6.252, Spring 2003, Prof. D. P. Bertsekas
Midterm In-Class Exam, Closed-Book, One Sheet of Notes Al-
lowed

Problem 1: (30 points)

(a) Consider the method zk+1 = z*k +akdF for unconstrained minimization
of a continuously differentiable function f : R? +— R. State which of the
following statements are true and which are false. You don’t have to justify
your answers:

1. If d* = —Vf(2¥) and o is such that f(z*+1) < f(z*) whenever
Vf(xk) # 0, every limit point of the generated sequence {z*} is
stationary.

Solution: False. See Figure 1.2.6 in section 1.2.

2. If d* = =V f(ak), o* is chosen by the Armijo rule, and the function
[ has the form f(x1,22) = (21)% + (v2)? + 21 the generated sequence

{z*¥} converges to a global minimum of f.
Solution: True. We know that every limit point of steepest descent with
the Armijo rule converges to a stationary point (Prop. 1.2.1). Since the
method is a descent method, all iterates are contained in the level set of
the starting point, which is bounded because the cost function is coercive.
Hence there is at least one limit point, which must be stationary. Since the
cost function is strictly convex, it has unique stationary point which is the
global minimum. Therefore, the method converges to this global minimum.

(b) Consider the minimization of f(z) = ||z||? subject to z € X where
X ={x|x1+ -+ x, = 1}. State which of the following statements are
true and which are false. You don’t have to justify your answers:

1. The conditional gradient method with some suitable stepsize rule can
be used to obtain a global minimum.

Solution: False. The conditional gradient method method applies to the
case where the constraint set is compact, so that the direction finding
subproblem has at least one solution. In our case the direction finding
subproblem is to minimize over x € X the function V f(z*)’(z — z*). Since
this is a linear function and the feasible set X is a linear manifold, typically
the direction finding subproblem does not have a solution.

2. The gradient projection method with the line minimization rule can
be used to obtain a global minimum, and converges in a single itera-

tion.
Solution: True. The global minimum is easily seen tobe at z¥ = 1/n, =
1,...,n. Since Vf(z¥) = 2zF, the gradient projection method computes
Tk = [ykzk]" at each iteration, where v% < 1. Careful inspection of the

geometry shows that 7% — x* will be collinear with z; — z* and therefore
the line minimization rule finds the optimal solution in one step.



3. The constrained version of Newton’s method with stepsize equal to
1 can be used to obtain a global minimum, and converges in a single
iteration.
Solution: True. We are minimizing a strictly convex quadratic, so the
constrained version of Newton’s method will be exact.

Problem 2: (35 points)
Consider the 2-dimensional function f(z,y) = (y — 22)2 — a2

(a) Show that f has only one stationary point, which is neither a local
maximum nor a local minimum.

(b) Consider the minimization of f subject to no constraint on x and the
constraint —1 < y < 1 on y. Show that there exists at least one global
minimum and find all global minima.

Solution: (a) We have

—4xy + 423 — 2z
Vf(xvy) = ( gy_2x2 )

Hence the only stationary point of f is (0,0), where

V2/(0,0) = (‘02 2)

Since V2f(0,0) has a positive and a negative eigenvalue, (0,0) is neither a
local maximum nor a local minimum.

(b) It can be seen that the level sets {(x,y) | f(z,y) < v, -1 <y < 1}
are compact for all v for which they are nonempty, so a global minimum
must exist by Weierstrass’ Theorem [Prop. A.8(3) — note that alternative
arguments based on Prop. A.8 are possible]. There are three possibilities
for a global minimum (z*, y*):

—4y 41222 -2 —4
gt = (412 )

(1) =1 < y* < 1. In this case, by part (a), we must have z* = y* = 0,
which is not a local minimum as established in part (a).

(2) y* = 1. In this case, z* must be an unconstrained minimum of f(z, 1),
which leads to the equation

0=Vsf(z,1) = 4o + 423 — 22 = x(422 — 6)
t

There are three possibilities: (a) * = 0, leading to a cost f(0,1) =1,
(b) z* = /3/2, leading to a cost f(1/3/2,1) = 52, (c) * = —/3/2,
leading also to a cost f(—/3/2,1) = =2

(3) y* = —1. In this case, z* must be an unconstrained minimum of
f(x,—1), which leads to the equation

0=V,f(r,—1) =4x 4+ 423 — 22 = z(4a2 + 2)
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the only possibility is z* = 0, leading to a cost f(0,—1) =1

The global minima of f subject to the given constraint are the candidate
solutions with minimum cost. Thus, the global minima are (1/3/2,1) and

(_\/3/_271)‘

Problem 3: (35 points)

Among all parallelepipeds with given sum of lengths of edges, find one that
has maximal volume. Are the 2nd order sufficiency conditions satisfied at
the optimum?

Solution: By an elementary geometrical argument, we see that the op-
timal parallelepiped should be orthogonal (given any nonrthogonal paral-
lelepiped, one that is orthogonal and has the same sum of lengths of edges
and larger volume can be contrsucted). Thus the problem is to maximize
xyz subject to £ + y + z = a, where a is a given positive number. If
(z*,y*, 2z*) is an optimal solution, we clearly have 0 < z*, 0 < y*, 0 < z*,
and that (since all feasible points are regular) there exists A\* such that

Thus z* = y* = z* = a/3 is the only solution to the 1st order necessary
conditions. Since the problem is equivalent to maximizing xyz subject to
the compact set constraints 0 < z < a, 0 <y < a, 0 < z < a, and
T 4+ 1y + 2z = a, there exists a global maximum, which must be the only
positive solution (a/3,a/3,a/3) of the 1st order optimality conditions.

We may also check that the 2nd order sufficiency conditions for a
local maximum are satisfied at x* = y* = 2* = a/3. The Hessian of the
Lagrangian at that point is

0 a/3 a/3
a/3 0 a/3 ],
a/3 a/3 0

which is seen to satisfy the 2nd order sufficiency condition by using an
argument that is identical to the corresponding argument of Example 3.2.1
in Section 3.2.



