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The Concept of an Algorithm

In the remainder of the text we describe many algorithms for solving different
classes of nonlinear programming problems. This chapter introduces the con-
cept of an algorithm. Algorithms are viewed as point-to-set maps, and the
main convergence theorem is proved utilizing the concept of a closed mapping.
This theorem will be utilized in the remaining chapters to analyze the con-
vergence of several computational schemes. ’

The following is an outline of the chapter.

SECTION7.1: Algorithms and Algorithmic Maps This section presents
algorithms as point-to-set maps and introduces the concept of a solution set.

SECTION 7.2:  Closed Maps and Convergence We first introduce the con-
cept of a closed map and then prove the main convergence theorem.

SECTION 7.3: Composition of Mappings We establish closedness of compo-

site maps by examining closedness of the individual maps. We then discuss
mixed algorithms and give a condition for their convergence.

SECTION 7.4: Comparison Among Algorithms Some practical factors for
assessing the efficiency of different algorithms are discussed.

7.1 Algorithms and Algorithmic Maps

Consider the problem to minimize f(x) subject to x€ S, where [ is the objective
function and S is the feasible region. A solution procedure or an algorithm for
solving this problem can be viewed as an iterative process that generates a
sequence of points according to a prescribed set of instructions, together with a
termination criterion.
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The Algorithmic Map

Given a vector x, and applying the instructions of the algorithm, we obtain a
new point x,,,. This process can be described by an algorithmic map A. This
map is generally a point-to-set map and assigns to each point in the domain X
a subset of X. Thus, given the initial point x,, the algorithmic map generates
the sequence x,, X, ..., where x,,; € A(x,) for ecach k. The transformation of
X, into x,,, through the map constitutes an iteration of the algorithm.

7.1.1. Example

Consider the following problem:

Minimize X%

subject to x=1
whose optimal solution is ¥ =1. Let the point-to-point algorithmic map be
given by A(x)=3(x+1). It could be easily verified that the sequence obtained
by applying the map A, with any starting point, converges to the optimal
solution X = 1. With x; =4, the algorithm generates the sequence {4, 2.5, 1.75,
1.375, 1.1875, ...} as illustrated in Figure 7.1a.

As another example, consider the point-to-set mapping A, defined by

[1,3(x+1)] if x=1

A(x):{[;l_(x+1), 1] ifx<l

As shown in Figure 7.1b, the image of any point x is a closed interval, and any
point in that interval could be chosen as the successor of x. Starting with any
point x,, the algorithm converges to ¥ =1. With x, =4, the sequence {4, 2, 1.2,
1.1, 1.02,...} is a possible result of the algorithm. Unlike the previous
example, other sequences could result from the algorithmic map.
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Figure 7.1 Examples of algorithmic maps.
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7.2 Closed Maps and Convergence

The Solution Set and Convergence of Algorithms
Consider the following nonlinear programming problem
Minimize f(x)
subject to xeS

A desirable property of an algorithm for solving the above problem is that it
generates a sequence of points converging to a global optimal solution. In
many cases, however, we may have to be satisfied with less favorabie outcomes.
In fact, as a result of nonconvexity, problem size, and other difficulties, we may
stop the iterative procedure if a point belonging to a prescribed set, which we
call the solution set (), is reached. The following are soine typical solution sets
for the above mentioned problem. :

1: Q={x:Xis a local optimal solution of the problem}.

2. Q={x:x€eS, fX)=b}, where b is an acceptable objective value.

3. Q={x:xeS§, fX)<LB+e}, where £ >0 is a specified tolerance, and LB is
a lower bound on the optimal objective value. A typical lower bound is the
objective value of the Lagrangian dual problem.

4. Q={X:XeS, f(X) - f(X)< ¢}, where f(%) is the global minimum, and £ >0 is
specified. '

5. Q={x:X satisfies the Kuhn-Tucker optimality conditions}.

6. ={x:X satisfies the Fritz John optimality conditions}.

Thus, in general, convergence of algorithms is made in reference to the
solution set rather than to the collection of global optimal solutions. In
particalar, the algorithmic map A:X— X is said to converge over Y < X if,
starting with any initial point x, € Y, the limit of any convergent subsequence of
the sequence x,, x,, . . ., generated by the algorithm, belongs to the solution set
. Letting Q be the set of global optimal solutions in Example 7.1.1, it is
obvicus that the two stated algorithms are convergent over the real line.

7.2 Closed Maps and Convergence

In this section we introduce the notion of closcd maps and then prove a
convergence theorem. The significance of the concept of closedness will be
clear from the following example and the subscquent discussion.

7.2.1 Example

Consider the following problem:

Minimize x?

subject to x=1
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Figure 7.2 An example of a nonconvergent al-
gorithmic map.

Let Q be the set of global optimal solutions, that is, ={1}. Consider the
algorithmic map defined by

3+dx, 1+4x if x=2
A(x)={[‘"2 ax 1+3x] -
s(x+1) if x<2

" The map A is illustrated in Figure 7.2. Obviously, for any initial point x, =2,
any sequence generated by the map A converges to the point X =2. Note that
££ ). On the other hand, for x, <2, any sequence generated by the algorithm
converges to ¥ =1. In this example the algorithm converges over the interval
{(—oc, 2) but does not converge 10 a point in the sct £ over the interval [2, ).

The above example shows the significance of the initial point x;, where
convergence to a point in { is achieved if x, <2 but not realized otherwise.
Note that each of the algorithms in Examples 7.1.1 and 7.2.1 satisfy the
following conditions:

1. Given a feasible point x, = 1, any successor point x, ., is also feasible, that
i, X4 = 1.

2. Given a feasible point x, not in the solution set (), any successor point x;
satisfies f(x,.,)<f(x,), where f(x)=x? In other words, the objective
function strictly decreases.

3. Given a feasible point x, in the solution set {}, that is, x, = 1, the successor

point is also in {2, that is, x,,, = 1.

Despite the above-mentioned similaritics among the algorithms, the two
algorithms of Example 7.1.1 converge to &= 1, while that of Example 7.2.1
does not converge to =1 for any initial point x; = 2. The reason for this is
that the algorithmic map of Example 7.2.1 is not closed’at x =2. The notion of
a closed mapping, which generalizes the notion of a continuous function, is

defined below.
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Closed Maps

7.2.2 Definiticn

Let X and Y be nonempty closed sets in E, and E,, respectively. Let A: X— Y
be a point-to-set map. The map A is said to be closed at xe X if

xeX %y —> X
Y €A(X,) Yy

imply that y € A(x). The map A is said to be closed on Z< X if it is closed at
each point in Z.

Figure 7.2 shows an example of a point-to-set map that is not closed at x = 2.
In particular, the sequence {x,} with x, =2—} converges to x=2, and the
sequence {y,} with y, =A(x,)=3—2% converges 10 y=2, but y&A(x)={2}.
Figure 7.1 shows two examples of algorithmic maps that are closed
everywhere.

The Convergence Theorem

Conditions that ensure convergenée of algorithmic maps are stated in Theorem
7.2.3 below. The theorem will be used in the remainder of the text to show
convergence of many algorithms.

7.2.3 Theorem

Let X be a nonempty closed set in E,, and let the nonempty sct 1< X be the
solution set. Let A: X— X be a point-to-set map. Given x, € X, the sequence
{x,} is generated iteratively as follows: '

If x, € Q) then stop; otherwise, let x,, , € A(x, ), replace
k by k+1, and repeat.

Suppose that the sequence x;,X,,..., produced by the algorithm is con-
tained in a compact subset of X, and suppose that there cxists a continuous
function «, called the descent function, such that a(y)<a(x) if x£Q and
ye A(x). If the map A is closed over the complement of (), then either the
algorithm stops in a finite number of steps with a point in £} or it generates the
infinite sequence {x,} such that:

1. Every convergent subscquence of {x,} has a limit in 3, that is, all

accumulaticn points of {x,} belong to (1.
2. alx,)— ax) for some xe ().
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Proof
If at any iteration a point x, in £ is generated, then the algorithm stops. Now
suppose that an infinite sequence {x,} is generated. Let {x.};, be any con-
vergent subsequence with limit xe€ X. Since « is continuous, then for ke ¥,
a(x,)— a(x). Thus, for a given € >0, there is a K€ J{ such that
alx)—ax)<e for k=K with ke

In particular for k =K, we get

aXg)—ax)<e (7.1)

Now let k> K. Since « is a descent function, a(x,) < a(xy), and from (7.1),
we get

alx,)—ax) =a(x,)-axg)takxg)—ax)<0+e=¢

Since this is true for every k> K, and since & >( was arbitrary, then

lim a(x,) = a(x) o (7.2)
k—»0
We now show that xe ). By contradiction suppose that x£ (), and consider
the sequence {x,.,}% This sequence is contained in a compact subset of X and
hence has a convergent subsequence {X, .} with limit X in X, Noting (7.2), it is
ciear that a(X)=a(x). Since A is closed at x, and for ke ¥, x, =X, X, €
A(x), and x,,,—X, then %€ A{x). Therefore a(x)<a(x), contradicting the
fact that a(X) = a(x). Thus x€{} and part 1 of the theorem holds true. This,
coupled with {7.2). shows that part 2 of the theorem holds true, and the proof
is complete. /

Corollary

Under the assumptions of the theorem, if ) is the singleton {k}, then the whole
sequence {x,} converges to X.

"Proof

. Suppose, by contradiction, that there exists an € >0 and a sequence {x, }4 such
that

X, —%|>¢e  for ke ‘ (7.3)
Note that there exists ¥’ < X such that {x,}, has a limit x’. By part 1 of the

theorem, x'e Q. But Q={&}, and thus x'=%. Therefore, x, =X for ke,
violating (7.3). This completes the proof. ,
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Note that if the point at hand x, does not beiong o the solution set €, then
the algorithm generates a new point x,,, such that a(x,,,)<a(x,). The
function « is called a descent function. In many cases, a is chosen as the
objective function f itself, and thus the algorithm gencrates a sequence of
points with improving objective function values. Other alternative choices of
the function a« are possible. For instance, if f is differentiable, « could be
chosen as a(x)=|V{(x)|| for an unconstrained optimization problem.

Terminating the Algorithm

As indicated in Theorem 7.2.3, the algorithm is terminated if we reach a point
in the solution set ). In most cases, however, convergence to a point in
occurs only in a limiting sense, and we must resort to some practical rules for
terminating the iterative procedure. The following rules are frequently used to
stop a given algorithm. Here, £ >0 and the positive integer N are prespecified.

L [xen -xl<e

Here, the algorithm is stopped if the distance moved after N applications
of the map A is less than e.

2. “_xk_-H - Xk” <
[l I

Under this criterion, the algorithm is terminated if the relative distance
moved during a given iteration is less than e.

3. a(xk)—a(Xk+N)< &.

Here, the algorithra is stopped if the total improvement in the descent
function value after N applications of the map A is less than e.

4, b)) —alxi)

ECA R

If the relative improvement in the descent function value during any given
iteration is less than g, then the termination criterion is realized.

5. a(x)—aX) <e, where X belongs to (1.
This criterion for termination is suitable if a(X) is known beforehand; for

example, in unconstrained optimization if a(x)=|Vf(x)| and Q=
{x:Vf(x)=0}, then a(x)=0.



236 The Concept of an Algorithm

7.3 Composition of Mappings

In most nonlinear programming solution procedures, the algorithmic maps are
often composed of several maps. For example, some algorithms first find a
direction d, to move along and then determine the step size A, by solving the
one-dimensional problem of minimizing a(x, +Ad,). In this case, the map A is
composed of M, where D finds the direction d,, and then M finds an optimal
step size A,. It is often easier to prove that the overall map is closed by
examining its individua! components. In this section, the notion of composite
maps is stated precisely, and then a result relating closedness of the overall
map to that of its individual components is given. Finally, we discuss mixed
algorithms and state conditions under which they converge.

7.3.1 Definition
Let X, Y, and Z be nonempty closed sets in E,, E,, and E,, respectively. Let
B: X— Y and C: Y— Z be point-to-set maps. The composite map A =CB is
defined as the point-to-set map A: X— Z with
A(x)=U({C(y): ye B(x)}.

Figure 7.3 illustrates the notion of a composite map, and Theorem 7.3.2 and
its corollaries give several sufficient conditions for a composite map to be
closed.

Figure 7.3 Comgosite maps.

7.3.2 Theorem

Let X, Y, and Z be nonempty closed sets in E,, E, and E,, respectively.
Let B: X~ Y and C:Y—Z be point-to-set maps, and consider the compo-

site map A =CB. Suppose that B is closed at x and that C is closed on B(x).
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Furthermore, supposc that if x,—>x and y, € B(x,), then there is a convergent
subsequence of {y,}. Then A is closed at x.

Proof

Let x, —x, z, € A(x,), and z, —z. We need to show that ze A(x). By definition
of A, for each k, there is a y, € B(x, ) such that 2, € C(y, ). By assumption, there
is a convergent subsequence {Yilor with limit y. Since B is closed at X, then
y€B(x). Furthermore, since C is closed on B(x) it is closed at y, and hence
ze€ C(y). Thus, ze C(y) e CB(x) = A(x), and hence A is closed at x.

Corollary 1

Let X, Y, and Z be nonempty closed sets in E,, E,, and E,, respectively. Let
B:X—Y and C:Y— Z be point-to-set maps. Suppose that B is closed at x,
C is closed on B(x), and Y is compact. Then A=CB is closed at x.

Corollary 2

Let X, Y, and Z be nonempty closed sets in E,, E, and E,, respectively.

Let B: X—Y be a function, and let C: Y— Z be a point-to-set map. If B is
continuous at x, and C is closed on B(x), then A=CB is closed at x.

Note the importance of the assumption that a convergent subsequence {y, },,
exists in Theorem 7.3.2. Without this assumption, even if the maps B and C are
closed, the composite map A=CB is not necessarily ciosed, as shown by
Example 7.3.3 below. :

7.3.3 Example
Consider the maps B, C: E,— E, defined below.
1 if x#0
B(x)={"*
(x) {o if x=0
Cly) ={z:|z|=]y}}.

Note that both B and C are closed everywhere. Now consider the composite
map A =CB. Then, A is given by A(x)=CB(x)={z:|z]=|B(x)]}. From the
definition of B, it follows that

A(x)z{{z:|z15i£|} it x#0
10 =0

Note that A is not closed at x =0. In particular, consider the sequence {x,},
where x, =%. Note that A(x,)={z:|z]=<k}, and hence 2, =1 belongs to A(x,)
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for each k. On the other hand, the limit point z=1 does not belong to
A(x)=1{0}. Thus the map A is not closed, even though both B and € are closed,
Here, Theorem 7.3.2 does not apply, since the sequence y, € B(x,) for x, =1
does not have a convergent subsequence.

Convergence of Algorithms with composite maps

At each iteration, many nonlincar programming algorithms use two maps. One
of the maps is usually closed and satisfics the convergence requirements of
Theorem 7.2.3. The second map may involve any process as long as the value
of the descent function does not increase. As illustrated in Exercise 7.17, the
overall map may not be closed, so that Theorem 7.2.3 could not be applied.
However, as shown below, such maps do converge.

7.3.4 Theorem

Let X be a nonempty closed sct in E,, and let < X be a nonempty solution
set. Let a: E,— E, be a continuous function, and consider the point-to-set
map C: X— X satisfying the following property: Given x€ X, then a(y) =< a(x)
for ye C(x). Let B: X— X be a point-to-set map that is closed over the
complement of £} and that satisfies a(y) < a(x) for each ye B(x), if x£ (). Now
consider the algorithm defined by the composite map A =CB. Given x, € X,
suppose that the sequence {x,} is generated as follows:

If x, € Q, then stop; otherwise, let x, ,, € A(x, ), replace k
by k+ 1, and repeat.

Suppose that the set A\ = {x:a(x) =< a(x,)} is compact. Then either the algorithm
stops in a finite number of steps with a point in {2 or all accumulation points of
{x,} belong to .

Proof

If at any iteration x, € {}, then the algorithm stops. Now suppose that the
sequence {x,} is gencrated by the algorithm, and let {x,}, be a convergent
subsequence, with limit x. Thus a(x,)— a(x) for k € ¥. Using monotonicity of
as in Theorem 7.2.3, it follows that
Iim a(x,)=a(x) (7.4)
k—ro
We want to show that x e (0. By contradiction, supposc that x# £}, and consider
the sequence {x,,},. By definition of the composite map A, note that
Xi+1 € Cly,), where y, € B(x, ). Note that y,, x,., € A. Since A is compact, there
exists an index set )’ < i such that y, —y and x,,,—>x for ke . Since B is
closed at x¢ (1, then yeB(x), and a(y)<a(x). Since x,,;€C(y.), then
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by assumption, a(X,.;)=a(y,) for k€X', and hence by taking the limit,
a(x')=aly). Since a(y)<a(x), then a{x)<a(x). Since a(x,,,)— a{x’) for
ke ', then a(x’)<a(x) contradicts (7.4). Therefore, xe (3, and the proof is
complete#

Mirimizing Along Independeni Directions

We now present a thecorem that establishes convergence of a class of
algorithms for solving a problem of the form: minimize f(x) subject to x€ E,.
Under mild assumptions, we show that an algorithm that generates i linearly
independent search directions, and obtains a new point by sequentially
minimizing f along these directions, converges to a stationary point. The
theorem also establishes convergence of algorithms using lincarly independent
and orthogonal search directions.

7.3.5 Theorem

Let f: E,— E, be differentiable, and consider the problem to minimize f(x)
subject to xe E,. Consider an algorithm whose map A is defined as follows.
The vector y € A(x) means that y is obtained by minimizing f sequentially along
the directions d,, ..., d, starting from x. Here the scarch directions d,, ..., d,
may depend upon x, and cach has norm 1. Suppose that the following
properties are true:

1. There exists an & > 0 such that det [D(x)]= ¢ for each xe E,. Here, D(X) is
the n X n matrix whose columns are the search directions generated by the
algorithm, and det [D(x)] denotes the determinant of D{x).

2. The minimum of f along any line in E, is unique.

Given a starting point x,, suppose that the algorithm generates the sequence

Ax, ) as follows. If Vf(x,)=0, then the algorithm stops with x,: otherwise

Xi1 € A(x,), k is replaced by k+1, and the process is repeated. If the
sequence {x,} is contained in a compact subsct of E,, then each accumulation
point x of the sequence {x,} must satisfy ¥f(x)=0.

Proof

If the sequence {x,} is finite, then the result is immediate. Now suppose that
the algorithm generates the infinite sequence {x,}.

Let J be an infinite scquence of positive integers, and suppose that the
sequence {x.}, converges to a point x. We need to show that Vf(x)=9.
Suppose by contradiction that Vf(x) # 0, and consider the sequence {x, , 1. By
assumption, this sequence is contained in a compact subset of E,, and hence
there exists ' < J/ such that {x,,}, converges to x'. We will show that x'
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could be obtained from x by minimizing f along a set of n linearly independent
directions.

Let D, be the nXxn matrix whose columns d,,,...,d,, are the search
directions generated at iteration k. Thus, xk+l=xk+Dkxk:xk'+Z;l~—-ldik)‘ik’,
where Ay, is the distance moved along d. In particular, letting y,, =x,,
Yie1x =Y T Apdy for j=1,..., n it follows that x,,, =y, and

@) =flyu +Ady)

Since det[D,]=¢>0, D, is invertible, so that A, =D, '(x, ., —x,). Since ejach
column of D, has norm 1, there exists #"< %' such that D, —D. Since

forallAeE,and j=1,...,n (7.5)

- det[D,]=¢ for each k, det[D]=¢g, so that D is invertible. Now, for ke J",

X =X, X,—x, D, —D, so that A, —X, where A =D '(x'—x). Therefore,
xX'=x+DA=x+}7",dA. Lety,=x, and for j=1,...,n, let y,.”=y,»+/\,-d{~, )
that x'=y,.,,. To show that x' is obtained from x by minimizing f sequentially
. d,, it suffices to show that

along d,, ..., .
fyiv) = f(y; +Ad) forallAeE,and j=1,...,n (7.6)

Note that Ayp—A;, d;—d;, x,—X, and X, —x" as ke X" appr.oat.:hes oo,
so that y, —y, for j=1,...,n+1 as ke " approaches . By continuity of f,
then, (7.6) follows from (7.5). We have thus shown that x" is obtained from x by
minimizing f sequentially along the directions d,, ..., d,. _ '

Obviously, f(x') = f(x). First, consider the case f(x')<f(x). Since {f(x,)} is a
nonincreasing sequence, and since f(x,)—f(x) as ke€X approaches o,
lim,_,.. f(x,)=f(x). This is impossible, however, in view of the fact that
X —x as ke’ approaches « and the assumption that f(x’)<f(x). Ni()\'v
consider the case f(x')=[f(x). By property 2 of the theorem, and since X s
obtained from x by minimizing f along d,,...,d,, x'=x. This further implies
that Vf(x)'d; =0 for j=1,...,n. Since d,,...,d, are linearly independent,

- Vf(x) =0, contradicting our assumption. This completes the proofy

Note that no closedness or continuity assumptions are made on the map
providing the search directions. It is only required that the search direcqons
used at cach iteration be linearly independent and that as these directions
converge, the limiting directions must also be linearly independe{lt. Obviously
this holds true if a fixed set of linearly independent search directions are u§ed
at every iteration. Alternatively, if the search directions used at each iterz_itlon
are mutually orthogonal, and each has norm 1, then the search matrix D
satisfies D'D = 1. Therefore, det[D]=1, so that condition 1 of the theorem
holds true. '

Also note that assumption 2 in the statement of the theorem is used to
ensurec the following property. If a differentiable function f is minimized along

| n independent directions starting from a point x and resuiting in x', then
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f(x") < f(x), provided that Vf(x)# 0. Without assumption 2, this is not true, as
evidenced by f(x,, x,) = x,(1—x,). If x=(0, 0)', then minimizing f starting from
x along d,=(1,0)" and then along d,= (0, 1)" could produce the point x' =
(1, 1), where f(x')=f(x)=0, even though Vf(x) = (0, 1)"# (0, 0)".

7.4 Comparison Among Algorithms

In the remainder of the text, we discuss several algorithms for solving ditferent
classes of nonlinear programming problems. This section discusses some impor-
tant factors that must be considered when assessing the effectivencss of these
algorithms and when comparing them. These factors are (1) generality, reliabil-
ity, and precision; (2) sensitivity to parameters and data; (3) preparational and
computational effort; and (4) convergence.

Generality, Reliability, and Precision

Different algorithms are designed for solving various classes of nonlinear
programming problems, such as unconstrained optimization problems, prob-
lems with inequality constraints, problems with equality constraints, and prob-
lems with both types of constraints. Within cach of these classes, different
algorithms make specific assumptions about the problem structure. For exam-
ple, for unconstrained optimization problems, some procedures assume that the
objective function is differentiable, whereas other algorithms do not make this
assumption and rely primarily on functional evaluations only. For problems
with equality constraints, some algorithms can only handle lincar constraints, -
while others can handle nonlincar constraints as weil. Thus generality of an
algorithm refers to the variety of problems that the algorithm can handle and
also to the restrictiveness of the assumptions required by the algorithm.

Another important factor is the reliability, or robustness, of the algorithm.
Given any algorithm, it is not difficult to construct a test problem that it cannot
solve effectively. Reliability means the ability of the procedure to solve most of
the problems in the class for which it is designed with reasonable accuracy. The
relationship between reliability of a certain procedure and the problem size and
structure cannot be overlooked. Some algorithms are reliable if the number of
variables is small or if the constraints arc not highly nonlincar, and not reliable
otherwise.

As implied by Theorem 7.2.3, convergence of nonlinear programming al-
gorithms usually occurs in a limiting sense, if at ail. Thus, we are interested in
measuring the quality of the points produced by the algerithm after a reasona-
ble number of iterations. Algorithms that quickly produce feasible solutions
with good objective values are preferred. As discussed in Chapter 6 on duality
and as will be seen in Chapter 9 on penalty functions, several procedures
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generate a sequence of infeasible solutions, where feasibility is achicved only at
termination. Hence, at later ijterations, it is imperative that the degree of
infeasibility be small so that a near-feasible solution will be at hand if the
algorithmic process is prematurely terminated.

Sensitivity to Parameters and Data

For most algorithms, the user must set initial values for certain parameters,
such as the starting vector, the step size, the acceleration factor, and parame-
ters for terminating the algorithm. Some procedures are quite sensitive to these
parameters and to the problem data and may produce different results or stop
prematurely, depending on their values. In particular, for a fixed set of selected
parameters, the algorithm should solve the problem for a wide range of
problem data. Likewise, for a given set of problem data, one would prefer that
the algorithm not be very sensitive to the selected values of the parameters.

Preparational and Computational Effort

Another basis for comparing algorithms is the total effort, both preparational
and computational, expended for solving problems. The effort of preparing the
input data should be taken into consideration when evaluating an algorithm.
An algorithm that uses first- or second-order derivatives, especially if the
original functions are complicated, requires a considerably larger amount of
preparation time than one that only uses functional evaluations. The computa-
tional effort of an algorithm is usually assessed by the computer time, the
number of iterations, or the number of functional evaluations. However, any of
these measures, by itself, is not entirely satisfactory. The computer time nceded
to execute an algorithm depends not only on its efficiency but also on the type
of machine used, the character of the measured time, and the efliciency of
coding. Also, the number of iterations cannot be used as the only measure of
effectiveness of an algorithm because the effort per iteration may vary consid-
erably from one procedure to another. Finally, the number of functional
evaluations can be misicading, since it does not measure other operations, such
as matrix multiplication, matrix inversion, and finding suitable directions of
movement. In addition, for derivative dependent methods, we have to weigh
the evaluation of first- and second-order derivatives against the evaluation of
the functions themselves.

Convergence

Theoretical convergence of algorithms to points in the solution set is a highly
desirable property. Given two competing algorithms that converge, they could
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be compared theoretically on the basis of the order orf speed of convergence.
This notion is defined below.

7.4.1 Definition

Let the sequence {r.} converge to 7. The order of convergence of the sequence is
the supremum of the nonnegative numbers p satisfying

l_i;l Irk+l—F‘=B<O’)

If p=1, the sequence is said to have linear convergence if the convergence ratio
B is less than 1. If p>1, or if p=1 and B =0, the scquence is said to have
superlinear convergence.

If r, in the above definition represents «(x,), the value of the descent
function at the kth iteration, then the larger the value of p, the faster the
convergence of the algorithm. If the limit in Definition 7.4.1 exists, thc'n for
large values of k, we asymptotically have |r, ., —F|= 8 [, — 7|", which indicates
faster convergence for larger values of p. For the same value of p, the smaller
the convergence ratio B, the faster the convergence. It should be noted,
however, that the order of convergence and the ratio of convergence must not
be solely used for evaluating algorithms that converge, since they represent the
progress of the algorithm only as the number of iterations approach i.nfmi"yZ

Another convergence criterion frequently used in comparing algorithms is
their ability to effectively minimize quadratic functions. This 1s used because,
near the minimum a lincar approximation to a function is poor, while it can be
adequately approximated by a quadratic form. Thus, an algorithm t'hat does not
perform well for minimizing a quadratic function 1s un!ikely.to perform well for
a general nonlinear function as we move closer to the optimum.
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7.15

7.16

In order to show that M is not closed, a sequence (x,, d,) converging 1o (x, d) and
a sequence y, € M(x,., d, ) converging to y must be exhibited such that y ¢ M(x, d).
Given that x, = (1, 0)', x,,, is the point on the circle (x,—1)*+(x,—1)*=1 mid-
way between x, and (0, 1)". The vector d, is defined by (Xi.;—X)/[Xer1— Xl
Letting f(x;, x2) = (x, +2)*+ (x,~2)?, show that:

a. The scquence {x, } converges to x = (0, 1)".

b. The vectors {d,} converge to d=(0, 1),

¢. The sequence {y,} converges to y=(0, 1)

d. The map M is not closed at (x, d).

Let f: E,— E, be a differentiable function. Consider the following direction-
finding map D: E,— E, X E, that gives the deflected negative gradient. Given
x =0, then (x,d) e D(x) means that

= df(x)
d;,= ax

i i

d
if x;>0, or x; =0 and ——{—(f—)so
dx;

0 otherwise

Show that D is not closed.

Hint: Let f(x,, x3) = x; — x, and consider the sequence {x,} converging to (0, 1),
where x, =, 1)".

Let f: E,—E, be a differentiable function. Consider the composite map A =
MD, where D: E, — E, X E, and M: E, X E, — E, are defined as follows. Given
x =0, then (x, d)e D(x) means that

= x>0, or if x;=0 and ) _q
dy=4 ax X
0 otherwise

The vector y e M(x, d) means that y=x+Ad for some A =0, and furthermore, A

solves the problem to minimize f(x+Ad) subject to x+Ad=0, A =0.

a. Find an optimal solution to the following problem using the Kuhn-Tucker
conditions:

Minimize X2 X =X X+ 2%, x,
subject to Xy, X220

b. Starting from the point (2, 1), solve the problem in part a using the algorithm
defined by the algorithmic map A. Note that the algorithm converges to the
optimal solution obtained in part a.

c. Starting from the point (0, 0.09, 0), solve the following problem credited to
Woife {1972] using the algorithm defined by A.

Minimize 1067 = x X0+ x4 - x4
subject to Xy. X2y X3=0)

Note that the sequence generated converges to the point (0,0, %), where

2= 0.3(1 +0.5v2). Using the Kuhn-Tucker conditions, show that this point is

not an optimal solution.
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Note that the algorithm converges to an optimal solution in part b but not in part
c. This is because map A is not closed, as seen in Exercises 7.14 and 7.15.
This exercisc illustrates that a map for a convergent algorithm need not be closed.
Consider the following problem.
Minimize  x?
subjectto x€E,
Consider the maps B, C E,— E, defined below.
B(x)=3 for all x
X if-1=x=1
Cx)=<(x+1 if x<-1

X1 if x>1
Let the solution set &={0}, and let the descent function a(x)= x>
a. Show that B and C satisfy all the assumptions of Theorem 7.3.4.

b. Verify that the composite map A =CB is as given below, and verify that it is
not closed.

x

5 if 2=x=2
A(x)=43+1 if x<-=2
-1 if x>2

c. Despite the fact that A is not closed, show that the algorithm defined by A
converges to the point X =0, regardless of the starting point.

In Theorem 7.3.5 we assumed that det [D(x)]> & > 0. Could this assumption be

replaced by the following?

At each point, x,, generated by the algorithm, the
search directions, d,,...,d,, genecrated by the
algorithm are linearly independent.

Let X be a closed set in E,, and let f: E,— E, and B: E,— E,, ., be continuous.
Show that the point-to-set map C: E,,,,— E, defined below is closed.

ye C(w) if y solves the problem to minimize f(x)+w'B8(x)
subject to xe X,

This exercise introduces a unified approach to the class of cutting plane methods
that are frequently used in nonlinear programming. We state the algorithm and
then give the assumptions under which the algorithm converges. The symbol &
represents the collection of polyhedral sets in E,, and () is the nonempty solution
set in E,.

A General Cutting Plane Algotithm

Initialization Step
Choose a nonempty polyhedral set Z;< E,, let k=1, and go to the main step.
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7.21

7.22

Main Step 7

1. Given Z,, let w,€B(Z,), where B: ¥— E,. If w, €}, stop; ctherwise, go to
step 2

2. Letv,eC(w,), where C: E,—~ E,. Let a: E,— E, and b: E,— E, be continu-
ous functions, and let

Zi1 =Z N {x: alv,)+b' (v )x =0}
Replace k by k+1, and repeat step 1.
Convergence of the Cutting Plane Algorithm

Under the following assumptions, either the algorithm stops in a finite number of

steps at a point in £} or it generates the infinite sequence {w,} such that all of its

accumulation points belong to ().

1. {w,} and {v,} are contained in compact sets in E, and E,, respectively.

2. For each Z, if we B(Z), then we Z.

3. Cis a closed map.

4. Given wé£f and Z, where weB(Z), then veC(w) implies that
w¢{x:a(v)+b'(v)x=0}, and ZN{x:a(v)+b'(v)x =0} # &.

Prove the above convergence theorem.

Hint: Let {w.}y and {vi.}x be convergent subsequences with limits w and v.
First, show that for any k, we must have

a(vi) +b' (v, )w, =0 for all I=k+1

Taking limits, show that a(v) +b'(v)w = 0. This inequality, together with assump-
tions 3 and 4, imply that we (), because otherwise a contradiction can be
obtained. '

Consider the dual cutting plane algorithm described in Section 6.4 for maximiz-

ing the dual function.

a. Show that the dual cutting plane algorithm is a special form of the general
cutting plane algorithm discussed in Exercise 7.20.

b. Verify that the assumptions 1 through 4 of the convergence theorem stated in
Exercise 7.20 hold true, so that the dual cutting plane algorithm converges to
an optimal solution to the dual problem.

Hint: Referring to Exercise 7.19, note that the map C is closed.

This exercise describes the cutting plane algorithm of Kelley [1960] for solving a

problem of the following form, where g for i=1,..., m are convex.

Minimize c'x
subject to g{x)=0 fori=1,...,m
Ax=b

Kelley’s Cutting Plane Algorithm

Initialization Step

Let X, be a polyhedral set such that X, 2{x:g(x)=0 for i=1,...,m}. Let
Z,=X,N{x: Ax=b), let k=1, and g0 to the main step. '
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Main Step

1. Solve the linear pxogram to minimize ¢'x subject to xe Z,. Let x, be an
optimal solution. If g(x,)=0 for all i, stop; x, is an optimal solution.
Otherwise, go to step 2.

2. Let g(x,)=maximum, ;= &(x,), and let

Z=Z N{x: gj(xk)'*‘Vgi(xk)'(X“xk)50}

Replace k by k+1, and repeat step 1.
(Obviously Vg(x,)# 0, because otherwise, g;(x) = g;(x,) + Vg(x,) (x— xk)> 0
for all x, implying that the problem is infeasible.)
a. Apply the above algorithm to solve the following problem:
Minimize —3x; — X
subject to X2 +x,+1=<0
X, tX3 =3

X1, X2 =0

b. Show that Kelley’s algorithm is a special case of the general cutting plane
algorithm of Exercise 7.20.

c. Show that the above algorithm converges to an optimal solution using the
convergence theorem of Exercise 7.20.

d. Consider the problem to minimize f(x) subject to g(x)=0 for i=1,...,m
and Ax=<Db. Show how the problem could be reformulated so ihat the above
algorithm be applied.

(Hint: Consider adding the constraint f(x)—z=0.)

This exercise describes the supporting hyperplane method of Veinott [1967] for

solving a problem of the following form, where g for all i are pseudoconvex and

where g (x)<0 for i=1,..., m for some point X€ E,.

Minimize ¢'x
subject to g(x)=0 fori=1,...,m
Ax=<b

Veinott’s Sepporting Hyperplane Algorithm

Initialization Step
Let X, be a poiyhedral set such that X, =>{x: g(x)=0 for i=1,...,m}. Let
Z,=X,N{x: Ax=b}, let k=1, and go to the main step.

Main Step

1. Solve the linear program to minimize ¢'x subject to x& Z,. Let x, be an
optimal solution. If g (x,)=0 for all i, stop; x, is an optimal solution to the
original problem. Otherwise, go to step 2.

2. Let X, be the point on the line segment joining x, and %, and on the
boundary of the region {x: g;(x)=0 for i=1,..., m}., Let g(%,) =0 and let

Zi1=2Z N {x: Vg%, ) (x— %, ) < 0}
Replace k by k+1, and repeat step 1.-




