
The Fritz .John and the Kuhn-
Tucker Optimality Conditions

In Chapter 3 we derived an optimality condition for a prob!em of the forrn:
minimize f(x) subject to x E S, where f is a convcx íunction and S is a convex
set. The necessary and sufficient condition for x to solve the problern was
shown to be

Vf(x)r(x-x)~O for ali XE S

In this chapter the nature of the set S wiil be more cxplicitly specified. In
particular we consider problems with incquality and/or equality constraints.
The necessary eonditions are derived without any convcxity assumptions and
are sharper than the above in the sensc that they explicitly consider the
constraint functions and are more easily verifiable, since they deal with a
system of equations. Under suitable convexity assumptions, these necessary
conditions are also sufficient for optimality.

The folIowing is an outline of the chapter.

SECTION 4.1: Unconstraíned Problems We briefty consiuer optirnality con-
ditions for unconstrained problcms. First-order and second-ordcr conditions
are discussed.

SECTION 4.2: Problems with Inequality Constraints Both the Fritz 101m and
the Kuhn- Tucker conditions for problems with inequality constraints are
derived,

SECTION 4.3: Problems with Inequality and Equality Constraints This sec-
tion extends the results of the previous section to problcms with both incqual-
ity and equality constraints.
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4.1 Unconstrained Problems

An unconstraincd problcm is a problcrn 01 lhe Iorrn: minimize [(x) without any
constraints on lhe vcctor x. Unconstraincd problems sei dom arise in practical
applications. However, we considcr such problerns hcre because optimality
conditíons for constrained problems becorne a logical cxtension of the condi-
tions for unconstrained problerns. Furtherrnore, as shown in Chapter 9, one
strategy for solving a constrained problem is to solve a sequence of uncon-
strained problems.

We define below a local and a global minimum of an unconstrained problem.
The definition is a special case of Definition 3.4.1, where the set S is replaced
by E,..

4.1.1 Definition
Consider the problern of minimizing [(x) over E'I> and let i E E,.. If [(x)::5 [(x)
for ali x E E,., then x is called a global minimum. If there exists an c-
neighborhood N. (i) around x such that f(x)::5 [(x) for each x E N, (x), then x is
calleda local minimum. Clearly a global minimum is also a local minimum.

Necessary Optimality Conditions

Given a point x in EI/' we wish to determine, if possible, whether or not the
point is a local or a global minimurn of a function f. For this purpose, we need
to characterize the minirnum point. Fortunately, the differentiability assumption
of [ provides a means of obtaining this characterization. The corollary to
Theorem 4.1.2 below gives a first-order necessary condition for x to be a local
optimum, Theorem 4.1.3 gives a second-order neccssary condition using the
Hessian matrix.

4.1.2 Theorem

Suppose that [: E; ~ E1 is differentiable at i. If there is a vector d such that
V'[(x)' d < 0, then there exists a o> ° such that [(i+ Ad) < f(i) for each A E

(0, o), so that d is a descent direction of f at x.
Proof
By differcntiability of [ at X, we must have

t(i + Ad) = f(i) + A V[(i)'d + Alldlla(x; Ad)

where a(x; Ad)-:. O as A~ O. Rearranging the terms and dividing by A, we get

j(i + Ad) - f(x) "" V f(x)' d + Ildll()~(i;Ad)
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Sincc Y'[(i)'d<O and a(x;Ad)~O as A~O, there exists a 0>0 such that
Y'f(i)'d+lldlla(x;Ad)<O for ali AE(O,O). The rcsult then follows.

Corollary

Suppose that f: E; -:> E, is differentiable at X. If x is a local rninirnurn, then
V[(x) = O.

Proof

Suppose V[(x);>f O and let d = -V[(x). Then Vf(x)'d = -IIV[(x)112< 0, and by
Theorem 4.1.2, there is a 0>0 such that [(i+Ad)<f(i) for AE(O,O), con-
tradicting the assumption that x is a local minimum. Hence V[(i)= O.

The above condition uses the gradient vector whose components are thc first
partials of f. Hence, it is calied a first-order condition. Ncccssary conditions can
also be stated in terms of the Hessian matrix li whosc cJements are the sccond
partials of f. These are called second-order conditions and are given below.

4.1.3 Theorem

Suppose that [: E; -~ E, is twice differentiable ar x. If x is a local minimum,
then V[(x) = 0, and H(i) is positive semidefinite.

Proof

Consider an arbitrary direction d. Then, from differentiability of [ at X, we have

f(x+ Ad) = f(i) + A V[(i)'d -HA2d'H(i)d + À 2Iid!12a(x; Ad) (4.1)

where a(x; Ad)~ O as A -.,. O. Since x is a local minirnum, from the corollary to
Theorern 4.1.2, we have Vf(i)=O. Rearranging the terrns in (4.1) and dividing
by A 2, we get

f(x+Ad)-f(x) = !d'H(x)d+ Iloii2a(x; Ad)A2 (4.2)

Since x is a local minimum, f(i+Ad) '2: [(x) for A sufficicntly small. Frorn (4.2),
it is thus cJear that id'H(x)d + Ildfa(i; Ad) 2: O for A sufficiently srnall. By taking
the limit as A~ 0, it follows that d'H(x)d ~ 0, and hence H(i) is positive
semidefinite.

Sufficient Optima!ity Conditions

The conditions discussed thus far are necessary conditions; that is, they rnust be
true for every local optimal solution. On the othcr hand, a point satisfying
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Proof
Since t is twice differentiable at X, we must have for each x E En:

f(x) = t(i) + Vf(i)l (x-i) +4(x-i)'H(i)(x-i)

+llx-xfa(i; x-i) (4.3)

First let us determine the candidate points for optimality satisfying the
first-order necessary condition that V f(x) = O. Note that V f( x) = 6x(x2 - 1)2,
and V f( -}) = V f(O) = V f(1) = O.Now let us examine the second arder neccssary
condition that H(x) is positive semidcfinite. We have H(x) =
24x2(x2-1)+6(x2-1)2, and hence H(1)=H(-l)=O and H(O)=6. In ali three
cases, the matrix H is positive semidefinite, and the necessary conditions of
Theorem 4.1.3 hold true. This does not imply that each of thesc points is a
local minimum. By sketching the f'unction, the reader could easily verify that
the point x = O is indecd the only local minimum, and also the global
minimum. Note also that the points 1 and -1 do not satisfy the sufficient
conditions of Theorem 4.1.4, which requires H to be positive definite. This
condition is satisfied at the global optimum x = o.

thesc conditions nccd not be a local minimum. Theorem 4.1.4 gives a sufficient
condition for a local minimum.

4.1.4 Theorem

Suppose that f: E; ~ E, is twice differentiable at i. If Vf(i) = O and H(i) is
positive definite, then x is a local mmimum:

where a(x;x-i)~O as x~i. Suppose, by contradiction, that i is not a local
minimum; that is, suppose there exists a sequence {x.} converging to x such
that f(xk) < f(i) for each k. Considering this sequence, noting that Vf(i) = O
and f(xk) <f(x), and denoting (x, -i)/llxk -xii by dk, (4.3) then implies that

~d~H(i)dk + a(x; Xk -i) < O for each k (4.4)

But Ildkll= 1 for each k, and hence there exists an index set J{ such that {ddx
converges to d, where Ildll= 1. Considering this subsequence and the fact that
a (x; x, - i)~ O as k E J{ approaches 00, then (4.4) implies that d'H(i)d:s; O.
This contradicts the assumption that H(i) is positive definite and the íact that
Ildll= 1. Therefore, x is indeed a local minimum.

In Theorem 4.1.5 below, we show that the necessary condition Vf(i) = O is
also sufficient for i to be a global minimum if f is pseudoconvex at x.

4.2 Problems with Inequality Constraints

In this section we first develop a necessary optimality condition for the problem
to minimize f(x) subject to XE S. Later we let S be the feasible region of a
nonlinear programming problem of the form to minimize f(x) subject to g(x) -s O
and XE X.

Geometric Optimality Conditions

In Theorem 4.2.2 helow, we develop a necessary optirnality condition for the
problem to minimize f(x) subject to x E S, using the cone of Ieasiblc directions
defined below.

4.2.1 Definítion
4.1.5 Theorem

Let S be a nonempty set in En, and let x E cI S. The cone of [easible directions of
S at x, denoted by D, is given byLet f: E; ~ E, be pseudoconvex at x. Then x is a global minimum if and only if

Vf(x) = o.
D ={d:d~O, and i+AdES for ali A E (0, 8) for some 8> O}

Proof
By the corollary to Theorem 4.1.2, if x is a global minimum, then Vf(x) = O.
Now suppose that Vf(x) =0, so that Vf(x)'(x-i)=O for each xEEn" By
pseudoconvexity of f at x, it then follows that f(x) "2:.t(i) for each x E E", and
the proof is complete.

Each nonzero vector d e D is called a feasible direction.

From the above definition, it is cIear that a small movernent from i along a
vector d e D leads to feasible points. Furthermore, from Theorem 4.1.2, if
Vf(x)'d<O, thcn d is an improving dircction; that is, starting from X, a srnall
movement along d will reduce the valuc or f. As shown in Theorem 4.2.2
below, if x is a local minimurn and if Vj(x)'d<O, then di D; that is, a
necessary condition for local optimality is that every improving direction is not
a feasible direction. This fact is illustrated in Figure 4.1, where the vertices of
the cones Fo and Dare translated from lhe origin to i Ior convenience.

4.1.6 Example
To illustrate the nccessary and sufficient conditions of this section, consider the
problem to minirnize f(x) = (x2 - 1)-'.
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for i = 1, ... , m

Figure 4.1 IIlustration of the necessary condition FonD= 0.

Recall that a necessary condition for local optirnality at xis that }..~,n D = 0,
where Fo is an open half space defincd in terms of the grad ient vcctor V f(i),
and D is the cone of feasible directions, which is not nccessarily defined in
terms of the gradients of the Iunctions involved. This prccludes us from
converting the geometric optimality condition F() nD = 0 into a more usable
algebraic statement involving equations. As Theorem 4.2.3 bclow indicares, we
will be able to define an open Cone Go defincd in terrns of the gradicnts of the
binding constraints at X, such that Go c D. SinceF;, nD = 0 rnust hold at X,
and since Go c D, then Fo n Go = 0 is also a neccssary optirnality condition.
Since F(j and Go are both defined in terrns of the gradient vectors, we will use
the condition F;, n Go = 0 later in the sectíon to devclop the optirnality
conditions credited to Fritz lohn. With mild additional assurnptions, the
conditions reduce to the weli-known Kuhn-Tucker optimality conditions.

4.2.2 Theorem

Consider the probiem to minimize f(x) subject to XE S, where f: En -'; El, and
S is a nonernpty set in E". Suppose that f is differentiable ai a point x E S. If xis
a local optimal solution, then Fon D = 0, where Fo = {d :Vf(i)'d<O} and D is
the cone of feasible directions of S at x.

4.2.3 Theorem

Proof

By contradiction, suppose that thcre exists a vector d e Fo nD. Then by
Theorern 4.1.2, there exists a 01> O such that

f(x+Ad)<f(x) foreachÀE(O,OI) (4.5)

Furtherrnore, by Definition 4.2.1, thcre exists a 02> O such that:

X + Ad E S for each A E (0,02) (4.6)

The assurnption that x is a local optirnal solution to the problem is not
compatible with (4.5) and (4.6). Thus F~,n D = 0, and the proof is complete.

We specify the feasible region S as follows:

S = {x E X : gj(x) :5 O for i = 1, ... , m}

where gi : E" -? E, for i= 1, ... , m, and X is a nonempty open set in E". This

Let gj: E; -? E, for i = 1, ... , m, and let X be a nonempty open set in En.
Consider the Problem P to rninirnize f(x) subject to gj (X):::;; O for i = 1, ... , m,
and XEX. Let x be a feasible point, and let 1={i:gj(x)=O}. Furthcrrnore,
suppose that f and gj for i E I are differentiable at x and that g, for i~ I is
continuous at x. If i is a local optimal solution, then F~)n Go = (25, where

Fo = {d: Vf(x)'rl < O}

Go={d:Vgj(x)'d<O for each i E I}

Proof

Let d s Gi; Since XE X, and X is open, there exists a O; > O such that

Also, since gj(x)<O and since gj is continuous at X ror iÉ I, there exists a 02>0
such that

gj(x+Ad)<O for A E (O, D:~Janel for j É I (4.8)

Finally, since d s Go, Vgj (i)'d < O for each i E I, and by Theorern 4.1.2, there
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exists a 153> O such that

gj(x + Ad) < g,(x) = O for A E (O, 8J and for i E I (4.9)

From (4.7), (4.8), and (4.9), it is c1ear that points of the form x+Ad are feasible
to Problem P for each A E (0,15), where 8 = minimum (81,82,83), Thus d e D,
where D is the cone of feasible directions of the Ieasible region at X. We have
shown thus far that d e Go implies that d s D, and hence Go c D. By Theorem
4.2.2, since x locally solves Problem P, Fu n D = 0. Since Go c D, it follows
that Fo n Go = 0, and the proof is complete.

4.2.4 Example

Minimize

subject to

(XI -3f+(X2-2)2

X12+ x/:s 5

Xl + X2 :s 3
XI <:!O
X2 2:0

In this case, we let gl(X) = XI
2 + x/- 5, g2(X) = x} + x2-3, g3(X) = -XI> gix) =

- X2' and X = E2• Consider the point x = G, ~)t, and note that the only binding
constraint is g2(X) = XI + X2- 3. Also note that

-12 -8)'
Y'f(x) = (-5-'5 and v g2(X) = (1, I)'

The sets Fo and Go, with the origin translated to (~, ~)' for convenience, are
shown in Figure 4.2. Since Fu n Go f= 0, x = (~,~)t is not a local optimal
solution to the above problem.

Now consider the point x = (2, I)', and note that the first two constraints are
binding. The corresponding gradients at this point are

Vf(x) = (-2, - 2)', and v g2(X) = (1, I)'v gl(x) = (4, 2)',

The sets i'~) and Go are shown in Figure 4.3, and indeed Fo n Go = 0. Note
that Thcorcrn 4.2.3 givcs a neccssary condition and hcnce Fo n Go = 0 does
not guarantce that x = (2, 1)' is an optimal point. Wc can only conclude that i
is one of the candidate points that can solve the problem under consideration.

It might be interesting to note that the utility of Theorem 4.2.3 also depends
on how the constraint set is exprcsscd. This is illustrated by Example 4.2.5
below.

X2

X2 ---=----== ----=:.
----=

XI

Figure 4.2 lIIustration of FonGo;i 0 at a non-optimal poiot.

--

'% =
= -

\"1Figure 4.3 Illustration of FonGo= 0 at an optimal point,
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4.2.5 Exarnple 4.2.6 Theorem (The Fritz Joh.n ComHtEons)

Minirnize

subject to
(XI -1?+(x2 -1)2

(xl+x2-1)3:50

xl:2:0

x2:2: O

Let X be a nonernpty open set in E,,, and let f: E" --7 Ej, and gi : E" -'? EI for
i = 1, ... , m. Considcr Problem P to minimize f(x) subjcct to x E X and
gi(X):50 for i=l, ... ,m. Let x be a feasible solution, and let I={i:g-i(x)=O}.
Furthermore, suppose that f and gi for iE I are differentiable at x and that gi
for ii I are continuous at X. If x locally solves Problem P, then there exists
scalars Uo and u, for i E I, such that

Note that the neeessary condition of Theorern 4.2.3 holds true at each feasible
point with Xl + X2 = 1. However, the eonstraint set can be represented equivaJently

I by
uovf(x) + L uiv gi(X) = O

t e í

Xl +X2:51

X1:2:0

X2:2: O

Un, u, :2: O for i E 1
(Un, DI);i. (0, O)

It can be easily verified that Fo n Go = 0 is satisfied only at the point (t ~).

There are several cases where lhe neccssary conditions of Theorem 4.2.3 are
satisfied trivially by possibly nonoptimal points also, Some of thcse cases are
discussed below.

Suppose that x is a íeasible point such that V f(x) = O. Clearly Fo =
{d :Vf(i)' d <O}= 0, and hence F~,n Go = 0. Thus, any point x with Vf(i) = O
satisfies the nccessary ioptimality conditions. Likewise, any point i with
V g.(x) = O for some iE I will also satisfy thc necessary eonditions. Now eonsider
the following example with an equality constraint:

where u, is the veetor whose cornponents are u, for i E 1. Furthermore, if gi for
ii I are also differentiable at X, then the Fritz John conditions can be written in
the foIlowing equivalent forrn:

m

UoVf(x)+ L uiv gi(X) = O
i=l

ujgi(X) = O for i= 1, ... , m
Uo, u, :2: O for i= 1, .. " m

(uo, u) to (0, O)

where u is the veetor whose cornponents are u, for i= J, ... , m.

Minimizc f(x)

subject to g(x) = O Proof

The equality constraint g(x) = O CGuId be replaced by the inequality constraints
gl(X)= g(x):50 and g2(X)=-g(x):50. Lct x be any f'casible point. Then gj(x)=
g2(i) =, O. Note that V gl(X) = -"7g2(x), and thercíorc there could cxist no veetor
d such that 'Vgj(i)'d<O and Vg2(x)'d<O. Thercfore, Gi,> 0, and hence
Fon Go:= 0. Inother words, the necessary condition of Theorem 4.2.3 is
satisficd by ali íeasible solutions and is hence not usable.

Since x loeaily solves Problem P, then by Thcorern 4.2.3, therc cxists no vector
d such that Vf(i)'d <O and Vgi(x)'d < O for cach i E r Now, lct A be thc matrix
whose rows are Vf(x)' and Vg,(x)' for i e I. The optimality condition of
Therocm 4.2.3 is then equivaIcnt to lhe stateme nt that lhe systcrn Ad <() is
inconsistent. By Theorern 2.3.9 there exists a nonzero vector p?: G such that
A'p = O. Denoting the componenrs of p by /lu and u, for iE' J, rhe first part of
the result follows. The equivalem form of the necessary conditions is readily
obtained by lctting u, = O for irj J, and the proof is complete.

In the Fritz John conditions, the scalars tio and U; for i ,= 1, ... ,n1 are
usually called Lagrangian multipliers, The condition u.g, (X) = O for i = I, ... , m
is caIled the complemeruarç slackness condirion. It rcquircs that u, == O if the
corresponding inequality is nonbinding; that is, ir g (x) <Ü. Likcwíse, ir pcrrnits
u, >O only for rhosc constraints that are binding, The Fritz .101111 coriditions can

The Fritz John Optimalitv Ccndltions

We now reduce the geornctric necessary optimality conditíon F;) n Go = 0 to a
staternent in terrns of thc gradients of thc objcctivc function and of the binding
constr aints. The rcsultn.g optirnality conditions, credited to Fritz John [1948],
are givcn bclow,
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also be written in vector notation as Iollows:

u(S t(i) +V g(x)u = O

u'g(x) = °
(uo,u)2:(O,O)

(uo, u);é (0, O)

Here V'g(x) is an n x m matrix whose ith column is V gj(x), and u is an m vector
denoting lhe Lagrangian multipliers.

X2

\ -~f g2(X/\

\-1 \,
"
vg,(xl

'\. Contours of f

Uncanstrained. ..
mirurnurn

Minimize (XI-3)2+(X2-2)2

X/+ x/~5
XI + 2X2 ~4

-XI ~O
-X2 :50

v/c/c,???(,~_. . /««((((((((////~

(yrG. O) x,

4.2.7 Example

subject to

)
Figure 4.4 IlIustration of Exampla 4.2.7.

The feasible region for the above problem is illustrated in Figure 4.4. We now
verify that the Fritz John conditions are true at the optimal point (2, 1). First
note that the set of binding constraints 1 at x = (2, l )' is given by I = {I, 2}.
Thus theLagrangian rnultipliers U3 and U4 associated with -XI~O and -X2~0,
respectively, are equal to zero. Note that

U3 = U4 = 0, which contradicts the stipulation that the vector (uo, u], LI••) is
nonzero. Thus the Fritz John conditions do not hold true at X = (0, O)', which
also shows that the origin is not a local optimal point.

4.2.8 Example

Vf(i) = (2, -2)' v gl(x) = (4, 2)' v g2(X) = (1, 2)' Consider lhe fo!lowing problem from Kuhn and Tucker [1951].

Thus, Uo = 3, UI = 1, and U2 = 2 wilI satisfy thc Fritz John conditions, since we
now have a nonzero vector (uo, U I> u2) 2: O sa tisfying

Minimize

subject to

-Xl

X2 - (1- X 1)3 ~ °
-X2 ~OUOC~)+ UI (~) + u2G) ==(~)

As another illustration, Iet us check whether the Fritz John conditions are
true at the point x ==(0, O)'. Here, the set of binding constraints is 1= {3, 4}, and
thus u: ==U2 = O. Note that

The feasible region is iliustrated in Figure 4.5. We now verify that the Fritz
John conditions indeed hold true at the optimal point x = 0, O)'. Note that the
set of binding constraints at x is given by 1= {1, 2}. Also,

Vf(x) = (-6, -4)' Vg3(X) = (-1, O)' V g4(X) = (0, -1)' Vt(x)==(-l,O)' VgI(x) =(0, 1)' V g2(X) = (0, -])'

Also note that In particular,

(- 6 ) (- 1) (O \ (0·u() -4 +u:; ° +u4 -1)= O)
holds true if and only if u.= -6uo and U.j = -4uo. If li" > 0, thcn U" U4 < O,
contradicting lhe ncnncgativity rcstriciions. If', 011 thc othcr hand, Ilo = 0, thcn

UOC~) + UI (~) + U2(_~) =(~)
is true only if Uo = O. Thus, the Fritz John conditions are true at x by letting
Uo = O and u 1 = U2 = a, where a is a positive scalar.
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:\"2

Vg,(x)

g,(x) = °
g2(X) = °

~ (1,0) x,/////J'///Lf//L/////ft~ I ......•••••••
g2(X) = °vf(xl

Figure 4.5 IIlustration of Example 4.2.8.

v g2(x)

4.2.9 Example

Minimize - Xl
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vgõ(x)

'f
VK7.(x)

g,(x) = O

Figure 4.6 IlIustration of Example 4.2.9.

Xl +X2-1 sO

-X2 :50

The feasible region is sketchcd in Figure 4.6, and the optimal point is
i = (1. O)'. Note that

subject to

Vf(i)=(-l,O)'

gradients of the binding constraints were linearly dependent, whcreas in
Exarnple 4.2.9, they were noto

If the Lagrangian multiplier u(} is equal to zero, thc Fritz John conditions do
not make use of any information pertaining to the gradient of the objective
function. They merely state that thcre exists a nonnegative anel nontrivial linear
comhination of the gradients of the binding constraints that adds up to zero.
Thus, when u(} = 0, the Fritz John conditions are of no practical value in
locating an optimal point. Hence , we are more interestcd in the cases where
uo> O. Kuhn and Tucker [1951] indcpendently devcloped necessary optimality
conditions that are precisely lhe Fritz J ohn conditions with the added property that
uo> O. Various conditions could be imposed on lhe constraints in order to
guarantee that uo> O. These conditions are usually called constraint quali-
fications and are discussed in more detail ir! Chapter 5.

In Theorern 4.2.10 below, by imposing the constraint qualification that the
gradient vectors of the binding constraints are linearly independent, we obtain
the Kuhn-Tucker conditions.

Vg,(i)= (1, 1)' v g2(i) = (O, -1)'

and the Fritz John conditions are true with Uo = ul = U2 = a for any positive

scalar a.
As in the case of Thcorem 4.2.3, there are points that satisfy the Fritz .lohn

conditions trivially. If a point i satisfies V f(i) = O or V gj(i) = O for some iE I,
then c1earJy wc can let thc corresponding Lagrangian multiplier be any positive
number, set ali the other multipliers equal to zero, and satisry the conditions of
Theorem 4.2.6. The Fritz John conditions of Theorcrn 4.2.ó also hold true
trivially at each Ieasible point for problerns with equality constraints if each
equality constraint is replaced by two inequalities. Specifically, if g(x) = O is
replaced by g(x):5 O and - g(x):5 O, then the Fritz John conditions are true with
U

l
= U

2
= a and setting ali the other multipliers equal to zero, where a is a

positive scalar.
4.2.10 Theorem (Kuhn-Tucker Necessary Conditions]
Let X bc a noncrnpty opcn sct in i:;,,, and lct t E" -'!> !::;I and gi: E" --? E, for
i= 1, ... , m. Consider Problem P to minimize f(x) subject to XE X and
gj (x):5 O for i = 1, ... , m. Let x be a fcasible solution, and let I = {i: gj(x) = O}.
Suppose that f and gj for iE 1are differcntiable at x and that gj for iÉ I aíC
continuous at i. Furtherrnore, suppose that V gj (x) for iE I are linearly inde-
pendent. If i locally solves Problem P, then there exist scalars li; for iE 1such

The Kuhn- Tucker Conditions

In Examplcs 4.2.7 and 4.2.9, we observed that the Lagrangian rnultiplier Uo was
positivc at the optimal point X, while in Exarnple 4.2.S, UO was equal to zero.
Also note that Exarnplcs 4.2.8 and 4.2.9 dífTcred in that in Example 4.2.8 the
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Ui ;::::0 for i E I

Geometric lnterpretation of the Kuhn- Tucker Conditions

Note that any vector of the form LiE! uiVg;(x), where u,;:::: O for iE I, belongs to
the cone spanned by the gradients of the binding constraints. The Kuhn- Tucker
conditions -V f(i) = LiE! ui V gi(51:)and Ui;:::: O for iE I can then be intcrpreted as
-Vf(x) belonging to the above mentioned cone.

Figure 4.7 illustrates two points XI and x2• Note that -Vf(xl) bclongs to the
cone spanned by the gradients of the binding constraints at XI' anel hcnce XI is a
Kuhn- Tucker point; that is, XI satisfies the Kulm- Tucker conditions. On the
other hand, -Vf(x2) lies outside the cone spanned hy thc gradients of the
binding constraints at x2, and thus contradicts the Kuhn- Tuckcr conditions,

Likewise, in Figures 4.4 and 4.6, for x = (2, 1)' and x"'" (1, O)', rcspectively,
- V[(i) is in the cone spanned by the gradients aí the blnding constraints at i.
On the other hand, in Figure 4.5, for Si:= (1, O)', - V f(x) lies outside the cone
spanned by the gradients of the binding constraints at i.

Theorem 4.2.11 below shows that, under moderate convcxity assumptions,
the Kuhn- Tucker conditions are also sufficient for optirnality.

that

Vf(x) + L uiv gj(X) = O
i",!

In addition to the above assumptions, if gi for ié I is also differentiable at x,
then the Kuhn- Tucker conditions could be written in the following equivalent
form:

11\

Vf(x)+ L UiVgi(X) = O
i=1

Uigi(X)= O
ui;::::o

for i = 1, , m

for i = 1, , m

Proof
By Theorem 4.2.6, there exist scalars tio and ui for i E I, not ali equal to zero,
such that

uoVf(x) + L úS gi(X) = O
iel

(4.10)
4.2.11 Theorem (Kuhn- Tucker Sufficient Conditions)
Let X be a nonempty open set ir. E,,, and let f: E; --'» E, and gi: E; --'» EI for
i = 1, ... , m. Consider Problem P to minimize f(x) subjcct to XE X and
gi (x):5 O for i = 1, ... , m. Let x be a feasiblc solution, and let I = {i: g, (:,{) zx: O}.
Suppose that f is pseudoconvex at x and that gi is quasiconvcx and diffcrenti-
able at x for each i E 1. Furthermore, suppose that the Kuhn- Tuckcr conditions

Vg1
X2

Uo, ui;::::O for iE I

Note that Lio> O, because (4.10) would contradict the assumption of linear
independence of V g;(x) for iE I if Uo= O. Thc first part of the theorem then
follows by letting u, = fi;! Un. The equivalent form of the necessary conditions
follows by Ietting u, = O for ié I. This completes the proof.

As in the Fritz John conditions, the scalars ui are called the Lagrangian
muuioiiers, and the requirement that Uigi(X)= O for i= 1, ... , m is referred to
as the complementary slackness condition. Note that the Kuhn- Tucker condi-
tions can be written in vector form as

v f(x) +Vg(x)u = O
u'g(x) = O

u;::::O
Here, Vg(x) is an n X m matrix whose ith column is Vgi(x), and ti is an m
vector dcnoting the Lagrangian multipliers.

Now consider Exarnplcs 4.2.7, 4.2.8, and 4.2.9 discusscd carlier. In Example
4.2.7, at i = (2, 1)', the reader may vcrify that U I =t Uz=~, and u3 = U4 = O will
satisfy the Kuhn- Tucker conditions .. Examplc 4.2.8 does not satisfy the as-
sumptions of Theorern 4.2.10 at x = (1, O)', sinceV gl(x) and V gz(x) are linearly
dependent. In fact, in this exarnplc, we saw that Uo= O. ln Examplc 4.2.9,
:.lI = U:.! = 1 will satisíy thc Kuhn-Tuckcr conditions.

Y///((///////(L///////L/I/I)r X,

g3 = o
Figure 4.7 Geometric illustration of the Kuhn-Tucker conditions.
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hold true at x; that is, there exists nonnegative scalars u, for iE I such that
V[(x) + LjEI u,V gj (x) = O. Then i is a global optimal solution to Problem P.

Suppose that i is a local optimal solution, and let I = {i: gj(x) = O}. Further-
more, suppose that gi for iÉ I is continuous at i, that [ and gi for iE 1 are
differentiable at i, and that hi for i= 1, ... , I is continuously diffcrcntiable ar
i. If V h; (i) for i= 1, ... ,I are linearly independent, then Fo n Go n Ho = 0,
where

Proof
Let x be a feasible solution to Problem P. Then for i E I, gi(X)::5 g,(i), since
gj (x)::5 O and g, (i) = O. By quasiconvexity of g, at i, it follows that

gj[i + A(x -i)] = gi[Ax + (1- A)i]::5 maximum [g,(x), gj(x)] = gj(x)

for alI A E (0, 1). This implies that gj does not increase by moving frorn x along
the direction x-x. Thus, by Theorem 4.1.2, we must have Vgj(x)'(x-i)::50.
Multiplying by u, and summing over I, we get [LiEI uiVg;(i)'](x-i)::50. But
since Vf(x)+LjEI ujVgi(x)=O, it follows that Vf(i)'(x-i)::::O. Then, by
pseudoconvexity of f at i, we must have [(x) 2: f(i), and the proof is complete.

Needless to say, if [ and gi are convex at x and hence both pseudoconvex
and quasiconvex at i, then the Kuhn- Tucker conditions are sufficient. AIso, if
convexity at a point is replaced by the stronger requirement of global convex-
ity, the Kuhn-Tucker conditions are also sufficient.

F~)= [d :V[(i)'d < O}
Go = {d :Vg;(i)'d< O for iE I}

Ho={d:Vhj(i)'d=O for i= 1, ... , L}.

Proof

By contradiction suppose thcre exists a vector y E FI) n G; n HI); that is,
V[(i)'y < 0, V gj(i)'y < ° for each iE I, and Vh(i)'y = O, where Vh(x) is an n x I
matrix whose ith column is V h;(i). For A:::: 0, define a: E, _ E; by the
following differential equation and boundary condition:

da (A )
--=P(A)y

dA 0'.(0) =x (4.1])

In this section we generalize the optimality conditions of the previous section
to handle equality constraints as well as inequality constraints. Consider the
following nonlinear programming Problem P.

Minimize f(x)
subject to gj (x) ::5 O

hj(x) = ()
XEX

As a natural extcnsion of Theorem 4.2.3, in Theorem 4.3.1 below, we show
that if i is a local optimal solution to Problem P, then Fon 00 n Ho = 0, where
110 = {d :V h, (i)' d= O for i = 1, ... , I}. A reader with only a casual interest in
the derivation of optimality eonditions may skip the proof of Theorem 4.3.1,
since it involves the more advanced concepts of solving a system of differential
equations.

for i= 1, , m
for i= 1, , I

where P(A) is the matrix that projects any vector in thc null space of Vh[odA)].
For A sufficiently small, thc abovc equation is wcll defincd anel solvable
because Vh(i) has full rank and h is continuously ditferentiable ai x, SO that P is
continuous in A. Obviously O'.(A)_x as A-O".

We now show that for A> O and sufficiently srnall, a(A) is fcasible and
[[O'.(A)]<[(x), thus contradicting local optimality of x. By lhe chain mie of
differentiation and from (4.11), we get

~ g;[O'.(A)]= V gj[a(A)J'P(A)y
dA (4.12)

4.3 Problems with Inequality and Equality Constraints

for each iE 1. In particular, y is in the null space 01' Vh(i), and so for A = 0, we
have P(O)y=y. Hence from (4.12) anel the faet that V'g,(x)'y<O, we get

~ gi[a(O)]=Vgj(x)'y<O (4.13)dA

4.3.1 Theorern
for i E!. This further implies that g [O'.(A)]< O for A> O and sufliciently small.
For iE I, gi(X) < O, and gi is continuous at X, anel thus gi[OI.(A)]< (J for A
sufficiently smal\. AIso, since X is open, a(A) E X for A sufficiently smal\. In
ordcr to show feasibiJity of «(A), wc only nccd to show that hiLa(A)] = () for A
sufficiently smal!. By the mean value theorern, we have

hi[O'.(A)] = h;[OI.(O)J+A d~ h;[a(jL)]

d
= A- h[O'.(n)]d): I r=, (4.14).

Let X be a nonempty opcn set in E". Let [: E" ~ Et, gj: E" - E, for
i= 1, ... , m and h, :E" - E, for i= 1, ... , I. Consider Problem P to

~inimize [(x)

subjectto gilX)::50 fori=l, ,m

h;(x):=O fori=l, ,1
XE. X
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for SOInl! fJ- E (O. A). But by the chain rulc of diflerentiation and similar to
(4.12), we get

d
dA hJo{u)J = V hi[a(J.L)J'P(J.L)Y

By construction, P(J.L)Y is in the null spacc of Vhi[a(f.L)], and hence from the
above cquatiori, v/e gct (d/dt\)Ma(f.L)]= O. Substituting in (4.14), it follows that
hJa(A)] = O. Since this is true for each i, it then íollows that a(A) is a feasible
solution to Problern P for each A> O and sufficiently small. By an argument
similar to that leading to (4.13), we get

d
- [[a(O)] = V f(x)'y< O
dA

and hence f[a(A)] < f(x) for À> O and sufficiently small. This contradicts local
optimality of x. Hence, F(I n 00 n Ho = 0, and the proof is complete.

The Fritz .John Conditions

We ilOW express the geometric optimality condition R)n 00 nHo = 0 in a
more usable algebraic formo This is done in Thcorern 4.3.2 bclow, which is a
generalization of thc Fritz John conditions of Theorem 4.2.6.

4.3.2 Theorem (The Fritz John Conditions)

Let X be a nonempty open sct in EIl, and let f: E" -7 El' gi: E" -7 E1 for
i= 1, ... ,111, and h.: E; -7 E1 for i= 1, ... , I. Consider Problem P to

~inimize f(x)
subject to gi(x) ::; () fori=l, ,m

for i = 1, , Ihi(x) = O

XEX

Let x be a fcasible solution, and let 1 =" {i: gi(X) = O}. Furthermorc, suppose that ~
g, for i1. [ is continuous at X, that ffand gj for iE [ are difierentiable at X, and
that h, for i= 1, ... , I is continuously differentiable at i. If x locally solves
Problem P, then there exist scalars U(), !ti for i E I and Vi for i = 1, ... , I such
that

I

u,SfCx)+ L LtSgi(x) + I.. v,Vhi(i) =0
j '- I i -~ !

U(J, ui;;:::O for iE 1

(1<,;, 11/. v) f; (0,0, O)
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whcrc u, is thc vcctor whose cornponcnts are Ui for isI aud v = ('V1" •• , VI l'.
Furtherrnorc, if gi for ie I is also differcntiable at X, then the Fritz John
conditions can be written in the following equivalcnt form where
U = (ut> .•• , um)' and V = (V1, .•• , VI)"

trI I

uoVf(x)+ L uiv gi(X) + I viv hi(x) == O
;=1 j=l

\. i:-r~ _"7'Ãgi(X)=O for i = 1, ... , m
·l~~-

, V U(), u, 2:: O for i= 1, ... , m

(U(h li, v) fo. (0, 0,0)

Proof

If Vhi(x) for i == 1, ... ,1 are linearly dependent, then one can find scalars
V1,···,Vf, not aI! zero, such that 2:~=1viVhi(x)=O. Letting 1/(" lIi for iEI be
equal to zero, thc conditionsof the first part of thc thcorern hold trivially.

Now suppose that Vhi(i) for i = 1, ... , l are linearly independenr. Lct A, be
the matrix whose rows are V[(,,)' and V gi(X)' for i E I, and ler A2 be the rnatrix
whoserows are Vhi(x)' for i=l, ... ,l. Then, from Theorern 4.3.1, local
optirnality of x implies that the system

A1d<O A2d'=O

is inconsistent, Now consider the following two sets:

51 = {(l1, Zz) :ZI = A1d, Z2 = A2d}

52 = {(:lI' Zz)::l.1 < 0, Z2 = O}

Note that Si and 82 are nonempty convex scts such that 5 I fi S2= 0. Thcn, by
Theorem 2.3.8, there exists a nonzero vector p' ~=(P'I, pi) such that

piA1d+p~Azd~p;Z1 +plZ2 for each dE E" and (ZI, Z2)E cl 52'

Letting Z2 = O and since each component of ZI can be maoe an arbitrarily large
nega tive number, it follows that PI 2::O. Also lctting (ZI':1.2) = (O, O), we must
have (P'IÁ1 +P~A2)d 2::O for each d E E". Lettíng d =-(A'I Pi + A~p:J, it fol-
lows that -II(A~P1 +A~P21122::0, anel thus At P1 + A; pz = O.

To surnmarize, we have shown that thcre exists a nonzero vcctor ip' =
(p~, p~) with Pl?: O such that A~P1 + A~P2 = O. Denoting thc cornponcnts of Pl
by Ltoanel Ui for i E I, anel letting P2 = v, thc first rcsult follows. Thc cquivalcnt
form of the necessary conclitions is readily obtaincd by letting u, =0 for it. l,
and the proof is complete.

The reader may note that the Lagrangian multiplicr Vi associated with tl.e
ith equality constraints is unrcstrictcd in signo The Fritz John conditions could
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also be written in vector notation as follows:

UoV' t(x) +vg(x)u + Vh(x)v = O

ulg(x) = °
(u(), u);?: (0, O)

(un, D, v) f= (O, 0, O)

Here, Vg(x) is an n x m matrix whose ith column is V gJi) , and Vh(i) is an n x l
matrix whose ith column is Vhj(x). Also u and 'Vare, respectively, an m vector
and an l vector, denoting the Lagrangian multipliers associated with the
inequality and equality constraints.

4.3.3 Example

Minimize

subject to

X/+X/

xt
2+ x/=55

- Xl =5 °
-X2::S °

Xt +2x2 =4

Here wc have only one equality constraint. We verify below that the Fritz
J01m conditions are true at the optimal point i = (t ~)I.First note that there are
no binding inequality constraints at i; that is 1= 0. Hence the multipliers
associated with the inequality constraints are equal to zero. Note that

V't(x) = G, \(,)1 and Vh\(x) = (1, 2)'

Thus

(l!) (1 \ (0 \
Un 1~(, +v\ 2)= 0/

5

is satisfied, for exarnple, by u()=5 and VI =-8.

4.3.4 Example
Minimize (Xt-3)2+(X2-2)2

subject to 2' 2 -X I + X2 ::S)

-X1::sO

- x2:S O

x\+-2x~=4

This exarnplc is thc same ax Exarnplc 4.2.7. with the incquality convtr aint
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X \ + 2x2::s 4 replaccd by x 1+ 2x2 = 4. At the optimal point i 0= (2, 1li, we have
only one inequality constraint x/ + X2

2::s 5 binding. The f'ritz John condition

UoC~)+ UI (~) +vl G) = (~)

is satisfied, for example, by Uo = 3, U1 = 1, and VI = 2.

4.3.5 Example
Minimize

subject to

-XI

X2 - (1 - X \? = °
-x2-(1-x\? =0

As shown in Figure 4.8, this problem has only one feasible point, namely
i = 0, 0)1. At this point, we have

Vt(i) = (-1, 0)1 V h1 (i) = (0, 1)1 vh2(x) = (0, -1)'

The condition

(-1) (0\ (0) (0\
U() O +v. l)+v2 -1 = O)

is true only if Uo = ° and V I = Vz = a, where a is any scalar. Thus the Frítz John
necessary conditions are rnet at the point x.

The Kuhn- Tucker Conditions

In the Fritz John conditions, the Lagrangian multipiier associated with the
objective function is not necessarily positive, Under further assumptions 011 the

h,

-f x,

I
Vh2(x)

h2

Figure 4.8 iilustration of Example 4.3.5.
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constraint ser, one can claim that Uo has to be positive, ln Theorern 4.3.6 below
we obtain a gcncralization of the Kuhn- Tucker necessary optimality conditions
of Theorem 4.2.10. This is dane by imposing a qualification on the gradients of
the equality and binding inequality constraints that ensure that u.,» O in the
Fritz John conditions. Other qualifications 00 the constraints to ensure that
uo> O are discussed in Chapter 5.

4.3.6 Theorem (Kuhn-Tucker Necessary Conditions)

Let X be a nonempty open set in En, and let f: En -- E" gi: E; -- E, for
j = 1, ... , m, and hi : EII -- E, for j = 1, ... , l. Consider Problem P to

[(x)
gi(X) :::;0

hi(x) = O

XEX

Let i be a feasible solution, and let I = {i: gi(i) = O}. Suppose that [ and gi for
i E 1 are differentiable atx, that gi for ii. 1 is continuous at X, and that hi for
i= 1, ... , I is continuously differentiable at x. Further suppose that V gi(x) for
iE I and V h, (x) for i= 1, ... , I are linearly independent. If x solves Problem P
locally, then there exist scalars u, for iE 1 and Vi for i= 1, ... , I such that

Minimize

subject to for i= 1, ... , m
for i= 1, ... , I

I

V[(i) +I UiVgi(X)+ I viv hi(x) = O
iEI i= 1

Ui ;:: O for iE I

In addition to the above assumptions, if gi for ié I is also differentiable at i,
then the Kuhn- Tucker conditions could be written in the following equivalent
form:

m l

V[(x)+ I uSgi(i) + I.viVhi(x)=O
i=l i=1

uig;(x) = O for i= 1, ... , m

for i = 1•... , mui ;:: O

Proof

By Thcorcrn 4.3.2, thcre cxist scalars Uo and ui for iE 1, and Vi for i = 1, ... , I,
not ali zero. such that

I

uoVf(x)+ L Il,'Vg,(X)+ I viVhi(i)=O
i( I t, ••1

(4.15)

Uo, ai 20 for iE I
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Note that u(»O, because if u()=O, then (4.15) would contradict the assurnption
of linear independence of V gi(i) for iE I and V hi(x) for i= 1, ... ,/. The first
result then follows by letting u, = úJ u[) and Vi = vJ Uo. Thc equivalent form of
the necessary conditions follows by letting Ui = O for ié 1. This completes the
proof.

Note that the Kuhn- Tucker condition of Theorem 4.3.6 can be written in
vector form as follows:

V[(x) + Vg(x)u + Vh(x)v = O

u'g(i) = O

u~o

Here, Vg(i) is an n x m matrix and Vh(x) is an n X i matrix whose ith co!umn, .
respectively, are Vgi(i) and Vhi(i). The vectors u and vare the Lagrangian
multiplier vectors.

Now consider Examples 4.3.3, 4.3.4, and 4.3.5. In Example 4.3.3, the readcr
can verify that UI = U2 = U3 = O and VI = -~ will satisfy the Kuhn-Tucker condi-
tions at x = (t ~)'.In Example 4.3.4, the values of the multipliers satisfying the
Kuhn- Tucker conditions at x = (2, 1)' are

I.ul =3 u2 = u3 =0 VI =~

Finally, Example 4.3.5 does not satisfy the assumptions of Theorem 4.3.6 a t
i = 0, O)', since V hl (x) and V h2(x) are linearly dcpcndent.

Theorem 4.3.7 below shows that, under rather mild convexity assumptions
on [, gi' and h;, the Kuhn- Tucker conditions are also sufficient for optimality.

,
I
1
\
f

4.3.7 Theorem (Kuhn-Tucker Sufficient Conditions)

Let X be a nonempty open set in En, and considcr f: En -- E l' gi : E" -)- E 1 for
i= 1, ... , m, and hi: E; -- EI for i= 1, ... , /. Consider Problem P to

Minimize

subject to

[(x)
g/ (x) :oS O

hi(x) = O
XEX

for i= 1, ... , m

for i= 1, ' .. , I

Letx be a feasible solution, and let I = {i: gi(X) = O}.Suppose that the Kuhn- Tucker
conditions hold at i, that is, there exist scalars üi 2: O for iE J and Vi for
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i= 1, ... , I such that
I

Vf(x) + LüiVgi(X)+ L viVhi(x)=O
t c t i= I

(4.16)

Let J = {i: Vi > O} and K = {i: Vi < O}. Further suppose that t is pseudoconvex at
X, gi is quasiconvex at X for iE I, h, is quasiconvex at X for i E J and h, is
quasiconcave at i for i E K. Then X is a global optimal solution to Problem P.

Proof
Let x be a feasible solution to Probiem P. Then for i E I, gi(x):5 gi(x) since
K(X):5 O and gi(X) = O. By quasiconvexity of gi at X it follows that:

K(X +A(x -i)) = gi(ÁX + (1- A)x):5 rnaximum (gi(X), gi(X» = gi(X)

for alI A E (O, 1). This implies that gi does not increase by moving from i along
the direction x-'x. Thus by Theorem 4.1.2, we must have

V gi(i)' (x-x):5 O (4.17)for i E I

Similarly, since li; is quasiconvex at x for iE J, and h, is quasiconcave at i for
i E K, we havc

V hi(i)' (x -i):5 O

V hi(x)'(x -x) 2: O

for i E J (4.18)

(4.19)for i EK

MultipJying (4.17), (4.18), and (4.19), respectively, by Üi2:0, 1\>0 and Vj<O
and adding, we get

L~lüiV gi(X) + jEfuK Vi 'V hi(x) J (x-X):5 O

Multiplying (4.16) by x-i, and noting that Vi =0 for ifÉJU K, then (4.20)
implies that

(4.20)

vt(i)' (x -x) 2: O

By pseudoconvexity of f at i, then f(x) 2: f(i), and the proof is complete.

Alternative Forms of the Kuhn- Tucker Conditions for General Prob!ems

Consider the problcm to minimize f(x) subject to gi(X):50 for i=l, ... ,m,
h, (x) = O for i= 1, ... , I, and x E X, where X is an open set in En. In this
section, we derivcd lhe following necessary conditions of optimality at ?
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feasible point x.
»1 I

Vf(x)+ L UiVgi(i) + L vjVhi(i)=O
;=1 . i=l

u.g, (x) = O for i == 1, , m

u, ::::O for j = 1, , m

Some authors prefer to use the multipliers Aj = -Ui:50 and ,Uj = -Vi' In this
case, the Kuhn- Tucker conditions could be written as follows:

m I

Vf(x) - L AiV gj(X) - I fLiV hi(x) = O
i=1 i=l

Ajgj (i) = O for i= 1, , m
Ai :5 O for i= 1, , rn

Now consider the probJem to minimize f(x) subjcct to 1-(;(x)::::; O for i =

1,... ,mj, gj(:r.)2:Ü for i=m1+l, ... ,m, hj(x)=O for i=l, ... ,I, and XEX,
where X is an open set in EIl' Clearly, one can write gi(X) 2: O for i =

mj + 1, ... , m as - gj(x):5 O for i = mj + 1, ... ,m, and use the results of
Theorem 4.3.6. It is easy to verify that the necessary conditions can be
expressed as follows:

m 1

Vf(x) + L ujVg.(x)+ L: Vi v h,(x) =0
i-=l i=1

Ujgi(X)= O
Uj 2:0

u, :50

for j = 1, , m
for i = 1, , m I

for i = m i + 1, ... , m

We now consider problems of the type to minimize f(x) subjcct to g; (x):5 O
for i = 1, ... , m, h.(x) = O for i = 1, ... ,I, and x > 3. Such problcms wirh non-
negativity restrictions on the variablcs frequently arise in practice, Clearly, toe
Kuhn-Tucker conditions discussed earlier would apply. However, it is some-
times convenient to eliminate the Lagrangian multipliers associated with x 2: O.
The conditions then reduce to

m i

Vf(i) + L uiVg.(x)+ L viVhj(x) 2: O
i=l i=1

[
m I "1'

"Vf(i)+i~l UjVgj(x)+j~JVj~Yhj(x).J x=O

ujgj(X) = p

u, 2:0

for i= I, ,m

"for i = 1, , m

Final!y, consider the problern to maxrrruze f(x) subject to gj (x):5 O for
i=l, ... ,lnJ, gj(x)2:0 for i=m1+1, ... ,m, h;('x)='O for i=l, ... .L; and
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4.1 Considcr lhe following unconstrained problem:

minimize X,2 - x,x2 +2x/-2x, + eX
"',X E X, where X is an open set in En. The necessary conditions for optimality

can be written as follows:

Ui :50

Ui ;?; O

for i= 1, , m

for i==1, ,m1

for i= m1 + 1, ... , m
4.2

a. Write the first-ordcr nccessary optimality condition. ls this condition also
sufficicnt for optimality? Why?

b. Is x = (0, O)' an optimal solution? lf not, identify a direction d along which the
function would decrease.

c. Minimize the function starting frorn (O, O) along the direction d obtained in
part b above.

Consider the problem to minimize IIAx-bll', where Ais an m x 11 matrix and b is
an m vector.
a. Give a geometric interpretation of the problcm.
b. Write a necessary condition for optimality. Is this also a sufficicnt condition?
e. Is the optimal solution unique? Why 01' why not?
d. Can you give a closed-form solution of lhe optimal solution? Specify any

assurnptions that you may need.
e. Solve the problem for A and b given below

[
1 -1 0J() 2 1A=
() 1 O
1 () 1

b=r~JlU)

'" I
Vf(i) + L UiVgi(X) + L viVhi(i)=O

i=1 i=1

Uigi(i) = O

4.3 Considcr the problem to minimize [(x) subject 10 í( (x):5 O for i= 1, ... , m. Let i
be a local minimal point, and let 1= {i: g (x) = O}. Suppose that [ is di1Terentiable
at x, that g for i E 1 is differentiable a,;d concave at X, and that g for ié 1 is
continuous at Y..Prove that F()n G' = 0, where '

Fo={d:Vf(x)'d<O}, and G'={d:Vg,(i)'dSO for iEI}
4.4 Consider the following problem:

Maximize 3x, - x2 +x/
subject to x, + x2 + x3 S O

-x, +2x2 +X}2 = O

a. Write lhe Kuhn- Tucker optimality conditions
b. Using the above conditions, find the opiimal solution to the problern.

4.5 Consider the following problem:

Maximize X/+4XJX2+X2
2

XJ2+X/= 1subject to

a. Using the Kuhn- Tucker conditions, find an optimal solution to the problern.
b. Does lhe problcm have a unique optimul solution?

4.6 Considcr the following linear program:

Maximize 2x, +3x2

subject to x,+ x2s8

-Xl +2X2$4

X" X2~O
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3. \\'ritc rhc Kuhn-Tuckcr optimality conditions,
b. For each extreme point, verify whether or not the Kuhn-Tucker conditions

are true, both algebraically and gcornetrically. From this, find the optimal
solution.

Consider thef'ollowing problern:

Minirrrize (x, _~)2 + (X2 - 2f
4.7

subject to X2-X12~O

X, + X2 =:; 6

x.. X2 ~ ()

b. Show that any poiut on the line segment joining thc points (O, O) and (6, O) is
an optimal solution.

4.12 Use the Kuhn-Tucker conditions to prove Farkas' theorem discussed in Section
2.3. (Hint: Consider the problern maximize c'x subject to Ax =:; O.)

4.13 Consider the problcm to minimize f(x) sub ject to gi (x) =:; O for i= 1, ... , m.
a. Show that verifying whether a point x is a Kuhn- Tucker point is equivalent to

finding a vcctor u satisfying a systcrn of the form A' u = c, u ~ O. This ean be
done using Phase I of linear programming.

b. Indicare the modifications needed in part a if the problern had equality
eonstraints.

c. Illustrate part a by the following problern, whcrc x = (1,2,5)'.

a. Write the Kuhn- Tucker optimality eonditions and verify that these eonditions
are true at the point x = G, ~)'.

b. Interpret the Kuhn- Tucker eonditions at x graphieally.
c. Show that x is indeed the unique global optimal solution.

4.8 Consider the following problem.

Minirnizc

subjcct to

2Xl2 + x/ +2X32 + X1X3 - X1X2 + Xl + 2x)
XI2+X2~- X3=:;0

Xl +X2 +2X3=:;16

XI +x2 23

Minimize

subjeet to

xI
Z+2x/

XI + X2-1 = O

Xl> x2, X3~O

Find a point satisfying the Kuhn- Tucker conditions and verify that it is indeed an
optimal solution. Resolve the problem if the objective funetion is replaeed by
x,·'+x/.

4.14 Consider the problern to minimize f(x) subject to gi(X) =:; O for i=-1, .... m. Let x
be li feasible point, and let I =: {i: g,(i) = O}. Suppose that f is difíerentiable at i
and that gi for iE' I is differentiable and coneave at x. Furtherrnore, suppo,;e that
gi for i~ I is continuous at X. Consider the following linear problem:

Write the Kuhn- Tucker necessary optirnality conditions for Exercises 1.10 and
1.1 I. Using these conditions, finei the optimal solutions.

Consider the following one-dimensional minimization problem:

where x is a given vector and d is a given nonzero dircetion.
a. Write a ncccssary eondition for a minimum if f is differentiable. Is this

condition also sufficicnt? If not, what assurnptions on f would make the
nccessary eondition also sufficient?

b. Suppose that f is convcx but not differentiable. Can you develop a necessary
optirnality ccndition for the above problem using subgradients of f defined in
Section 3.2.

4.9

4.10

Minimize

subjcct to

4.11

Minimize

subjeet to

Vf(x)'d
V g,(x)' d=:;O

-1 =:;dj =:;1.

for iE I

for j = 1, ... , r.
f(x+Ad)

A2:0
Let d be an optimal solution with objective function value z.
a. Show that z =:; (J.
b. Show that if z < O, then there exists a ô > O such that x + Arl is Ieasible and

f(x + A d) < f(x) for each A E (O, ô).
e. Show that if z = O, then x satisfics lhe Kuhn-Tucker conditions.
Let f: E" -.. E I, gi: Eu-.. E I for i =: 1, ... , m be convex functions. Consider the
problcrn to rninimize f(x) subjcct to gi (x) =:; O for i= 1, ... , 111. Let M be a proper
subset of {I, ... , m}, and suppose that x solves the problem to rninirnize f(x)
subjeet to gi(X) =:; O for iEM. Let V =: {i: g,(x) > O}. If i: solves lhe original
problcm, show that gi(X) '" () for some iE V.
(This exereise also shows that if lhe unconstrained minimum of f is infe asible,
then the constrained minimum lies on the boundary of the ícasible rcgion.)
Consider the problem to minimize f(x) subjcct to x 2: O, where f is a difíereruiable
eonvex Iunction. LeI i be a given point and denote 7f(i) by ('VI>"" V'")'. Show
that x is an optimal solution if and only if d =0, where d is defined ):>y

4.15

Minimize

Considcr the following problem,

XI +3x~+3
2xI +X2+6

XI>X~~O

a. Show that thc Kuhn- Tucker conditions are sufficicnt for this problcrn.

subject to

4.16

2xl+ x2:=:;12

-X, +2x~=:;4

di =r-~i if Xi> O or 'Vi < O
if Xi = O and Vi 2: O
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4.17 Consider lhe following problem:

Minimize
,
I t(x;)
i~1

subjeet 10
"Lxi= 1

i~1

Xi 2:0 for j = 1,2, ... , n.

S h - ()' b . afi(i)uppose I at x = Xl>"" X" 2: O solves the a ove problem. Letting ôi = --,ax
show that there exists a sealar k sueh that I

Ôi2:k and (ôi-k)xi=O forj=I,2, ... ,n

Consider the following problem, where c is a nonzero veetor in E".I .1.18

Maximize c'd
d'd:51

\
I 4.19

I

subjeet to

a. Show that d = c/llcll is a Kuhu- Tucker point. Furthermore, show that d is
indeed the unique global optimal solution.

b. Using the result of part a, show that the direction of steepest ascent of f at a
point x is given by Vf(x)/IIVf(x)11 provided that Vf(x) "I O.

Consider the fol!owing problem, where ai' b, and Ci are positive constants.

Minimizc
nIS

i-I Xi

subjeet to
o.

LaiXi=b
i~1

14.20

Xi 2: O for j = 1, ... , n
Write the Kuhn-Tucker conditions, and solve for the point i satisfying these
eonditions.
In geometrie programming, the íollowing result is used. If x., ... , X" 2: O, then

1" (O. )1'0.- L Xi 2: TI Xi
n i~1 i~1

4.21

Prove thc result using the Kuhn- Tucker conditions.
Hint: Consider one of the following problerns:

Minimize Lí'~I Xi subject to Ilí'~I Xi = 1, Xi 2: O for j = 1, , n.

Maxirnize Ilí'- I Xi subjcct to Lí'-I Xi = 1, Xi 2: O for j = 1, , n.
LeI c be an n vector, b an m vcctor, A an m x It matrix, and H a symmetric n x It

positivo definire rnatrix. Considcr the following two problerns:

(1) Minimize c'x+~x'Hx subject to Ax-s b

(2) Minirnize h'v+!v'Gv subject to v2: O

Exercises 155

4.22

where G=AH-'A' and h=Alr'c+b. Investigare lhe relationship betwecn lhe
Kuhn- Tucker conditions of Problerns 1 and 2.
Consider the following problem:

Minimize f(x)

Ax=bsubjeet to

X2:0

Let x' = (i~, x:"") be an extrerne point, where xa = B-'b >O, xN = O, and A = [B, N]
with B invertible. Now consider the following direction-finding problem:

Minimize [V Nf(i) - V Bf(x)B-IN)'d",

0:5 di:51 for each nonbasic component jsubject to

4.23

where Vnf(5i.) and V Nf(i) denote the gradient of f with respect to the basic and
nonbasic variables respectively. Let dN be ao optirnal solution, and let dB =
- B-INdN• Show that if d' = (d~,a~)"I (O, O), then it is an irnproving Ieasible
direction. What are the implieations of d = O?
Considcr the problem to minimize f(x) subject to Ax:5 b. Suppose that x is a
feasible solution such that A1i=bl and A2i<b2, where A'=(A~,A~) and
b' = (b'i> b~). Assuming that AI has full rank, the matrix P that projects any
vector in the nul! space of A~ is given by

P=I-A;(A,A;rIA:

a. Let d = - PVf(i). Show that if €i I 0, thcn it is ao irnproviug Ieasible direction;
that is, x+Àd is feasible and that f(i+ÀÍi)<f(i) for A >0 and sufficiently
smal!.

b. Suppose that d=O, and that u=-(A,A',r'A,V[(x)?:O. Show that i is a
Kuhn-Tuckcr point.

c. Show that d generated above is of the form Ad for some À> O, where a is an
optimal solution of the following problern:

Minimize Vf(i)'d

subject to Ald = G

IIdl12:51

4.24

d. Make ali possible simplifications if A = -1 and h = 0, that is, if the constraints
are of the Iorm x 2: O.

Consider the following problem:
Minimize X12- XIX2+ 2x/-4xI - 5X2

suhjectto XI+2x2:$6

XI :52

Xl> x2 2: O

a. Solve the problem geometrical!y, and verify the optimality of your solution by
the Kuhn-Tucker conditions.
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4.25

b. Find thc dircctiori d of Excrcisc 4.23 at the optimal snlution. Verify that d = O
and that u 2:: O.

e. Find the dircction (j of Exercisc 4.23 at X= (l, ~)'. Verify that d is an
improving Icasiblc direction. Also vcrify that the optimaI solution d of part c
of Exercise 4.23 indeed points along d.

Investigare the relationship between the optimal solutions and the Kuhn- Tucker
conditions of lhe foilowing two problems, where À 2:: O is a given fixed vector.

Problem P: Minimize f(x) subjeet to x E X, g(x):5 O

Problem P': Minimize f(x) subjeet to XEX, À'g(x):50.

(Problem P' has only one constraint and is referred to as the surrogate problem.)
Consider the following problcm:4.26

Minimize f(x)

gi (x):5 ()

hj(x) = ()

fori=I, ,m

for i= 1, , L

subject to

XEX

Let x bc a local optirnal solution to the problem, and let I = {i: gj (x) = O}.
Furtherrnorc, suppose that V gi (x) for iE I and V h, (x) for i= 1, ... , I are linearly
independcnt.
The second-order nccessary eonditions for local optimality can be written as
follows. There exist a vecror u 2:: O and a vector v such that

tu I

Vf(x) + I uiVgj(x) + I vjVhj(x) =0
i'" I InJ

u,gj(X) = O for i= 1, ... ,11'1

and such that
m /

L~=~~+I~~w+I~~w
j....,. I j",,"

is positive sernidcfinite on thc linear subspacc

M = {y:Vg,(x)y= O \'hj(x)y=Ofor iE I, for i= 1, ... ,I}

where J.'(il, G, (x), and H, (x) are thc Hcssian matrices of f, gi, and h" respectively,
at x.
a. Vcr if'y thc sccond-ordcr neccs~ary optimality conditions in Excrcise 4.4.
h. Thc uhovc comiilions nccd not bc sutficicnt for a local minimurn. However, if

L(x) is poxitive definiu: OIJ

M' = {y:vg,(x)y = O for i= 1, ... , l}if tli >0, Vhi(x)y=O

thcn x is indccd :t local rmrumurn. Does this second-ordcr sufficicnt condition
holc at lhe opt imal point obtaincd in part a above?

i : ) ) i r. )' n "., r' )' I \ )' )

Exercises 1S1

4.27 Considcr thc following problcm:

Minimizc c'x+ ~x'Hx
suhject to Ax s b

whcre c is an n vector, b is an m vector, A is an 11'1 x n matrix, and H is an ti x n
symmetrie matrix.
a. Write lhe second-order necessary optimality eonditions of Exercise 4.26.

Make ali possible simplifications.
b. Is it necessarily true that every local minimum to lhe above problem is also a

global minimum? Prove or give a eounterexamplc.
c. Provide the first- and second-order nccessary optimality conditions for the

special case where c = O and H = I. In this case thc problcrn reeluces to finding
the point in a polyhcdral set closest to the origino
(Thc above problem is rcferred to in thc literaturc as a least distallce
programming problem.)

Consider the following problem:4.28
Minimize

subjcct to

4.29

-Xj +X2

xj
2+x/-2Xj =0

(x., X2) E X

whcrc X is lhe eonvex cornbinations of the points (--1, O), (O, I), (1, O), and
(-1, O).
a. Find lhe optima! solution graphically.
b. Do lhe Fritz John 01' thc Kuhn- Tuckcr conditions hold at thc optimal solution

in part a? If not, explain in terrns of Thcorcms 4.3.2. and 4.3.6.
C. Rcplace lhe set X bya suitablc systern of incqualitics and answer part b. What

are your conclusions? '
Consider the following problem to minimize {(x) subjcct to g, (x):5 O for i =
1) ... , m and hj(x) "'~() for i= I, ... , l. Suppose that x solves lhe problcrn locally.
and let 1= {i: gj (x) = O}. Furthermore, suppose that gi for iE I is dííícrcntiable at
X, gj for ir/; I is continuous at X, h}, ... , h, are affine, that is, h; is of the Iorm
hi(x) = a:x- b;
a. Show that Flln G n HIl= 0, where

4.30

Fo={d:Vf(x)'d<O}

HIl = {d : V11;(x)'d = O for i= 1, ... , l}
G ={d:Vgj(x)'d:50 for iEJand Vgj(x)'d<O for i e I-i}
J = {i E 1: gi is pseudoconcave at x}

b. Can this condition be verified by using linear prograrnming? If SO, illustrate in
detail.

Let X bc a noncrnpty open set in E,,, anel considcr f: e" -. Ej, g,: E" ~ Ej for
i= 1, ... , m, and hj: E" ~ E, for i = 1, ... , I. Considcr Problcm P to

Minimize
subject to

!(x)
gj(x):50
hj(x)=O

XEX

for i= 1, , nt
for i= 1, , I
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In this chaptcr we dcvclop first- and sccond-ordcr optimality conditions for
unconstraincd optimization problerns. Thcsc classical rcsults can be Iound in
most textbooks dealing with real analysis. For more details on this subjcct and
for information regarding the handling of cquality constraints via the Lagran ..
gian multiplier rule, rcf'er to Bartle [1976J anel Rudin f 1964].

ln Section 4.2 we treat the problcrn of minimizing a function in the prescnce
of inequa1ity constraints and develop the Fritz John r 194~] neccssary optirnal-
ity conditions. A weaker form of these conditions, in which tIlt: nouncgativity
of the multip1iers was not asserted, was derived by Karush [1939]. Under a
suitab1e constraint qualification, the Lagrangian multiplicr associated with the
objective function is positive, and lhe Fritz John conditions rcduce to those of
Kuhn and Tucker [1951], which wcrc independcntly derivcd. Even though the
Kuhn- Tucker conditions were original!y dcrivcd by Karush [1939] using cal-
culus of variations, the work has not receivcd much attcntion, since it has not
been published. An excellent historica1 rcview of optirnality conditions for
nonlinear programming can bc found in Kuhn [1976]. The rcadcr may reter to
the folJowing ref'erences for íurther study of the Fritz John and Kuhn- Tucker
conditions: Abadie [1967bJ, Avricl [1967], Canon, Cullum, and Polak [1966],
Gould and Tolle [1972J, Luenberger [19731, Mangasarian LJ 9693.J, and Zang-
will [1969].

Mangasarian and Fromovitz[1967] gcneralizcd the Fritz John conditions to
hand1e both cquality and inequality constraints. Thcir approach used the
imp1icit f'unction theorern. In Scction 4.3 we dcvclop thc Fritz John conditions
for equa1ity and inequality constraints by constructing a ícasible are, as in lhe
work of Fiacco and McCormick [1968].

In Seetion 4.4 we show that the Kuhn-Tucker conelitions are indccd suffi-
eient for optimality under suitable convexity assurnptions. This result was
proved by Kuhn anel Tucker [1951] if thc íunctions [, gj for iE J are convexo
the functions 11, for all i are affine, and thc sct X is convexo This rcsult was
gcneralizcd 1ater, so that weaker convcxity assurnptions are nccded te) guaran-
tee optimality, as shown in section 4.4 (see Mangasarian [J 969a 1). the rcader
may a1so refer to Bhatt and Misra [1975J, who relaxed thc condition that hj

be affine, provided that the associated Lagrangian multiplier has thc correct
signo

Other generalizations and extcnsions of the Fritz John and Kuhn-Tuckcr
conditions were developcd by many authors. Onc such cxtcnsiori ix to rclax the
condition that the set X is opcn. In this case wc obt.iin ncccssary optimaiity
conditions of the minimurn principie typc. For dctails on this t ypc of optirnality
conditions, scc Bazaraa and Goode [jC)72], Canon, Cullurn , and Polak [1 Y70],
and Mangasarian [1969a]. Another extcnsion is to treat the problern in an
infinite-dimcnsional setting. Tbe interested render may rcf'er to Canon, Cullurn,
and Polak [1970J, Dubovitskii and Milyutin r 1965], Guignard [1969J, Halkin
and Neustadt [1966J, Hestcnes [1966J, Ncustadt [10MQ, anel Varaiya [1967]. H

Lct x bc a fcasiblc solution, and let I = {i:!-:i (x) = O}. Supposc that thc Kuhn-
Tucker conditions hold at X, that is, there cxist scalars ú, 2: ° for i E I and Vi for
i= 1, ... , l such that

I

Vi(x) + LüjV g;(x) + L Vi Vhj(x) = O
iL I •..• J

a. Suppose that i is pseudoconvex at x and that cf> is quasiconvex at x, where

I

cf>(x)= L üigj(x) + L vjhj(x)

4.31

Show that x is a global optimal solution to Problem P.

b. Show that if [+L:jEIÜjgj+L::ft! V;llj is pseudoconvex, then x is a global opnmal
solution to Problem P.

C. Show by means of exarnples that the convexity assumptions in parts a and b
above and those of Theorem 4.3.7 are not equivalent to each other.

Consider the bilinear program to minimizc c'x+d'y+x'Hy subject to XEX and
y e Y, wherc X and Y are houndcd polyhedral scts in E" and E"" respcctively.
Let x and y be extremo pcints of thc sets X and Y, rcspcctivcly,
a. Verify that the objective function is ncither quasiconvcx nor quasiconcave.
b. Prove that therc exists an extreme point (i, y) that solves the bilinear programo
C. Prove that the point (i, y) is a local minimum of the bilinear prograrn if and

only if lhe following are truc:
(i) c'(x-i)2:0 and d'(y-y)2:0 for cach XEX anel y e Y,
(ii) c'(x-i) + d'(y-y) >O whcncver (x- i)'H(y·-y) <O.

d. Show that the point (i, y) is a Kuhn-Tucker point if and only if (c' +Y'H)
(x- i) 2: O ror each XE X and (d' +x'H)(y- y) ~ O for each yE Y.

e. Consider the problern to rninimize X2 + YI + X~YI - XI Y2 + X2Y2 subject to
(XI> Xz) E X and (YI> Y2) E Y, where X is the polyhedral set defined by its extreme
points (0, O), (0,1), (1,4), (2, 4), and (3, O), and Y is the polyhedral set defined by
its cxtreme points (0, O), (0, 1), (1, 5), (3, 5), (4, 4), and (3, O). Verify that the
point (XI> X2, Yl' Y2) = (0,0,0, O) is a Kuhn- Tuckcr point but not a local
rninimum. Verify that the point (Xl, X2, Y:, Y2) = (3, 0,1,5) is both a Kuhn-
Tucker point and a local minimum. What is the global minimum to the
problcm?
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~is aIso worth mentioning that several authors have devclopcd sccond-order
optimality conditions for constrained problerns. For a thorough study of this
topic, see Avriel [1976], Fiacco [1968], Luenberger [1973], McCormick
[1967], and Messerli and Polak [1969].

5.1 The Cone 01 Tanqents_._--- - .._-- ----------

In Chapter 4 we considered Problem P to minimize f(x) subject to x E X and
gj(x):5 0, i= 1, ... , m. We obtained the Kuhn-Tucker necessary conditions
for optimality by deriving the Fritz John conditions and thcn asscrting that the
muItiplier associated with the objective function is positive when a constraint
qualification is satisfied. In this chapter, we deveIop the Kuhn- Tucker condi-
tions directly without first dcriving thc Fritz 10h:1 conditions. This is done
under various constraint qualifications for problerns with inequality constraints
and for problems with both inequality and equality constraints.

The folIowing is an outIine of the chapter.

SECTION 5.1: The Cone oí Tangents We introduce the cone of tangents T
and show that F() li T = 0 is a nccessary condition for local optimality, Using a
constraint qualification, we derive the Kuhn- Tucker conditicns dircctly for
problerns with inequality constraints.

SECTiON 5.2: Other Constraint Qualiâcations Wc introducc othcr cones
contained in the cone of tangents. Making use of thcsc cones. we present
various constraint qualifications that validare the Kuhn-Tucker conditions.

SECTION 5.3: Problems with Incquality and Equality Constraints Thc results
of Section 5.2 are extcnded to problcms with cqualiry and incquality con-
straints.

In Scction 4.2 we discusscd thc Kuhn-Tucker neccssary optimality conditions
for problerns with inequality constraints. In particular, we showcd that local
optimality implies that Fo n Go = 0, which in turn implies the Fritz John
conditions. Under the linear indcpendence constraint '~!iE!liticatjon,we ob-
tained the Kuhn-Tucker conditions. This process is surnmarized in the accorn-
panying flowchart. In this section we derive the Kubn-Tucker conditions



162 Constraint Oualifications
5.1 The Cone of Tanqents '183

Fo n c';0 t(XI<.) - t(x) = Vf(x)' (x, - x) + Ilxl<.- xII a(x; xk -x) (5.1)

I Local optirnatitv

Theorem 4.2.2 Constraint
qualif ication

Fritz John c~~

cone of tangents is indeed <I closed cone. Figure 5.1 illustrates some examples
of the cone of tangents, where the origin is translated to x for convenience.

Theorern 5.1.2 below shows that for a problcrn of the form: mínimize f(x)
suhject to x E 5, Fo n T = 0 is indccd a necessary condition for optimality, Later
we specify 5 to be the set {xE X : gj(x) =5O for i= 1, ... , m}

Kuhn- Tucker conditions

I !'oÍ'f);0 ] ~L-..... Theorem 4.2.6

directly without first ohtaining the Fritz John conelitions. As shown in Theorem
5.1.2 below, a necessary condition for local optimality is that F()n T= 0, where
Tis thc cone of tangcnts givcn in Definition 5. 1.1 below. Using the constraint
qualification 1'=0', where G' is as defined in Theorem 5.1.3, F()nG'=0.
Using Farkas' theorem, this statement gives the Kuhn-Tucker conelitions. This
process is summarizeel in the accompanying flowchart. .

5.1.2 Theorem

Let 5 be a nonernpty set in E", and let x E 5. Furthcrrnore, suppose that
f: E; --'? EI is eliffercntiable at X. If x locally solves thc oroblem to mínimíze f(x)
subject to XE 5, then /<"'on T= 0, wherc F() = {d: Vf(x)'d < O}, and Tis the cone
of tangents of 5 at X.

Proof

Fark as' theorem
Let d s T, that is, d = limk~oo ÀI<. (x, - X), where ÀI<. > 0, XI<. E 5 for each k, and
xk --'?x. By differentiability of f at X, we get

r--;:!!r ;0 J ConstraintL~___ quatificaticn

T; c'
where a(x; xk -i)--'?O as XI<. --'?x. Noting thc local optimality of %, for k large
enough, we have f(Xk) "2::f(x), and from (5.1), we gct

V f(x)' (x, - x) + Ilxk - xl! Ct'(x; xk- i) "2::O

Multiplying by Àk > O and taking the limit as k '-HI:J, lhe above inequality
implies that Vf(x)'d"2::0. So far, we have shown that d s T implies that
Vf(i)'d"2:: 0, anel hence R)n T'= 0, anel the proof is complete.

5.1.1 Definition

Let 5 be a nonempty set in EII' and let x E cl 5. The cone of tangents of 5 at x,
denoted by T, is the set of ali directions d such that d = limk~oo Àk (x, - x),
where Àk > O, Xk E 5 for each k, and Xk ·~x.

From the above dcfinition, it is clear that d belongs to the cone of tangents if
there is a Ieasible sequence {xk} converging to x such that thc elirections of the
cords Xk -i converge to d. In Exercise 5.4 we ask the reader to show that the

xwdlfiW

Abadie Constraint Qualification

In Theorem 5.1.3 below we derive the Kuhn-Tucker conditions under the
constraint qualification T = G' credited to Abadie.

'lfIrp 5.1.3 Theorem (Kuhn-Tucker Necessary Conditions)

x

Let X be a nonempty set in Em and let f: E; --'? EI and gi: EII -> E, for
í= 1, ... , m. Consider the problem to minímize f(x) subjcct to XEX, gj(x)=50
for í = 1, ... , m. Let x be a feasibIc solution, and let J = {i: gJx) -= O}. Suppose
that f and gj for iE I are diffcrentiable at x. Furtherrnore, supposc that lhe
constraint qualification T = O' is true, where T is the cone of tangents of lhe
feasible region at x, and G'={d:Vg(x)'d=50 for iEJ}. If x is a local optimal
solution, then there exist nonnegatíve scalars Uj for iE I such that

Vf(i) +I ujv gj(X) = O
, ieI

T

Figure 5.1 Examples of the cone of tangents.
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Proof
By Theorern 5.1.2, Fon T= 0, where Fo={d:Vf(x)'d<O}. By assumption,
T=G', so that F(lnG'=0. 10 order words the following system has no

5.2 Other Constraint Oualifications

Vf(x)'d<O Vgj(x)'d:50 for iEI

Then, by Theorern 2.3.5 (Farkas' thcorem), the result foJlows.

-----------------------------------_ .._------
The Kuhn-Tucker conditions havc bccn devclopcd by many a uthors undcr
various constraint qualifications. ln this section wc prcscnt some of thc mure
important constraint qualifications. In Section 5.1 we learned that local optirnality
implies that Fon T= 0, and the Kuhn-Tuckcr coriditions fol1ow under lhe
constraint qualification T = G'. If we define a cone C e T, thcn t~)nT = 0 also
implies that Fo n C = 0. Therefore, any constrainr qualification of thc form
C = G' will lead to the Kuhn- Tucker conditions. this process is illustrated in
the accompanying flow chart.

The reader may verify that in Example 4.2.8, the constraint qualification
T= G' does not hold true at x = (1, O)'. Note that the Abadie constraint
qua!ification T= G' could be equivalently stated as T-:::;G', since Te G' is
always true (se e Exercise 5.13). Note that opermess of the set X and continuity
of gj at x for iÉ I were not explicitly assumed in Theorern 5.1.3. However,
without these assumptions, it is unlikely that the constraint qualification T-:::; G'

would hold true (see Exercise 5.11).

Local optimality
r--------l
I Kuhn-- Tuckcr condirions
L-__ _~

Thcorem 5.1.2 Farkas' tr-eore.n

linearly Constrained Problerns
Lemma 5.1.4 below shows that if the constraints are linear, then the Abadie
constraint qualification is automatically true. This also implies that the Kuhn-
Tucker conditions are always necessary for problcms with linear constraints
whether the objective function is linear or nonlinear.

[- Fo n_~' "0 J
J

Consuaint
quaiification C ::: G'

1I CCT

Fo () C = 0

5.1.4 Lemma
Let A be an m x n matrix, let b be an m vector, and let S ={x:Ax::5b}.
Supposex e S is ~11Ch that Alx=bl and A2x<b2, whcre A'=(A;,A~) and
b' = (b;, b~). Then, T= G', wherc T is the cone of tangents of S at x and
G'={d:Ald::50}.

V/e present bclow several such cones whose closurcs are containcd in T.
Here the feasible region S is given by {XEX:gi(X)::5Ü, i=1,2, ... ,mJ. The
vector x is a feasible point, and J = {i: gi(X) = O}.

The Cone Of Feasible Directions of S at x
Proof This cone was introduced earlicr in Definition 4.2, L 1'1:e cone of fcasible

dircctions, dcnoted by D, is the set of ali nonzcro vectors d such that x -.:-Ao E S
for À E (0, 8) for some s > O.

If AI is vacuous, G' = En. Furtherrnorc, XE int S, and hence T= Efl" Thus,
G' = T. Now suppose that A I is not vacuous, Let dE T, that is, d =
limk_

oo
Àk(Xk -x), where Xk E: S and Àk >O for each k. Then

A,(xl< -i)::5b,-b, =0 (5.2) The Cone of Attainable Directions of S at x

Multiplving (5.2) by Ak > O anel taking thc limit as k -H1":J, it Iollows that
A]d::50_ Thus, d c G', anel Te G'. Now lct dE G', that is, A,d::50. We need to
show that dE T. Since A.;!x «. b2, thcrc is a 8> O such that À:/i + Ad) <b2 for ali
À E(O, 8). Furthcrmorc, since A,x=bl and Ald:50, thcn Al(x+Àd)::5D, for all
À> O. Theretcre x + j,d E.5 for cach A E (O, ó). This automatically shows that
d e T. Thercf'orc. T = G I, and the proof is complete.

A nonzcro vcctor d bclongs to the cone of attainablc dircctions. dcnotcd by
A, if there exist a o> O and an o : E I -r-r E" such that c:(A) cS' for A CO, ô),

_ . a(À)- •.x(O)
ce(O)= x, and limA_O' - , d. In other words, d bclongs to the cone of

/\

attainable directions if therc is a fcasible are starting frorn X that is tangential •.O
d.
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The Cone of Interior Directions of S at x
This cone. denoted by Gi; was introduced in Section 4.2. More specifically,
Gn={d:Vgi(x)'d<O for iEI}. Note that if X is open and gi for ié l is
continuous at X, then d s Co implies that X+ Ad belongs to the interior of the
feasible region for A> O and sufficiently small.

Lemma 5.2.1 below shows that alI the above cones and their closures are
contained in T.

Cottle Constraint Oualification

The set X is open and gi for irtl is continuous at X, and cl Co = C'.

Zangwill Constraint Oualification

cID=C'

Kuhn- Tucker Constraint Oualification

clA=C'

5.2.1 Lemma
Let X be a nonempty set in E", and let f: E; ~-. E1 and gi: EIl ~ E1 for
i = 1, ,m. Consider the problem to minimize f(x) subject to gJx)::5 O for
i'l, ,m and XEX Let x be a feasible point, and let I={i:gi(x)=O}.
Suppose that gi for iEI is differentiable at x, and let G'={d:Vgi(x)'d::50 for
iE I}. Then

The Kuhn- Tucker Conditions

Proof
It can be easily vcrified that D e A e Te G', and since T is closed (see
Exercise 5.4), cl De cl A e Te C'. Now note that Go e D, as shown in the
proof of Theorem 4.2.3. Hence, the second part of the theorem follows.

We now present some constraint qualifications that validate the Kuhn-
Tucker conditions.

In Theorem 5.1.3 we showed that the Kuhn-Tuckcr necessary optimality
conditions are true under Abadie's constraint qualification T = C/. We demon-
strate below that alI the constraint qualifications discussed above imply that of
Abadie, and hcnce each validate the Kuhn- Tucker necessary conditions. From
Lemma 5.2.1, it isclear that Cottle's constraint qualification implies that of
Zangwill, which implies that of Kuhn and Tucker, which in turn implies
Abadie's qualification. Wc now show that the first two qualifications imply that
of Cottle.

First, suppose that the Slater constraint qualification holds true. Then, there
is an x E X such that gi(X)< O for i E I. Since g;(x) < O and gi(X) = O, then by
pseudoconvexity of gi at i it follows that V gi (x)' (x - i) <O. Thus d = x - i
belongs to CO' Therefore, Co ~ 0 and the rcader can verify that cJ Co = C/,
and hence Cottle's constraint qualification is true. Now suppose that the linear
independence constraint qualification is satisfied. Thcn, 2:iU ui V gi(X) = O has no
nonzero solution. By Theorem 2.3.9, it follows that there exists a vector li such
that V gi(x)/d < O for i E I. Thus, Go ~ 0, anel Cottle's qualification holds true.

The relationships among the constraint qualification are illustrated in Figure
5.2.

clDecJAeTeC'

where D, A, anel T are, respectively, the cone of feasible directions, the cone
of attainable directions, anel the cone of tangents of the íeasible region at i.
Furthermore, if X is open and gi for ié I is continuous at X, then Coe D, so
that

c1CoeclDecJAeTeG'

where Co is the cone of interior directions of the feasible region at x.

5.3 Problems with lnequalitv and Equality Constrairrts

In this section we consider problems with both inequality and equality con-
straints. In particular, consider the folJowing problem:

Slater Constraint Oualification

The set X is open, gi for iE I is pscudoconvex at X, gj for ie I is continuous at
X, and there is an x E X such that gi(x) < O for iE I.

Minimize

subject to

f(x)
gi (x) ::5 O

hj(x) = O
X EX

for i = 1, , m
for i = 1, , 1

Linear Independence Constraint Oualification

The set X is open, gi for irtl is continuous at X, and V g;(i) for i E I are linearly
indepcndent.

By Theorem 5.1.2, a necessary optimality condition is Fon T= 0. By
imposing the constraint qualification T= C'nH(), where H(J=={d:Vhj(x)'d=O
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Let i locally solve the problcrn, and let I = {i: gj(x) = O}. Suppose that f, gj for
i E I, and h: for i = 1, ... , I are differentiable at x. Supposc that the constraint
qualification T = O' n1-10 holds true, where T is the cone of tangents of the
feasible region at i, and

O' = {d :V gj(x)':S: O for i E I}.
Ho={d:Vhj(i)'d=O for i=1, ... ,l}

Then, i is a Kuhn- Tucker point, that is, there exist scalars u, :2: O for i E I and Vj
for i = 1, ... , 1 sueh that

I

V t(i) + L Uj V gj(i) + L VjV hj (i.) = O
iEI i=l

Proof

Figure 5.2 Relationships among var-
ious constraint qualifica-
tions for inequality con-
strained problems.

Sincc x solves the problern locally, by Theorern 5.1.2, Forl T= 0. By the
constraint qualification, wc have Fon G'n H()= 0, that is, the systcrn Ad:s:O
and c'd > O has no solution, where the rows of A are given by V gj(i)' for i E I,
Vhj(i) and -Vhj(i) for i = 1, ... , l, and c= -Vf(x). By Theorem 2.3.5, the
system A'y = c and y 2: O has a solution. This implies that there exist nonnega-
tive sealars Uj for i E I and aj, f3j for i = 1, ... , I such that

for i= 1, ... , I}, then Fo no' n 1-10= 0. By using Farkas' theorem, the Kuhn-
Tucker conditions follow from Theorern 5.3.1 below. This process is sum-
marized in the accompanying flowchart.

I I

Vf(i) + L ujVgj(i) + L ajVhj(i)- >= f3jVhj(i)=O
ieI i=1 i=J

Tbeorern S.1.2

Letting Vj = aj - f3j for each i, the result is apparcnt.

We now present several constraint qualifications that validatc the Kuhn-
Tucker conditions, These qualifications use several cones that were defined
earlier in the chapter. The reader may note that Zangwill's constraint qualifica-
tion is omitted here, since the cone of feasíble directions is usually cqual to the
zero vector in the presence of nonlinear equality constraints,

Local optimalitv

L
Slater Constraint Oualification

Let f:En~El> g,:E,,-;.El for i=l, ... ,m and hj:E,,--)E1 for i=l, ... ,I,
and let X be a nonempty set in En. Consider the following probJem:

The set X is open, gj for i E I is pseudoconvex at i, Sj for i~ I is continuous at
i, hj for i= 1, ... , 1 is quasiconvex, quasiconcave, anel conrinuously differcnti-
able at i, and V h, (i) for i= 1, ... , 1 are linear!y indepcndent. Furthermore,
there exists an x E X such that gj(x) < O for iE I -and h;(x}:::: O for i= 1, ... , 1.

5.3.1 Theorem (Kuhn- Tucker Conditions

subject to

[(li,)

gj (x) :s: O
hj(x) == O

XEX

fori=1, ,m

for i= 1, , 1

Linear Independence Constraint Oualifícation

The set X is open, Sj for irt I is continuous at i, V gj(x) for iE 1 and V It;{i) for
i= 1, ... , I are linearly independent, and h, for i"" 1, ... ,I is continuously
differentiable at i.

Minirnize



170 Constraint Qua!ifications

Cottle Constraint Oualification

The set X is open, gj for i~I is continuous at i, hj for i= 1, ... ,I is
continuously differentiable at i, and V hj(i) for i = 1, ... , I are linearly indepen-
dent. Furthermore, cI (Go n Ho) = G' n Ho.

Kuhn- Tucker Constraint Oualification

cl A = G'nHo

Abadie Constraint Oua!ification

T=G'nHo

The Kuhn- Tucker Conditions

In Theorem 5.3.1, we showed that the Kuhn-Tucker conditions are true if
Abadie's constraint qualification T = G' nHo is satisfied. We demonstrate
below that ali the constraint qualifications given above imply that of Abadie,
and hence each valida te the Kuhri- Tucker necessary conditions.

As in Lemma 5.2.1, the reader can easily verify that clAeTeG'nHo'
Now suppose that X is open, gj for ie I is continuous at i, h, for i= 1, ... , I is
continuously differentiable, and Vhj(x) for i= 1, ... , I are linearly índependent.
From the proof of Theorem 4.3.1, it follows that Go n Ho e A. Thus,
cI (Gon Ho)e cl A e Te G'n Ho. In particular, Cottle's coristraint qualifica-
tion implies that ofKuhn and Tucker, which in turn implies Abadie's constraint
qualifícation.

Figure 5.3 Relationships among
constraint qualifications
for probiems with in-
equality and equalitv
constraínts.
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We now demonstrate that Slater's constraint qualification and the linear
independence constraint qualification imply that of Cottle. Suppose that Sla-
ter's qualification is satisfied, so that gj(x) <O for iE I, h; (x) = O for i= 1, ... , I
for some x E X. By pseudoconvexity of !S; at X, V g; (i)'(x _.i) < O for iE I,

Also since h; (x) = hj(x) = O, quasiconvexity and quasiconcavity of h; at i
imply that V h; (i)' (x - x) = O. Letting d = x - i, it then follows that d e Go ri Hu.
Thus, 00 n n;« 0, and the reader can verify that cI (00 n Ho) = G' n Ho.
Therefore, Cottle's constraint qualification holds true.

Finally, we show rhat the linear independence qualification implies that of
Cottle. By contradiction, suppose that 00 n H() = 0. Then, using a separation
theorem as in the proof of Theorem 4.3.2, it follows that there exists a nonzero
vector (01' v) such that L:jE1Ui V gi (i) -;-L::= 1 VjV hi (i) = O, where U1·~ O is the
vector whose ith component is Ui• This contradicts the linear indcpcndence
assumption. Thus, Cottle constraint qualification holds true,

In Figure 5.3, we summarize the implications of the constraint qualifications
discussed above. As mentioned earlier, these implications, together with
Theorem 5.3.1, validate the Kuhn-Tucker conditions.



Exercises

5.1 Find lhe cone of tangents for each of thc foJlowing sets at the point i'" (O, O)'.
a. S={(Xj,X2):X22:-X/}
b. S = {(Xl> X2): XI is integer. X2 = O}
c. S = {(Xl> X2): XI is rational, X2 = O}
Let S be a subset of E,,, and let i E int S. Show that the cone of tangents of S at i

is E",
Prove that the cone of tangents of S at i can be equivalently defined as follows:

T={d:Xk=X+A,d+Aka(AdES foreach k}
where Ak> O converges to O, and a: EI .....•.E, is such that a(A) .....•.O as A .....•.O.
Prove that the cone of tangents is a closed cone.
Hint: First show that T= nNExclK(SnN,x), where K(SnN,i)=
{A(x - x): x E S n N, A >O}, and){ is the class of ali open neighborhoods about i.
Let A be an m x n matrix, and consider the cones Go = {d : Ad < O} and G' =
{d: Ad,,;; O}. Prove that
a. Go is an open convex cone.
b. G' is a closed convex cone.
e. Go = int. G'.
d. If Go;60, then c1Go=G'.
Consider the problem to minirnize f(x) subject to x E X and gi(X):S O for i=
1, ... , m. Let i be a feasible point, and let I = {i: gi(X) = O}. Suppose that X is
open, and gi for ie I is continuous at X. Further, suppose that the set

{d:Vg,(x)'d:SO iot í e l, Vgi(x)'d<O foriEI-J}

is not ernpty, where J = {i E I: gi is pseudoconcave at x}. Show that this condition
is sufficient to validate the Kuhn- Tucker conditions at i.
(This is lhe Arrow-Hurwicz-Uzawa constraint qualification.)
Consider the problem to minimize [(x) subject to gi(X) oS O for i= 1, ... , m. Let i
be Ieasible, and let I = {i: gi(i) = O}. Let (i, ti) be an optimal solution to the
following linear programo
Minimize z
subject to V[(x)' d - z oS O

V g, (x)' d - z :s O for iE I

-1 oS d, :s 1 for j =: 1, ... , n

a. Show that the Fritz John conditions hold true if i = O.
b. Show that ir z = O, then the Kuhn- Tucker conditions hold true under either

Slater's or Cottle's constraint qualification,
For each of the following sers, find the cone of íeasible directions and the cone of
attainable directions at i = (O, O)'.

5.2

5.3

5.4

5.5

5.6

5.7

5.8

a. S= {(x" X2): -1 ~ Xi oS 1,X2 2: x:i\ X2 2: XI}

b. S={(XI,X2):X2>XI
2}

C. S={(Xi,X2):X2=-XI3}

d. S = SI U S2, whcre

SI = {(XI' x2): XI 2: O, Xl. 2: XI2}, and S2 = {(Xl> X2): xI:s 0, - 2xI oS 3X2 oS - XI}
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5.9 Let f: E" -) E, be differ entiable at x with a nonzero gradient V [(x). Let S =
{x :f(x) 2: [(x)}. Show that the cone of tangents and lhe cone of attainable
directions of S at x are both given by {d: V f(x)'d 2: O}. Does the result hold if
Vf(x) = O? Prove or give a counterexample.
Consider the foIlowing problem:5.10

5.11

Minirnize -XI

subjectto x/+x/:Sl

(xt-1l-x2oS0

a: Show that the Kuhn- Tuckcr constraint qualification holds truc at
x = (1, O)'.

b. Show that x = (1, O)' is a Kuhn- Tucker point and also that it ís the global
optirnal solution.

Considcr the problcm to minimize 5X-X2 subjcct to gl(x):s:O. whcrc gl(x)=x,
a. Verify graphically that x = () is thc optimal solution.
b. Verify that each of the constraint qualifications discusscd in Section 5.2 hold

true at x = O.
C. Verify that the Kuhn- Tucker necessary conditions hold true at i = O.
Now, suppose that the constraint g2(X):S: O is addcd to the above problcrn. whcre

{
-l-X

g2(X) = l-x
if x 2: O
if x <()

5.12

Note that x = O is still the optimal solution and that R2 is discontinuous anel
ncnbinding at X. Check whethcr the constraint qualifications discusscd in Scction
5.2 and whcther the Kuhn-Tucker conditions hold truc at"~.
(This cxcrcise illustratcs lhe nccd of thc continuity assumption of thc nonbinding
constraints.)
Considcr the fcasihle region S = {x E X: gl (x):s: O}. whcrc g,(x) = x / + x/ - 1, and
X is the colleetion of ali convex combinatious of the four points (- J, O)', (0, 1r,
(1, O)', and (O, -I)'.
a. Find the cone of tangents T of S at x = (1, O)'.
b. Check whcthcr T=:> G', where G' "" {d :Vgi(x)'d::;O}.
C. Rcplacc thc sct X by four incquality constraints. Rcpcat parts a and b, where

G' = [d :V g,(x)' d:s () for iE I}, and I is lhe ncw sct of binding constraints at
x = (t , ()'.

Let S={XEX:gi(X):SO for i=l, ... ,m}. Let XES, and let I={i:g,(i)=O}.
Show that Te O', where T is the cone of tangcnts of 5 at x, and O' =
{d:Vgi(x)'d:sO for iEI}.
Let S ={XE X: gi(X):50 for i= 1, ... , m and h,(x) = () for i = 1, .... /}. Lct XE S,
and let I = {i: gi (x) = O}..Show that Te C;' n H", whcrc T is lhe cone of tangcnts
of S at X, O'={d:Vg,(x)'dsO for i e Is, and J-/()={d:\'h,(x,'d",O for
i= 1, ... , I}. .
Consider thc constraints Cd s; O and d' <1:s i. Let d bc a Icasiblc solutior. such that
d'd= 1, Cld=O, and C2d<O, wheré C' =(C't. ~)i Sbcw that thc constraint
qualification T=G,={d:Cld:sO,d'dSO} holds truc, whcrc Tis lhe cone of
tangents of the constraint set at d.

5.13

5.14

5.15


