

PROGRAMAÇÃO DINÂMICA

Infinite Stage Markov Programming

Exercício

Formulação do Problema:

"A cable repair truck has a power driven reel which when full carries 400 m of cable. Repairs involve replacing a 100, 200 or 300 m length of old cable, each length occurring with equal probability. Repairs are carried out by taking new cable from the reel unless the length remaining on the reel is too short. In this case the cable on the reel is removed and scrapped, a new 400 m length is put on the reel and the repair then carried out. Determine the mean length of the cable scrapped per repair."

Answer: 400/9 m.

Problems - Repras de cabos -
dojerivo - determbus Peids wedis pon Repono.
Condisipes - Caminula leus una bobins cl 400m de csbo. os Repsros podem ser:
$100 \mathrm{~m}, 200 \mathrm{~m}$, 300 m - xum ifuas probabilididel.
A polirics - caso o reparo sejo husior do pue o Remsnescerte no combuhas, sucsras - pedacio remanascente e aarnegin Δ bobins com 400 we Tros.

$$
\text { tsiagio } n \in\{0,1,2,3 \ldots\}
$$

Repanos
EKTAdo - quantidsde de cabo ns bobina

$$
i=\{1,2,3,4\} \begin{aligned}
& 1=100,2: 2003=300 \mathrm{~m} \\
& 4: 400 \mathrm{~m}
\end{aligned}
$$

ACAO - Foditica unica - $\ddagger+z$ ER reparo.

$$
K=\{1,2,3\} \quad 1=100 \mathrm{~m} \quad 2=200 \mathrm{~m} 3=300 \mathrm{~m}
$$

FUNCAO RETORNO - Rerorno = \#ERda de cabo perronro depende da quauridode e cabo us bobina c do repano al ser fertol

$$
\begin{aligned}
& r(1)=1 / 3(0)+1 / 3(100)+1 / 3(100)=200 / 3 \\
& r(2)=1 / 3(0)+1 / 3(200)+1 / 3(0)=200 / 3 \\
& r(3)=1 / 3(0)+1 / 3(0)+1 / 3(0)=0 \\
& r(4)=1 / 3(0)+1 / 3(0)+1 / 3(0)=0 \\
& r(j)=\left[\begin{array}{c}
200 / 3 \\
200 / 3 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

十rANSICABO DE ESTADO - A TIANKICA. do eatado $i \rightarrow j$, é dada segundo Δ seguríce matriz de probabilidades.

i
i
i
i

Tor exemplo: se o canntto encontra-si com 200 m . de cabos disponivel;
1/3 - para um reparo de loom ele passs pans o Estado $1(200-100=100)$
1/3 - Para un Repons da 200 metros passa PANs 0 estads 4 , pois 0 caminlls e recarregsdo a pós o rcparo.

1/3 E. pons um Depano de 300 m, ele passa para o esrado 1 (doo), ou seja, é sucstesds 200 m , recsrRegodo o nolo com 400 m e teiro o reprons de 300 m , Resrands 100 m .

Porsanto a probabilidsde de com zoom IR PARA SOOm é IGUAL $\Delta 2 / 3$, como demostis a TAbels an CRIOR.

No entanto a probabiliós de No ESTIgio n o sisteus se encontins no Esrado j, é dads pela seguinte c marniz calculada através de:

$$
\begin{aligned}
& P(i, j)^{n}=P(i, j, n) \\
& P(i, j, 1)=\left[\begin{array}{llll}
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
2 / 3 & 0 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& P(i, j, 2)=\left[\begin{array}{llll}
4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 \\
3 / 9 & 3 / 9 & 1 / 9 & 2 / 9 \\
4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 \\
4 / 9 & 2 / 9 & 0 & 3 / 9
\end{array}\right] \\
& P(i, j, 3)=\left[\begin{array}{llll}
11 / 27 & 7 / 27 & 2 / 27 & 7 / 27 \\
12 / 27 & 6 / 27 & 2 / 27 & 7 / 27 \\
11 / 27 & 7 / 27 & 2 / 27 & 7 / 27 \\
11 / 27 & 7 / 27 & 3 / 27 & 4 / 27
\end{array}\right] \\
& P(i, j, 4)=\left[\begin{array}{llll}
34 / 81 & 20 / 81 & 7 / 81 & 20 / 81 \\
33 / 81 & 20 / 81 & 7 / 81 & 20 / 81 \\
34 / 81 & 20181 & 7 / 81 & 20 / 81 \\
34 / 81 & 20 / 81 & 6 / 81 & 21 / 81
\end{array}\right]
\end{aligned}
$$

Funcía de recorréncia

$$
f(n, i)=\left\{f(n-1, j)+\sum_{j=1}^{4} p(i, j, n), r(j)\right\}
$$

$$
\left.\begin{array}{l}
f(1, i) f(n, i)=f(n-1, j)+\sum_{j=1}^{4} p(i, j, n) \cdot r(j) \\
f(1,1)=f(0, j)+\sum_{j=1}^{4} p(1, j, 1) \cdot r(j) \\
f(1,1)=200 / 3+1 / 3 \cdot 200 / 3+1 / 3 \cdot 200 / 3+0+0 \\
f(1,1)=1000 / 9 \\
f(1,2)=200 / 3+2 / 3 \cdot 200 / 3+0+0+0 \\
f(1,2)=1000 / 9 \\
f(1,3)=0+1 / 3 \cdot 200 / 3+1 / 3 \cdot 200 / 3+0+0 \\
f(1, i)=\left[\begin{array}{l}
1000 / 9 \\
1000 / 9 \\
400 / 9 \\
400 / 9
\end{array}\right] \\
f(2, i)=f(1, i)+\sum_{j=1}^{4} p(i, j, 2) \cdot r(j) \\
f(2,1)=f(1,1)+\sum_{j=1}^{4} p(1, j, 2) \cdot r(j) \\
f(2,1)=1000 / 9+4 / 9 \cdot 200 / 3+2 / 9 \cdot 200 / 3+0+0 \\
f(2,1)=1400 / 9 \quad \\
f(2,2)=f(1,2)+\sum_{j=1}^{4} p(2, j, 2) \cdot+(j) \\
f(2,2)=1000 / 9+3 / 9 \cdot 200 / 3+3 / 9-200 / 3+0+0 \\
f(2,2)=1400 / 9
\end{array} \quad \begin{array}{l}
1400 / 9 \\
f
\end{array}\right]
$$

$$
\begin{aligned}
& \left.f(2,3)=f(1,3)+\sum_{j=1}^{4} p(3, j), 2\right) \cdot r(j) \\
& f(2,3)=400 / 9+4 / 9 \cdot 200 / 3+2 / 9 \cdot 200 / 3+0+0 \\
& f(2,3)=800 / 9 \\
& f(2,4)=f(1,4)+\sum_{j=1}^{4} p(4, j, 2) \cdot r(j) \\
& f(2,4)=400 / 9+4 / 9 \cdot 200 / 3+2 / 9 \cdot 200 / 3+0+0 \\
& f(2,4)=800 / 9 . \\
& f(3, i)=f(2, i)+\sum_{j=1}^{4} p(i, j, 3) \cdot r(j) \\
& f(3,1)=f(2,1) \sum_{j=1}^{\sum} p(1, j \cdot 3) \cdot r(j) \\
& f(3,1)=1400 / 9+11 / 27 \cdot 20 / 3+7 / 27 \cdot 200 / 3+0+0 \\
& f(3,1)=1800 / 9 \\
& f(3,2)=f(2,2)+\sum_{j=1}^{4} p(2, j, 3) \cdot r(j) \\
& f(3,2)=1400 / 9+12 / 27200 / 3+6 / 27 \cdot 200 / 3+0+0 \\
& f(3,2)=1800 / 9 \\
& f(3,3)=f(2,3)+\sum_{j=1}^{4} p(3, j, 3) \cdot r(j) \\
& f(3,3)=800 / 9+1 / 27 \cdot 200 / 3+7 / 27 \cdot 200 / 3+0+0 \\
& f(3,3)=1200 / 9
\end{aligned}
$$

$$
\begin{aligned}
& f(3,4)=f(2,4)+\sum_{j=1}^{4} p(4, j, 3) \cdot r(j) \\
& f(3,4)=800 / 9+11 / 27 \cdot 200 / 3+7 / 27 \cdot 200 / 3+0+0 \\
& f(3,4)=1200 \\
& f(3, i)=\left[\begin{array}{l}
1800 / 9 \\
1800 / 9 \\
1200 / 9 \\
1200 / 9
\end{array}\right]
\end{aligned}
$$

Conclustó - À medids que o Esraglo Evolui no sisrems, o acréscimo no valor espersdo de perda pon Reparo TORNA-se consIANTe (400/a)

ANEXO ÚNICO

