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The Fritz John and the Kuhn-—
Tucker Optimality Conditions

Ll

In Chapter 3 we derived an optimality condition for a problem of the form:
minimize f(x) subject to xe S, where f is a convex function and S is a conve
set. The necessary and sufficient condition for X to solve the probiem wa
shown to be

V&) (x—%)=0 forallxe§

In this chapter the nature of the set S wiil be more explicitly specified. In
particular we consider problems with inequality and/or equality constraints.
The necessary conditions are derived without any convexity assumptions and
are sharper than the above in the sense that they explicitly consider the
constraint functions and are more easily verifiable, since they deal with a
system of equations. Under suitable convexity assumptions, these necessary
conditions are also sufficient for optimality.

The following is an outline of the chapter.

SECTION 4.1: Unconstrained Problems We briefly consider cptimality con-
ditions for unconstrained problems. First-order and second-order conditions
are discussed.

SECTION 4.2: Probiems with Inequality Constrainis Both the Fritz John and
the Kuhn-Tucker conditions for problems with inequality constraints are -
derived.

SECTION 4.3: Problems with Inequality and Eqguality Constraints This sec-
tion extends the results of the previous section to problems with hoth inequal-
ity and equality constraints.
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4.1 Unconstrained Problems

An unconstrained problem is a problem of the form: minimize f(x) without any
constraints on the vector x. Unconstrained problems seldom arise in practical
applications. However, we consider such problems here because optimality
conditions for constrained problems become a logical extension of the condi-
tions for unconstrained problems. Furthermore, as shown in Chapter 9, one
strategy for solving a constrained problem is to solve a sequence of uncon-
strained problems.

We define below a local and a global minimum of an unconstrained problem.
The definition is a special case of Definition 3.4.1, where the set S is replaced
by E..

4.1.1 Definition

Consider the problem of minimizing f(x) over E,, and let x€ E,. If (%)= f(x)
for all xe E,, then X is called a global minimum. If there exists an e-
neighborhood N, (%) around % such that f(%) = f(x) for each xe N, (X), then X is
called a local minimum. Clearly a global minimum is also a local minimum:.

Necessary Optimality Conditions

Given a point x in E,, we wish to determine, if possible, whether or not the
point is a local or a global minimum of a function f. For this purpose, we need
to characterize the minimum point. Fortunately, the differentiability assumption
of f provides a means of obtaining this characterization. The corollary to
Theorem 4.1.2 below gives a first-order necessary condition for X to be a local
optimum. Theorem 4.1.3 gives a second-order necessary condition using the
Hessian matrix.

4.1.2 Theorem

Suppose that f: E, — E, is differentiable at X. If there is a vector d such that
Vix)'d<0, then there exists a §>0 such that fx+Ad)<f(x) for each A e
(0, 8), so that @ is a descent direction of f at %.

Proof
By differentiability of f at X, we must have
fER+A) =fR)+AVf(E)'d+ Aldla(k; Ad)
where «a(X; Ad)—> 0 as A — 0. Rearranging the terms and dividing by A, we get
FE+AD - f(X)

: = Vf(ER)'a+|d|a; Ad)
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Since Vf(%)'d<0 and a(x;Ad)—0 as A — 0, there exists a 8>0 such that
VfE)'d+||dlla(x; Ad)<O0 for all A €{0, 8). The result then follows.

Coroilary

Suppose that f: E, — E; is differentiable at X. If % is a local minimum, then
Vix)=0. -

Proof

Suppose Vf(%)#0 and let d=-Vf(X). Then Vf(x)'d=—|VfX)| <0, and by
Theorem 4.1.2, there is a §>0 such that f(x+Ad)<f(x) for A €(0, 8), con-
tradicting the assumption that X is a local minimum. Hence Vf(%)= 0.

The above condition uses the gradient vector whose components are the first
partials of f. Hence, it is calied a first-order condition. Necessary conditions can
also be stated in terms of the Hessian matrix H whose elements are the second
partials of f. These are called second-order conditions and are given below.

4.1.3 Theorem

Suppose that f: E, — E, is twice differentiable at %. If X is a local minimum,

then Vf(%)=0, and H(X) is positive semidefinite.

Proof ‘

Consider an arbitrary direction d. Then, from differentiability of f at X, we have
fE+Ad) = fR)+AVf(E)'d+3A2d HEZ)d + A YdPa(x; Ad) (4.1)

where a(%; Ad)— 0 as A —> 0. Since % is a local minimum, from the corollary to
Theorem 4.1.2, we have Vf(x)=0. Rearranging the terms in (4.1) and dividing
by A?, we get

B2 0 sanma+

diPa(k; Ad) (4.2)

Since X is a local minimum, f(x+Ad)=f(%) for A sufficiently small. From (4.2),
it is thus clear that ;d'B(X)d +||d[a(X; Ad) = 0 for A sufficiently small. By taking
the limit as A —0, it follows- that d'H(X)d=0, and hence H(X) is positive
semidefinite.

Sufficient Cptimality Conditions

The conditions discussed thus far are necessary conditions; that is, they must be
true for every local optimal solution. On the other hand, a point satisfying
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these conditions nced not be a local minimum. Theorem 4.1.4 gives a sufficient
condition for a local minimum.

4.1.4 Theorem

Suppose that f: E,— E; is twice differentiable at . If Vf(X)=0 and H() is
positive definite, then X is a local mmimum:

Proof
Since f is twice differentiable at X, we must have for each x e E,,:

£ = f(2) + V)" (x — %) +2(x— %) HX)(x— %)
+lx =% (%; x - %) ; (4.3)
where a(x;x—X)— 0 as x—X. Suppose, by contradiction, that X is not a local
minimum; that is, suppose there exists a sequence {x,} converging to X such

that f(x,)<f(x) for each k. Considering this sequence, noting that Vf(X)=0
“and f(x,)<f(%X), and denoting (x, —%)/|jx, —x|| by d,, (4.3) then implies that
W H®)d, +a(x;x, -X)<0  for each k (4.4)
But ||d,||=1 for each k, and hence there exists an index set 9% such that {d,},
converges to d, where ||d]|= 1. Considering this subsequence and the fact that
a(X;x, —x)—~0 as ke approaches o, then (4.4) implies that d'H(X)d=<0.
This contradicts the assumption that H(X) is positive definite and the fact that
lldll= 1. Therefore, % is indeed a local minimum.

In Theorem 4.1.5 below, we show that the necessary condition Vf(x)=0 is
also sufficient for X to be a global minimum if f is pseudoconvex at X.

4.1.5 Theorem

Let f: E, — E, be pseudoconvex at . Then % is a global minimum if and only if
Vi) =0.

Proof

By the corollary to Theorem 4.1.2, if X is a global minimum, then Vf(%)=0.
Now suppose that Vf(x)=0, so that Vf(X)'(x—%)=0 for each xeE,. By
pseudoconvexity of f at %, it then follows that f(x)= f(x) for each x€ E,, and
the proof is complete.

4.1.6 Example

' To illustrate the necessary and sufficient conditions of this section, consider the
problem to minimize f(x)=(x*-1)"
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First let us determine the candidate points for optimality satisfying the
first-order necessary condition that Vf(x)=0. Note that Vf(x)=6x(x>—1)3,
and Vf(=1)=Vf(0)=Vf(1) = 0. Now let us examine the second order necessary
condition that H(x) is positive semidefinite. We have H(x)=
24x%(x*>—1)+6(x*>-1)2, and hence H(1) =H(—1) =0 and H(0) = 6. In all three
cases, the matrix H is positive semidefinite, and the necessary conditions of
Theorem 4.1.3 hold true. This does not imply that each of these points is a
local minimum. By sketching the function, the reader could casily verify that
the point x=0 is indeed the only local minimum, and also the global
minimum. Note also that the points 1 and —1 do not satisfy the sufficient
conditions of Theorem 4.1.4, which requires H to be positive definite. This
condition is satisfied at the global optimum x = 0.

4.2 Problems with Inequality Constraints

In this section we first develop a necessary optimality condition for the problem
to minimize f(x) subject to xe S. Later we let S be the feasible region of a
nonlinear programming problem of the form to minimize f(x) subject to g(x) =0
and xe X.

Geometric Optimality Conditions

In Theorem 4.2.2 below, we develop a necessary optimality condition for the
problem to minimize f(x) subject to x€ S, using the cone of feasible directions
defined below.

4.2.1 Definition

Let S be a nonempty set in E,, and let Xecl S. The cone of feasible directions of
S at X, denoted by D, is given by

D={d:d#0,and x+Ade S for all A € (0, 8) for some >0}

Each nonzero vector de D is called a feasible direction.

From the above definition, it is clear that a small movement from X along a
vector de D leads to feasible points. Furthermore, {from Theorem 4.1.2, if
Vf(%)'d<0, then d is an improving dircction; that is, starting from X, a small
movement along d will reduce the value of f. As shown in Theorem 4.2.2
below, if X is a local minimum and if Vf(x)'d<0, then d£ D; that is, a
necessary condition for local optimality is that every improving direction is not
a feasible direction. This fact is illustrated in Figure 4.1, where the vertices of
the cones F, and D are translated from the origin to X for convenience.
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Figure 4.1 lllustration of the necessary condition F;N D=,

4.2.2 Theorem

Consider the probiem to minimize f(x) subject to xe S, where fEE,,_—‘» E,, aln'd
S is a nonempty set in E,. Suppose that f is differentiable at a point X e S. Ifx is
a local optimal solution, then F,N D = &, where F,={d:Vf(%)'d<0} and D is
the cone of feasible directions of S at X.

Proof

By contradiction, suppose that there exists a vector de F,N D. Then by
Theorem 4.1.2, there exists a §,>0 such that

fE+Ad) <f(X) for each A €(0, 6,) 4.5)
Furthermore, by Definition 4.2.1, there exists a 8,>0 such that:
x+ArdeS for each A €(0, §,) (4.6)

The assumption that ¥ is a local optimal solution to the pr‘oblem is not
compatible with (4.5) and (4.6). Thus F,N D = &, and the proof is complete.

We specify the feasible region S as follows:
S={xeX:gx)=0 fori=1,...,m}

where g1 E, — E, fori=1,...,m, and X is a nonempty open set in E,. This
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gives us the following nonlinear programming problem with inequality con-
straints:

Problem P:
Minimize f(x)

subject to g(x)=<0 fori=1,...,m
xeX

Recall that a necessary condition for local optimality at X is that F,N\ D = &,
where Fy is an open half space defined in terms of the gradient vector Vf(%),
and D is the cone of feasible directions, which is not necessarily defined in
terms of the gradients of the functions involved. This precludes us from
converting the geometric optimality condition F,N D =& into a more usable
algebraic statement involving equations. As Theorem 4.2.3 below indicates, we
will be able to define an open cone G, defined in terms of the gradients of the
binding constraints at %, such that Gy< D. Since F,N D =@ must hold at X,
and since G,< D, then F,N Gy= is also a necessary optimality condition.
Since F, and G, are both defined in terms of the gradient vectors, we will use
the condition F,NG,= @ later in the section to develop the optimality
conditions credited to Fritz John. With mild additional assumptions, the
conditions reduce to the well-known Kuhn~Tucker optimality conditions.

4.2.3 Theore_m

Let g :E, — E, for i=1,...,m, and let X be a nonempty open set in E,.
Consider the Problem P to minimize f(x) subject to g,(x)=0 for i = 1,...,m

and xe X. Let £ be a feasible point, and let [={i:g(%)=0} Furthermore,
suppose that f and g for iel are differentiable at % and that g for i¢I is
continuous at X. If X is a iocal optimal solution, then F,N G, = &, where

Fy={d:Vf(x)'d< 0}
Gy={d:Vg®)'d<0 for each ie I}
Proof
Let de G,. Since € X, and X is open, there exists a §,>0 such that
XxtAde X for A (0, 8,) (4.7)

Also, since g (%) <0 and since g is continuous at  tor i I, there exists a §,>0
such that :

g(X+Ad) <0  for A €(0,8,) and for i& [ T (4.8)

Finally, since d e G,, Vg, (x)'d<0 for each ie I, and by Theorem 4.1.2, there
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exists a §;>0 such that
gX+Ad)<gx) =0 for A €(0, 8;) and for iel (4.9)

From (4.7), (4.8), and (4.9), it is clear that points of the form X+ Ad are feasible
to Problem P for each A €(0, §), where 8 =minimum (§,, 8,, 8;). Thus de D,
where D is the cone of feasible directions of the feasible region at X. We have
shown thus far that d € G, implies that d e D, and hence G,< D. By Theorem
4.2.2, since % locally solves Problem P, F,N\ D= . Since G,< D, it follows
that F,N G,= &, and the proof is complete. '

4.2.4 Example
Minimize  (x;—3)*+(x,—2)?
subject to x2+x,2=<5
Xj X =3
Xy =0
X, =0

In this case, we let g,(x) =x,2+x,7 -5, X) =x;+x,—3, gs(X) =—x;, g, (x) =

- —Xx,, and X = E,. Consider the point x = (2, £)", and note that the only binding

constraint is g,(x) = x; +x,—3. Also note that

(=12 -8y _
Vi®=(555)  and  Ve®=(,1)

The sets Fy and G, with the origin translated to (3,%)" for convenience, are
shown in Figure 4.2. Since F,NGy# J, =% %" is not a local optimal
solution to the above problem.

Now consider the point x=(2, 1), and note that the first two constraints are

~ binding. The corresponding gradients at this point are

Vi®=(-2,-2), Vg®=(4,2), and Vg®=(1,1)

The sets F, and G, are shown in Figure 4.3, and indeed F,N G,= J. Note
that Theorem 4.2.3 gives a necessary condition and hence F,N G,= J does
not guarantee that X =(2, 1) is an optimal point. Wc can only conclude that ¥
is one of the candidate points that can solve the problem under consideration.

It might be interesting to note that the utility of Theorem 4.2.3 also depends
on how the constraint set is expressed. This is illustrated by Example 4.2.5
beiow.

Figure 4.2 [llustration of FNGy# B ata non-optimal point,

x5

Figure 4.3 [lilustration of FoNGy= @ at an optimal point. i
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4.2.5 Example

Minimize (x; =12+ (x,—1)?
subject to -+ (x;+x,—1)*=0
x, =0

x,=0

' Note that the necessary condition of Theorem 4.2.3 holds true at cach' feasible
point with x, + x, = 1. However, the constraint set can be represented equivalently
by

x;tx,=1
x, =0

X, =0
It can be easily verified that F,N G, = J is satisfied only at the point (4, 3).

There are several cases where the necessary conditions of Theorem 4.2.3 are
satisfied trivially by possibly nonoptimal points also. Some of these cases are

| discussed below.

Suppose that X is a {easible point such that Vf(i)=0_.. QIGarly _F0=
{d:Vf(x)'d<0} =, and hence F,N G,= . Thus, any point X th.h V]i(x) = 0
satisfies the necessary optimality conditions. Likewise, any point X with
Vg (%) =0 for some i € I will also satisfy the necessary conditions. Now consider

‘ the following example with an equality constraint:

Minimize f(x)
subject to gx)=0

| The equality constraint g(x) =0 could be replaced by ‘thp inqualitr)t‘coxxstra_i:*lts
g:(x)=g(x) =0 and g,(x) =—g({x)=0. Let % be any feasible point. %nen g, &=
2-(%) = 0. Note that Vg,(%) =~V g,{%), and therefore there could exist no vector
@ such that Ve, (x)d<0 and Vg,(%)'d<0. Thercfore, G,=J, and henc-e
FoNGy= . In other words, the necessary condition of Theorem 4.2.3 is
' satisfied by all feasible solutions and is hence not usable.

The Fritz John Optimality Conditions
‘ . .. -y
We now reduce the geometric necessary optimality condition F,N G,={J to a
 statement in terms of the gradients of the objective function and of the binding
| . . " . g 7 ¢ 40y,
constraints. The resulting optimality conditions, credited to Fritz John {1948],

are given below.
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4.2.6 Theorem (The Fritz John Conditions)

Let X be a nonempty open set in E,, and let f:E,— E,, and g:E,— E, for
i=1,...,m. Consider Problem P to minimize f(x) subject to xe X and
g(x)=<0fori=1,...,m. Let & be a feasible solution, and let I={i: g (&)= 0}.
Furthermore, suppose that f and g, for ie I are differentiable at X and that g,
for i¢ 1 are continuous at . If & locally solves Problem P, then there exists
scalars u, and u; for ie I, such that

uVfx)+ Z uVg (%) =0

Uy, U; =0 foriel
(U, up) # (0, 0)

where u; is the vector whose components are u; for i e 1. Furthermore, if g for
i€ [ are also differentiable at %, then the Fritz John conditions can be written in
the following equivalent form:

UVIE+ Y uVe ) =0

i=1
u;g(x)=0 fori=1,...,m
Ug, U; =0 fori=1,...,m
(g, w) # (0, §)

where u is the vector whose components are u, for i=1,..., m.

Proof

Since X locally solves Problem P, then by Theorem 4.2.3, there exists no vector
d such that VA(#)'d < 0 and Ve (x)'d<0 foreachic L Now, let A be the matrix
whose rows are Vf(%)' and Vg (R)' for iel The optimality condition of
Theroem 4.2.3 is then equivalent to the staternent that the system Ad<Q is
inconsistent. By Theorem 2.3.9 there exists a nonzerc vector p=§ such that
A'p=0. Denoting the componeits of p by uy and u; for ie I, the first part of
the result follows. The equivalent form of the necessary conditions is readily
obtained by letting «, =0 for i# 1, and the proof is complete,

In the Fritz John conditions, the scalars o and u, for i=1,. .. m are
usually called Lagrangian multipliers. The condition ugE)=0fori=1,..., m
is called the complementary slackness condition. It reguires that «, =0 if the
corresponding inequality is nonbinding; that is, if g (%)< (. Likewise, it permits
;> only for those constraints that are binding. The Fritz John conditions can
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also be written in vector notation as follows:
u,Vix) +VegEu=0
wgx) =0
(ugy, w)= (0, 0)
(1, w) # (0, 0)

Here Vg(x) is an n X m matrix whose ith column is V g; (%), and w is an m vector
denoting the Lagrangian multipliers.

4.2.7 Example
Minimize (x;—=3)%+(x,—2)?
subject to X2+ x2=5
X, +2x, =4
-x, =0
-x, =0
The feasible region for the above problem is illustrated in Figure 4.4. We now
verify that the Fritz John conditions are true at the optimal point (2, 1). First
note that the set of binding constraints I at x=(2,1)" is given by I={1,2}.

Thus the Lagrangian multipliers u; and w, associated with —x; <0 and —x,=<0,
respectively, are equal to zero. Note that

Vi@ =(-2,-2) Vg®=(4,2) Vg&=(>1,2)
Thus, uy=3, u, =1, and u, =2 will satisfy the Fritz John conditions, since we
new have a nonzero vector (ug, u,, u,) =9 satisfying

u (~2\+u (4 +u (] = u
N-2;, ™ 2) : 2)'(0)
As another illustration, let us check whether the Fritz John conditions are

true at the point £ = (0, 0). Here, the set of binding constraints is I ={3, 4}, and
thus u; = u, =0. Note that

Vi) =(=6,~-4)  Vg®=(-1,00 Vg, & =(0,-1)

Also note that
y (——6 . (—1 . ( ()\_ O
o -4) : 0) “\-1) (0)

holds true if and only if uy =61, and u,=—4u,. If u,>0, then us, u,; <0,
contradicting the nonnezativity restrictions. If, on the other hand, u, =0, then
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Figure 4.4 lllustration of Example 4.2.7.

us=u,=0, which contradicts the stipulation that the vector (g, Uz, 1y) is
nonzero. Thus the Fritz John conditions do not hold true at £ = (0, 0)", which
also shows that the origin is not a local optimai point.

4.2.8 Example

Consider the following problem from Kuhn and Tucker [1951].
Minimize == Xy »
subject to X—(1-x,)*=<0
-x, =0
The feasible region is iliustrated in Figure 4.5. We now verify that the Fritz

John conditions indeed hold true at the optimal point &= (1, 0). Note that the
set of binding constraints at % is given by I={1, 2}. Also,

VI®=(-1,0 Vg ®=(0,1) Vg% =(0,-1)

In particular,
=] 0 0 0
+ ="
“"( 0) “’(1)“2(—1) (o)

is true only if u,=0. Thus, the Fritz John conditions are true at & by letting
up=0 and u; =u,=a, where a is a positive scalar.
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Figure 4.5 lllustration of Example 4.2.8.

4.2.9 Example
Minimize —Xi
subject to x;+x,—1=0
_'x2 = ()

The feasible region is sketched in Figure 4.6, and the optimal point is
x=(1,0)". Note that

Vi@ =(-1,00 Vg®=(L1) Vg®=(0 -1

and the Fritz John conditions are true with u,=u; =u,=«a for any positive
scalar a.

As in the case of Theorem 4.2.3, there are points that satisfy the Fritz J_ohn
conditions trivially. If a point X satisfies Vix)=0 or Vgi(?c) .=0 for some };I,
then clearly we can let the cor esponding Lagrangian mulgpher be any.piosxtxve
number, set all the other multipliers equal to zero, and satisfy the conditions of
Theorem 4.2.6. The Fritz John conditions of Theorem 4.2.6 alsg hOI'd true
trivially at each feasible point for problems w.it.h equalit.y‘ constr‘amts if eac.h
equality coustraint is replaced by two incqualities. Specmga‘lly, if g(x)=0. is
replaced by g(x)=0 and —g(x) =0, then the Eritz John conditions are true vflxth
u, = u,=a and setting all the other multipliers equal to zero, where « 18 a
positive scalar.

The Kuhn-Tucker Conditions

In Examples 4.2.7 and 4.2.9, we observed that the Lagrangian raultiplier uo was

positive at the optimal point &, while in Example 4.2.8, Uy Was equal to zero..
Also note that Examples 4.2.8 and 4.2.9 differed in that in Example 4.2.8 the
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Figure 4.6 lllustration of Exampie 4.2.9.

gradients of the binding constraints were linearly dependent, whereas in
Example 4.2.9, they were not.

If the Lagrangian multiplier u, is equal to zero, the Fritz John conditions do
not make use of any information pertaining to the gradient of the objective
function. They merely state that there exists a nonnegative and nontrivial linear
combination of the gradients of the binding constraints that adds up to zero.
Thus, when u,=0, the Fritz John conditions arc of no practical value in
locating an optimal point. Hence, we are more interested in the cases where
u,>0. Kuhn and Tucker [1951] independently developed necessary optimality
conditions that are precisely the Fritz John conditions with the added property that
uo>0. Various conditions could be imposed on the constraints in order to
guarantee that u,>0. These conditions are usually cailed censtraint quali-
fications and are discussed in more detzil in Chapter S.

In Theorem 4.2.10 below, by imposing the constraint qualification that the
gradient vectors of the binding constraints are linearly independent, we obtain
the Kuhn-Tucker conditions.

4.2.30 Theorem (Kuhn-Tucker Necessary Conditions)

Let X be a4 nonempty open set in £, and let f: E, — £, and g E, — E, for
i=1,...,m Consider Problem P to minimize f(x) subject to xe X and
gx)=0for i=1,..., m. Let X be a feasible solution, and let I ={i: g(x) =0}
Suppose that f and g for i€l are differentiable at x and that g for i [ are
continuous at X. Furthermore, suppose that Vg (%) for ie I are linearly inde-
pendent. If ¥ locally solves Problem P, then there exist scalars u; for i€ { such
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that
Vix)+ Z Vg (x)=0
il

u, =0 for iel

In addition to the above assumptions, if g for i1 is also diﬁeyentiabl.e at X,
then the Kuhn-Tucker conditions could be written in the following equivalent

form:

n

VI®+ Y, V8 ® =0

ugx) =0 fori=1,...,m

u; =0 fori=1,...,m

Proof

By Theorem 4.2.6, there exist scalars u, and & for i€ I, not all equal to zero,
such that

Uy, Gi; =0 foriel

Note that t,>0, because (4.10) would contradict the assumption of linear
independence of Vg(&) for iel if u,=0. The first part of the theorem. t.hen
follows by letting ¥ = &/ u,. The equivalent form of the necessary conditions
follows by letting u; =0 for i I. This completes the proof.

As in the Fritz John conditions, the scalars u, are called the Lagrangian
multipliers, and the requirement that ;g (X)=0for i=1,...,m is referred to
as the complementary slackness condition. Note that the Kuhn-Tucker condi-
tions can be written in vector form as

Vi) +VgEu=0
u'gx)=0
u=0

Here, Vg(%) is an nXm matrix whose ith column is Vg (x), and u is an m
vector denoting the Lagrangian multipliers.

Now consider Examples 4.2.7, 4.2.8, and 4.2.9 discussed carlier. In Examp!e
4.2.7, at x=(2, 1)}, the reader may verify that u, =1 u,=% and u; = u, =0 will
satisfy the Kuhn-Tucker conditions. Example 4.2.8_does not siltisfy t.he as-
sumptions of Theorem 4.2.10 at X = (1, 0)', since Vg,(%) and ngfx) are linearly
dependent. In fact, in this example, we saw that u,=0. In Examplc 4.2.9,
%, = u, =1 will satisfy the Kuhn-Tucker conditions.
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Geometric Interpretation of the Kuhn—Tucker Conditions

Note that any vector of the form )., u; Vg (%), where 1, =0 for i€ I, belongs to
the cone spanned by the gradients of the binding constraints. The Kuhn-Tucker
conditions —=Vf(X) = );c; %; Vg (%) and u; =0 for i€ I can then be interpreted as
—Vf(%) belonging to the above mentioned cone. ‘

Figure 4.7 illustrates two points x, and x,. Note that —Vf(x,) belongs to the
cone spanned by the gradients of the binding constraints at x,, and hence x, is a
Kuhn-Tucker point; that is, x, satisfies the Kuhn-Tucker conditions. On the
other hand, —Vf(x,) lies outside the cone spanned by the gradients of the
binding constraints at x,, and thus contradicts the Kuhn-Tucker conditions.

Likewise, in Figures 4.4 and 4.6, for x=(2, 1)" and %= (1, 0), respectively,
—V/f(%) is in the cone spanned by the gradients of the binding constraints at %.
On the other hand, in Figure 4.5, for = (1, 0), —Vf(%) lies outside the cone
spanned by the gradients of the binding constraints at %.

Theorem 4.2.11 below shows that, under moderate convexity assumptions,
the Kuhn-Tucker conditions are also sufficient for optimality.

4.2.11 Theorem (Kuhn-Tucker Sufficient Conditions)
Let X be a nonempty open set in E,, and let f: E, — E, and g,: E, — E, for

i=1,...,m. Consider Problems P to minimize f(x) subject to xe X and

g(x)=0fori=1,..., m Let X be a feasible solution, and let I ={i: g(X) =0},

Suppose that f is pseudoconvex at X and that g; is quasiconvex and differenti-

able at X for each i € I. Furthermore, suppose that the Kuhn-Tucker conditions
vE,

e \2 4

—Vf

X1

Figure 4.7 Geometric illustration of the Kuhn-Tucker conditions.
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hold true at X; that is, there exists nonnegative scalars w, for i€l such that
Vi) + Y, uVgX) =6. Then X is a global optimal solution to Problem P.

Proof

Let x be a feasible solution to Problem P. Then for iel, g (x)=< g(X), since
g&(x)=0 and g(x)=0. By quasiconvexity of g at X, it follows that

g%+ A(x—%)]= g[Ax+ (1~ A)x] = maximum [ g(x), g ®)]= g &)

for all A €(0, 1). This implies that g; does not increase by moving from X along
the direction x—X. Thus, by Theorem 4.1.2, we must have Vg (X)' (x—x)=0.
Multiplying by u; and summing over I, we get [, 4, Vg (%)']J(x—%)=0. But
since Vf(X)+),., 4 Vgx) =0, it follows that Vf(x)(x—x)=0. Then, by
pseudoconvexity of f at X, we must have f(x)= f(%), and the proof is complete.
Needless to say, if f and g; are convex at X and hence both pseudoconvex
and quasiconvex at X, then the Kuhn-Tucker conditions are sufficient. Also, if

convexity at a point is replaced by the stronger requirement of global convex-
ity, the Kuhn-Tucker conditions are also sufficient.

4.3 Problems with Inequality and Equality Constraints

In this section we generalize the optimality conditions of the previous section
to handle equality constraints as well as inequality constraints. Consider the
following nonlinear programming Problem P.

Minimize f(x)

subject to g(x)=0 fori=1,...,m

h(x)=0 fori=1,...,1
xe X

As a natural extension of Theorem 4.2.3, in Theorem 4.3.1 below, we show
that if % is a local optimal solution to Problem P, then F,N G,N H,= &, where
H,={d:Vh(x)'d=0 for i=1,...,1}. A reader with only a casual interest in
the derivation of optimality conditions may skip the proof of Theorem 4.3.1,
since it involves the more advanced concepts of solving a system of differential
equations.

4.3.1 Theorem

Let X be a nonempty open set in E,. Let f:E,—~E,, g:E,—E, for

t=1,...,mand h;:E,— E, for i=1,..., 1l Consider Problem P to
Minimize f(x)

subject to gx)=0 fori=1,...,m
hi{x)=0  feri=1,...,1
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Suppose that X is a locai optimal solution, and let I={i: g (%)= 0}. Further-
more, suppose that g for i1 is continuous at %, that fand g for ie/ are
(_:hﬁerentm_l-)le at X, and that h, for i=1,...,[1 is continuously differentiable a
X. If Vh(X) for i=1,...,1 are linearly independent, then FyN GoNH,=,
where Lo
Fy={d:V{(x)'d<0}
Gy={d: Vg x)'d<O0for iel}
Hy={d:Vh,(X)'d=0fori=1,..., 1},

Proof

By contradiction suppose there exists a vector ; i
L L st ye F,NG,NH,: that
Vf(x? y<0, Vg,(x)'y<0 for each ie I, and Vh(x)'y=0, w(ixere (Vh(:'()“ is a‘n n Sl
matnx. whose ith column is Vh,(%). For A =0, define a:E, —> E, by the
following differential equation and boundary condition: ’
da(A) -
T=P(z\)y a0)=x%x (4.11)

where P(A) is the matrix that projects any vector in the null space of Vh{a(A)].
For A sufficiently small, the above equation is well defined and solvable
beca‘usc Vh(x) has full rank and h is continuously differentiable at %, so thét Pis
continuous in A. Obviously a(A)—% as A — (",

We now show that for A >0 and sufficiently snﬁa]i, o(A) is feasible and
fle(A)]< f(%), thus contradicting local optimality of x. By the chain rule of
differentiation and from (4.11), we get

d . '

an gla(A)]=Vg () P(A)y (4.12)
for each i € I. In particular, y is in the null space of Vh(%), and so for A =(), we
have P(0)y=y. Hence from (4.12) and the fact that Vg.(x)'y<0, we get

d
ax gle(0)]=Vg &) y<0 (4.13)

for i€ L This further implies that g[e(A)]<0 for A>0 and sufficiently smali.
For il g(X)<0, and g is continuous at %, and thus glald)]<0 for A
sufficiently small. Also, since X is open, a(A)e X for A sufﬁcicntly small. In
order to show feasibility of a(A), we only need to show that h[ae(A)]=0 for A
sufficiently small. By the mean value theorem, we have

Ala()]= A [a(0]+ -5 hfa(w)]

d
'—“—Azl—xhi[a(u)] {(4.14).
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for some pe {0, A). But by the chain rule of differentiation and similar to
(4.12), we get -

< b)) = Vi ) P(R)y

By construction, P{u)y is in the null spacc of Vh[a(u)], and hence from the
above equation, we get (d/dA)h[a(u)]= 0. Substituting in (4.14), it follows that
n,fa(r)]=0. Since this is true for each i, it then {ollows that a(A) is a feasible
solution to Problem P for each A >0 and sufficiently small. By an argument
similar to that leading to (4.13), we get

£ fla(0)] = V/ @'y <0

and hence fla(A)]< f(X) for A >0 and sufficiently small. This contradicts local
optimality of . Hence, F,N G,N H,= ), and the proof is complete.

The Fritz John Conditions

We now express the geometric optimality condition FyN GyNHy= in a
more usable algebraic form. This is done in Theorem 4.3.2 below, which is a
generalization of the Fritz John cenditions of Theorem 4.2.6.

4.3.2 Theorem (The Fritz John Conditions)

Let X be a nauempty open set in E,, and let f:E,— E,, g:E,— E, for
i=1,...,m and h:E,— E, for i=1,..., 1L Consider Problem P to

Minimize fx)
subject to gx) =0 fori=1,...,m
k(x)=0 fori=1,...,1
xe X

Let x be a feasible solution, and let I={i:g,(%) = 0}. Furthermore, suppose that
2. for i€ [ is continuous at X, that ffand g, for ie I are diffierentiable at X, and
that h;, for i=1,...,! is continuously differentiable at %. If ¥ locally solves
Problem P, then there exist scalars u,, «; for iel and v, for i=1,...,{ such
that

i
uV (%) -+ }: u Vg (x)+ Z v, Vh(x)=0
iel i=1

U, U =0 foriel
(g, 0y, %) # (0,0, 8)
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where w; is the vector whose components are i, for ie ) and v="=(u,, ..., ).
Furthermore, if g for i£[ is also differentiable at %, then the Fritz John
conditions can be written in the following equivalent form where
w= (g, ..., U4,) and v=_vy,..., )"

in !
uoV )+ )‘ uVg &+ Z v, Vh(x)=0

l-—] i=1

VNDL’J:J«\ _?;ig‘(x) 0 fori=1,....m
TV

Ug, u; =0 fori=1,...,m
(u(h uv v);é (O) O)O)

Proof

If Vh(x) for i=1,...,! are linearly dependent, then one can find scalars
vy,...,0, not all zero, such that Y., v, Vh,(%)=0. Letting 1, u, for i< be
equal to zero, the conditions of the first part of the theorem hold trivially.

Now suppoese that Vi, (R) for i=1,...,! are linearly independent. Let A, be
the matrix whose rows are V(%) and Vg (&)' for i€ I, and let A, be the matrix
whose rows are VA (X) for i=1,...,L Then, from Theorem 4.3.1, local
optimality of X implies that the system

Ad<d  Ad=0
is inconsistent. Now consider the following two sets:
Sl = {(Zl, 22) = A,d, ZZ = AAzd}
S,={(z,,2,):2,<0, z, =9}

Note that $; and S, are nonempty convex scts such that S, N S, = 5. Then, by
Theorem 2.3.8, there exists a nonzero vector p' = (pl, p} ) such that

piAdtp, Ad=piz +pie, foreachdek, and(z,,z,)eclS,.

Letting z, =0 and since each component of z, can be made an ar bitrarily large
negative number, it follows that p,=0. Also lctting (z,, z,) = (&, 0), we must
have (piA;+p5A.)d=0 for each de E,. Let ting d=—(A}p:+Ap2), it fol-
lows that —[|(A{p, +Ajp.[*=0, and thus Ajp, + Alp,=0.

To summarize, we have shown that therc exists a nonzero vector p' ==
(pi, p2) with p; =0 such that Aip,+ Alp, =0. Denoting the components of p,
by u, and u; for i€ I, and letting p, = v, the {irst result follows. The ugmmkm
form of the necessary conditions is readily Ohlalnvd by letting w, =0 for {21,
and the proof is complete.

The reader may note that the Lagrangian multiplicr v; associated with the
ith equality constraints is unrestricted in sign. The Fritz John conditions could
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also be written in vector notation as follows:
u, Vi) +Vgxu+Vhx)v=0
u'gx)=0
(up, w)= (0, 0)
(ug, u,v) #(0,0,0)
Here, Vg(x) is an n X m matrix whose ith column is Vg (%), and Vh(x) is an n X[

matrix whose ith column is VA, (X). Also u and v are, respectively, an m vector
and an [ vector, denoting the Lagrangian multipliers associated with the

' inequality and equality constraints.

' 4.3.3 Example

Minimize X2+ x,°
subject to X2+ x,2<5
—-x;=0
—x,=0
x,+2x,=4
Here we have only one equality constraint. We verify below that the Fritz
John conditions are true at the optimal point X = (2, £)". First note that there are

no binding inequality constraints at X; that is I=(J. Hence the multipliers
associated with the inequality constraints are equal to zero. Note that

ViE) =& 2) and Vh(x)=(1,2)

)+ (3)= (o)

is satisfied, for example, by u,=5 and v, =-8.

Thus

4.3.4 Example
Minimize (x,=3) +(x,—2)?
subject to  x,2%+x,2=$§

—ixy &0

This example is the same as Example 4.2.7, with the inequality constraint
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x,+2x, =4 replaced by x, +2x,=4. At the optimal point x=(2, 1), we have
only one inequality constraint x,>+x,>=<5 binding. The Fritz John condition

o) rla) o)~ ()

is satisfied, for example, by u,=3, u, =1, and v, =2

4.3.5 Example

Minimize X
subject to %—=(1-x)°=0
== (] =25 =

As shown in Figure 4.8, this problem has only one feasible point, namely
Xx=(1, 0)". At this point, we have

VI®=(-10 VhE=(0,1" Vh(&) =(0,-1)

The condition
=] 0\ 0 0
+
u"( 0) Ul(l)ﬂz( ) (0}

1s true only if u,=0 and v, = v, =, where a is any scalar. Thus the “ritz John
necessary conditions are met at the point .

The Kuhn-Tucker Conditions

In the Fritz John conditions, the Lagrangian mul tiplier associated with the
objective function is not necessarily positive. Under further assumptions on the

X

h1\2 '
\im, x‘
B
B

ViR

Vho (X}

/

Figure 4.8 iilustration of Example 4.3.5.

g
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constraint sct, onc can claim that u, has to be positive. In Theorem 4.3.6 below
we obtain a generalization of the Kuhn-Tucker necessary optimality conditions
of Theorem 4.2.10. This is done by imposing a qualification on the gradients of
the equality and binding inequality constraints that ensure that u,>0 in the
Fritz John conditions. Other qualifications on the constraints to ensure that
uy,>0 are discussed in Chapter 5.

4.3.6 Theorem (Kuhn-Tucker Necessary Conditions)

Let X be a nonempty open set in E,, and let f:E,—E,, g:E,— E, for
i=1,...,m,and h:E,—E, for i=1,..., 1l Consider Problem P to

Minimize fx)

subjectto  g(x)=0 fori=1,...,m
h(x)=0 fori=1,...,1
xe X

Let X be a feasible solution, and let I={i: g(x)=0}. Suppose that f and g; for
i€l are differentiable at X, that g for i€ [ is continuous at X, and that h; for
i=1,...,1is continuously differentiable at x. Further suppose that Vg(x) for
iel and Vh(X) for i=1,...,1 are lincarly independent. If X solves Problem P
locally, then there exist scalars u; for iel and v, for i=1,...,! such that

l
Vi) + Y uVg®E+ ) v,Vh®) =0

iel i=1

u. =0 foriel

In addition to the above assumptions, if g for i€ I is also differentiable at X,
then the Kuhn-Tucker conditions could be written in the following equivalent
form:

m {
ViE)+ Y wVg®+ Y o Vh(&E =0
i=1 i=1
u,g(x)=0 fori=1,...,m

u; =0 fori=1,...,m

Proof
By Theorem 4.3.2, there exist scalars u, and @; for iel, and ¢, fori=1,...,1,
not all zero, such that
)
uVfE+ Y 6 Vg &)+ Y 6,Vh® =0 (4.15)
icl 2 i=1
Ug, ;=0 foriel
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Note that u,> 0, because if u, =0, then (4.15) would contradict the assumption
of linear independence of Vg (x) for ieI and Vh (%) for i=1,...,I. The first
result then follows by letting u; = i/u, and v; = 0;/u,. The equivalent form of
the necessary conditions follows by letting u;, =0 for i I. This completes the
proof.

Note that the Kuhn-Tucker condition of Theorem 4.3.6 can be written in
vector form as follows:

Vix)+Vgxu+Vhx)v=0
u‘g(x)=0

u=0

Here, Vg(x) is an n X m matrix and Vh(X) is an n X1 matrix whose ith column, -
respectively, are Vg;(%X) and Vh;(X). The vectors u and v are the Lagrangian
multiplier vectors.

Now consider Examples 4.3.3, 4.3.4, and 4.3.5. In Example 4.3.3, the reader
can verify that u; = u, = u; =0 and v,=—¥ will satisfy the Kuhn-Tucker condi-
tions at X = (,%)". In Example 4.3.4, the values of the muitipliers satisfying the
Kuhn-Tucker conditions at ¥=(2, 1)" are

U=3 U=u;=0 v, =3}
Finally, Exampie 4.3.5 does not satisfy the assumptions of Theorem 4.3.6 at
x=(1, 0)", since Vh;(X) and Vh,(X) are linearly dependent.

Theorem 4.3.7 below shows that, under rather mild convexity assumptions
on f, g, and h;, the Kuhn-Tucker conditions are also sufficient for optimality.

4.3.77 Theorem (Kuhn-Tucker Sufficient Conditions)

Let X be a nonempty open set in E,, and consider f: E, — E,, g, : E, — E, for
i=1,...,m,and h;:E,— E, for i=1,...,l Consider Problem P to

Minimize f(x)
subject to glx)=0 fori=1,..., m
h,(x)=0 fori=1,...,1
xeX '

Letxbe afeasiblesolution,andlet I ={i: g(X) = 0}. Suppose that the Kuhn-Tucker
conditions hold at %, that is, there exist scalars &, =0 for ie/ and o; for
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i=1,...,1such that

Vi®)+ ) aVeg®)+ Z 5, Vh,E)=0 | (4.16)

iel

Let J={i:9,>0} and K ={i:0; <0}. Further suppose that f is pseudoconvex at
X, g is quasiconvex at X for iel, h; is quasiconvex at X for ieJ and h; is
quasiconcave at X for ie K. Then X is a global optimal solution to Problem P.

Proof

Let x be a feasible solution to Problem P. Then for iel, g(x)=<g(X) since
g(x)=0 and g(X)=0. By quasiconvexity of g; at X it follows that:

& (& +A(x—%)) = g (Ax+ (1 - A)X)=maximum (g x), & (X)) = &(X)

for ail A €(0, 1). This implies that g, does not increase by moving from X along
the direction x—%. Thus by Theorem 4.1.2, we must have

Va&) ' (x—%)=0 foriel (4.17)

Similarly, since h; is quasiconvex at X for i€J, and h; is quasiconcave at X for

i€ K, we have

Vh ) (x—-%)=0 foried (4.18)

Vh(x) (x—%)=0 forieK (4.19)

- Multiplying (4.17), (4.18), and (4.19), respectively, by & =0, ¢,>0 and #; <0

and adding, we get
[Z&ngi(i)-l— ¥ 5thi(i)] (x—R)=0 (4.20)
iel icJUK

Multiplying (4.16) by x—%, and noting that ¢,=0 for i¢JU K, then (4.20)
implies that

ViR (x-%)=0

By pseudoconvexity of f at X, then f(x)= f(X), and the proof is complete.

Alternative Forms of the Kuhn-Tucker Conditions for General Problems

Consider the problem to minimize f(x) subject to g(x)=0 for i=1,...,m,
h(x)=0 for i=1,...,], and xe X, where X is an open set in E,. In this
section, we derived the following necessary conditions of optimality at 2
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feasible point %.

i
ViE)+ Z Vg (x)+ Z v, Vh(x)=

=1

I
ug (X)) = fori=1,..., m
uiZO fori=1,...,m
Some authors prefer to use the multipliers A, =—y; =0 and w, =—uv,. In this

case, the Kuhn-Tucker conditions could be written as follows:

m

Vi®) - Z A Vg (R) - Z L Vh (%) =0

Ag(X)= fori=1,....m

‘ Aiso fori=1,...,m
Now consider the problem to minimize f(x) subject to g(x)=0 for i=
L...,my, g(®)=0 for i=my+1,...,m, h(x)=0for i=1,...,/ and x€ X,
where X is an open set in E,. Clearly, one can write gx=0 for i="
mi+1,...,m as —g(x)=0 for i=m;+1,...,m, and use the results of
Theorem 4.3.6. It is easy to verify that the necessary conditions can be

expressed as foliows:

m

Vi) + Z uVg &+ Y L v, Vh (X)=0

uigi(x):o
u; =0 fori=1,..., m,

fori=1,...,m

u, =0 fori=m,+1,...,m

We now consider problems of the type 1o minimize f(x) subjecr to g(x)=10
fori=1, ,m, h,(x)=0 for i= .., and x= 8. Such problems with non-
ncgatmty rcstrxvtzons on the Vanablcs frequbnt y arise in practice. Clearly, the
Kuhn-Tucker conditions discussed earlier would apply. However, it is some-
times convenient to eliminate the Lagrangian multipliers associated with x=§.
The conditions then reduce to

m

Vi®)+ Z uVg(X)+ Z 0, Vh(X)=0

i=1

[Vf(x)#Z uVg(x)+ Z u,Vh (x)}
UgiE)=0 fori=1,...,m
u, =0 fori=1,...,m

Fmal‘y consider the problem to maximize f(x) subject to gx)=0 for
i=1,...,my, g&x)=0 for i=m, +1, . h(x)=:0 for z‘“l ..... [, and
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xe X, where X is an open set in E,. The necessary conditions for optimality
can be written as follows:

m I
Vi@ + Y uVg®+ ) uVh®E=0
i=1 i=1
ug(x)=0 fori=1,...,m
u; =0 fori=1,...,m

w,=0 fori=m+1,...,m

Exercises

4.1

4.2

4.3

4.4

4.5

4.6

Consider the following unconstrained problem:
' minimize x,2— X, X, +2x,”—2x, + "'

a. Write the first-order necessary optimality condition. Is this condition also
sufficient for optimality? Why?

b. Is = (0, 0)" an optimal solution? If not, identify a direction d along which the
function would decrease.

c. Minimize the function starting from (0, 0) along the direction d obtained in
part b above.

Consider the problem to minimize ||Ax—b|[*, where A is an m X n matrix and b is

an m vector.

a. Give a geometric interpretation of the problem.

b. Write a necessary condition for optimality. Is this also a sufficient condition?

c. Is the optimal solution unique? Why or why not?

d. Can you give a closed-form solution of the optimal soiution? Specify any
assumptions that you may need.

e. Solve the problem for A and b given below

1 -1 0 2
A0 21 b[]]
0 1 0 1
I 01 l_()J
Consider the problem to minimize f(x) subject to g(x)=0fori=1,...,m. Let X
be a local minimal point, and let I={i: g (%) =0}. Suppose that f is differentiable

at X, that g for iel is differentiable and concave at X, and that g for €1 is
continuous at %. Prove that F,N G’ =, where

Fo={d:Vf®)'d<0}, and G'={d:Vg(®) d=0 for iel}
Consider the following problem: '
Maximize 3%, = XrbEx,2
subject to x,+ x,+x, =0
—x, +2x,+x2=0
a. Write the Kuhn-Tucker optimality conditions

b. Using the above conditions, find the optimal solution to the problem.
Consider the following problem:

Maximize X2+ 4x,x5+ X0
subjectto  x,°+x,°=1
a. Using the Kuhn-Tucker conditions, find an optimal solution to the problem.

b. Docs the problem have a unique optimal solution?
Consider the following linear program:

Maximize 2x7+3x;
subject to X+ x,=8
—x1+2x,=<4

X1, X220
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4.7

4.3

4.9

4.10

4.11

The Fritz John and the Kuhn-Tucker Optimality Conditions

a. Write the Kuhn-Tucker optimality conditions.

b. For cach extreme point, verify whether or not the Kuhn-Tucker conditions
are true, both algebraically and geometrically. From this, find the optimal
solution. '

Consider the following problem:

Mininfize (=3 + (x,—2)?
subject to x—x2=0
Xi+ %<6
Xq, X220

a. Write the Kuhn-Tucker optimality conditions and verify that these conditions
are true at the point x=G3, 3"

b. Interpret the Kuhn-Tucker conditions at X graphically.

c. Show that X is indeed the unique global optimal solution.

Consider the following problem.

Minimize X +2x,°

subject to X, + x—-1=0

Find a point satisfying the Kuhn-Tucker conditions and verify that it is indeed an
optimal solution. Resolve the problem if the objective function is replaced by
X+,

Write the Kuhn-Tucker necessary optimality conditions for Exercises 1.10 and
1.11. Using these conditions, find the optimal solutions.

Consider the following onc-dimensional minimization problem:

Minimize f(x+Ad)

subject to Az=0

where x is a given vector and d is a given nonzero direction.

a. Writc a necessary condition for a minimum if f is differentiable. Is this
condition also sufficient? If not, what assumptions on f would make the
necessary condition also sufficient?

b. Suppose that [ is convex but not differentiable. Can you develop a necessary
optimality cendition for the above problem using subgradients of f defined in
Section 3.2. -

Consider the following problem.

Xi+3x:+3

2x,+x,+6

2%+ X2<12

Minimize

subject to
—X; + ZX: =4
X1 Xa=0

a. Show that the Kuhn-Tucker conditions are sufficient for this problem.

4.12

4.13

4.14

4.15

4.16

Exercises 153

b. Show that any point on the line segment joining the points (0, 0) and (6, 0) is
an optimal solution.

Use the Kuhn-Tucker conditions to prove Farkas’ theorem discussed in Section

2.3. (Hint: Consider the problem maximize ¢'x subject to Ax=0.)

Consider the problem to minimize f(x) subject to g(x)=0 for i=1,...,m.

a. Show that verifying whether a point X is a Kuhn-Tucker point is equivalent to
finding a vector u satisfying a system of the form A'u=c¢, u=0. This can be
done using Phase I of linear programming.

b. Indicate the modifications needed in part a if the problem had cquality
constraints.

c. Illustrate part a by the following problem, where x=(1, 2, 5)".

Minimize 2x2+ x50 H2X57F X X3 — X X H X+ 2X;
subject to X2+ x,— x3=0
X, +x; +2x,=<16
X, +x, =3
X1s Xgs X3=0
Consider the problem to minimize f(x) subject to g(x)=0fori=1,....m. LetX

be a feasible point, and let I ={i:g(X)=0}. Suppose that f is differentiable at X
and that g for i eI is differentiable and concave at %. Furthermore, suppose that
g for i# 1 is continuous at . Consider the following linear problem:

Minimize Vix)'d
Vgx)'d =0

-1=d,=1

subject to foriel

forj=1,...,n

Let d be an optimal solution with objective function value 7.

a. Show that z=(.

b. Show that if <0, then there exists a 8 >0 such that ¥+ A€ is feasible and
f(i+)n_l)<f(i) for each A €(0, 3).

¢c. Show that if Z =0, then X satisfics the Kuhn-Tucker conditions.

Let f:E,—E,, g:E,—E, for i=1,..., m be convex functions. Consider the

problem to minimize f(x) subject to g(x)=0fori=1,...,m. Let M be a proper

subset of {1,...,m}, and suppose that ¥ solves the problem to minimize fix}

subject to g(x)=0 for ieM. Let V={i:g(x)>0}. If £ solves the original

problem, show that g(x)=( for some ie V.

(This exercise also shows that if the unconstrained minimum of f is infeasible,

then the constrained minimum lies on the boundary of the feasible region.)

Consider the problem to minimize f(x) subject to x =20, where [ is a differentiable

convex function. Let ¥ be a given point and denote Yf(&) by (V,,..., V,)". Show

that X is an optimal solution if and only if d=0, where d is defined by

., ,_{—vi if x,>0 or V,<0
“lo

if ;,=0and V, =0
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Consider the following problem:

Minimize Z fi(x)

subject to Z x=1

=1

x,-.>_0 forj=1,2,...,n

of: (X
Suppose that X=(%,,..., %,)' = 0 solves the above problem. Letting §; = j;'(x),
show that there exists a scalar k such that i

&=k and (§-Kk)x;=0 forj=1,2,...,n
Consider the foliowing problem, where ¢ is a nonzero vector in E,.
Maximize c'd
subject to dd=1

a. Show that d=¢/||c] is a Kuhn-Tucker point. Furthermore, show that d is
indeed the unique global optimal solution.

b. Using the result of part a, show that the direction of steepest ascent of f at a
point x is given by Vf(x)/|Vf(x)| provided that Vf(x) # 0.

Consider the following problem, where a;, b, and ¢; are positive constants.

Minimize Z —
i=1 %

Za,-xi=b

subject to
‘ b
x;=0 forj=1,...,n

Write the Kuhn-Tucker conditions, and solve for the point X satisfying these
conditions. _
In geometric programming, the foilowing result is used. If x4,...,x, =0, then

2 2e= ()

Prove the result using the Kuhn-Tucker conditions.
Hint: Consider one of the following probiems:

Minimize )., x; subject to [[i.; x;=1, x;,=0 for j=1,...,n
Maximize [[i.; x; subject to Y., %=1, x;=0 for j=1,.

Let ¢ be an n vector, b an m vector, A an m X n matrix, and H a symmetric n X n
positive definite matrix. Consider the following two problems:

(1) Minimize ¢'x+3x'Hx subject to Ax<b

(2) Minimize B'v+3iv'Gv subject to v= 0
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where G=AH'A' and h=AH 'c+b. Investigate the relationship between the
Kuhn-Tucker conditions of Problems 1 and 2.
4.22 Consider the following problem:

Minimize f(x)
subject to  Ax=b
x=0

Let &' = (%4, %) be an extreme point, where %5 =B™'b>0, Xy =0, and A =[B, N]
with B invertible. Now consider the following direction-finding problem:

Minimize [Vaf) - VpfE)B'N]'dy

subject to 0=d,=1 for each nonbasic coinponent j

where Vf(%) and Vf(X) denote the gradient of f with respect to the basic and
nonbasic variables respectively. Let dy be an optimal solution, and let dj =
— B 'Ndy. Show that if d' = (dy, d\) # (0, 0), then it is an improving feasible
direction. What are the implications of d=0?

4.23 Consider the problem to minimize f(x) subject to Ax=<b. Suppose that X is a
feasible solution such that A X=b, and A,ki<b,, where A'= = (A}, Ay} and
b' = (b}, b3). Assuming that A, has full rank, the matrix ® ihat projects any
vector in the null space of Aj is given by

P=1-AlAAD A,

a. Let d=—-PV[(). Show that if d# 0, then it is an improving feasible direction;
that is, ¥+ Ad is feasible and that f(i+)\a)<f(§) for A>( and sufficiently
small.

b. Suppose that d=0, and that u=—(A,A")'A,Vf(%)=0. Show that X is a
Kuhn-Tucker point.

c. Show that d gencrated above is of the form Ad for some A >0, where d is an
optimal solution of the following problem:

Minimize Vf(%)'d
subject to Ad=9§
laf* =1
d. Make 2ll possible simplifications if A =—I and k=0, that is, if the constraints

are of the form x=0.
4.24 Consider the following problem:

Minimize X, 2= Xy Xot 2%,° — 4%, — 5%
subject to X +2x,<6
X =2
X1, X, =0

a. Solve the problem geometrically, and verify the optimality of your solution by
the Kuhn-Tucker conditions.
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b. Find the direction d of Exercise 4.23 at the optimal solution. Verify that d =0
and that u=0.

c. Find the direction @ of Exercise 4.23 at &=(1,3)" Verify that d is an
improving feasible direction. Also verify that the optimal solution d of part ¢
of Exercise 4.23 indeed points along d.

Investigate the relationship between the optimal solutions and the Kuhn-Tucker

conditions of the following two problems, where A =0 is a given fixed vector.

Problem P: Minimize f(x) subject to xe X, g(x)=0
Problem P': Minimize f(x) subject to xe X, X'g(x)=<0.

(Problem P’ has only one constraint and is referred to as the surrogate problem.)
Consider the following problem:

Minimize f(x)
subject to g(x)=0 fori=1,
hi(x)=0 fori=l,...,l
xe X

Let X be a local optimal solution to the problem, and let I={i:g(X) =0}
Furthermore, suppose that Vg (%) for ie I and Vh(x) for i=1,...,1 are linearly
independent.

The second-order necessary conditions for local optimality can be written as
follows. There exist a vector #=0 and a vector v such that

VFE)+ Z u Vg %)+ Zuw ® =

ug =0 fori=1,...,m

and such that

L) = F(x)+ZuG \)+, vH(x)

i1 i=1

is positive semidefinite on the linear subspace

M={y:VgX)y=0 foriel, VhX)y=0 fori=1,...,l}
where F(%), G,(x), and H, (%) are the Hessian matrices of f, g, and h;, respectively,
at X.
. Verily the second-order necessary optimality conditions in Exercise 4.4.
t The above comditions need not be sufficient for a local minimum. However, if
LX) is positive definite on

M =ly: Vg X)y=0 if w4, >0, Vh(x)y=0 fori=1,...,1}

then % is indeed a local minimum. Doces this second-order sufficient condition
hold at the optimal point obtained in part a above?
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4.27 Consider the following problem:
Minimize ¢'x+ x'Hx
subject to Ax=b
where ¢ is an .n vector, b is an m vector, A is an m X n matrix, and H is an nXn
symmetric matrix.
a. Write the second-order necessary optimality conditions of Exercise 4.26.
Make all possible simplifications.
b. Is it necessarily true that every local minimum to the above problem is also a
global minimum? Prove or give a countercxample.
¢. Provide the first- and second-order necessary optimality conditions for the
special case where ¢=9 and H=1. In this case the problem reduces to finding
the point in a polyhedrai set closest to the origin.
(The above problem is referred to in the literature as a least distance
programming problem.)
4.28 Consider the following problem:

Minimize —x; +x,
subject to X2+ x,2 2%, =0
(x1, x2)€ X

where X is the convex combinations of the peints (—1,0), (0, 1), (1,0), and
(-=1,0).
a. Find the optimal solution graphically.
b. Do the Fritz John or the Kuhn-Tucker conditions l.old at the optimal solution
in part a? If not, explain in terms of Theorems 4.3.2 and 4.3.6.
c. Replace the set X by a suitable system of incqualitics and answer part b. What
are your conclusions? :
: 4.29 Consider the following problem to minimize f(x) subjcct to g(x)=0 for i=
1,....,mand h(x)=0for i=1,..., L Suppose that % solves the problem locally,
) and kt I=1{i:g(&)=0}. Furthermore, suppose that g for i el is differentiable at
X, g tor i¢ [ is continuous at X, hy, ..., are affine, that is, h; is of the form
h (x)=ajx—b,.
. Show that F,NG N H,= &, where
,=1d: Vf(x)'d<0}
Hy=!d:Vh&)'d=0fori=1,....1}
G ={d:Vg (%) 'd=0 for ieJand Vg(x)'d<O0 for ie I-J}
={iel:g is pseudoconcave at X}

I

o)
b ol

b. Can this condition be verified by using linear programming? If so, illustrate

detail.

4.30 Let X be a nonempty open set in E,, and consider f: E,—E, g:E,— E, for

i=1,...,m, and h:E,—E;for i=1,...,1L Consider Problem P to

Minimize f(x) '

subject to a(x)=0 fori=1,...,m

h(x)=0 fori=1,...,1
xeX
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Let X be a feasible solution, and let I={i:g (%) = 0}. Suppose that the Kuhn—
Fucker conditions hold at %, that is, there exist scalars ;=0 for ie I and ¥; for
i=1,...,! such that

VIE)+ ). aVg®)+ Y 0,Vhix) =0

icl im=]

a. Suppose that f is pseudoconvex at % and that ¢ is quasiconvex at X, where

]
H(x) = Z g (x)+ Z 0k (%)

iel
Show that % is a global optimal solution to Problem P.

b. Show that if f+Y, ;g +Y! . 5k is ps X is 2
ohow that p{oblem P.g Yt is pseudoconvex, then % is a global optimal

¢. Show by means of examples that the convexity assumptions in parts a and b
above and those of Theorem 4.3.7 are not equivalent to each other.

Consider the bilinear program to minimize c'x+d'y+x'Hy subject to xe X and

yeY, where X and Y are hounded polyhedral scts in E, and E,, respectively.

Let & and § be extreme points of the sets X and Y, respectively.

a. Verify that the objective function is neither quasiconvex nor quasiconcave.

b. Prove that there exists an extreme point (%, ¥) that solves the bilinear program.

¢. Prove that the point (%, ) is a local minimum of the bilinear program if and
only if the following are true:

(i) ¢'(x—%)=0 and d'(y—§)=0 for cach xe X and yey,
(i) ¢'(x—%)+d'(y—§) >0 whenever (x—%)H(y—-$) <0.

d. Show that the point (%,§) is a Kuhn~Tucker point if and only if (¢'+§'H)
(x—%)=0 for each xe X and (&' +%'H)(y—$)=0 for each yeY.

e. Consider the problem to minimize XoF Y+ X9, —x,v,+x,y, subject to
(x,., xz) € X and (yy, y,) € Y, where X is the polyhedral set defined t;y its extreme
points (0,0),(0,1),(1,4),(2,4),2nd (3, 0), and Y is the polyhedral set defined by
its extreme points (0, 0), (0, 1), (1, 5), (3, 5), (4, 4), and (3, 0). Verily that the
point (x15 X2, y1, ¥2) =(0,0,0,0) is a Kuhn-Tucker point but not a iocal
minimum. Verify that the point (x, x5, y;, y,) = (3, 0, 1, 5) is both a Kuhn-
Tucker point and a local minimum. What is the global minimum to the
problem? '

Notes and References
In this chapter we develop first- and sccond-order optimality conditions for
unconstrained optimization probiems. These classical results can be found in
most textbooks dealing with real analysis. For more details on this subject and
for information regarding the handling of equality constraints via the Lagran-
gian multiplier rule, refer to Bartle [1976] and Rudin [1964].

In Section 4.2 we treat the problem of minimizing a function in the presence
of inequality constraints and develop the Fritz John [1948] necessary optimali-
ity conditions. A weaker form of these conditions, in which the nonnegativity
of the multipliers was not asserted, was derived by Karush [1939]. Under a
suitable constraint qualification, the Lagrangian multiplier associated with the
objective function is positive, and the Fritz John conditions reduce to those of
Kuhn and Tucker [1951], which were independently derived. Even though the
Kuhn-Tucker conditions were originally derived by Karush [1939] using cal-
culus of variations, the work has not received much attention, since it has not
been published. An excellent historical review of optimality conditions for
nonlinear programming can be found in Kuhn [1976]. The reader may refer to
the following references for further study of the Fritz John and Kuhn-Tucker
conditions: Abadie [1967b], Avriel [1967], Canon, Cullum, and Polak [1966],
Gould and Tolle [1972], Luenberger [1973], Mangasarian | 19692}, and Zang-
will [1969].

Mangasarian and Fromovitz [1967] generalized the Fritz John conditions to
handle both equality and inequality constraints. Their approach used the
implicit function theorem. In Scction 4.3 we develop the Fritz John conditions
for equality and inequality constraints by constructing a feasibie arc, as in the
work of Fiacco and McCormick [1968].

In Section 4.4 we show that the Kuhn-Tucker conditions are indeed suffi-
cient for optimality under suitable convexity assumptions. This result was
proved by Kuhn and Tucker [1951] if the functions f, ¢ {or i€l are convex,
the functions h; for all i are affine, and the set X is convex. This result was
generalized later, so that weaker convexity assumptions are needed to guaran-
tee optimality, as shown in section 4.4 (see Mangasarian [1969a}). the rcader
may also refer to Bhatt and Misra [1975], who relaxed the condition that h,
be affine, provided that the associated Lagrangian muitiplier has the correct
sign.

Other generalizations and extensions of the Fritz John and Kuhn-Tucker
conditions were developed by many authors. One such extension is 1o relax the
condition that the set X 1s open. In this case we obtain necessary optimality
conditions of the minimum principie type. For details on this type of optimality
conditions, see Bazaraa and Goode [1972], Canon, Cullum, and Polak [1970],
and Mangasarian [1969a). Another extension is to treat the problem in an
infinite-dimensional setting. The interested reader may refer to Canon, Cullum,
and Polak [1970], Duboviiskii and Milvutin {19657, Guignard {19691, Halkin
and Neustadt [1966], Hestenes [1966], Neustadi {1968 ], and Varaiya [1967]. It
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is also worth mentioning that several authors have developed second-order
optimality conditions for constrained problems. For a thorough study of this
topic, see Avriel [1976], Fiacco [1968], Luenberger [1973], McCormick
[1967], and Messerli and Polak [1969].

In Chapter 4 we considered Problem P to minimize f(x) subject to xe X and
g(x)=<0, i=1,...,m, We obtained the Kuhn-Tucker necessary conditions
for optimality by deriving the Fritz John conditions and then asserting that the
multiplier associated with the objective function is positive when a constraint
qualification is satistied. In this chapter, we develop the Kuhn-Tucker condi-
tions directly without first deriving the Fritz John conditions. This is done
under various constraint qualifications for probiems with inequality constraints
and for problems with both inequality and equality constraints.
The following is an outline of the chapter.

SECTION 5.1: The Cone of Tangents We introduce the conc of tangents T
and show that F,N T = J is a necessary condition for local optimality. Using a
constraint qualification, we derive the Kuhn-Tucker conditions directly for
problems with inequality constraints.

SECTION 5.2: Other Constraint Qualifications We introduce other cones
contained in the cone cf tangents. Making use of these cones, we present
various constraint qualifications that validate the Kuhn-Tucker conditions.

SECTION 5.3: Problems with Incguality and Equality Constraints  The results
of Section 5.2 are extended to problems with equality and inequaiity con-
straints.

5.1 The Cone of Tangents

In Section 4.2 we discussed the Kuhn-Tucker necessary optimality conditions
for problems with inequality constraints. In particular, we showed that local
optimality implies that F,N G,= &, which in turn implies the Fritz John
conditions. Under the linear independence constraint gualification, we 0b-
tained the Kuhn-"Tucker conditions. This process is summarized in the accom-
panying flowchart. In this section we derive the Kuhn~Tucker conditions
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Local optimality Kuhn—Tucker conditions

Theorem 4.2.2 Cons‘tljainAt
\ qualification
E D= = Fritz John conditions
g 2 Theorem 4.2.6

directly without first obtaining the Fritz John conditions. As shown in Theorem
5.1.2 below, a necessary condition for local optimality is that F,N' T = &, whe.re _
T is the cone of tangents given in Definition 5.1.1 below. Using the cons’tramt
qualification 7'= G', where G' is as defined in Theorem 5.1.3, F(?Q G'= @
Using Farkas’ theorem, this statement gives the Kuhn-Tucker conditions. This
process is summarized in the accompanying flowchart.

Kuhn—Tucker conditions

Local optimality

Theorem 5.1.2 Farkas' theorem

A\

: - -——él, Fo NG =@
FonT=0 Constraint °

qualification
T=¢

5.1.1 Definiiion

Let S be a nonempty set in E,, and let Xe cl S. The cone of tangents of S at X,
denoted by T, is the sct of all directions d such that d=1lim,_,., A, (x, — &),
where A, >0, x, €S for cach k, and x, —X.

From the above definition, it is clear that d belongs to the cone of tangents if
there is a feasible sequence {x,} converging to X such that the directions of the
cords x, —X converge to d. In Exercise 5.4 we ask the reader to show that the

Figure 5.1 Examples of the cone of tangents.
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cone of tangents is indeed a closed cone. Figure 5.1 illustrates some examples
of the cone of tangents, where the origin is translated to % for convenience.

Theorem 5.1.2 below shows that for a problem of the form: minimize fx)
subject toxe S, F,N T=J is indeed a necessary condition for optimality. Later
we specify S to be the set {xe X:g(x)=0 for i=1,..., m}

5.1.2 Theorem

Let S be a nonempty set in E,, and let xe S. Furthermore, suppose  that
f:E,— E, is differentiable at . If % locally solves the problem to minimize f(x)
subject to xe S, then F,N T= &, where Fy={d:Vf(X)'d< 0}, and T is the cone
of tangents of S at .

Proof

Let de T, that is, d=1lim, ., A (%, —%), where A, >0, X, €S for each k, and
X, —>X. By differentiability of f at %, we get

F) = F&) = VFR) (x,, = %) +|x, — % a(%; X, —%) (5.1)

where a(X; x, —%)—0 as x, — . Noting the local optimality of %, for k large
enough, we have f(x,)=f(X), and from (5.1), we get

VIR (=) + [, =%} @ (%; %, -%) =0

Multiplying by A, >0 and taking the limit as k-—w, the above inequality
implies that Vf(%)'d=0. So far, we have shown that de T implies that
Vf(&)'d=0, and hence F,N T=, and the proof is compiete,

Abadie Constraint Qualification

In Theorem 5.1.3 below we derive the Kuhn-Tucker conditions under the
constraint qualification 7= G’ credited to Abadie.

5.1.3 Theorem (Kuhn-Tucker Necessary Conditions)

Let X be a nonempty set in E,, and let f:E, — E, and g:E, — E, for
i=1,..., m Consider the problem to minimize f(x) subject to xe X, 2.(x) <0
fori=1,..., m. Let X be a feasible solution, and let I={i:g(%)=0}. Suppose
that f and g for ieI are differentiable at %. Furthermore, suppose that the
constraint qualification T= G’ is true, where T is the cone of tangents of the
feasible region at %, and G'={d:Vg(x)'d=0for icl}. If % is a local optimal
solution, then there exist nonnegative scalars u, for ie I such that

VIR+Y uVg® =0

iel
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Proof :
By Theorem 5.1.2, F,NT=, where F,={d:Vf(x)'d<0}. By assumption,
T=G', so that F,NG'=. In order words the following system has no

VfR)'d<0 Vg®d=0 foriel

Then, by Theorem 2.3.5 (Farkas’ theorem), the result follows.

The reader may verify that in Example 4.2.8, the constraint qualification
T=G' does not hold true at Xx=(1,0)". Note that the Abadie constraint
qualification T'=G" could be equivalently stated as T>G', since T'< G'is
always true (see Exercise 5.13). Note that openness of the set X and continuity
of g at k for i¢I were not explicitly assumed in Theorem 5.1.3. However,
without these assumptions, it is unlikely that the constraint qualification T2 G’
would hold true (see Exercise 5.11).

Linearly Constrained Problems

Lemma 5.1.4 below shows that if the constraints are linear, then the Abadie
constraint qualification is automatically true. This also implies that the Kuhn—
Tucker conditions are always necessary for problems with linear constraints

' whether the objective function is linear or nonlinear.

5.1.4 Lemma

Let A be an mXn matrix, let b be an m vector, and let S={x:Ax<b}.
Suppose ke S is such that A;x=b; and A,x<b,, where A'=(A}, Aj) and
b* = (b',b,). Then, T=G’, where T is the cone of tangents of S at X and
G'={d:A,d=0}

Proof

If A, is vacuous, G'=E,. Furthermore, ¥€int S, and hence T=E,. Thus,
G'=T. Now suppose that A, is not vacuous. Let deT, that is, d=
1My o A (3, —X), where Xi € S and A, >0 for each k. Then

A1(X,‘*i)£b,—§)1=(} (5.2)
Maultiplying (5.2) by A, >0 and taking the limit as k-»oo, it foilows that

A,d=0. Thus,de G',and T G'. Now let de G', that is, A;d=86. We need to
show that de T, Since A,X<b,, thercisa §>0 such that A,(&+Ad)<b, for all

- A (0, 8). Furthermore, since A X=b, and A,d=0, then A, (x+Ad)=b, for all

A >0. Therefore i+Aide S for cach A €(0,8). This automatically shows that
de 7. Therciore, T=G', and the proof is complete.

5.2 Other Censtraint Qualifications 6%

§~2 Other Constraint Qualifications

Thc.' Kuhn-Tucker conditions have been developed by many authors under
various constraint qualifications. In this section we present some of the more
{mportzmt constraint qualifications. In Section 5.1 we learned thatlocal optimality
implies that F,NT =, and the Kuhn-Tucker conditions follow under the
Fonstraint qualification T= G'. If we define a cone C< T, then F,N T = J also
implies that F,N C=J. Therefore, any constraint qualification of the form
C=G' will lead to the Kuhn-Tucker conditions. this process is iliustrated in
the accompanying flow chart. .

Local optimality Kuhn--Tucker conditions

Theorem 5.1.2 .
Farkas' theoram

1:00T=® . Fo ﬂ(;’~=Qj

If ¢CT Constraint

quaiification € = G’

FaNC=Q

We present below several such cones whose closures are contained in T
Here tlgc. fcamblg region S is given by {xe X:gx)=0, i=1,2,...,m}. The
vector % is a feasible point, and I={i:g/{&)=0}

The Cone Of Feasible Directions of S at k

This cone was introduced earlicr in Definition 4.2.1. The cone of feasible
directions, denoted by D, is the set of all nonzero vectors d such that 8+ Ade S
for A € (0, 8) for some §>0.

The Cone of Attainable Directions of S at %

A nonzcro vector d belongs to the cone of attainable dircctions, denoted by
A, if there exist a §>0 and an a: E, — £, such that ¢{A)e S for A {0, §),

—_— . (V) —a0)
a(0) =%, and lim,_ o+ ————=4d. In other words, 4 belongs t¢ the cone of
ST COR . - . .
attainabie directions if there is a feasible arc starting from % that is tangential {o
d.
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The Cone of Interior Directions of S at x

This cone, denoted by G, was introduced in Section 4.2. More specifically,
G,=1{d:Vg(x)'d<0 for iel}. Note that if X is open and g for i¢l is
continuous at %, then de G, implies that X+ Ad belongs to the interior of the
feasible region for A >0 and sufficiently small.

Lemma 5.2.1 below shows that all the above cones and their closures are
contained in T.

5.2.1 Lemma

Let X be a nonempty set in E,, and let f:E, — E,; and g:E, — E, for
i=1,.. ., m Consider the problem to minimize f(x) subject to g(x)=0 for
i:1,...,m and xe X. Let X be a feasible point, and let I={i:g(x)=0}
Suppose that g for i€l is differentiable at X, and let G'={d:Vg ) 'd=0 for
iel}. Then

cdDccdAcTc G’

where D, A, and T are, respectively, the cone of feasible directions, the cone
of attainable directions, and the cone of tangents of the feasible region at X.
Furthermore, if X is open and g for i I is continuous at X, then G, < D, so
that

cdGyccddDccddAcTeG'

where G, is the cone of interior directions of the feasible region at X.

Proof

It can be easily verified that Dc A< T< G', and since T is closed (see
Exercise 5.4), clDccl A< T< G'. Now note that G,< D, as shown in the
proof of Theorem 4.2.3. Hence, the second part of the theorem follows.

We now present some constraint qualifications that validate the Kuhn-
Tucker conditions.

Slater Constraint Qualification

The set X is open, g for i€ is pscudoconvex at %, g for i€ is continuous at
%, and there is an x€ X such that g(x)<O0 for i€ L

Linear Independence Constraint Qualification

The set X is open, g for i€ I is continuous at &, and Vg,(%) for ie I are linearly
independent. :

5.2 Other Constraint Qualifications 1867

Cottle Constraint Qualification

The set X is open and g; for i¢ I is continuous at X, and ¢l G,= G'.

Zangwill Constraint Qualification

cdD=G'
Kuhn-Tucker Constraint Qualification
cdA=G'

The Kuhn-Tucker Conditions

In Theorem 5.1.3 we showed that the Kuhn-Tucker necessary optimality
conditions are true under Abadie’s constraint qualification T= G'. We demon-
strate below that all the constraint qualifications discussed above imply that of
Abadie, and hence each validate the Kuhn-Tucker necessary conditions. From
Lemma 5.2.1, it is clear that Cottle’s constraint qualification implies that of
Zangwill, which implies that of Kuhn and Tucker, which in turn implies
Abadie’s qualification. We now show that the first two qualifications imply that
of Cottle.

First, suppose that the Slater constraint qualification holds true. Then, there
is an x€ X such that g;(x)<0 for i€l Since g(x)<0 and g(X) =0, then by
pseudoconvexity of g; at X it follows that Vg(X)'(x—%X)<0. Thus d=x-X
belongs to G,. Therefore, G,# J and the reader can verify that ¢l Go= G',
and hence Cottle’s constraint qualification is true. Now suppose that the linear
independence constraint qualification is satisfied. Then, Y,;.; 4;Vg(¥) = 0 has no
nonzero solution. By Theorem 2.3.9, it follows that there exists a vector d such
that Vg, (x)'d <0 for ie I. Thus, G,# J, and Cottle’s qualification holds true.

The relationships among the constraint qualification are illustrated in Figure
5.2.

5.3 Problems with Inequality and Equality Constraints

In this section we consider problems with both inequality and equality con-
straints. In particular, consider the following problem:
Minimize  f(x)
subject to gx) =0 vfor i=1,...,m
h(x)=0 for i=1, .51
x €eX

By Theorem 5.1.2, a necessary optimality condition is F,NT= (. By
imposing the constraint qualification T= G'N H,, where H,={d:Vh(x)'d=0




168 Constraint Quaiifications -

“independence Slater
constraint constraint
qualification qualification

Cottle

constraint

qualification

Y

Zangwill
constraint
qualification

\}

Kuhn—Tucker
constraint
qualification

Abadie
constraint

quelification

Figure 5.2 Relationships among var-
“ious constraint qualifica-
tions for inequality con-
strained problems.

fori=1,...,1}, then F;NG'NH,=J. By using Farkas’ theorem, the Kuhn-
Tucker conditions follow from Theorem 5.3.1 below. This process is sum-
marized in the accompanying flowchart.

Locai optimality Kuhn-Tucker conditions

Theorem 5.1.2 Theorem 5.3.1
F AT = Fa NG NHy =@
YT e — 0 0
" fo Z Constraint qualification
= T=G NI

' 5.3.3 Theorem (Kuhn-Tucker Condifions)

Let f:E,—E,, g:E,—~E, for i=1,...,m and hWiE,—>E; fori=1,...,1
and let X be a nonempty set in E,. Consider the following problem:

Ainimize fix)
subject to - g(x)=0 fori=1,...,m
hix)=0 fori=1,...,!
xeX
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Let & locally solve the problem, and let I={i: g (&)= 0}. Suppose that f, g for
iel and h; for i=1,...,1 are differentiable at X. Supposc that the constraint
qualification T=G'N H, holds true, where T is the cone of tangents of the
feasible region at X, and

G'={d:VgX)' =0 for iel}.
Hy=1{d:Vh,&'d=0 for i=1,...,1}

Then, X is a Kuhn-Tucker point, that is, there exist scalars 4, =0 for ie I and v,
for i=1,...,1 such that

i@+ Y, uVs @+ Y 0 Vh@®=0

iel i=1

Proof

Since % solves the problem locally, by Theorem 5.1.2, F,NT=. By the
constraint qualification, we have F,N G'N H,= &, that is, the system Ad=§
and ¢'d>0 has no solution, where the rows of A are given by Vg (%)’ for iel,
Vh(x) and =Vh,(X) for i=1,...,] and ¢=—=Vf(&). By Theorem 2.3.5, the
system A'y=¢ and y=0 has a solution. This implies that there exist nonnega-
tive scalars u; for ieIand a;, B; for i=1,...,! such that

Vi) + X u; Vg (x)+ 21?, o, V (%)~ i B.Vh(%)=0

iel i=1 i=1
Letting v; = ; — B; for each i, the result is apparent.

We now present several constraint qualifications that validate the Kuhn-
Tucker conditions. These qualifications use several cones that were defined
earlier in the chapter. The reader may note that Zangwill’s constraint qualifica-
tion is omiited here, since the cone of feasible directions is usually equal to the
zero vector in the presence of nonlinear equality constraints.

Slater Constraint Qualification

The set X is open, g for i€l is pseudoconvex at X, g; for i# I is continuous at
%, h; for i=1,...,1 is quasiconvex, quasiconcave, and continvously differenti-
able at %, and Vh(%) for i=1,...,[ are linearly independent. Furthermore,
there exists an xe& X such that g(x)<0 foriel and h{(x)=0fori=1,...,1L

Linear independence Constraint Qualification

The set X is open, g for i€ I is continuous at X, Vg;(%) for i€ I and Vi (%) for
i=1,...,1 are linearly independent, and h; for i=1,...,[ is continuously
differentiable at X.
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Cottle Constraint Qualification

The set X is open, g for iZl is continuous at %, h; for i=1,...,1 is
continuously differentiable at %, and Vh;(X) for i=1,..., [ are linearly indepen-
dent. Furthermore, cl (G,N H,)= G'N H,.

Kuhn-Tucker Constraint Qualification
cddA=G'NH,
Abadie Constraint Qualification
T=G'NH,
The Kuhn-Tucker Conditions

In Theorem 5.3.1, we showed that the Kuhn-Tucker conditions are true if
Abadie’s constraint qualification T=G'NH, is satisfied. We demonstrate
below that all the constraint qualifications given above imply that of Abadie,
and hence each validate the Kuhn-Tucker necessary conditions.

As in Lemma 5.2.1, the reader can easily verify that cl A< T< G'NH,.
Now suppose that X is open, g; for i€ 1 is continuous at X, h;, for i=1,...,11is
continuously differentiable, and Vh(%) for i=1,..., ! are linearly independent.
From the proof of Theorem 4.3.1, it follows that G,NHy,< A. Thus,
cd(GoNHy)c=clA<=T<e G'NH,. In particular, Cottle’s constraint qualifica-
tion implies that of Kuhn and Tucker, which in turn implies Abadie’s constraint

quaiification.
Independenice Slater
constraint constraint
qualification | qualification
\\ /
Cottle
constraint

qualification

Kuhn—-Tucker
constraint
qualification
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constraint
L‘Egil_ificalion
Figure 5.3 Relationships among
constraint qualifications
for probiems with in-
equality and zquality
censtraints.

5.3 Problems with Inequality and Equality Constraints 171

We now demonstrate that Slater’s constraint qualification and the linear
independence constraint qualification imply that of Cottle. Suppose that Sla-
ter’s qualification is satisfied, so that g(x) <0 for iel, h,(x)=0fori=1,...,1
for some xe X. By pseudoconvexity of g at X, Vg (X)'(x—-%)<0 for ie L

Also since h;(x)= h;(X) =0, quasiconvexity and quasiconcavity of h, at %
imply that Vh,(x)'(x—%)=0. Letting d =x—X, it then follows that de G,N H,,.
Thus, GoNHy# J, and the reader can verify that cl(G,NHy)=G'NH,.
Therefore, Cottle’s constraint qualification holds true.

Finally, we show chat the linear independence qualification implies that of
Cottle. By contradiction, suppose that G,N H,= . Then, using a separation
theorem as in the proof of Theorem 4.3.2, it follows that there exists a nonzero
vector (u,v) such that Y., u,Vg®) +Yi., 0,Vh(X) =0, where u,;=0 is the
vector whose ith component is u;. This contradicts the linear independence
assumption. Thus, Cottle constraint qualification holds true.

In Figure 5.3, we summarize the implications of the constraint qualifications
discussed above. As mentioned earlier, thesc implications, together with
Theorem 5.3.1, validate the Kuhn-Tucker conditions.



Exercises

5.1

5.2

53

5.4

5.5

5.7

Find the cone of tdngcnts for cach of the following sets at the pomt x= (0, 0)".

a. 8={x;; x)sx= %}

b. S={(x;, x,): x; is integer, x, =0}

c. S={(x;, xz): x; is rational, x, =0}

Let S be a subset of E,, and let Xeint S. Show that the cone of tangents of S at X

is E,. )

Prove that the cone of tangents of S at X can be equivalently defined as follows:
T={d:x, =%+ A d+Na(A)eS for each k}

where A, >0 converges to 0, and a:E; — E, is such that a(d) = 0 as A — 0.
Prove that the cone of tangents is a closed cone.

Hint: First show that T=[\newcl K{(SNN,%), where K(SAN,%)=
{A(x—%):x€ SN N, A>0}, and A is the class of all open neighborhoods about X.
Let A be an m X n matrix, and consider the cones Go={d:Ad<0} and G'=
{d: Ad=<0}. Prove that

a. G, is an open convex cone.

b. G'is a closed convex cone.

c. Go=int. G'.

d. If G,# &, then cl Co=G'.

Consider the problem to minimize f(x) subject to xe X and g(x)=0 for i=
1,..., m. Let X be a feasible point, and let I={i:g(x)=0}. Suppose that X is
open, and g for i#I'is continuous at X. Further, suppose that the set

{d:Vg(®)'d=0 Vg ®)'d<0 forieI-J}

is not empty, where J={i€ I:g is pscudoconcave at %}. Show that this condition
is sufficient to validate the Kuhn-Tucker conditions at X.
(This is the Arrow-Hurwicz-Uzawa constraint qualification.)
Consider the problem to minimize f(x) subject to g; (x)=0fori=1,...,m. LetX
be feasible, and let I={i:g (%) =0}. Let (z, d) be an optimal solutxon to the
following linear program.
Minimize z
subject to Vix)d—-z =0
Vg ®)'d—z=0
-1=d4d,=1 forj=1,...,n
a. Show that the Fritz John conditions hold true if Z=0.
b. Show that if Z=0, then the Kuhn-Tucker conditions hold true under either
Slater’s or Cottle’s constraint qualification.
For each of the following scts, find the cone of feasible directions and the cone of
attainable directions at = (0, 0)".

foriel,

foriel

a. S={(x;, x):—1=x=1,x=x1" x,=x}

b. S={(x, x2): %> x,}
C. S:‘{(ll,x) x-——x,}
d. $=8,US,, where

Sy ={(x1, x2): %, =0, x,= %7}, and S;={(x;, x2): %, =0, —2x,=3x,= =X}

5.10

5.11

5.12

5.13

5.14
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Let f:E,— E, be differentiable at X with a nonzero gradient Vf(X). Let S=
{x:f(x)= f(X)}. Show that the cone of tangents and the cone of attainabie
directions of S at % are both given by {d:Yf(%)'d=0}. Does the result hold if
Vf(x)=0? Prove or give a counterexample.

Consider the following problem:

Minimize —X1
subject to xtt+x? =1
(x1~])3—x250

a. Show that the Kuhn-Tucker constraint qualification holds true at
x=(1,0)".

b. Show that =(1,0)" is a Kuhn-Tucker point and also that it is the giobal
optimal solution.

Consider the problem to minimize 5x —x” subject to g,(x)=0. where g,(x) = x.

a. Verify graphically that X =0 is the optimal solution.

b. Verify that ecach of the constraint qualifications discussed in Section 5.2 hold
true at X =0.

c. Verify that the Kuhn-Tucker necessary conditions held true at X =0.

Now, suppose that the constraint g,(x)=0 is added to the above problem, where

—1—x if x=0
1 =% if x <0

Note that £ =0 is still the optimal solution and that g, is discontinuous and

nenbinding at X. Check whether the constraint qualifications discussed in Section

5.2 and whether the Kuhn—-Tucker conditions hold true at %

(This exercise illustrates the need of the continuity assumption of the nonbinding

constraints.) ,

Consider the feasible region S ={xe X: g,(x) =0}, where g,(x)=x,>+x,°— 1, and

X is the collection of all convex combinations of the four points {1, 0), (0, 1),

(1, 0), and (0, -1)"

a. Find the cone of tangents T of S at x=(1,0)".

b. Check whether T2 G', where G’ = {d: Vg, (x)'d=0}.

c. Replace the set X by four inequality constraints. Repeat parts a and b, where
G'={d:Vg(x)d=0 for iel}, and I is the new sct of binding constraints at
x=(1,0).

Let S={xeX:g(x)=<0 for i=1,...,m}. Let ¥€ 8§, and let I={i:g(®) = O}

Show that T< G', where T is the cone of tangents of § at %, and G'=

{d: Vg (X)'d=0 for iel}.

galx) = {

Let S={xeX:g(x)=0fori=1,...,mand h(x)=0for i=1,.... 1 ). Let ke S,
and let I ={i:g(x)=0}. Show that T'< (G'N H,, where T is thc cone 01 tangents
of $ at X, G'={d:Vg(X)'d=0 for ief}, and H,={d:YhEI'd=0 for

i=1,...,10.

go_nsider thg constraints Cd= 0 and d'd=1. Let d be a feasible solution such that
ddé=1, C,d=0, and C,d<9, wheré C'=(Ci, C3);, Show that the constraint
qualification T= G, ={d: C,dsﬂld‘ds()} holds truc, where T is the cone of
tangents of the constraint set at d.



