6.252 NONLINEAR PROGRAMMING

LECTURE 7: ADDITIONAL METHODS

LECTURE OUTLINE

- Least-Squares Problems and Incremental Gradient Methods
- Conjugate Direction Methods
- The Conjugate Gradient Method
- Quasi-Newton Methods
- Coordinate Descent Methods
- Recall the least-squares problem:

minimize
$$f(x) = \frac{1}{2} ||g(x)||^2 = \frac{1}{2} \sum_{i=1}^{m} ||g_i(x)||^2$$

subject to $x \in \Re^n$,

where
$$g=(g_1,\ldots,g_m)$$
, $g_i:\Re^n\to\Re^{r_i}$.

INCREMENTAL GRADIENT METHODS

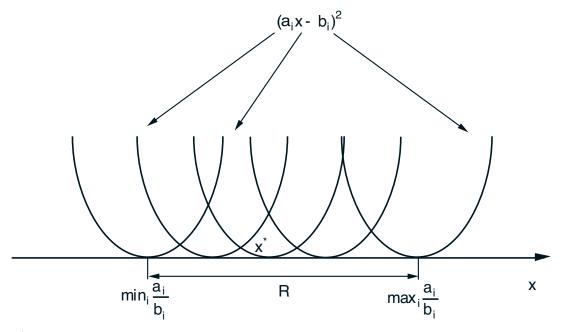
Steepest descent method

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \sum_{i=1}^m \nabla g_i(x^k) g_i(x^k)$$

Incremental gradient method:

$$\psi_i = \psi_{i-1} - \alpha^k \nabla g_i(\psi_{i-1}) g_i(\psi_{i-1}), \quad i = 1, \dots, m$$

$$\psi_0 = x^k, \qquad x^{k+1} = \psi_m$$



Advantage of incrementalism

VIEW AS GRADIENT METHOD W/ ERRORS

Can write incremental gradient method as

$$x^{k+1} = x^k - \alpha^k \sum_{i=1}^m \nabla g_i(x^k) g_i(x^k) + \alpha^k \sum_{i=1}^m (\nabla g_i(x^k) g_i(x^k) - \nabla g_i(\psi_{i-1}) g_i(\psi_{i-1}))$$

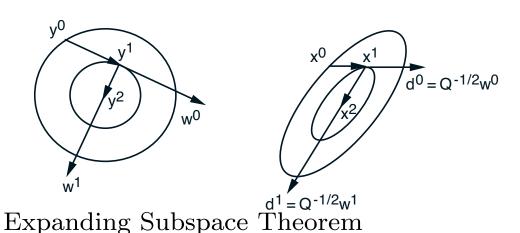
- Error term is proportional to stepsize α^k
- Convergence (generically) for a diminishing stepsize (under a Lipschitz condition on $\nabla g_i g_i$)
- Convergence to a "neighborhood" for a constant stepsize

CONJUGATE DIRECTION METHODS

- Aim to improve convergence rate of steepest descent, without the overhead of Newton's method.
- Analyzed for a quadratic model. They require n iterations to minimize f(x)=(1/2)x'Qx-b'x with Q an $n\times n$ positive definite matrix Q>0.
- Analysis also applies to nonquadratic problems in the neighborhood of a nonsingular local min.
- The directions d^1, \ldots, d^k are Q-conjugate if $d^{i'}Qd^{j} = 0$ for all $i \neq j$.
- Generic conjugate direction method:

$$x^{k+1} = x^k + \alpha^k d^k$$

where α^k is obtained by line minimization.



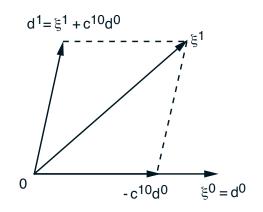
GENERATING Q-CONJUGATE DIRECTIONS

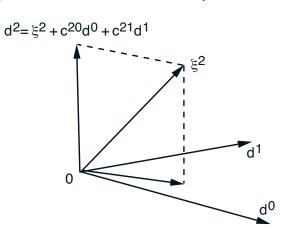
- Given set of linearly independent vectors ξ^0, \ldots, ξ^k , we can construct a set of Q-conjugate directions d^0, \ldots, d^k s.t. $Span(d^0, \ldots, d^i) = Span(\xi^0, \ldots, \xi^i)$
- Gram- $Schmidt\ procedure$. Start with $d^0 = \xi^0$. If for some $i < k,\ d^0, \ldots, d^i$ are Q-conjugate and the above property holds, take

$$d^{i+1} = \xi^{i+1} + \sum_{m=0}^{i} c^{(i+1)m} d^m;$$

choose $c^{(i+1)m}$ so d^{i+1} is Q-conjugate to d^0, \ldots, d^i ,

$$d^{i+1}Qd^{j} = \xi^{i+1}Qd^{j} + \left(\sum_{m=0}^{i} c^{(i+1)m}d^{m}\right)'Qd^{j} = 0.$$





CONJUGATE GRADIENT METHOD

• Apply Gram-Schmidt to the vectors $\xi^k = -g^k = -\nabla f(x^k)$, $k = 0, 1, \dots, n-1$. Then

$$d^{k} = -g^{k} + \sum_{j=0}^{k-1} \frac{g^{k'}Qd^{j}}{d^{j'}Qd^{j}}d^{j}$$

• Key fact: Direction formula can be simplified.

Proposition : The directions of the CGM are generated by $d^0=-g^0,$ and

$$d^k = -g^k + \beta^k d^{k-1}, \qquad k = 1, \dots, n-1,$$

where β^k is given by

$$\beta^k = \frac{g^{k'}g^k}{g^{k-1'}g^{k-1}}$$
 or $\beta^k = \frac{(g^k - g^{k-1})'g^k}{g^{k-1'}g^{k-1}}$

Furthermore, the method terminates with an optimal solution after at most n steps.

• Extension to nonquadratic problems.

PROOF OF CONJUGATE GRADIENT RESULT

- Use induction to show that all gradients g^k generated up to termination are linearly independent. True for k=1. Suppose no termination after k steps, and g^0,\ldots,g^{k-1} are linearly independent. Then, $Span(d^0,\ldots,d^{k-1})=Span(g^0,\ldots,g^{k-1})$ and there are two possibilities:
 - $-g^k=0$, and the method terminates.
 - $-g^k \neq 0$, in which case from the expanding manifold property

$$g^k$$
 is orthogonal to d^0, \dots, d^{k-1}
 g^k is orthogonal to g^0, \dots, g^{k-1}

so g^k is linearly independent of g^0, \ldots, g^{k-1} , completing the induction.

- Since at most n lin. independent gradients can be generated, $g^k = 0$ for some $k \leq n$.
- Algebra to verify the direction formula.

QUASI-NEWTON METHODS

- $x^{k+1} = x^k \alpha^k D^k \nabla f(x^k)$, where D^k is an inverse Hessian approximation.
- Key idea: Successive iterates x^k , x^{k+1} and gradients $\nabla f(x^k)$, $\nabla f(x^{k+1})$, yield curvature info

$$q^{k} \approx \nabla^{2} f(x^{k+1}) p^{k},$$

$$p^{k} = x^{k+1} - x^{k}, \quad q^{k} = \nabla f(x^{k+1}) - \nabla f(x^{k}),$$

$$\nabla^{2} f(x^{n}) \approx \left[q^{0} \cdots q^{n-1} \right] \left[p^{0} \cdots p^{n-1} \right]^{-1}$$

 Most popular Quasi-Newton method is a clever way to implement this idea

$$D^{k+1} = D^k + \frac{p^k p^{k'}}{p^{k'} q^k} - \frac{D^k q^k q^{k'} D^k}{q^{k'} D^k q^k} + \xi^k \tau^k v^k v^{k'},$$

$$v^k = \frac{p^k}{p^{k'}q^k} - \frac{D^k q^k}{\tau^k}, \quad \tau^k = q^{k'}D^k q^k, \quad 0 \le \xi^k \le 1$$

and $D^0>0$ is arbitrary, α^k by line minimization, and $D^n=Q^{-1}$ for a quadratic.

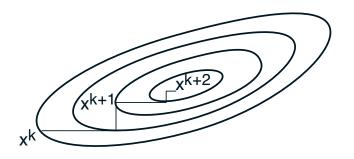
NONDERIVATIVE METHODS

- Finite difference implementations
- Forward and central difference formulas

$$\frac{\partial f(x^k)}{\partial x^i} \approx \frac{1}{h} (f(x^k + he_i) - f(x^k))$$

$$\frac{\partial f(x^k)}{\partial x^i} \approx \frac{1}{2h} \left(f(x^k + he_i) - f(x^k - he_i) \right)$$

Use central difference for more accuracy near convergence



Coordinate descent.
 Applies also to the case where there are bound constraints on the variables.

Direct search methods. Nelder-Mead method.