6.252 NONLINEAR PROGRAMMING
LECTURE 4

CONVERGENCE ANALYSIS OF GRADIENT METHODS

LECTURE OUTLINE

e Gradient Methods - Choice of Stepsize

e Gradient Methods - Convergence Issues



CHOICES OF STEPSIZE |

e Minimization Rule: o is such that

f(aF 4 akdk) = m>118f(xk + adF).

e Limited Minimization Rule: Min over « € [0, s]
e Armijo rule:

A
Set of Acceptable

StepS|zes Unsuccessful Stepsize
\&
:

0 Stepsize oK = [323:

\ 5 :

f(xK + adk) - (xK)

A

Oan(xk)'dk

avi(xK)'gk

/

Start with s and continue with Bs, 3%s, ..., until 3™s falls
within the set of a with

f(@") = f(@* + ad®) > —oaV f(z*) d".



CHOICES OF STEPSIZE Il

e Constant stepsize: o* is such that

afF = s : a constant

¢ Diminishing stepsize:
ak — 0

but satisfies the infinite travel condition

©. @)

g ak = oo

k=0



GRADIENT METHODS WITH ERRORS

rhtl = gk — ak(V f(xk) + eF)

where e* is an uncontrollable error vector

e Several special cases:

— ek small relative to the gradient; i.e., for all
ky [lek |l < [V f(z*)]

[llustration of the descent
property of the direction

gk = Vf(zF) + eF.

— {ek} is bounded, i.e., for all &, |eF|| < 9,
where 9 IS some scalar.

— {ek} is proportional to the stepsize, i.e., for
all k, ||ek|| < qa®, where ¢ is some scalar.

— {ek} areindependent zero mean random vec-
tors



CONVERGENCE ISSUES

e Only convergence to stationary points can be
guaranteed

e Even convergence to a single limit may be hard
to guarantee (capture theorem)

e Danger of nonconvergence if directions d* tend
to be orthogonal to V f(z*)

e (Gradient related condition:

For any subsequence {z*},cx that converges to
a nonstationary point, the corresponding subse-
quence {d*}rcx is bounded and satisfies

limsup Vf(zk)'d+k <O.
k—oo, kel

e Satisfied if d* = —DFV f(x*) and the eigenval-
ues of Dk are bounded above and bounded away
from zero



CONVERGENCE RESULTS

CONSTANT AND DIMINISHING STEPSIZES

Let {z*} be a sequence generated by a gradient
method z++1 = a2k + o*d*, where {d*} is gradient
related. Assume that for some constant L > 0,
we have

IVf(z) =Vl <Lz —-yl, Vyehn,

Assume that either
(1) there exists a scalar ¢ such that for all k£

(2 — )|V f(z*)d"|

0<e<ak <
N AP 2IE

or
(2) ok - 0and > ,_, ok = occ.

Then either f(z*k) — —oo or else {f(z*)} con-
verges to a finite value and V f(z¥) — 0.



MAIN PROOF IDEA

avixK)dk + (1/2)a2LildI2

ky1 K /
IVi(x")'d'l

LildI

N\ f(xK + aed¥) - f(xK)

a Vi(xK)'gk

The idea of the convergence proof for a constant stepsize.
Given z* and the descent direction d*, the cost differ-
ence f(z* + adF) — f(2F) is majorized by aV f(z*)'d* +
1a?L||d*||? (based on the Lipschitz assumption; see next
slide). Minimization of this function over « yields the step-
size

|V f(z*) d"]

L||d*||?

o =

This stepsize reduces the cost function f as well.



DESCENT LEMMA

Let o be a scalar and let g(a) = f(z + ay). Have
1
d
fa+9) = f@) = 9(1) = 9(0) = [ Z(a)da
1
:/ 'V f(x + ay) da
0
1
v d
S/O y'Vf(z)da

+ /0 y’(Vf(x+ozy) — Vf(a:)) do

1
N d

S/O y'V f(x) do

1
n / Iyl - IV f(z + ay) — V()] da

1
< Vi) + Iy / Laly| da
0

L
=y'Vf(x)+ 5“9\12-



CONVERGENCE RESULT — ARMIJO RULE

Let {z*} be generated by z*+1 = zk4-akdk, where
{d*} is gradient related and a* is chosen by the
Armijo rule. Then every limit point of {z*} is sta-
tionary.

Proof Outline: Assume 7 is a nonstationary limit
point. Then f(x%) — f(T), SO a*V f(zk)'d* — 0.

o If{xF}x — T, limsupy o rex VSf(xF)dF <0,
by gradient relatedness, so that {a*}x — 0.

e By the Armijo rule, for large £ € K

f(ah) = f(ak+(ak/B)dr) < —o(ak/B)V f(a*) dE.

kil gk
a”||d”|

p

d
Id

Defining p* = Z” and o = , we have

f(z*) — f(z* +a"pk)

akz

< —aV f(xk)pk.

Use the Mean Value Theorem and let £ — oc.
We get -V f(z)p < —aV f(ZT)'p, where pis a limit
point of p* — a contradiction since V f(z)'p < 0.



