
Solutions Chapter 5

SECTION 5.1

5.1.4 www

Throughout this exercise we will use the fact that strong duality holds for convex quadratic

problems with linear constraints (cf. Section 3.4).

The problem of finding the minimum distance from the origin to a line is written as

min
1
2
kxk2

subject to Ax = b

where A is a 2⇥ 3 matrix with full rank, and b 2 <2. Let f⇤ be the optimal value and consider

the dual function

q(�) = min
x

⇢
1
2
kxk2 + �0(Ax� b)

�
.

Let V ⇤ be the supremum over all distances of the origin from planes that contain the line

{x | Ax = b}. Clearly, we have V ⇤  f⇤, since the distance to the line {x | Ax = b} cannot be

smaller that the distance to the plane that contains the line.

We now note that any plane of the form {x | p0Ax = p0b}, where p 2 <2, contains the line

{x | Ax = b}, so we have for all p 2 <2,

V (p) ⌘ min
p0Ax=p0x

1
2
kxk2  V ⇤.

On the other hand, by duality in the minimization of the preceding equation, we have

U(p, �) ⌘ min
x

⇢
1
2
kxk2 + �(p0Ax� p0x)

�
 V (p), 8 p 2 <2, � 2 <.

Combining the preceding relations, it follows that

sup
�

q(�) = sup
p,�

U(p, �)  sup
p

U(p, 1)  sup
p

V (p)  V ⇤  f⇤.

Since by duality in the original problem, we have sup� q(�) = f⇤, it follows that equality holds

throughout above. Hence V ⇤ = f⇤, which was to be proved.
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5.1.7 www

(a) Let

xi =

(
1 if the ith object is included in the subset,

0 otherwise.

Then the total weight and value of objects included is
P

i wixi and
P

i vixi, respectively, and the

problem can be written as

maximize f(x) =
nX

i=1

vixi

subject to
nX

i=1

wixi  A, xi 2 {0, 1}, i = 1, . . . , n.

(b) Let f̃(x) = �f(x) and consider the equivalent problem of minimizing f̃(x) subject to the

constraints given above. Then

L(x, µ) = �
nX

i=1

vixi + µ

 
nX

i=1

wixi �A

!
,

and

q̃(µ) = inf
xi2{0,1}

(
nX

i=1

(µwi � vi)xi � µA

)
.

Note that the minimization above is a separable problem, and the infimum is attained at

x̃i(µ) =

8><
>:

0 if µ > vi/wi,

1 if µ < vi/wi,

0 or 1 if µ = vi/wi.

Without loss of generality, assume that the objects are ordered such that v1
w1
 v2

w2
 . . .  vn

wn
.

When µ 2
⇣

vj�1
wj�1

,
vj
wj

i
for some j with 1  j  n, then x̃i(µ) = 1 for all i � j and x̃i(µ) = 0

otherwise, and

q̃(µ) = µ

0
@ nX

i=j

wi �A

1
A�

nX
i=j

vi.

From this relation, we see that, as µ increases, the slope of q̃(µ) decreases from
Pn

i=1 wi � A to

�A. Therefore, if
Pn

i=1 wi � A > 0, q̃(µ) is maximized when the slope of the curve goes from

positive to negative. In this case, the dual optimal value q̃⇤ is attained at µ⇤ = vi⇤
wi⇤

, where i⇤ is

the largest i such that

wi + . . . + wn � A.

If
Pn

i=1 wi �A  0, then the dual optimal value q̃⇤ is attained at µ⇤ = 0.
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(c) Consider a relaxed version of the problem of minimizing f̃ :

minimize fR(x) = �
nX

i=1

vixi

subject to
nX

i=1

wixi  A, xi 2 [0, 1], i = 1, . . . , n.

Let f⇤R and q⇤R be the optimal values of the relaxed problem and its dual, respectively. In the

relaxed problem, the cost function is convex over <n (in fact it is linear), and the constraint set

is polyhedral. Thus, according to Prop. 5.2.1, there is no duality gap, and f⇤R = q⇤R. The dual

function of the relaxed problem is

qR(µ) = inf
xi2[0,1]

(
nX

i=1

(µwi � vi)xi � µA+

)
.

Again, qR(µ) is separable and the infimum is attained at

xi(µ) =

8><
>:

0 if µ > vi/wi,

1 if µ < vi/wi,

anything in [0, 1] if µ = vi/wi.

Thus the solution is the same as the {0, 1} constrained problem for all i with µ 6= vi/wi. For i

with µ = vi/wi, the value of xi is irrelevant to the dual function value. Therefore, q̃(µ) = qR(µ)

for all µ, and thus q̃⇤ = q⇤R.

Following Example 5.1.2, it can be seen that the optimal primal and dual solution pair

(x⇤, µ⇤) of the relaxed problem satisfies

µ⇤wi = vi, if 0 < x⇤i < 1,

µ⇤wi � vi, if x⇤i = 0,

µ⇤wi  vi, if x⇤i = 1.

In fact, it is straightforward to show that there is an optimal solution of the relaxed problem

such that at most one x⇤i satisfies 0 < x⇤i < 1. Consider a solution x̄ equivalent to this optimal

solution with the exception that x̄i = 0 if 0 < x⇤i < 1. This solution is clearly feasible for the

{0, 1} constrained problem, so that we have

f̃⇤  f̃(x̄)  f⇤R + max
1in

vi.

Combining with earlier results,

f̃⇤  q⇤R + max
1in

vi = q̃⇤ + max
1in

vi.
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Since f̃⇤ = �f⇤ and q̃⇤ = �q⇤, we have the desired result.

(d) Since the object weights and values remain the same we have from (c) that 0  q⇤(k)�f⇤(k) 
max1in vi. By including in the subset each replica of an object assembled in the optimal

solution to the original problem, we see that f⇤(k) � kf⇤. It then follows that

lim
k!1

q⇤(k)� f⇤(k)
f⇤(k)

= 0.

5.1.8 www

We have

f = inf
x2X

�
f(x) + µ0

�
g(x)� u

� 
,

f̃ = inf
x2X

�
f(x) + µ̃0

�
g(x)� ũ

� 
,

from which

f � f̃ = inf
x2X

�
f(x) + µ0

�
g(x)� u

� 
� inf

x2X

�
f(x) + µ̃0

�
g(x)� u

� 
+ µ̃0(ũ� u)

� µ̃0(ũ� u),

where the last inequality holds because µ is a dual-optimal solution of the problem

minimize f(x)

subject to x 2 X, g(x)  u,

so that it maximizes over µ � 0 the dual value infx2X

�
f(x) + µ0

�
g(x)� u

� 
.

This proves the left-hand side of the desired inequality. Interchanging the roles of f , u, µ,

and f̃ , ũ, µ̃, shows the desired right-hand side.

5.1.9 (Ho↵man’s Bound) www

(a) Since the feasible set is closed, the projection problem given in the exercise has an optimal

solution. Therefore by Proposition 3.4.2, there exists an optimal primal solution and geometric

multiplier pair (x⇤(y, z), µ⇤(y, z)) for each y 2 Y, z 2 <n. By the optimality condition, for µ to

be a geometric multiplier, it su�ces that

� z � x⇤

kz � x⇤k =
X

i2I(x⇤(y,z)

µiai,

where I(x⇤(y, z)) is the set of indexes corresponding to the active constraints at x⇤(y, z), and ai

is the ith column vector of A0. Since the vector in the left-hand-side of the equation has norm
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1, we can pick µ⇤(y, z) to be the minimum norm solution for this linear equation. Since there

are only a finite number of such equations, the set {µ⇤(y) | y 2 Y } is bounded. Finally, by the

optimality of a geometric multiplier, we have

f⇤(y, z)  kz � zk+ µ⇤(y, z)0(Az � b� y)  µ⇤(y, z)0(Az � b� y)+.

(b) Using the last inequality in part (a), we have

f⇤(y, z) 
X

i

µ⇤i (y, z)k(Az � b� y)+k, 8y 2 Y, z 2 Z,

and

f⇤(y, z)  max
i

µ⇤i (y, z) k(Az � b� y)+k, 8y 2 Y, z 2 <n.

Let c be a constant such that c > {µ⇤(y) | y 2 Y }. By the boundedness of {µ⇤(y) | y 2 Y } shown

in part (a), we can choose c so that the bound f⇤(y, z)  ck(Ax� b� y)+k holds.

5.1.10 www

(This problem is numbered 5.1.9 in the first printing of the book.) We consider the subset of

<r+1

A =
�
(z, w) | there exists x 2 X such that g(x)  z, f(x)  w

 
,

and its convex hull Conv(A). The vectors
�
g(xF ), f(xF )

�
and

�
g(xI), f(xI)

�
belong to A. In

addition, the vector (0, f̃), where

f̃ = inf
�
w | (z, w) 2 Conv(A), z  0

 
,

is in the closure of Conv(A). Let us now show that q⇤  f̃ , as indicated by Fig. 1.

Indeed, for each (z, w) 2 Conv(A), there exist ⇠1 � 0 and ⇠2 � 0 with ⇠1 + ⇠2 = 1, and

x1 2 X, x2 2 X such that

⇠1g(x1) + ⇠2g(x2)  z,

⇠1f(x1) + ⇠2f(x2)  w.

Furthermore, by the definition of the dual function q, we have for all µ 2 <r,

q(µ)  f(x1) + µ0g(x1),

q(µ)  f(x2) + µ0g(x2).
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Combining the preceding four inequalities, we obtain

q(µ)  w + µ0z, 8 (z, w) 2 Conv(A), µ � 0.

The above inequality holds also for all (z, w) that are in the closure of Conv(A), and in particular,

for (z, w) = (0, f̃). It follows that

q(µ)  f̃ , 8 µ � 0,

from which, by taking the maximum over µ � 0, we obtain q⇤  f̃ .

Let � be any nonnegative scalar such that g(xI)  ��g(xF ), and consider the vector

� = ��g(xF )� g(xI).

Since � � 0, it follows that the vector

�
��g(xF ), f(xI)

�
=
�
g(xI) + �, f(xI)

�

also belongs to the set A. Thus the three vectors

�
g(xF ), f(xF )

�
, (0, f̃),

�
��g(xF ), f(xI)

�

belong to the closure of Conv(A), and form a triangle in the plane spanned by the “vertical”

vector (0, 1) and the “horizontal” vector
�
g(xF ), 0

�
.

Let (0, f̂) be the intersection of the vertical axis with the line segment connecting the vectors�
g(xF ), f(xF )

�
and

�
��g(xF ), f(xI)

�
(there is a point of intersection because � � 0). We have

by Euclidean triangle geometry (cf. Fig. 1)

f̂ � f(xI)
f(xF )� f(xI)

=
�

� + 1
. (1)

Since the vectors
�
g(xF ), f(xF )

�
and

�
��g(xF ), f(xI)

�
both belong to Conv(A), we also have

(0, f̂) 2 Conv(A). By the definition of f̃ , we obtain f̃  f̂ , and since q⇤  f̃ , as shown earlier,

from Eq. (1) we have
q⇤ � f(xI)

f(xF )� f(xI)
 f̃ � f(xI)

f(xF )� f(xI)
 �

� + 1
.

Taking the infimum over � � 0, the desired error bound follows.

6



w

z

A = {(z,w) | there is an x in X such that g(x) £  z, f(x) £  w}

{(g(x),f(x)) | x Œ X}

(g(xI),f(xI))

(g(xF),f(xF))

^(0,f)

(0,f)~

Figure for Exercise 5.1.10 Geometrical interpretation of the bound of Exercise

5.1.10 in the case where there is only one constraint. We consider the convex hull

of the subset A of <2 given by

A =
�

(z, w) | there exists x 2 X such that g(x)  z, f(x)  w
 

.

Let f̂ be the point of intersection of the vertical axis of <2 with the line segment

connecting the vectors
�
g(xF ), f(xF )

�
and

�
g(xI), f(xI)

�
. The vector (0, f̂) be-

longs to Conv(A). Also, by Euclidean geometry, we have

f̂ � f(xI)

f(xF )� f(xI)
=

g(xI)

g(xI)� g(xF )
,

and by the definition of q⇤ we have

q⇤  f̃  f̂ ,

where

f̃ = inf
�

w | (z, w) 2 Conv(A), z  0
 

.

Combining these two relations, the bound follows.

5.1.11 of 2nd printing www

Let f⇤ be the (common) optimal value of the two problems

minimize f(x)

subject to x 2 X, gj(x)  0, j = 1, . . . , r,
(1.1)

and
minimize f(x)

subject to x 2 X, gj(x)  0, j 2 J,
(1.2)

where

X =
�
x 2 X | gj(x)  0, j 2 J

 
.
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Since {µ⇤j | j 2 J} is a geometric multiplier of problem (1.2), we have

f⇤ = inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x)

9=
; . (1.3)

Since the problem

minimize

8<
:f(x) +

X
j2J

µ⇤jgj(x)

9=
;

subject to x 2 X, gj(x)  0, j 2 J,

(1.4)

has no duality gap, we have

inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x)

9=
; = sup

µj�0, j2J

inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x) +
X
j2J

µjgj(x)

9=
; . (1.5)

Combining Eqs. (1.3) and (1.5), we have

f⇤ = sup
µj�0, j2J

inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x) +
X
j2J

µjgj(x)

9=
; ,

which can be written as

f⇤ = sup
µj�0, j2J

q
�
{µ⇤j | j 2 J}, {µj | j 2 J}

�
,

where q is the dual function of problem (1.1). It follows that problem (1.1) has no duality gap.

If {µ⇤j | j 2 J} is a geometric multiplier for problem (1.4), we have

inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x)

9=
; = inf

x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x) +
X
j2J

µ⇤jgj(x)

9=
; ,

which together with Eq. (1.3), implies that

f⇤ = inf
x2X

8<
:f(x) +

X
j2J

µ⇤jgj(x) +
X
j2J

µ⇤jgj(x)

9=
; ,

or that {µ⇤j | j = 1, . . . , r} is a geometric multiplier for the original problem (1.1).

5.1.12 of 2nd printing (Extended Representation) www

(a) Consider the problems

minimize f(x)

subject to x 2 X, gj(x)  0, j = 1, . . . , r,
(1.6)
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and
minimize f(x)

subject to x 2 X̃, gj(x)  0, j = 1, . . . , r, g̃j(x)  0, j = 1, . . . , r̃,
(1.7)

where

X = X̃ \
�
x | g̃j(x)  0, j = 1, . . . , r̃

 
,

and let f⇤ be their (common) optimal value.

If problem (1.7) has no duality gap, we have

f⇤ = sup
µ�0, µ̃�0

inf
x2X̃

8<
:f(x) +

rX
j=1

µjgj(x) +
r̃X

j=1

µ̃j g̃j(x)

9=
;

 sup
µ�0, µ̃�0

inf
x2X̃

g̃j(x)0, j=1,...,r̃

8<
:f(x) +

rX
j=1

µjgj(x) +
r̃X

j=1

µ̃j g̃j(x)

9=
;

= sup
µ�0, µ̃�0

inf
x2X

8<
:f(x) +

rX
j=1

µjgj(x) +
r̃X

j=1

µ̃j g̃j(x)

9=
;

 sup
µ�0, µ̃�0

inf
x2X

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

= sup
µ�0

inf
x2X

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

= sup
µ�0

q(µ),

where q is the dual function of problem (1.6). Therefore, problem (1.6) has no duality gap.

(b) If µ⇤ = {µ⇤j | j = 1, . . . , r}, and µ̃⇤ = {µ⇤j | j = 1, . . . , r̃}, are geometric multipliers for

problem (1.7), we have

f⇤ = inf
x2X̃

8<
:f(x) +

rX
j=1

µ⇤jgj(x) +
r̃X

j=1

µ̃⇤j g̃j(x)

9=
;

 inf
x2X̃

g̃j(x)0, j=1,...,r̃

8<
:f(x) +

rX
j=1

µ⇤jgj(x) +
r̃X

j=1

µ̃⇤j g̃j(x)

9=
;

= inf
x2X

8<
:f(x) +

rX
j=1

µ⇤jgj(x) +
r̃X

j=1

µ̃⇤j g̃j(x)

9=
;

 inf
x2X

8<
:f(x) +

rX
j=1

µ⇤jgj(x)

9=
;

= inf
x2X

8<
:f(x) +

rX
j=1

µ⇤jgj(x)

9=
;

= q(µ⇤).
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It follows that µ⇤ is a geometric multiplier for problem (1.6).

SECTION 5.2

5.2.2 www

Without loss of generality, we may assume that there are no equality constraints, so that the

problem is
minimize f(x)

subject to x 2 X, a0jx� bj  0, j = 1, . . . , r.

Let X = C \ P , and let the polyhedron P be described in terms of linear inequalities as

P = {x 2 <n | a0jx� bj  0, j = r + 1, . . . , p},

where p is an integer with p > r. By applying Lemma 5.2.2 with

S = {x 2 <n | a0jx� bj  0, j = 1, . . . , p},

and F (x) = f(x)� f⇤, we have that there exist scalars µi � 0, j = 1, . . . , p, such that

f⇤  f(x) +
pX

j=1

µj(a0jx� bj), 8 x 2 C.

For any x 2 X we have µj(a0jx � bj)  0 for all j = r + 1, . . . , p, so the above relation implies

that

f⇤  f(x) +
rX

j=1

µj(a0jx� bj), 8 x 2 X,

or equivalently

f⇤  inf
x2X

{f(x) +
rX

j=1

µj(a0jx� bj)} = q(µ)  q⇤.

By using the weak duality theorem (Prop. 5.1.3), it follows that µ is a Lagrange multiplier and

that there is no duality gap.

In Example 5.2.1, we can set C = {x 2 <2 | x � 0} and P = {x 2 <2 | x1 � 0}. Then

evidently X = C and f is convex over C. However, ri(C) = int(C) = {x 2 <2 | x > 0}, while

every feasible point x must have x1 = 0. Hence no feasible point belongs to the relative interior

of C, and as seen in Example 5.2.1, there is a duality gap.
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SECTION 5.3

5.3.1 www

Assume that there exists an x 2 X such that gj(x) < 0 for all j. By Prop. 5.3.1, the set of

Lagrange multipliers is nonempty. Let µ be any Lagrange multiplier. By assumption, �1 < f⇤,

and we have

�1 < f⇤  L(x̄, µ) = f(x̄) +
rX

j=1

µjgj(x̄),

or

�
rX

j=1

µjgj(x̄)  f(x̄)� f⇤.

We have

min
i=1,...,r

{�gi(x̄)}  �gj(x̄), 8 j,

so by combining the last two relations, we obtain0
@ rX

j=1

µj

1
A min

i=1,...,r
{�gi(x̄)}  f(x̄)� f⇤.

Since x̄ satisfies gj(x̄) < 0 for all j, we have
rX

j=1

µj 
f(x̄)� f⇤

minj=1,...,r{�gj(x̄)} .

Hence the set of Lagrange multipliers is bounded.

Conversely, let the set of Lagrange multipliers be nonempty and bounded. Consider the set

B =
�
z | there exists x 2 X such that g(x)  z

 
.

Assume, to arrive at a contradiction, that there is no x 2 X such that g(x) < 0. Then the origin

is not an interior point of B, and similar to the proof of Prop. 5.3.1, we can show that B is

convex, and that there exists a hyperplane whose normal � satisfies � 6= 0, � � 0, and

�0g(x) � 0, 8 x 2 X. (1)

Let now µ be a Lagrange multiplier. Using Eq. (1), we have for all � � 0

f⇤ = inf
x2X

L(x, µ)  inf
x2X

L(x, µ + ��)  inf
x2X, g(x)0

L(x, µ + ��)  inf
x2X, g(x)0

f(x) = f⇤,

where the last inequality holds because µ + �� � 0, and hence (µ + ��)0g(x)  0 if g(x)  0.

Hence, equality holds throughout in the above relation, so µ+�� is a Lagrange multiplier for all

� � 0. Since � 6= 0, it follows that the set of Lagrange multipliers is unbounded – a contradiction.
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5.3.2 www

(a) Since the constraint set X = {x | x 2 X, gj(x)  0, j = 1, . . . , r} is convex, and x⇤ is a local

minimum, we have

rf(x⇤)0(x� x⇤) � 0, 8 x 2 X

(see Prop. 2.1.2 of Chapter 2). Hence x⇤ is a local minimum of the problem

minimize rf(x⇤)0x

subject to x 2 X, gj(x)  0, j = 1, . . . , r.
(1)

he Assumption 5.3.1 holds for problem (1), so that we can apply Prop. 5.3.1. Thus we have that

there is no duality gap, and there exists a Lagrange multiplier µ⇤ � 0 for problem (1), i.e.

sup
µ�0

q(µ) = q(µ⇤) = inf
x2X

8<
:rf(x⇤)0x +

rX
j=1

µ⇤jgj(x)

9=
; = rf(x⇤)0x⇤.

From Prop. 5.1.1, we also obtain

µ⇤jgj(x⇤) = 0, 8 j.

The last two relations imply that

x⇤ 2 arg min
x2X

8<
:rf(x⇤)0x +

rX
j=1

µ⇤jgj(x)

9=
; . (2)

(b) We use Prop. 3.3.12 to assert that there exist µ⇤j � 0, j = 1, . . . , r, such that µ⇤jgj(x⇤) = 0

for all j and

rxL(x⇤, µ⇤)0(x� x⇤) � 0, 8 x 2 X.

The last relation implies that

x⇤ = arg min
x2X

rxL(x⇤, µ⇤)0x.

5.3.3 www

For simplicity and without loss of generality, assume that A(x⇤) = {1, . . . , r}, and denote

hj(x) = rgj(x⇤)0(x� x⇤), 8 j.

By Prop. 5.1.1, µ 2 M⇤ if and only if x⇤ is a global minimum of the convex problem

minimize rf(x⇤)0(x� x⇤)

subject to x 2 X, hj(x)  0, j = 1, . . . , r,
(1)

12



while µ is a Lagrange multiplier. The feasible directions of X at x⇤ are the vectors of the form

d = x� x⇤ where x 2 X. Hence the assumption that there exists a feasible direction d with the

property described is equivalent to the existence of an x 2 X such that hj(x) < 0 for all j.

If there exists a feasible direction d with rgj(x⇤)0d < 0 for all j, then by Prop. 3.3.12, the

set M⇤ is nonempty. Applying the result of Exercise 5.3.1 to problem (1), we see that the set M⇤

is bounded. Conversely, if M⇤ is nonempty and bounded, again applying the result of Exercise

5.3.1, we see that there exists x 2 X such that hj(x) < 0 for all j, and hence also there exists a

feasible direction with the required property.

5.3.4 www

(a) Assume that x⇤ is not a Pareto optimal solution. Then there is a vector x 2 X such that

either

f1(x̄)  f1(x⇤), f2(x̄) < f2(x⇤),

or

f1(x̄) < f1(x⇤), f2(x̄)  f2(x⇤).

In either case, by using the facts �⇤1 > 0 and �⇤2 > 0, we have

�⇤1f1(x̄) + �⇤2f2(x̄) < �⇤1f1(x⇤) + �⇤2f2(x⇤),

yielding a contradiction. Therefore x⇤ is a Pareto optimal solution.

(b) Let

A = {(z1, z2) | there exists x 2 X such that f1(x)  z1, f2(x)  z2}.

We first show that A is convex. Indeed, let (a1, a2), (b1, b2) be elements of A, and let (c1, c2) =

↵(a1, a2)+(1�↵)(b1, b2), for any ↵ 2 [0, 1]. Then for some xa 2 X, xb 2 X, we have f1(xa)  a1,

f2(xa)  a2, f1(xb)  b1, and f2(xb)  b2. Let xc = ↵xa + (1�↵)xb. Since X is convex, xc 2 X,

and since f1 and f2 are convex, we have

f1(xc)  c1, f2(xc)  c2.

Hence (c1, c2) 2 A implying that A is convex.

Note that
�
f1(x⇤), f2(x⇤)

�
is not an interior point of A. [If this were not the case, then for

some x 2 X we would have f1(x) < f1(x⇤) and f2(x) < f2(x⇤), so that x⇤ would not be Pareto

optimal.] By supporting hyperplane theorem, there exist �⇤1 and �⇤2, not both equal to 0, such

that

�⇤1z1 + �⇤2z2 � �⇤1f1(x⇤) + �⇤2f2(x⇤), 8 (z1, z2) 2 A.

13



Since z1 and z2 can be arbitrarily large, we must have �⇤1 � 0 and �⇤2 � 0. Furthermore, by the

definition of the set A, from the above equation we obtain

�⇤1f1(x) + �⇤2f2(x) � �⇤1f1(x⇤) + �⇤2f2(x⇤), 8 x 2 X,

implying that

min
x2X

�
�⇤1f1(x) + �⇤2f2(x)

 
= �⇤1f1(x⇤) + �⇤2f2(x⇤).

(c) Generalization of (a): If x⇤ is a vector in X, and �⇤1, . . . ,�
⇤
m are positive scalars such that

mX
i=1

�⇤i fi(x⇤) = min
x2X

(
mX

i=1

�⇤i fi(x)

)
,

then x⇤ is a Pareto optimal solution.

Generalization of (b): Assume that X is convex and f1, . . . , fm are convex over X. If x⇤ is a

Pareto optimal solution, then there exist non-negative scalars �⇤1, . . . ,�
⇤
m, not all zero, such that

mX
i=1

�⇤i fi(x⇤) = min
x2X

(
mX

i=1

�⇤i fi(x)

)
.

5.3.5 www

Let
A = {(z, w) | there exists (x, u) 2 <n+s such that

h(x, u) = z, f(x, u)  w, u 2 U}.
Suppose that (0, f⇤) is an interior point of A. Then the point (0, f⇤ � �) belongs to A for some

small enough � > 0. By definition of the set A, we have that h(x, u) = 0 and f(x, u)  f⇤ � �

for some x 2 <n and u 2 U , which contradicts the fact that f⇤ is the optimal value. Therefore

(0, f⇤) must be on the boundary of the set A. Furthermore, there is a supporting hyperplane of

the set A that passes through the point (0, f⇤). In other words, there exists a nonzero vector

(�,�) such that

�f⇤  �0z + �w, 8(z, w) 2 A. (1)

By assumption (2), we have that for z = 0 there are a vector u 2 U and a vector x 2 <n

such that h(x, u) = 0, which implies that (0, w) 2 A for all w with w � f(x, u) � f⇤. Then from

(1) we have

0  �(w � f⇤), 8 w � f⇤,

which holds only if � � 0. Suppose that � = 0. Then assumption (2) and Eq. (1) imply that

�0z � 0, 8 z with ||z|| < ✏,

14



which is possible only if � = 0. But this contradicts the fact that (�,�) 6= 0. Hence, we can take

� = 1 in Eq. (1). From here and the definition of the set A, we obtain

f⇤  f(x, u) + �0h(x, u), 8 x 2 <n, u 2 U.

This, combined with weak duality, implies that

inf
x2<n,u2U

�
f(x, u) + �0h(x, u)

 
= f⇤. (2)

Suppose that (x⇤, u⇤) is an optimal solution. Then (x⇤, u⇤) must be feasible [i.e., it must

satisfy h(x⇤, u⇤) = 0], and

f⇤ = f(x⇤, u⇤) + �0h(x⇤, u⇤) = inf
x2<n,u2U

{f(x, u) + �0h(x, u)} ,

where the last equality follows from Eq. (2). Therefore we must have

u⇤ = arg min
u2U

{f(x⇤, u) + �0h(x⇤, u)} .

Similarly, we can argue that

x⇤ = arg min
x2<n

{f(x, u⇤) + �0h(x, u⇤)} .

If f and h are continuously di↵erentiable with respect to x for any u 2 U , the last relation implies

that

rxf(x⇤, u⇤) +rxh(x⇤, u⇤)� = 0.

5.3.6 www

Similar to Exercise 5.3.5, we can show that there is a vector (�p⇤, 1) such that

f⇤  �p⇤0z + w, 8 (z, w) 2 A,

where p⇤ 2 <N . This implies

f⇤  inf
xi2<,i=1,...,N

inf
ui2Ui,i=0,...,N�1

(
N�1X
i=0

�
p⇤i+1

0fi(xi, ui) + gi(xi, ui)� p⇤i+1
0xi+1

�
+ gN (xN )

)

= inf
xi2<, i=1,...,N

(
gN (xN ) +

N�1X
i=0

✓
inf

ui2Ui

�
p⇤i+1

0fi(xi, ui) + gi(xi, ui)
 
� p⇤i+1

0xi+1

◆)

= q(p⇤) = q⇤.

15



From here and the weak duality theorem (Prop. 5.1.3), it follows that p⇤ is a Lagrange multiplier

and that there is no duality gap. Using the same argument as in Exercise 5.3.5, we can show that

u⇤i = arg min
ui2Ui

Hi(x⇤, ui, p⇤i+1), i = 0, . . . , N � 1,

where

Hi(x, ui, pi+1) = p0i+1fi(xi, ui) + gi(xi, ui).

Also, we have

x⇤ = argminxi2<, i=1,...,N

(
gN (xN ) +

N�1X
i=0

�
p⇤i+1

0fi(xi, u⇤i ) + gi(xi, u⇤i )� p⇤i+1
0xi+1

�)

= argminxi2<, i=1,...,N

(
N�1X
i=1

�
p⇤i+1

0fi(xi, u⇤i ) + gi(xi, u⇤i )� p⇤i
0xi

�
+ gN (xN )� p⇤N

0xN

)
,

where x⇤ = (x⇤1, . . . , x⇤N ). By using the separable structure of the expression on the left hand-side

in the relation above, we obtain

x⇤i = arg min
xi2<

�
p⇤i+1

0fi(xi, u⇤i ) + gi(xi, u⇤i )� p⇤i
0xi

 
, for i = 1, . . . , N � 1,

and

x⇤N = arg min
xN2<

�
gN (xN )� p⇤N

0xN

 
.

Since the functions fi and gi are continuously di↵erentiable with respect to xi for each ui 2 Ui,

the last two relations are equivalent to

rxiHi(x⇤, u⇤i , p⇤i+1) = p⇤i , for i = 1, . . . , N � 1

and

rgN (x⇤N ) = p⇤N ,

respectively.

5.3.7 of First Printing www

Let

Y = {x 2 <n | x 2 X, e0ix� di = 0, i = 1, . . . ,m, a0jx� bj  0, j = r + 1, . . . , r}.

Note that Y is a convex subset of X and the functions f , gj are convex over Y . Since x 2 Y , we

have that all conditions of Prop. 5.3.1 are satisfied. Therefore there exists a Lagrange multiplier

µ⇤ such that

f⇤ = inf
x2Y

8<
:f(x) +

rX
j=1

µ⇤jgj(x)

9=
; .
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Denote F (x) = f(x) +
Pr

j=1 µ⇤jgj(x), and consider the minimization problem

minimize F (x)

subject to x 2 Y.

This problem has optimal value f⇤. Moreover

(1) Y is the intersection of a convex set X and a polyhedron

P = {x 2 <n | e0ix� di = 0, i = 1, . . . ,m, a0jx� bj  0, j = r + 1, . . . , r}.

(2) F : <n 7! < is convex over X.

(3) The point x is such that x 2 ri(X) and x 2 P .

According to Exercise 5.2.2, the conclusion of Prop. 5.2.1 holds. Hence there are Lagrange

multipliers �⇤i , 1  i  m, and µ⇤j , r + 1  j  r such that

f⇤ = inf
x2X

8<
:F (x) +

rX
j=r+1

µ⇤j (a0jx� bj) +
mX

i=1

�⇤i (e0ix� di)

9=
; .

By writing down F explicitly, we obtain the desired result.

5.3.8 www

The dual function for the problem in the hint is

q(µ) = inf
y2<, x2X

8<
:y +

rX
j=1

µj
�
gj(x)� y

�9=
; =

(
infx2X

Pr
j=1 µjgj(x) if

Pr
j=1 µj = 1

�1 if
Pr

j=1 µj 6= 1

The problem in the hint satisfies the interior point Assumption 5.3.1, so by Prop. 5.3.1 the dual

problem has an optimal solution µ⇤ and there is no duality gap.

Clearly the problem in the hint has an optimal value that is greater or equal to 0 if and

only if the system of inequalities

gj(x) < 0, j = 1, . . . , r,

has no solution within X. Since there is no duality gap, we have

max
µ�0,

Pr

j=1
µj=1

q(µ) � 0

if and only if the system of inequalities gj(x) < 0, j = 1, . . . , r, has no solution within X. This is

equivalent to the statement we want to prove.

17



5.3.9 (Duality Gap Example) www

It can be seen that a vector (x1, x2) is feasible if and only if

x1 � 0, x2 = 0.

Furthermore, all feasible points attain the optimal value, which is f⇤ = 1.

Consider now the dual function

q(µ) = inf
x2<2

�
ex2 + µ

�
kxk � x1

� 
. (1)

We will show that q(µ) = 0 for all µ � 0 by deriving the set of constraint-cost pairs

�
(kxk � x1, ex2) | x 2 <2

 
.

Indeed, for u < 0 there is no x such that kxk � x1 = u. For u = 0, the vectors x such that

kxk� x1 = u are of the form x = (x1, 0), so the set of constraint-cost pairs with constraint value

equal to 0 is (0, 1). For u > 0, for each x2, the equation kxk � x1 = u has a solution in x1:

x1 =
x2

2 � u2

2u
.

Thus, if u > 0, the set of constraint-cost pairs with constraint value equal to u is

�
(u,w) | w > 0

 
.

Combining the preceding facts, we see that the set of constraint-cost pairs is

�
(0, 1)

 
[
�
(u,w) | u > 0, w > 0

 
,

which based on the geometric constructions of Section 6.1, shows that q(µ) = 0 for all µ � 0 [this

can also be verified using the definition (1) of q]. Thus,

q⇤ = sup
µ�0

q(µ) = 0,

and there is a duality gap, f⇤ � q⇤ = 1.

The di�culty here is that g is nonlinear and there is no x 2 X such that g(x) < 0, so the

Slater condition (Assumption 5.3.1) is violated.

SECTION 5.4
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5.4.3 www

Define

f1(x) = f(x), X1 = X,

f2(x) ⌘ 0, X2 = C,

and apply Fenchel duality. We have

g1(�) = sup
x2X

�
�0x� f(x)

 
,

g2(�) = inf
x2C

x0� =
⇢ 0 if �� 2 C?,

�1 if �� /2 C?.
Thus the Fenchel dual is

maximize �g(�)

subject to �� 2 C?,

where g(�) = g1(�). Assuming the original problem is feasible, conditions that guarantee that

there is no duality gap are that f is convex over X, plus any one of the following:

(a) The relative interiors of X and C have nonempty intersection.

(b) The relative interior of C⇤ and the relative interior of the set {� | g(�) > �1} have

nonempty intersection. Furthermore, X and C are closed.

(c) f is convex over <n, and X and C are polyhedral.

(d) g is real-valued, X is closed, and C is polyhedral.

5.4.5 www

(a) Let us apply Fenchel’s duality theorem to the functions

f1(x) =
c

2
kxk2, f2(x) = ��(t� x),

and the sets

X1 = X2 = <n.

Using Prop. 5.4.1, we have

Pc(t) = min
x2<n

n c

2
kxk2 + �(t� x)

o
= max

�2<n

�
g2(�)� g1(�)

 
,
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where the corresponding conjugates g1 and g2 are calculated as follows:

g1(�) = sup
x2<n

n
x0�� c

2
kxk2

o
=

1
2c
k�k2,

g2(�) = inf
x2<n

�
x0� + �(t� x)

 
= t0� + inf

x2<n

�
�(t� x)� (t� x)0�

 
= t0�� sup

u2<n

�
u0�� �(u)

 
= t0�� g(�).

Thus we have

Pc(t) = max
�2<n

⇢
t0�� g(�)� 1

2c
k�k2

�
.

The function Pc(·) is the pointwise maximum of a collection of linear functions, so it is

convex. To show that Pc(t) is di↵erentiable, we view it as the primal function of a suitable

problem, and we use the fact that the subgradients of the primal function at 0 are the negatives

of the corresponding Lagrange multipliers (cf. Section 5.4.4). Consider the convex programming

problem
minimize

c

2
kyk2 + �(z)

subject to t� y � z = 0,
(1)

whose primal function is

p(w) = min
t�y�z=w

n c

2
kyk2 + �(z)

o
= min

x2<n

n c

2
kxk2 + �(t� x� w)

o
.

We have

p(w) = Pc(t� w)

and the set of subgradients of Pc at t is the set of the negatives of the subgradients of p(w) at 0,

or equivalently (by the theory of Section 5.4.4), the set of dual optimal solutions of problem (1).

The dual function of problem (1) is

q(�) = min
z,y

n c

2
kyk2 + �(z) + �0(t� y � z)

o

= min
y

n c

2
kyk2 � �0y

o
+ min

z

�
�(z) + �0(t� z)

 

= � 1
2c
k�k2 �max

z

�
(z � t)0�� �(z)

 

= � 1
2c
k�k2 �max

z

�
z0�� �(z)

 
+ t0�

= t0�� g(�)� 1
2c
k�k2

.

Thus the optimal dual solution is the unique � attaining the maximum of q(�). As argued earlier,

this � must be equal to rPc(t).
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(b) The formulas and their derivation can be found in [Ber77] and [Ber82a], Section 3.3.

(c) We have

Pc(t) = inf
u2<n

n
�(t� u) +

c

2
kuk2

o
 �(t).

Also, if d is a subgradient of � at t, we have for all u 2 <n

�(t� u) +
c

2
kuk2 � �(t)� d0u +

c

2
kuk2 � �(t) + min

u

n
�d0u +

c

2
kuk2

o
= �(t)� 1

2c
kdk2.

Thus we have for all t

�(t)� 1
2c
kdk2  Pc(t)  �(t),

which implies that limc!1 Pc(t) = �(t).

(d) From the Fenchel duality theorem we obtain, similar to part (a),

Pc(t) = sup
�2<n

⇢
t0�� g(�)� 1

2c
k�� yk2

�
.

5.4.6 www

(a) For all x 2 X and � 2 D, we have

1 > g(�) � x0�� f(x),

so we have

f(x) � x0�� g(�), 8 x 2 X,� 2 D.

hence

f(x) � sup
�2D

�
x0�� g(�)

 
= f̃(x), 8 x 2 X.

(b) Proof of Hint 1 : If every hyperplane containing C in one of its halfspaces were vertical, we

would have

C = \i2I

�
(z, w) | ⇠0iz � �i

 
for a collection of nonzero vectors ⇠i, i 2 I, and scalars �i, i 2 I. Then for every (z, w) 2 C, the

vertical line
�
(z, w) | w 2 <

 
also belongs to C. It follows that if no vertical line belongs to C,

there exists a nonvertical hyperplane containing C.

Proof of Hint 2 : If (z, w) /2 C, then since C is closed, there exists a hyperplane strictly

separating (z, w) from C. If this hyperplane is nonvertical, we are done, so assume otherwise.

Then we have a nonzero vector ⇠ and a scalar c such that

⇠
0
z > c > xiz, 8 (z, w) 2 C.
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Consider a nonvertical hyperplane containing C in one of its subspaces, so that for some (⇠, ⇣)

and �, with ⇣ 6= 0, we have

⇠0z + ⇣w � �, 8 (z, w) 2 C.

By multiplying this relation with any ✏ > 0 and adding it to the preceding relation, we obtain

(⇠ + ✏⇠)0z + ✏⇣w > c + ✏�, 8 (z, w) 2 C.

Let ✏ be small enough so that

c + ✏� > (⇠ + ✏⇠)0z + ✏⇣w.

Then, we obtain

(⇠ + ✏⇠)0z + ✏⇣w >> (⇠ + ✏⇠)0z + ✏⇣w, 8 (z, w) 2 C,

implying that there is nonvertical hyperplane with normal (⇠+✏⇠, ✏⇣) that strictly separates (z, w)

from C.

We now use the second hint to prove part (b) of the exercise. Let C be the epigraph of

(f,X), let (x, �) belong to the epigraph of (f̃ , X̃), i.e., x 2 X̃, � � f̃(x), and suppose that (x, �)

does not belong to C. Then by the second hint, there exists a nonvertical hyperplane (�, ⇣),

where ⇣ 6= 0, and a scalar c such that

�0z + ⇣w < c < �0x� ⇣�, 8 (z, w) 2 C.

Since w can be made arbitrarily large, we have ⇣ < 0, and we can take ⇣ = �1, so that

�0z � w < c < �0x� �, 8 (z, w) 2 C.

Since � � f̃(x) and
�
z, f(z)

�
2 C for all z 2 X, we obtain

�0z � f(z) < c < �0x� f̃(x), 8 z 2 X.

hence

sup
z2X

�
�0z � f(z)

 
 c < �0x� f̃(x),

or

g(�) < �0x� f̃(x),

or

f̃(x) < �0x� g(�),

which contradicts the definition of f̃ .
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5.4.7 www

(a) We have f⇤ = p(0). Since p(u) is monotonically nonincreasing, its minimal value over u 2 0

is obtained for u = 0. Hence, f⇤ = p⇤, where p⇤ = infu2P, u�0p(u), µ is a Lagrange multiplier of

the original problem if µ � 0 and

f⇤ = inf
x2X

�
f(x) + µ0g(x)

 
= inf

u2P
inf

x2X, g(x)u

�
f(x) + µ0g(x)

 
= inf

u2P

�
p(u) + µ0u

 
.

Since f⇤ = p⇤, we see that µ⇤ is a Lagrange multiplier for the problem minu0 p(u).

(b) This part is proved by the preceding argument.

(c) From (b), we see that �q(�µ) is the conjugate convex function of (p, P ). Let us view the

dual problem as the minimization problem

minimize � q(�µ)

subject to µ  0.
(1)

Its dual problem is obtained by forming the conjugate convex function of its primal function,

which by Exercise 5.4.7 is (p, P ). hence the dual of the dual problem (1) is

maximize � p(u)

subject to u  0

and the optimal solutions to this problem are the Lagrange multipliers to problem (1).

5.4.8 www

Define X = {x | ||x||  1}, and note that X is convex and compact set. Therefore, according to

Minimax Theorem, we have

min
x2X

max
y2Y

x0y = max
y2Y

min
x2X

x0y.

For a fixed y 2 Y , the minimum of x0y over X is attained at x⇤ = �y/||y|| if y 6= 0 and x⇤ = 0 if

y = 0 [this can be verified by the first order necessary condition, which is here also su�cient by

convexity of x0y]. Thus we obtain

min
x2X

max
y2Y

x0y = max
y2Y

�
�||y||

�
= �min

y2Y
||y||.

Thus the original problem can be solved by projecting the origin on the set Y .
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5.4.12 www

To be added.

5.4.13 www

Let f(x) = (1/2)x0Qx. Since the problem has a unique optimal solution, we have that Q is

positive definite on the nullspace of the matrix A, implying that f(x) + (1/2c)kx� xkk2 also has

a unique minimum subject to Ax = b. Hence the algorithm

xk+1 = arg min
Ax=b

⇢
1
2
x0Qx +

1
2c
kx� xkk2

�

is well defined. This algorithm can also be written as

xk+1 = arg min
Ax=b

⇢
1
2
x0Qx +

1
2c
kx� xkk2 +

�

2
kAx� bk2

�

for any scalar �. If � is su�ciently large, the quadratic function

1
2
x0Qx +

�

2
kAx� bk2

is positive definite by Lemma 3.2.1. For such �, the above algorithm is equivalent to the proximal

minimization algorithm and it inherits the corresponding convergence properties.
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Fix any x 2 <n. Let

x 2 arg min
y2<n

(
f(y) +

1
2c

X
i2I

(yi � xi)2
)

(1)

and let

x̃i =
⇢

xi 8 i 2 I

xi 8 i /2 I.
(2)

We will show that

x = arg min
y2<n

⇢
f(y) +

1
2c
ky � x̃k2

�
, (3)

x̃ 2 arg min
{y|yi=xi, i2I}

Fc(y). (4)

Indeed, from the definition of x̃, the vector x minimizes not only f(y) + 1
2c

P
i2I(yi � xi)2 but

also 1
2c

P
i/2I(yi � x̃i)2, implying that x minimizes the sum, which is f(y) + 1

2cky � x̃k2. This

proves Eq. (3).

24



To prove Eq. (4), note that for all vectors z 2 <n with zi = xi for all i 2 I, we have

Fc(z) = min
y2<n

(
f(y) +

1
2c

X
i2I

(yi � xi)2 +
1
2c

X
i/2I

(yi � zi)2
)

� min
y2<n

(
f(y) +

1
2c

X
i2I

(yi � xi)2
)

= f(x) +
1
2c

X
i2I

(xi � xi)2

= f(x) +
1
2c

X
i2I

(xi � xi)2 +
1
2c

X
i/2I

(xi � xi)2

� Fc(x̃),

where the last inequality follows from the definitions of x̃ and Fc. This proves Eq. (4).

Conversely, suppose that x and x̃ satisfy (3) and (4). We will show that Eqs. (1) and (2)

hold. Indeed, Eq. (4) implies that xi = x̃i for all i 2 I, and that @Fc(x̃)/@xi = 0 for all i /2 I,

so from Eq. (3) we have xi = x̃i for all i /2 I. Thus Eq. (2) holds. To show Eq. (1), we argue by

contradiction. Suppose that for some z 2 <n we have

f(z) +
1
2c

X
i2I

(zi � xi)2 < f(x) +
1
2c

X
i2I

(xi � xi)2.

Then the directional derivative of the function y 7! f(y) + 1
2c

P
i2I(yi � xi)2 at x along the

direction z�x is negative. This directional derivative is equal to the directional derivative of the

function y 7! f(y) + 1
2c

P
i2I(yi � xi)2 + 1

2c

P
i/2I(yi � xi)2 at x along the direction z � x. The

latter directional derivative, however, is nonnegative in view of Eqs. (2) and (3), arriving at a

contradiction. This proves Eq. (1).

(b) We have

f(x)  f(x) +
1
2c

X
i2I

(xi � xi)2

= min
y2<n

(
f(y) +

1
2c

X
i2I

(yi � xi)2
)

 min
y2<n

⇢
f(y) +

1
2c
ky � xk2

�

 f(x).

Since the expression in the right-hand side of the second inequality is equal to Fc(x), we obtain

f(x)  Fc(x)  f(x).

Since, we also have Fc(x)  f(x), the desired result follows.
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(a) Define

X = {(x, u, t) | x 2 <n, uj = Ajx + bj , tj = e0jx + dj , j = 1, . . . , r},

C = {(x, u, t) | x 2 <n, ||uj ||  tj , j = 1, . . . , r}.

It is easy to verify that X is convex and C is a cone. Therefore the modified problem has cone

constraints of the type described in Exercise 5.4.3.

(b) Let (�, z, w) 2 �C? (this is equivalent to �(�, z, w) 2 C?). Then by the definition of the

polar cone C?, we have

�0x +
rX

j=1

z0juj +
rX

j=1

wjtj � 0, 8 (x, u, t) 2 C.

Since x is unconstrained, we must have � = 0 for otherwise the above inequality will be violated.

Furthermore, it can be seen that

�C? = {(0, z, w) | ||zj ||  wj , j = 1, . . . , r}.

Let us calculate g(�, z, w) for (�, z, w) 2 �C?. We have

g(0, z, w) = sup
(x,u,t)2X

8<
:

rX
j=1

z0juj +
rX

j=1

wjtj � c0x

9=
;

= sup
x2<n

8<
:

rX
j=1

z0j(Ajx + bj) +
rX

j=1

wj(e0jx + dj)� c0x

9=
;

= sup
x2<n

8<
:
0
@ rX

j=1

(A0jzj + wjej)� c

1
A
0

x +
rX

j=1

(z0jbj + wjdj)

9=
;

=

(
+1 if

Pr
j=1(A

0
jzj + wjej) 6= cPr

j=1(z
0
jbj + wjdj) if

Pr
j=1(A

0
jzj + wjej) = c.

By the duality theory of Exercise 5.4.3, the dual problem is given by

maximize �
rX

j=1

(z0jbj + wjdj)

subject to
rX

j=1

(A0jzj + wjej) = c, ||zj ||  wj , j = 1, . . . , r.

If either there exists a feasible solution of the modified primal problem or a feasible solution of

its dual problem satisfying strictly all the inequality constraints, then according to Prop. 5.3.2,

there is no duality gap.
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Since each Pi is symmetric and positive definite, we have

x0Pix + 2q0ix + ri =
⇣
P 1/2

i x
⌘0

P 1/2
i x + 2

⇣
P�1/2

i qi

⌘0
P 1/2

i x + ri

= ||P 1/2
i x + P�1/2

i qi||2 + ri � q0iP
�1
i qi,

for i = 0, 1, . . . , p. This allows us to write the original problem as

minimize ||P 1/2
0 x + P�1/2

0 q0||2 + r0 � q00P
�1
0 q0

subject to ||P 1/2
i x + P�1/2

i qi||2 + ri � q0iP
�1
i qi  0, i = 1, . . . , p.

By introducing a new variable xn+1, this problem can be formulated in <n+1 as

minimize xn+1

subject to ||P 1/2
0 x + P�1/2

0 q0||  xn+1

||P 1/2
i x + P�1/2

i qi|| 
�
q0iP

�1
i qi � ri

�1/2
, i = 1, . . . , p.

The optimal values of this problem and the original problem are equal up to a constant and

a square root. The above problem is of the type described in Exercise 5.4.17. To see that define

Ai =
⇣
P 1/2

i | 0
⌘
, bi = P�1/2

i qi, ei = 0, di =
�
q0iP

�1
i qi � ri

�1/2 for i = 1, . . . , p, A0 =
⇣
P 1/2

0 | 0
⌘
,

b0 = P�1/2
0 q0, e0 = (0, . . . , 0, 1), d0 = 0, and c = (0, . . . , 0, 1). Its dual is given by

maximize �
pX

i=1

⇣
q0iP

�1/2
i zi +

�
q0iP

�1
i qi � ri

�1/2
wi

⌘
� q00P

�1/2
0 z0

subject to
pX

i=0

P 1/2
i zi = 0, ||z0||  1, ||zi||  wi, i = 1, . . . , p.
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Consider the problem

minimize
pX

i=1

||Fix + gi||

subject to x 2 <n.

By introducing variables t1, . . . , tp, this problem can be expressed as a second-order cone pro-

gramming problem (see Exercise 5.4.17):

minimize
pX

i=1

ti

subject to ||Fix + gi||  ti, i = 1, . . . , p.
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Define

X = {(x, u, t) | x 2 <n, ui = Fix + gi, ti 2 <, i = 1, . . . , p},

C = {(x, u, t) | x 2 <n, ||ui||  ti, i = 1, . . . , p}.

Then, similar to Exercise 5.4.17 [by applying the result of Exercise 5.4.3 with f(x, u, t) =
Pp

i=1 ti,

and X, C defined above], we have

�C? = {(0, z, w) | ||zi||  wi, i = 1, . . . , p},

and

g(0, z, w) = sup
(x,u,t)2X

(
pX

i=1

z0iui +
pX

i=1

witi �
pX

i=1

ti

)

= sup
x2<n,t2<p

(
pX

i=1

z0i(Fix + gi) +
pX

i=1

(wi � 1)ti

)

= sup
x2<n

( 
pX

i=1

F 0izi

!0
x

)
+ sup

t2<p

(
pX

i=1

(wi � 1)ti

)
+

pX
i=1

g0izi

=

(Pp
i=1 g0izi if

Pp
i=1 F 0izi = 0, wi = 1, i = 1, . . . , p

+1 otherwise.
Hence the dual problem is given by

maximize �
pX

i=1

g0izi

subject to
pX

i=1

F 0izi = 0, ||zi||  1, i = 1, . . . , p.

Now, consider the problem

minimize max
1ip

||Fix + gi||

subject to x 2 <n.

By introducing a new variable xn+1, we obtain

minimize xn+1

subject to ||Fix + gi||  xn+1, i = 1, . . . , p,

or equivalently
minimize e0n+1x

subject to ||Aix + gi||  e0n+1x, i = 1, . . . , p,

where x 2 <n+1, Ai = (Fi|0), and en+1 = (0, . . . , 0, 1)0 2 <n+1. Evidently, this is a second-order

cone programming problem. From Exercise 5.4.17 we have that its dual problem is given by

maximize �
pX

i=1

g0izi

subject to
pX

i=1

  
F 0i

0

!
zi + en+1wi

!
= en+1, ||zi||  wi, i = 1, . . . , p,
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or equivalently

maximize �
pX

i=1

g0izi

subject to
pX

i=1

F 0izi = 0,
pX

i=1

wi = 1, ||zi||  wi, i = 1, . . . , p.
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For v 2 Cp we have

||v||1 =
pX

i=1

|vi| =
pX

i=1

�����
�����
 
Re(vi)

Im(vi)

!�����
����� ,

where Re(vi) and Im(vi) denote real and imaginary parts of vi, respectively. Then the complex

l1 approximation problem is equivalent to

minimize
pX

i=1

�����
�����
 
Re(a0ix� bi)

Im(a0ix� bi)

!�����
�����

subject to x 2 Cn,

(1)

where a0i is the i-th row of A (A is a p⇥ n matrix). Note that
 
Re(a0ix� bi)

Im(a0ix� bi)

!
=

 
Re(a0i) �Im(a0i)

Im(a0i) Re(a0i)

! 
Re(x)

Im(x)

!
�
 

Re(bi)

Im(bi).

!

By introducing new variables y = (Re(x0), Im(x0))0, problem (1) can be rewritten as

minimize
pX

i=1

||Fiy + gi||

subject to y 2 <2n,

where

Fi =

 
Re(a0i) �Im(a0i)

Im(a0i) Re(a0i)

!
, gi = �

 
Re(bi)

Im(bi)

!
. (2)

According to Exercise 5.4.19, the dual problem is given by

maximize
pX

i=1

(Re(bi), Im(bi) ) zi

subject to
pX

i=1

 
Re(a0i) Im(a0i)

�Im(a0i) Re(a0i)

!
zi = 0, ||zi||  1, i = 1, . . . , p,

where zi 2 <2n for all i.

For v 2 Cp we have

||v||1 = max
1ip

|vi| = max
1ip

�����
�����
 
Re(vi)

Im(vi)

!�����
����� .
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Therefore the complex l1 approximation problem is equivalent to

minimize max
1ip

�����
�����
 
Re(a0ix� bi)

Im(a0ix� bi)

!�����
�����

subject to x 2 Cn,

By introducing new variables y = (Re(x0), Im(x0))0, this problem can be rewritten as

minimize max
1ip

||Fiy + gi||

subject to y 2 <2n,

where Fi and gi are given by Eq. (2). From Exercise 5.4.19, it follows that the dual problem is

maximize
pX

i=1

(Re(bi), Im(bi) ) zi

subject to
pX

i=1

 
Re(a0i) �Im(a0i)

Im(a0i) Re(a0i)

!
zi = 0,

pX
i=1

wi = 1, ||zi||  wi, i = 1, . . . , p,

where zi 2 <2 for all i.
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For a function h : < 7! [�1,1], the domain of h is the set

dom(h) =
�
x | �1 < h(x) < 1

 
.

If h is lower semicontinuous over its domain, i.e., satisfies h(x)  lim infk!1 h(xk) for all x 2
dom(h) and all sequences {xk} with xk ! x, it is called domain lower semicontinuous or DLSC

for short. Note that a convex DLSC function need not be closed, i.e., need not have a closed

epigraph.

Convex DLSC functions arise in the context of the constrained optimization problem

minimize f(x)

subject to gj(x)  0, j = 1, . . . , r,
(1)

where f : <n 7! (�1,1] and gj : <n 7! (�1,1] are some proper extended real-valued

functions. We denote by g the vector-valued function g = (g1, . . . , gr), and we denote compactly

inequalities of the form gj(x)  0, j = 1, . . . , r, as g(x)  0.

The primal function of the problem, defined by

p(u) = inf
g(x)u

f(x),
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determines whether there is a duality gap. In particular, assuming that p is convex and that

p(0) < 1 (i.e., that the problem is feasible), there is no duality gap if and only if p is lower

semicontinuous at u = 0. More generally, assuming that p is convex, there is no duality gap for

every feasible problem of the form

minimize f(x)

subject to g(x)  u,

if and only if p is a DLSC function.

The two most common approaches to ascertain that there is no duality gap in problem (1)

are:

(a) To show that p is closed, so that it is also lower semicontinuous at any u, including u = 0.

(b) To show that p is subdi↵erentiable at u = 0, so that it is also lower semicontinuous at u = 0.

This is guaranteed, in particular, under the assumption 0 2 ri
�
dom(p)

�
or under some other

constraint qualification that guarantees the existence of a geometric multiplier for problem

(1).

Note, however, that there are some important special cases that are not covered by one of

the above two approaches. In these cases, p is a DLSC function but it is not necessarily closed

or subdi↵erentiable at 0. As an example, consider the one-dimensional problem where

f(x) =

(
1
x if x > 0,

1 if x  0,

and

g(x) = e�x.

Then it can be seen that

p(u) =

(
0 if u > 0,

1 if u  0,

so p is a DLSC function but is not closed.

In the special case where the x is a scalar and the functions f and gj are convex, proper, and

DLSC, we can show that the function p is DLSC. This is consistent with the preceding example.

Proposition: If the functions f and gj map < into (�1,1] and are convex, proper, and DLSC,

then the primal function p is DLSC.

Proof: Without loss of generality, we assume that 0 2 dom(p). It will be su�cient to show

that p is lower semicontinuous at u = 0. Let q⇤ = limu!0+ p(u). We will show that p(0) = q⇤,

which implies lower semicontinuity of p at 0, since p is monotonically nonincreasing. Let {xk}
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be a scalar sequence such that f(xk) ! q⇤ and max
�
0, gj(xk)

 
! 0 for all j. We consider three

cases:

(a) {xk} has a subsequence that converges to a scalar x. Without loss of generality, we assume

that the entire sequence {xk} converges to x. By the lower semicontinuity of f and gj , we

have f(x)  q⇤ and gj(x)  0 for all j. Hence x is feasible for the problem corresponding

to u = 0, and we have p(0)  f(x)  q⇤. Since p is monotonically noninceasing, we also

have q⇤  p(0) and we obtain p(0) = q⇤.

(b) {xk} has a subsequence that tends to 1. Without loss of generality, we assume that

xk ! 1. Then the positive direction is a direction of recession of f and gj for all j. This

implies that infx2< f(x) = q⇤, and also that g(xk)  0 for all su�ciently large k [otherwise

the problem corresponding to u = 0 would be infeasible, thereby violating the hypothesis

that 0 2 dom(p)]. Thus p(0) = infx2< f(x) = q⇤.

(c) {xk} has a subsequence that tends to �1. Without loss of generality, we assume that

xk ! �1, and we proceed similar to case (b) above. Q.E.D.

The proposition implies that is no duality gap for the given problem, assuming that �1 <

f⇤ < 1.

SECTION 5.5
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Define dj(s) = fj(s) � fj(s � 1) for s = 1, . . .mj and j = 1, . . . , n. By the convexity of fj , we

have

2fj(s)  fj(s� 1) + fj(s + 1),

or equivalently

fj(s)� fj(s� 1)  fj(s + 1)� fj(s).

Therefore

dj(1)  dj(2)  · · ·  dj(mj) j = 1, . . . , n.

Consider the set D = {dj(s) | s = 1, . . .mj , j = 1, . . . , n}. At each iteration the algorithm

chooses the smallest element in the set D as long as that smallest element is negative and the
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constraint is not violated. Let x⇤ be a solution generated by the algorithm and D⇤ be the set of

elements of D that the algorithm chooses. Define

� =

(
maxdj(s)2D⇤ dj(s) if |D⇤| = A

0 if |D⇤| < A,

where | · | denotes the cardinality of a set. If |D⇤| = A, then the algorithm chooses A smallest

elements in D, which are all negative, so that � < 0. If |D⇤| < A, then either x⇤ has components

x⇤j = mj or the set D has less then A negative elements. Consider the following function

nX
j=1

fj(xj)� �
nX

j=1

xj . (1)

We have
nX

j=1

(fj(xj)� �xj) =
nX

j=1

(fj(0) + (dj(1)� �) + · · · + (dj(xj)� �)) .

By the definition of � and D⇤, we have

dj(s)� �  0 if dj(s) 2 D⇤,

dj(s)� � � 0 if dj(s) /2 D⇤.

Therefore the function given by Eq. (1) is minimized at x = x⇤. Consequently, �� � 0 is a

Lagrange multiplier for the original problem and there is no duality gap. By Prop. 5.1.5, we have

that x⇤ is an optimal solution.
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A detailed analysis appears in the paper

C. C. Wu and D. P. Bertsekas, “Distributed Power Control Algorithms for Wireless Networks,”

IEEE Trans. on Vehicular Technology, Vol. 50, pp. 504-514, 2001

which is available from the author’s www site

http://web.mit.edu/dimitrib/www/home.html
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Suppose that E is totally unimodular. Let J be a subset of {1, . . . , n}. Define z by zj = 1 if

j 2 J , and zj = 0 otherwise. Also let w = Ez, di = fi = 1
2wi if wi is even, and di = 1

2 (wi + 1),

fi = 1
2 (wi � 1) if wi is odd. Since E is totally unimodular, the polyhedron

P = {x | f  Ex  d, 0  x  z}
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has integral extreme points and z /2 P . Note that P 6= ; because 1
2z 2 P . Therefore there is a

vector x̂ 2 P such that x̂j = 0 for j /2 J , and x̂j 2 {0, 1} for j 2 J . We have zj � 2x̂j = ±1 for

j 2 J . Define J1 = {j 2 J | zj � 2x̂j = 1} and J2 = {j 2 J | zj � 2x̂j = �1}. We have

X
j2J1

eij �
X
j2J2

eij =
X
j2J1

eij(zj � 2x̂j) = Ez � 2Ex̂ =

(
wi � wi = 0 if wi is even

wi � (wi ± 1) = ⌥1 if wi is odd.

Thus ������
X
j2J1

eij �
X
j2J2

eij

������  1, 8 i = 1, . . . ,m. (1)

Suppose that the matrix E is such that any J ⇢ {1, . . . , n} can be partitioned into two

subsets such that Eq. (1) holds. For J ⇢ {1, . . . , n} with J consisting of a single element, we

obtain from in Eq. (1) eij 2 {�1, 0, 1} for all i and j. The proof is by induction on the size of the

nonsingular submatrices of E using the hypothesis that the determinant of every (k�1)⇥ (k�1)

submatrix of E equals �1, 0, or 1. Let B be a k⇥k nonsingular submatrix of E. Our objective is

to prove that |detB| = 1. By the induction hypothesis and Cramer’s rule, we have B�1 = B⇤
det B ,

where b⇤ij 2 {�1, 0, 1}. By the definition of B⇤, we have Bb⇤1 = (detB)e1, where b⇤1 is the first

column of B⇤ and e1 = (1, 0, . . . 0)0.

Let J = {i | b⇤i1 6= 0} and J 01 = {i 2 J | b⇤i1 = 1}. Hence for i = 2, . . . , k, we have

(Bb⇤1)i =
X
j2J01

bij �
X

j2J\J01

bij = 0.

Thus the cardinality of the set {i 2 J | b⇤ij 6= 0} is even, so for any partition (J̃1, J̃2) of J , it

follows that
P

j2J̃1
bij �

P
j2J̃2

bij is even for all i = 2, . . . , k. Now by assumption, there is a

partition (J1, J2) of J such that
���Pj2J1

bij �
P

j2J2
bij

���  1. Hence

X
j2J1

bij �
X
j2J2

bij = 0, for i = 2, . . . , k.

Now consider the value ↵1 =
���Pj2J1

b1j �
P

j2J2
b1j

���. If ↵1 = 0, define y 2 <k by yi = 1

for i 2 J1, yi = �1 for i 2 J2, and yi = 0 otherwise. Since By = 0 and B is nonsingular, we have

y = 0, which contradicts J 6= ;. Hence by hypothesis, we have ↵1 = 1 and By = ±e1. However,

Bb⇤1 = (detB)e1. Since y and b⇤1 are (0,±1) vectors, it follows that b⇤1 = ±y and |detB| = 1.

Therefore E is totally unimodular.
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A correct statement of this exercise is as follows:
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Statement: Let E be a matrix with entries -1, 0, or 1, and at most two nonzero entries in each

of its columns. Show that A is totally unimodular if and only if the rows of A can be divided

into two subsets such that for each column with two nonzero entries, the following hold: if the

two nonzero entries in the column have the same sign, their rows are in di↵erent subsets, and if

they have the opposite sign, their rows are in the same subset.

Solution: Note that E is totally unimodular if and only if its transpose E0 is totally unimodular.

Hence according to Exercise 5.5.5, an m⇥ n matrix E is totally unimodular if and only if every

I ⇢ {1, . . . ,m} can be partitioned into two subsets I1 and I2 such that������
X
i2I1

eij �
X
i2I2

eij

������  1, 8 j = 1, . . . , n.

Let E be an m⇥ n matrix with entries eij 2 {�1, 0, 1}, and such that each of its columns

contains at most two nonzero entries. By assumption, the set {1, . . . ,m} can be partitioned into

two subsets M1 and M2 so that if a column has two nonzero entries, the following hold:

(1) If both nonzero entries have the same sign, then one is in a row contained in M1 and the

other is in a row contained in M2.

(2) If the two nonzero entries have opposite sign, then both are in rows contained in the same

subset.

It follows that ������
X

i2M1

eij �
X

i2M2

eij

������  1, 8 j = 1, . . . , n. (1)

Let I be any subset of {1, . . . ,m}. Then I1 = I \M1 and I2 = I \M2 constitute a partition

of I, which in view of Eq. (1) satisfies������
X
i2I1

eij �
X
i2I2

eij

������  1, 8 j = 1, . . . , n.

Hence E is totally unimodular.

5.5.7 www

Since E is totally unimodular if and only if its transpose E0 is totally unimodular, then according

to Exercise 5.5.5, E is totally unimodular if and only if every I ⇢ {1, . . . ,m} can be partitioned

into two subsets I1 and I2 such that������
X
i2I1

eij �
X
i2I2

eij

������  1, 8 j = 1, . . . , n.

35



Define M1 = {i | i is odd} and M2 = {i | i is even}. Then
������
X

i2M1

eij �
X

i2M2

eij

������  1, 8 j = 1, . . . , n.

Let I be any subset of {1, . . . ,m}. Then I1 = I \M1 and I2 = I \M2 constitute a partition of

I, which satisfies ������
X
i2I1

eij �
X
i2I2

eij

������  1, 8 j = 1, . . . , n,

and therefore E is totally unimodular.

5.5.10 www

(a) We have for every µ = (µ1, . . . , µr) � 0

q(µ1, . . . , µr) = inf
x2X

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

= inf
x2X

gr+1(x)0,...,gr(x)0

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

� inf
x2X

gr+1(x)0,...,gr(x)0

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

� inf
x2X

8<
:f(x) +

rX
j=1

µjgj(x)

9=
;

= q(µ1, . . . , µr).

By taking the supremum of both sides over µ � 0, we obtain q⇤ � q⇤. The inequality q⇤  f⇤

holds by the Weak Duality Theorem.

(b) This is evident from the proof of part (a).

(c) Take any problem with two constraints that has a duality gap and has an optimal solution at

which one of the two constraints is inactive. For example, consider the following problem, which

is derived from Example 5.2.1:

minimize f(x)

subject to x1 = 0, x1  1, x 2 X = {x | x � 0},

where

f(x) = e�
p

x1x2 , 8 x 2 X,
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and f(x) is arbitrarily defined for x /2 X.

Consider the problem obtained by keeping the inactive constraint explicit (the constraint

x1  1 in the above example), and by lumping the other constraint together with X to form X

(X = {x | x � 0, x1 = 0} in the above example). Then, we have q⇤ < q⇤ = f⇤ (q⇤ = 0 and

q⇤ = f⇤ = 1 in the above example).
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