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1.1.9
For any x, y ∈ Rn, from the second order expansion (see Appendix A, Proposition A.23)

we have

f(y)− f(x) = (y − x)′∇f(x) +
1

2
(y − x)′∇2f(z)(y − x), (1)

where z is some point of the line segment joining x and y. Setting x = 0 in (1) and using the
given property of f , it can be seen that f is coercive. Therefore, there exists x∗ ∈ Rn such
that f(x∗) = infx∈Rn f(x) (see Proposition A.8 in Appendix A). The condition

m||y||2 ≤ y′∇2f(x)y, ∀ x, y ∈ Rn,

is equivalent to strict convexity of f . Strict convexity guarantees that there is a unique global
minimum x∗. By using the given property of f and the expansion (1), we obtain

(y − x)′∇f(x) +
m

2
||y − x||2 ≤ f(y)− f(x) ≤ (y − x)′∇f(x) +

M

2
||y − x||2.

Taking the minimum over y ∈ Rn in the expression above gives

min
y∈Rn

(
(y − x)′∇f(x) +

m

2
||y − x||2

)
≤ f(x∗)− f(x) ≤ min

y∈Rn

(
(y − x)′∇f(x) +

M

2
||y − x||2

)
.

Note that for any a > 0

min
y∈Rn

(
(y − x)′∇f(x) +

a

2
||y − x||2

)
= − 1

2a
||∇f(x)||2,

and the minimum is attained for y = x− ∇f(x)
a

. Using this relation for a = m and a = M , we
obtain

− 1

2m
||∇f(x)||2 ≤ f(x∗)− f(x) ≤ − 1

2M
||∇f(x)||2.

The first chain of inequalities follows from here. To show the second relation, use the expansion
(1) at the point x = x∗, and note that ∇f(x∗) = 0, so that

f(y)− f(x∗) =
1

2
(y − x∗)′∇2f(z)(y − x∗).

The rest follows immediately from here and the given property of the function f .
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1.2.10
We have

∇f(x)−∇f(x∗) =
∫ 1

0
∇2f(x∗ + t(x− x∗))(x− x∗)dt

and since
∇f(x∗) = 0,

we obtain

(x− x∗)′∇f(x) =
∫ 1

0
(x− x∗)′∇2f(x∗ + t(x− x∗))(x− x∗)dt ≥ m

∫ 1

0
‖x− x∗‖2dt.

Using the Cauchy-Schwartz inequality (x− x∗)′∇f(x) ≤ ‖x− x∗‖ ‖∇f(x)‖, we have

m
∫ 1

0
‖x− x∗‖2dt ≤ ‖x− x∗‖ ‖∇f(x)‖,

and

‖x− x∗‖ ≤ ‖∇f(x)‖
m

.

Now define for all scalars t,

F (t) = f(x∗ + t(x− x∗))

We have
F ′(t) = (x− x∗)′∇f(x∗ + t(x− x∗))

and
F ′′(t) = (x− x∗)′∇2f(x∗ + t(x− x∗))(x− x∗) ≥ m‖x− x∗‖2 ≥ 0.

Thus F ′ is an increasing function, and F ′(1) ≥ F ′(t) for all t ∈ [0, 1]. Hence

f(x)− f(x∗) = F (1)− F (0) =
∫ 1

0
F ′(t)dt ≤ F ′(1) = (x− x∗)′∇f(x) ≤ ‖x− x∗‖ ‖∇f(x)‖ ≤ ‖∇f(x)‖2

m
,

where in the last step we used the result shown earlier.
1.2.8
By the definition of dk, we have

||dk|| = max
1≤i≤n

|∂f(xk)

∂xi

| ≤ ||∇f(xk)||.

If {xk} is a sequence converging to some x with ∇f(x̄) 6= 0, then ∇f(xk) → ∇f(x̄), so
that {∇f(xk)} is bounded, which in view of the above relation implies that {dk} is bounded.
Furthermore, since

∇f(xk)′dk = − max
1≤i≤n

|∂f(xk)

∂xi

|2 ≤ − 1

n

n∑

i=1

|∂f(xk)

∂xi

|2 = − 1

n
||f(xk)||2,

it follows that

lim sup
k→∞

∇f(xk)′dk ≤ − 1

n
lim
k→∞

||∇f(xk)||2 = − 1

n
||∇f(x̄)||2 < 0.

Therefore the sequence {dk} is gradient related, and the result follows from Proposition 1.2.1.
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