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The Concept of an Algorithm

In the remainder of the text we describe many algorithms for solving different
classes of nonlinear programming problems, This chaptcr introduccs the con-
cept of an algorithm. Algorithms are viewed as point-to-sct maps, and lhe
main convergcnce theorem is proved utilizing the concept of a closcd mapping.
This theorem will be utilized in the remaining chapters to analyze the con-
vergence of several computational schemes.

The following is an outline of the chapter.

SECTION 7.1: Algoritbms and Algorithmic Maps This section presents
algorithms as point-to-set maps and intrcduces the conccpt of a solution set.

SECTION 7.2: Closed Maps and Convergence We first introduce the con-
cept of a closed map and then prove thc main convcrgcnce theorern.

SECTION 7.3: Composition of Mappings We establish closedness of cornpo-
site maps by examining closedncss of the individual maps. ·"Ve then discuss
mixed algorithms and give a condítion for theír convergence.

SECTION 7.4: Compariscn Among Algorithms Some practical factors for
assessing the efficiency of differcnt algorithms are discusscd.

Consider the problem to minimize f(x) subjcct to XE S, whcrc f is the objcctive
function and S is the feasib1c region. A solution procedure or an algorithm for
solving this problem can be viewed as an iterative process that generates a
scqucnce of po ints according to a prescribed sct of instructions, tcgether with a
termination criterion.
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The Algorithmic Map

Given a vector x, and applying the instructions of the algorithm, we obtain a
new point x; + I' This process can be dcscribcd by an algorithmic map A. This
map is gencralIy a point-to-set map and assigns to each point in the domain X
a subset of X. Thus, given the initial point x., the algorithmic map generates
the sequence XI' X2, ... , where Xk+1 E A(xk) for each k. The transforrnation of
x, into Xk+ I through the map constitutes an iteratlon of the algorithm.

A(x) A(x)

The Solution Set and Convergence of Algorithms

Considcr the fol!owing nonlinear prograrnming problem

Minimize t(x)

subject to x E S

A desirable property of an algorithm for solving the abovc problcrn is that it
generates a sequence of points converging to a global optimal solution. In
many cases, however, we may have to be satisfied with lcss íavorablc outcornes.
In fact, as a result of nonconvexity, problern size, and other difficulties, we may
stop the iterative procedure if a point bclonging to a prescribcd set, which we
cal! the solution. set n, is reached. The following are some typical solution sets
for the above mentioned problem.

1.. n= {i: i is a local optimal solution of the problem}.
2. n={i:iES, f(x):5.b}, where b is an acceptable obiective value.
3. Ü={X:iE S, f(x)<LB+c}, whcre e>O is a spccificd tolerance, and LB is

a lower bound on the optimal objcctive value. A typica! lowcr bound is the
objective value of the Lagrangian dual problcrn.

4. n= {i:XE S, I(i) - t(i) < c}, where f(i) is the global minimurn, and E> O is
specified.

5. n = {i:x satisfies the Kuhn-Tucker optimality conditions].
6. Ü= {i: i satisfies the Fritz John optimality conditions}.

Thus, in general, convcrgence of algorithms is madc in rclcrcncc !O the
solution set rathcr than to the collection of global optirnal solutions. In
particular, the algorithmic map A: X ~ X is said to converge ovcr Y c X if,
starting with any initial point XI E Y, the limit of any convergcnt subscqucnce of
the sequcnce XI' Xz, ... , generated by the algorithm, belongs to thc solution set
Ü. Letting ü be the set of global optimal solutions in Examplc 7.1.1, it is
obvious that the two stated algorithms are convergcnt over the real !ine.

x; 1

Xk+ 1

7.2 Closed Maps and Convergence

7.1.1. Example
Consider the following problem:

Minimize x2

subject to x ~ 1

whose optirnal solution is i = 1. Let the point-to-point algorithmic map be
given by A(x) = ~(x + 1). It could be easily verified that the sequence obtained
by applying the map A, with any starting point, converges to the optimal
solution i = 1. With XI = 4, thc algorithm gcnerates the sequence {4, 2.5, 1.75,
1.375, 1.1875, ... } as illustratedin Figure 7.la.

As another example, consider the point-to-set rnapping A, defined by

if X~ 1
if x< 1

A(x)={[l,Hx+l)]
U{x + 1),1]

As shown in Figure 7.1 b, the image of any point x is a closed interval, and any
point in that interval could be chosen as the successor of x. Starting with any
point XI' the algorithm converges to i = 1. With x, = 4, the sequence {4, 2, 1.2,
1.1, 1.02, ... } is a possible result of the algorithm. Unlike the previous
example, other sequences could result from the algorithmic rnap.
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In this section we introduce the notion of closcd maps anel then prove a
convergence theorem. The significance of the conccpt of closcdness will be
c1ear from thc following example and thc subscquent discussion.

x=l Xk+l xk 7.2.1 Example
Consider the following problem:

(a) (b) Minimize

subject to

X2

Figure 7.1 Exarnples of algorithmic maps. x~1
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A(x) Closed Maps

~

7.2.2 Definition

Let X and Y be nonempty closed sets in Ep and Eq, respective!y. Let A: X --7 Y
be a point-to-set map. The map A is said to be closed at 'X E X if

Let fi be the set of global optimal solutions,
algorithmic map defined by

{
n+ix, 1+~x]

A(x) = I
2:(x + 1)

that is, fi ={l}. Consider the

Yk E A(xk) Yk-YY

imply that YE A(x). The map A is said to be cJosed on Z c X if it is cJosed at
each point in Z.

Figure 7.2 shows an example of a point-to-set map that is not cJosed at x = 2.
In particular, the sequence {xd with xk = 2 - k converges to x = 2, and the
sequence {yd with Yk=A(Xk)=~-dk converges to y=J., but y~A(x)={2}.
Figure 7.1 shows two examples of algorithmic maps that are cJosed
everywhere.

Figure 7.2 An example of a nonconyergent al-
gorithmic map.

if x~2
if x<2

The map A is illustrated in Figure 7.2. Obviously, for any initial point XI ~ 2,
any sequence generated by the map A converges to the point x = 2. Note that
x~ fi. 011 the other hand, for XI < 2, any scqucncc gcnerated by the algorithm
converges to x = 1. In this example the algorithm converges over the interval
(-00,2) but does not converge to a point in the sct n ovcr the interval [2,00).

The above example shows the significance of the initial point XI> wherc
convcrgence to a point in n is aehicvcd if XI < 2 but not realized otherwise,
Note that each of the algorithms in Examplcs 7.1.1 and 7.2.1 satisfy the
follawing conditions:

1. Give n a feasible point xk ~ 1, any successor point Xk+1 is also feasible, that
is, Xldl~l.

2. Given a feasíble point Xk not in the solution set n, any successor point Xk+1

satisfies f(Xhl)<f(Xk)' where f(X)=X2. In other words, lhe objective
function strictly decreases.

3. Given a feasiblc point Xk in the solution set .o, that is, Xk = 1, the successor
point is also in Ü, that is, X':+I = J.

Despire the abovc-mcntioncd sirnilaritics arnong the algorithms. the two
algorithms of Exarnple 7.1.1 converge to x = 1, whilc that of Examplc 7.2.1
does not converge to ,t = 1 for any initial point x i ~ 2. Thc rcason for this is
that the algorithmic mar of Examplc 7.2.1 is not closcdat X = 2. 1'11c notion of
a closed niapping, which generalizes thc notion of a continuous Iunction, is
defincd bclow.

The Convergence Theorem

Conditions that ensure convergence of algorithmic maps are stated in Theorern
7.2.3 below. The theorem will be used in the rernainder of the text to show
convergence of many algorithms.

7.2.3 Theorem

Let X be a nonempty closed set in E,,, and let the nonempty sct nc X be the
solution set, Let A: X --7 X be a point-to-set map. Given XI E X, the sequence
{xd is generated iteratively as follows:

If Xk E.o. then stop; otherwisc, let Xk-+ I E A(xk), replace
k by k + 1, and repeat.

Suppose that the sequence x., X2, ..• , produced by the algorithm is con-
tained in a compaet subset of X, and suppose that there cxists a continuous
function a, called the descent [unction, such that a(y)<a(x) if x~.o. and
YE A(x). If the map A is closcd over the cornplerncnt of .0., then eirher the
algorithm stops in a finitc nurnber of stcps with a point in n or it gcncrates the
infinite sequence {xd such that:

1. Every convergent subscquence of {xd has a limit in n, that is, all
accumulation points of {xd be!ong to .0..

2. a(xk)--7a(x) for some XEÜ.
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Proof

a(xk)-a(x)<€

In particular for k = K, we get

for k ~ K with k E J{

Note that if the point at hand x, does not beiong to the solution set 'n, then
thc algorithm gcnerates a new point Xk+1 such that a(xk-l1)<a(xk). The
f unction a is called a descent [unction. In many cases, a is chosen as the
objective function f itself, and thus the algorithm generatcs a scqucnce of
points with improving objective function valucs, Othcr altcrnative choíces of
the function a are possible. For instance, if f is diffcrentiable, a could be
chosen as a(x) = IIVf(x)11 for an uncoristraincd optimization problcm.

If at any iteration a point Xk in n is generatcd, then the algorithm stops. Now
suppose that an infinito scqucnce {xd is gcnerated. Let {xd.'l( be any con-
vergent subseq uence with limit x E X. Since a is continuous, then for k E X,
a(xk)~a(x). Thus, for a given 10>0, there is a KEJC such that

a(xK)-a(x)< 10 (7.1) Terminating the A!gorithm

As indicated in Theorem 7.2.3, the algorithm ís terminatcd ir wc reach a point
in the solution set n. In most cases, however, convcrgcnce to a point in n
occurs only in a limiting sense, and we must resort to some practical rules for
terminating the iterative procedure. The following rules are frequently used to
stop a given algorithm. Here, 10 > O and the positive integer N are prespecified.

Now let k>K. Since a is a descent function, a(xk)<a(xK), and from (7.1),
we get

a(Xk)- a(x) = a(xk)- a(xK)+ a(xK)-a(x) < 0+ 10 = 10

Since this is true for every k> K, and since 10 > O was arbitrary, then

lim a(xk) = o-(x)
k_oo

(7.2) 1. Ilxk+N-xkll<€

We now show that x E n. By contradiction suppose that x ~ n, and consider
the scquence {Xk+lhr. This sequence is contained in a compact subset of X and
hence has a convergent subscqucnce {Xk+1hcwith limit X in X. Noting (7.2), it is
clear that a(i) = a(x). Since A is closed at x, and for k E 'it, x, ~X, Xk+1 E

A(xk), and Xk+l~i, then XEA(x). Therefore a(x)<a(x), contradicting the
fact that a(i) = a(x). Thus x E.n and part 1 of the theorem holds true. This,
coupled with (7.2), shows that part 2 of the theorem holds true, and the proof
is complete. I'

·,1

I
I

Here, the algorithm is stopped if the distance moved after N applications
of the map A is less than 10.

2. Ilxk+l-Xkll •.....
IIxkll - 10.

Under this criterion, the algorithm is terminatcd if thc relativc distance
moved during a given iteration is less than 1:;.

3. a(xk)-a(xk+N)< 10.

Corollary

Under the assumptions of the theorern, if n is the singleton {i}, then the whole
sequence {Xi<} converges to x.

Herc, the algorithm is stopped if the total improvement in the dcscent
function value after N applications of the map A is less than 10.

4. a(xk)-a(xk+l) < 10.

la(xk)1,Proof

Suppose, by contradiction, that there exists an 10 > O and a sequence {xk}x such
that

lf the relative improvcment in the dcscent function value during any given
iteration is less than 10, then the termination criterion is realized.

Ilxk -xII> 10 for k E J{ (7.3) 5. a(xk)-a(i)< 10, whcrc i bclongs to !l.

Note that there exists X' c X such that {xJx' has a limit x'. By part 1 of the
theorem, x' E n. But n = {i}, and thus x' = x. Therefore, Xk ~i for k E J(',
violating (7.3). This completes the proof. /

This criterion for termination is suitable if a(i) is known beforehand; fOT

example, in unconstrained optimization if a (x) = IIVf(x)!I and () =
{i: V I(i) = O}, then a (i) = O.
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7.3 Composition of Mappings -------------------------------
In most nonlinear programming solution proccdurcs, lhe algorithmic maps are
oftcn cornposed of several maps. For examplc, some algorithms first finei a
direction d, to move along and then determine the step size Àk by solving the
one-dirnensional problcrn 01' minimizing a(xk + Àdk). ln this case, the map A is
composed of MD, where D finds thc direction dk> anel then M finds an optima!
step size Àk' It is often easier to prove that the overall map is closed by
examining its individual components. In this section, the notion of composite
maps is stated precisely, anel then a result relating closedness of the overall
map to that of its individual components is given. Finally, we discuss mixed
algorithms anel state conditions under whieh they converge.

7.3.1 Definition
Let X, Y, and Z be nonempty closed sets in E", Ep, and Eq, respectively. Let
B: X ~ Y and C: Y ~ Z be point-to-set maps, The composite map A = CB ís
defined as lhe point-to-set map A: X ~ Z with

A(x) = U {C(y): y e B(x)}.
Figure 7.3 i1Iustrates the notion of a cornposite map, and Theorem 7.3.2 and

its corollaries give several sufficient conditions for a composite map to be
closed.

Figure 7.3 Cornposite maps.

7.3.2 Theorern
Let X, Y, and Z be nonernpty closcd sets in En, Ep, and Eq, respectively.
Let B: X -)o Y and C: Y ~ Z bc point-to-set maps, and consider the cornpo-
sitc map A = eB. Suppose that B is closcd at X and that C is closcd on Bíx).
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Furthermore, supposc that if Xk~X and Yk EB(xk), then thcre is a convergent
subsequence of {yd. Then A is closed at x.

Proof

Let Xk ~x, Zk E A(xd, and Zk ~z. We need to show that Z E Aíx). By definition
of A, for each k, therc is a Y« E B(xk) such that z, E C(h). By assumption, thcre
is a convergent subsequence {Yd1C with lirnit y. Sincc B is closed at x, then
YE B(x). Furtherrnore, since C is closed on B(x) it is cJosed at y, and hence
ZEC(Y)· Thus, ZEC(Y)E CB(x) = A(x), and hence A is closed at x.

Corollary 1

Let X, Y, and Z be nonempty closed sets in En, Ep, and Eq, respectively. Let
B: X ~ Y and C: Y ~ Z be point-to-set maps. Suppose that B is closed at x,
C is closed on B(x), and Y is compacto Then A = CB is closed at X.

Corollary 2

Let X, Y, and Z be nonempty closed sets in En, Ep, and Eq, respectively.
Let B: X ~ Y be a function, and let C: Y~ Z be a poinr-to-set map. If B is
continuous at x, and C is closed on B(x), then A = CB is closcd at X.

Note the importance of the assumption that a convcrgcnt subsequcnce {yd:'l
exists in Theorcm 7.3.2. Without this assumption,even if thc maps B and C are
closed, the cornposite map A = CB is not neccssarily ciosed, as shown by
Example 7.3.3 below.

7.3.3 Example

Consider the maps B, C: EI ~ EI dcfined bclow.

B(X)={~ ifxr'=O
O if x = O

C(y)={z: Izl:5lyj}.

Note that both B and C are closcd everywhere. Now consider the cornposite
map A = CB. Then, A is given by A(x) = C.B(x) = {z: Izl::,;iB(x)!}. Frorn the
definition of B, it follows that

A(x) = {{z: Izl:5 iW
{O}

if xi- O

if x =0

Note that A is not closed at x = O. In particular, consider thc scquence {xd,
where xk=k· Note thatA(xk)={z:lzl:5k}, and hence zk=l belorigs to A(x

k
)
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for cach k. On the other hand, the limit point z = 1 does not belong to
A(x) = {O}. Thus the map A is not closcd, even though both B and C are closed,
Herc, Thcorern 7.3.2 does not apply, sincc thc scquencc Yk E B(xk) for Xk = k
does not have a convergent subscqucnce.

Convergence of Algorithms with composite maps

At each iteration, many nonlinear programming algorithms use two maps. One
of the maps is usually closcd and satisfics the convergence requirements of
Theorem 7.2.3. The second map rnay involve any process as long as the value
of the descent funetion does not increase. As illustratcd in Exercise 7.17, the
overall map may not be closed, so that Theorem 7.2.3 could not be applied.
However, as shown below, such maps do converge.

7.3.4 Theorem

Let X be a nonempty closed sct in E'I> and let ne X be a nonernpty solution
set. Let a: E; ~ E, be a continuous function, and consider the point-to-set
map C: X->X satisfying the following property: Given XEX, then a(y):Sa(x)
for y EC(x). Let B: X ~ X be a poirit-to-set map that is closed over the
complement of n and that satisfies a(y)<a(x) for each YEB(x), if xÉn. Now
consider thc algorithrn dcfincd by thc composite map A = CB. Given x, E X,
suppose that the sequence {xd is gcnerated as follows:

lf Xk E n, then stop; othcrwise, let Xk+ I E A(xk), replace k
by k + I, and repeat.

Suppose that the set /\ = {x : a(x):s a(xl)} is compact. Then either the algorithm
stops in a finite number of steps with a point in n or ali accumulation points of
{xk} belong to n.

Proof

If at any iteration XkE n. thcn thc algorithm stops. Now suppose that the
sequence {xd is gencratcd by the algorithm, and let {xkh be a convergent
subsequence, with limit x. Thus a(xk)~ a(x) for k E 'JC.Using monotonicity of a
as in Theorem 7.2.3, it follows that

lim a(xk) = a(x)
k_'Y.I

(7.4)

Wc want to show that x E n. By contradiction, supposc that xe! n, and considcr
lhe sequcncc {xk• i},(' By dcfinition of the composite map A, note that
Xk+1 E C(Yk), where Yk E B(Xk)' Note that Yk' Xk+! E /\. Since /\ is compact, there
exists an index sei ')('e,W: such that Yk~Y and Xk+I~X' for kEYC'. Since Bis
closed at x~n, then YEB(x), and a(y)<a(x). Since "'k+iEC(Yk), then
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by assumption, a(xk+I):Sa(Yk) for kEJt, and hence by taking lhe limit,
a(x'):s a(y). Since «(y) < a(x), then a(x/) < a(x). Sincc a:(XI<+I)~o (x') for
kE:Jt, then a(x')<a(x) contradicts (7.4). Thercfore, XEn, and the proof is
completes"

Minimizing Along Independent Dlrections

We now prcscnt a theorcm that cstablishcs convcrgcncc of a class of
algorithms for solving a problem of the form: minimizc [(x) subjcct to XE E".
Undcr mild assumptions, we show that an algorithm that gcncratcs 11 lincarly
independent search directions, and obtains a new point by sequentially
minimizing [ along these directions, converges to a stationary point. The
theorcm also establishcs convcrgcnce of algorithms using lincarly indcpcndcnt
and orthogonal search dircctions.

7.3.5 Theorem

Let f: E; ~ EI be diffcrentiable, and consider the problern to rninimize [(x)
subject to x E EIl' Consider an algorithm whosc rnap A is defined as follows.
The vcctor YE Aíx) mcans that y is obtainecl by minimizing f scquentially along
the dircctions di, ... ,dn starting from x. Hcre thc scarch dircctioris di, ... ,d,
may c1epend upon x, and each has norm I. Supposc lha! the following
properties are true:

1. There exists an e > O such that det [D(x)] 2: e for cach x E En. Here, D(x) is
the 11 x 11 matrix whose colurnns are the scarch directions gcneratcd by the
algorithm, and det [Dixj] denotes thc dctcrrninant of D(x).

2. The minimum of f along any !ine in E; is unique.

Given a srarting point XI' suppose that the algorithm gcncrates lhe scquence
{xd as follows. If Vf(xd = 0, thcn thc algorithm stops with :".:k; othcrwise
XI<+IEÁ(Xk), k is replaccd by k+I, and lhe process is repcatcd. If the
scqucnce {xd is contained in a cornpact subsct of E,,, thcn cach accumulation
point x of the sequence {x.} must satisfy V f(x) = O.

Proof

If lhe sequence {xd is finite, thcn the result is immediate. Now suppose that
the algorithm generates the infinito scqucnce {x.}.

Lct .'J{ hc an infinito scqucncc of positivo intcgcrs, a nd supposc th.rt thc
scqucnce {xdy{ converges to a point x. We nced to show that V [(x) = O.
Suppose by contracliction that V [(x) 'I- 0, and considcr the sequcnce {Xk•1 };r. By
assumption, this sequence is contained in a compact subsct of E,,, and hence
there exists 'J{' e;J{ such that -{Xk+lbc converges to x'. We will show that x'
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could be obtained from x by minimizing ! along a set of n linearly independent
directions.

Let D, be the n x n matrix whose columns dlk, ... , dnk are the search
I directions generated at iteration k. Thus, "k+ 1 = x, + DkÀk = Xk + Ij= 1 djkÀjk'

where \k is the distance moved along djk. ln particular, letting Ylk =Xk'
Yj+!.k =Yjk + Àjkdjk for j= 1, ... , n it follows that "/(41 =Y ••+I.k' and

!(Yi+I.k) ::;[(yik + Àdjk) for ali À E E) and j = 1, ... , n (7.5)

Since det[Dk]~é>O,Dk is invcrtible, so that Àk =Dk-l(Xk+I-Xk)' Since each
column of D; has norm 1, there exists '](" c ,]C' such that D, ~ D. Sincc
det[Dk]~é for each k, det[D]~é, so that D is invertible. Now, for kE']{",
Xk+l~X', Xk~X, Dk~D, so that Àk~À, where À=D-l(X'_X). Therefore,
x' = x+ DÀ= x+ Ij=) diA;. Let Yl = x, and for j = 1, ... , n, let Yi+l = Yj + A;dj, so
that x' = Yn+I' To show that x' is obtained from x by minimizing [sequentially
along dI'" ., d,,, it sufficcs to show that

[(Yj+l)::; [(Yi +Àd;) (7.6)for ali À E E) and j = 1, ... , n

Note that Àjk~Àj, djk~dj, Xk~X, and Xk+)~X' as kE'J{" approaches 00,

so that Yjk ---+Yj for j = 1, ... , n + 1 as k E ']{" approaches 00. By continuity of f,
then, (7.6) follows from (7.5). We have thus shown that x' is obtained from x by
minimizing [ sequentially along the directions d., ... , d.,

Obviously, [(x')::; f(x). First, consider the case f(x') < [(x). Since {[(xk)} is a
nonincreasing sequencc, and since [(x/<)~ f(x) as k E ']( approaches 00,

limk_oo [(xk) = [(x). This is impossible, however, in view of the fact that
x, +1~ x' as k E 'J{' approaches 00 and the assumption that [(X') < f(x). Now
consider the case f(x') = f(x). By property 2 of the theorern, and since x' is
obtaincd from x by minimizing [ along dI, ... , d,,, x' = x. This further implics
that V[(x)' di = ° for j = 1, ... , n. Since dI"'" d, are linearly independent,
V[(x) = 0, contradicting our assurnption. This completes the proofz

Note that no closedness or continuity assurnptions are made on the map
providing the search directions. It is only required that the search directions
used at each iteration be linearly independent and that as these directions
converge, theIirniting directíons rnust also bc linearly independent. Obvíously
this holds true if a fixed set of lincarly indepcndent search directions are used
at every iteration. Alternatively, if the search directions used at each iteration
are mutually orthogonal, and each has norrn 1, then the search matrix D
satisfics D'D = I. Thcrcforc, det [D] = 1, so that condition 1 of the theorem
holds true.

Aiso note that assumption 2 in the statement of the theorcrn is used to
ensurc the following property. If a diffcrentiable íuncrion [ is minimized along
n indcpc ndcnt dircctions starting from a point x anel resuiting in x', then
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[(x') < f(x), provided that V[(x) # O. Without assumption2, this is not true, as
evidenced by [(Xl' X2) = x2(1- x.). If x = (0, O)', then minimizing [ starting frorn
x along di = (1, O)' and then along d2 = (0, 1)' could produce the point x' =
(1, I)', where [(x') = [(x) = O, even though V[(x) = (O, 1)'!= (0, O)'.

7.4 Comparison Among Algorithms

In the remainder of the text, we discuss several algorithms for solving different
classes of nonlinear programming problems. This section discusses some impor-
tant factors that must be considered when assessing the eflectivencss of thcse
algorithms and when comparing them. These factors are (1) generality, reliabil-
ity, and precision; (2) sensitivity to parameters and data; (3) preparational and
computational etTort; and (4) convergence.

Generalitv, Reliability, and Precision

Different algorithms are designed for solving various classes of nonlinear
programming problems, such as unconstrained optirnization problerns, prob-
lems with inequality constraints, problems with cquality constraints, and prob-
lems with both types of constraints. Within cach of thcse classes, diffcrent
algorithms rnake specific assumptions about thc problem structure. For exam-
pie, for unconstrained optimization problems, some procederes assume that lhe
objective function is diffcrcntiable, whcreas other algorithms do no! rnake this
assumption and rcly primarily on functiona! evaluations only. For problcms
with equality constraints, some algorithms can only handle linear constraints,
while o thers can hand1c nonlincar constraints as wcll. Thus gcncrality 01 an
algorithm rcf'crs to lhe varicty of problcrns that lhe algorithm can handlc and
also to the rcstrictivencss of the assurnptions rcquircd by lhe algorithm.

Another importan t factor is tlie reliability, or robustness, 01' lhe algor iI hm.
Given any algorithm, it is not difficult to coristruct a test problem that it cannot
solve effectively. Reliabi!ity means the ability of the procerlurc to solve most of
the problerns in the class for which it is designed with rC<1S0nalJIt:accuracy. The
relationship between rcliability 01' a certain procedurc anel lhe problcm size and
structure cannot be overlooked. Some algorithms are rcliablc if thc numbcrof
variables is srnall or if the constraints are not highly nonlincar, and not reliable
otherwise.

As implicd by Thcorcrn 7.2.3, convcrgcncc 01' nonlincar programrn ing al-
gorithms usual1y occurs in a !imiting sense, if at all. Thus, wc are intcrestcd in
measuring the quality of the points produced by the algorithm aftc r a reascna-
ble number of iterations. Algorithrns that quickly proclucc Icasiblc solutions
with good objective values are preferred. As discusscd i;; Chaptcr 6 on ouality
and as will be seen in Chapter 9 011 pcnalty functions, sevcralrrocedurcs
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gcncrate a sequcnce of infcasible solutions, whcrc Ieasibility is achicvcd only at
tcrrnination. Hcnce, at latcr iteratioris, it is imperative that the degree of
infeasibility be small so that a near-feasiblc solution will be at hand if the
algorithmic process is prematurely termínated.

Sensitivity to Parameters and Data

For most algorithms, the use r must set initial values for certain parameters,
suchas the starting vector, the step size, the accclcration factor, and pararne-
ters for terminating the algorithm. Some procedures are quite sensitive to these
parameters and to the problern data anel may produce diffcrent results or stop
prematurely, depending on their values. In particular, for a fixed set of selected
parameters, the algorithm should solve the problem for a wide range of
problem data. Likewise, for a given set of problem data, one would prefer that
the algorithm not be very sensitive to the selected values of the parameters.

Preparational and Computational Effort

Another basis for comparing algorithms is thc total effort, both preparational
and cornputational, expendcd for solving problems. The effort of preparing the
input data should bc taken into consideration when evaluating an algorithm.
An algorithm that uses first- or secand-order derivatives, especially if the
origina! functions are cornplicatcd, rcquires a considerably larger amount of
preparation time than one that only uses functional evaluations. The computa-
tional effort of an algorithm is usually assesscd by the computer time, the
number of iterations, or the number of functional cvaluations. Howevcr, any of
these measures, by itsclí, is not cntircly satisfactory. The cornputcr time needed
to execute an aigorithm depcnds not only on its efficicncy but also on lhe type
of machine used, the character of thc mcasurcd time, and thc cfficicncy of
coding. Aiso, the numbcr of iterations cannot be uscd as the only mcasure of
effective ness of an algorithm because the eftcrt per iteration may vary consid-
erably from one proceclure to another. Finally, the number of functional
evaluations can be mislcading, since it does not measure other operations, such
as matrix rnultiplication, matrix invcrsion, anel finding suitable directions of
movement. In additiori, for deriva tive dependcnt methcds, we have to weigh
the evaluation of first- and second-order derivativos against the evaluation of
thc functions thcmsclves.

Convergence

Theorctical convergcncc of algorithrns to points in the soJution set is a highly
desirable property. Given two cornpcting algorithms that converge, they could

7.4 Cornparison Among Algorithms 24:.3

be cornpared theoretically on the basis of the order ar speed oí convergence.
This notion is defined below.

#

7.4.1 Definition

Let the sequence {rd converge to r. The order of conoergence of the sequence is
the suprernum of the nonnegative numbers p satisfying

Ir -ri
1-·- k+J {3 ~1m . =~, co

I -Ipk~oo Irk - r

If p = 1, the sequence is said to have linear convergence if the convergence ratio
{3 is less than 1. li p> 1, or if p = 1 and (3 = 0, the sequcnce is said to have
superlinear convergence.

If rk in the above definition represents a(xk), the value of the descent
function at the kth iteration, then the larger the value of p, the íaster the
convergcnce of the algorithm. lf the lirnit in Definition 7.4.1 exists, then for
large values of k, we asymptotically have Irul- ri = {3 Irk - rll', which indicares
faster convergence for larger values of {J. For thcsarne valuc of p. thc smaller
the convergence ratio {3, the faster the convcrgcnce. It should be noted,
however, that the order of convcrgencc and lhe ratio of convergcnce must not
be solely used for evaluating algorithms that converge, sincc they reprcscnt the
progrcss of the algorithm only as .thc numbcr of itcrations approach infinity,

Another convergence critcrion frcqucntly uscd in cornparing algorithms is
their ability to effectively minimize quadratic iunctions. This is used because,
near the minimum a linear approximation to a function is poor, while it can be
adequately approximated by a quadratic formo Thus, an algorithm that does not
perform weIJ for minimizing a quadratic function is unlikcly to perform well for
a general nonlinear function as we move closer to lhe optimurn.

•

r

~

.,.
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Note that the algorithm converges to an optimal solution in part b hut not in part
c. This is because map A is not closed, as seen in Exercises 7.14 and 7.15.
This exercise illustrates that a map for a convergem algorithm need not be closed.
Consider the following problem.

Minimize x2

In ordcr 10 show that M i:-, not closcd, a scqUClJCC (X., d,) couvcrging to (x, d) and
a scqucncc y, E M(x,. dk) convcrging to y rnust bc cxhibitcd such that y ~ Mtx, d).
Given that XI ==(1, D)',x'.1I is lhe point on the circlc (xl-l)2+(x2-1)2==1 mid-
way bctween Xk and (D, 1)'. The vector dk is defined by (Xk+1-Xk)!i!Xk+l-X,!!,
Letting f(x I, x2) == (x I + 2)2 + (X2 - 2)2, show that:
a. The scqucncc {x,} converges to x == (O, 1)'.
h. Thc vcctors {dk} converge to d = (O, 1)'.
c. Thc sequence {Yk} converges to y == (O, I)'.
d. The rnap M is not closcd at (x, d).
Let f: E" --+ EI be a differentiable Iunction. Consider the following direction-
finding map D: E" ~ E" x E" that givcs lhe defiected nega tive gradient. Given
x ~ O, thcn (x, d) E D(x) means that C(x) =={: + 1

x-I

7.17

subject to x E EI

Consider the maps B, C: Eç-« EI defined below.

7.15
B(x) ==~

j-af(x)
di == õx,

O

af(x)
if x.> O, or Xi == O and -.-:5 Oõx,

for ali x

if -1:5 x:51

if x<-1

if x> 1

otherwise
Let the solution set fi == {O}, and let the deseent function a(x) == x2

•

a. Show that B and C satisfy ali the assurnptions of Thcorcrn 7.3.4.
b. Verify that the composite map A == CR is as given below, and verify that it is

not closed.

7.16

Show that D is not elosed.
Hint: Lct [tx 10 x~) == X 1- X2 and consider the sequence {xk} converging to (O, I)',
whcrc x, ==C, I)'.
Let [: E" ~ EI bc a diffcrcntiablc function. Consider the composite map A ==
MO, whcre D: E" ......•E" x E" and M: E" x E" ~ E" are defincd as foflows. Given
x ~ O, thcn (x, d) E Dtx) means that

A(x) =l~+1
~-I

if--2:5x:52

if x <-2

if x>2

. . af(x)
if Xi >0, ar if Xi == O and --' :50

aXi

c. Despitc the fuct that A is not closcd, show that the algorithm defined by A
converges to the point x == O, rcgardless of thc starting point.

7.18 In Theorcrn 7.3.5 we assumed that det[D(x)]>e>O. Could this assurnption be
replaced by the following?

j-af(x)
d, == õx., J

O othcrwisc

The vector y E M(x, d) means that y == x +Ad for some A ~ O, and furtherrnore, Ã
solves lhe prohlem 10 minirnizc f(x+Ad) subjcct 10 x+Ad~O, A ~O.
a. Find an optirnal solution to thc following problern using the Kuhn- Tucker

conditions:

At each point, x,. generated hy lhe algorithm, the
search directions, dl>"" dno generated by lhe
algorithm are linearly independent,

7.19 Let X be a closed set in E,,, and let f:En--+EI and í3:E,,--+Endl be continuous,
Show that the point-to-set map C: E",.I .....•.E.; dcfincd below is closed.

Y E C(w) if Y solves the problcm to minirnize [(x) + W'~(X)
subject to XE X.

Minimizc

subjcct to

XI2+X2l_XIX2+2xl +x2

XI> X2~()

b. Starting Irorn the point (2, 1), solve the problern in part a using the algorithm
defincd by the algorithmic map A. Note that the algorithm converges to the
optirnal solution obtained in part a.

c. Starting frorn the point (0,0.09, O), solve the following problem credited to
Wolfe [1972] using the algorithm defined by A.

7.20 This exercise introduces a unified approach to the elass of cutting plane methods
that are frequently used in nonlinear prograrnrning. We state the algorithm and
then give the assumptionsunder which the algorithm converges. The syrnbol g'
represents the eoflection of polyhcdral scts in Ep, and n is the nonempty solution
sct in E'I'

Minimize ~(XI:2 - XIX:! + X:!2)"'/4 - x.,

XI' X2, x:<~Osubjcct to

Note that thc scqucncc gcneratcd converges to the point (O, O, X.1), where
X .• = O.3( 1 + O.SJ2\ Using thc Kuhn- Tuckcr conditions, show that this point is
not <111 optirnal solution.

A General Cutting Plane Algotithm
Initialization Step
Choose a nonempty polyhedral set ZI c Ep, let k == 1, and go to the rnain stcp.
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Main Step
1. Givcn Zk, let Wk E B(Zd, whcre B:.5I'-c> Ew If Wk E.o., stop ; othcrwise, go to

step 2.
2. Let Vk EC(W.), wherc C: E" .....•E,. Let a: E, .....•EI andb: E,-c>Ep be continu-

ous functions, and let

Zk.,.1 = 2k n{x: a(vk)+b'(Vk)X~O}

Replace k by k + 1, and repeat step l.

Convergence oí the Cutting Plane Algoritbm
Under lhe followíng assumptions, eithcr the algorithm stops ín a finíte number of
steps at a point in .o. or ít generates the infiníte sequence {w.} such that alI of its
accumulatíon poínts belong to .0..
1. {w.} and {v.} are contaíncd in compact sets in Eq and E" respeetívely.
L. For each 2, if w E B(2), then W E Z.
3. C is a closed map.
4. Given wé.o. and 2, whcrc wEB(2), then VEC(W) implies that

wr.{g:a(v)+b'(v)x~O}, and 2n{x:a(v)+b'(v)x~O}'f 0.
Prove the above convergcnce thcorem.
Hint: Ler {wkh.- and {v.}x be convergent subsequences with limíts W and v.
First, show that for any k, we must have

a(Vk) +b'(vj lw, ~ O for ali 1~ k + 1

7.21

Taking limits, show that a(v) +b' (v)w ~ O. This inequality, togethcr with assump-
tions 3 and 4, imply that W E.o., because otherwise a contracliction can be
obtainecl.
Considcr the dual cutting plane algorithm dcscribed ín Scction 6.4 for maximíz-
íng thc dual function.
a. Show that the dual cutting plane algorithm is a spccial form of the general

cutting plane algorithm discusscd ín Exercise 7.20.
b. Verify that the assumptíons 1 lhrough 4 of the convergence theorem stated in

Exercise 7.20 hold truc, so that the dual cuttíng plane algoríthm converges to
an optirnal solution tothe dual problcm.

Hint: Rcferring to Exercise 7.19, note that the map C is closeel.
Thís exercise dcscribcs the cutting plane algoríthm of Kelley [i 960] for solving a
problem of the followíng forrn, wherc gi for i = 1, ... , m are convexo

Mínimize c'x

7.22

subject to gi(X)$O

Axo;b

KeUey's Cutting Plane Algorithm
Initializatiçn Step
Let X, be a polyhcdral set such that XI -::> {x: g, (x) $ () for i= 1, ... , m}. Let
21 = Xl n{x: Ax $ b}, let k = I, anel go to thc main step.

for i=1, ... ,m

Exercises 249

7.23

Main Step
1. Solve the linear program to minimizc c' x subject to x E Zk' Let x, be an

optimal solution. If g,(Xk)$O for ali i, stop; Xk is an optímal solutíon.
Otherwise, go to step 2.

2. Let gj(Xk) = maximum.ç.ç., gi(X.), and let

2k+1 = Z; n{x: gj(xk)+Vg;(Xk)'(X-Xk)$O}

Replace k by k + 1, and repeat step 1.
(Obvíously V gj(xk),t O, because otherwíse, gj(x) ~ gj(xk) + V gj(xd'(x - xk) > O
for ali x, ímplyíng that the problem is ínfeasíble.)

a. Apply the above algorithm to solve the following problern:
Minímize - 3xI - X2

subject to XI
2
+X2+ 1$0

Xl +X2 $3
XI> X2 ~ ()

b. Show that Kelley's algorithm ís a specíal case of the general cuttíng plane
algoríthm of Exercíse 7.20.

e. Show that the above algoríthm converges to an optimal solution using the
eonvergence theorem of Exercíse 7.20.

d. Consieler lhe problem to minirnizc {(x) subject to g,(x) $ O for i = 1, ... , /ri
and Ax es b. Show how the problem could be reformulated so that lhe above
algorithm be applied.
(Hint: Consider addíng the constraint {(x) - Z $ O.)

This excrcise dcscribcs the supporling hvperpíane method of Vcinott [1967] for
solving a problcm of the following form, where gi for ali i are pscudoconvcx and
where Ri (x) < O for i= 1 •...• m for some point x E E".

Mínímize
subjcct to

C'X

Ri(X)$() fori=I, ... ,m
Ax$b

Supportíng Hyperplane AlgoritbmVeinott's

lnitialization Step
Let XI be a polyhedral set such that X, ~{x: l:i(X)$(} for i = 1, .... m}. Let
21 = XI n{x: Ax es b}, let k = 1, anel go to lhe main stcp.

Main Step
1. Solve the linear program to minímize c'x subjcct to X~ 2k' Let x, be ao

optimal solutíon. If gi(X.)$O for ali i, stop; Xk is an optimal solution to the
original problcm , Othcrwisc, go to stcp 2.

2. Let Xk be thc poínt on the linc scgmcnt joining x, ano X, and on the
boundary of the region [x: Ri (x) $ O for i =.1, ... , /1l}. Lct g, (Xk) = O and let

2k+l = Z; n{x: V gj(Xk)'(x - Xk) $ O}

Replace k by k + 1, and repeat step l..


