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Section 1.1

Solutions Chapter 1

SECTION 1.1
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For any x, y ∈ Rn, from the second order expansion (see Appendix A, Proposition A.23) we have

f(y) − f(x) = (y − x)′∇f(x) +
1
2
(y − x)′∇2f(z)(y − x), (1)

where z is some point of the line segment joining x and y. Setting x = 0 in (1) and using the

given property of f , it can be seen that f is coercive. Therefore, there exists x∗ ∈ Rn such that

f(x∗) = infx∈Rn f(x) (see Proposition A.8 in Appendix A). The condition

m||y||2 ≤ y′∇2f(x)y, ∀ x, y ∈ Rn,

is equivalent to strong convexity of f . Strong convexity guarantees that there is a unique global

minimum x∗. By using the given property of f and the expansion (1), we obtain

(y − x)′∇f(x) +
m

2
||y − x||2 ≤ f(y) − f(x) ≤ (y − x)′∇f(x) +

M

2
||y − x||2.

Taking the minimum over y ∈ Rn in the expression above gives

min
y∈Rn

(
(y − x)′∇f(x) +

m

2
||y − x||2

)
≤ f(x∗) − f(x) ≤ min

y∈Rn

(
(y − x)′∇f(x) +

M

2
||y − x||2

)
.

Note that for any a > 0

min
y∈Rn

(
(y − x)′∇f(x) +

a

2
||y − x||2

)
= − 1

2a
||∇f(x)||2,

and the minimum is attained for y = x − ∇f(x)
a . Using this relation for a = m and a = M , we

obtain

− 1
2m

||∇f(x)||2 ≤ f(x∗) − f(x) ≤ − 1
2M

||∇f(x)||2.

The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point x = x∗, and note that ∇f(x∗) = 0, so that

f(y) − f(x∗) =
1
2
(y − x∗)′∇2f(z)(y − x∗).

The rest follows immediately from here and the given property of the function f .
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Since x∗ is a nonsingular strict local minimum, we have that ∇2f(x∗) > 0. The function f is

twice continuously differentiable over �n, so that there exists a scalar δ > 0 such that

∇2f(x) > 0, ∀ x, with ||x − x∗|| ≤ δ.

This means that the function f is strictly convex over the open sphere B(x∗, δ) centered at x∗

with radius δ. Then according to Proposition 1.1.2, x∗ is the only stationary point of f in the

sphere B(x∗, δ).

If f is not twice continuously differentiable, then x∗ need not be an isolated stationary

point. The example function f does not have the second derivative at x = 0. Note that f(x) > 0

for x �= 0, and by definition f(0) = 0. Hence, x∗ = 0 is the unique (singular) global minimum.

The first derivative of f(x) for x �= 0 can be calculated as follows:

f ′(x) = 2x

(√
2 − sin

(
5π

6
−
√

3 ln(x2)
)

+
√

3 cos
(

5π

6
−
√

3 ln(x2)
))

= 2x

(√
2 − 2 cos

π

3
sin

(
5π

6
−
√

3 ln(x2)
)

+ 2 sin
π

3
cos

(
5π

6
−
√

3 ln(x2)
))

= 2x

(√
2 + 2 sin

(
π

3
− 5π

6
+
√

3 ln(x2)
))

= 2x
(√

2 − 2 cos(2
√

3 lnx)
)

.

Solving f ′(x) = 0, gives xk = e
(1−8k)π

8
√

3 and yk = e
−(1+8k)π

8
√

3 for k integer. The second derivative

of f(x), for x �= 0, is given by

f ′′(x) = 2
(√

2 − 2 cos(2
√

3 lnx) + 4
√

3 sin(2
√

3 lnx)
)

.

Thus:
f ′′(xk) = 2

(√
2 − 2 cos

π

4
+ 4

√
3 sin

π

4

)

= 2

(
√

2 − 2
√

2
2

+ 4
√

3
√

2
2

)

= 4
√

6.

Similarly

f ′′(yk) = = 2
(√

2 − 2 cos
(−π

4

)
+ 4

√
3 sin

(−π

4

))

= 2

(
√

2 − 2
√

2
2

− 4
√

3
√

2
2

)

= −4
√

6.

Hence, {xk | k ≥ 0} is a sequence of nonsingular local minima, which evidently converges to x∗,

while {yk | k ≥ 0} is a sequence of nonsingular local maxima converging to x∗.

4



Section 1.1

1.1.12 www

(a) Let x∗ be a strict local minimum of f . Then there is δ such that f(x∗) < f(x) for all x in

the closed sphere centered at x∗ with radius δ. Take any local sequence {xk} that minimizes f ,

i.e. ||xk − x∗|| ≤ δ and limk→∞ f(xk) = f(x∗). Then there is a subsequence {xki} and the point

x such that xki → x and ||x − x∗|| ≤ δ. By continuity of f , we have

f(x) = lim
i→∞

f(xki) = f(x∗).

Since x∗ is a strict local minimum, it follows that x = x∗. This is true for any convergent

subsequence of {xk}, therefore {xk} converges to x∗, which means that x∗ is locally stable. Next

we will show that for a continuous function f every locally stable local minimum must be strict.

Assume that this is not true, i.e., there is a local minimum x∗ which is locally stable but is not

strict. Then for any θ > 0 there is a point xθ �= x∗ such that

0 < ||xθ − x∗|| < θ and f(xθ) = f(x∗). (1)

Since x∗ is a stable local minimum, there is a δ > 0 such that xk → x∗ for all {xk} with

lim
k→∞

f(xk) = f(x∗) and ||xk − x∗|| < δ. (2)

For θ = δ in (1), we can find a point x0 �= x∗ for which 0 < ||x0 − x∗|| < δ and f(x0) = f(x∗).

Then, for θ = 1
2 ||x0 − x∗|| in (1), we can find a point x1 such that 0 < ||x1 − x∗|| < 1

2 ||x0 − x∗||
and f(x1) = f(x∗). Then, again, for θ = 1

2 ||x1 − x∗|| in (1), we can find a point x2 such that

0 < ||x2 − x∗|| < 1
2 ||x1 − x∗|| and f(x2) = f(x∗), and so on. In this way, we have constructed

a sequence {xk} of distinct points such that 0 < ||xk − x∗|| < δ, f(xk) = f(x∗) for all k, and

limk→∞ xk = x∗. Now, consider the sequence {yk} defined by

y2m = xm, y2m+1 = x0, ∀ m ≥ 0.

Evidently, the sequence {yk} is contained in the sphere centered at x∗ with the radius δ. Also

we have that f(yk) = f(x∗), but {yk} does not converge to x∗. This contradicts the assumption

that x∗ is locally stable. Hence, x∗ must be strict local minimum.

(b) Since x∗ is a strict local minimum, we can find δ > 0, such that f(x) > f(x∗) for all x �= x∗

with ||x − x∗|| ≤ δ. Then min||x−x∗||=δ f(x) = fδ > f(x∗). Let Gδ = max||x−x∗||≤δ |g(x)|. Now,

we have

f(x) − εGδ ≤ f(x) + εg(x) ≤ f(x) + εGδ, ∀ ε > 0, ∀ x ||x − x∗|| < δ.
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Choose εδ such that

fδ − εδGδ > f(x∗) + εδGδ,

and notice that for all 0 ≤ ε ≤ εδ we have

fδ − εGδ > f(x∗) + εGδ.

Consider the level sets

L(ε) = {x | f(x) + εg(x) ≤ f(x∗) + εGδ, ||x − x∗|| ≤ δ}, 0 ≤ ε ≤ εδ.

Note that

L(ε1) ⊂ L(ε2) ⊂ B(x∗, δ), ∀ 0 ≤ ε1 < ε2 ≤ εδ, (3)

where B(x∗, δ) is the open sphere centered at x∗ with radius δ. The relation (3) means that

the sequence {L(ε)} decreases as ε decreases. Observe that for any ε ≥ 0, the level set L(ε) is

compact. Since x∗ is strictly better than any other point x ∈ B(x∗, δ), and x∗ ∈ L(ε) for all

0 ≤ ε ≤ εδ, we have

∩0≤ε≤εδL(ε) = {x∗}. (4)

According to Weierstrass’ theorem, the continuous function f(x) + εg(x) attains its minimum on

the compact set L(ε) at some point xε ∈ L(ε). From (3) it follows that xε ∈ B(x∗, δ) for any ε in

the range [0, εδ]. Finally, since xε ∈ L(ε), from (4) we see that limε→∞ xε = x∗.

1.1.13 www

In the solution to the Exercise 1.1.12 we found the numbers δ > 0 and εδ > 0 such that for all

ε ∈ [0, εδ) the function f(x) + εg(x) has a local minimum xε within the sphere B(x∗, δ) = {x |
||x− x∗|| < δ}. The Implicit Function Theorem can be applied to the continuously differentiable

function G(ε, x) = ∇f(x) + ε∇g(x) for which G(0, x∗) = 0. Thus, there are an interval [0, ε0), a

number δ0 and a continuously differentiable function φ : [0, ε0) �→ B(x∗, δ0) such that φ(ε) = x′
ε

and

∇φ(ε) = −∇εG (ε, φ(ε)) (∇xG (ε, φ(ε)))−1
, ∀ ε ∈ [0, ε0).

We may assume that ε0 is small enough so that the first order expansion for φ(ε) at ε = 0 holds,

namely

φ(ε) = φ(0) + ε∇φ(0) + o(ε), ∀ ε ∈ [0, ε0). (1)

It can be seen that ∇xG (0, φ(0)) = ∇xG(0, x∗) = ∇2f(x∗), and ∇εG (0, φ(0)) = ∇g(x∗)′, which

combined with φ(ε) = x′
ε, φ(0) = (x∗)′ and (1) gives the desired relation.
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(a) Given a bounded set A, let r = sup{‖x‖ | x ∈ A} and B = {x | ‖x‖ ≤ r}. Let L =

max{‖∇2f(x)‖ | x ∈ B}, which is finite because a continuous function on a compact set is

bounded. For any x, y ∈ A we have

∇f(x) −∇f(y) =
∫ 1

0

∇2f
(
tx + (1 − t)y

)
(x − y)dt.

Notice that tx + (1 − t)y ∈ B, for all t ∈ [0, 1]. It follows that

‖∇f(x) − f(y)‖ ≤ L‖x − y‖,

as desired.

(b) The key idea is to show that xk stays in the bounded set

A =
{
x | f(x) ≤ f(x0)

}
and to use a stepsize αk that depends on the constant L corresponding to this bounded set. Let

R = max{‖x‖ | x ∈ A},

G = max{‖∇f(x)‖ | x ∈ A},

and

B = {x | ‖x‖ ≤ R + 2G}.

Using condition (i) in the exercise, there exists some constant L such that ‖∇f(x) −∇f(y)‖ ≤
L‖x − y‖, for all x, y ∈ B. Suppose the stepsize αk satisfies

0 < ε ≤ αk ≤ (2 − ε)γk min{1, 1/L},

where

γk =
|∇f(xk)′dk|

‖dk‖2
.

Let βk = αk(γk − Lαk/2), which can be seen to satisfy βk ≥ ε2γk/2 by our choice of αk. We

will, show by induction on k that with such a choice of stepsize, we have xk ∈ A and

f
(
xk+1

)
≤ f(xk) − βk‖dk‖2, (*)
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for all k ≥ 0.

To start the induction, we note that x0 ∈ A, by the definition of A. Suppose that xk ∈ A.

By the definition of γk, we have

γk‖dk‖2 =
∣∣∇f(xk)′dk

∣∣ ≤ ∥∥∇f(xk)
∥∥ · ‖dk‖.

Thus, ‖dk‖ ≤
∥∥∇f(xk)

∥∥/γk ≤ G/γk. Hence,

‖xk + αkdk‖ ≤ ‖xk‖ + αkG/γk ≤ R + 2G,

which shows that xk + αkdk ∈ B. In order to prove Eq. (*), we now proceed as in the proof of

Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality ‖∇f(x)−∇f(y)‖ ≤
L‖x − y‖ holds for all x, y, whereas in this exercise this inequality holds only for x, y ∈ B. We

thus essentially repeat the proof of Prop. A.24, to obtain

f(xk+1) = f(xk + αkdk)

=
∫ 1

0

αk∇f(xk + ταkdk)′dk dτ

≤ αk∇f(xk)′dk +
∣∣∣∣
∫ 1

0

αk
(
∇f

(
xk + αkτdk

)
−∇f(xk)

)′
dk dτ

∣∣∣∣
≤ αk∇f(xk)′dk + (αk)2‖dk‖2

∫ 1

0

Lτ dτ

= αk∇f(xk)′dk +
L(αk)2

2
‖dk‖2.

(∗∗)

We have used here the inequality

∥∥∇f
(
xk + αkτdk

)
−∇f(xk)

∥∥ ≤ αkLτ‖dk‖,

which holds because of our definition of L and because xk ∈ A ⊂ B, xk +αkdk ∈ B and (because

of the convexity of B) xk + αkτdk ∈ B, for τ ∈ [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we

have f(xk+1) ≤ f(xk) ≤ f(x0) and xk+1 ∈ A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.

1.2.10 www

We have

∇f(x) −∇f(x∗) =
∫ 1

0

∇2f
(
x∗ + t(x − x∗)

)
(x − x∗)dt

and since

∇f(x∗) = 0,
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we obtain

(x − x∗)′∇f(x) =
∫ 1

0

(x − x∗)′∇2f(x∗ + t(x − x∗))(x − x∗)dt ≥ m

∫ 1

0

‖x − x∗‖2dt.

Using the Cauchy-Schwartz inequality (x − x∗)′∇f(x) ≤ ‖x − x∗‖‖∇f(x)‖, we have

m

∫ 1

0

‖x − x∗‖2dt ≤ ‖x − x∗‖‖∇f(x)‖,

and

‖x − x∗‖ ≤ ‖∇f(x)‖
m

.

Now define for all scalars t,

F (t) = f(x∗ + t(x − x∗))

We have

F ′(t) = (x − x∗)′∇f(x∗ + t(x − x∗))

and

F ′′(t) = (x − x∗)′∇2f(x∗ + t(x − x∗))(x − x∗) ≥ m‖x − x∗‖2 ≥ 0.

Thus F ′ is an increasing function, and F ′(1) ≥ F ′(t) for all t ∈ [0, 1]. Hence

f(x) − f(x∗) = F (1) − F (0) =
∫ 1

0

F ′(t)dt

≤ F ′(1) = (x − x∗)′∇f(x)

≤ ‖x − x∗‖‖∇f(x)‖ ≤ ‖∇f(x)‖2

m
,

where in the last step we used the result shown earlier.

1.2.11 www

Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show

that

0 ≤ ∇f(x̄)′p̄, (1)

where x̄ is a limit point of {xk}, namely {xk}k∈K̄ −→ x̄, and

pk =
dk

||dk|| , {pk}k∈K̄ → p̄. (2)

Since ∇f is continuous, we can write

∇f(x̄)′p̄ = lim
k→∞, k∈K̄

∇f(xk)′pk

= lim inf
k→∞, k∈K̄

∇f(xk)′pk

≤
lim infk→∞, k∈K̄ ∇f(xk)′dk

lim supk→∞, k∈K̄ ||dk|| < 0,
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which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that ∇f(xk) �= 0 for all k. For the minimization rule we

have

f(xk+1) = min
α≥0

f(xk + αdk) = min
θ≥0

f(xk + θpk), (3)

for all k, where pk = dk

||dk|| . Note that

∇f(xk)′pk ≤ −c||∇f(xk)||, ∀ k. (4)

Let x̂k+1 = xk+α̂kpk be the iterate generated from xk via the Armijo rule, with the corresponding

stepsize α̂k and the descent direction pk. Then from (3) and (4), it follows that

f(xk+1) − f(xk) ≤ f(x̂k+1) − f(xk) ≤ σα̂k∇f(xk)′pk ≤ −σcα̂k||∇f(xk)||2. (5)

Hence, either {f(xk)} diverges to −∞ or else it converges to some finite value. Suppose

that {xk}k∈K → x̄ and ∇f(x̄) �= 0. Then, limk→∞,k∈K f(xk) = f(x̄), which combined with (5)

implies that

lim
k→∞,k∈K

α̂k||∇f(xk)||2 = 0.

Since limk→∞,k∈K ∇f(xk) = ∇f(x̄) �= 0, we must have limk→∞,k∈K α̂k = 0. Without loss of

generality, we may assume that limk→∞,k∈K pk = p̄. Now, we can use the same line of arguments

as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have

that

lim
k→∞,k∈K

∇f(xk)′pk = ∇f(x̄)′p̄ ≤ −c||∇f(x̄)|| < 0.

This contradicts (1), so that ∇f(x̄) = 0.

1.2.13 www

Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k

f(xk+1) ≤ f(xk) − αk

(
1 − αkL

2

)
‖∇f(xk)‖2.

From this relation, we obtain for any minimum x∗ of f ,

f(x∗) ≤ f(x0) − ε

2

∞∑
k=0

‖∇f(xk)‖2.

It follows that ∇f(xk) → 0, that {f(xk)} converges, and that
∑∞

k=0 ‖∇f(xk)‖2 < ∞, from which

∞∑
k=0

‖xk+1 − xk‖2 < ∞,
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since ∇f(xk) = (xk − xk+1)/αk.

Using the convexity of f , we have for any minimum x∗ of f ,

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ −2(x∗ − xk)′(xk+1 − xk)

= 2αk(x∗ − xk)′∇f(xk)

≤ 2αk
(
f(x∗) − f(xk)

)
≤ 0,

so that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ‖xk+1 − xk‖2.

Hence, for any m,

‖xm − x∗‖2 ≤ ‖x0 − x∗‖2 +
m−1∑
k=0

‖xk+1 − xk‖2.

It follows that {xk} is bounded. Let x be a limit point of {xk}, and for any ε > 0, let k be such

that

‖xk − x‖2 ≤ ε,

∞∑
i=k

‖xi+1 − xi‖2 ≤ ε.

Since x is a minimum of f , using the preceding relations, for any k > k, we have

‖xk − x‖2 ≤ ‖xk − x‖2 +
k−1∑
i=k

‖xi+1 − xi‖2 ≤ 2ε.

Since ε is arbitrarily small, it follows that the entire sequence {xk} converges to x.

The proof for the case of the stepsize rule (ii) is similar. Using the assumptions αk → 0

and
∑∞

k=0 αk = ∞, and the Descent Lemma, we show that ∇f(xk) → 0, that {f(xk)} converges,

and that
∞∑

k=0

‖xk+1 − xk‖2 < ∞.

From this point, the preceding proof applies.

1.2.14 www

(a) We have

‖xk+1 − y‖2 = ‖xk − y − αk∇f(xk)‖2

= (xk − y − αk∇f(xk))′ (xk − y − αk∇f(xk))

= ‖xk − y‖2 − 2αk(xk − y)′∇f(xk) + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 + 2αk(y − xk)′∇f(xk) + (αk‖∇f(xk)‖)2

≤ ‖xk − y‖2 + 2αk (f(y) − f(xk)) + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 − 2αk (f(xk) − f(y)) + (αk‖∇f(xk)‖)2 ,
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where the inequality follows from Prop. B.3, which states that f is convex if and only if

f(y) − f(x) ≥ (y − x)′∇f(x), ∀ x, y.

(b) Assume the contrary; that is, lim infk→∞ f(xk) �= infx∈	n f(x). Then, for some δ > 0, there

exists y such that f(y) < f(xk)− δ for all k ≥ k̄, where k̄ is sufficiently large. From part (a), we

have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk (f(xk) − f(y)) + (αk‖∇f(xk)‖)2 .

Summing over all k sufficiently large, we have

∞∑
k=k̄

‖xk+1 − y‖2 ≤
∞∑

k=k̄

{
‖xk − y‖2 − 2αk (f(xk) − f(y)) + (αk‖∇f(xk)‖)2

}
,

or

0 ≤ ‖xk̄ − y‖2 −
∞∑

k=k̄

2αkδ +
∞∑

k=k̄

(αk‖∇f(xk)‖)2 = ‖xk̄ − y‖2 −
∞∑

k=k̄

αk (2δ − αk‖∇f(xk)‖2) .

By taking k̄ large enough, we may assume (using αk‖∇f(xk)‖2 → 0) that αk‖∇f(xk)‖2 ≤ δ for

k ≥ k̄. So we obtain

0 ≤ ‖xk̄ − y‖2 − δ

∞∑
k=k̄

αk.

Since
∑

αk = ∞, the term on the right is equal to −∞, yielding a contradiction. Therefore we

must have lim infk→∞ f(xk) = infx∈	n f(x).

(c) Let y be some x∗ such that f(x∗) ≤ f(xk) for all k. (If no such x∗ exists, the desired result

follows trivially). Then

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk (f(xk) − f(y)) + (αk‖∇f(xk)‖)2

≤ ‖xk − y‖2 + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 +
(

sk

‖∇f(xk)‖‖∇f(xk)‖
)2

= ‖xk − y‖2 + (sk)2

≤ ‖xk−1 − y‖2 + (sk−1)2 + (sk)2

≤ · · · ≤ ‖x0 − y‖2 +
k∑

i=0

(si)2 < ∞.

Thus {xk} is bounded. Since f is continuously differentiable, we then have that {∇f(xk)} is

bounded. Let M be an upper bound for ‖∇f(xk)‖. Then

∑
αk =

∑ sk

‖∇f(xk)‖ ≥ 1
M

∑
sk = ∞.

12
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Furthermore,

αk‖∇f(xk)‖2 = sk‖∇f(xk)‖ ≤ skM.

Since
∑

(sk)2 < ∞, sk → 0. Then αk‖∇f(xk)‖2 → 0. We can thus apply the results of part (b)

to show that lim infk→∞ f(xk) = infx∈	n f(x).

Now, since lim infk→∞ f(xk) = infx∈	n f(x), there must be a subsequence {xk}K such that

{xk}K → x̄, for some x̄ where f(x̄) = infx∈	n f(x) so that x̄ is a global minimum. We have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + (sk)2,

so that

‖xk+N − x̄‖2 ≤ ‖xk − x̄‖2 +
N∑

m=k

(sm)2, ∀ k, N ≥ 1.

For any ε > 0, we can choose k̄ ∈ K to be sufficiently large so that for all k ∈ K with k ≥ k̄ we

have

‖xk − x̄‖2 ≤ ε and
∞∑

m=k

(sm)2 ≤ ε.

Then

‖xk+N − x̄‖2 ≤ 2ε, ∀ N ≥ 1.

Since ε > 0 is arbitrary, we see that {xk} converges to x̄.

1.2.17 www

By using the descent lemma (Proposition A.24 of Appendix A), we obtain

f(xk+1) − f(xk) ≤ −αk∇f(xk)′(∇f(xk) + ek) +
L

2
(αk)2||∇f(xk) + ek||2

= −αk

(
1 − L

2
αk

)
||∇f(xk)||2 +

L

2
(αk)2||ek||2 − αk(1 − Lαk)∇f(xk)′ek.

Assume that αk < 1
L for all k, so that 1 − Lαk > 0 for every k. Then, using the estimates

1 − L

2
αk ≥ 1 − Lαk,

∇f(xk)′ek ≥ −1
2

(||∇f(xk)||2 + ||ek||2) ,

and the assumption ||ek|| ≤ δ for all k, in the inequality above, we obtain

f(xk+1) − f(xk) ≤ −αk

2
(1 − Lαk) (||∇f(xk)||2 − δ2) + (αk)2

Lδ2

2
. (1)

Let δ′ be an arbitrary number satisfying δ′ > δ. Consider the set K = {k | ||∇f(xk)|| < δ′}. If

the set K is infinite, then we are done. Suppose that the set K is finite. Then, there is some

13
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index k0 such that ||∇f(xk)|| ≥ δ′ for all k ≥ k0. By substituting this in (1), we can easily find

that

f(xk+1) − f(xk) ≤ −αk

2
(
(1 − Lαk)

(
δ′2 − δ2

)
− αkLδ2

)
, ∀ k ≥ k0.

By choosing α and α such that 0 < α < ᾱ < min{ δ′2−δ2

δ′2L
, 1

L}, and αk ∈ [α, ᾱ] for all k ≥ k0, we

have that

f(xk+1) − f(xk) ≤ −1
2
α

(
δ′2 − δ2 − ᾱLδ′2

)
, ∀ k ≥ k0. (2)

Since δ′2 − δ2 − ᾱLδ′2 > 0 for k ≥ k0, the sequence {f(xk) | k ≥ k0} is strictly decreasing.

Summing the inequalities in (2) over k for k0 ≤ k ≤ N , we get

f(xN+1) − f(xk0) ≤ − (N − k0)
2

α
(
δ′2 − δ2 − ᾱLδ′2

)
, ∀ N > k0.

Taking the limit as N −→ ∞, we obtain limN→∞ f(xN ) = −∞.

1.2.19 www

(a) Note that

∇f(x) = ∇xF (x, g(x)) + ∇g(x)∇yF (x, g(x)).

We can write the given method as

xk+1 = xk + αkdk = xk − αk∇xF (xk, g(xk)) = xk + αk (−∇f(xk) + ∇g(xk)∇yF (xk, g(xk)) ,

so that this method is essentially steepest descent with error

ek = −∇g(xk)∇yF (xk, g(xk)).

Claim: The directions dk are gradient related.

Proof: We first show that dk is a descent direction. We have

∇f(xk)′dk = (∇xF (xk, g(xk)) + ∇g(x)∇yF (xk, g(xk)))′ (−∇xF (xk, g(xk)))

= −‖∇xF (xk, g(xk))‖2 − (∇g(x)∇yF (xk, g(xk)))′ (∇xF (xk, g(xk)))

≤ −‖∇xF (xk, g(xk))‖2 + ‖∇g(x)∇yF (xk, g(xk))‖ ‖∇xF (xk, g(xk))‖

≤ −‖∇xF (xk, g(xk))‖2 + γ ‖∇xF (xk, g(xk))‖2

= (−1 + γ) ‖∇xF (xk, g(xk))‖2

< 0 for ‖∇xF (xk, g(xk))‖ �= 0.

14
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It is straightforward to show that ‖∇xF (xk, g(xk))‖ = 0 if and only if ‖∇f(xk)‖ = 0, so that we

have ∇f(xk)′dk < 0 for ‖∇f(xk)‖ �= 0. Hence dk is a descent direction if xk is nonstationary.

Furthermore, for every subsequence {xk}k∈K that converges to a nonstationary point x̄, we have

‖dk‖ =
1

1 − γ
[‖∇xF (xk, g(xk))‖ − γ‖∇xF (xk, g(xk))‖]

≤ 1
1 − γ

[‖∇xF (xk, g(xk))‖ − ‖∇g(x)∇yF (xk, g(xk))‖]

≤ 1
1 − γ

‖∇xF (xk, g(xk)) + ∇g(x)∇yF (xk, g(xk))‖

=
1

1 − γ
‖∇f(xk)‖,

and so {dk} is bounded. We have from Eq. (1), ∇f(xk)′dk ≤ −(1 − γ) ‖∇xF (xk, g(xk))‖2.

Hence if limk→∞ infk∈K ∇f(xk)′dk = 0, then limk→∞,k∈K ‖∇F (xk, g(xk))‖ = 0, from which

‖∇F (x̄, g(x̄))‖ = 0. So ∇f(x̄) = 0, which contradicts the nonstationarity of x̄. Hence,

lim
k→∞

inf
k∈K

∇f(xk)′dk < 0,

and it follows that the directions dk are gradient related.

From Prop. 1.2.1, we then have the desired result.

(b) Let’s assume that in addition to being continuously differentiable, h has a continuous and

nonsingular gradient matrix ∇yh(x, y). Then from the Implicit Function Theorem (Prop. A.33),

there exists a continuously differentiable function φ : �n → �m such that h(x, φ(x)) = 0, for all

x ∈ �n. If, furthermore, there exists a γ ∈ (0, 1) such that

‖∇φ(x)∇yf(x, φ(x))‖ ≤ γ ‖∇xf(x, φ(x))‖ , ∀ x ∈ �n,

then from part (a), the method described is convergent.

1.2.20 www

(a) Consider a function g(α) = f(xk + αdk) for 0 < α < αk, which is convex over Ik. Suppose

that xk = xk + αdk ∈ Ik minimizes f(x) over Ik. Then g′(α) = 0 and from convexity it follows

that g′(αk) = ∇f(xk+1)′dk > 0 (since g′(0) = ∇f(xk)′dk < 0). Therefore the stepsize will be

reduced after this iteration. Now, assume that xk �∈ Ik. This means that the derivative g′(α)

does not change the sign for 0 < α < αk, i.e. for all α in the interval (0, αk) we have g′(α) < 0.

Hence, g′(αk) = ∇f(xk+1)′dk ≤ 0 and we can use the same stepsize αk in the next iteration.

15
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(b) Here we will use conditions on ∇f(x) and dk which imply

∇f(xk+1)′dk ≤ ∇f(xk)′dk + ||∇f(xk+1) −∇f(xk)|| · ||dk||

≤ ∇f(xk)′dk + αkL||dk||2

≤ −(c1 − c2αkL)‖∇f(xk)‖2.

When the stepsize becomes small enough so that c1−c2αk̂L ≥ 0 for some k̂, then ∇f(xk+1)′dk ≤ 0

for all k ≥ k̂ and no further reduction will ever be needed.

(c) The result follows in the same way as in the proof of Prop.1.2.4. Every limit point of {xk} is

a stationary point of f . Since f is convex, every limit point of {xk} must be a global minimum

of f .

1.2.21 www

By using the descent lemma (Prop. A.24 of Appendix A), we obtain

f(xk+1) − f(xk) ≤ αk∇f(xk)′(dk + ek) + (αk)2
L

2
||dk + ek||2. (1)

Taking into account the given properties of dk, ek, the Schwartz inequality, and the inequality

||y|| · ||z|| ≤ ||y||2 + ||z||2, we obtain

∇f(xk)′(dk + ek) ≤ −(c1 − pαk)||∇f(xk)||2 + qαk||∇f(xk)||

≤ − (c1 − (p + 1)αk) ||∇f(xk)||2 + αkq2.

To estimate the last term in the right hand-side of (1), we again use the properties of dk, ek, and

the inequality 1
2 ||y + z||2 ≤ ||y||2 + ||z||2, which gives

1
2
||dk + ek||2 ≤ ||dk||2 + ||ek||2

≤ 2 (c2
2 + (pαk)2) ||∇f(xk)||2 + 2 (c2

2 + (qαk)2)

≤ 2(c2
2 + p2)||∇f(xk)||2 + 2(c2

2 + q2), ∀ k ≥ k0,

where k0 is such that αk ≤ 1 for all k ≥ k0.

By substituting these estimates in (1), we get

f(xk+1) − f(xk) ≤ −αk(c1 − C)||∇f(xk)||2 + (αk)2b2, ∀ k ≥ k0,

where C = 1 + p + 2L(c2
2 + p2) and b2 = q2 + 2L(c2

2 + q2). By choosing k0 large enough, we can

have

f(xk+1) − f(xk) ≤ −αkb1||∇f(xk)||2 + (αk)2b2, ∀ k ≥ k0.

16
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Summing up these inequalities over k for k0 ≤ K ≤ k ≤ N gives

f(xN+1) + b1

N∑
k=K

αk||∇f(xk)||2 ≤ f(xK) + b2

N∑
k=K

(αk)2, ∀ k0 ≤ K ≤ k ≤ N. (2)

Therefore

lim sup
N→∞

f(xN+1) ≤ f(xK) + b2

∞∑
k=K

(αk)2, ∀ K ≥ k0.

Since
∑∞

k=0(αk)2 < ∞, the last inequality implies

lim sup
N→∞

f(xN+1) ≤ lim inf
K→∞

f(xK),

i.e. limk→∞ f(xk) exists (possibly infinite). In particular, the relation (2) implies

∞∑
k=0

αk||∇f(xk)||2 < ∞.

Thus we have lim infk→∞ ||∇f(xk)|| = 0 (see the proof of Prop. 1.2.4). To prove that limk→∞ ||∇f(xk)|| =

0, assume the contrary, i.e.

lim sup
k→∞

||∇f(xk)|| ≥ ε > 0. (3)

Let {mj} and {nj} be sequences such that

mj < nj < mj+1,

ε

3
< ||∇f(xk)|| for mj ≤ k < nj ,

||∇f(xk)|| ≤ ε

3
for nj ≤ k < mj+1. (4)

Let j̄ be large enough so that

αk ≤ 1, ∀ k ≥ j̄,

∞∑
k=mj̄

αk||∇f(xk)||2 ≤ ε3

27L(2c2 + q + p)
.

17
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For any j ≥ j̄ and any m with mj ≤ m ≤ nj − 1, we have

||∇f(xnj ) −∇f(xm)|| ≤
nj−1∑
k=m

||∇f(xk+1) −∇f(xk)||

≤ L

nj−1∑
k=m

||xk+1 − xk||

≤ L

nj−1∑
k=m

αk (||dk|| + ||ek||)

≤ L(c2 + q)

⎛
⎝nj−1∑

k=m

αk

⎞
⎠ + L(c2 + p)

nj−1∑
k=m

αk||∇f(xk)||

≤
(

L(c2 + q)
9
ε2

+ L(c2 + p)
3
ε

) nj−1∑
k=m

αk||∇f(xk)||2

≤ 9L(2c2 + p + q)
ε2

nj−1∑
k=m

αk||∇f(xk)||2

≤ 9L(2c2 + p + q)
ε2

ε3

27L(2c2 + q + p)

=
ε

3
.

Therefore

||∇f(xm)|| ≤ ||∇f(xnj )|| + ε

3
≤ 2ε

3
, ∀ j ≥ j̄, mj ≤ m ≤ nj − 1.

From here and (4), we have

||∇f(xm)|| ≤ 2ε

3
, ∀ m ≥ mj

which contradicts Eq. (3). Hence limk→∞ ∇f(xk) = 0. If x̄ is a limit point of {xk}, then

limk→∞ f(xk) = f(x̄). Thus, we have limk→∞ ∇f(xk) = 0, implying that ∇f(x̄) = 0.

SECTION 1.3

1.3.2 www

Let β be any scalar with 0 < β < 1 and B(x∗, ε) = {x | ||x−x∗|| ≤ ε} be a closed sphere centered

at x∗ with the radius ε > 0 such that for all x, y ∈ B(x∗, ε) the following hold

∇2f(x) > 0, ||∇2f(x)−1|| ≤ M1, (1)

18
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||∇f(x) −∇f(y)|| ≤ M2||x − y||, M2 = sup
x∈B(x∗,ε)

||∇2f(x)||, (2)

||∇2f(x) −∇2f(y)|| ≤ β

2M1
(3)

||d(x) + ∇2f(x)−1∇f(x)|| ≤ β

2M2
||∇f(x)||. (4)

Then, by using these relations and ∇f(x∗) = 0, for any x ∈ B(x∗, ε) one can obtain

||x + d(x) − x∗|| ≤ ||x − x∗ −∇2f(x)−1∇f(x)|| + ||d(x) + ∇2f(x)−1∇f(x)||

≤ ||∇2f(x)−1 (∇2f(x)(x − x∗) −∇f(x)) || + β

2M2
||∇f(x)||

≤ M1||∇2f(x)(x − x∗) −∇f(x) + ∇f(x∗)|| + β

2M2
||∇f(x) −∇f(x∗)||

≤ M1||∇2f(x)(x − x∗) −
∫ 1

0

∇2f ((x∗ + t(x − x∗))′ (x − x∗)dt|| + β

2
||x − x∗||

≤ M1

(∫ 1

0

||∇2f(x) −∇2f ((x∗ + t(x − x∗)) ||dt

)
||x − x∗|| + β

2
||x − x∗||

≤ β||x − x∗||.

This means that if x0 ∈ B(x∗, ε) and αk = 1 for all k, then we will have

||xk − x∗|| ≤ βk||x0 − x∗||, ∀ k ≥ 0. (5)

Now, we have to prove that for ε small enough the unity initial stepsize will pass the test of

Armijo rule. By the mean value theorem, we have

f(x + d(x)) − f(x) = ∇f(x)′d(x) +
1
2
d(x)′∇2f(x)d(x),

where x is a point on the line segment joining x and x + d(x). We would like to have

∇f(x)′d(x) +
1
2
d(x)′∇2f(x)d(x) ≤ σ∇f(x)′d(x), (6)

for all x in some neighborhood of x∗. Therefore, we must find how small ε should be that this

holds in addition to the conditions given in (1)–(4). By defining

p(x) =
∇f(x)

||∇f(x)|| , q(x) =
d(x)

||∇f(x)|| ,

the condition (6) takes the form

(1 − σ)p(x)′q(x) +
1
2
q(x)′∇2f(x)q(x) ≤ 0. (7)

The condition on d(x) is equivalent to

q(x) = − (∇2f(x∗))−1
p(x) + ν(x),
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where ν(x) denotes a vector function with ν(x) → 0 as x → x∗. By using the above relation and

the fact ∇2f(x) → ∇2f(x∗) as x → x∗, we may write Eq.(7) as

(1 − σ)p(x)′ (∇2f(x∗))−1
p(x) − 1

2
p(x)′ (∇2f(x∗))−1

p(x) ≥ γ(x),

where {γ(x)} is some scalar sequence with limx→x∗ γ(x) = 0. Thus Eq.(7) is equivalent to(
1
2
− σ

)
p(x)′ (∇2f(x∗))−1

p(x) ≥ γ(x). (8)

Since 1/2 > σ, ||p(x)|| = 1, and ∇2f(x∗) > 0, the above relation holds in some neighborhood of

point x∗. Namely, there is some ε ∈ (0, ε) such that (1)–(4) and (8) hold. Then for any initial

point x0 ∈ B(X∗, ε) the unity initial stepsize passes the test of Armijo rule, and (5) holds for all

k. This completes the proof.

1.3.8 www

In this case, the gradient method has the form xk+1 = xk − α∇f(xk). From the descent lemma

(Prop. A.24 of Appendix A), we have

f(xk+1) − f(xk) ≤ −αc||∇f(xk)||2, (1)

where α < 2
L , and c = 1−αL/2. By using the same arguments as in the proof of Prop. 1.3.3, we

can show that

lim
k→∞

d(xk, X∗) = 0. (2)

We assume that d(xk, X∗) �= 0, otherwise the method will terminate in a finite number of itera-

tions. Convexity of the function f implies that

f(xk) − f(x∗) ≤ ∇f(xk)′(xk − x∗) ≤ ||∇f(xk)|| · ||xk − x∗||, ∀ x∗ ∈ X∗,

from which, by minimizing over x∗ ∈ X∗, we have

f(xk) − f∗ ≤ ||∇f(xk)||d(xk, X∗). (3)

Let ek = f(xk) − f∗. Then, inequalities (1) and (3) imply that

ek+1 ≤ ek − αc
(ek)2

d2(xk, X∗)
, ∀ k.

The rest of the proof is exactly the same as the proof of Prop. 1.3.3, starting from the relation

f(xk+1) ≤ f(xk) − c2||∇f(xk)||2
2L

.
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1.3.9 www

Without loss of generality we assume that c = 0 (otherwise we make the change of variables

x = y − Q−1c). The iteration becomes(
xk+1

xk

)
=

(
(1 + β)I − αQ −βI

I 0

) (
xk

xk−1

)

Define

A =

(
(1 + β)I − αQ −βI

I 0

)
.

If µ is an eigenvalue of A, then for some vectors u and w, which are not both 0, we have

A

(
u

w

)
= µ

(
u

w

)
,

or equivalently,

u = µw and
(
(1 + β)I − αQ

)
u − βw = µu.

If we had µ = 0, then it is seen from the above equations that u = 0 and also w = 0, which is

not possible. Therefore, µ �= 0 and A is invertible. We also have from the above equations that

u = µw and
(
(1 + β)I − αQ

)
u =

(
µ +

β

µ

)
u,

so that µ + β/µ is an eigenvalue of (1 + β)I − αQ. Hence, if µ and λ satisfy the equation

µ + β/µ = 1 + β − αλ, then µ is an eigenvalue of A if and only if λ is an eigenvalue of Q.

Now, if

0 < α < 2
(

1 + β

M

)
,

where M is the maximum eigenvalue of Q, then we have

|1 + β − αλ| < 1 + β

for every eigenvalue λ of Q, and therefore also∣∣∣∣µ +
β

µ

∣∣∣∣ < 1 + β

for every eigenvalue µ of A. Let the complex number µ have the representation µ = |µ|ejθ. Then,

since µ + β/µ is a real number, its imaginary part is 0, or

|µ| sin θ − β(1/|µ|) sin θ = 0.

If sin θ �= 0, we have |µ|2 = β < 1, while if sin θ = 0, µ is a real number and the relation

|µ + β/µ| < 1 + β is written as µ2 + β < (1 + β)|µ| or (|µ| − 1)(|µ| − β) < 0. Therefore,
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β < |µ| < 1. Thus, for all values of θ, we have β ≤ |µ| < 1. Thus, all the eigenvalues of A are

strictly within the unit circle, implying that xk → 0; that is, the method converges to the unique

optimal solution.

Assume for the moment that α and β are fixed. From the preceding analysis we have that

µ is an eigenvalue of A if and only if µ2 + β = 1 + β − αλ, where λ is an eigenvalue of Q. Thus,

the set of eigenvalues of A is{
1 + β − αλ ±

√
(1 + β − αλ)2 − 4β

2

∣∣∣ λ is an eigenvalue of Q

}
,

so that the spectral radius of A is

ρ(A) = max

{∣∣∣∣∣ |1 + β − αλ| +
√

(1 + β − αλ)2 − 4β

2

∣∣∣∣∣
∣∣∣ λ is an eigenvalue of Q

}
.

For any scalar c ≥ 0, consider the function g : R+ �→ R+ given by

g(r) = |r +
√

r2 − c|.

We claim that

g(r) ≥ max{
√

c, 2r −
√

c}.

Indeed, let us show this relation in each of two cases: Case 1 : r ≥ √
c. Then it is seen that

√
r2 − c ≥ r−√

c, so that g(r) ≥ 2r−√
c ≥ √

c. Case 2 : r <
√

c. Then g(r) =
√

r2 + (c − r2) =
√

c ≥ 2r −√
c.

We now apply the relation g(r) ≥ max{√c, 2r − √
c} to Eq. (3), with c = 4β and with

r = |1 + β − αλ|, where λ is an eigenvalue of Q. We have

ρ2(A) ≥ 1
4

max{4β,max{2(1 + β − αλ)2 − 4β | λ is an eigenvalue of Q}}.

Therefore,

ρ2(A) ≥ 1
4

max{4β, 2(1 + β − αm)2 − 4β, 2(1 + β − αM)2 − 4β}

or

ρ2(A) ≥ max
{

β,
1
2
(1 + β − αm)2 − β,

1
2
(1 + β − αM)2 − β

}
.

It is easy to verify that for every β,

max
{

1
2
(1 + β − αm)2 − β,

1
2
(1 + β − αM)2 − β

}
≥ 1

2
(1 + β − α′m)2 − β,

where α′ corresponds to the intersection point of the graphs of the functions of α inside the

braces, satisfying
1
2
(1 + β − α′m)2 − β =

1
2
(1 + β − α′M)2 − β
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or

α′ =
2(1 + β)
m + M

.

From Eqs. (4), (5), and the above formula for α′, we obtain

ρ2(A) ≥ max

{
β,

1
2

(
(1 + β)

M − m

m + M

)2

− β

}

Again, consider the point β′ that corresponds to the intersection point of the graphs of the

functions of β inside the braces, satisfying

β′ =
1
2

(
(1 + β′)

M − m

m + M

)2

− β′.

We have

β′ =

(√
M −√

m√
M +

√
m

)2

,

and

max

{
β,

1
2

(
(1 + β)

M − m

m + M

)2

− β

}
≥ β′.

Therefore,

ρ(A) ≥
√

β′ =
√

M −√
m√

M +
√

m
.

Note that equality in Eq. (6) is achievable for the (optimal) values

β′ =

(√
M −√

m√
M +

√
m

)2

and

α′ =
2(1 + β)
m + M

.

In conclusion, we have

min
α,β

ρ(A) =
√

M −√
m√

M +
√

m

and the minimum is attained by some values α′ > 0 and β′ ∈ [0, 1). Therefore, the convergence

rate of the heavy ball method (2) with optimal choices of stepsize α and parameter β is governed

by
‖xk+1‖
‖xk‖ ≤

√
M −√

m√
M +

√
m

.

It can be seen that √
M −√

m√
M +

√
m

≤ M − m

M + m
,

so the convergence rate of the heavy ball iteration (2) is faster than the one of the steepest descent

iteration (cf. Section 1.3.2).
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By using the given property of the sequence {ek}, we can obtain

||ek+1 − ek|| ≤ βk+1−k̄||ek̄ − ek̄−1||, ∀ k ≥ k̄.

Thus, we have

||em − ek|| ≤ ||em − em−1|| + ||em−1 − em−2|| + . . . + ||ek+1 − ek||

≤
(
βm−k̄+1 + βm−k̄ + . . . + βk−k̄+1

)
||ek̄ − ek̄−1||

≤ β1−k̄ ||ek̄ − ek̄−1||
m∑

j=k

βj .

By choosing k0 ≥ k̄ large enough, we can make
∑m

j=k βj arbitrarily small for all m, k ≥ k0.

Therefore, {ek} is a Cauchy sequence. Let limm→∞ em = e∗, and let m → ∞ in the inequality

above, which results in

||ek − e∗|| ≤ β1−k̄ ||ek̄ − ek̄−1||
∞∑

j=k

βj = β1−k̄ ||ek̄ − ek̄−1|| βk

1 − β
= qk̄βk, (1)

for all k ≥ k̄, where qk̄ = β1−k̄

1−β ||ek̄ − ek̄−1||. Define the sequence {qk | 0 ≤ k < k̄} as follows

qk =
||ek − e∗||

βk
, ∀ k, 0 ≤ k < k̄. (2)

Combining (1) and (2), it can be seen that

||ek − e∗|| ≤ qβk, ∀ k,

where q = max0≤k≤k̄ qk.
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Since αk is determined by Armijo rule, we know that αk = βmks, where mk is the first index m

for which

f (xk − βms∇f(xk)) − f(xk) ≤ −σβms||∇f(xk)||2. (1)

The second order expansion of f yields

f (xk − βis∇f(xk)) − f(xk) = −βis||∇f(xk)||2 +
(βis)2

2
∇f(xk)′∇2f(x̄)∇f(xk),

for some x̄ that lies in the segment joining the points xk − βis∇f(xk) and xk. From the given

property of f , it follows that

f (xk − βis∇f(xk)) − f(xk) ≤ −βis

(
1 − βisM

2

)
||∇f(xk)||2. (2)
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Now, let ik be the first index i for which 1 − M
2 βis ≥ σ, i.e.

1 − M

2
βis < σ ∀ i, 0 ≤ i ≤ ik, and 1 − M

2
βiks ≥ σ. (3)

Then, from (1)-(3), we can conclude that mk ≤ ik. Therefore αk ≥ α̂k, where α̂k = βiks. Thus,

we have

f (xk − αk∇f(xk)) − f(xk) ≤ −σα̂k||∇f(xk)||2. (4)

Note that (3) implies

σ > 1 − M

2
βik−1s = 1 − M

2β
α̂k.

Hence, α̂k ≥ 2β(1 − σ)/M . By substituting this in (4), we obtain

f(xk+1) − f(x∗) ≤ f(xk) − f(x∗) − 2βσ(1 − σ)
M

||∇f(xk)||2. (5)

The given property of f implies that (see Exercise 1.1.9)

f(x) − f(x∗) ≤ 1
2m

||∇f(x)||2, ∀ x ∈ Rn, (6)

m

2
||x − x∗||2 ≤ f(x) − f(x∗), ∀ x ∈ Rn. (7)

By combining (5) and (6), we obtain

f(xk+1) − f(x∗) ≤ r (f(xk) − f(x∗)) ,

with r = 1 − 4mβσ(1−σ)
M . Therefore, we have

f(xk) − f(x∗) ≤ rk (f(x0) − f(x∗)) , ∀ k,

which combined with (7) yields

||xk − x∗||2 ≤ qrk, ∀ k,

with q = 2
m (f(x0) − f(x∗)).

SECTION 1.4

25



Section 1.4

1.4.2 www

From the proof of Prop. 1.4.1, we have

‖xk+1 − x∗‖ ≤ M

(∫ 1

0

‖∇g(x∗) −∇g(x∗ + t(xk − x∗))‖dt

)
‖xk − x∗‖.

By continuity of ∇g, we can take δ sufficiently small to ensure that the term under the integral

sign is arbitrarily small. Let δ1 be such that the term under the integral sign is less than r/M .

Then

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖.

Now, let

M(x) =
∫ 1

0

∇g (x∗ + t(x − x∗))′ dt.

We then have g(x) = M(x)(x − x∗). Note that M(x∗) = ∇g(x∗). We have that M(x∗) is

invertible. By continuity of ∇g, we can take δ to be such that the region Sδ around x∗ is

sufficiently small so the M(x)′M(x) is invertible. Let δ2 be such that M(x)′M(x) is invertible.

Then the eigenvalues of M(x)′M(x) are all positive. Let γ and Γ be such that

0 < γ ≤ min
‖x−x∗‖≤δ2

eig (M(x)′M(x)) ≤ max
‖x−x∗‖≤δ2

eig (M(x)′M(x)) ≤ Γ.

Then, since ‖g(x)‖2 = (x − x∗)′M ′(x)M(x)(x − x∗), we have

γ‖x − x∗‖2 ≤ ‖g(x)‖∗ ≤ Γ‖x − x∗‖2,

or
1√
Γ
‖g(xk+1)‖ ≤ ‖xk+1 − x∗‖ and r‖xk − x∗‖ ≤ r√

γ
‖g(xk)‖.

Since we’ve already shown that ‖xk+1 − x∗‖ ≤ r‖xk − x∗‖, we have

‖g(xk+1)‖ ≤ r
√

Γ√
γ
‖g(xk)‖.

Let r̂ = r
√

Γ√
γ . By letting δ̂ be sufficiently small, we can have r̂ < r. Letting δ = min{δ̂, δ2} we

have for any r, both desired results.
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Since {xk} converges to nonsingular local minimum x∗ of twice continuously differentiable func-

tion f and

lim
k→∞

||Hk −∇2f(xk)|| = 0,
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we have that

lim
k→∞

||Hk −∇2f(x∗)|| = 0. (1)

Let mk and m denote the smallest eigenvalues of Hk and ∇2f(x∗), respectively. The positive

definiteness of ∇2f(x∗) and the Eq. (1) imply that for any ε > 0 with m − ε > 0 and k0 large

enough, we have

0 < m − ε ≤ mk ≤ m + ε, ∀ k ≥ k0. (2)

For the truncated Newton method, the direction dk is such that

1
2
dk′Hkdk + ∇f(xk)′dk < 0, ∀ k ≥ 0. (3)

Define qk = dk

||∇f(xk)|| and pk = ∇f(xk)

||∇f(xk)|| . Then Eq. (3) can be written as

1
2
qk′Hkqk + pk′qk < 0, ∀ k ≥ 0.

By the positive definiteness of Hk, we have

mk

2
||qk||2 < ||qk||, ∀ k ≥ 0,

where we have used the fact that ||pk|| = 1. Combining this and Eq. (2) we obtain that the

sequence {qk} is bounded. Thus, we have

lim
k→∞

||dk + (∇2f(x∗))−1∇f(xk)||
||∇f(xk)|| ≤ M lim

k→∞

||∇2f(x∗)dk + ∇f(xk)||
||∇f(xk)||

= M lim
k→∞

||∇2f(x∗)qk + pk||

≤ M lim
k→∞

||∇2f(x∗) − Hk|| · ||qk|| + M lim
k→∞

||Hkqk + pk||

= 0,

where M = ||(∇2f(x∗))−1||. Now we have that all the conditions of Prop. 1.3.2 are satisfied, so

{||xk − x∗||} converges superlinearly.
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For the function f(x) = ‖x‖3, we have

∇f(x) = 3‖x‖x, ∇2f(x) = 3‖x‖ +
3

‖x‖xx′ =
3

‖x‖ (‖x‖2I + xx′).

Using the formula (A + CBC ′)−1 = A−1 − A−1C(B−1 + C ′A−1C)−1C ′A−1 [Eq. (A.7) from

Appendix A], we have

(‖x‖2I + xx′)−1 =
1

‖x‖2

(
I − 1

2‖x‖2
xx′

)
,
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and so

(∇2f(x))−1 =
1

3‖x‖

(
I − 1

2‖x‖2
xx′

)
.

Newton’s method is then

xk+1 = xk − α (∇2f(xk))−1 ∇f(xk)

= xk − α
1

3‖xk‖

(
I − 1

2‖xk‖2
xk(xk)′

)
3‖xk‖xk

= xk − α

(
xk − 1

2‖xk‖2
xk‖xk‖2

)

= xk − α

(
xk − 1

2
xk

)

=
(
1 − α

2

)
xk.

Thus for 0 < α < 2, Newton’s method converges linearly to x∗ = 0. For α0 = 2 method converges

in one step. Note that the method also converges linearly for 2 < α < 4. Proposition 1.4.1 does

not apply since ∇2f(0) is not invertible. Otherwise, we would have superlinear convergence.

Alternatively, instead of inverting ∇2f(x), we can calculate the Newton direction at a

vector x by guessing (based on symmetry) that it has the form γx for some scalar γ, and by

determining the value of γ through the equation ∇2f(x)(γx) = −∇f(x). In this way, we can

verify that γ = −1/2.

SECTION 1.6

1.6.3 www

We have that

f(xk+1) ≤ max
i

(1 + λiP k(λi))
2
f(x0), (1)

for any polynomial P k of degree k and any k, where {λi} is the set of the eigenvalues of Q. Chose

P k such that

1 + λP k(λ) =
(z1 − λ)

z1
· (z2 − λ)

z2
· · · (zk − λ)

zk
.

Define Ij = [zj − δj , zj + δj ] for j = 1, . . . , k. Since λi ∈ Ij for some j, we have

(1 + λiP k(λi))
2 ≤ max

λ∈Ij

(1 + λP k(λ))2 .
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Hence

max
i

(1 + λiP k(λi))
2 ≤ max

1≤j≤k
max
λ∈Ij

(1 + λP k(λ))2 . (2)

For any j and λ ∈ Ij we have

(1 + λP k(λ))2 =
(z1 − λ)2

z2
1

· (z2 − λ)2

z2
2

· · · (zk − λ)2

z2
k

≤
(zj + δj − z1)2(zj + δj − z2)2 · · · (zj + δj − zj−1)2δ2

j

z2
1 · · · z2

j

.

Here we used the fact that λ ∈ Ij implies λ < zl for l = j + 1, . . . , k, and therefore (zl−λ)2

z2
l

≤ 1

for all l = j + 1, . . . , k. Thus, from (2) we obtain

max
i

(1 + λiP k(λi))
2 ≤ R, (3)

where

R =
{

δ2
1

z2
1

,
δ2
2(z2 + δ2 − z1)2

z2
1z2

2

, · · · , δ2
k(zk + δk − z1)2 · · · (zk + δk − zk−1)2

z2
1z1

2 · · · z2
k

}
.

The desired estimate follows from (1) and (3).
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It suffices to show that the subspace spanned by g0, g1, . . . , gk−1 is the same as the subspace

spanned by g0, Qg0, . . . , Qk−1g0, for k = 1, . . . , n. We will prove this by induction. Clearly, for

k = 1 the statement is true. Assume it is true for k − 1 < n − 1, i.e.

span{g0, g1, . . . , gk−1} = span{g0, Qg0, . . . , Qk−1g0},

where span{v0, . . . , vl} denotes the subspace spanned by the vectors v0, . . . , vl. Assume that

gk �= 0 (i.e. xk �= x∗). Since gk = ∇f(xk) and xk minimizes f over the manifold x0 +

span{g0, g1, . . . , gk−1}, from our assumption we have that

gk = Qxk − b = Q

(
x0 +

k−1∑
i=0

ξiQig0

)
− b = Qx0 − b +

k−1∑
i=0

ξiQi+1g0.

The fact that g0 = Qx0 − b yields

gk = g0 + ξ0Qg0 + ξ1Q2g0 + . . . + ξk−2Qk−1g0 + ξk−1Qkg0. (1)

If ξk−1 = 0, then from (1) and the inductive hypothesis it follows that

gk ∈ span{g0, g1, . . . , gk−1}. (2)
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We know that gk is orthogonal to g0, . . . , gk−1. Therefore (2) is possible only if gk = 0 which

contradicts our assumption. Hence, ξk−1 �= 0. If Qkg0 ∈ span{g0, Qg0, . . . , Qk−1g0}, then

(1) and our inductive hypothesis again imply (2) which is not possible. Thus the vectors

g0, Qg0, . . . , Qk−1g0, Qkg0 are linearly independent. This combined with (1) and linear inde-

pendence of the vectors g0, . . . , gk−1, gk implies that

span{g0, g1, . . . , gk−1, gk} = span{g0, Qg0, . . . , Qk−1g0, Qkg0},

which completes the proof.
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Let xk be the sequence generated by the conjugate gradient method, and let dk be the sequence

of the corresponding Q-conjugate directions. We know that xk+1 minimizes f over

x0 + span {d0, d1, . . . , dk}.

Let x̃k be the sequence generated by the method described in the exercise. In particular, x̃1 is

generated from x0 by steepest descent and line minimization, and for k ≥ 1, x̃k+1 minimizes f

over the two-dimensional linear manifold

x̃k + span {g̃k and x̃k − x̃k−1},

where g̃k = ∇f(x̃k). We will show by induction that xk = x̃k for all k ≥ 1.

Indeed, we have by construction x1 = x̃1. Suppose that xi = x̃i for i = 1, . . . , k. We will

show that xk+1 = x̃k+1. We have that g̃k is equal to gk = βkdk−1 − dk so it belongs to the

subspace spanned by dk−1 and dk. Also x̃k − x̃k−1 is equal to xk − xk−1 = αk−1dk−1. Thus

span {g̃k and x̃k − x̃k−1} = span {dk−1 and dk}.

Observe that xk belongs to

x0 + span {d0, d1, . . . , dk−1},

so

x0 + span {d0, d1, . . . , dk−1} ⊃ xk + span {dk−1 and dk} ⊃ xk + span {dk}.

The vector xk+1 minimizes f over the linear manifold on the left-hand side above, and also

over the linear manifold on the right-hand side above (by the definition of a conjugate direction

method). Moreover, x̃k+1 minimizes f over the linear manifold in the middle above. Hence

xk+1 = x̃k+1.
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1.6.6 (PARTAN)

Suppose that x1, . . . , xk have been generated by the method of Exercise 1.6.5, which by the result

of that exercise, is equivalent to the conjugate gradient method. Let yk and xk+1 be generated

by the two line searches given in the exercise.

By the definition of the congugate gradient method, xk minimizes f over

x0 + span {g0, g1, . . . , gk−1},

so that

gk ⊥ span {g0, g1, . . . , gk−1},

and in particular

gk ⊥ gk−1. (1)

Also, since yk is the vector that minimizes f over the line yα = xk − αgk, α ≥ 0, we have

gk ⊥ ∇f(yk). (2)

Any vector on the line passing through xk−1 and yk has the form

y = αxk−1 + (1 − α)yk, α ∈ �,

and the gradient of f at such a vector has the form

∇f
(
αxk−1 + (1 − α)yk

)
= Q

(
αxk−1 + (1 − α)yk

)
− b

= α(Qxk−1 − b) + (1 − α)(Qyk − b)

= αgk−1 + (1 − α)∇f(yk).

(3)

From Eqs. (1)-(3), it follows that gk is orthogonal to the gradient ∇f(y) of any vector y on the

line passing through xk−1 and yk.

In particular, for the vector xk+1 that minimizes f over this line, we have that ∇f(xk+1)

is orthogonal to gk. Furthermore, because xk+1 minimizes f over the line passing through xk−1

and yk, ∇f(xk+1) is orthogonal to yk − xk−1. Thus, ∇f(xk+1) is orthogonal to

span {gk, yk − xk−1},

and hence also to

span {gk, xk − xk−1},

since xk−1, xk, and yk form a triangle whose side connecting xk and yk is proportional to gk.

Thus xk+1 minimizes f over

xk + span {gk, xk − xk−1},

and it is equal to the one generated by the algorithm of Exercise 1.6.5.
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The objective is to minimize over �n, the positive semidefinite quadratic function

f(x) =
1
2
x′Qx + b′x.

The value of xk following the kth iteration is

xk = arg min

{
f(x)|x = x0 +

k−1∑
i=1

γidi, γi ∈ �
}

= arg min

{
f(x)|x = x0 +

k−1∑
i=1

δigi, δi ∈ �
}

,

where di are the conjugate directions, and gi are the gradient vectors. At the beginning of the

(k + 1)st iteration, there are two possibilities:

(1) gk = 0: In this case, xk is the global minimum since f(x) is a convex function.

(2) gk �= 0: In this case, a new conjugate direction dk is generated. Here, we also have two

possibilities:

(a) A minimum is attained along the direction dk and defines xk+1.

(b) A minimum along the direction dk does not exist. This occurs if there exists a direction

d in the manifold spanned by d0, . . . , dk such that d′Qd = 0 and b′d �= 0. The problem

in this case has no solution.

If the problem has no solution (which occurs if there is some vector d such that d′Qd = 0

but b′d �= 0), the algorithm will terminate because the line minimization problem along such a

direction d is unbounded from below.

If the problem has infinitely many solutions (which will happen if there is some vector d

such that d′Qd = 0 and b′d = 0), then the algorithm will proceed as if the matrix Q were positive

definite, i.e. it will find one of the solutions (case 1 occurs).

However, in both situations the algorithm will terminate in at most m steps, where m is

the rank of the matrix Q, because the manifold

{x ∈ �n|x = x0 +
k−1∑
i=0

γidi, γi ∈ �}

will not expand for k > m.
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Let S1 and S2 be the subspaces with S1 ∩ S2 being a proper subspace of �n (i.e. a subspace

of �n other than {0} and �n itself). Suppose that the subspace S1 ∩ S2 is spanned by linearly
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independent vectors vk, k ∈ K ⊆ {1, 2, . . . , n}. Assume that x1 and x2 minimize the given

quadratic function f over the manifolds M1 and M2 that are parallel to subspaces S1 and S2,

respectively, i.e.

x1 = arg min
x∈M1

f(x) and x2 = arg min
x∈M2

f(x)

where M1 = y1 + S1, M2 = y2 + S2, with some vectors y1, y2 ∈ �n. Assume also that x1 �= x2.

Without loss of generality we may assume that f(x2) > f(x1). Since x2 �∈ M1, the vectors x2−x1

and {vk | k ∈ K} are linearly independent. From the definition of x1 and x2 we have that

d

dt
f(x1 + tvk)

∣∣∣∣
t=0

= 0 and
d

dt
f(x2 + tvk)

∣∣∣∣
t=0

= 0,

for any vk. When this is written out, we get

x1′Qvk − b′vk = 0 and x2′Qvk − b′vk = 0.

Subtraction of the above two equalities yields

(x1 − x2)′Qvk = 0, ∀ k ∈ K.

Hence, x1 −x2 is Q-conjugate to all vectors in the intersection S1 ∩S2. We can use this property

to construct a conjugate direction method that does not evaluate gradients and uses only line

minimizations in the following way.

Initialization: Choose any direction d1 and points y1 and z1 such that M1
1 = y1 + span{d1},

M1
2 = z1 + span{d1}, M1

1 �= M1
2 . Let d2 = x1

1 − x2
1, where xi

1 = arg minx∈M1
i

f(x) for i = 1, 2.

Generating new conjugate direction: Suppose that Q-conjugate directions d1, d2, . . . , dk,

k < n have been generated. Let Mk
1 = yk + span{d1, . . . dk} and x1

k = arg minx∈Mk
1

f(x). If x1
k

is not optimal there is a point zk such that f(zk) < f(x1
k). Starting from point zk we again

search in the directions d1, d2, . . . , dk obtaining a point x2
k which minimizes f over the manifold

Mk
2 generated by zk and d1, d2, . . . , dk. Since f(x2

k) ≤ f(zk), we have

f(x2
k) < f(x1

k).

As both x1
k and x2

k minimize f over the manifolds that are parallel to span{d1, . . . , dk}, setting

dk+1 = x2
k − x1

k we have that d1, . . . , dk, dk+1 are Q-conjugate directions (here we have used the

established property).

In this procedure it is important to have a step which given a nonoptimal point x generates

a point y for which f(y) < f(x). If x is an optimal solution then the step must indicate this fact.

Simply, the step must first determine whether x is optimal, and if x is not optimal, it must find

a better point. A typical example of such a step is one iteration of the cyclic coordinate descent

method, which avoids calculation of derivatives.
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The proof is by induction. Suppose the relation Dkqi = pi holds for all k and i ≤ k − 1. The

relation Dk+1qi = pi also holds for i = k because of the following calculation

Dk+1qk = Dkqk +
ykyk′qk

qk′yk
= Dkqk + yk = Dkqk + (pk − Dkqk) = pk.

For i < k, we have, using the induction hypothesis Dkqi = pi,

Dk+1qi = Dkqi +
yk(pk − Dkqk)′qi

qk′yk
= pi +

yk(pk′qi − qk′pi)
qk′yk

.

Since pk′qi = pk′Qpi = qk′pi, the second term in the right-hand side vanishes and we have

Dk+1qi = pi. This completes the proof.

To show that (Dn)−1 = Q, note that from the equation Dk+1qi = pi, we have

Dn =
[
p0 · · · pn−1

][
q0 · · · qn−1

]−1
, (*)

while from the equation Qpi = Q(xi+1−xi) = (Qxi+1−b)−(Qxi−b) = ∇f(xi+1)−∇f(xi) = qi,

we have

Q
[
p0 · · · pn−1

]
=

[
q0 · · · qn−1

]
,

or equivalently

Q =
[
q0 · · · qn−1

][
p0 · · · pn−1

]−1
. (**)

(Note here that the matrix
[
p0 · · · pn−1

]
is invertible, since both Q and

[
q0 · · · qn−1

]
are

invertible by assumption.) By comparing Eqs. (*) and (**), it follows that (Dn)−1 = Q.

1.7.2 www

For simplicity, we drop superscripts. The BFGS update is given by

D̄ = D +
pp′

p′q
− Dqq′D

q′Dq
+ q′Dq

(
p

p′q
− Dq

q′Dq

) (
p

p′q
− Dq

q′Dq

)′

= D +
pp′

p′q
− Dqq′D

q′Dq
+ q′Dq

(
pp′

(p′q)2
− Dqp′ + pq′D

(p′q)(q′Dq)
+

Dqq′D

(q′Dq)2

)

= D +
(

1 +
q′Dq

p′q

)
pp′

p′q
− Dqp′ + pq′D

p′q

.
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1.7.3 www

(a) For simplicity, we drop superscripts. Let V = I − ρqp′, where ρ = 1/(q′p). We have

V ′DV + ρpp′ = (I − ρqp′)′D(I − ρqp′) + ρpp′

= D − ρ(Dqp′ + pq′D) + ρ2pq′Dqp′ + ρpp′

= D − Dqp′ + pq′D

q′p
+

(q′Dq)(pp′)
(q′p)2

+
pp′

q′p

= D +
(

1 +
q′Dq

p′q

)
pp′

p′q
− Dqp′ + pq′D

p′q

and the result now follows using the alternative BFGS update formula of Exercise 1.7.2.

(b) We have, by using repeatedly the update formula for D of part (a),

Dk = V k−1′Dk−1V k−1 + ρk−1pk−1pk−1′

= V k−1′V k−2′Dk−2V k−2V k−1 + ρk−2V k−1′pk−2pk−2′V k−1 + ρk−1pk−1pk−1′,

and proceeding similarly,

Dk = V k−1′V k−2′ · · ·V 0′D0V 0 · · ·V k−2V k−1

+ ρ0V k−1′ · · ·V 1′p0p0′V 1 · · ·V k−1

+ ρ1V k−1′ · · ·V 2′p1p1′V 2 · · ·V k−1

+ · · ·

+ ρk−2V k−1′pk−2pk−2′V k−1

+ ρk−1pk−1pk−1′

.

Thus to calculate the direction −Dk∇f(xk), we need only to store D0 and the past vectors pi,

qi, i = 0, 1, . . . , k − 1, and to perform the matrix-vector multiplications needed using the above

formula for Dk. Note that multiplication of a matrix V i or V i′ with any vector is relatively

simple. It requires only two vector operations: one inner product, and one vector addition.

1.7.4 www

Suppose that D is updated by the DFP formula and H is updated by the BFGS formula. Thus

the update formulas are

D̄ = D +
pp′

p′q
− Dqq′D

q′Dq
,

H̄ = H +
(

1 +
p′Hp

q′p

)
qq′

q′p
− Hpq′ + qp′H

q′p
.

If we assume that HD is equal to the identity I, and form the product H̄D̄ using the above

formulas, we can verify with a straightforward calculation that H̄D̄ is equal to I. Thus if the
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initial H and D are inverses of each other, the above updating formulas will generate (at each

step) matrices that are inverses of each other.

1.7.5 www

(a) By pre- and postmultiplying the DFP update formula

D̄ = D +
pp′

p′q
− Dqq′D

q′Dq
,

with Q1/2, we obtain

Q1/2D̄Q1/2 = Q1/2DQ1/2 +
Q1/2pp′Q1/2

p′q
− Q1/2Dqq′DQ1/2

q′Dq
.

Let

R̄ = Q1/2D̄Q1/2, R = Q1/2DQ1/2,

r = Q1/2p, q = Qp = Q1/2r.

Then the DFP formula is written as

R̄ = R +
rr′

r′r
− Rrr′R

r′Rr
.

Consider the matrix

P = R − Rrr′R

r′Rr
.

From the interlocking eigenvalues lemma, the eigenvalues µ1, . . . , µn satisfy

µ1 ≤ λ1 ≤ µ2 ≤ · · · ≤ µn ≤ λn,

where λ1, . . . λn are the eigenvalues of R. We have Pr = 0, so 0 is an eigenvalue of P and r is a

corresponding eigenvector. Hence, since λ1 > 0, we have µ1 = 0. Consider the matrix

R̄ = P +
rr′

r′r
.

We have R̄r = r, so 1 is an eigenvalue of R̄. The other eigenvalues are the eigenvalues µ2, . . . , µn

of P , since their corresponding eigenvectors e2, . . . , en are orthogonal to r, so that

R̄ei = Pei = µiei, i = 2, . . . , n.

(b) We have

λ1 ≤ r′Rr

r′r
≤ λn,
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so if we multiply the matrix R with r′r/r′Rr, its eigenvalue range shifts so that it contains 1.

Since
r′r

r′Rr
=

p′Qp

p′Q1/2RQ1/2p
=

p′q

q′Q−1/2RQ−1/2q
=

p′q

q′Dq
,

multiplication of R by r′r/r′Rr is equivalent to multiplication of D by p′q/q′Dq.

(c) In the case of the BFGS update

D̄ = D +
(

1 +
q′Dq

p′q

)
pp′

p′q
− Dqp′ + pq′D

p′q
,

(cf. Exercise 1.7.2) we again pre- and postmultiply with Q1/2. We obtain

R̄ = R +
(

1 +
r′Rr

r′r

)
rr′

r′r
− Rrr′ + rr′R

r′r
,

and an analysis similar to the ones in parts (a) and (b) goes through.

1.7.6 www

(a) We use induction. Assume that the method coincides with the conjugate gradient method

up to iteration k. For simplicity, denote for all k,

gk = ∇f(xk).

We have, using the facts pk′gk+1 = 0 and pk = αkdk,

dk+1 = −Dk+1gk+1

= −
(

I +
(

1 +
qk′qk

pk′qk

)
pkpk′

pk′qk
− qkpk′ + pkqk′

pk′qk

)
gk+1

= −gk+1 +
pkqk′gk+1

pk′qk

= −gk+1 +
(gk+1 − gk)′gk+1

dk′qk
dk.

The argument given at the end of the proof of Prop. 1.6.1 shows that this formula is the same as

the conjugate gradient formula.

(b) Use a scaling argument, whereby we work in the transformed coordinate system y = D−1/2x,

where the matrix D becomes the identity.
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