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Prologue 3

When Zermelo defended the Axiom of Choice by axiomatizing set theory in
1908, a number of his critics attacked that axiomatization. The next decade
saw the Axiom explored by various mathematicians in algebra and analysis,
but rarely exploited to the full. The situation was profoundly altered when
Waclaw Sierpinski founded the Warsaw school of mathematics soon after
Poland’s rcunification in 1918. For in Sicrpinski, the Axiom gained an advo-
cate who investigated its relationship to many branches of mathematics and
who successfully d his students to do likewise. Meanwhile in
Germany, Abtaham Fnenkel began to study models of Zermelo's axiomati-
zation and to establish the independence of the Axiom, provided that in-
finitely many urelements were allowed.” In 1938 Kurt Godel obtained deep
results about models of set theory by proving the relative consistency of both
the Axiom of Choice and the Generalized Continuum Hypothesis. In par-
ticular he showed that every model of the usual postulates for set theory, but
not necessarily of the Axiom, has a submodel in which both the Axiom of
Choice and the Generalized Continuum Hypothesis are true, For all but the
most radical constructivists, Godel's result dispelled any suspicions that the
Axiom might lead to a contradiction.

During the quarter-century after Godel's work, the Axiom was fruitfully
applied in diverse fields of mathematics, and many kinds of propositions were
shown to be equivalent to it.* Moreover, mathematicians studied various
propositions which depended on the Axiom but which were suspected of being
weaker than it, such as the Prime Ideal Theorem for Boolean algebras.
Nevertheless, there was no known way to determine completely the relative
strength of these propositions when they involved real numbers, such as the
existence of a non-measurable set. This defect in the Fraenkel-Mostowski
method of independence proofs was remedied by Paul Cohen’s method of
forcing, which in 1963 enabled him to d the independ of the
Axiom for systems of set theory lacking urclements, At the same time he
established the independence of the Continuum Hypothesis in first-order
logic. Set theorists began at once to exploit Cohen’s technique and to re-
formulate it in a general setting. The next two decades produced a cornucopia
of independence results involving the Axiom as well as other assumptions.
Indeed, the primary focus of research no longer lay within set theory proper,
but increasingly centered on models of set theory.

However, one consequence of Cohen’s method was not altogether welcome.
As such semantic investigations of set theory proliferated, the Axiom of
Choice and other axioms of set theory (beyond those of Zermelo-Fraenkel)
came to be regarded more like the axioms for a group, which has many models,
than like the postulates for a categorical system such as the natural numbers.

T An wrelement (also called an individual or an atom) was an object which contained no
clements, belonped to some set, and yet was not identical with the empiy set.
* See Appendix 2 as well as Rubin and Rubin 1963,
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Since set theory had provided a foundation for mathematics, the unity of
mathematics was threatened. In 1967 Andrzej Mostowski commented on
this matter:

Such [post-Cohen independence] results show that axiomatic set theory is
hopelessly incomplete . .. . Of course if there are a multitude of set-theories,

then none of th claim the I place in math ics. Only their common
part could claim such a position; but it is debatable whether this
part will in all the axi ded for a reduction of mathematics to set
theory. [1967, 93-95)

A decade later Jean Dicudonné added:

The proof by Gadel and P. Cohen that the Axiom of Choice and the Con-
tinuum Hypothesis are undecidable, and the numerous metamathematical works
which resulted, have greatly changed the views of many mathematicians . . . .
Beyond classical analysis (based on the Zermelo-Fraenkel axioms supplemented
by the Denumerable Axiom of Choice), there is an infinity of different possible
mathematics, and for the time being no definitive reason compels us to choose
one of them rather than another. [1976, 11]

It remains to be scen whether the Axiom of Constructibility, Martin's
Axiom, or some large cardinal axiom will eventually restore the unity of set
theory and, with it, the foundations of mathematics.



Chapter 1
The Prehistory of the Axiom of Choice

But as one cannot apply infinitely many times
an arbitrary rule by which one assigns to a class
A an individual of this class, a determinate rule
is stated here,

Giuseppe Peano [1890, 210)

Throughout its historical development, mathematics has oscillated between
studying its assumptions and studying the objects about which those assump-
tions were made. After the introduction of new mathematical objects, it often
happened that the assumptions underlying them remained unspecified for a
considerable time; only through extensive use did such assumptions become
sufficiently clear to receive an explicit formulation. Usually a body of theorems,
consequences of an assumption, were obtained before the assumption itself
came to be recognized. At times, indeed, an assumption was specified precisely
in order to secure a particular theorem or theorems, Of course, such an
assumption ordinarily formed part of a nexus of suppositions with varying
degrees of explicitness. What, one may ask, has caused such an assumption to
become conscious and explicit? The question grows more complex as soon as
we recognize that there was rarely, if ever, a single way of expressing an
assumption and that various weakenings or strengthenings of an assumption
could serve different mathematical purposes. This preliminary chapter
explores how the use of arbitrary choices led, over most of a century, to
Zermelo's explicit formulation of the Axiom of Choice.

1.1 Introduction

In 1908 Zermelo proposed a version of the Axiom of Choice that is useful for
describing weaker assumptions:

(1.1.1) Given any family T of non-empty sets, there is a function f which
assigns to each member A of T an element f(A) of A. [1908a, 274)
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Such an [ is now called a choice function for 7. If (1.1.1) is limited to those
families T of a particular cardinality, one obtains a restricted form of the
Axiom. Since for any finite T the Axiom is provable, the weakest non-trivial
case occurs when T is denumerable.” This case is known as the Denumerable
Axiom of Choice, and is abbreviated hereafter as the Denumerable Axiom.?

At that time Zermelo regarded the Axiom of Choice as codifying an
assumption that numerous mathematicians had already made implicitly
[1908, 113]). One may then inquire how this assumption developed from
earlier mathematics and through what stages it passed on its way to Zermelo'’s
explicit formulation. To answer this question, we need a precise criterion for
deciding what constituted an implicit use of the Axiom. The nature of such a
use was different during the period before Zermelo's formulation than it was
afterward. For this reason the author has termed such an implicit use prior to
September 1904 as an “implicit use of the Assumption.” Likewise, such an
implicit use of the Denumerable Axiom will be called an implicit use of the
Denumerable Assumption. After 1904, mathematicians were often conscious
that making infinitely many arbitrary choices brought the Axiom into play.
Before that date, a mathematician who made such choices seldom recognized
that he had done anything unusual or questionable (see 1.2-1.7). Apparently
the only exceptions were three Italian mathematicians who began to avoid
such choices intentionally during the period 18901902 (see 1.8). The carliest
of these was Peano, whose views were quoted at the beginning of this chapter.

The hallmark of an implicit use of the Assumption was the occurrence of
infinitely many arbitrary choices. Sometimes these choices occurred quite
explicitly, sometimes less so. Occasionally a mathematician would employ a
proposition which had been proved, by himself or another, using an infinity
of arbitrary choices and for which no other proof was then known. Although
that mathematician may not have recognized that he had made such arbitrary
selections indirectly, we have regarded this case too as an implicit use of the
Assumption,

Some uses of the Axiom will be termed avoidable, others unavoidable.
Briefly, an avoidable use in a proof was such that the given proof could be
modified, with the techniques then available, to specify uniquely whatever
the Axiom had been used to select. Sometimes, while the proof could not be
modified in this manner, another demonstration of the same theorem was
later found which did not rely on such choices. Whenever such is the case, it is
noted in the text. Of course, the fact that an implicit use of the Assumption is
avoidable does not imply in any way that the mathematician involved should
have revised his proof.

An unavoidable use of the Axiom was one such that the proposition in

¥ A setis de ble if it can be mapped onto the set N of natural numbers.
? The Denumerable Axiom o((‘ho»c: has also been called the Countable Axiom of Choice
(see Jech 1973, 20). H: , we distinguish sharply b ad ble set and one that

is countable, f.e., ﬁnne or denumble
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question could not be proved in Zermelo-Fraenkel set theory without
urclements (hereafter called ZF), or in Zermelo-Fraenkel set theory with
urelements (hereafter termed ZFU), but could be deduced in ZF supplemen-
ted by the Axiom of Choice (now known as ZFC). At times we refer to an
unavoidable use by saying that a proposition P needs or requires the Axiom,
though strictly speaking this is an abus de langage. When it is now known
that a weakened form of the Axiom (such as the Denumerable Axiom)
suffices to prove P, this fact appears in the text. To say that P is equivalent
1o the Axiom means that such an equivalence is provable in ZF.

It is possible to define the term “implicit use of the Axiom™ much more
narrowly than we have done. One might regard the Axiom as used implicitly
to prove a proposition P if and only if P is equivalent to the Axiom. For
historical purposes, such a definition would be too restrictive, since it
would exclude pre-1904 uses which mathematicians described soon after-
ward as implicit. Moreover, such a definition would distort the historical
perspective in a second way. For it would strongly suggest that an implicit
use of the Axiom was an implicit use of any other proposition P equivalent
to the Axiom (such as Tychonoff's Theorem), even though P was only
conceived decades later and did not appear in any direct way in that implicit
use of the Axiom.

To make an infinity of arbitrary choices the hallmark of an implicit use of
the Assumption, as has been done here, does not eliminate all difficulties.
Although the Axiom justifics infinitely many arbitrary choices so long as
they are independent of each other, mathematicians sometimes made an
infinity of arbitrary selections such that a given choice depended on those
previously made. This was the case, for example, in the early attempts to well-
order an infinite set M by picking one clement after another from M (sec 1.5).
Shortly after 1904, some mathematicians were satisfied with the Axiom partly
because it avoided infinitely many such dependent choices. Later it was
recognized that the Axiom could justify dependent choices as well.

Most commonly, dependent choices occurred when a mathematician
selected a sequence a,, a;, ... such that the choice of a, , , depended on a,. In
general, such choices cannot be made by using the Denumerable Axiom, even
on the real line.* However, the existence of such a sequence can be justified by
a proposition which follows from the Axiom of Choice and which Paul
Bernays proposed in 1942 as a weakened form of the Axiom useful in analysis,
This form is now known as the Principle of Dependent Choices:

(1.1.2) 1fSisarelation onaset A such that for every x in A there exists some
yin A with xSy, then there is a sequence a,, @3, . .. such that for every
positive integer n, a, is in A and a,Sa,, , holds.*

¥ Jensen 1966, 294,
* Bernays 1942, 86. The name of this principle 1s duc 1o Tarski {1948, 96]. Azriel Levy [1964,
136) g lized it from seq! of type m to of type x for any infinite ordinal 2.
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Whenever a mathematician obtained a sequence prior to 1904 by making
such arbitrary dependent choices, it will be termed an implicit use of the
Dependent Assumption.

To derive propositions which follow from the Axiom but are weaker than
it, one might seck an alternative assumption. Such an alternative could be a
restricted form of the Axiom, say the Denumerable Axiom or the Principle of
Dependent Choices, but might be another type of proposition altogether.
The serious investigation of such alternatives, which began in 1918, did not
attract much attention at the time except from the Axiom’s Italian critics
(see 4.7). A much later and more promising alternative was the Axiom of
Determinateness (see the Epilogue).

On the other hand, one must not overlook the radical attempt by L. E. J.
Brouwer and his followers, beginning in 1907, to reformulate all of mathe-
matics in intuitionistic terms.® Roused by a desire to prune Cantor's infinite
sets, the intuitionists formulated a cohesive ideology within a more general
constructivist framework. Such constructivists were suspicious of the actual
infinite (or at least of Cantor’s uncountable cardinals), of existence proofs
which did not exhibit a uniquely defined object, and of the Principle of the
Excluded Middle as applied to infinite sets. The twentieth century has pro-
duced a cornucopia of constructivist approaches to mathematics, each of
which requires that one abandon a substantial portion of Cantor’s results.
Although it would take us too far afield to analyze such approaches in general,
constructivist opposition to the Axiom will emerge as a central theme (see
23-24,27-29,36,and 4.11).

Within the Cantorian tradition, one can view Zermelo's axiomatization as
answering the question: What is a set? This question has served as a theme in
the development of set theory, but one not often discussed openly. Neverthe-
less, it has been implicit in all attempts since 1908 to modify Zermelo's
axioms, or to replace them with others (see 4.9), and in the polemics of his
French constructivist critics (see 2.3 and 2.4). In 1913 Michele Cipolla inquired
whether the Axiom restricted the general concept of set too greatly [1913, 2].
While no one pursued the matter further at the time, this perspective con-
trasted sharply with other constructivist views that the Axiom was either
false or meaningless.

Since the Axiom appears subtly in many proofs and since it is easily over-
looked, we now examine some fundamental theorems for which arguments
were given before Zermelo that involved its implicit and unavoidable use.
Prior to 1904 such implicit uses occurred in real analysis, algebraic number
theory, point-set topology, and set theory.® Afterwards the controversy

* See for example Klcene and Vesley 1965, Heyting 1966, Bishop 1967, and Gauthier 1977,

* In the mathematical literature the term poimt-sef topology is ambiguous. Within this book
it refers to the theory, called Mannigfaliigheitslehre or the theory of point-sets, that
Cantor originated and that utilized such notions as limit point, closed set, and derived st in B*.
Largely through the work of HausdorfT, this theory later grew into general topology, which
considered more general spaces.
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surrounding the Axiom led to research, which continues today, as to whether
a theorem requires the Axiom and in how strong a form. Thus the Axiom
increased awareness of what one may call, in an informal sense, degrees of
non-constructivity. Such rescarch would not have begun, had not many
mathematicians regarded the Axiom as a dubious assumption.

The first proposition to be considered, hereafter termed the Countable
Union Theorem, was employed in both set theory and analysis, beginning with
Cantor’s researches in the 1870s:

(1.1.3) The union of 2 countable family of countable sets is countable.

To understand the Axiom's role in demonstrating the Countable Union
Theorem, suppose first that each of the sets A, A;, ... is denumerable. It
follows that each A, has as its members 4, 4, @, 3, ... . Thus the union B of all
the A, consists of the elements a; ; where i and j are positive integers. Clearly B
is denumerable by Cantor's argument showing the rational numbers to be
denumerable. Hence a countable union of countable sets is a subset of a
denumerable set, and consequently is countable.

Although the Axiom may not be visible here at first, it entered when we
enumerated all the members ofall the A,. There areinfinitely many A, for each
of which there exist many possible bijections onto the set of positive integers.”
By the Denumerable Axiom we associate with each A, a unique such bijection
a;. Hence the afj), or a, ;, are well-defined. This use of the Denumerable
Axiom is unavoidable. Indeed, there exists a model of ZF in which the
Denumerable Axiom is false and the set B of all real numbers, though un-
countable, is a countable union of countable sets.*

Our second example concerns the border between the finite and the
infinite, a border that can be very nebulous in the absence of the Axiom:

(1.1.4) Every infinite set A has a denumerable subset.”

Cantor in 1895, Borel in 1898, and Russell in 1902 all demonstrated this
theorem by using the Denumerable Assumption implicitly.'® Russell's proof
illustrates how the Axiom is involved. Since A is infinite, there exist subsets
Ay, A, ...of A such that, for each n, A, has exactly n members and is a subset
of A, ,. Thedesired denumerable subset of A isthe union of all A,. Apparently
Russell did not notice at the time that to form A, , , once A, has been obtained,
one must select some member of A—A,. Since denumerably many such

7 A bijection rom a set A 1o a set Bis a one-one function from A onto B.

* Feferman and Levy 1963; Cohen 1966, 143- 146

* A sct A is fimite if A is empty or if, for some positive integer m. there is a bijection from
Aomo (1. 2,....n); otherwise A is infinite. For a discussion of the Axiom's role in showing
various definitions of finite set 10 be equivalent, see 1.3 and 4.2.

% Cantor 1895, 493; Borel 1898, 12-14; Whitchead 1902, 121-123. As Whitehead acknow-
kedped. Russell wrote the section in which this proof appeared.
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choices are needed and since no rule is available in general, the proof requires
the Denumerable Axiom. For there is a model of ZF in which a certain
infinite set of real numbers lacks a denumerable subset.'*

The third example is a proposition, hereafter called the Partition Principle,
which appears all but self-evident:

(1.1.S) Ifaset M is partitioned into a family S of disjoint non-cmpty sets,
then S is equipollent to a subset of M (ix., § < M).!2

In terms of a function f with domain M, (1.1.5) states that /M < M. During
the 1880s Cantor employed a special case of the Partition Principle while
investigating the topology of the real line.!® However, the explicit (though
incomplete) formulation of the Partition Principle was due to Cesare Burali-
Forti [1896, 46]; see 1.3, 1.4, and 1.8. In general, the proof of this principle
depends on selecting an element from each set in § 50 as to obtain a bijection
from S onto a subset of M. Thus the proof relies on the Axiom. Moreover,
there exists a model of ZF in which the Partition Principle is false.'* At
present it is not known whether the Partition Principle is weaker than the
Axiom or equivalent to it."*

Lastly, we consider the Trichotomy of Cardinals, a theorem closely
related to the proposition that every set can be well-ordered:

(1.1.6) For every cardinal m and n, ¢ither m < norm = norm > n.'®

When formulated in terms of sets rather than cardinals, (1.1.6) states that any
two sets A and B are comparable, i.¢., one of them is equipollent to a subset of
the other. In 1895 Cantor asserted the Trichotomy of Cardinals with-
out proof. Some four years later he wrote to Dedekind that (1.1.6) followed
from the proposition that every set can be well-ordered.!” Their equivalence
remained unproven until Friedrich Hartogs established it in 1915,

#* Cohen 1966, 138, Neither (1.1.3) nor (1.1.4) implics the other in ZF, Sageev [1975] has
shown that there is a proposition, namely (1.7.10), which yields (1.1.4) but not (1.1.3) in ZF. On
the other hand, in a personal communication to the author, Jech observed that (1.1.3) but not
(1.1.4) holds i what he called the bassc Cohen model; of. Jech 1973, 66, 81,

'3 Two sets are equipollent if there is a bijection from one of them onto the other.

2 Cantor 1883b, 413-414; 1884, 464, Now ("M is {/[x): x € M}, i.e.. the image of M under /.

'+ Jech and Sochor 1966, 352,

* Certainly 1he Partition Principle implics many special cases of the Axiom. Sicrpiski
[1947b, 157] established that the exi of a ble set follows from this principle,
while Andrzej Pele (1978, $87- 588] showed —using work by David Pincus—that it yiclds both
the Principle of Dependent Chosces and the Axiom restricted to well-ordered familics of sets.

" m < nif, for every set A and B of power m and n respectively, A is equipollent to 3 subset
of 8but not 1o B uself,

'7 Letters of 28 July and 3 August 1899 in Cantor 1932, 443-447.
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These four themes—the Countable Union Theorem, the Partition Princi-
ple, the border between the finite and the infinite, and finally the intertwined
problems of the Well-Ordering Principle and the Trichotomy of Cardinals
—form the warp upon which the woof of the Axiom and its carly history
will be woven. On the other hand, as the next section illustrates, the first
two unavoidable implicit uses of the Axiom arose from quite different
sources.

1.2 The Origins of the Assumption

After such preliminary remarks, we can indicate the major stages through
which the use of arbitrary choices passed on the way to Zermelo's explicit
formulation of the Axiom. In particular the outlines of four stages, though
not always their precise historical boundaries, are visible. Vestiges of the
first stage—choosing an unspecified element from a single set—can be found
in Euclid's Elements, if not carlier. Such choices formed the basis for theancient
method of proving a generalization by considering an arbitrary but definite
object, and then executing the argument for that object. This first stage also
included the arbitrary choice of an element from each of finitely many sets. It
is important to understand that the Axiom was not needed for an arbitrary
choice from a single set, even if the set contained infinitely many elements. For
in a formal system a single arbitrary choice can be eliminated through the use
of universal generalization or similar rules of inference. By induction on the
natural numbers, such a procedure can be extended to any finite family of
sets.

The second stage began when a mathematician made an infinite number of
choices by stating a rule. Since the second stage presupposed the existence of
an infinite family of sets, two promising candidates for its emergence are
nincteenth-century analysis and number theory. In the first case there were
analysts who arbitrarily chose the terms of an infinite sequence, and, in the
second, number-theorists who selected representatives from infinitely many
equivalence classes, When some mathematician, perhaps Cauchy, made such
an infinity of choices but left the rule unstated, he initiated the third stage.

This oversight —failing to provide a rule for the selection of infinitely many
clements—encouraged the fourth stage to emerge. Thus in 1871, as we shall
soondescribe, Cantor made an infinite sequence of arbitrary choices for which
no rule was possible, and consequently the Denumerable Axiom was required
for the first time. Nevertheless, Cantor did not recognize the impossibility of
specifying such a rule, nor did he understand the watershed which he had
crossed. After that date, analysts and algebraists increasingly used such
arbitrary choices without remarking that an important but hidden assump-
tion was involved. From this fourth stage emerged Zermelo's solution to the
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Well-Ordering Problem and his explicit formulation of the Axiom of Choice.

However, during the early years of the nineteenth century mathematics
remained very much, as it had been for Euclid, a process of construction. If
one wished to prove that a particular type of mathematical object existed, then
one had to construct such an object from those previously shown to exist. On
the other hand, since the techniques allowed in such a construction were not
precisely delimited, the door was open for infinitely many arbitrary choices to
enter unnoticed.

These opposite tendencies are visible in the most significant work on
number theory to appear during that period, the Disquisitiones Arithmeticae
which Gauss published in 1801. While discussing binary quadratic forms
ax?® 4 2bxy + cy*, Gauss showed that for those forms with a given dis-
criminantd = b* — ac there existed a unique integer nsuch that they could be
partitioned into n classes by means of a certain equivalence relation.” Since he
recognized that there were many ways to sclect a representative from each
equivalence class, he carefully supplied a rule which determined those
representatives uniquely. By choosing infinitely many representatives
through a rule, though only a finite number of them for each value of d, Gauss
paused on the border between the first and second stages.® His unflinchingly
algorithmic approach to number theory made it unlikely that he ever entered
the third stage.

In all probability the third stage, where infinitely many choices were made
by an unstated rule, originated in analysis rather than in number theory. This
stage was already evident in 1821 when Cauchy demonstrated a version of the
Intermediate Value Theorem:

(1.2.1) Any real function f continuous on the closed interval [a, b] has a
root there, provided that f(a) and f(b) have opposite signs.

For a given integer m greater than one, Cauchy noted that the finite sequence
b-a 2(b - a)
s 1(a+229). s(a+ 229, L s

must contain some consecutive pair with opposite signs. He let f(a,), f(b,)
be one such pair with a, < b, so that b, — a, = (b — a)/m. Next he con-
sidered the sequence of points dividing [a,, b,] into m equal parts and, as

! Gauss 1801, section 223; transhated in Gauss 1966, He defined this relation as follows:
‘Two forms A and B are equivalent if they have the same discriminant (he used the term " deter-
minant™) and if there is a lincar transformation with integer coefficients taking 4 10 B and
another such transformation taking 810 4.

* Gauss [1832, section 42] also stated a ruk to d P ives of equival
classes when be treated biquadrats W Medvedev [1965, 17-18, 23] has erroncously
stated that Gauss used the Axiom of Choice implicitly in these works of 1801 and 1832,
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Here a conceptual shift from the algorithmic toward the non-constructive
was under way.

The fourth stage, where 2 mathematician made infinitely many arbitrary
choices for which no rule was possible and for which, consequently, the
Axiom of Choice was essential, began by October 1871 when Eduard Heine
wrote an article on real analysis. Printed the following year, the article was
largely based on unpublished research by Weierstrass, In all probability
Heine learned of Weierstrass's work from Georg Cantor, who had studied
under Weierstrass at Berlin and who became Heine's colleague at the Univer-
sity of Halle in 1869. Of the theorems in Heine's article, the one involving
arbitrary choices was credited to Cantor:

(1.2.2) A real function f is continuous at a point p if and only if f is se-
quentially continuous at p. [Heine 1872, 183).

In effect, Cantor's theorem stated that two characterizations of continuity are
equivalent. The first was the usual definition in real analysis, due to Cauchy
and Weierstrass: A real function f is continuous at a point p if for every
& > Othere is some 5 > 0 such that for every x,

|x = pl<n implies|f(x) - f(p)l <&

The second characterization, by means of sequences rather than intervals,
was what will hereafter be termed sequential continuity: A real function
[is sequentially continuous at p if, for every sequence x,, X, ... converging
10 p, the sequence f(x,), f(x,), ... converges to f(p).*

Heine's proof, borrowed from Cantor, implicitly used the Assumption to
show that sequential continuity at p yielded continuity there: Suppose, Heine
began, that fis not continuous at p. Then there is some positive & such that
no matter how small #, is, there is always some positive y less than n, such
that | f(p + n) = f(p)| 2 &:

So for any one value of i, let one such value of » (smaller than this n), for which
the above difference [[Mp + n) — A A1) 15 not smaller than ¢ be equal to n',
For half as large a value of n, the difference for 4 = 5" cannot be smaller than ;
for an n, equal 1o half the carlier (a quarter of the first) this must occur for
i = n~,and so on, [1872, 183]

Since the sequence n',n”",... converges to zero, then p+n', p+n". ...
converges to p; but f(p + 1), f(p +n"),... does not converge to f(p),
contrary to hypothesis.

Neither Cantor nor Heine gave any indication of suspecting that a new
and fundamental assumption was required for this proof. Not until a decade

* We use the name seguwential contimeity for this property to emphasize how it parallels
the defimtion of continuity whilke relying on sequences. This notion has also been termed Heine
continuity (sec Steinhaus 1963, 457),






