty functions when such 
equivalent constraint expressions are accommodated within the objective func- 
tion, as we shall see in Chapter 9. Also, this underscores the need for knowing 
the underlying theory of nonlinear programming in order to be able to apply it 
appropriately in practice and to interpret the outputs produced from software. In 
other words, one needs to be a good theoretician in order to be a good 
practitioner. Of course, the converse of this statement also has merit. 

Generally speaking, there are some guidelines that one can follow to 
construct a suitable mathematical formulation that will be amenable to most 
algorithms. Some experience and forethought is necessary in applying these 
guidelines, and the process is more of an art than a science. We provide some 
suggestions below but caution the reader that these are only general recom- 
mendations and guiding principles rather than a universal set of instructions. 
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Foremost among these guidelines are the requirements to construct an 
adequate statement of the problem, to identify any inherent special structures, 
and to exploit these structures in the algorithmic process. Such structures might 
simply be the linearity of constraints or the presence of tight lower and upper 
bounds on the variables, dictated either by practice or by some knowledge of the 
neighborhood containing an optimum. Most existing powerful algorithms 
require differentiability of the functions involved, so a smooth representation 
with derivative information is useful wherever possible. Although higher, 
second-order, derivative information is usually expensive to obtain and might 
require excessive storage for use in relatively large problems, it can enhance 
algorithmic efficiency substantially if available. Hence, many efficient 
algorithms use approximations of this information, assuming second-order 
differentiability. Besides linearity and differentiability, there are many other 
structures afforded by either the nature of the constraints themselves (such as 
network flow constraints) or, generally, by the manner in which the nonzero 
coefficients appear in the constraints (e.g., in a block diagonal fashion over a 
substantial set of constraints; see Lasdon [ 19701). Such structures can enhance 
algorithmic performance and therefore can increase the size of  problems that are 
solvable within a reasonable amount of computational effort. 

In contrast with special structures that are explicitly identified and 
exploited, the problem function being optimized might be a complex “black- 
box” of an implicit unknown form whose evaluation itself might be an expen- 
sive task, perhaps requiring experimentation. In such instances, a response sur- 
face fitting methodology as described in Myers [ 19761 or some discretized grid 
approximations of such functions might be useful devices. 

Also, quite often in practice, the objective function can be relatively flat 
in the vicinity of an optimum. After determining the optimal objective values, 
the given objective function could be transferred to the set of constraints by 
requiring to take on near-optimal values, thereby providing the opportunity to 
reoptimize with respect to another secondary objective function. This concept 
can be extended to multiple objective functions. This approach is known as a 
preemptive priority strategy for considering a hierarchy of prioritized multiple 
objective functions. 

In the modeling process it is also useful to distinguish between hard con- 
straints, which must necessarily be satisfied without any compromise, and soft 
constraints, for which mild violations can be tolerated, albeit at some incurred 
cost. For example, the expenditure g(x) for some activity vector x might be 
required to be no more than a budgeted amount B, but violations within limits 
might be permissible if economically justifiable. Hence, this constraint can be 

modeled as g(x) - B = y+ - y - ,  where y+ and y-  are nonnegative variables, and 

where the “violation” y+ is bounded above by a limit on the capital that can be 

borrowed or raised and, accordingly, also accompanied by a cost term c(y’) in 

the objective function. Such constraints are also referred to as elastic 
constraints because of the flexibility they provide. 
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It is insightful to note that permitting mild violations in some constraints, 
if tolerable, can have a significant impact on the solution obtained. For example, 
imposing a pair of constraints h, ( x )  = 0 and h2(x) = 0 as hard constraints might 
cause the feasible region defined by their intersection to be far removed from 
attractively valued solutions, while such solutions only mildly violate these con- 
straints. Hence, by treating them as soft constraints and rewriting them as 
-Al I hl(x)  I A,, where Al is a small positive tolerance factor for i = 1, 2, we 
might be able to obtain far better solutions which, from a managerial viewpoint, 
compromise more judiciously between solution quality and feasibility. These 
concepts are related to goal programming (see Ignizio [ 1976]), where the soft 
constraints represent goals to be attained, along with accompanying penalties or 
rewards for under- or over-achievements. 

We conclude this section by addressing the all-important but often 
neglected practice of problem bounding and scaling, which can have a profound 
influence on algorithmic performance. Many algorithms for both continuous and 
discrete optimization problems often benefit greatly by the presence of tight 
lower and upper bounds on variables. Such bounds could be constructed based 
on practical, optimality-based, or feasibility-based considerations. In addition, 
the operation of scaling deserves close attention. This can involve both the 
scaling of constraints by multiplying through with a (positive) constant, and the 
scaling of variables through a simple linear transformation that replaces x by y = 

Dx, where D is a nonsingular diagonal matrix. The end result sought is to try to 
improve the structural properties of the objective function and constraints, and to 
make the magnitudes of the variables, and the magnitudes of the constraint 
coefficients (as they dictate the values of the dual variables or Lagrange multi- 
pliers; see Chapter 4), vary within similar or compatible ranges. This tends to 
reduce numerical accuracy problems and to alleviate ill-conditioning effects 
associated with severely skewed or highly ridge-like function contours encoun- 
tered during the optimization process. As can well be imagined, if a pipe 
network design problem, for example, contains variables representing pipe 
thicknesses, pipe lengths, and rates of flows, all in diversely varying 
dimensional magnitudes, this can play havoc with numerical computations. 
Besides, many algorithms base their termination criteria on prespecified 
tolerances on constraint satisfaction and on objective value improvements 
obtained over a given number of most recent iterations. Evidently, for such 
checks to be reliable, it is necessary that the problem be reasonably well scaled. 
This is true even for scale-invariant algorithms, which are designed to produce 
the same sequence of iterates regardless of problem scaling, but for which 
similar feasibility and objective improvement termination tests are used. 
Overall, although a sufficiently badly scaled problem can undoubtedly benefit 
by problem scaling, the effect of the scaling mechanism used on reasonably 
well-scaled problems can be mixed. As pointed out by Lasdon and Beck 119811, 
the scaling of nonlinear programs is as yet a “black art” that needs further study 
and refinement. 
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Exercises 

[ 1.11 Consider the following nonlinear programming problem: 

- 

Minimize (xl -4)2 + (x2 - 2)2 

subject to 4x: + 9x: 5 36 
2 

XI + 4x2 = 4 

x = ( X 1 , X 2 ) E X ' { X : 2 x l  2-31. 

a. 

b. 

Sketch the feasible region and the contours of the objective func- 
tion. Hence, identify the optimum graphically on your sketch. 
Repeat part a by replacing minimization with maximization in the 
problem statement. 

[ 1.21 Suppose that the daily demand for product j is d j  for j = 1,2. The demand 

should be met from inventory, and the latter is replenished fiom production 
whenever the inventory reaches zero. Here, the production time is assumed to be 
insignificant. During each product run, Q, units can be produced at a fixed setup 

cost of $kj and a variable cost of $cjQ, . Also, a variable inventory-holding cost 

of $hj per unit per day is also incurred, based on the average inventory. Thus, 

the total cost associated with product j during T days is $TdjkjlQj + Tcjdj + 

TQjhj/2. Adequate storage area for handling the maximum inventory Q, has to 

be reserved for each product j .  Each unit of product j needs s j  square feet of 

storage space, and the total space available is S. 

a. 

b. 

We wish to find optimal production quantities Ql and Q2 to mini- 
mize the total cost. Construct a model for this problem. 
Now suppose that shortages are permitted and that production need 
not start when inventory reaches a level of zero. During the period 
when inventory is zero, demand is not met and the sales are lost. 
The loss per unit thus incurred is $C ,. On the other hand, if a sale 

is made, the profit per unit is $Pj.  Reformulate the mathematical 

model. 

[ 1.31 A manufacturing firm produces four different products. One of the neces- 
sary raw materials is in short supply, and only R pounds are available. The sell- 
ing price of product i is %S, per pound. Furthermore, each pound of product i 

uses a, pounds of the critical raw material. The variable cost, excluding the raw 

material cost, of producing x, pounds of product i is k,x, , where k,  > O  is 

known. Develop a mathematical model for the problem. 

2 
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[ 1.41 Suppose that the demand 4 ,  ..., d,, for a certain product over n periods is 
known. The demand during periodj can be met from the production x, during 

the period or from the warehouse stock. Any excess production can be stored at 
the warehouse. However, the warehouse has capacity K ,  and it would cost $c to 
carry over one unit from one period to another. The cost of production during 
periodj is given by f ( x , )  for; = I ,  ..., n. If the initial inventory is J , ,  formulate 

the production scheduling problem as a nonlinear program. 

[ 1.51 An office room of length 70 feet and width 45 feet is to be illuminated by 
n light bulbs of wattage W,, i = I ,  ..., n. The bulbs are to be located 7 feet above 

the working surface. Let (x,,y,) denote the x and y coordinates of the ith bulb. 
To ensure adequate lighting, illumination is checked at the working surface level 
at grid points of the form (a, p), where 

a = l O p ,  p=O,I ,..., 7 

p = 5 q ,  q = o ,  1 ,...) 9. 

The illumination at (a, p) resulting from a bulb of wattage W, located at (x , ,y , )  

is given by 

where k is a constant reflecting the efficiency of the bulb. The total illumination 

at (a, p) can be taken to be C:=, E,(a,p). At each of the points checked, an 

illumination of between 3.2 and 5.6 units is required. The wattage of the bulbs 
used is between 60 and 300 W. Assume that W,  b' i are continuous variables. 

a. Construct a mathematical model to minimize the number of bulbs 
used and to determine their location and wattage, assuming that the 
cost of installation and of periodic bulb replacement is a function 
of the number of bulbs used. 
Construct a mathematical model similar to that of part a, with the 
added restriction that all bulbs must be of the same wattage. 

11.61 Consider the following portfolio selection problem. An investor must 

choose a portfolio x = ( X ~ , X ~ , . . . , X , , ) ~ ,  where xi is the proportion of the assets 

allocated to thejth security. The return on the portfolio has mean C'x and vari- 

ance x'VX, where C is the vector denoting mean returns and V is the matrix of 
covariances of the returns. The investor would like to increase his or her 
expected return while decreasing the variance and hence the risk. A portfolio is 
called efficient if there exists no other portfolio having a larger expected return 
and a smaller variance. Formulate the problem of finding an efficient portfolio, 
and suggest some procedures for choosing among efficient portfolios. 

b. 
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11.71 A household with budget b purchases n commodities. The unit price of 
commodityj is c j ,  and the minimal amount of the commodity to be purchased is 

C j .  After the minimal amounts of the n products are consumed, a function a, of 

the remaining budget is allocated to commodity j. The behavior of the household 
is observed over m months for the purpose of estimating 11, ..., !,, and a l ,  ..., a,. 
Develop a regression model for estimating these parameters if 

a. 
b. 
c. 
d. 

The sum of the squares of the error is to be minimized. 
The maximum absolute value of the error is to be minimized. 
The sum of the absolute values of the error is to be minimized. 
For both parts b and c, reformulate the problems as linear pro- 
grams. 

[l.S] A rectangular heat storage unit of length L,  width W, and height H will be 
used to store heat energy temporarily. The rate of heat losses h, due to convec- 

tion and h, due to radiation are given by 

h, = k, A(T - T,) 

h,. = k, A(T4 - T:), 

where k, and k,  are constants, T is the temperature of the heat storage unit, A is 

the surface area, and T, is the ambient temperature. The heat energy stored in 
the unit is given by 

Q = kV(T  - T,), 

where k is a constant and V is the volume of the storage unit. The storage unit 
should have the ability to store at least Q‘. Furthermore, suppose that space 
availability restricts the dimensions of the storage unit to 

O < L < L ‘ ,  O<W<W’ ,  and O < H I H ’ .  

a. 

b. 

Formulate the problem of finding the dimensions L, W, and H to 
minimize the total heat losses. 
Suppose that the constants k, and k ,  are linear functions o f t ,  the 
insulation thickness. Formulate the problem of determining opti- 
mal dimensions L, W, and H to minimize the insulation cost. 

11.91 Formulate the model for Exercise 1.8 if the storage unit is a cylinder of 
diameter D and height H. 

[ l . l O ]  Suppose that the demand for a certain product is a normally distributed 
random variable with mean 150 and variance 49, and that the production func- 

tion is given by p ( x )  = a ‘ x ,  where x represents a set of n activity levels. Formu- 
late the chance constraint that the probability of production falling short of 
demand by more than 5 units should be no more than 1% as a linear constraint. 
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I1.111 Consider a linear program to minimize c'x subject to Ax 5 b, x 1 0. 
Suppose that the components c, of the vector c are random variables distributed 

independently of each other and of the x-variables, and that the expected value 
o f c J i s F J , j = l  ,..., n. 

Show that the minimum expected cost is obtained by solving the 

problem to minimize C'x subject to Ax 5 b, x 2 0, where C = 

a. 

(3 , . . . , c, )' . 
b. Suppose that a firm makes two products that consume a common 

resource, which is expressed as follows: 

5x1 + 6x2 230, 

where x, is the amount of product j produced. The unit profit for product 1 is 

normally distributed with mean 4 and variance 2. The unit profit for product 2 is 

given by a X2-distribution with 2 degrees of freedom. Assume that the random 

variables are independently distributed and that they are not dependent upon x1 

and x2. Find the quantities of each product that must be produced to maximize 
expected profit. Will your answer differ if the variance for the first product were 4? 

11.121 Consider the following problem of a regional effluent control along a 
river. Currently, n manufacturing facilities dump their refuse into the river. The 
current rate of dumping by facilityj is p, , j  = 1, ..., n. The water quality is 

examined along the river at m control points. The minimum desired quality 
improvement at point i is b,, i = I ,  ..., m. Let x, be the amount of waste to be 

removed from source j at a cost of f, (x,) , and let a,, be the quality improve- 

ment at control point i for each unit of waste removed at source j .  

a. 

b. 

Formulate the problem of improving the water quality at a mini- 
mum cost as a nonlinear program. 
In the above formulation, it is possible that certain sources would 
have to remove substantial amounts of waste, whereas others 
would only be required to remove small amounts of waste or none 
at all. Reformulate the problem so that a measure of equity among 
the sources is attained. 

[ 1.13) A steel company manufactures crankshafts. Previous research indicates 
that the mean shaft diameter may assume the value pl or p2, where p2 > pl. 

Furthermore, the probability that the mean is equal to p1 is p .  To test whether 

the mean is p1 or p 2 ,  a sample of size n is chosen, and the diameters xI, ..., xn 

are recorded. If X = C;=, xJln is less than or equal to K, the hypothesis p = p I  is 

accepted; otherwise, the hypothesis p = p2 is accepted. Let f ( X  I p l )  and 

f ( x  I p 2 )  be the probability density functions of the sample mean if the popula- 
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tion mean is p ,  and p 2 ,  respectively. Furthermore, suppose that the penalty cost 

of accepting p = p1 when p = p2 is a and that the penalty cost of accepting 

p = p2 when p = p1 is D. Formulate the problem of choosing K such that the 
expected total cost is minimized. Show how the problem could be reformulated 
as a nonlinear program. 

I1.141 An elevator has a vertical acceleration u(t) at time t. Passengers would 
like to move from the ground level at zero altitude to the sixteenth floor at 
altitude 50 as fast as possible but dislike fast acceleration. Suppose that the 
passenger’s time is valued at $a per unit time, and furthermore, suppose that the 

passenger is willing to pay at a rate of $,8u2(t) per unit time to avoid fast accel- 
eration. Formulate the problem of determining the acceleration from the time the 
elevator starts ascending until it reaches the sixteenth floor as an optimal control 
problem. Can you formulate the problem as a nonlinear program? 

Notes and References 

The advent of high-speed computers has considerably increased our ability to 
apply iterative procedures for solving large-scale problems, both linear and 
nonlinear. Although our ability to obtain global minimal solutions to nonconvex 
problems of realistic size is still rather limited, continued theoretical break- 
throughs are overcoming this handicap (see Horst and Tuy [1993], Horst et al. 
[2000], Sherali and Adams [ 19991, and Zabinski [2003].) 

Section 1.2 gives some simplified examples of problems that could be 
solved by the nonlinear programming methods discussed in the book. Our pur- 
pose was not to give complete details but only a flavor of the diverse problem 
areas that can be attacked. See Lasdon and Waren [I9801 for further applica- 
tions. 

Optimal control is closely linked with mathematical programming. 
Dantzig [ 19661 has shown how certain optimal control problems can be solved 
by applying the simplex method. For further details of the application of 
mathematical programming to control problems, refer to Bracken and 
McCormick [1968], Canon and Eaton [1966], Canon et al. [1970], Cutler and 
Perry [ 19831, and Tabak and Kuo [ 197 13. 

With the recent developments and interest in aerospace and related tech- 
nology, optimum design in this area has taken on added importance. In fact, 
since 1969, the Advisory Group for Aerospace Research and Development 
under NATO has sponsored several symposia on structural optimization. With 
improved materials being used for special purposes, optimum mechanical design 
has also increased in importance. The works of Cohn [ 19691, Fox [ 1969, 19711, 
Johnson [ 197 11, Majid [ 19741, and Siddal [ 19721 are of interest in understanding 
how design concepts are integrated with optimization concepts in mechanical 
and structural design. Also, see Sherali and Ganesan [2003] (and the references 
cited therein) for ship design problems and related response surface methodo- 
logical approaches. 

Mathematical programming has also been used successfully to solve 
various problems associated with the generation and distribution of electrical 
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power and the operation of the system. These problems include the study of load 
flow, substation switching, expansion planning, maintenance scheduling, and the 
like. In the load flow problem, one is concerned with the flow of power through 
a transmission network to meet a given demand. The power distribution is 
governed by the well-known Kirchhoff s laws, and the equilibrium power flows 
satisfying these conditions can be computed by nonlinear programming. In other 
situations, the power output from hydroelectric plants is considered fixed, and 
the objective is to minimize the cost of fuel at the thermal plants. This problem, 
referred to as the economic dispatch problem, is usually solved online every few 
minutes, with appropriate power adjustments made. The generation capacity 
expansion problems study a minimum-cost equipment purchase and 
dispatchment plan that can satisfy the demand load at a specified reliability level 
over a given time horizon. For more details, refer to Abou-Taleb et al. [1974], 
Adams et al. [1972], Anderson [1972], Beglari and Laughton [1975], Bloom 
[1983], Bloom et al. [1984], Kirchmayer [1958], Sasson [1969a and 1969b], 
Sasson and Merrill [1974], Sasson et al. [1971], Sherali [1985], Sherali and 
Soyster [1983], and Sherali and Staschus [1985]. 

The field of water resources systems analysis has shown spectacular 
growth during the last three decades. As in many fields of science and technol- 
ogy, the rapid growth of water resources engineering and systems analysis was 
accompanied by an information explosion of considerable proportions. The 
problem discussed in Section 1.2 is concerned with rural water resources man- 
agement for which an optimal balance between the use of water for hydropower 
generation and agriculture is sought. Some typical studies in this area can be 
found in Haimes [1973, 19771, Haimes and Nainis [1974], and Yu and Haimes 
[ 19741. 

As a result of the rapid growth of urban areas, city managers are also 
concerned with integrating urban water distribution and land use. Some typical 
quantitative studies on urban water distribution and disposal may be found in 
Argaman et al. [ 19731, Dajani et al. [1972], Deb and Sarkar [1971], Fujiwara et 
al. [ 19871, Jacoby [ 19681, Loganathan et al. [ 19901, Shamir [ 19741, Sherali et al. 
[2001], Walsh and Brown [ 19731, and Wood and Charles [1973]. 

In his classic study on portfolio allocation, Markowitz [1952] showed 
how the variance of the returns on the portfolio can be incorporated in the opti- 
mal decision. In Exercise 1.6 the portfolio allocation problem is introduced 
briefly. 

From 1955 to 1959, numerous studies were undertaken to incorporate 
uncertainty in the parameter values of a linear program. Refer to Charnes and 
Cooper [1959] , Dantzig [1955], Freund [1956], and Madansky El9591 for some 
of the early work in this area. Since then, many other studies have been con- 
ducted. The approaches, referred to in the literature as chance constrained 
problems and programming with recourse, seem particularly attractive. The in- 
terested reader may refer to Charnes and Cooper [1961, 19631, Charnes et al. 
[ 19671, Dantzig [ 19631, Elmaghraby [ 19601, Evers [ 19671, Geoffrion [ 1967~1, 
Madansky [ 19621, Mangasarian [ 19641, Parikh [ 19701, Sengupta [ 19721, 
Sengupta and Portillo-Campbell [ 19701, Sengupta et al. [ 19631, Vajda [ 1970, 
19721, Wets [1966a, 1966b, 19721, Williams [1965, 19661, and Ziemba 11970, 
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1971, 1974, 19751. Also, see Mulvey et al. [1995] and Takriti and Ahmed 
[2004] for robust optimization models and Sen and Higle [2000] for stochastic 
optimization approaches. 

For a description of other applications, the interested reader is referred to 
Ali et al. [I9781 for an oil resource management problem; to Lasdon [1985] and 
Prince et al. [1983] for Texaco’s OMEGA gasoline blending problem; to 
Rothfarb et al. [ 19701 for the design of offshore natural gas pipeline distribution 
systems; to Berna et al. [1980], Heyman [1990], Sarma and Reklaitis 119791, 
and Wall et al. [1986] for chemical process optimization and equilibrium 
problems; to Intriligator [1971], Murphy et al. [1982], Sherali [1984], and 
Sherali et al. [1983] for mathematical economics problems; to Adams and 
Sherali [1984], Francis et al. [1991], Love et al. [1988], Sherali and Tuncbilek 
[1992], Sherali et al. [20023, and Shetty and Sherali [I9801 for location- 
allocation problems; to Bullard et al. [1985] for forest harvesting problems; to 
Jones [2001] and Myers [1976] for response surface methodologies; and to 
Dennis and Schnabel [1983], Fletcher [1987], and Sherali et al. [1988] for a 
discussion on least squares estimation problems with applications to data fitting 
and statistical parameter estimation. 

For further discussion on problem scaling we refer the reader to Bauer 
[1963], Curtis and Reid [1972], Lasdon and Beck [1981], and Tomlin [1973]. 
Gill et al. 11981, 1984d, 19851 provide a good discussion on guidelines for 
model building and their influence on algorithms. 

Finally, we mention that various modeling languages, such as GAMS (see 
Brooke et al., 1985), LINGO (see Cunningham and Schrage, 1989), and AMPL 
(see Fourer et al., 1990), are available to assist in the implementation of models 
and algorithms. Various nonlinear programming software packages, such as 
MINOS (see Murtagh and Saunders, 1982), G I N 0  (see Liebman et al., 1986), 
GRG2 (see Lasdon et al., 1978), CONOPT (see Drud, 1985), SQP (see 
Mahidhara and Lasdon, 1990), LSGRG (see Smith and Lasdon, 1992), BARON 
(see Sahinidis, 1996), and LGO (see Pinter, 2000, 200 l ) ,  among others, are also 
available to facilitate implementation. (The latter two are global optimizer soft- 
ware packages-see Chapter 11.) For a general discussion on algorithms and 
software evaluation for nonlinear optimization, see DiPillo and Murli [2003]. 
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Chapter 
2 Convex Sets 

The concept of convexity is of great importance in the study of optimization 
problems. Convex sets, polyhedral sets, and separation of disjoint convex sets 
are used frequently in the analysis of mathematical programming problems, the 
characterization of their optimal solutions, and in the development of 
computational procedures. 

Following is an outline of the chapter. The reader is encouraged to review 
the mathematical preliminaries given in Appendix A. 

Section 2.1: Convex Hulls This section is elementary. It presents some 
examples of convex sets and defines convex hulls. Readers having previous 
knowledge of convex sets may skip this section (with the possible exception 
of the Caratheodory theorem). 

Some topological properties of 
sets related to interior, boundary, and closure points are discussed. 

We discuss the concepts of min, max, 
inf, and sup and present an important result relating to the existence of 
minimizing or maximizing solutions. 

This section is important, 
since the notions of separation and support of convex sets are used 
frequently in optimization. A careful study of this section is recommended. 

Section 2.5: Convex Cones and Polarity This short section dealing mainly 
with polar cones may be skipped without loss of continuity. 

Section 2.6: Polyhedral Sets, Extreme Points, and Extreme Directions 
This section treats the special important case of polyhedral sets. 
Characterization of extreme points and extreme directions of polyhedral sets 
is developed. Also, the representation of a polyhedral set in terms of its 
extreme points and extreme directions is proved. 

The well- 
known simplex method is developed as a natural extension of the material 
in the preceding section. Readers who are familiar with the simplex method 
may skip this section. A polynomial-time algorithm for linear programming 
problems is discussed in Chapter 9. 

Section 2.2: Closure and Interior of a Set 

Section 2.3: Weierstrass’s Theorem 

Section 2.4: Separation and Support of Sets 

Section 2.7: Linear Programming and the Simplex Method 

39 
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~~~~ 

2.1 Convex Hulls 

In this section we first introduce the notions of convex sets and convex hulls. 
We then demonstrate that any point in the convex hull of a set S can be 
represented in terms of n + 1 points in the set S. 

2.1.1 Definition 

A set S in R" is said to be convex if the line segment joining any two points of 
the set also belongs to the set. In other words, if x1 and x2 are in S, then 

Axl +(1-A)x2, must also belong to S for each R E  [O,l]. Weighted averages of 

the form Axl +(1- A)x2, where A E [0,1], are referred to as convex combinations 

of x1 and x2. Inductively, weighted averages of the form Cr=lA,x,, where 

A .  = 1, 2. > 0, j = 1 ,..., k, are also called convex combinations of x1 ,..., Xk. 

In this definition, if the nonnegativity conditions on the multipliers A, is 

dropped, j = 1, ..., k, the combination is known as an affine combination. Finally, 

a combination Cr=lAjxj where the multipliers Aj ,  j = 1, ..., k, are simply 

required to be in R, is known as a linear combination. 
Figure 2.1 illustrates the notion of a convex set. Note that in Figure 2.1 b, 

the line segment joining x1 and x2 does not lie entirely in the set. 
The following are examples of convex sets: 

Cj=1 j I -  

1. S = { ( ~ l , ~ 2 , ~ 3 ) : ~ 1 + 2 ~ 2 - ~ 3  = 4 } c R  3 . 

This is an equation of a plane in R3. In general, S = 

{x : p'x = a} is called a hyperplane in R", where p is a nonzero 

vector in R", usually referred to as the gradient, or normal, to the 

hyperplane, and a is a scalar. Note that if % E  S, we have 

p's3 = a, so that we can equivalently write S = {x : p' (x - s3) = 0). 

Hence, the vector p is orthogonal to all vectors (x - SZ) for x E S, 

so it is perpendicular to the surface of the hyperplane S. 
2. S = ( ( X , , X ~ , X ~ ) : X ~ + ~ X ~ - X ~  2 4 ) c R  3 . 

These are points on one side of the hyperplane defined above. 
These points form a hawspace. In general, a half-space S = 

{x : p'x I a)  in R" is a convex set. 

3. S = { ( x 1 , ~ 2 , ~ 3 ) : ~ 1 + 2 ~ 2 - ~ 3  2 4 ,  ~ x I - x ~ + x ~  2 6 } c R  3 . 

This set is the intersection of two half-spaces. In general, the 
set S = {x : Ax 2 b) is a convex set, where A is an m x n matrix 
and b is an m-vector. This set is the intersection of m half-spaces 
and is usually called apolyhedral set, 
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(a)  Conwx set (b )  Nonconwx set 

Figure 2.1 Convex and nonconvex sets. 

4. S={(x , ,x2) :xZ>IxlI )~R* 

This set represents a convex cone in R2 and is treated more 
fully in Section 2.4. 

2 2  2 5.  s = { ( x ~ , x 2 ) : x ,  +x2 < 4 ) c R  . 
This set represents points on and inside a circle with center (0, 

0) and radius 2. 
S = { x : x solves Problem P below) : 

Problem P: Minimize C'X 

6. 

subject to Ax = b 

x 2 0. 

Here, c is an n-vector, b is an m-vector, A is an m x n matrix, and x is an n- 
vector. The set S gives all optimal solutions to the linear programming problem 

of minimizing the linear function C'X over the polyhedral region defined by Ax 
= b and x 20. This set itself happens to be a polyhedral set, being the 

intersection of C'X = v* with Ax = b, x 2 0, where v* is the optimal value of P. 
The following lemma is an immediate consequence of the definition of 

convexity. It states that the intersection of two convex sets is convex and that the 
algebraic sum of two convex sets is also convex. The proof is elementary and is 
left as an exercise. 

2.1.2 Lemma 

Let S, and S2 be convex sets in R". Then: 

1 .  S, n S 2  is convex. 

2. S 1 0 S 2  = { x 1 + x ~ : x 1 ~ S 1 , x 2 ~ S 2 }  isconvex. 

3. S 1 O S 2 = { x 1 - x 2 : x l ~ S 1 , x 2 ~ S 2 )  isconvex. 
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Convex Hulls 

Given an arbitrary set S in Rn, different convex sets can be generated from S. In 
particular, we discuss below the convex hull of S. 

2.1.3 Definition 

Let S be an arbitrary set in Rn.  The convex hull of S,  denoted conv(S), is the 
collection of all convex combinations of S. In other words, X E  conv(S) if and 
only if x can be represented as 

k 

j=l 
x =  c AjXj 

k 

j=1 
c Aj = I  

A j  2 0 for j = I, ..., k ,  

where k is a positive integer and x l ,  ..., xk E S.  

Figure 2.2 shows some examples of convex hulls. Actually, we see that in 
each case, conv(S) is the minimal (tightest enveloping) convex set that contains 
S. This is indeed the case in general, as given in Lemma 2.1.4. The proof is left 
as an exercise. 

2.1.4 Lemma 

Let S be an arbitrary set in R”. Then, conv(S) is the smallest convex set 
containing S. Indeed, conv(S) is the intersection of all convex sets containing S. 

Similar to the foregoing discussion, we can define the aflne hull of S as 
the collection of all affine combinations of points in S. This is the smallest 
dimensional affine subspace that contains S. For example, the affine hull of two 
distinct points is the one-dimensional line containing these two points. Similarly, 
the linear hull of S is the collection of all linear combinations of points in S. 

Figure 2.2 Convex hulls. 
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We have discussed above the convex hull of an arbitrary set S. The 
convex hull  of a finite number of points leads to the definitions of a polytope 
and a simplex. 

2.1.5 Definition 

The convex hull of a finite number of points xl ,  ..., xk+l in R" is called a 

polytope. If x1,x2, ..., xk, and Xk+l are afSinely independent, which means that 

x2 - xl , x3 - xl, ..., xk+l - x1 are linearly independent, then conv(xl ,..., Xk+l), the 

convex hull of ~ ~ , . . . , x k + ~ ,  is called a simplex having vertices x l ,  ..., xk+l. 

Figure 2.3 shows examples of a polytope and a simplex in R". Note that 

the maximum number of linearly independent vectors in R" is n, and hence, 

there could be no simplex in R" having more than n + 1 vertices. 

Carathbodory Theorem 

By definition, a point in the convex hull of a set can be represented as a convex 
combination of a finite number of points in the set. The following theorem 
shows that any point x in the convex hull of a set S can be represented as a 
convex combination of, at most, n + 1 points in S.  The theorem is trivially true 
for X E  S. 

2.1.6 Theorem 

Let S be an arbitrary set i n  R". If X E  conv(S), X E  conv(xl,...,x,+l), where 

x E S for j = 1 ,..., n + 1. In other words, x can be represented as 

Polytope Simplex 

Figure 2.3 Polytope and simplex. 
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n+l 

j=1 
x =  C A j X j  

n+l 
C A .  =1 
j=1 

Aj 2 0  

x j  E S  

J 

for j = l ,  ..., n + l  

for j = 1, ..., n + l  

Pro0 f 

Since x E conv(S), x = C5=IAjxj, where Aj > 0 for j = 1 ,..., k,  x j  E S 

fo r j  = I ,  ..., k, and C$=]Aj = 1. If k I n+l ,  the result is at hand. Now suppose 

that k > n + 1. A reader familiar with basic feasible solutions and extreme points 
(see Theorem 2.5.4) will now notice immediately that at an extreme point of the 

set { A  : C Ajxj = x, C Aj = l ,R 201, no more than n + 1 components of A are 

positive, hence proving the result. However, let us continue to provide an 
independent argument. 

Toward this end, note that x2 - x1 , x3 - x1 ,..., Xk - x1 are linearly 

dependent. Thus, there exist scalars p2,  p3,  ...,pk not all zero such that 

C;=,pj(xj -XI)  =O. Letting p1 = -C:,2pj, it follows that Z;=lpjxj = 0 ,  

C$=lpj = 0, and not all the ,uj values are equal to zero. Note that at least one 

pj is larger than zero. Then 

k k 

j=1 j = I  

k k k k 

j=1 j= l  j=1 j= l  
x =  C A j x j + O =  CAjx j -aCp jx j=  C ( A . - a p . ) x .  J J J  

for any real a. Now, choose a as follows: 

a=minimum - : p .  > O  =- forsomeiE(1, ..., k ) .  
l< j<k  i" pj i Pi 

Note that a > 0. If p j  50,  Aj -apj > 0, and if pj > 0, Ajlpj 2 Alpi = a and 

hence Aj - apj 2 0. In other words, Aj - apj 2 0 for all j = I ,..., k. In particular, 

4 -api = 0 by the definition of a. Therefore, x = C;,,(Aj - apj)xj,  where 

Aj -ap . > 0 for j = 1 ,..., k,  Ck ( A .  -apj) = 1, and furthermore, 4 -api = 0. 

Consequently, we have represented x as a convex combination of at most k - 1 
points in S. This process can be repeated until x is represented as a convex 
combination of at most n + 1 points in S. This completes the proof. 

J -  J=1 J 
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2.2 Closure and Interior of a Set 

In this section we develop some topological properties of sets in general and of 

convex sets in particular. As a preliminary, given a point x in R", an E- 

neighborhood around it is the set N S  ( x )  = {y : IIy - X I /  < E}. Let us first review the 

definitions of closure, interior, and boundary of an arbitrary set in R", using the 
concept of an &-neighborhood. 

2.2.1 Definition 

Let S be an arbitrary set in R". A point x is said to be in the closure of S, 
denoted by cl S, if S n N,(x)  # 0 for every E > 0. If S = cl S, S is called closed. 

A point x is said to be in the interior of S, denoted int S, if N E  ( x )  c S for some E 

> 0. A solid set S G R" is one having a nonempty interior. If S = int S, S is 
called open. Finally, x is said to be in the boundary of S, denoted as, if N , ( x )  

contains at least one point in S and one point not in S for every E > 0. A set S is 
bounded if it can be contained in a ball of a sufficiently large radius. A compact 
set is one that is both closed and bounded. Note that the complement of an open 
set is a closed set (and vice versa), and that the boundary points of any set and 
its complement are the same. 

To illustrate, consider S = { (x1 ,x2)  : x1 + x2 2 I}, which represents all 
points within a circle with center (0,O) and radius 1. It can easily be verified that 
S is closed; that is, S = cl S. Furthermore, int S consists of all points that lie 

strictly within the circle; that is, int S = { (xl , x 2 )  : x1 + x2 < 1). Finally, dS con- 

sists of points on the circle; that is, dS = { (xl, x 2 )  : x1 + x2 = l} . 
Hence, a set S is closed if and only if it contains all its boundary points 

(i.e., aS c S) .  Moreover, cl S = Suds  is the smallest closed set containing S. 

Similarly, a set is open if and only if it does not contain any of its boundary 
points (more precisely, as n S  = 0). Clearly, a set may be neither open nor 

closed, and the only sets in R" that are both open and closed are the empty set 

and R" itself. Also, note that any point x E S must be either an interior or a 
boundary point of S. However, S f int S vaS, since S need not contain its 

boundary points. But since int S c S ,  we have int S = S -8.5, while as f 
S - int S necessarily. 

There is another equivalent definition of a closed set, which is often 
important fiom the viewpoint of demonstrating that a set is closed. This 
definition is based on sequences of points contained in S (review Appendix A 
for related mathematical concepts). A set S is closed if and only if for any 
convergent sequence of points { x k }  contained in S with limit point X, we also 
have that YES.  The equivalence of this and the previous definition of 

2 2  

2 2  

2 2  
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closedness is easily seen by noting that the limit point X of any convergent 
sequence of points in S must either lie in the interior or on the boundary of S, 
since otherwise, there would exist an E > 0 such that {x : IIx - '[I < E }  n S  = 0, 
contradicting that X is the limit point of a sequence contained in S. Hence, if S 
is closed, ~ E S .  Conversely, if S satisfies the sequence property above, it is 
closed, since otherwise there would exist some boundary point X not contained 
in S. But by the definition of a boundary point, the set NEk (X) n S f 0 for each 

k = 1, 2, ..., where 0 < E < 1 is some scalar. Hence, selecting some 
x k  E N  k ( j ? ) n S  for each k = 1, 2, ..., we will have { x k } c S ;  and clearly 

{ x k }  -+ i, which means that we must have X E S by our hypothesis. This is a 
contradiction. 

To illustrate, note that the polyhedral set S = { x  : A x  I b} is closed, since 

given any convergent sequence { x k }  5 S, with { x k }  -+ Z, we also have X E S. 

This follows because A x k  I b for all k; so by the continuity of linear functions, 
we have in the limit that A51 I b as well, or that 51 E S. 

Line Segment Between Points in the Closure and the Interior of a Set 

Given a convex set having a nonempty interior, the line segment (excluding the 
endpoints) joining a point in the interior of the set and a point in the closure of 
the set belongs to the interior of the set. This result is proved below. (Exercise 
2.43 suggests a means for constructing a simpler proof based on the concept of 
supporting hyperplanes introduced in Section 2.4.) 

2.2.2 Theorem 

Let S be a convex set in R" with a nonempty interior. Let x 1  E cl S and x 2  E int 

S. Then A x ,  + ( 1  - R ) x 2  E int S for each R E (0,l). 

Pro0 f 

Since x2 E int S ,  there exists an E >  0 such that {z : IIz - x2II < E }  c S.  Let 

y be such that 

y = A x ,  + (1 - 4 x 2 ,  (2.1) 

where A E (0,l). To prove that y belongs to int S, it suffices to construct a 
neighborhood about y that also belongs to S. In particular, we show that {z : 
llz - yll < (1 -A)&} c S. Let z be such that I[z - yl[ < (1 - A)& (refer to Figure 2.4). 

Since x 1  E c l  S ,  
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Figure 2.4 Line segment joining points in the closure and interior of a set. 

is not empty. In particular, there exists a z1 E S such that 

z - Az, 
1-a Now let z2 = ___ . From (2. l), the Schwartz inequality, and (2.2), we get 

Therefore, z2 E S. By the definition of z2, note that z = Az, + (1 - A ) z 2 ;  and 

since both z1 and z2 belong to S, z also belongs to S. We have shown that any z 

with IIz-yII < (~ -A)E belongs to S. Therefore, y E int S and the proof is 

complete. 

Corollary 1 

Let S be a convex set. Then int S is convex. 

Corollary 2 

Let S be a convex set with a nonempty interior. Then cl S is convex. 

Proof 

Let xl,x2 E cl S. Pick z E int S (by assumption, int S # 0). By the 

theorem, Ax2 +(1- A)z E int S for each A E (0,l). Now fix p E (0,l). By the 

theorem, pxl + (1 -p)[Ax2 +(1- A)z] E int S c S for each A E (0,l). If we take 

the limit as A approaches 1,  it follows that pxl +(1-p)x2 E c l  S, and the proof 
is complete. 
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Corollary 3 

Let S be a convex set with a nonempty interior. Then cl(int S) = cl S. 

Proof 

Clearly, cl(int S ) c c l S .  Now let X E C I S ,  and pick y ~ i n t  S (by 

assumption, int S # 0). Then dx + (1 - d)y E int S for each R E (0,l). Letting 

A + 1-, it follows that x E cl(int S). 

Corollary 4 

Let S be a convex set with a nonempty interior. Then int(c1 S) = int S. 

Pro0 f 

Note that int S G  int (clS). Let x1 E int(c1 S). We need to show that 

x1 E int S. There exists an E > 0 such that IIy - x1 11 < E implies that y E cl S. NOW 

let x2 # x1 belong to int S and let y = (1 +A)xl -Ax2, where A = E /  

(2 llxl - x2 11). Since IIy - x1 11 = ~ / 2 ,  y E cl S. But x1 = R y  + (1 - A)x2, where R = 

l/(l + A) E (0, 1). Since y E cl S and x2 E int S, then, by the theorem, x1 E int 
S, and the proof is complete. 

Theorem 2.2.2 and its corollaries can be strengthened considerably by 
using the notion of relative interiors (see the Notes and References section at the 
end of the chapter). 

2.3 Weierstrass’s Theorem 

A very important and widely used result is based on the foregoing concepts. 
This result relates to the existence of a minimizing solution for an optimization 
problem. Here we say that SZ is a minimizing solution for the problem 
min{f(x) : x E S}, provided that SZ E S and f(%) I f(x) for all x E S. In such a 
case, we say that a minimum exists. On the other hand, we say that a = 

infimum(Ax) : x E S} (abbreviated inf) if a is the greatest lower bound off on 
S; that is, a I f ( x )  for all x E S and there is no iZ > a such that Cr 5 f(x) for all 

x E S. Similarly, a = max(Ax) : x E S} if there exists a solution X E S such that 
a = f ( E )  2 f(x) for all x E S. On the other hand, a = supremum{f(x) : x E S} 

(abbreviated sup) if a is the least upper bound off on S; that is, a 2 f(x) for all 

x E S, and there is no Cr < a such that Cr 1 f(x) for all x E S. 
Figure 2.5 illustrates three instances where a minimum does not exist. In 

Figure 2Sa, the infimum off over (a, b) is given by Ab), but since S is not 
closed and, in particular, b e S, a minimum does not exist. In Figure 2.5b we 
have that inf{f(x):xc[a,b]} is given by the limit offix) as x approaches b 
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from the “left,” denoted lim f(x). However, since f is discontinuous at 6, a 

minimizing solution does not exist. Finally, Figure 2 . 5 ~  illustrates a situation in 
which f is unbounded over the unbounded set S = {x : x 2 a}. 

We now formally state and prove the result that if S is nonempty, closed, 
and bounded, and iff is continuous on S, then unlike the various situations of 
Figure 2.5, a minimum exists. The reader is encouraged to study how these 
different assumptions guarantee the different assertions made in the following 
proof. 

x+b- 

2.3.1 Theorem 

Let S be a nonempty, compact set, and let$ S +- R be continuous on S. Then the 
problem min{ f (x) : x E S }  attains its minimum; that is, there exists a minimizing 
solution to this problem. 

Pro0 f 
Since f is continuous on S and S is both closed and bounded, f is bounded below 
on S. Consequently, since S #0, there exists a greatest lower bound 
a E inf{f(x): x ES}. Now let 0 < E <  1, and consider the set s k  = {x E S :  a I 

Ax) L a + E } for each k = 1,2,. . . . By the definition of an infimum, s k  f 0 for 

each k, so we may construct a sequence of points {xk) E S by selecting a point 

Xk E s k  for each k = 1, 2, .... Since S is bounded, there exists a convergent 

subsequence {xk}K -+ X, indexed by the set K. By the closedness of S, we have 

x E S ; and by the continuity off; since a I f (xk) I a + .ck for all k, we have 

that a = limk-,m,kEK f ( x k )  = f (51). Hence, we have shown that there exists a 

solution X E S such that f (X) = a = inf{ f (x) : x E S }  , so 51 is a minimizing 
solution. This completes the proof. 

k 

- 

b 0 b 

Figure 2.5 Nonexistence of a minimizing solution. 
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2.4 Separation and Support of Sets 

The notions of supporting hyperplanes and separation of disjoint convex sets are 
very important in optimization. Almost all optimality conditions and duality 
relationships use some sort of separation or support of convex sets. The results 
of this section are based on the following geometric fact: Given a closed convex 
set S and a point y e S ,  there exists a unique point X E S with minimum distance 
from y and a hyperplane that separates y and S. 

Minimum Distance from a Point to a Convex Set 

To establish the above important result, the following parallelogram law is 

needed. Let a and b be two vectors in R". Then 

By adding we get 

This result is illustrated in Figure 2.6 and can be interpreted as follows: The sum 
of squared norms of the diagonals of a parallelogram is equal to the sum of 
squared norms of its sides. 

We now state and prove the closest-point theorem. Again, the reader is 
encouraged to investigate how the various assumptions play a role in guarantee- 
ing the various assertions. 

2.4.1 Theorem 

Let S be a nonempty, closed convex set in Rn and y e S. Then there exists a 

unique point Y E S  with minimum distance from y. Furthermore, X is the 

minimizing point if and only if (y - X)'(x - Sr)  I 0 for all x E S. 

Figure 2.6 Parallelogram law. 
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Pro0 f 

First, let us establish the existence of a closest point. Since S f 0, there exists a 

point ~ E S ,  and we can confine our attention to the set s = S n { x :  

IIy - XI/ 5 lly - ?/I) in seeking the closest point. In other words, the closest-point 

problem inf{lly - XI/ : x E S} is equivalent to inf{/ly - XI\ : x E 5). But the latter 

problem involves finding the minimum of a continuous function over a 
nonempty, compact set 3, so by Weierstrass's theorem, Theorem 2.3.1, we 
know that there exists a minimizing point X in S that is closest to the point y. 

To show uniqueness, suppose that there is an X' E S such that lly -XI1 = 

IIy - X'II = y. By the convexity of S, (X + X')/2 E S. By the triangle inequality we get 

If strict inequality holds, we have a contradiction to X being the closest point to 
y. Therefore, equality holds, and we must have y - st = A(y - X') for some A. 
Since Ily - XI1 = IIy - 52'11 = y, we have 111 = 1. Clearly, A f -1, because otherwise, 

y = (X + X') / 2 E S, contradicting the assumption that y sc S. So A = 1, yielding 

x' = f, and uniqueness is established. 

To complete the proof, we need to show that (y - sZ)'(x - 57) < 0 for all 
x E S is both a necessary and a sufficient condition for 51 to be the point in S 
closest to y. 

- 

To prove sufficiency, let x E S. Then 

2 2 IIy - xljz = IIy -x +T3 - XI1 = IIy -XI? +list- XI1 +2(X - X)l (y - X). 

2 2 Since llX- xII 2 0 and (X - x)'(y - st) 2 0 by assumption, IIy - xi1 2 lly - XI? and 

- 2 x is the minimizing point. Conversely, assume that lly - x1f 2 IIy - st11 for all 

x E S. Let x E S and note that X + A(x - Z) E S for 0 5 A I 1 by the convexity of 
S. Therefore, 

IIy - x - A(x - X)f 2 IIy - XI12 . (2.3) 

Also, 
2 2 

IIy -X- A(x -X)ll = lly -5211 + A2(x -F2) - 2A(y -X)'(x - X). (2.4) 

From (2.3) and (2.4) we get 

2A(y-X)'(x-X) 5 A2jlX-X1? 
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- 

for all 0 I d I 1. Dividing (2.5) by any such d > 0 and letting d -+ O+, the result 
follows. 

Theorem 2.4.1 is illustrated in Figure 2 .7~ .  Note that the angle between 
(y -51) and (x -X) for any point x in S is greater than or equal to 90°, and hence 

(y -%)I (x -X) 5 0 for all x E S. This says that the set S lies in the half-space 

a'(x -51) 5 0 relative to the hyperplane a' (x - X) = 0 passing through X and 

having a normal a = (y -51). Note also by referring to Figure 2.7b that this 

feature does not necessarily hold even over N E  (X) n S if S is not convex. 

Hyperplanes and Separation of Two Sets 

Since we shall be dealing with separating and supporting hyperplanes, precise 
definitions of hyperplanes and hal f-spaces are reiterated below. 

2.4.2 Definition 

A hyperplane H in R" is a collection of points of the form {x : p'x = a},  where p 

is a nonzero vector in R" and a is a scalar. The vector p is called the normal 

vector of the hyperplane. A hyperplane H defines two closed half-paces H+ = 

{x : p'x 2 a )  and H- = {x : p'x 5 a} and the two open half-spaces (x : p'x > a} 

and {x : p'x < a}. 

Note that any point in R" lies in Hi, in H-, or in both. Also, a hyper- 
plane Hand the corresponding half-spaces can be written in reference to a fixed 

point, say, X E H .  If 5 1 ~  H,  p'x = a  and hence any point x E H must satisfy 

p'x - p'X = a -a = 0; that is, p' (x - X) = 0. Accordingly, H+ = {x : p' (x -51) 2 

0} and H- = (x:pt(x-Y)50).  Figure 2.8 shows a hyperplane H passing 
through X and having a normal vector p. 

Figure 2.7 Minimum distance to a closed convex set. 
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Figure 2.8 Hyperplane and corresponding half-spaces. 

As an example, consider H = [ ( x ,  , x2, x3, x4) : x1 + x2 - x3 + 2x4 = 4). The 

normal vector is p = (1,1,--1,2)'. Alternatively, the hyperplane can be written in 

reference to any point in H :  for example, X = (0,6,0,-1)'. In this case we write 

H = [(XI, ~ 2 ,  ~ 3 ,  ~ 4 )  + ( ~ 2  -6) - ~ 3  + 2(x4 + 1) = 0) .  

2.4.3 Definition 

Let Sl and S2 be nonempty sets in Rn. A hyperplane H = {x : p'x = a} is said to 

separate S, and S2 if p'x 2 a for each x E S1 and p'x I a for each x E S2. If, in 

addition, S, v S2 Q H ,  H is said to properly separate Sl and S2. The hyperplane 

H is said to strictly separate S, and S2 if p'x > a for each X E  S, and p'x < a 
for each X E  S2. The hyperplane H is said to strongly separate S, and S2 if 

p x 2 a+& for each X E  S, and p'x 5 a for each X E  S2,  where E is a positive 

scalar. 
Figure 2.9 shows various types of separation. Of course, strong separation 

implies strict separation, which implies proper separation, which in turn implies 
separation. Improper separation is usually o f  little value, since it corresponds to 
a hyperplane containing both S, and S 2 ,  as shown in  Figure 2.9. 

t 

Separation of a Convex Set and a Point 

We shall now present the first and most fundamental separation theorem. Other 
separation and support theorems will follow from this basic result. 

2.4.4 Theorem 

Let S be a nonempty closed convex set in R" and y E S. Then there exists a 

nonzero vector p and a scalar a such that p'y > a and p'x I a for each X E  S. 
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Strict separation Strong separation 

Figure 2.9 Various types of separation. 

Proof 

The set S is a nonempty closed convex set and y E S. Hence, by Theorem 

2.4.1, there exists a unique minimizing point S Z E  S such that (x-X)'(y-SZ) 10 
for each x E S. 

Letting p=y-s?#O and a=X'(y-E)=p'ST, we get p ' x s a  for each 
-2 x E S, while pry -a = (y -51)'(y -51) = lly - XI( > 0. This completes the proof. 

Corollary 1 

Let S be a closed convex set in Rn. Then S is the intersection of all half-spaces 
containing S. 

Pro0 f 
Obviously, S is contained in the intersection of all half-spaces containing 

it. In contradiction of the desired result, suppose that there is a point y in the 
intersection of these half-spaces but not in S. By the theorem, there exists a half- 
space that contains S but not y. This contradiction proves the corollary. 

Corollary 2 

Let S be a nonempty set, and let y c cl conv(S), the closure of the convex hull of 

S. Then there exists a strongly separating hyperplane for S and y. 
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Pro0 f 

The result follows by letting cl convQ play the role of S in Theorem 
2.4.4. 

The following statements are equivalent to the conclusion of the theorem. 
The reader is asked to verify this equivalence. Note that statements 1 and 2 are 
equivalent only in this special case since y is a point. Note also that in Theorem 

2.4.4, we have a = p'X = max{p'x : x E S ) ,  since for any x E S, p'(K - x) = 

(y - K)'(X - x) L 0. 

1. 
2. 

3. 

4. 

There exists a hyperplane that strictb separates S and y. 
There exists a hyperplane that strongly separates S and y. 

There exists a vector p such that p'y > sup{p'x : x E S}. 

There exists a vector p such that p'y < inf{p'x : x E S )  . 

Farkas's Theorem as a Consequence of Theorem 2.4.4 

Farkas's Theorem is used extensively in the derivation of optimality conditions 
of linear and nonlinear programming problems. The theorem can be stated as 
follows. Let A be an m x n matrix, and let c be an n-vector. Then exactly one of 
the following two systems has a solution: 

System 1: Ax < 0 and c'x > 0 for some x E R". 

System 2: A'y = c and y 2 0 for some y E R". 

If we denote the columns of A' by al ,..., a,,,, System 2 has a solution if c lies in 

the convex cone generated by al,  ..., am.  System 1 has a solution if the closed 

convex cone {x : Ax I 0) and the open half-space {x : C'X > 0) have a nonempty 
intersection. These two cases are illustrated geometrically in Figure 2.10. 

2.4.5 Theorem (Farkas's Theorem) 

Let A be an m x n matrix and c be an n-vector. Then exactly one of the 
following two systems has a solution: 

System 1: Ax I 0  and c'x > 0 for some x E R". 

System21 A'y=c  andy>_OforsomeyERm. 

Proof 

Suppose that System 2 has a solution; that is, there exists y 2 0 such that 

A'y = c. Let x be such that Ax 50. Then c'x = y' Ax SO. Hence, System 1 has 
no solution. Now suppose that System 2 has no solution. Form the set S = (x : x 

= A'y, y 2 O } .  Note that S is a closed convex set and that c c S. By Theorem 
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System I has a solution System 2 has a solution 

Figure 2.10 Farkas's theorem. 

2.4.4, there exists a vector p E Rn and a scalar a such that p'c > a and p'x I a 

for all X E  S. Since O E  S, a20, so p'c>O. Also, a2p'A'y =y'Ap for all 

y 2 0. Since y 2 0 can be made arbitrarily large, the last inequality implies that 

Ap 50. We have therefore constructed a vector p E Rn such that Ap I 0 and 

c'p > 0. Hence, System 1 has a solution, and the proof is complete. 

Corollary 1 (Gordan's Theorem) 

Let A be an m x n matrix. Then, exactly one of the following two systems has a 
solution: 

System 1: Ax < 0 for some x E Rn. 

System 2: A' y = 0, y 2 0 for some nonzero y E R". 

Proof 

Note that System 1 can be written equivalently as Ax+es I 0  for some 

X E  Rn and s > 0, s E R, where e is a vector of m ones. Rewriting this in the 

form of System 1 of Theorem 2.4.5, we get [A el I 0, and (0 ,..., 0,l) 

for some (")E Rn+'. By Theorem 2.4.5, the associated System 2 states that 
S 

y = (0 ,..., 0,l)' and y 2 0  for some Y E  Rm; that is, A'y=O, e'y=1, and El 
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y 2 0 for some y E Rm. This is equivalent to System 2 of the corollary, and hence 
the result follows. 

Corollary 2 

Let A be an m x n matrix and c be an n-vector. Then exactly one of the follow- 
ing two systems has a solution: 

System 1 :  Ax 5 0, x 2 0, c'x > 0 for some x E R". 

System 2: A'y 2 c, y 2 0 for some y E R". 

Pro0 f 

equalities and, accordingly, replacing A' in the theorem by [A', -I]. 

The result follows by writing the first set of constraints of System 2 as 

Corollary 3 

Let A be an m x n matrix, B be an ! x n matrix, and c be an n-vector. Then 

exactly one of the following two systems has a solution: 

Systeml: A X S O ,  B X = O ,  C'X>O forsome X E R " .  

System 2: A'y + B'z = c , y 2 0 for some y E Rm and z E R e .  

Proof 

The result follows by writing z = z1 - 2 2 ,  where z1 2 0 and z2 2 0 in 

System 2 and, accordingly, replacing A' in the theorem by [A',B',-B']. 

Support of Sets at Boundary Points 

2.4.6 Definition 

Let S be a nonempty set in R", and let X E 3s. A hyperplane H = (x : p'(x - 

x) = 0) is called a supporting hyperplane of S at 53 if either S c H+, that is, 

p'(x-X)20 for each X E S ,  or else, S c  H- ,  that is, p'(x-X)<O for each 
x E S. If, in addition, S g H, H is called aproper supporting hyperplane of S at 

Note that Definition 2.4.6 can be stated equivalently as follows. The 

hyperplane H = {x : p' (x -X) = 0} is a supporting hyperplane of S at 51 E dS if 

p'X = inflp'x : x E S) or else p'X = sup(p'x : x E S}. This follows by noting that 

either X E S, or if SZ 4 S, then since X E as, there exist points in S arbitrarily 

- 

- 
X. 
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close to ft and hence arbitrarily close in the value of the function p'x to the 

value p ' ~ .  
Figure 2.1 1 shows some examples of supporting hyperplanes. The figure 

illustrates the cases of a unique supporting hyperplane at a boundary point, an 
infinite number of supporting hyperplanes at a boundary point, a hyperplane that 
supports the set at more than one point, and finally, an improper supporting 
hyperplane that contains the entire set. 

We now prove that a convex set has a supporting hyperplane at each 
boundary point (see Figure 2.12). As a corollary, a result similar to Theorem 
2.4.4, where S is not required to be closed, follows. 

2.4.7 Theorem 

Let S be a nonempty convex set in R n ,  and let EE 2s. Then there exists a 
hyperplane that supports S at 5;;; that is, there exists a nonzero vector p such that 

pf (x -X) 5 0 for each x E cl S. 

Proof 

Since f t ~  as, there exists a sequence {yk ) not in cl s such that yk + z. 
By Theorem 2.4.4, corresponding to each yk there exists a pk with norm 1 such 

that piyk > pix for each X E  cl S .  (In Theorem 2.4.4, the normal vector can be 

normalized by dividing it by its norm, so that llpk 11 = 1.) Since (pk ) is bounded, 

Figure 2.1 1 Supporting hyperplanes. 

Figure 2.12 Supporting hyperplane. 
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it has a convergent subsequence { P k } X  with limit p whose norm is also equal 

to 1. Considering this subsequence, we have piyk > p i x  for each x E cl s. 
Fixing x E cl S and taking limits as k E cT approaches 00, we get pt (x - X) I 0. 
Since this is true for each x E cl S , the result follows. 

Corollary 1 

Let S be a nonempty convex set in R" and X B int S. Then there is a nonzero 

vector p such that pf (x -X) I 0 for each x E cl S. 

Proof 

if ST E as, the corollary reduces to Theorem 2.4.7. 
If X E clS, the corollary follows from Theorem 2.4.4. On the other hand, 

Corollary 2 

Let S be a nonempty set in R", and let y B int conv(S). Then there exists a 
hyperplane that separates S and y. 

Pro0 f 

respectively, in Corollary 1. 
The result follows by identifying conv(S) and y with S and x, 

Corollary 3 

Let S be a nonempty set in R" , and let X E as n a  conv(S). Then there exists a 
hyperplane that supports S at X . 

Pro0 f 

The result follows by treating conv(S) as the set of Theorem 2.4.7. 

Separation of Two Convex Sets 

Thus far we have discussed the separation of a convex set and a point not in the 
set and have also discussed the support of convex sets at boundary points. In 
addition, if we have two disjoint convex sets, they can be separated by a 

hyperplane H such that one of the sets belongs to H' and the other set belongs 

to H-. In fact, this result holds true even if the two sets have some points in 
common, as long as their interiors are disjoint. This result is made precise by the 
following theorem. 
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2.4.8 Theorem 

Let Sl and S2 be nonempty convex sets in R" and suppose that SI nS2 is empty. 

Then there exists a hyperplane that separates Sl and S2; that is, there exists a 

nonzero vector p in R" such that 

i n f { p ' x : x E ~ ~ ) ~ s u p { p ' x : x E ~ 2 ) .  

Proof 
Let S = Sl o S 2  = {xl - x2 : x1 E Sl and x2 E S2}. Note that S is a convex 

set. Furthermore, 0 F S, because otherwise Sl nS2 will be nonempty. By Corol- 

lary 1 of Theorem 2.4.7, there exists a nonzero p E R" such that p'x 2 0 for all 

x E S. This means that pfxl 2 pfx2 for all xI E Sl and x2 E S2,  and the result 
follows. 

Corollary I 

Let Sl and S2 be nonempty convex sets inR". Suppose that int S2 is not empty 

and that Sl nintS2 is empty. Then there exists a hyperplane that separates Sl 

and S2; that is, there exists a nonzero p such that 

inf{p'x : x E s,) L sup{p'x : x E s,>. 

Pro0 f 

Replace S2 by int S,, apply the theorem, and note that 

sup{p'x : x E S, = sup(p'x : x E int S, 1. 

Corollary 2 

Let Sl and S2 be nonempty sets in R" such that int conv(Sj) f 0, for i = 1, 2,  

but int conv(S,) n int conv(S2) = 0. Then there exists a hyperplane that 

separates Sl and S2.  

Note the importance of assuming nonempty interiors in Corollary 2 .  

Otherwise, for example, two crossing lines in R2 can be taken as Sl and S2 [or 

as conv(Sl) and conv(S2)], and we would have int conv(S1) n int conv(S2) = 

0. But there does not exist a hyperplane that separates S, and S2. 

Gordan's Theorem as a Consequence of Theorem 2.4.8 

We shall now prove Gordan's theorem (see Corollary 1 to Theorem 2.4.5) using 
the existence of a hyperplane that separates two disjoint convex sets. This 
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theorem is important in deriving optimality conditions for nonlinear program- 
ming. 

2.4.9 Theorem (Gordan's Theorem) 

Let A be an m x n matrix. Then exactly one of the following systems has a solution: 

System 1 : Ax < 0 for some x E R" . 
System 2: A'p = 0 and p 2 0 for some nonzero p E Rm. 

Proof 

We shall first prove that if System 1 has a solution, we cannot have a 

solution to A'p = 0, p 2 0, p nonzero. Suppose, on the contrary, that a solution 6 
exists. Then since A2 <O, 6 2 0, and 6 +O, we have 6'Ai < 0; that is, 

2'A'b < 0. But this contradicts the hypothesis that A'6 = 0. Hence, System 2 
cannot have a solution. 

Now assume that System 1 has no solution. Consider the following two sets: 

Sl = {z: z = AX,X E R"} 

s, ={z:z<O}. 

Note that Sl and S2 are nonempty convex sets such that Sl nS2 = 0. Then, by 

Theorem 2.4.8, there exists a hyperplane that separates Sl and S,; that is, there 
exists a nonzero vector p such that 

t p Ax 2 p'z for each x E R" and z E clS2. 

Since each component of z can be made an arbitrarily large negative number, we 

must have p 2 0. Also, by letting z = 0, we must have p' Ax 2 0 for each x E R". 

By choosing x = -A'p, it follows that - A p 2 0, and thus A'p = 0. Hence, 

System 2 has a solution, and the proof is complete. 
Separation Theorem 2.4.8 can be strengthened to avoid trivial separation 

where both Sl and S, are contained in the separating hyperplane. 

II ' Ij2 

2.4.10 Theorem (Strong Separation) 

Let Sl and S, be closed convex sets, and suppose that Sl is bounded. If Sl nS, 

is empty, there exists a hyperplane that strongly separates Sl and S,; that is, 

there exists a nonzero p and E > 0 such that 

inf{p'x: x E s,> 2 E+SUP{P'X: x E s2>. 
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Pro0 f 
- 

Let S = Sl 0 S2,  and note that S is a convex set and that O p  S. We shall 

show that S is closed. Let {xk} in S converge to x. By the definition of S, Xk = 
yk - Z k ,  where yk E S1 and Zk E S2.  Since Sl is compact, there is a subsequence 

[yk},T, with limit y in S1. Since yk - Z k  + x and yk + y for k E M', Z k  + z 

for k E  Y'. Since S2 is closed, Z E  S2. Therefore, x = y - z  with Y E  Sl and 

z E S2. Therefore, x E S and hence S is closed. By Theorem 2.4.4, there is a 

nonzero p and an E such that p'x 2 E for each x E S and pf 0 < E. Therefore, E >  

0. By the definition of S, we conclude that prxl 2 &+pfx2 for each x1 E S1 and 

x2 E S2, and the result follows. 
Note the importance of assuming the boundedness of at least one of the 

sets Sl and S2 in Theorem 2.4.10. Figure 2.13 illustrates a situation in  R2 where 

the boundaries of S1 and S2 asymptotically approach the strictly separating 

hyperplane shown therein. Here S1 and S2 are closed convex sets and 

Sl n S2 = 0, but there does not exist a hyperplane that strongly separates S1 and 

S2. However, if we bound one of the sets, we can obtain a strongly separating 
hyperplane. 

As a direct consequence of Theorem 2.4.10, the following corollary gives 
a strengthened restatement of the theorem. 

Corollary 1 

Let S, and S2 be nonempty sets in R n ,  and suppose that S1 is bounded. If cl 

conv(S1) n c l  conv(S2) = 0, there exists a hyperplane that strongly separates S1 

and S 2 .  

2.5 Convex Cones and Polarity 

In this section we discuss briefly the notions of convex cones and polar cones. 
Except for the definition of a (convex) cone, this section may be skipped without 
loss of continuity. 

Figure 2.13 Nonexistence of a strongly separating hyperplane. 
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2.5.1 Definition 

A nonempty set C in Rn is called a cone with vertex zero if X E  C implies that 
A X E  C for all /z 2 0. If, in addition, C is convex, C is called a convex cone. 
Figure 2.14 shows an example of a convex cone and an example of a nonconvex 
cone. 

An important special class of convex cones is that of polar cones, defined 
below and illustrated in Figure 2.15. 

2.5.2 Definition 

Let S be a nonempty set in Rn.  Then the polar cone of S, denoted by S*, is 

given by {p : p'x 5 0 for all x E S}. If S is empty, S* will be interpreted as R". 

summarizes some facts about polar cones. 
The following lemma, the proof of which is left as an exercise, 

2.5.3 Lemma 

Let S, S, , and S, be nonempty sets in R" . Then the following statements hold true. 

1. 

2.  

S* is a closed convex cone. 

S S**, where S** is the polar cone of S*. 

Conex cone Nonconvex cone 

Figure 2.14 Cones. 

Figure 2.15 Polar cones. 
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3. S, c S, implies that S; E S;. 

We now prove an important theorem for closed convex cones. As an 
application of the theorem, we give another derivation of Farkas's theorem. 

2.5.4 Theorem 

Let C be a nonempty closed convex cone. Then C = C**. 

Proof 

Clearly, C E C**. Now let x E C**, and suppose, by contradiction, that x 
e C. By Theorem 2.4.4 there exists a nonzero vector p and a scalar a such that 

p'y I a for all y E C and p'x >a. But since y = 0 E C, a L 0, so p'x > 0. We 

now show that p E C*. If not, p'y > 0 for some 7 E C, and p' (27) can be made 

arbitrarily large by choosing h arbitrarily large. This contradicts the fact that 

pry < a for all y E C. Therefore, p E C*. Since x E C** = (u : u' v I 0 for all v 

E C*}, p'x 2 0. This contradicts the fact that p'x > 0, and we conclude that x E 

C. This completes the proof. 

Farkas's Theorem as a Consequence of Theorem 2.5.4 

Let A be an m x n matrix, and let C = {A'y : y 2 0). Note that C is a closed 

convex cone. It can be easily verified that C* = {x : Ax 5 O } .  By the theorem, c 

E C** if and only if c E C. But c E C** means that whenever x E C*, c'x I 0, 

or equivalently, Ax I 0  implies that c'x I 0. By the definition of C, c E C means 

that c = A'y and y L 0. Thus, the result C = C** could be stated as follows: 
System 1 below is consistent if and only if System 2 has a solution y. 

System 1: Ax I 0  implies that c'x 5 0. 

System 2:  A'Y = c, y L 0. 

This statement can be put in the more usual and equivalent form of Farkas's 
theorem. Exactly one of the following two systems has a solution: 

System 1: AX i 0, c'x > o (i.e., c c c** = c). 
System 2: A'Y = c,  y 2 o (i.e., c E 0. 

2.6 Polyhedral Sets, Extreme Points, and Extreme Directions 

In this section we introduce the notions of extreme points and extreme directions 
for convex sets. We then discuss in more detail their use for the special 
important case of polyhedral sets. 
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Polyhedral Sets 

Polyhedral sets represent an important special case of convex sets. We have seen 
from the corollary to Theorem 2.4.4 that any closed convex set is the 
intersection of all closed half-spaces containing it. In the case of polyhedral sets, 
only a finite number of half-spaces are needed to represent the set. 

2.6.1 Definition 

A set S in R" is called a polyhedral set if it is the intersection of a finite number 

of closed half-spaces; that is, S = {x : pfx I ai for i = I ,  ..., m ) ,  where pi is a 

nonzero vector and a;. is a scalar for i = 1, ..., m. 

Note that a polyhedral set is a closed convex set. Since an equation can be 
represented by two inequalities, a polyhedral set can be represented by a finite 
number of inequalities and/or equations. The following are some typical exam- 
ples of polyhedral sets, where A is an m x n matrix and b is an m-vector: 

S = ( x : A x < b )  

S= {x  : Ax = b, x >  0)  

S =  ( x : A x > b , x > O ) .  

Figure 2.16 illustrates the polyhedral set 

S=( (x , ,x2 ) : -x ,+x* I2 ,  x 2 1 4 ,  x120, x 2 2 0 ) .  

Extreme Points and Extreme Directions 
We now introduce the concepts of extreme points and extreme directions for 
convex sets. We then give their full characterizations in the case of polyhedral 
sets. 

Figure 2.16 Polvhedral set. 
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2.6.2 Definition 

Let S be a nonempty convex set in R". A vector x E S is called an extreme point 

of S if x = Axl + ( I  -A)x2 with x,, x2 E S, and A E (0, 1) implies that x = x1 = 

x2. 
The following are some examples of extreme points of convex sets. We 

denote the set of extreme points by E and illustrate them in  Figure 2.17 by dark 
points or dark lines as indicated. 

2 2  

2 2  

1 .  S={(x,,x2):x1 +x, 21);  

E = ( ( x , , x 2 ) : x 1  +x2 =1]. 

S={(x1,x2):x1+x2 1 2 ,  -x,+2x2 1 2 ,  x1,x2 >O}; 2. 

E = { (0, O)', (0, l)', (2/3,4/3)', (2,O)' }. 

From Figure 2.17 we see that any point of the convex set S can be 
represented as a convex combination of the extreme points. This turns out to be 
true for compact convex sets. However, for unbounded sets, we may not be able 
to represent every point in the set as a convex combination of its extreme points. 
To illustrate, let S = { (xl , x2 )  : x2 2 lxll}. Note that S is convex and closed. 

However, S contains only one extreme point, the origin, and obviously S is not 
equal to the collection of convex combinations of its extreme points. To deal 
with unbounded sets, the notion of extreme directions is needed. 

2.6.3 Definition 

Let S be a nonempty, closed convex set inR". A nonzero vector d in R" is called 

a direction, or a recession direction, of S if for each x E S, x + Ad E S for all A> 
0. Two directions d, and d2 of S are called distinct if d, # ad2 for any a > 0. A 

Figure 2.17 Extreme Doints. 
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direction d of S is called an extreme direction if it cannot be written as a positive 
linear combination of two distinct directions; that is, if d = Ad, + h d 2  for 4, 
/22 > 0, then d, = ad2 for some a > 0. 

To illustrate, consider S = { ( x 1 , x 2 )  : x2 2 Ix, I], shown in Figure 2.18. The 

directions of S are nonzero vectors that make an angle less than or equal to 45" 

with the vector (0,l)'. In particular, d, = (1,l)' and d2 = (-1,l)' are two extreme 
directions of S. Any other direction of S can be represented as a positive linear 
combination of d, and d2. 

Characterization of Extreme Points and Extreme Directions 
for Polyhedral Sets 

Consider the polyhedral set S = { x : Ax = b, x ? 01, where A is an rn x n matrix 
and b is an m-vector. We assume that the rank of A is m. If not, then assuming 
that Ax = b is consistent, we can throw away any redundant equations to obtain 
a full row rank matrix. 

Rearrange the columns of A so that A = [B, N], 
where B is an m x rn matrix of full rank and N is an rn x (n  - rn) matrix. Let xB 
and xN be the vectors corresponding to B and N, respectively. Then Ax = b and 

x L 0 can be rewritten as follows: 

BxB +NxN = b 

Extreme Points 

and 

The following theorem gives a necessary and sufficient characterization of an 
extreme point of S. 

2.6.4 Theorem (Characterization of Extreme Points) 

Let S =  (x : Ax = b, x >  01, where A is an rn x n matrix of rank m and b is an m- 
vector. A point x is an extreme point of S if and only if A can be decomposed 
into [B, N] such that 

'xB 2 0, XN 2 0. 

Figure 2.18 Extreme directions. 
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where B is an m x m invertible matrix satisfying B-'b 2 0. Any such solution is 
called a basic feasible solution (BFS) for S. 

Pro0 f 

Suppose that A can be decomposed into [B, N] with x =  [Bib] and 

B-'b 2 0. It is obvious that x E S. Now suppose that x = Axl + (1 - A)x2 with 

xi, x2 E S for some A E (0,l). In particular, let xi =(xi1,xf2) and 

x i  =(xil ,xi2).Then 

Since x12, x22 2 0 and A E (0, l), it follows that xl2 = = 0. But this implies 

that x l l  = x2] = B-'b and hence x = x1 = x2. This shows that x is an extreme 
point of S. Conversely, suppose that x is an extreme point of S. Without loss of 

generality, suppose that x = (xl , ..., x k ,  0, ..., o)', where xl, ..., xk are positive. We 

shall first show that al ,...,ak are linearly independent. By contradiction, suppose 

that there exist scalars 4, ...,Ak not all zero such that C;='Ajaj = 0. Let R = 

(4 ,..., Ak,O ,..., 0)'. Construct the following two vectors, where a > 0 is chosen 

such that xl, x2 2 0: 

x1 = x + a l  and x2 =x-aR.  

Note that 

k 

j=1 
Ax1 = Ax+aAR = A x + a  C Ajaj = b, 

and similarly Ax2 = b. Therefore, xl, x2 E S, and since a > 0 and R # 0, x1 and 

x2 are distinct. Moreover, x = (1/2)x, +(1/2)x2. This contradicts the fact that x is 
an extreme point. Thus, a', ..., ak are linearly independent, and since A has rank 
m, m - k of the last n - k columns may be chosen such that they, together with 
the first k columns, form a linearly independent set of m-vectors. To simplify the 
notation, suppose that these columns are ak+] ,  ..., a,. Thus, A can be written as 
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A = [B, N], where B = [al  ,..., a,] is of full rank. Furthermore, B-'b = ( X I  ,..., xk,  

0 ,..., 0)' , and since xi > 0 for j  = 1 ,..., k, B-'b L 0. This completes the proof. 

Corollary 

The number of extreme points of S is finite. 

Proof 

The number of extreme points is less than or equal to 

n! (:)= m!(n-m)!* 

which is the maximum number of possible ways to choose m columns of A to 
form B. 

Whereas the above corollary proves that a polyhedral set of the form (x : 
Ax = b, x 2 0) has a finite number of extreme points, the following theorem 
shows that every nonempty polyhedral set of this form must have at least one 
extreme point. 

2.6.5 Theorem (Existence of Extreme Points) 

Let S = (x : Ax = b, x L 0) be nonempty, where A is an m x n matrix of rank m 
and b is an m-vector. Then S has at least one extreme point. 

Proof 

Let x E S and, without loss of generality, suppose that x = ( x l ,  ..., xk,  

0 ,..., O)', where xi > 0 for j  = 1 ,..., k. If al  ,..., ak are linearly independent, k I m 

and x is an extreme point. Otherwise, there exist scalars 4, ..., Ak with at least 

one positive component such that x7=l Aja = 0. Define a > 0 as follows: 

Consider the point XI whose jth component x> is given by 

x . - a A .  f o r j = l ,  ..., k J J  x j  = 
f o r j =  k + l ,  ..., n. 

Note that x> 2 0 for j = 1 ,..., k and x> = 0 for j = k + 1 ,..., n. Moreover, x: = 0, 

and 
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n k k k 
C ajx> = C a . ( x . -aA . )=  C a . x . - a  C a J J  .A .  = b-O=b.  

j=1 
J J  

j=l 
J J  J 

j= l  j = l  

Thus, so far, we have constructed a new point x' with at most k - 1 positive 
components. The process is continued until the positive components correspond 
to linearly independent columns, which results in an extreme point. Thus, we 
have shown that S has at least one extreme point, and the proof is complete. 

Let S = {x : Ax = b, x > 0} f 0, where A is an 
m x n matrix of rank m. By definition, a nonzero vector d is a direction of S if x 
+ Ad E S for each x E Sand each A ? 0. Noting the structure of S, it is clear that 
d f 0 is a direction of S if and only if 

A d = 0 ,  d > 0 .  

In particular, we are interested in the characterization of extreme directions of S. 

Extreme Directions 

2.6.6 Theorem (Characterization of Extreme Directions) 

Let S = {x  : Ax = b, x 2 0) f 0, where A is an m x n matrix of rank m and b is 
an m-vector. A vector d is an extreme direction of S if and only if A can be 

decomposed into [B, N] such that B-'a I 0 for some column a of N, and d is 

a positive multiple of d = [ -BiJ1aJ), where e j  is an n - m vector of zeros except 

for a 1 in position j .  

Pro0 f 

If B-'a I 0, d 2 0. Furthermore, Ad = 0, so that d is a direction of S. We 

now show that d is indeed an extreme direction. Suppose that d = Aldl + 4 d 2 ,  

where 4, 4 > 0 and dl,  d2 are directions of S. Noting that n - m - 1 

components of d are equal to zero, the corresponding components of dl and d2 

must also be equal to zero. Thus, dl and d2 could be written as follows: 

d, =a1(:;). d, =a2(;), 

where al, a2 > 0. Noting that Ad, = Ad2 = 0, it can easily be verified that dl = 

d,, = -B-'aj. Thus, dl and d2 are not distinct, which implies that d is an 

extreme direction. Since d is a positive multiple of d, it is also an extreme 
direction. 

Conversely, suppose that a is an extreme direction of S. Without loss of 
generality, suppose that 


