Recitation 1 Solutions

February 20, 2005

1.1 .9

For any $x, y \in \mathcal{R}^{n}$, from the second order expansion (see Appendix A, Proposition A.23) we have

$$
\begin{equation*}
f(y)-f(x)=(y-x)^{\prime} \nabla f(x)+\frac{1}{2}(y-x)^{\prime} \nabla^{2} f(z)(y-x) \tag{1}
\end{equation*}
$$

where z is some point of the line segment joining x and y. Setting $x=0$ in (1) and using the given property of f, it can be seen that f is coercive. Therefore, there exists $x^{*} \in \mathcal{R}^{n}$ such that $f\left(x^{*}\right)=\inf _{x \in \mathcal{R}^{n}} f(x)$ (see Proposition A. 8 in Appendix A). The condition

$$
m\|y\|^{2} \leq y^{\prime} \nabla^{2} f(x) y, \quad \forall x, y \in \mathcal{R}^{n}
$$

is equivalent to strict convexity of f. Strict convexity guarantees that there is a unique global minimum x^{*}. By using the given property of f and the expansion (1), we obtain

$$
(y-x)^{\prime} \nabla f(x)+\frac{m}{2}\|y-x\|^{2} \leq f(y)-f(x) \leq(y-x)^{\prime} \nabla f(x)+\frac{M}{2}\|y-x\|^{2} .
$$

Taking the minimum over $y \in \mathcal{R}^{n}$ in the expression above gives

$$
\min _{y \in \mathcal{R}^{n}}\left((y-x)^{\prime} \nabla f(x)+\frac{m}{2}\|y-x\|^{2}\right) \leq f\left(x^{*}\right)-f(x) \leq \min _{y \in \mathcal{R}^{n}}\left((y-x)^{\prime} \nabla f(x)+\frac{M}{2}\|y-x\|^{2}\right) .
$$

Note that for any $a>0$

$$
\min _{y \in \mathcal{R}^{n}}\left((y-x)^{\prime} \nabla f(x)+\frac{a}{2}\|y-x\|^{2}\right)=-\frac{1}{2 a}\|\nabla f(x)\|^{2},
$$

and the minimum is attained for $y=x-\frac{\nabla f(x)}{a}$. Using this relation for $a=m$ and $a=M$, we obtain

$$
-\frac{1}{2 m}\|\nabla f(x)\|^{2} \leq f\left(x^{*}\right)-f(x) \leq-\frac{1}{2 M}\|\nabla f(x)\|^{2}
$$

The first chain of inequalities follows from here. To show the second relation, use the expansion (1) at the point $x=x^{*}$, and note that $\nabla f\left(x^{*}\right)=0$, so that

$$
f(y)-f\left(x^{*}\right)=\frac{1}{2}\left(y-x^{*}\right)^{\prime} \nabla^{2} f(z)\left(y-x^{*}\right)
$$

The rest follows immediately from here and the given property of the function f.
1.2.10

We have

$$
\nabla f(x)-\nabla f\left(x^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(x^{*}+t\left(x-x^{*}\right)\right)\left(x-x^{*}\right) d t
$$

and since

$$
\nabla f\left(x^{*}\right)=0,
$$

we obtain

$$
\left(x-x^{*}\right)^{\prime} \nabla f(x)=\int_{0}^{1}\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}+t\left(x-x^{*}\right)\right)\left(x-x^{*}\right) d t \geq m \int_{0}^{1}\left\|x-x^{*}\right\|^{2} d t .
$$

Using the Cauchy-Schwartz inequality $\left(x-x^{*}\right)^{\prime} \nabla f(x) \leq\left\|x-x^{*}\right\|\|\nabla f(x)\|$, we have

$$
m \int_{0}^{1}\left\|x-x^{*}\right\|^{2} d t \leq\left\|x-x^{*}\right\|\|\nabla f(x)\|
$$

and

$$
\left\|x-x^{*}\right\| \leq \frac{\|\nabla f(x)\|}{m}
$$

Now define for all scalars t,

$$
F(t)=f\left(x^{*}+t\left(x-x^{*}\right)\right)
$$

We have

$$
F^{\prime}(t)=\left(x-x^{*}\right)^{\prime} \nabla f\left(x^{*}+t\left(x-x^{*}\right)\right)
$$

and

$$
F^{\prime \prime}(t)=\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}+t\left(x-x^{*}\right)\right)\left(x-x^{*}\right) \geq m\left\|x-x^{*}\right\|^{2} \geq 0
$$

Thus F^{\prime} is an increasing function, and $F^{\prime}(1) \geq F^{\prime}(t)$ for all $t \in[0,1]$. Hence

$$
f(x)-f\left(x^{*}\right)=F(1)-F(0)=\int_{0}^{1} F^{\prime}(t) d t \leq F^{\prime}(1)=\left(x-x^{*}\right)^{\prime} \nabla f(x) \leq\left\|x-x^{*}\right\|\|\nabla f(x)\| \leq \frac{\|\nabla f(x)\|^{2}}{m}
$$

where in the last step we used the result shown earlier.
1.2.8

By the definition of d^{k}, we have

$$
\left\|d^{k}\right\|=\max _{1 \leq i \leq n}\left|\frac{\partial f\left(x^{k}\right)}{\partial x_{i}}\right| \leq\left\|\nabla f\left(x^{k}\right)\right\| .
$$

If $\left\{x^{k}\right\}$ is a sequence converging to some x with $\nabla f(\bar{x}) \neq 0$, then $\nabla f\left(x_{k}\right) \rightarrow \nabla f(\bar{x})$, so that $\left\{\nabla f\left(x^{k}\right)\right\}$ is bounded, which in view of the above relation implies that $\left\{d^{k}\right\}$ is bounded. Furthermore, since

$$
\nabla f\left(x^{k}\right)^{\prime} d^{k}=-\max _{1 \leq i \leq n}\left|\frac{\partial f\left(x^{k}\right)}{\partial x_{i}}\right|^{2} \leq-\frac{1}{n} \sum_{i=1}^{n}\left|\frac{\partial f\left(x^{k}\right)}{\partial x_{i}}\right|^{2}=-\frac{1}{n}\left\|f\left(x^{k}\right)\right\|^{2},
$$

it follows that

$$
\limsup _{k \rightarrow \infty} \nabla f\left(x^{k}\right)^{\prime} d^{k} \leq-\frac{1}{n} \lim _{k \rightarrow \infty}\left\|\nabla f\left(x^{k}\right)\right\|^{2}=-\frac{1}{n}\|\nabla f(\bar{x})\|^{2}<0
$$

Therefore the sequence $\left\{d^{k}\right\}$ is gradient related, and the result follows from Proposition 1.2.1.

