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Preface

Magnetism is a fascinating subject which is known since a few thousand years.
This means that this phenomenon was already observed before recorded his-
tory began.

In the Near East region some ores were found to be “attractive” or “mag-
netic”. In Europe, the use of this iron ore called Lodestone for navigation in a
compass is unquestionably dated to about 1300. But, the first incontrovertible
mention of a magnetic device used for establishing direction is to be found
in a Chinese manuscript dated about 1040. The Lodestone was located into
a spoon that was placed on a plate being of bronze. Rather than navigation
this pointer was used for geomancy being a technique for aligning buildings
in order to be in harmony with the forces of nature.

Today our understanding of magnetism is closely related to the concept of
spin which arises from the relativistic description of an electron in an external
electromagnetic field and becomes manifest in the Dirac equation. This con-
cept results in the spin magnetic moment and the orbital magnetic moment
which is due to the motion of electronic charges.

As throughout history magnetism is closely related to applications. A lot of
common today’s devices would be unthinkable without the forefront research
areas in magnetism. One example is given by read heads in hard disks which
allowed a tremendous enhancement of storage density. They are based on the
discovery of the Giant Magnetoresistance (GMR) in 1988 by P. Grünberg and
A. Fert. And also today technology is driven by the aim to develop devices
which are smaller, faster, and cheaper than every one before.

Already these few annotations prove that the field of magnetism was excit-
ing in the past. Nevertheless, in the future we will discover many new effects
which will be beyond our imagination and will have a strong influence on
several things “around us”. Thus, they will shape our daily lives.

To myopinion most of the new discoverieswill be related to low-dimensional
systems.
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Therefore, the first part of this book deals with the fundamentals of mag-
netism whereas the second one is devoted to magnetic phenomena of systems
which are reduced in at least one-dimension.

In Chap. 1 we will start the introduction by summarizing some basic terms
of magnetism, give a classification of magnetic materials, and schematically
show why magnetism cannot be explained using classical mechanics and elec-
trodynamics.

Chapter 2 deals with magnetic moments of free, i.e. isolated, atoms in
a magnetic field. After the discussion of atomic dia- and paramagnetism we
will develop some simple rules which allow to determine the magnitude of
magnetic moments concerning an atom of a given chemical element.

Using the model of free electrons we will see in Chap. 3 that collective
magnetism can be stabilized above 0K without applying an external magnetic
field in a solid state due to interaction between magnetic moments.

Chapter 4 is devoted to the question how magnetic moments in different
atoms can interact with each other.

The description of different types of magnetic order in the solid state,
i.e. collectivemagnetism (ferromagnetism, antiferromagnetism, ferrimagnetism,
helical order), is given in Chap. 5.

The vanishing of long range ferromagnetic order above a critical temper-
ature is related to a breaking of a symmetry and can be characterized by a
phase transition. This distinct temperature dependence of specific parameters
like the magnetization is discussed in Chap. 6.

In Chap. 7 we will learn about the influence of anisotropy on the magnetic
behavior which can be induced by, e.g., the shape and the crystalline structure
of a sample.

Chapter 8 deals with magnetic domains being uniformly magnetized re-
gions which exhibit a parallel orientation of all magnetic moments and the
boundaries between them, the domains walls.

In Chap. 9 we will discuss the “answer” of the magnetization concerning
the magnitude and the direction if a varying external magnetic field is applied.

The next six chapters are devoted to magnetism in reduced dimensions.
In Chap. 10 we will start our discussion with the behavior of single mag-
netic atoms on a surface and proceed with ensembles consisting of only a few
atoms, so-called clusters, in Chap. 11. The properties of larger agglomerations,
nanoparticles, will be presented in Chap. 12. The behavior of wires with di-
mensions in the nanometer regime will be explained in Chap. 13. The next two
chapters contain the description of magnetic thin film systems. In Chap. 14

we will restrict our discussion to single thin metallic films and explain the
properties of multilayers in Chap. 15.

The influence of the spin arrangement in a magnetic layer on the electrical
resistance will be discussed in Chap. 16.

This effect called magnetoresistance can be rather huge and thus acts as
the basis to realize technologically important applications like read heads in
hard disks and various sensors which will be presented in Chap. 17.



Preface IX

Several chapters exhibit problems in order to improve the respective knowl-
edge. The solutions are given at the end of the book.

In the appendices abbreviations, symbols, and important constants are
listed.

In this textbook we make use of the units and definitions of the système
international SI. In some figures the properties are given in the cgs-system
(centimeter, gram, second). This observation and problem should additionally
sensitize the reader that different “languages” are often spoken in the field of
magnetism. A comparison of important quantities in both systems is also
given in order to round off this textbook.

Last but not least it is a pleasure for me to thank all the people which
significantly imparted my knowledge on this wide field of magnetism: Joachim
Bansmann, Matthias Bode, Ulrich Heinzmann, Gerd Schönhense, and Roland
Wiesendanger.

Düsseldorf, June 2007 Mathias Getzlaff
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1

Introduction

In this introductory chapter we will summarize some basic terms of magnetism
and explain the difference of magnetic fields inside and outside of materials. In
the following a short characterization of different classes of magnetism (dia-
magnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimag-
netism) will be given. At the end we will see that magnetization above 0 K
cannot be understood using classical mechanics. Thus, we will have to deal
with quantum physics in order to explain magnetic properties.

1.1 Fundamental Terms

Magnetic Moment and Magnetic Dipole

In classical electromagnetism the magnetic moment µ can be explained us-
ing the picture of a current loop. Assuming a current I around an infinitely
small loop exhibiting an area of dA the corresponding magnetic moment dµ

amounts to:
dµ = I dA (1.1)

The direction of the vector area is given by the right-hand rule. Summing up
the magnetic moments of this “small” loops allows to calculate the magnetic
moment µ for a loop of finite size:

µ =

∫
dµ = I

∫
dA (1.2)

because the currents of neighboring loops cancel each other only leaving the
current running around the perimeter of the finite-sized loop.

The magnetic dipole is equivalent to a magnetic moment of a current loop
in the limit of a small area but finite moment. The energy of a magnetic
moment is given by:

E = −µ0µ · H = −µ0µ H cos θ (1.3)
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with θ being the angle between the magnetic moment µ and an external
magnetic field H and µ0 the magnetic permeability of free space.

Magnetization

The magnitude of the magnetization M is defined as the total magnetic mo-
ment per volume unit:

M = µ
N

V
(1.4)

Usually, it is given on a length scale which is large enough that an averaging
over at least several atomic magnetic moments is carried out. Under this
condition the magnetization can be considered as a smoothly varying vector
field. In vacuum no magnetization M occurs.

Magnetic Induction

The response of a material when applying an external magnetic field H is
called magnetic induction or magnetic flux density B. The relationship be-
tween H and B is a characteristic property of the material itself. In vacuum
we have a linear correlation between B and H:

B = µ0H (1.5)

But inside a magnetic material B and H may differ in magnitude and direc-
tion due to the magnetization M :

B = µ0(H + M ) (1.6)

In the following we simply refer to both as the “magnetic field” due to the
common usage in literature. The letter itself directly explains which term of
both is meant.

Magnetic Susceptibility and Permeability

If the magnetization M is parallel to an external magnetic field H:

M = χH (1.7)

with χ being the magnetic susceptibility the material is called linear material.
In this situation, a linear relationship between B and H remains present:

B = µ0(1 + χ)H (1.8)

= µ0µrH (1.9)

with µr = 1+χ being the relative permeability. Typical values for the relative
permeability are:

in vacuum: µr = 1

in matter generally: µr ≥ 1

possible in matter: µr ≈ 100.000
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1.2 Classification of Magnetic Material

A rough classification into three classes is carried out by means of the suscep-
tibility χ.

• Diamagnetism
Diamagnetism is purely an induction effect. An external magnetic field H

induces magnetic dipoles which are oriented antiparallel with respect to the
exciting field due to Lenz’s rule. Therefore, the diamagnetic susceptibility
is negative:

χdia = const. < 0 (1.10)

Diamagnetism is a property of all materials. It is only relevant in the
absence of para- and collective magnetism.
A few examples of diamagnetic materials are:
– nearly all organic substances,
– metals like Hg,
– superconductors below the critical temperature. These materials are

ideal diamagnets, i.e. χdia = −1 (Meißner–Ochsenfeld effect)
• Paramagnetism

The susceptibility of paramagnetic materials is characterized by:

χpara > 0 (1.11)

χpara = χpara(T ) (1.12)

A crucial precondition for the appearance of paramagnetism is the exis-
tence of permanent magnetic dipoles. These are oriented in the external
magnetic field H. The orientation may be hindered by thermal fluctua-
tions. The magnetic moments can be localized or of itinerant nature:

– Localized moments
They are caused by electrons of an inner shell which is only partially
filled. Typical examples are:
· 4f electrons in rare earth metals
· 5f electrons in actinides
This class of material exhibits the so-called Langevin paramagnetism.
The susceptibility χLangevin depends on the temperature. At high tem-
peratures the Curie law is valid:

χLangevin(T ) =
c

T
(1.13)

– Itinerant moments
Nearly free electrons in the valence band carry a permanent magnetic
moment of 1µB with µB being the Bohr magneton. This type is called
Pauli paramagnetism. The corresponding susceptibility is nearly inde-
pendent on temperature:

∂χPauli

∂T
≈ 0 (1.14)
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The magnitudes of these susceptibilities are very different:

χPauli ≪ χLangevin (1.15)

• Collective magnetism
The susceptibility exhibits a significantly more complicated functionality
of different parameters compared to dia- and paramagnetism:

χcoll = χcoll(T, H, “history”) (1.16)

The collective magnetism is a result of an exchange interaction between
permanent magnetic dipoles which can solely be explained by quantum
mechanics.
For materials showing collective magnetism a critical temperature T ∗ oc-
curs which is characterized by the observation that a spontaneous magneti-

zation is present below T ∗, i.e. the magnetic dipoles exhibit an orientation
which is not enforced by external magnetic fields.
The magnetic moments can again be localized (e.g. Gd, EuO, . . . ) or
itinerant(e.g. Fe, Co, Ni).
Collective magnetism is divided into three subclasses:
– Ferromagnetism

The critical temperature T ∗ is called Curie temperature TC

· 0 < T < TC

The magneticmoments exhibit a preferential orientation (տ↑րտ↑).
· T = 0

All magnetic moments are aligned parallel (↑↑↑↑↑).
Ferromagnetic materials exhibiting itinerant magnetic moments are
called band or itinerant ferromagnets.

– Ferrimagnetism
The lattice decays into two ferromagnetic sublattices A and B exhibit-
ing different magnetization:

MA �= MB (1.17)

whereas
M = MA + MB �= 0 for T < TC (1.18)

with M being the total magnetization.
– Antiferromagnetism

Antiferromagnetism is a special situation of the ferrimagnetism with
the critical temperature T ∗ being called Néel temperature TN and is
characterized by:

|MA| = |MB| �= 0 for T < TN (1.19)

and
MA = −MB (e.g.↑↓↑↓↑) (1.20)
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Therefore, the total magnetization vanishes:

M = MA + MB ≡ 0 (1.21)

The collective magnetism merges into the paramagnetism above the criti-
cal temperature T ∗ with the corresponding characteristic behavior of the
inverse susceptibility.

The temperature dependence of the magnetization and magnetic susceptibility
for various types of magnetic materials is summarized in Fig. 1.1. The values

T

T

T

�

�-1

�-1

Pauli�

Langevin�

dia�

ferromagnetic

antiferromagnetic

ferrimagnetic

0

0 T *�

(a)

(b)

(c)

Fig. 1.1. Temperature dependence of the magnetic susceptibility χ and inverse
magnetic susceptibility χ−1 in the case of (a) diamagnetism and Pauli paramag-
netism, (b) Langevin paramagnetism, (c) ferromagnetism, antiferromagnetism, and
ferrimagnetism with T ∗ being the critical temperature and θ the paramagnetic Curie
temperature



6 1 Introduction

Table 1.1. Curie temperature TC of ferro- and ferrimagnetic and Néel tempera-
ture TN of antiferromagnetic materials

Material TC [K] TN [K]

Fe 1043
Co 1388
Ni 627
Gd 293
Dy 88
EuO 69
Fe3O4 853
CrO2 387

Cr 311
CoO 293
NiO 525

of the critical temperature for some selected ferro-, ferri- and antiferromagnet
materials are listed in Table 1.1.

1.3 Bohr–van Leeuwen Theorem

Magnetism, i.e. dia-, para-, as well as collective magnetism, presents a quan-
tum mechanical effect which cannot be explained using classical mechanics
and electrodynamics. The proof shall only be given as a sketch. With µ being
the magnetic moment of a single atom, we obtain:

µ = −
∂H

∂B
(1.22)

with H being the classical Hamilton function and B an external magnetic
field. The average value 〈µ〉 is given by

〈µ〉 =
k · T

Z
·
∂Z

∂B
(1.23)

with Z being the classical partition function and T the temperature. It is
possible to show that Z does not depend on the magnitude of the external
magnetic field:

Z �= Z(B) (1.24)

Therefore, we can conclude:
〈µ〉 ≡ 0 (1.25)



2

Magnetism of Atoms

This chapter deals with the properties of magnetic moments of free, i.e. iso-
lated, atoms in a magnetic field. Any interaction of the atoms will therefore
be neglected.

This situation seems to be rather simple but we will see that the description
of magnetic behavior is rather complicated due to the interaction already of all
the electrons in one atom. At the end we will develop some rules which allow
to determine the magnitude of the magnetic moment concerning an atom of
a given chemical element.

2.1 Atoms in a Magnetic Field

The Hamiltonian H0 of a single atom which contains Z electrons is given by

H0 =

Z
∑

i=1

(

p2
i

2m
+ Vi

)

(2.1)

with p2
i /2m being the kinetic energy and Vi the potential energy of electron i.

The situation becomes more complex if an external magnetic field B is present
which is given by:

B = ∇ × A (2.2)

with A being the magnetic vector potential. This vector potential is chosen
in such a way that the magnetic field is homogeneous within the atom and
the Coulomb gauge

∇ · A = 0 (2.3)

is valid. In this situation the magnetic vector potential can be written as:

A(r) =
1

2
(B × r) (2.4)

The corresponding kinetic energy amounts to:
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Ekin =
1

2m
(p + eA (r))

2
(2.5)

=
1

2m

(

p2 + e (p · A + A · p) + e2A · A
)

(2.6)

Due to the Coulomb gauge we obtain:

p · A = A · p (2.7)

As a result the Hamiltonian Hi of electron i is given by:

Hi =
p2

i

2m
+ Vi +

e

m
A · p +

e2

2m
A · A (2.8)

The last term can be written as a function of the external magnetic field:

e2

2m
A · A =

e2

2m

(

1

2
(B × r)

)2

(2.9)

=
e2

8m
(B × r)

2
(2.10)

For the third term in (2.8) one gets accordingly:

A · p =
1

2
(B × r) · p (2.11)

=
1

2
(r × p) · B (2.12)

=
1

2
h̄L · B (2.13)

with h̄L being the orbital angular momentum. Thus, we can express the
Hamiltonian Hi as:

Hi =
p2

i

2m
+ Vi + μBL · B +

e2

8m
(B × ri)

2 (2.14)

with μB = eh̄/2m being the Bohr magneton. The consideration of the electron
spin (angular momentum) S results in an additional term μB g S · B with
g ≈ 2 being the g-factor of an electron. The complete Hamiltonian is therefore
given by

H =

Z
∑

i=1

(

p2
i

2m
+ Vi

)

+ μB (L + gS) · B +
e2

8m

Z
∑

i=1

(B × ri)
2

(2.15)

= H0 + H1 (2.16)

The part H1 represents the modification due to the external magnetic field B

and amounts to:
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H1 = μB (L + gS) · B +
e2

8m

Z
∑

i=1

(B × ri)
2

(2.17)

= Hpara
1 + Hdia

1 (2.18)

The first term Hpara
1 is known as the paramagnetic term, the second one Hdia

1

as the diamagnetic term.

2.2 Atomic Diamagnetism

Each material exhibits diamagnetic behavior, i.e. a weak negative magnetic
susceptibility. Consequently, an external magnetic field induces a magnetic
moment which is oriented antiparallel to the external field. This behavior is
explained in classical physics using Lenz’s rule. But, magnetism cannot be
understood within the framework of classical physics as shown in the Bohr–
van Leeuwen theorem (see Chap. 1.3).

Therefore, we use a quantum mechanical approach. For simplification it is
assumed that all electronic shells are filled. Then the orbital as well as spin
angular momentum vanish:

L = S = 0 (2.19)

Consequently, we obtain:

μB (L + gS) · B ≡ 0 (2.20)

i.e. the paramagnetic term of (2.18) is zero. Additionally, we assume that the
external magnetic field B is parallel to the z-axis:

B = (0, 0, B) (2.21)

Due to

B × ri = B ·

⎛

⎝

−yi

xi

0

⎞

⎠ (2.22)

we get
(B × ri)

2
= B2

(

x2
i + y2

i

)

(2.23)

Consequently, an energy shift of the ground state energy occurs due to the
diamagnetic term which amounts to:

∆E0 =
e2B2

8m

∑

i

〈0
∣

∣x2
i + y2

i

∣

∣ 0〉 (2.24)

with | 0〉 being the wave function of the ground state. Atoms in the ground
state with filled electron shells exhibit spherically symmetric electronic wave
functions:
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〈x2
i 〉 = 〈y2

i 〉 = 〈z2
i 〉 =

1

3
〈r2

i 〉 (2.25)

Thus, we obtain:

∆E0 =
e2B2

12m

∑

i

〈0
∣

∣r2
i

∣

∣ 0〉 (2.26)

Using the Helmholtz free energy F which is given by:

F = E − TS (2.27)

with S being the entropy we obtain at T = 0

M = −
∂F

∂B
(2.28)

= −
N

V

∂∆E0

∂B
(2.29)

= −
N

V

e2B

6m

∑

i

〈r2
i 〉 (2.30)

with N being the number of atoms in volume V . Assuming a linear material
and a relative permeability μr ≈ 1 we can write:

χ =
μ0M

B
(2.31)

due to M = χH and B = μ0H . Thus:

χ = −
N

V

μ0e
2

6m

∑

i

〈r2
i 〉 (2.32)

From this expression we obtain the following consequences:

• The susceptibility is negative: χdia < 0.
• Only the outermost shells significantly contribute due to χ ∝ 〈r2

i 〉.
• The temperature dependence is negligible.

2.3 Atomic Paramagnetism

Paramagnetism is related to a positive magnetic susceptibility, i.e. the mag-
netization M is orientated parallel to an external magnetic field B.

The situation considered above was characterized by no unpaired electrons
which implied a vanishing magnetic moment without an external magnetic
field.

Now, we assume a non-vanishing magnetic moment due to unpaired elec-
trons. Without an external magnetic field no favored orientation of the mag-
netic moments occurs and the resulting magnetization tends to zero. But,
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applying an external magnetic field leads to the existence of a preferential
orientation, i.e. M �= 0. The total magnetization depends on the magnitude
of the external magnetic field and on temperature:

M ∝
B

T
(2.33)

Semiclassical Consideration

Without loss of generality we can assume that the external magnetic field is
oriented along the z-direction, i.e. B = (0, 0, B). The energy of the magnetic
moments exhibiting an angle between θ and θ + dθ with respect to the z-axis
and therefore to the external magnetic field direction is given by:

E = −μ B cos θ (2.34)

with μ being the magnetic moment. The net magnetic moment along B

amounts to:
μz = μ cos θ (2.35)

Under the assumption that all angles θ are found with the same probability
the fraction with values between θ and θ+dθ is proportional to 2π sin θdθ for
a unit sphere with a surface of 4π and is determined by:

2π sin θdθ

4π
=

1

2
sin θdθ (2.36)

The probability dw of an angle between θ and θ + dθ at a temperature T is
the product of the geometrical factor 1

2 sin θdθ and the Boltzmann factor:

e−E/kT = eµB cos θ/kT (2.37)

This results in:

dw =
1

2
sin θ eµB cos θ/kT dθ (2.38)

Thus, the averaged magnetic moment along B is given by

〈μz〉 =

∫

μzdw
∫

dw
(2.39)

=

π
∫

0

μ cos θ eµB cos θ/kT 1
2 sin θdθ

π
∫

0

eµB cos θ/kT 1
2 sin θdθ

(2.40)

The replacements of:

y =
μB

kT
(2.41)

x = cos θ (2.42)
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lead to:

dx = − sin θdθ (2.43)
π

∫

0

→

1
∫

−1

(2.44)

This substitution results in:

〈μz〉 = μ ·

1
∫

−1

x exydx

1
∫

−1

exydx

(2.45)

Due to:
∫

exydx =
1

y
exy (2.46)

∫

x exydx =
1

y2
exy(xy − 1) (2.47)

we obtain:

〈μz〉

μ
=

1
∫

−1

x exydx

1
∫

−1

exydx

(2.48)

=
y ey + y e−y − ey + e−y

y ey − y e−y
(2.49)

=
ey + e−y

ey − e−y
−

1

y
(2.50)

= coth y −
1

y
(2.51)

=: L(y) (2.52)

This function L(y) is the so-called Langevin function which is shown in
Fig. 2.1. Assuming a small external magnetic field or a high temperature,
i.e. y ≪ 1 (see (2.41)), we can approximate:

coth y =
1

y
+

y

3
+ O(y3) (2.53)

Therefore:

L(y) =
y

3
+ O(y3) (2.54)

≈
y

3
(2.55)
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M M/ s

B� B / Tk1-1 2-2 3-3-4

1

-1

Fig. 2.1. The relative magnetization of a classical paramagnet can be characterized
using the Langevin function L(y) = coth y−1/y. For small values of y the Langevin
function can be approximated by y/3 being indicated by the dashed line

Thus, a linear behavior of the Langevin function on y occurs for small values
of y. Let n the number of magnetic moments per unit cell. The saturation
magnetization MS is reached if all magnetic moments are parallel:

MS = nμ (2.56)

The magnetization M along B amounts to:

M = n〈μz〉 (2.57)

For the relative magnetization, i.e. the magnetization with respect to the
saturation magnetization, we obtain:

M

MS
=

n〈μz〉

nμ
= L(y)

y≪1
≈

y

3
=

μB

3kT
(2.58)

For small external magnetic fields the susceptibility can be written as:

χ =
M

H
≈

μ0M

B
(2.59)

Thus:

χ =
μ0μBMS

3kTB
(2.60)

=
nμ0μ

2

3k
·

1

T
(2.61)

=
c

T
(2.62)
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The last equation represents the Curie law:

χ =
c

T
with c =

nμ0μ
2

3k
(2.63)

Quantum Mechanical Consideration

In the following we carry out the analogous calculation for a quantum me-
chanical system and substitute the classical magnetic moments by quantum
mechanical spins possessing J = 1/2. J is defined using the eigenvalue of J

which is given by J(J + 1) with J being the total angular momentum. Only
two values are allowed for the z-component of the magnetic moment (magnetic
quantum number): mJ = ±1/2, i.e. they are aligned parallel or antiparallel
with regard to B, respectively. The energy is given by:

E = gmJμBB (2.64)

Using the values for electrons (g = 2 and mJ = ±1/2) we obtain:

〈μz〉 =
−μB eµBB/kT + μB e−µBB/kT

eµBB/kT + e−µBB/kT
(2.65)

= μB tanh

(

μBB

kT

)

(2.66)

The substitution of:

y =
μBB

kT
(2.67)

leads to the relative magnetization:

M

MS
=

〈μz〉

μB
= tanh y

y≪1
≈ y (2.68)

This function (see Fig. 2.2) is different compared to the Langevin function
(cf. Fig. 2.1) but the shape looks similar.

Now, we consider the general situation that J is an integer or has an half-
integer value. The discussion is carried out using the partition function Z:

Z =

J
∑

mJ=−J

exp(mJgJμBB/kT ) =

J
∑

mJ=−J

exmJ (2.69)

using:

x =
gJμBB

kT
(2.70)

Thus, we obtain:

〈mJ 〉 =

∑

mJ exmJ

∑

exmJ

(2.71)

=
1

Z
·
∂Z

∂x
(2.72)
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M M/ s

1-1 2-2 3-3-4
B

µ B / Tk

-1

1

Fig. 2.2. The relative magnetization of a paramagnet with a spin of 1/2 is given by
a tanh y function with y = µBB/kT . For small values of y the tanh y function can
be approximated by y being indicated by the dashed line

For the magnetization we can write:

M = ngJμB〈mJ 〉 (2.73)

=
ngJμB

Z
·
∂Z

∂x
(2.74)

=
ngJμB

Z
·
∂Z

∂B
·
∂B

∂x
(2.75)

Using the relationship:
∂ lnZ

∂B
=

1

Z
·
∂Z

∂B
(2.76)

and (2.70) we obtain:
∂B

∂x
=

kT

gJμB
(2.77)

Thus, the magnetization is given by:

M = nkT ·
∂ lnZ

∂B
(2.78)

The calculation of the partition function leads to:

Z =

J
∑

mJ=−J

exmJ (2.79)

= e−Jx + e−(J−1)x + · · · + e(J−1)x + eJx (2.80)

= e−Jx + e−Jx ex + e−Jx e2x + · · ·

+ e−Jx e(2J−1)x + e−Jx e2Jx (2.81)

= e−Jx
(

1 + ex + e2x + · · · + e(2J−1)x + e2Jx
)

(2.82)
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With:

b = e−Jx (2.83)

t = ex (2.84)

we can write:

Z = b
(

1 + t + t2 + · · · + t2J
)

(2.85)

= b + bt + bt2 + · · · + btM−1 with M = 2J + 1 (2.86)

=

M
∑

j=1

btj−1 (2.87)

which represents a geometrical series. Thus, we obtain:

Z = b ·
1 − tM

1 − t
(2.88)

= b ·
1 − t2J+1

1 − t
(2.89)

= e−Jx ·
1 − e(2J+1)x

1 − ex
(2.90)

=
e−Jx − eJx ex

1 − ex
(2.91)

=
eJx ex/2 − e−Jx e−x/2

ex/2 − e−x/2
(2.92)

=
1
2

(

e(2J+1)x/2 − e−(2J+1)x/2
)

1
2

(

ex/2 − e−x/2
) (2.93)

Due to:

sinhx =
1

2

(

ex − e−x
)

(2.94)

the partition function amounts to:

Z =
sinh ((2J + 1)x/2)

sinh (x/2)
(2.95)

With
MS = ngJμBJ (2.96)

and using (2.74) as well as setting

y = xJ = gJμBJB/kT (2.97)

we obtain for the relative magnetization:
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M

MS
=

1

J
·

1

Z
·
∂Z

∂x
(2.98)

=
1

Z
·
∂Z

∂y
(2.99)

Setting

a =
y

2J
=

xJ

2J
=

x

2
(2.100)

we get:
∂y = 2J∂a (2.101)

and thus
M

MS
=

1

Z
·

1

2J
·
∂Z

∂a
(2.102)

with

Z =
sinh [(2J + 1)a]

sinh a
(2.103)

Using
d

dx
sinh x = coshx (2.104)

we can write

∂Z

∂a
=

(2J + 1) cosh[(2J + 1)a] sinha − sinh[(2J + 1)a] cosha

sinh2 a
(2.105)

resulting in

1

Z
·
∂Z

∂a
= (2J + 1)

cosh[(2J + 1)a]

sinh[(2J + 1)a]
−

cosh a

sinh a
(2.106)

= (2J + 1) coth[(2J + 1)a] − coth a (2.107)

Inserting (2.107) into (2.102) yields

M

MS
=

1

2J
·

1

Z

∂Z

∂a
(2.108)

=
2J + 1

2J
coth

[

2J + 1

2J
y

]

−
1

2J
coth

[ y

2J

]

(2.109)

= BJ(y) (2.110)

This expression describes the Brillouin function BJ(y) which is shown in
Fig. 2.3. In the following some special situations will be discussed:

• J = ∞
Expanding (2.109) into a Taylor series using

cothx =
1

x
+

1

3
x + · · · for x ≪ 1 (2.111)
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J =
J

1

B (y)

J = 1/2

J = 1

y

1

-1
-1 0

0

2-2 3-3

Fig. 2.3. Brillouin function BJ(y) for different half-integer values of the magnetic
moment quantum number J describing the magnetization of a paramagnet

results in

BJ(y) =
2J + 1

2J
coth

[

2J + 1

2J
y

]

−
1

2J

(

2J

y
+

1

3
·

y

2J
+ · · ·

)

(2.112)

=
2 + 1

J

2
coth

[

2 + 1
J

2
y

]

−
1

y
−

y

12J2
− · · · (2.113)

Therefore we obtain:

B∞(y) = coth y −
1

y
= L(y) (2.114)

This means that J = ∞ describes the situation in the semiclassical picture.
• J = 1/2

The corresponding Brillouin function is given by:

B1/2(y) =
2 · 1

2 + 1

2 · 1
2

coth[2y] − coth y (2.115)

= 2 coth[2y] − coth y (2.116)

Using the addition theorem:

coth(2x) =
coth2 x + 1

2 cothx
(2.117)

we get:
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B1/2(y) =
coth2 y + 1

coth y
− coth y (2.118)

=
coth2 y + 1 − coth2 y

coth y
(2.119)

=
1

coth y
(2.120)

= tanh y (2.121)

This result coincides with our former consideration for magnetic moments
with mJ = 1/2 (see (2.68)).

• y ≪ 1
Typical experimental values are:

J =
1

2
, gJ = 2 , B = 1 T , T = 300 K (2.122)

which leads to:

y =
gJμBJB

kT
≈ 2 · 10−3 ≪ 1 (2.123)

This means that in most cases y ≪ 1 is valid except the situation of very
low temperatures or extremely high external magnetic fields. The Brillouin
function can then be expressed as:

BJ (y) =
2J + 1

2J
coth

[

2J + 1

2J
y

]

−
1

2J
coth

[ y

2J

]

(2.124)

=
2J + 1

2J

(

2J

2J + 1
·
1

y
+

1

3
·
2J + 1

2J
y + O(y3)

)

−
1

2J

(

2J

y
+

y

6J
+ O(y3)

)

(2.125)

=
1

y
+

(2J + 1)2

12J2
y −

1

y
−

1

12J2
y + O(y3) (2.126)

y≪1
≈

4J2 + 4J

12J2
y (2.127)

=
J + 1

3J
y (2.128)

For low magnetic fields the magnetic susceptibility can thus be expressed as
using (2.96) and (2.128):

χ =
M

H
(2.129)

=
μ0MSBJ

B
(2.130)

=
μ0ngJμBJ(J + 1)gJμBJB

3BJkT
(2.131)
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=
nμ0

3kT
· g2

Jμ2
BJ(J + 1) (2.132)

=
nμ0μ

2
eff

3kT
(2.133)

with
μeff = gJμB

√

J(J + 1) (2.134)

being the effective magnetic moment. This expression can be written as:

χ =
cCurie

T
(2.135)

with
cCurie = nμ0g

2
Jμ2

BJ(J + 1)/3k (2.136)

being the classical Curie’s law. For low magnetic fields the effective magnetic
moment amounts to

μeff = gJμB

√

J(J + 1) (2.137)

whereas for high fields the saturation magnetization is reached with

μeff = gJμBJ (2.138)

Generally, both values are not identical except the case of J → ∞, i.e. within
the semiclassical picture.

The question arises how gJ , the Landé – g-factor, can be estimated. The
magnetic moment is given by:

µ = μB (gLL + gSS) (2.139)

with gL the g-factor for orbital angular momentum and gS that for spin an-
gular momentum. Using the total angular momentum J = L + S we can
write

µ = μBgJJ (2.140)

i.e. gJ is the projection of gLL + gSS on J . Therefore:

µJ = μB (gLLJ + gSSJ) (2.141)

= μBgJJ2 (2.142)

Due to:
J = L + S (2.143)

we obtain:
L2 = (J − S)

2
= J2 + S2 − 2SJ (2.144)

and thus:

SJ =
1

2

(

J2 + S2 − L2
)

(2.145)

Analogously, we can calculate:
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LJ =
1

2

(

J2 + L2 − S2
)

(2.146)

Inserting into (see (2.142)):

gLLJ + gSSJ = gJJ2 (2.147)

and using that the eigenvalues of S2 are S(S + 1), of L2 are L(L + 1), and
J2 are J(J + 1) we obtain

gJ = gL
J(J + 1) + L(L + 1) − S(S + 1)

2J(J + 1)
(2.148)

+gS
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
(2.149)

with L being the orbital angular momentum quantum number, S the spin
angular momentum quantum number, and J the total angular momentum
quantum number. Using gL = 1 and gS = 2 yields:

gJ =
3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)
(2.150)

which allows to determine gJ .

2.4 Hund’s Rules for the Ground State of Atoms

Filled electronic shells have a vanishing total angular momentum. But, if
an atom possesses electrons in unfilled shells spin and orbital angular mo-
mentum can be different to zero. The z-component of the orbital angular
momentum exhibits values of h̄L with −L ≤ mL ≤ L, that of the spin angu-
lar momentum of h̄S with −S ≤ mS ≤ S. Totally, there are (2L+1) · (2S +1)
combinations for the coupling of J = L+S following |L−S| ≤ J ≤ L+S. Dif-
ferent configurations are energetically not identical. The question arises which
configuration represents the energetic ground state. The answer is given using
the following empirical rules which are known as Hund’s rules. They are listed
with decreasing importance, i.e. before applying the second rule the first one
must be satisfied. The same holds for the third rule accordingly.

1. S has the maximum value but must be compatible with the Pauli exclusion

principle

With ℓ being the orbital angular momentum of the not-completed shell
and p the number of electrons within this shell (i.e. p < 2(2ℓ + 1)) we
have:

S =
1

2
[(2ℓ + 1) − |2ℓ + 1 − p|] (2.151)
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2. L has the maximum value but must be compatible with the Pauli exclusion

principle and rule 1

L is given by:
L = S · |2ℓ + 1 − p| (2.152)

Each multiplet being constructed in accordance with rules 1 and 2
possesses

L+S
∑

J=|L−S|

(2J + 1) = (2L + 1)(2S + 1) (2.153)

different states. Mostly, only that states are important which fulfill the
third rule:

3. J is given by:
J = |L − S| (2.154)

if the shell is filled with less than one half (i.e. p ≤ 2ℓ + 1) or

J = L + S (2.155)

if the shell is filled with more than one half (i.e. p ≥ 2ℓ + 1). This can be
written as:

J = S · |2ℓ − p| (2.156)

The configuration which is found using Hund’s rules is described by the fol-
lowing expression being called term symbol:

2S+1LJ (2.157)

with 2S + 1 named multiplicity. L = 0, 1, 2, 3, . . . is labelled by S, P, D, F,
G, . . .. For the special case of a filled shell with p = 2 · (2ℓ + 1) we therefore
obtain:

S = 0 L = 0 J = 0 (2.158)

Consequently, the total momentum of the entire atom is given by the momen-
tum of the not-completed shell.

On the one hand Hund’s rules are able to predict the ground state of an
ion. But we must keep in mind that they are on the other hand not suited
to describe any excited state and do also not allow the calculation of the
energetic difference between the ground state and the excited states. If the
ground state and the first excited state are energetically located closed to each
other the reliability of the predicted values may be reduced.

The predictions of the total angular momentum quantum number J , of the
angular momentum quantum number L, and of the spin angular momentum
quantum number S for the magnetically relevant 3d ions using Hund’s rules
are given in Fig. 2.4 whereas the corresponding predictions concerning the
4f ions are shown in Fig. 2.5.

From theoretical point of view, μ2
eff can be predicted using Hund’s rules

due to:
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Fig. 2.5. Values of S, L, and J for 4f ions according to Hund’s rules

μeff = μBgJ

√

J(J + 1) (2.159)

in combination with

gJ =
3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)
(2.160)

The measurement of the magnetic susceptibility allows the determination of
the effective magnetic moment:

χ =
nμ0μ

2
eff

3kT
(2.161)
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Fig. 2.6. Effective magnetic moment per µB of 4f3+ ions according to Hund’s rules
in comparison to the experimental value

The comparison between experiment and theoretical calculation (see Fig. 2.6)
yields:

• generally a fair agreement for 4f elements.
• Exceptions are Sm and Eu due to excited states which are energetically

located closed to the ground state.
• Discrepancies also occur for 3d elements.

Problems

2.1. Determine the paramagnetic susceptibility per unit volume of an ideal
gas at room temperature assuming that J = 1 and g = 2 (being the values
for molecular oxygen).

2.2. Calculate the Landé – g-factor gJ for Ce which is a 4f ion with one
electron in the 4f subshell.

2.3. Term symbols

(a) Determine the term symbol for the ground state of an Fe ion 3d6.
(b) Determine the term symbol for the ground state of a Gd ion 4f7.
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Solid State Magnetism

In the previous chapter we have discussed the properties of isolated and local-
ized magnetic moments. Now we allow their interaction and will concentrate
on the solid state. We will not deal with magnetic behavior of molecules in
the gas phase and fluids in this chapter.

Metals exhibit conduction electrons which are delocalized. These electrons
(so-called itinerant electrons) can move nearly free inside the metal. Thus, we
will start our discussion concerning solid state magnetism with the model of
free electrons. The magnetic moments in the solid state can be

• localized or
• carried by the delocalized conduction electrons.

Both situations result in dia- and paramagnetism. But now, collective mag-
netism like ferromagnetism is additionally allowed which becomes manifest in
spontaneously spin split electronic states and will be discussed at the end of
this chapter.

3.1 Model of Free Electrons

The model of free electrons only represents an estimation but allows a plau-
sible description of the most important properties.

The assumptions being made are that volume electrons of the constituent
atoms become conduction electrons and that these electrons move about freely
through the volume of the metal. The periodic potential of the crystal lattice
is not taken into account.

The description of the electronic states is carried out by planar waves. Each
state can be occupied with 2 electrons due to the Pauli exclusion principle. In
the ground state all states exhibiting a wave vector k within the Fermi sphere
|k| ≤ kF are occupied whereas all states being outside are unoccupied (see
Fig. 3.1). The distance in k-space between different states is given by 2π/L



26 3 Solid State Magnetism

kx

ky

2 / L�

Fig. 3.1. Electron states are separated by 2π/L being doubly occupied and contain-
ing a volume of (2π/L)3. States are only occupied within the Fermi sphere exhibiting
a radius of kF (see circle) whereas they are unoccupied for |k| > kF

and the volume of the sample by V = L3. The number of states between k
and k + dk amounts to 4πk2dk. The density of states (DOS) is given by:

g(k)dk = 2 ·
1

(2π/L)3
· 4πk2dk (3.1)

=
V k2

π2
dk (3.2)

The factor of two is due to the two spin states of electrons. For T = 0K the
states are occupied up to kF with N electrons:

N =

kF
∫

0

g(k)dk =
V

π2

kF
∫

0

k2dk =
V k3

F

3π2
(3.3)

Thus, we obtain:
k3

F = 3π2n (3.4)

with n = N/V being the number of electrons per volume. The highest occu-
pied energy levels possess the Fermi energy EF :

EF =
h̄2k2

F

2me
(3.5)

as kinetic energy. This results in:

k3
F =

(

2me

h̄2

)3/2

· E
3/2

F (3.6)
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The density of states as a function of energy can be derived from the relation:

n =

EF
∫

0

g(E)dE =
k3

F

3π2
(3.7)

=
1

3π2

(

2me

h̄2

)3/2

· E3/2 (3.8)

Therefore:

g(EF ) =
dn

dE

∣

∣

∣

∣

E=EF

(3.9)

=
3n

2EF
(3.10)

=
mekF

π2h̄2
(3.11)

i.e.
g(EF ) ∝ me (3.12)

This quantity me represents the effective electron mass which can be larger
than the mass of a free electron.

The previous considerations were carried out for T = 0K. For a non-
vanishing temperature T > 0 K the density of states remains unchangedwhereas
the occupation becomes influenced which is characterized by the Fermi func-
tion f(E):

f(E) =
1

1 + eE−µ/kT
(3.13)

with μ being the chemical potential. At T = 0 K the Fermi function is given
by:

f(E) =

{

0 for E > μ
1 for E < μ

(3.14)

and exhibits a step-like behavior. At higher temperatures a smoothing out
occurs (see Fig. 3.2). The step function is an adequate approximation for
most of the metals (situation of the degenerate limit). For E − μ ≫ kT the
Fermi function is determined by the Boltzmann distribution:

f(E) ∝ eE−µ/kT (3.15)

due to:
1

1 + ex
−→

1

ex
for x → 0 (3.16)

This situation is called the non-degenerate limit. For T > 0 K we get:

n =

EF
∫

0

g(E)f(E)dE (3.17)
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E
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0 �

1

Fig. 3.2. Fermi function f(E) as being defined by (3.13). At T = 0K a step-like
behavior is present whereas for higher temperatures a smoothing out occurs

The energy dependence of g(E) is shown in Fig. 3.3, that of f(E)g(E) for
different temperatures in Fig. 3.4. At T = 0K we have μ = EF ; for higher
temperatures T > 0 K the chemical potential can be developed into a Taylor
series:

μ = EF

(

1 −
π2

12

(

kT

EF

)2

+ O

(

(

kT

EF

)4
))

(3.18)

At room temperature (T ≈ 300K) most of the metals exhibit a deviation of
about 0.01% between EF and μ. This means that the Fermi energy and the
chemical potential are nearly identical.

The Fermi surface is characterized by states in the k-space with E(k) = μ.
For semiconductors or insulators, the chemical potential is located in band
gaps or gaps of the density of states, respectively. Thus, no electrons are
present at the Fermi surface whereas metals exhibit electrons at the Fermi
surface.

g E( )

�
E0

E
1/2

Fig. 3.3. Density of states g(E) of a free electron gas being ∝ E1/2
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Fig. 3.4. Energy dependence of the function f(E) g(E) shown in Figs. 3.2 and 3.3

3.2 Pauli Paramagnetism

A doubled occupation of each state in k-space due to two possible spin states
occurs in metals, i.e. each electron is “spin up” or “spin down”. Applying an
external magnetic field results in an increase or decrease of the electron energy
by ±gμBBmS being dependent on the corresponding spin. This leads to the
paramagnetic susceptibility of the electron gas (“Pauli paramagnetism”).

Neglecting the orbital momentum at T = 0K results in g = 2 and a step-
like behavior of the Fermi function. The external magnetic field induces a
splitting of both spin subbands of 2gμBBmS ≈ 2μBB (see Fig. 3.5). Assuming
that gμBB represents a fairly small energy results in a small splitting of both
bands. The increasing number of spin up electrons per unit volume amounts
to:

g E( ) g E( )

E

EF

2 B�B

Fig. 3.5. Density of states for spin up and spin down electrons when applying an
external magnetic field B. The splitting of both bands amounts to 2µBB
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n↑ =
1

2
g(EF )μBB (3.19)

and the decreasing number of spin down electrons to:

−n↓ =
1

2
g(EF )μBB (3.20)

The magnetization M is therefore given by:

M = μB(n↑ − n↓) (3.21)

= g(EF )μ2
BB (3.22)

and the magnetic (Pauli) susceptibility results in:

χPauli =
M

H
≈

μ0M

B
(3.23)

= μ0μ
2
Bg(EF ) (3.24)

=
3nμ0μ

2
B

2EF
(3.25)

due to g(EF ) = 3/2 · n/EF (see (3.10)).

3.3 Spontaneously Spin Split States

The magnetic moment per iron atom in the solid state amounts to 2.2μB.
The non-integral value demonstrates that a description with localized mag-
netic moments fails. This situation can be described by band or itinerant
ferromagnetism being characterized by a magnetization due to a spontaneous
spin splitting of the valence bands.

One approach for the explanation is given by the molecular field theory. All
spins are influenced by an identical mean field λM which is caused by all other
electrons. On the one hand, the molecular field magnetizes the electron gas due
to the Pauli paramagnetism. On the other hand the resulting magnetization
is responsible for the molecular field. This situation reminds of the chicken-
egg-scenario.

A more promising approach bases on the fact that nature tries to minimize
energy. Thus, we have to look whether it is possible to decrease the energy of
a system if it becomes ferromagnetic without applying an external magnetic
field.

This situation can be realized by a shift of electrons at the Fermi surface
from spin down into spin up bands. This means that spin down electrons
with energies between EF − δE and EF must perform a spin-flip and are
subsequently integrated in a spin up band with energies between EF + δE
and EF (see Fig. 3.6). The energy gain per electron amounts to δE and the
number of electrons being moved to 1/2g(EF )δE. Thus, the increase of kinetic
energy is given by:
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Fig. 3.6. Density of states for spin up and spin down electrons exhibiting a spon-
taneous spin splitting without applying an external magnetic field

∆Ekin =
1

2
g(EF )(δE)2 (3.26)

This situation does not look favorable but it is possible that the increase of
kinetic energy is overcompensated due to the exchange of the magnetization
with the molecular field as shown in the following. After the spin flip the
number of spin up and spin down electrons are given by:

n↑ =
1

2
n +

1

2
g(EF )δE (3.27)

n↓ =
1

2
n −

1

2
g(EF )δE (3.28)

with n being the number of electrons at the Fermi energy in the paramagnetic
case. Because each electron carries a magnetic moment of 1μB the magneti-
zation can be written as:

M = μB(n↑ − n↓) (3.29)

The potential or molecular field energy amounts to:

∆Epot = −
1

2
μ0M · λM (3.30)

= −
1

2
μ0λM2 (3.31)

= −
1

2
μ0μ

2
Bλ(n↑ − n↓)

2 (3.32)

Introducing U = μ0μ
2
Bλ which is a measure of the Coulomb energy we obtain:

∆Epot = −
1

2
U · (g(EF )δE)

2
(3.33)

The total change in energy amounts to:
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∆E = ∆Ekin + ∆Epot (3.34)

=
1

2
g(EF )(δE)2 −

1

2
U (g(EF )δE)

2
(3.35)

=
1

2
g(EF )(δE)2 (1 − U · g(EF )) (3.36)

Therefore, a spontaneous spin splitting is given for ∆E < 0, i.e.

U · g(EF ) ≥ 1 (3.37)

which is the so-called “Stoner criterion” for ferromagnetism. Values of U ,
g(EF ), and U · g(EF ) are shown in Fig. 3.7 for the first 50 elements. We

U
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Fig. 3.7. Values of the Stoner parameter U , density of states per atom g(EF ) at
the Fermi energy, and U · g(EF ) as a function of the atomic number Z. Only the
elements Fe, Co, and Ni fulfill the Stoner criterion and are ferromagnetic
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directly see that only Fe, Co, and Ni exhibit a value of U · g(EF ) > 1 which
is mainly caused by the large density of states directly at the Fermi energy.

If the Stoner criterion is fulfilled a splitting of the spin up and spin down
bands by ∆ occurs without applying an external magnetic field. This value ∆
represents the exchange splitting. For U · g(EF ) < 1 no spontaneous magneti-
zation is present but nevertheless the magnetic susceptibility may be different
from the paramagnetic value.

In the following this change of the magnetic susceptibility is discussed
taking into consideration an applied magnetic field and the electronic inter-
actions. The resulting energy shift induces a magnetization:

M = μB(n↑ − n↓) (3.38)

= μBg(EF )δE (3.39)

The corresponding total energy shift amounts to:

∆E =
1

2
g(EF )(δE)2 (1 − U · g(EF )) − MB (3.40)

=
M2

2μ2
Bg(EF )

(1 − U · g(EF )) − MB (3.41)

The minimum is reached for ∂∆E/∂M = 0:

M

μ2
Bg(EF )

· (1 − U · g(EF )) − B = 0 (3.42)

which leads to:

M = B ·
μ2

Bg(EF )

1 − U · g(EF )
(3.43)

Thus, we can calculate the susceptibility to be:

χ =
μ0M

B
(3.44)

=
μ0μ

2
Bg(EF )

1 − U · g(EF )
(3.45)

=
χPauli

1 − U · g(EF )
(3.46)

i.e. χ > χPauli due to the Coulomb interaction. This situation is called Stoner
enhancement.

An example is given for Palladium. For this element the Stoner criterion is
not fulfilled but U ·g(EF ) is significantly larger than zero (see Fig. 3.7c). Thus,
it exhibits an enhanced Pauli susceptibility. In other words Pd is “nearly”
ferromagnetic.

The properties of an itinerant or band ferromagnet are exemplarily shown
for Fe. The calculated density of states (DOS) without exchange splitting
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Fig. 3.8. Calculation of the density of states as a function of energy with respect
to the Fermi energy EF for Fe neglecting the exchange splitting, i.e. for the param-
agnetic situation (Reprinted from [1] p. 85. Copyright 1978, with permission from
Elsevier)

(i.e. for the paramagnetic case) is shown in Fig. 3.8. A high DOS occurs
directly at the Fermi energy EF , i.e. ferromagnetism seems to be probable
due to the Stoner criterion. In comparison, the DOS of Pd (see Fig. 3.9) also
exhibits a high magnitude which points to a “nearly” magnetic behavior. A
very different situation is present for noble metals like Cu (see Fig. 3.10). The
low DOS at EF indicates a non-magnetic element.

Fig. 3.9. Calculation of the density of states as a function of energy with respect
to the Fermi energy EF for Pd which also exhibits a large value at EF compared to
Fe (Reprinted from [1] p. 145. Copyright 1978, with permission from Elsevier)
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Fig. 3.10. Calculation of the density of states as a function of energy with respect
to the Fermi energy EF for the noble metal Cu. No d-states are present at EF which
results in a small magnitude of the total DOS. (Reprinted from [1] p. 97. Copyright
1978, with permission from Elsevier)

Fig. 3.11. Left: Calculation of the spin resolved density of states as a function of
energy with respect to the Fermi energy EF for Fe taking into account the exchange
splitting. Right: Calculated spin resolved band structure of Fe. Majority bands are
characterized by dark points, minority bands by light points. (Reprinted from [1]
pp. 169 and 170. Copyright 1978, with permission from Elsevier)
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Taking into account the exchange splitting results in a spin resolved DOS
which behaves different for majority electrons (exemplarily shown for Fe: up-
per curve in the left part of Fig. 3.11) and minority electrons (lower curve
in the left part of Fig. 3.11 for Fe). Due to the shift in different direction
two properties become important. First, the number of majority and minor-
ity electrons directly at the Fermi energy is no more identical. Second, more
majority electrons below EF are present than minority electrons.

The spin resolved band structure (right part of Fig. 3.11) directly shows
the exchange splitting of bands with majority character (dark points) and
minority character (light points). Exemplarily, we see that a majority band
crosses the Fermi energy along Γ - H also known as ∆ direction which corre-
sponds to the Fe(100) plane. This crossing can directly be probed using, e.g.,
spin resolving photoelectron spectroscopy.

3.4 Magnetism of 3d Transition Metals and Alloys

The variation of magnetic moments for different compositions in 3d metals
and alloys is quite regular. This representation is called Slater–Pauling curve
(see Fig. 3.12) due to the significant contributions of these two scientists, John
Slater and Linus Pauling, to its understanding.

We see that the average magnetic moment μ per transition metal atom
amounts to 2.2 μB for Fe, to 1.7 μB for Co, and to 0.6 μB for Ni. For Fe50Ni50
this value is very close to that of Co. Both, this alloy and Co, exhibit the same
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Fig. 3.12. Saturation magnetization of ferromagnetic alloys as a function of the
electron concentration (Adapted from [2])
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average atomic number or electrons per atom which is 27 or average number
of valence electrons being nval = 9. Looking at the right side of the curve we
observe that the magnetic moment per atom increases nearly linearly from
zero at about 60% Cu in Ni for the data on the right to the maximum. The
slope amounts to −1. The same behavior occurs for alloys consisting of FeCo,
FeNi, and NiCo with nval > 8.6. The magnetic moment per atom reaches a
maximum with about 2.5 μB near the average electron concentration of about
26.5 electrons per atom for metals and alloys. Assuming one 4s electron per
atom the number of d electrons amounts to nd = 7.5.

Using a simple band model which is known as the rigid band model we
are able to understand the most important differences between the magnetic
behavior of metallic Fe and metallic Ni. It assumes that the s and d bands are
rigid in shape with varying atomic number. This allows to model the magnetic
behavior of different alloys by only moving the Fermi energy EF up or down
through the majority and minority band according to the number of electrons
being present. This model is of course not correct but we can understand some
trends in physical properties.

Fe possesses 8 valence electrons being in 3d and 4s states whereas Ni has
10. Different measurements prove that Fe has slightly less than one electron
that can be called free or itinerant (4s0.95). The remaining 7.05 electrons
occupy the more localized 3d band. The number of d electrons with respect
to each spin subband is therefore:

n↑

d + n↓

d = 7.05 (3.47)

The observed magnetic moment of 2.2 μB per atom yields:

n↑

d − n↓

d = 2.2 (3.48)

Thus, we obtain that 4.62 of these 7.05 3d electrons are spin up and 2.43 are
spin down electrons. On the other hand Ni exhibits 0.6 free electrons (4s0.6)
and 3d 9.4. The magnetic moment of 0.6 μB results in 5 spin up electrons and
4.4 spin down electrons or 0.6 spin down holes; therefore, the spin up band is
fully occupied.

Metals which exhibit an exchange splitting that is less than the energy
difference between the Fermi energy EF and the top of the d band are called
weak ferromagnets. They have, by definition, holes in both the majority and
minority spin band. These metals are found on the left side of the maximum
in the Slater–Pauling curve. One example is Fe. Metals that have an exchange
splitting larger than this difference are called strong ferromagnets. They only
have holes in the minority band and are located on the right side of the peak
in the Slater–Pauling curve. One example is given by Ni.

As one example using the rigid-band model to understand magnetic
properties of alloys let us consider Ni substituted in Fe with the compo-
sition given by Fe1−xNix. The average amount of the valence electrons is
nval = 8 (1 − x) + 10x. Thus, the Fermi energy moves up through the rigid
bands with increasing Ni content.
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The magnetic moment per atom of an alloy is given by:

μ = (n↑ − n↓)μB (3.49)

In transition metal alloys the spins are mostly due to d electrons which results
in:

μ = (n↑

d − n↓

d)μB (3.50)

Generally, both n↑

d and n↓

d can vary on alloying. However, the magnetic mo-
ment per atom may be simply calculated if the Fermi energy EF lies above the
top of the spin up band, i.e. for strong ferromagnets. For such systems we have
n↑

d = 5. Thus, the magnetic moment per atom amounts to μ = (5 − n↓

d)μB.

Due to n↓

d = nd − 5 we have μ = (10 − nd)μB .
For strong ferromagnets this relation represents a straight line exhibiting

a slope of −1 and thus adequately describes the data on the right side of the
Slater–Pauling curve. This equation also explains why the average moment of
Co should be very close to that of Ni50Fe50. Both exhibit the same valence
electron concentration and thus the same value of nd.

Further, this consideration explains the observation of non-integral av-
erage magnetic moments in 3d alloys. Additionally, we understand why the
maximum in the Slater–Pauling curve is reached with a value of 2.5 μB. The
Fermi level is stable when it coincides with the density of states minimum
near the center of the minority spin band and the majority 3d band is full
(nd = 7.5). For a lower d electron concentration than 7.5 majority as well
as minority states are (partially) empty and the magnetic moment decreases
with decreasing nd. This situation is realized in weak ferromagnets.

As already mentioned above the rigid-band model is a rather naive picture
due to the assumption that the band structure and the shape of the curve
describing the density of states do change with alloy composition in reality.

Another problem is that this model gives the averaged value of the mag-
netic moment of an alloy. It does not allow to determine the magnetic moment
of each constituent individually. It is known that these element specific values
may vary in a different way in an alloy which is shown in Fig. 3.13 for the ex-
ample of FeCo, CoNi, and FeNi with different stoichiometry. In the FeNi alloy
(closed and open squares) the magnetic moment of each Fe atom as well as
that of each Ni atom nearly remain constant. This results in a linear increase
of the averaged magnetic moment with increasing amount of Fe in the alloy
and in a value of the slope being −1 (gray squares). In the FeCo alloy (black
and white circles) the magnetic moment of each Co atom does not change with
varying composition whereas that of each Fe atom exhibits different values if
the composition changes and leads to a maximum (gray circles). This latter
observation directly gives evidence that the slope in the Slater–Pauling curve
cannot be constant over the whole range.
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Fig. 3.13. Magnetic moments per atom in 3d transition metal alloys as a function of
the electron concentration. Full and open symbols denote element specific magnetic
moments in the alloy, gray symbols refer to the average value weighted with the
respective concentration. The corresponding line is comparable to the Slater–Pauling
curve (see Fig. 3.12). (Data taken from [3] and [4])

Problems

3.1. Ferromagnetic alloys

Assume a magnetic moment per atom of 1 μB. Determine the relative com-
position of the following alloys using the Slater–Pauling curve:
(a) Ni–Co
(b) Co–Cr
(c) Fe–Cr
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Magnetic Interactions

In this chapter we will discuss different types of magnetic interaction which
are responsible for properties which base on the fact that magnetic moments
“feel” each other. As a result magnetic long range order can occur.

We will start our considerations with the interaction of two single magnetic
dipoles. Subsequently, we will discuss the exchange interaction which is a pure
quantum mechanical effect and is due to the Coulomb interaction and Pauli
exclusion principle. Depending on the distance between the magnetic moments
we distinguish between the direct and indirect exchange.

The situation that the electrons of neighboring magnetic atoms directly
interact is called “direct exchange” because the interaction is mediated with-
out needing intermediate atoms. If the overlap of the involved wave functions
is only small (e.g. for rare earth metal atoms with their localized 4f electrons)
then the direct exchange does not represent the dominating mechanism for
magnetic properties. For this class of systems the indirect exchange interaction
is responsible for magnetism.

4.1 Magnetic Dipole Interaction

The energy of two magnetic dipoles µ1 and µ2 separated by the vector r is
given by:

E =
µ0

4πr3

(

µ1 · µ2 −
3

r2
(µ1 · r) (µ2 · r)

)

(4.1)

and thus depends on their distance and relative orientations.
For an estimation of this energy we choose typical values with µ1 = µ2 =

1 µB and r = 2 Å. Additionally, we assume µ1 ↑↑ µ2 and µ ↑↑ r. This
situation results in an energy of:

E =
µ0µ

2
B

2πr3
= 2.1 · 10−24J (4.2)
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The corresponding temperature (E = kT ) is far below 1K. But, the order
temperature typically reaches values of several 100K for a lot of ferromagnetic
materials. Therefore, the magnetic dipole interaction is too small to cause
ferromagnetism.

4.2 Direct Exchange

Let us assume a rather simple model with only two electrons which exhibit
position vectors r1 and r2. Furthermore, we consider that the total wave func-
tion is composed of the product of single electron states ψa(r1) and ψb(r2).
The electrons belonging to are undistinguishable. Therefore, the wave func-
tion squared must be invariant for the exchange of both electrons. Because
the electrons are fermions the Pauli exclusion principle must be fulfilled which
leads to an antisymmetric wave function. Taking into consideration the spin
of the electrons two possibilities are given: a symmetric spatial part ψ in com-
bination with an antisymmetric spin part χ or an antisymmetric spatial part
in combination with a symmetric spin part. The first situation represents a
singlet state with Stotal = 0, the second one a triplet state with Stotal = 1.
The corresponding total wave functions are given by:

ψS =
1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1)) · χS (4.3)

ψT =
1√
2

(ψa(r1)ψb(r2) − ψa(r2)ψb(r1)) · χT (4.4)

The energies of the singlet and triplet states amount to:

ES =

∫

ψ∗

SHψSdV1dV2 (4.5)

ET =

∫

ψ∗

THψT dV1dV2 (4.6)

taking into account normalized spin parts of the singlet and triplet wave func-
tions, i.e.

S2 = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2 (4.7)

Thus, we obtain:

S1 · S2 =
1

2
Stotal(Stotal + 1) − 1

2
S1(S1 + 1) − 1

2
S2(S2 + 1) (4.8)

=
1

2
Stotal(Stotal + 1) − 3

4
due to S1 = S2 =

1

2
(4.9)

=

⎧

⎨

⎩

− 3
4

for Stotal = 0 (singlet)

+ 1
4

for Stotal = 1 (triplet)
(4.10)
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The effective Hamiltonian can be expressed as:

H =
1

4
(ES + 3ET ) − (ES − ET )S1 · S2 (4.11)

The first term is constant and often included in other energy contributions.
The second term is spin dependent and the important one concerning ferro-
magnetic properties.

Let us define the exchange constant or exchange integral J by:

J =
ES − ET

2
=

∫

ψ∗

a(r1)ψ
∗

b (r2)Hψa(r2)ψb(r1)dV1dV2 (4.12)

Then, the spin dependent term in the effective Hamiltonian can be written
as:

Hspin = −2JS1 · S2 (4.13)

If the exchange integral J is positive then ES > ET , i.e. the triplet state with
Stotal = 1 is energetically favored. If the exchange integral J is negative then
ES < ET , i.e. the singlet state with Stotal = 0 is energetically favored.

We see that this situation considering only two electrons is relatively sim-
ple. But, atoms in magnetic systems exhibit a lot of electrons. The Schrödinger
equation of these many-body systems cannot be solved without assumptions.
The most important part of such an interaction like the exchange interaction
mostly apply between neighboring atoms. This consideration leads within the
Heisenberg model to a term in the Hamiltonian of:

H = −
∑

ij

JijSi · Sj (4.14)

with Jij being the exchange constant between spin i and spin j. The factor 2 is
included in the double counting within the sum. Often a good approximation
is given by:

Jij =

⎧

⎨

⎩

J for nearest neighbor spins

0 otherwise
(4.15)

Generally, J is positive for electrons at the same atom whereas it is often
negative if both electrons belong to different atoms.

4.3 Indirect Exchange

The different classes of indirect exchange significantly depend on the kind of
magnetic material.

• Superexchange interaction
This type of indirect exchange interaction occurs in ionic solids. The ex-
change interaction between non-neighboring magnetic ions is mediated by
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O

Mn2+

2-

Fig. 4.1. Crystal and magnetic structures of MnO

means of a non-magnetic ion which is located in-between. The distance
between the magnetic ions is too large that a direct exchange can take
place.

An example of an antiferromagnetic ionic solid is MnO (see Fig. 4.1).
Each Mn2+ ion exhibits 5 electrons in its d shell with all spins being paral-
lel due to Hund’s rule. The O2− ions possess electrons in p orbitals which
are fully occupied with their spins aligned antiparallel. There are two pos-
sibilities for the relative alignment of the spins in neighboring Mn atoms.
A parallel alignment leads to a ferromagnetic arrangement whereas an an-
tiparallel alignment causes an antiferromagnetic arrangement. That con-
figuration is energetically favored which allows a delocalization of the in-
volved electrons due to a lowering of the kinetic energy (see Fig. 4.2). In the
antiferromagnetic case the electrons with their ground state given in (a)
can be exchanged via excited states shown in (b) and (c) leading to a de-
localization. For ferromagnetic alignment with the corresponding ground
state presented in (d) the Pauli exclusion principle forbids the arrange-
ments shown in (e) and (f). Thus, no delocalization occurs. Therefore, the
antiferromagnetic coupling between two Mn atoms is energetically favored
as depicted in Fig. 4.1. It is important that the electrons of the oxygen
atom are located within the same orbital, i.e. the atom must connect the
two Mn atoms.

• RKKY exchange interaction
The RKKY exchange interaction (RKKY: Ruderman, Kittel, Kasuya,
Yosida) occurs in metals with localized magnetic moments. The exchange
is mediated via the valence electrons; it is therefore not a direct interac-
tion. The coupling is characterized by the distance dependent exchange
integral JRKKY(r):

JRKKY(r) ∝ F(2kF r) (4.16)
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antiferromagnetic
arrangement

ferromagnetic
arrangement

(a)

(b)

(c)

(d)

(e)

(f)

M MO

Fig. 4.2. Occurrence of a super exchange interaction in a magnetic oxide. The ar-
rows represent the spins of the electrons being involved into the interaction between
the metal (M) and oxygen (O) atom

with

F(x) =
sin x − x cosx

x4
(4.17)

(see Fig. 4.3). This type of exchange coupling is long range and anisotropic
which often results in complicated spin arrangements. Additionally, it pos-
sesses an oscillating behavior. Thus, the type of coupling, ferro- or anti-
ferromagnetic nature, is a function of the distance between the magnetic

0

0

x

1
0
0
0

*
F

5 10 15 20

-5

5

10

Fig. 4.3. Graphical representation of the function F (x) defined in (4.17) using
x = 2kF r. Positive values (light gray area) lead to a ferromagnetic coupling whereas
negative ones (dark gray area) result in an antiferromagnetic arrangement
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moments. One example is represented by rare earth metals with their lo-
calized 4f electrons.

• Double exchange
In some oxides the magnetic ions exhibit mixed valencies, i.e. different
oxidation states occur which results in a ferromagnetic arrangement. One
example is given by magnetite (Fe3O4) which includes Fe2+ as well as Fe3+

ions. A detailed discussion is given in Chap. 16.4 concerning the colossal
magnetoresistance.



5

Collective Magnetism

In the chapter before we learned about the various magnetic interactions be-
tween magnetic moments in the solid state. In the following different mag-
netic ground states will be discussed which are caused by these interactions
and which result in collective magnetism. A schematic overview is given in
Fig. 5.1. Ferromagnets exhibit magnetic moments which are aligned parallel
to each other. In antiferromagnets adjacent magnetic moments are oriented in

Fig. 5.1. Different arrangements of magnetic moments for ordered magnetic sys-
tems: (a) ferromagnets, (b) antiferromagnets, (c) spin glasses, (d) helical arrange-
ment, (e) spiral arrangement
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the opposite direction. Magnetic moments in a spin glass are frozen out with
a random orientation. A helical or spiral arrangement is given if the magnetic
moments are aligned parallel in a plane but the direction varies from plane
to plane in such a way that the vector of the magnetic moment moves on a
circle or a cone, respectively.

5.1 Ferromagnetism

Ferromagnetism is characterized by a spontaneous magnetization even with-
out applying an external magnetic field. At T = 0K all magnetic moments
are aligned parallel which is caused by the exchange interaction. The mag-
netically relevant part of the Hamiltonian for a ferromagnetic system with an
additional external magnetic field B is given by:

H = −
∑

ij

JijSi · Sj + gJµB

∑

i

Si · B (5.1)

with Jij > 0 for nearest neighbors.
We start our discussion with the approximation, which is known as the

model of Weiss, that the interaction of a magnetic ion with its neighbors is
described using a molecular field Bmf which represents an inner magnetic
field. This situation is characterized by the Hamiltonian:

H = gJµB

∑

i

Si · (B + Bmf) (5.2)

The molecular field is considered to be proportional to the magnetization:

Bmf = λM (5.3)

with λ being the molecular field constant. λ is positive for ferromagnets and
often exhibits large values due to the influence of the Coulomb interaction on
the exchange interaction.

Now, we have an analogous situation compared to that of a paramagnetic
system in a magnetic field of the magnitude B + Bmf . The relative magneti-
zation is therefore given by (cf. Chap. 2.3):

M

MS
= BJ (y) (5.4)

with BJ(y) being the Brillouin function and

y =
gJµBJ(B + λM)

kT
(5.5)

Without an external magnetic field (i.e. B = 0) the temperature dependence
of the magnetization is given by:



5.1 Ferromagnetism 49

M(T ) = MS · BJ

(

gJµBJλM(T )

kT

)

(5.6)

The trivial solution is M(T ) = 0 due to BJ(0) = 0. The general solution can
be obtained using the expression:

M

MS
=

M

MS
· gJµBJλM

kT
· kT

gJµBJλM
(5.7)

= y · kT

gJµBJλMS
(5.8)

and corresponds to the intersection points of a line through origin with BJ(y)
in a diagram representing M/MS as a function of y due to M/MS = BJ(y)
(see Fig. 5.2). Only one solution occurs at high temperatures which is given
at y = 0 with M(T ) = 0. If the temperature is low enough three solutions
exist with M = 0 and M = ±a for a specific a > 0.

The magnetization M �= 0 vanishes at a temperature T = TC which is
characterized by a slope of the straight line being equal to the slope of BJ in
the origin. This procedure can be used to obtain the critical temperature TC

graphically.
The “mathematical” determination of the Curie temperature TC is carried

out making use of the condition that the derivations with respect to y must
be equal for

M

MS
= y · kT

gJµBJλMS
(5.9)

and
M

MS
= BJ (y) (5.10)

y

1

-1

sM M/

CT < TCT = TCT > T

Fig. 5.2. Graphical method to determine the relative magnetization without exter-
nal magnetic field
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for small values of y. The derivation of (5.9) is given by:

dM/MS

dy
=

kT

gJµBJλMS
(5.11)

Due to:

BJ (y) = y · J + 1

3J
+ O(y3) (5.12)

the derivation of (5.10) can be approximated by:

dM/MS

dy
=

dBJ

dy
=

J + 1

3J
(5.13)

for small values of y. Thus, the critical temperature amounts to:

TC =
(J + 1)gJµBλMS

3k
(5.14)

Using MS = ngJµBJ (see (2.96)) and µeff = gJµB

√

J(J + 1) (see (2.134))
we obtain:

TC =
nλµ2

eff

3k
(5.15)

as the Curie temperature in molecular field approximation. The molecular
field can be estimated by:

Bmf = λMS =
3kTC

gJµB(J + 1)
(5.16)

Using typical values J = 1/2 and TC = 1000K the magnitude of the molecular
field amounts to Bmf ≈ 1500 T. This extremely high magnetic field gives
evidence for the strength of the magnetic interaction.

Using the expression for the critical temperature (see (5.14)) results in

gJµBλ

k
=

3TC

(J + 1)MS
(5.17)

Therefore, the temperature dependence of the spontaneous magnetization can
be derived by:

M

MS
= BJ

(

gJµBJλM

kT

)

(5.18)

= BJ

(

3J

J + 1
· M

MS
· TC

T

)

(5.19)

The solution of this equation for different values of J is shown in Fig. 5.3. The
shape of the curves is slightly different nevertheless a general trend is present:

• T > TC : The magnetization vanishes M = 0
• T < TC : M �= 0
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Fig. 5.3. Relative magnetization as a function of the reduced temperature T/TC

for different values of J

• T = TC : The magnetization exhibits a continuous behavior but it is not
continuously differentiable. Thus, we find a phase transition of second
order.

The value t = T/TC is called reduced temperature.
Now, we want to look for the behavior of the spontaneous magnetization

near the critical temperature TC which was found to be (see (5.19)):

M

MS
= BJ

(

3J

J + 1
· M

MS
· TC

T

)

(5.20)

The argument of the Brillouin function is small for T → TC . Thus, BJ (y) can
be developed into a Taylor series:

BJ(y) =
J + 1

3J
y − (J + 1)(2J2 + 2J + 1)

90J3
y3 + O(y5) (5.21)

Neglecting higher orders we obtain:

M

MS
=

J + 1

3J
· 3J

J + 1
· M

MS
· TC

T

− (J + 1)(2J2 + 2J + 1)

90J3
· 27J3

(J + 1)3
·
(

M

MS

)3

·
(

TC

T

)3

(5.22)

=
M

MS
· TC

T

(

1 −
(

M

MS

)2

·
(

TC

T

)2

· 3(2J2 + 2J + 1)

10(J + 1)2

)

(5.23)
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which results in:
(

M

MS

)2

=
10(J + 1)2

3(J2 + (J + 1)2)
·
(

1 − T

TC

)

·
(

T

TC

)2

(5.24)

The last term becomes unity for T → TC and the relative magnetization
amounts to:

M

MS
∝

(

1 − T

TC

)1/2

(5.25)

In the next step the behavior near T = 0 K is examined. For T → 0K we
obtain:

y =
3J

J + 1

M

MS

TC

T
→ ∞ (5.26)

With:

coth x =
ex + e−x

ex − e−x
(5.27)

=
1 + e−2x

1 − e−2x
(5.28)

we can use an approximation of cothx for x → ∞ to be:

coth x = (1 + e−2x)(1 + e−2x) (5.29)

= 1 + 2 e−2x + e−4x (5.30)

Thus, we obtain for x → ∞:

coth x = 1 + 2 e−2x (5.31)

Both results can be used to estimate BJ(y) for T → 0 K:

2JBJ(y) = (2J + 1) coth

(

2J + 1

2J
y

)

− coth
y

2J
(5.32)

which simplifies for y → ∞ to:

2JBJ(y) = (2J + 1)(1 + 2 e−
2J+1

J y) − (1 + 2 e−
y
J ) (5.33)

= 2J + 1 + 2(2J + 1) e−
y
J e−2y − 2 e−

y
J − 1 (5.34)

and can be approximated by:

2JBJ(y) = 2J − 2 e−
y
J (5.35)

Thus, we obtain:

M

MS
= 1 − (1/J) e

−
3

J+1
TC

T
M
MS (5.36)

≈ 1 − (1/J) e−c/T (5.37)
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with c being a constant. Thus, the magnetization M approaches MS exponen-
tially for T → 0 K. This result does not correctly describe the situation for all
ferromagnets. For low temperatures the physics behind is more complicated
compared to this simple picture and will be discussed in Chap. 6.5 in more
detail.

For the discussion of the magnetic susceptibility we consider a small exter-
nal magnetic field B applied at T > TC which results in a small magnetization.
Thus, the argument of BJ (y) can be approximated by:

BJ(y) =
J + 1

3J
y (5.38)

The relative magnetization approximately amounts to:

M

MS
=

J + 1

3J
· gJµBJ(B + λM)

kT
(5.39)

=
gJµB(J + 1)

3k
· B + λM

T
(5.40)

Using (5.14) we obtain:

M

MS
=

TC

λMS
· B + λM

T
(5.41)

Therefore, we can write:

M

MS

(

1 − TC

T

)

=
TC

T
· B

λMS
(5.42)

Using this equation the magnetic susceptibility can be determined to be:

χ = lim
B→0

µ0M

B
=

µ0TC

λ
· 1

T − TC
=

c

T − TC
(5.43)

with c being a constant which represents the Curie–Weiss law .
Now, we drop the restriction of an only small magnitude of the external

magnetic field and allow any values. Due to (see (5.5)):

y =
gJµBJ(B + λM)

kT
(5.44)

a shift of the linear functions (cf. Fig. 5.2) to larger y-values occurs in the
M/MS-y-diagram (see Fig. 5.4). It is obvious that a solution with M �= 0
exists for all temperatures. The phase transition has been vanished. Therefore,
ferromagnetic materials exhibit a non-vanishing magnetization even above the
critical temperature if an external magnetic field is applied (see Fig. 5.5).

The molecular field being characterized by λ with Bmf = λM is related
to the exchange interaction characterized by Jij . Now, let us assume that the
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y

sM M/
CCT = TCT > T

1

-1

T < T

y
B

Fig. 5.4. Graphical method to determine the relative magnetization applying an
external magnetic field with yB = gJµBJB/kT

exchange interaction only occurs between the z nearest neighbors with the
constant strength J . The molecular field can then be expressed as:

Bmf =
2

gJµB

∑

j

JijSj (5.45)

=
2

gJµB
· zJ · S (5.46)

T T/ C

B = 0 in
cr

e
a
si

n
g

B

0

1

0.5

1.50.5 10

M M/ s

Fig. 5.5. Relative magnetization as a function of the reduced temperature for
J = 1/2 being calculated for different magnitudes of an external magnetic field B.
A vanishing magnetization and thus a phase transition only occurs for B = 0
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Due to λM = λngJµBJ for M = MS and J = S because of the assumption
L = 0 we obtain:

2

gJµB
zJS = λngJµBS (5.47)

and thus:

λ =
2zJ

ng2
Jµ2

B

(5.48)

The critical temperature was expressed as (see (5.15)):

TC =
nλµ2

eff

3k
(5.49)

with µeff = gJµB

√

J(J + 1). Thus, we get:

TC =
nλg2

Jµ2
BJ(J + 1)

3k
(5.50)

Using (5.48) results in:

TC =
2ng2

Jµ2
BJ(J + 1)zJ

3kng2
Jµ2

B

(5.51)

= J · 2zJ(J + 1)

3k
(5.52)

i.e. TC scales with the strength of the exchange interaction.

5.2 Antiferromagnetism

The simplest situation concerning antiferromagnetic behavior is given for mag-
netic moments of nearest neighbors which are aligned antiparallel. We have
two different possibilities to describe this situation within the model of Weiss:

• A negative exchange interaction is considered between nearest neighbors.
• The lattice is divided into two sublattices:

– Each exhibits a ferromagnetic arrangement and
– an antiparallel orientation of the magnetization between both sublat-

tices is present.

The latter situation is schematically shown in Fig. 5.6.
We start our discussion of antiferromagnetism using the model of Weiss

with the assumption that no external magnetic field is applied and that the
molecular field of one sublattice (labelled with “1”) is proportional to the
magnetization of the other one (labelled with “2”) and vice versa. Thus, both
molecular fields can be expressed as:

B
(1)
mf = −|λ|M2 (5.53)

B
(2)
mf = −|λ|M1 (5.54)
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Fig. 5.6. The lattice of an antiferromagnet can be composed of two sublattices each
being ferromagnetically ordered

with a negative molecular field constant λ. The magnetization of the sublat-
tices can then be written as:

M1 = MSBJ

(

−gJµBJ |λ|M2

kT

)

(5.55)

M2 = MSBJ

(

−gJµBJ |λ|M1

kT

)

(5.56)

Both sublattices exhibit an antiparallel orientation but the same magnitude
of their magnetization:

|M 1| = |M2| ≡ M (5.57)

Each relative magnetization amounts to:

M

MS
= BJ

(

gJµBJ |λ|M
kT

)

(5.58)

with the properties discussed in Chap. 5.1 and the temperature dependence
shown in Fig. 5.3. The magnetization of each sublattice consequently vanishes
at a transition temperature TN , the Néel temperature, which is given by:

TN =
(J + 1)gJµB|λ|MS

3k
(5.59)

=
n|λ|µ2

eff

3k
(5.60)

Analogously to Chap. 5.1 the magnetic susceptibility above TN for small ex-
ternal fields can be calculated to be:

χ = lim
B→0

µ0M

B
∝ 1

T + TN
(5.61)

The positive sign in the denominator is due to B = −|λ|M instead of B = λM
for the ferromagnetic situation. Equation (5.61) reflects the Curie–Weiss law
with a substitution of −TC by +TN .

Above the transition temperature the magnetic susceptibility can be ex-
pressed as:

χ ∝ 1

T − θ
(5.62)
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with θ being the Weiss temperature or paramagnetic Curie temperature, re-
spectively, and amounts to:

• θ = 0 for a paramagnet (see (2.135))
• θ > 0 for a ferromagnet with θ = TC (see (5.43))
• θ < 0 for an antiferromagnet with θ = −TN (see (5.61))

In the next step, the magnetization of the own lattice is additionally consid-
ered for the magnitude of the molecular field in each sublattice:

B
(1)
mf = v1M 1 + w1M2 (5.63)

B
(2)
mf = v2M 1 + w2M2 (5.64)

The magnitude of the magnetization is equal but the magnetization exhibits
the opposite direction within each sublattice. This allows the simplification:

v1 = w2 and v2 = w1 (5.65)

and we obtain:

B
(1)
mf = v1M1 + v2M 2 (5.66)

B
(2)
mf = v2M1 + v1M 2 (5.67)

Without an external magnetic field we have M 1 = −M2 which allows us to
express the relative magnetization of, e.g., sublattice 1 as:

M1

MS
= BJ

(

gJµBJ(v1 − v2)M1

kT

)

(5.68)

Thus, the Néel temperature is given by (cf. (5.59)):

TN =
gJµB(J + 1)(v1 − v2)MS

3k
(5.69)

=
n(v1 − v2)µ

2
eff

3k
(5.70)

= c(v1 − v2) (5.71)

Now, we assume temperatures above TN and a small external magnetic
field B. Thus, the argument of the Brillouin function can be approximated
as expressed in (5.38). In this situation the magnetization of the sublattices
amounts to:

M1 =
c

T
(B + v1M1 + v2M 2) (5.72)

M2 =
c

T
(B + v2M1 + v1M 2) (5.73)

Due to the external magnetic field the total magnetization M = M 1 + M2

does not vanish and is given by:
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M =
c

T
(2B + (v1 + v2)M) (5.74)

which results in:

M =
2Bc

T − c(v1 + v2)
(5.75)

For the magnetic susceptibility we therefore obtain:

χ ∝ 2c

T − c(v1 + v2)
∝ 1

T − θ
(5.76)

with θ = c(v1 + v2). This means that two characteristic temperatures TN and
θ exist which are correlated by (see (5.71)):

TN

θ
=

v1 − v2

v1 + v2
(5.77)

An identical behavior of the susceptibilities

χ ∝ 1

T + TN
and χ ∝ 1

T − θ
(5.78)

is only given if v1 = 0.
Now, we consider the behavior of an antiferromagnet below the Néel tem-

perature in an external magnetic field B and start our discussion with a
vanishing temperature T = 0 K, i.e. we neglect thermal fluctuations.

If a weak external magnetic field B is aligned parallel to the magnetization
of one sublattice and hence antiparallel to that of the other one the inner field
of one sublattice is enhanced whereas the inner field of the other sublattice
is reduced by the same magnitude. Thus, the total magnetization remains
constant. The properties of an antiferromagnet in a strong external magnetic
field being aligned parallel are discussed on p. 100.

The Hamiltonian in the approximation of the Model of Weiss can be ex-
pressed as:

H =
∑

ij

JijSi · Sj − gJµB

∑

i

Si · (B + B
(i)
mf) (5.79)

and the energy by:

E =
∑

ij

Jij 〈Si〉 〈Sj〉 − gJµB

∑

i

〈Si〉 (B + B
(i)
mf) (5.80)

with i, j = 1, 2 being correlated to both sublattices. But, this is only valid at
T = 0 K with a perfect alignment within each sublattice. In this situation we
have:

(J11 + J22)/gJµB = v1 and J11 = J22 (5.81)

(J12 + J21)/gJµB = v2 and J12 = J21 (5.82)



5.2 Antiferromagnetism 59

This implies:

J11 = J22 =
1

2
v1gJµB (5.83)

J12 = J21 =
1

2
v2gJµB (5.84)

Due to:

〈S1〉 = M1 (5.85)

〈S2〉 = M2 (5.86)

the first term in (5.80) results in:

1

gJµB

∑

ij

Jij 〈Si〉 〈Sj〉 =

1

2
v1M

2
1 +

1

2
v1M

2
2 +

1

2
v2M1M2 +

1

2
v2M2M1 (5.87)

=
1

2
v1(M

2
1 + M

2
2) + v2M1M 2 (5.88)

Using (5.63) and (5.64) the second term in (5.80) is given by:

∑

i

〈Si〉 (B + B
(i)
mf) = (M 1 + M2)B + v1(M

2
1 + M2

2 ) + 2v2M1M2 (5.89)

Thus, the total energy per gµB amounts to:

E0 =
1

2
v1(M

2
1 + M

2
2) + v2M1M2

−(M1 + M 2)B + v1(M
2
1 + M2

2 ) + 2v2M 1M2 (5.90)

= −(M1 + M 2)B − 1

2
(v1M

2
1 + v1M

2
2 + 2v2M1M2) (5.91)

Using this expression we are able to discuss the more interesting situation
that the external magnetic field B is directed perpendicular to the magnetiza-
tion of both sublattices M1 and M2. Two forces are acting against each other.
Whereas the external field rotates the magnetization of the sublattices into
the field direction the molecular field tries to stabilize the antiparallel align-
ment of both sublattices with respect to each other. This leads to a rotation
of M 1 and M 2 by an angle α which is determined by the energy minimum
(see Fig. 5.7).

Considering the samemagnitude of magnetization in both sublattices M1 =
|M1| = |M2| = M2 the energy is given by:

E⊥ = −2M1B sinα − v1M
2
1 + v2M

2
1 cos 2α (5.92)

The energy minimum is reached at an angle α which can be calculated by:
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M1

B

M2

� �

Fig. 5.7. An external magnetic field B induces a rotation of each sublattice magne-
tization M1 and M2 towards the field direction by the angle α whereas the molecular
field tries to stabilize the antiferromagnetic alignment, i.e. α = 0

0 =
dE⊥

dα
= −2M1B cosα − 2v2M

2
1 sin 2α (5.93)

Thus:
0 = 2M1 cosα(B + 2v2M1 sin α) (5.94)

using sin 2α = 2 sinα cosα. The solutions of this equation are given by:

− B

2v2M1
= sin α for 0 ≤ B ≤ −2v2M1 (5.95)

0 = cosα for B > −2v2M1 (5.96)

The projection of the total magnetization on the direction of the external
magnetic field amounts to:

M⊥ = M1 sinα + M2 sin α = 2M1 sin α (5.97)

For 0 ≤ B ≤ −2v2M1 we obtain sinα = −B/(2v2M1) and thus:

M⊥ = − 2M1B

2v2M1
= −B

v2
(5.98)

For B > −2v2M1 we get sin α = 1 because of cosα = 0 which results in:

M⊥ = 2M1 (5.99)

This means that M⊥ linearly increases with the external magnetic field until
the magnetization of both sublattices points into the same direction. Now, we
have a ferromagnetic system which is magnetically saturated with MS = 2M1.

Analogously, the magnetic susceptibility χ is divided into the component
χ‖ being parallel to M and χ⊥ being perpendicular to M in order to deter-
mine the temperature dependence. The latter one is given by:

χ⊥ ∝ ∂M⊥

∂B
=

∂

∂B

(

−B

v2

)

= const. (5.100)

Thus, χ⊥ is independent on temperature and amounts to:
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χ⊥(T ) = χ⊥(TN ) (5.101)

As already mentioned above M remains constant when applying an external
magnetic field parallel to M . Due to this reason we obtain:

χ‖(T = 0) ∝ ∂M‖

∂B
(T = 0) = 0 (5.102)

For higher temperatures this vanishing value changes to:

χ‖(T > 0) > 0 (5.103)

because the external magnetic field works against the thermal fluctuations.
Above TN all spins are free to rotate thus loosing a preferred orientation. A
distinction between χ‖ and χ⊥ becomes meaningless and we get paramagnetic
behavior. For polycrystalline material the magnetic susceptibility is obtained
by averaging:

χpoly =
1

3
χ‖ +

2

3
χ⊥ (5.104)

The temperature dependence of the magnetic susceptibility and of the recip-
rocal magnetic susceptibility are shown in Fig. 5.8.

The arrangement of the sublattices can occur in many different ways be-
cause there are a lot of possibilities to place regularly the same number of
antiparallel aligned magnetic moments, i.e. spin up and spin down electrons.
The type of crystal lattice additionally influences this behavior. Possible types
of antiferromagnets in the simple cubic form are shown in Fig. 5.9. Type A
results in a layered structure which each layer being ferromagnetically or-
dered. It is called topological antiferromagnet. Type B leads to a chain-like
arrangement of the spins. An antiferromagnetic arrangement of nearest neigh-
bors often occurs in materials which couple via the superexchange interaction,
e.g. MnO (details are discussed in Chap. 4.3).

T

�

�
poly

�

�

TN
T

�

�
poly

�

�

TN

1

Fig. 5.8. Temperature dependence of the magnetic (left) and reciprocal magnetic
susceptibility (right) for antiferromagnetic materials. χ‖ and χ⊥ are the magnetic
susceptibilities measured by applying an external magnetic field parallel and per-
pendicular to the spin axis, respectively χpoly is the susceptibility for polycrystalline
material calculated by averaging (see (5.104))
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(a) type A (b) type C (c) type E (d) type G

Fig. 5.9. Different types of antiferromagnetic order for simple cubic lattices
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-

+

Fig. 5.10. The Bethe–Slater curve describes the relation of the exchange constant
with the ratio of the interatomic distance rab to the radius of the d shell rd

The exchange interaction between neighboring magnetic moments being
described in the Heisenberg Hamiltonian can lead to a parallel or antiparallel
alignment, i.e. to a ferromagnetic or antiferromagnetic arrangement. Ferro-
magnetism occurs for the exchange constant J > 0 whereas J < 0 results in
antiferromagnetism. A correlation between the sign of the exchange constant
and the ratio rab/rd exists with rab being the interatomic distance and rd

the radius of the d shell. This behavior is graphically known as the Bethe–
Slater curve (see Fig. 5.10). As indicated in the figure this curve allows to
distinguish between ferromagnetic 3d elements like Fe, Co, and Ni exhibiting
a parallel alignment and thus a positive exchange constant and antiferromag-
netic elements like Mn and Cr with an antiparallel orientation of the magnetic
moments and therefore a negative exchange constant.

5.3 Ferrimagnetism

Ferrimagnetism represents an intermediate position between ferro- and anti-
ferromagnetism.

A spontaneous magnetization occurs below a critical temperature. At high
temperatures the magnetic susceptibility exhibits a Curie–Weiss behavior with
a negative paramagnetic Curie temperature.

The simplest characterization, but already satisfactory for the fundamental
understanding, is given by the assumption of two magnetic sublattices with
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antiparallel orientation but different magnitude of each magnetization. Thus,
the total magnetization does not vanish as in the antiferromagnetic case.

The molecular fields are described analogously to the antiferromagnetic
case (see (5.63) and (5.64)). Due to symmetry reasons we have:

v2 = w1 < 0 (5.105)

because of the antiferromagnetic coupling. But now, v1 and w2 are not iden-
tical:

v1 �= w2 (5.106)

Let us set:
v2 = w1 = −v with v > 0 (5.107)

and

v1 = αv (5.108)

w2 = βv (5.109)

This procedure allows to discuss the behavior of a ferrimagnetic system as
a function of the ratio of different molecular field constants instead of their
absolute values. Thus, we obtain:

B
(1)
mf = αvM 1 − vM 2 (5.110)

B
(2)
mf = −vM1 + βvM2 (5.111)

The magnetization of both sublattices is given by:

M1 = ngJµBJ · BJ

(

gJµBJµ0

kT
· (B + αvM1 − vM2)

)

(5.112)

M2 = ngJµBJ · BJ

(

gJµBJµ0

kT
· (B − vM1 + βvM2)

)

(5.113)

Above the transition temperature we can again approximate (cf. (5.38)):

BJ(y) =
J + 1

3J
y (5.114)

which results in:

M 1 =
ng2

Jµ2
BJ(J + 1)µ0

3kT
· (B + αvM 1 − vM 2) (5.115)

=
c1

T
(B + αvM 1 − vM2) (5.116)

Analogously, the magnetization of the other sublattice amounts to:

M2 =
c2

T
(B − vM1 + βvM 2) (5.117)
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The solution of this linear set of equations is given by:

M1 =
c1T − c1c2βv − c1c2v

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.118)

M2 =
c2T − c1c2αv − c1c2v

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.119)

The total magnetization M = M 1 + M 2 results in:

M =
(c1 + c2)T − c1c2v(2 + α + β)

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.120)

Now we can calculate the inverse magnetic susceptibility:

µ0
1

χ
=

B

M
=

T 2 − v(αc1 + βc2)T + c1c2v
2(αβ − 1)

(c1 + c2)T − c1c2v(2 + α + β)
(5.121)

Introducing suitable parameters θ, χ0, and σ we obtain:

µ0
1

χ
=

T

c1 + c2
+

1

χ0
− σ

T − θ
(5.122)

The temperature dependence of the inverse susceptibility is shown in Fig. 5.11.
Whereas in the ferromagnetic and antiferromagnetic case the inverse suscep-
tibility behaves as a linear function of the temperature this situation changes
to a hyperbolic behavior for a ferrimagnetic system. Using (5.122) we can
calculate the asymptotic behavior for T → ∞:

1

χ
∝ T

c1 + c2
+

1

χ0
(5.123)

as well as the intersection point with the T -axis which determines the critical
temperature TC :

1

χ
(TC) = 0 (5.124)

T

� -1

ferromagnetic

antiferromagnetic

ferrimagnetic

0 TC� TN

Fig. 5.11. Temperature dependence of the reciprocal magnetic susceptibility for
ferromagnetic, antiferromagnetic, and ferrimagnetic material
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T

M

Tcomp TC

Fig. 5.12. In ferrimagnetic materials the situation can occur that the total magne-
tization M becomes zero at a temperature Tcomp < TC with Tcomp called compen-
sation temperature

Thus:
T 2

C − v(αc1 + βc2)TC + c1c2v
2(αβ − 1) = 0 (5.125)

and we obtain:

TC =
v

2

(

αc1 + βc2 ±
√

(αc1 − βc2)2 + 4c1c2

)

(5.126)

The solution TC < 0 results in a paramagnetic state down to 0 K. For TC > 0
ferrimagnetism is present.

Below the transition temperature TC each sublattice exhibits a sponta-
neous magnetization given by (5.112) and (5.113). The magnitude of the total
magnetization M amounts to:

M = |M1 − M2| (5.127)

=
c1T − c1c2βv − c1c2v + c1c2v − c2T + c1c2αv

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.128)

=
(c1 − c2)T − c1c2v(β − α)

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.129)

Due to the different magnitude of the magnetization in both sublattices the
total magnetization often exhibits a complicated behavior as exemplarily de-
picted in Fig. 5.12. This becomes obvious for the following situation. Let
c1/c2 = 2/3, β = −1, and α = 0. Substituting in (5.129) leads to:

M =
c1

2
· 3c1v − T

T 2 − v(αc1 + βc2)T + c1c2v2(αβ − 1)
· B (5.130)

i.e. there is a temperature Tcomp < TC which the total magnetization vanishes
at: M(Tcomp) = 0. Tcomp is called compensation temperature.

5.4 Helical Order

Helical order often occurs in rare earth metals with hcp structure; they exhibit
a layered crystalline structure with a stacking sequence of ABAB. . . . It is
characterized by a parallel alignment of the spins within each layer, i.e. each
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�

Fig. 5.13. Helical order: Each layer exhibits a ferromagnetic arrangement but the
magnetization between adjacent layers is rotated by the angle θ

plane shows ferromagnetic behavior. But, a rotation of the magnetization
occurs from layer to layer by an angle θ which is schematically shown in
Fig. 5.13.

For the description of helical order we assume that a magnetic interac-
tion is only present between adjacent layers exhibiting the strength J1 and
between next nearest layers with J2. Consequently, the term −

∑

JijSiSj in
the Hamiltonian leads to an energy of:

E = −2NS2(J1 cos θ + J2 cos 2θ) (5.131)

with N being the number of atoms per layer. The energy as a function of the
rotation angle θ is minimum at ∂E/∂θ = 0 which leads to:

(J1 + 4J2 cos θ) sin θ = 0 (5.132)

This equation can be solved on the one hand by sin θ = 0, i.e. θ = 0 or θ = π.
In this situation we have a ferromagnetic or an antiferromagnetic alignment,
respectively, between adjacent layers. On the other hand the equation is solved
by:

cos θ = − J1

4J2
(5.133)

which characterizes helical order or helimagnetism.
Let us discuss the behavior if helical arrangement is present. Due to

| cos θ| ≤ 1 we can deduce:
|J1| ≤ 4|J2| (5.134)

We see that helimagnetism only occurs if the interaction between next nearest
layers is significantly larger than between adjacent planes.

The energies for ferro-, antiferro-, and helimagnetic arrangement amount
to (see (5.131)):

EFM = −2NS2(J1 + J2) (5.135)

EAFM = −2NS2(−J1 + J2) (5.136)

EHM = −2NS2

(

− J2
1

8J2
− J2

)

(5.137)

The last equation is obtained using cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1.
For an energetic preference of helimagnetism two conditions must be fulfilled:
(a) EHM < EFM and (b) EHM < EAFM. From condition (a) we can conclude:
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Fig. 5.14. Phase diagram for the model of planes being coupled by J1 and J2

− J2
1

8J2
− J2 > J1 + J2 (5.138)

which implies:

2J2 + J1 +
J2

1

8J2
< 0 (5.139)

Thus:
1

8J2
(16J2

2 + 8J1J2 + J2
1 ) < 0 (5.140)

which leads to:
1

8J2

(

J2 +
1

4
J1

)2

< 0 (5.141)

We directly see that J2 must be negative for the occurrence of helimagnetism.
Condition (b) leads to:

1

8J2

(

J2 −
1

4
J1

)2

< 0 (5.142)

which results in the same conclusion.
Therefore, helical order requires an antiferromagnetic coupling between

next nearest layers. The phase diagram shown in Fig. 5.14 summarizes our
results.

5.5 Spin Glasses

Spin glasses are dilute alloys of magnetic ions in a non-magnetic matrix. The
spins are frozen out below a critical temperature with a statistical distribution
of their directions. This spin glass state only occurs in a limited concentration
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Fig. 5.15. Temperature dependence of the susceptibility for a different amount of
Fe in an Fe-Au alloy. The measurements were carried out in a weak magnetic field.
(Data taken from [5])

range of the magnetic ions. It must be high enough on the one hand to ensure
an interaction via the RKKY coupling but low enough on the other hand in
order to prevent the formation of clusters or the presence of a direct coupling
of the magnetic moments.

Spin glasses exhibit a sharp maximum in the temperature dependence of
the magnetic susceptibility (see Fig. 5.15). In this example magnetic Fe ions
were dissolved in Au with increasing concentration cFe between 1 at% and
8 at%. The temperature T0 which the susceptibility exhibits a maximum at
becomes higher with increasing amount of Fe ions and depends on the con-
centration:

T0 = a cm
Fe (5.143)

with m being constant.

Problems

5.1. Calculate the molecular field of Ni at 0 K in the theory of Weiss assuming
a Curie temperature TC = 628 K, J = 1/2, and a saturation magnetization
per atom of 0.6 µB.
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5.2. Consider an antiferromagnetic material exhibiting a susceptibility χ0 at
the Néel temperature TN . Additionally, assume that the magnetization of
the own lattice can be neglected for the molecular field in each sublattice.
Determine the values of the susceptibility which would be measured when an
external magnetic field is applied perpendicular to the spin axis at T1 = 0,
T2 = TN/2, and T3 = 2TN .

5.3. Determine the parameters θ, χ0, and σ which allow to describe the inverse
susceptibility of a ferrimagnetic system given in (5.122).

5.4. Helimagnetism

(a) Let us assume a negative coupling between next nearest layers, i.e. J2 < 0,
exhibiting a magnitude of J1

√
3/6 with J1 being the coupling strength between

adjacent layers. Show that this material is helimagnetic.
(b) How large is the angle θ of the magnetization between adjacent layers?
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Broken Symmetry

The occurrence of a spontaneously ordered state at low temperatures is a fun-
damental phenomenon in solid state physics. Examples are ferromagnetism,
antiferromagnetism, and super conductivity.

It can be characterized by a temperature dependence of an important
physical quantity with a significant difference above and below a critical tem-
perature T ∗. The description of each phase is carried out by an order parame-
ter which vanishes for T > T ∗ and exhibits a non-vanishing value for T < T ∗.
This means that the order parameter directly proves whether the system is in
the ordered or disordered state.

In the case of magnetism this order parameter is given by the magne-
tization. Each ordered phase corresponds with the breaking of a symmetry
which will be the first topic in this chapter. In the following we will deal
with different models to describe the magnetization as a function of tempera-
ture. Subsequently, various properties like the magnetic susceptibility near the
critical temperature which the phase transition occurs at will be discussed.
Finally, magnetic excitations will be considered which become important at
low temperatures.

6.1 Breaking of the Symmetry

We start our consideration on broken symmetry with the transition between
the fluid and the solid state. The parameters which are responsible for this
transition can be forces or pressure; mostly it is induced by a varying temper-
ature.

A decreasing temperature of a fluid results in a slight contraction but the
high degree of symmetry remains. Below a critical value (melting temperature)
the transition to the solid state occurs which is related to the breaking of
the symmetry. The fluid shows a total translational and rotational symmetry.
Contrarily, the solid shown in Fig. 6.1 exhibits a fourfold rotational symmetry
as well as a translational symmetry for a linear combination of lattice vectors.
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(a) T > T* (b) T < T*

Fig. 6.1. Phase transition between the liquid (a) and solid state (b). Above the
critical temperature T ∗ the system possesses a complete translational and rotational
symmetry. Below T ∗ these symmetries have significantly been lowered

An analogous behavior occurs for ferromagnets. Above the critical tem-
perature (Curie temperature TC) the system possesses a complete rotational
symmetry; all directions of classical spins or magnetic moments are equivalent
(see Fig. 6.2). Below TC a preferential alignment is present. A rotational sym-
metry only occurs around the direction of magnetization; this directly proves
that the symmetry is broken.

An important aspect is the fact that the symmetry of these systems cannot
be changed gradually. A specific type of symmetry can only be present or not.
The consequences are that phase transitions are sharp and an unambiguous
classification can be made between the ordered and disordered state.

(a) T > T (b) T < TC C

Fig. 6.2. Phase transition between the paramagnetic state for T > TC (a) and the
ferromagnetic state for T < TC (b). In this situation the critical temperature is
called Curie temperature
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The ordered state occurs at low temperatures. This can be understood
using thermodynamical considerations. The system tends to minimize the
Helmholtz free energy F = E − TS with E being the (internal) energy and S
the entropy. At low temperatures the ordered ground state leads to a minimum
free energy. At high temperatures F is minimized by a large value of the
entropy S which is the disordered state.

6.2 Different Models of Magnetic Behavior

In the following we will discuss different models which describe the order
parameter magnetization M as a function of temperature T .

Landau Theory

The free energy of a ferromagnetic system is described by a function of the
order parameter using a power series in M . Both opposite magnetization states
exhibit no energetic difference, i.e. they are energetically degenerated, which
leads to vanishing terms of M to the power of odd values. Neglecting higher
orders the free energy can then be written as:

F (M) = F0 + a(T )M2 + bM4 (6.1)

with F0 being constant, b being positive and constant, a(T ) = a0(T − TC)
and a0 being positive. The ground state can be determined by minimizing the
free energy F . As a necessary condition the first derivative of F with respect
to M must be zero. The first derivatives are:

∂F

∂M
= 2aM + 4bM3 (6.2)

∂2F

∂M2
= 2a + 12bM2 (6.3)

∂3F

∂M3
= 24bM (6.4)

∂4F

∂M4
= 24b > 0 (6.5)

This means:

0 =
∂F

∂M
(6.6)

= 2M
(

a0(T − TC) + 2bM2
)

(6.7)

The solutions are given by:

M = 0 (6.8)

M = ±

(

a0(TC − T )

2b

)1/2

(6.9)
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Whereas the first solution is valid for the entire temperature range the second
solution can only be fulfilled if T < TC . The question arises whether the first
solution M = 0 represents a stable state which means F reaches a minimum
value. To answer this question we determine the first derivatives in different
temperature regimes.

• M = 0 and T > TC

∂2F

∂M2

∣

∣

∣

∣

M=0

= 2a0(T − TC) > 0 (6.10)

Thus, the free energy becomes minimum. The system is stable above TC

if the magnetization vanishes.
• M = 0 and T = TC

∂2F

∂M2

∣

∣

∣

∣

M=0

= 2a0(T − TC) = 0 (6.11)

∂3F

∂M3

∣

∣

∣

∣

M=0

= 0 (6.12)

∂4F

∂M4

∣

∣

∣

∣

M=0

= 24b > 0 (6.13)

Again, the free energy becomes minimum and the system is stable directly
at the Curie temperature for a vanishing magnetization.

• M = 0 and T < TC

∂2F

∂M2

∣

∣

∣

∣

M=0

= 2a0(T − TC) < 0 (6.14)

Now, the free energy becomes (locally) maximum. Therefore, the system
is unstable below TC if the magnetization vanishes. The magnetized state
exhibiting the magnetization given in (6.9) possesses a lower free energy.

Thus, the ground state for different temperatures is given by:

M = ±

√

a0(TC − T )

2b
for T ≤ TC (6.15)

M = 0 for T > TC (6.16)

The behavior of the free energy F as a function of the magnetization M is
summarized in Fig. 6.3. The resulting temperature dependence of the magne-
tization in the region near the critical temperature is shown in Fig. 6.4.

This approach of a mean-field theory is characterized by the assumption
that all magnetic moments are influenced by an identical averaged exchange
field induced by all neighbors and is identical with the model of Weiss which
was already discussed in Chap. 5.1. The advantage of this approach using mean
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M

F M( )

T = TC

T < TC

T > TC

Fig. 6.3. Free energy F (M) for temperatures below, at, and above the critical
temperature TC concerning (6.1)

M

TT
C

( - )T TC
1/2

Fig. 6.4. Magnetization M as a function of temperature T near the critical tem-
perature TC concerning (6.15) and (6.16)

field theories is given by their simplicity. But, correlations and fluctuations
are neglected which are important near TC . Therefore, results near the Curie
temperature are less confidential compared to that for low temperatures.

Heisenberg Model

This alternative approach is implemented in a microscopic model which only
takes into account interactions between nearest neighbors. The corresponding
part of the Hamiltonian is given by:

H = −
∑

ij

JijSi · Sj (6.17)
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with Jij being the exchange integral. The summation is carried out only for
nearest neighbor atoms i and j. For the following considerations it is important
to distinguish between two different dimensionalities:

• D: dimensionality of the spin considered as a three-dimensional vector
• d: dimensionality of the crystal lattice

This allows to classify different models:

• D = 1(z): Ising model
• D = 2(xy): XY model
• D = 3: Heisenberg model
• D = ∞: spherical model

Thus, the part of the Hamiltonian H given in (6.17) can be written as:

H = −
∑

ij

J
(

α(Sx
i Sx

j + Sy
i Sy

j ) + βSz
i Sz

j

)

(6.18)

with

Heisenberg model: α = 1 β = 1 (6.19)

Ising model: α = 0 β = 1 (6.20)

XY model: α = 1 β = 0 (6.21)

One-Dimensional Ising Model

This model assumes a chain with N + 1 spins which are located on a one-
dimensional lattice and N bonds. The Hamiltonian amounts to:

H = −2J

N
∑

i=1

Sz
i Sz

i+1 (6.22)

with J > 0. In the ground state all spins are uniformly oriented in one direc-
tion, i.e. they are ferromagnetically ordered. The ground state energy can be
determined using Sz

i = 1/2 to be

E0 = −2JN
1

2
·
1

2
= −

1

2
NJ (6.23)

Let us now consider one defect which consists of an antiparallel alignment at a
specific site of the chain, i.e. on the one side of the chain all spins are directed
in one direction whereas on the other side of the defect all spins are aligned
to the opposite direction.

The difference of the energy compared to the ground state amounts to J .
The increase of the entropy is S = k lnN . The free energy F = E − TS of
an infinitely long chain (i.e. N → ∞) reaches −∞ for the case that T �= 0 K.
As a consequence defects can spontaneously be created. Thus, a long-range
ordering cannot occur which results in a critical temperature identical to zero.

These considerations are not only valid for the one-dimensional Ising model
but for most of the models in one dimension.
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Fig. 6.5. Schematic representation of a defect in a two-dimensional Ising model

Two-Dimensional Ising Model

The spins are arranged on a two-dimensional lattice. A defect results in an
increase of energy as well as of entropy both scaling with the length of the
boundary of the defect as schematically shown in Fig. 6.5. This behavior is
significantly different to that of the one-dimensional Ising model. The most
important distinction consists of the possibility of an ordered state at finite
temperatures. The exact solution for the two-dimensional Ising model was
given by Onsager in 1944.

Three-Dimensional Ising Model

Without going in further detail, an ordered state also occurs for temperatures
above 0K, i.e. TC > 0 K.

6.3 Consequences

Important consequences of the broken symmetry are:

• Existence of phase transitions
A sharp transition occurs at the critical temperature (e.g., fluid-solid,
paramagnet-ferromagnet). The regime of the phase transition is called the
critical regime.

• Rigidity
After breaking the symmetry the system strongly tries to remain in the
actual state because changes desire energy.

• Excitations
Neglecting fluctuations due to quantum effects perfect order occurs at
T = 0K. With increasing temperature the degree of ordering is decreased
due to excitations concerning the order parameter. For crystals lattice
vibrations can be correlated with phonons. For ferromagnets spin waves
are related to magnons.
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• Defects
The broken symmetry often results in a different behavior in regions being
neighbored in a macroscopic system. The boundary represents a defect. In
crystals the defect may be a dislocation or grain boundary. In ferromagnets
it is a domain wall.

6.4 Phase Transitions

In the vicinity of the critical temperature important properties can be de-
scribed using an exponential function (e.g., M ∝ (T ∗ − T )x). The parame-
ter x is called “critical exponent”. Continuous phase transitions are related
to critical exponents which exclusively depend on the:

• dimensionality of the system d
• dimensionality of the order parameter D
• range of the forces being involved (long-short)

It is therefore sufficient to determine critical exponents for a specific univer-
sality class.

Mean-Field Theory

Despite neglecting correlations and fluctuations a correct description is given
for d ≥ 4. Accurate solutions can further be calculated for the following situ-
ations:

• In most cases for d = 1:
No continuous phase transition occurs.

• d ≥ 4:
In all cases using mean-field theories

• d = 2, D = 1:
This situation corresponds to the two-dimensional Ising model.

• D = ∞ for all values of d:
Spherical model

• several cases for long-range interactions:
The solution is given using mean-field theories.

Unfortunately, most of the real situations belong to d = 3 and short-range
interactions. Thus, exact solutions are not possible and approximations must
be carried out.

Critical Exponents for Ferromagnetic Systems

The most commonly used critical exponents describing ferromagnetic systems
are:
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• β characterizing the order parameter M for T < TC :

M ∝ (TC − T )β (6.24)

• γ characterizing the susceptibility χ for T > TC :

χ ∝ (T − TC)−γ (6.25)

• α characterizing the specific heat cH for T > TC :

cH ∝ (T − TC)−α (6.26)

• δ characterizing the influence of an external magnetic field H on the mag-
netization M at T = TC :

M ∝ H1/δ (6.27)

• ν characterizing the correlation length ξ for T < TC :

ξ ∝ (TC − T )−ν (6.28)

Calculation of the Critical Exponents

In the framework of the Landau theory it is possible to calculate the different
critical exponents which we will carry out in the following.

• Critical exponent β
As already calculated above (see (6.15)) the temperature dependence of
the magnetization is given by:

M = ±

(

a0(TC − T )

2b

)1/2

(6.29)

∝ (TC − T )β (6.30)

Thus, β = 1/2.
• Critical exponent α

The free energy F amounts to (see (6.1)):

F (M) = F0 + a(T )M2 + bM4 (6.31)

Inserting of (see (6.15)):

M2 =
a0(TC − T )

2b
(6.32)

results in

F =

{

F0 − (a2
0/4b)(TC − T )2 for T < TC

F0 for T ≥ TC
(6.33)
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The specific heat is given by:

cH = −T
∂2F

∂T 2
(6.34)

For temperatures T near TC but T ≥ TC the specific heat amounts to:

cH(T +
C ) = −TC

∂2F0

∂T 2

∣

∣

∣

∣

T=TC

(6.35)

which is independent on T . Thus, we obtain α = 0. For temperatures T
near TC but T < TC we get:

cH(T−

C ) = −TC

(

∂2F0

∂T 2

∣

∣

∣

∣

T=TC

−
a2
0

2b

)

=
a2
0TC

2b
(6.36)

which again results in α = 0. Combining both results for temperatures
near TC , we find:

cH(T−

C ) − cH(T +
C ) =

a2
0TC

2b
(6.37)

This means that the specific heat cH exhibits a discontinuity at the Curie
temperature.

• Critical exponent γ
Applying an external magnetic field B the free energy exhibits an addi-
tional term and amounts to:

F = F0 + aM2 + bM4 − BM (6.38)

The minimum is given if the first derivative with respect to the magneti-
zation is zero:

0 =
∂F

∂M
(6.39)

= 2aM + 4bM3 − B (6.40)

Thus, we obtain:
B = 2aM + 4bM3 (6.41)

This allows to determine the susceptibility χ which is given by:

µ0
1

χ
=

∂B

∂M
(6.42)

Using (6.41) we get:

µ0
1

χ
= 2a + 4bM2 (6.43)

Keeping in mind the magnitude of the magnetization as a function of
temperature (see (6.15) and (6.16)) we find:
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µ0
1

χ
=

{

−4a0(T − TC) for T < TC

2a0(T − TC) for T ≥ TC
(6.44)

Therefore:
χ ∝ (T − TC)−1 (6.45)

Thus, we get γ = 1.
• Critical exponent δ

Using (6.38) and the condition that the derivative ∂F/∂M must be zero
we get:

B = 4bM3 + 2aM (6.46)

∝ M3 (6.47)

Therefore, we find:
M ∝ B1/3 ∝ H1/3 (6.48)

and obtain δ = 3.
• Critical exponent ν

Magnetic moments with distances r ≪ ξ being the correlation length are
strongly correlated, i.e. the probability for a parallel orientation is about
one. For large distances r ≫ ξ no correlations occur.

A spatial dependence of the magnetization M and an external magnetic
field B can be introduced by means of spatially periodic fields. In this
situation the free energy F is given by:

F = F0 + aM2 + bM4 − BM (6.49)

with

F0 = −c(∇M)2 (6.50)

M = M0 + ∂M · eik·r (6.51)

B = ∂M · eik·r (6.52)

a = a0(T − TC) (6.53)

Using
∂

∂M
∇M = ∇

∂M

∂M
= M (6.54)

we obtain:
∂

∂M
(∇M)2 = 2∇2M (6.55)

which allows to calculate the first derivative of the free energy with respect
to the magnetization which must be zero:

0 =
∂F

∂M
(6.56)

= 2c∇2M + 2aM + 4bM3 − B (6.57)

= 2aM0 + 2a∂M eik·r

+4b(M3
0 + 3M2

0 ∂M eik·r + 3M0(∂M)2 e2ik·r + (∂M)3 e3ik·r)

−∂B eik·r + 2ck2∂M eik·r (6.58)
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Neglecting higher orders of the derivative we get:

0 = (2aM0 + 4bM3
0 ) − ∂B eik·r + ∂M eik·r(2a + 12bM2

0 + 2ck2) (6.59)

The first bracket vanishes due to the equilibrium condition (see (6.2) and
(6.6)) which results in:

∂B = ∂M(2a + 12bM2
0 + 2ck2) (6.60)

This calculation enables to determine the susceptibility χk:

χk = µ0
∂M

∂B
=

µ0

2a + 12bM2
0 + 2ck2

(6.61)

Above the Curie temperature T ≥ TC the magnetization vanishes M2
0 = 0.

Using (6.44) we obtain:

1

χ+
k

= 2a0(T − TC) + 2ck2 (6.62)

=
1

χ+
+ 2ck2 (6.63)

Thus:

χ+
k =

χ+

1 + k2
c

a0(T − TC)

(6.64)

=
χ+

1 + k2ξ2
+

(6.65)

with ξ+ being the correlation length above TC and defined by:

ξ+ =

(

c

a0(T − TC)

)1/2

(6.66)

For T ≤ TC we analogously find:

χ−

k =
χ−

1 + k2ξ2
−

(6.67)

with

ξ− =

(

c

2a0(TC − T )

)1/2

(6.68)

Therefore, we obtain:
ξ ∝ (T − TC)−1/2 (6.69)

which results in ν = 1/2
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Scaling Laws

The scaling laws describe the relationship between different critical exponents
which are valid for all exactly solvable models. The scaling laws can addition-
ally be applied for different models that include approximations:

2 = α + 2β + γ (6.70)

δ = 1 + γ/β (6.71)

α = 2 − dν (6.72)

It should be noted that the last relationship is only valid within the Landau
theory for d = 4. Additionally, we find that α, γ, and ν exhibit the same value
below and above the Curie temperature which is by no means a triviality.

Consequently, only two independent critical exponents occur whereas the
other ones are determined by the scaling laws. An overview on the values of
critical exponents for different models is given in Table 6.1.

Table 6.1. Overview of critical exponents in different models

α β γ δ ν

Landau theory 0 1/2 1 3 1/2
2d-Ising model 0 1/8 7/4 15 1
3d-Ising model 0.11 0.325 1.24 4.816 0.63
XY-model −0.008 0.345 1.316 4.81 0.67
3d-Heisenberg model −0.116 0.365 1.387 4.803 0.705
spherical model −1 1/2 2 5 1

6.5 Magnetic Excitations

The description of, e.g., the magnetization M as a function of temperature
by exponential laws and the calculation of critical exponents fails at lower
temperatures ≈ T/TC < 1/2. Thus, another attempt must be used.

For low temperatures the description is carried out using low-energetic
magnetic excitations. These spin waves are quantized by magnons. An analog
are lattice vibrations in crystals which are quantized by phonons.

The important properties can be understood by the dispersion relation
which describes the frequency dependence with the wave vector, i.e. ω(q) or
the energy dependence with the momentum h̄ω(h̄q).

Magnons

The dispersion relation for magnons of an isotropic ferromagnet can be de-
scribed using a semi-classical approach.
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Let us assume a chain of equidistant (lattice constant a) “classical spin
vectors” with length |S| = S and ferromagnetic coupling (i.e. J > 0) between
adjacent spins Sj and Sj+1.

The time dependence of the spins as classical angular momenta is deter-
mined by the actual torque which is due to the exchange field of neighboring
spins:

dSj

dt
= Sj × 2J(Sj−1 + Sj+1)/h̄ (6.73)

The decomposition in Cartesian components leads to:

dSx
j

dt
=

2J

h̄

(

Sy
j · (Sz

j−1 + Sz
j+1) − Sz

j · (Sy
j−1 + Sy

j+1)
)

(6.74)

dSy
j

dt
=

2J

h̄

(

Sz
j · (Sx

j−1 + Sx
j+1) − Sx

j · (Sz
j−1 + Sz

j+1)
)

(6.75)

dSz
j

dt
=

2J

h̄

(

Sx
j · (Sy

j−1 + Sy
j+1) − Sy

j · (Sx
j−1 + Sx

j+1)
)

(6.76)

The ground state is given if all spins are aligned in a given direction, e.g. along
the z-axis. Thus, we have:

Sz
j = S Sx

j = Sy
j = 0 (6.77)

An excited state can be characterized by a small deviation:

Sz
j ≈ S Sx

j = ε′S Sy
j = ε′′S (6.78)

with ε′ and ε′′ ≪ 1. Inserting leads to:

dSx
j

dt
=

2JS

h̄

(

2Sy
j − Sy

j−1 − Sy
j+1)

)

(6.79)

dSy
j

dt
= −

2JS

h̄

(

2Sx
j − Sx

j−1 − Sx
j+1)

)

(6.80)

dSz
j

dt
≈ 0 (6.81)

We use plane waves as solutions:

Sx
j = A ei(qja−ωt) = AEt (6.82)

Sy
j = B ei(qja−ωt) = BEt (6.83)

Inserting into (6.79) leads to:

−iωAEt = 2JS(2BEt − BEt e−iqa − BEt eiqa)/h̄ (6.84)

= 2JSBEt(2 − ( eiqa + e−iqa))/h̄ (6.85)

= 4JSBEt(1 − cos qa)/h̄ (6.86)

Thus:
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−ih̄ωA = 4JS(1 − cos qa)B (6.87)

Analogously, we obtain:

−ih̄ωB = −4JS(1 − cos qa)A (6.88)

The non-trivial solution is given by:

A = iB (6.89)

which means that the oscillations in x- and y-direction exhibit a phase-shift
of 90◦. The spin wave dispersion is therefore given by:

h̄ω = 4JS(1 − cos qa) (6.90)

which is shown in Figs. 6.6 and 6.7. As no gap occurs at h̄ω = 0 already
smallest excitation energies can create spin waves. The same result is obtained
using quantum mechanical considerations. It should be noted that magnons
are bosons (1h̄) because every magnon represents a delocalized switched spin.

q
0

�/a

�
8 /SJ8 /SJ �

Fig. 6.6. Dispersion relation of a magnon in a one-dimensional chain

a

Fig. 6.7. Spin wave of a one-atomic chain in side view (top) and top view (bottom)



86 6 Broken Symmetry
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Fig. 6.8. Relative spontaneous magnetization of a ferromagnet as a function of
the reduced temperature. For low temperatures the behavior can be expressed by
the Bloch–T 3/2 law given in (6.102) using the spin wave model. Near the Curie
temperature M/MS is given by (TC − T )β with β being a critical exponent

Magnetization Near T = 0K

In the following we want to discuss the magnetization near T = 0 K. For low
temperatures q is small which allows the approximation:

cos qa = 1 − q2a2/2 (6.91)

Inserting into (6.90) results in:

h̄ω = 2JSq2a2 (6.92)

Thus, we obtain:
ω ∝ q2 (6.93)

The density of spin wave states in three dimensions can be described by:

g(q) ∝ q2 (6.94)

which leads to:
g(ω) ∝ ω1/2 (6.95)

The number of magnons n can be calculated by integration over all frequen-
cies of the density of spin wave states and under consideration of the Bose
distribution of magnons:

n =

∞
∫

0

g(ω)

eh̄ω/kT − 1
dω (6.96)
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Using (6.95) and setting:
x = h̄ω/kT (6.97)

we get:

n = b

∞
∫

0

(

kT

h̄

)1/2

x1/2 kT

h̄

1

ex − 1
dx (6.98)

= b

(

kT

h̄

)3/2
∞
∫

0

x1/2

ex − 1
dx (6.99)

= c T 3/2 (6.100)

Each magnon reduces the magnetization by S = 1, i.e.

M(0) − M(T ) ∝ n(T ) = c T 3/2 (6.101)

Thus:
M(T )

M(0)
= 1 − a c T 3/2 (6.102)

which is known as the so-called Bloch–T 3/2 law.
Summarizing, we found that the magnetization can be described near

T = 0K by the Bloch–T 3/2 law and near the Curie temperature TC by the
scaling law (T − TC)β (see Fig. 6.8).
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Magnetic Anisotropy Effects

The considerations in the last chapters were related to isotropic systems, i.e. all
physical properties are identical for different directions. Especially, we have
discussed the energy as a function of the magnitude of the magnetization |M |
but we have neglected the energy dependence on the direction of M . In this
chapter we will deal with that magnetic effects which depend on crystallo-
graphic directions.

The Heisenberg Hamiltonian is completely isotropic and its energy levels
do not depend on the direction in space which the crystal is magnetized in. If
there is no other energy term the magnetization would always vanish in zero
applied field. However, real magnetic materials are not isotropic.

One illustrating example is given by spin waves which are quantized
by magnons (see Chap. 6.5). The number of magnons diverges in one and
two dimensions, i.e. the magnetization vanishes for T > 0 K in the isotropic
Heisenberg model (Mermin–Wagner–Berezinskii theorem). Thus, spin fluctua-
tions can be exited with infinitely small energy which destroys any long range
order. In the anisotropic case magnetic moments cannot be rotated to any
direction with infinitely small energy. This additional amount of energy is due
to an anisotropy energy which is responsible for the occurrence of ferromag-
netism in two-dimensional systems at T > 0K.

7.1 Overview of Magnetic Anisotropies

The most important different magnetic anisotropies which are discussed below
in detail are:

• Magneto crystalline anisotropy
The magnetization is oriented along specific crystalline axes.

• Shape anisotropy
The magnetization is affected by the macroscopic shape of the solid.
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• Induced magnetic anisotropy
Specific magnetization directions can be stabilized by tempering the sam-
ple in an external magnetic field.

• Stress anisotropy (magnetostriction)
Magnetization leads to a spontaneous deformation.

• Surface and interface anisotropy
Surfaces and interfaces often exhibit different magnetic properties com-
pared to the bulk due to their asymmetric environment.

7.2 Magneto Crystalline Anisotropy

The most important type of anisotropy is the magneto crystalline anisotropy
which is caused by the spin orbit interaction of the electrons. The electron
orbitals are linked to the crystallographic structure. Due to their interac-
tion with the spins they make the latter prefer to align along well-defined
crystallographic axes. Therefore, there are directions in space which a mag-
netic material is easier to magnetize in than in other ones (easy axes or easy
magnetization axes). The spin-orbit interaction can be evaluated from basic
principles. However, it is easier to use phenomenological expressions (power
series expansions that take into account the crystal symmetry) and take the
coefficients from experiment.

The magneto crystalline energy is usually small compared to the exchange
energy. But the direction of the magnetization is only determined by the
anisotropy because the exchange interaction just tries to align the magnetic
moments parallel, no matter in which direction.

The magnetization direction m = M/|M | relative to the coordinate axes
can be given by the direction cosine αi as m = (α1, α2, α3) (see Fig. 7.1) with

x

y

z

�1

�2

3�

�




M

Fig. 7.1. Definition of the direction cosine



7.2 Magneto Crystalline Anisotropy 91

α1 = sin θ cosφ (7.1)

α2 = sin θ sin φ (7.2)

α3 = cos θ (7.3)

These relations fulfill the condition:

α2
1 + α2

2 + α2
3 = 1 (7.4)

which is often used below.
The magneto crystalline energy per volume Ecrys can be described by a

power series expansion of the components of the magnetization:

Ecrys = E0 +
∑

i

biαi +
∑

ij

bijαiαj +
∑

ijk

bijkαiαjαk

+
∑

ijkl

bijklαiαjαkαl + O(α5) (7.5)

The terms O(α5) with at least the fifth order in α are very small and can
usually be neglected.

There is no energy difference for oppositely magnetized systems. Therefore,
the energy only depends on the alignment:

E(M ) = E(−M) (7.6)

i.e.
E(αi) = E(−αi) (7.7)

Thus, no odd terms of αi occur in the series expansion (remember the rela-
tionship for the free energy F (M) = F0 +aM2 + bM4) and we can reduce the
expansion to:

Ecrys = E0 +
∑

ij

bijαiαj +
∑

ijkl

bijklαiαjαkαl (7.8)

Let us discuss this general equation for different crystallographic systems.

Cubic Systems

Due to E(αi) = E(−αi) all cross terms αiαj vanish, i.e. bij = 0 for i �= j.
Indices i = 1, 2, 3 are undistinguishable in systems with cubic symmetry,
i.e. b11 = b22 = b33. Using these considerations the term in second order
amounts to:

∑

ij

bijαiαj = b11(α
2
1 + α2

2 + α2
3) = b11 (7.9)

taking into account (7.4). The term in forth order is given by:
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∑

ijkl

bijklαiαjαkαl = b1111(α
4
1 +α4

2 +α4
3)+6b1122(α

2
1α

2
2 +α2

1α
2
3 +α2

2α
2
3) (7.10)

The term in sixth order amounts to:
∑

ijklmn

bijklmnαiαjαkαlαmαn =

b111111(α
6
1 + α6

2 + α6
3)

+15b111122(α
2
1α

4
2 + α4

1α
2
2 + α2

1α
4
3 + α4

1α
2
3 + α2

2α
4
3 + α4

2α
2
3)

+90b112233α
2
1α

2
2α

2
3 (7.11)

For a rearrangement of these equations we use the following relationships
gained by the normalization condition given in (7.4):

1 = (α2
1 + α2

2 + α2
3)

2 (7.12)

= α4
1 + α4

2 + α4
3 + 2(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3) (7.13)

1 = (α2
1 + α2

2 + α2
3)

3 (7.14)

= α6
1 + α6

2 + α6
3 + 6α2

1α
2
2α

2
3

+3(α2
1α

4
2 + α4

1α
2
2 + α2

1α
4
3 + α4

1α
2
3 + α2

2α
4
3 + α4

2α
2
3) (7.15)

The multiplication of (7.4) with, e.g., α2
1α

2
2 results in:

α2
1α

2
2 = α4

1α
2
2 + α2

1α
4
2 + α2

1α
2
2α

2
3 (7.16)

which leads to:
α4

1α
2
2 + α2

1α
4
2 = α2

1α
2
2 − α2

1α
2
2α

2
3 (7.17)

Now, the energy density can be expressed as:

Ecubic
crys = E0 + b11 + b1111(α

4
1 + α4

2 + α4
3)

+6b1122(α
2
1α

2
2 + α2

1α
2
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2α
2
3)

+b111111(α
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3) + 90b112233α
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2
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4
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1α
2
3 + α2

2α
4
3 + α4

2α
2
3)(7.18)

= K0 + K1(α
2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3)

+K2α
2
1α

2
2α

2
3 + K3(α

2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + · · · (7.19)

with coefficients Ki (magneto crystalline anisotropy constants) which are func-
tions of the coefficients b··· .

Tetragonal Systems

As in the case of cubic systems all cross terms αiαj vanish, too. Due to the
reduced symmetry only the indices 1 and 2 are indistinguishable. Under these
conditions the term in second order amounts to:
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∑

ij

bijαiαj = b11α
2
1 + b11α

2
2 + b33α

2
3 (7.20)

Using α2
1 + α2

2 = 1 − α2
3 (see (7.4)) we obtain:

∑

ij

bijαiαj = b11 + (b33 − b11)α
2
3 (7.21)

= a0 + a1α
2
3 (7.22)

with coefficients ai which are a function of the coefficients bii. The term in
forth order is given by:

∑

ijkl

bijklαiαjαkαl = b1111α
4
1 + b2222α

4
2 + b3333α

4
3

+6b1122α
2
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2
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2
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2
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2α
2
3) (7.23)

= b1111(α
4
1 + α4

2) + b3333α
4
3 + 6b1122α

2
1α

2
2

+12b1133α
2
3(α

2
1 + α2

2) (7.24)

Thus, the energy density amounts to:

Etetra
crys = K0 + K1α

2
3 + K2α

4
3 + K3(α

4
1 + α4

2) + · · · (7.25)

with coefficients Ki being dependent on the coefficients b··· . Replacing the
direction cosine αi by the angles θ and φ (see (7.1)–(7.3)) we get:

Etetra
crys = K0 + K1 cos2 θ + K2 cos4 θ + K3 sin4 θ(sin4 φ + cos4 φ) (7.26)

= K ′

0 + K ′

1 sin2 θ + K ′

2 sin4 θ + K ′

3 sin4 θ cos 4φ (7.27)

The last term in (7.27) reflects the fourfold symmetry of this crystallographic
system.

Hexagonal Systems

Analogous considerations and calculations lead to an energy density for hexag-
onal systems of:

Ehex
crys = K0 + K1(α

2
1 + α2

2) + K2(α
2
1 + α2

2)
2

+K3(α
2
1 + α2

2)
3 + K4(α

2
1 − α2

2)(α
4
1 − 14α2

1α
2
2 + α4

2) (7.28)

= K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+K4 sin6 θ cos 6φ (7.29)

It should be noted that the notation of the coefficients is partly inconsistent
in the literature.

For tetragonal and hexagonal systems the magneto crystalline energy is
related to a cylindrical symmetry up to terms of the second or forth order,
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respectively. The energy is only dependent on the angle θ between the mag-
netization direction and the z-axis. Therefore, we find a uniaxial symmetry.

The azimuthal angle φ characterizes the anisotropy concerning the basal
plane and thus the energy in order to rotate the magnetization in a plane
perpendicular to the z-axis. The terms cos 4φ and cos 6φ reflect the four- and
sixfold symmetry of the tetragonal and hexagonal basal planes, respectively.

Generally we find:

• The coefficients (crystal anisotropy constants) depend on material and
temperature.

• The experience proves that the constants K1 and K2 are sufficient for a
good agreement between experiment and calculation.

• Sign and ratio of the constants determine the easy magnetization axis or
the preferred axis, i.e. crystallographic directions which the magnetiza-
tion is aligned on without external magnetic field. It can be identified by
calculating the minimum energy of Ecrys.

Magneto Crystalline Anisotropy for Cubic Crystals

The energies related to the magneto crystalline anisotropy for different crystal-
lographic directions can be obtained using the direction cosine (see Fig. 7.1):

• E100

The [100] direction is characterized by θ = 90◦ and φ = 0◦. This results
in α1 = 1, α2 = α3 = 0.

• E110

The [110] direction is characterized by θ = 90◦ and φ = 45◦ which leads
to α1 = α2 = 1/

√
2, α3 = 0.

• E111

For the [111] direction we see that θ = 54.7◦ (due to tan θ =
√

2) and
φ = 45◦. Thus, we obtain in α1 = α2 = α3 = 1/

√
3.

The magneto crystalline energy density for cubic materials was given by
(cf. (7.19)):

Ecubic
crys = K0 + K1(α

2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + K2α

2
1α

2
2α

2
3 + · · · (7.30)

The corresponding energies are obtained by inserting the direction cosine:

E100 = K0 (7.31)

E110 = K0 +
1

4
K1 (7.32)

E111 = K0 +
1

3
K1 +

1

27
K2 (7.33)

The values of the anisotropy constants Ki for the ferromagnetic elements Fe,
Co, and Ni at low temperatures are given in Table 7.1.
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Table 7.1. Magnitude of the magneto crystalline anisotropy constants K1, K2,
and K3 of Fe, Ni, and Co at T = 4.2 K

bcc-Fe fcc -Ni hcp-Co

K1 [J/m3] 5.48 · 104 −12.63 · 104 7.66 · 105

[eV/atom] 4.02 · 10−6 −8.63 · 10−6 5.33 · 10−5

K2 [J/m3] 1.96 · 102 5.78 · 104 1.05 · 105

[eV/atom] 1.44 · 10−8 3.95 · 10−6 7.31 · 10−6

K3 [J/m3] 0.9 · 102 3.48 · 103 –
[eV/atom] 6.6 · 10−9 2.38 · 10−7 –

[100]
easy

[010]
easy

[111]
hard

K > 0
bcc Fe

1

[001]
easy

[100]
hard [010]

hard

[111]
easy

K < 0
fcc Ni

1

[001]
hard

Fig. 7.2. Left: Energy surface for cubic symmetry with K1 > 0 presenting the easy
and hard magnetization axes. One example for this situation is bcc-Fe. Right: En-
ergy surface for cubic symmetry with K1 < 0 showing the easy and hard magnetiza-
tion axes. One example is fcc-Ni

Considering only the most important anisotropy constant K1 we find for
a positive value K1 > 0 that the [100]-direction is the easy magnetization
axis and the [111]-direction is the hard (magnetization) axis (see left part
of Fig. 7.2) due to the relationship E100 <E110 <E111. One example is bcc-
Fe. For a negative value K1 < 0 the [111]-direction is the easy magnetization
axis and the [100]-direction is the hard axis (see right part of Fig. 7.2) due
to the relationship E111 < E110 < E100. An example for this situation is fcc-Ni.
This magnetic behavior is directly reflected in different magnetization curves
(see Fig. 7.3).

The additional consideration of the anisotropy constant K2 may signifi-
cantly vary the magnetic properties. If K1 and K2 are of the same order of
magnitude the [110]-direction can be the easy as well as the hard magneti-
zation axis (see Table 7.2). The ratio of K1/K2 is about 250 for Fe. For Ni
we find that this ratio is about 2, i.e. both constants nearly exhibit the same
value. Therefore, the temperature dependence of the anisotropy constants
must be taken into account (see Fig. 7.4). We observe that K1 is negative for
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[0001]

basal plane

(a) bcc - Fe (b) fcc - Ni (c) hcp - Co
re

la
tiv

e
m

a
g
n
e
tiz

a
tio

n

external magnetic field
0

1

[100]

[100]
[111]

[111]

[110] [110]

Fig. 7.3. Magnetization curves of (a) bcc-Fe, (b) fcc-Ni, and (c) hcp-Co. The easy
magnetization axes are [100]- for Fe, [111]- for Ni, and [0001]-directions for Co.
They are characterized by a small magnitude of an external magnetic field in order
to achieve saturation magnetization

temperatures below about 400K and changes sign above this value. Thus, the
magnetic properties must be different in both temperature regimes.

Magneto Crystalline Anisotropy

for Tetragonal and Hexagonal Materials

The magneto crystalline anisotropy energy per volume for this class of mate-
rials was (cf. (7.27) and (7.29)):

Ecrys = K0 + K1 sin2 θ + K2 sin4 θ + · · · (7.34)

For positive values K1 > 0 and K2 > 0 we see from this equation that the
minimum energy of Ecrys is obtained for sin θ = 0, i.e. the c-axis [0001] is the
easy magnetization axis (see left part of Fig. 7.5). If both constants K1 as well
as K2 are negative the minimum is given for sin θ = 1. Now, the easy magne-
tization axis lies within the [0001]-plane and the [0001]-direction becomes the
hard magnetization axis (see right part of Fig. 7.5). If one anisotropy constant

Table 7.2. Correlation of the easy, medium, and hard axis of magnetization with the
magneto crystalline anisotropy constants K1 and K2 for cubic crystals (+: positive
value; −: negative value)

K1 K2 Easy axis Medium axis Hard axis

+ +∞ to −9/4K1 100 110 111
+ −9/4K1 to −9K1 100 111 110
+ −9K1 to −∞ 111 100 110
– −∞ to 9/4|K1| 111 110 100
– 9/4|K1| to 9|K1| 110 111 100
– 9|K1| to +∞ 110 100 111
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Fig. 7.4. Temperature dependence of the magneto crystalline anisotropy con-
stants K1 and K2 of Ni (Data taken from [2])

is positive and one negative a continuous rotation occurs from the c-axis to-
wards the [0001]-plane with sin2 θ = −K1/2K2. One example for positive K1

and K2 is Co at low temperatures (see Table 7.1). Thus, the [0001]-direction
is the easy magnetization axis. The rotation from the [0001]-direction towards
the basal plane occurs between 500K and 600K due to the temperature de-
pendence of K1 and K2 (see Fig. 7.6).

Influence of the Stoichiometry of Alloys

The anisotropy constants Ki depend on the relative amount of the con-
stituents in magnetic alloys, too. This occurrence is exemplarily illustrated

K > 01

[0001]
easy

[0001]
hard

K < 01

Fig. 7.5. Left: Energy surface for uniaxial symmetry with K1 > 0. The easy mag-
netization axis is oriented along the [0001]-direction. Right: Energy surface for uni-
axial symmetry with K1 < 0. The [0001]-direction becomes the hard magnetization
axis



98 7 Magnetic Anisotropy Effects

Fig. 7.6. Temperature dependence of the magneto crystalline anisotropy con-
stants K1 and K2 of Co (Data taken from [2])

for FexCo1−x in Fig. 7.7. With increasing amount of Co the anisotropy con-
stant K1 monotonously decreases. For low concentration it is positive and
changes sign at about 45%. The behavior of the anisotropy constant K2 is
significantly more complex. For low and high amount of Co K2 is positive
whereas it is negative in the range between 35% and 70%.

The values of both anisotropy constants K1 and K2 as well as the mag-
nitude of −9K1/4 and −9K1 which are important for the determination of
the different magnetization directions are given in Table 7.3. This allows to
determine the easy, medium, and hard magnetization axes as a function of
the stoichiometry using Table 7.2 (see Table 7.4).

Fig. 7.7. Anisotropy constants K1 and K2 at room temperature of an FeCo alloy
with different stoichiometry (Data taken from [6])
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Table 7.3. K1 and K2 in 103 J/m3 at T = 20◦C for an alloy consisting of Fe and
Co with given atomic percentage

Co Fe K1 K2 − 9

4
K1 −9K1

0 100 42.1 15.0 −95 −379
30 70 10.2 16.2 −23 −92
40 60 4.5 −11.1 −10 −41
50 50 −6.8 −38.7 15 61
70 30 −43.3 5.3 97 390

Table 7.4. Sign (+: positive; −: negative) of the anisotropy constants K1 and K2

at T = 20◦C for an alloy consisting of Fe and Co with given atomic percentage and
correlation of the crystallographic directions with the different magnetization axes
with regard to Table 7.2

Co Fe K1 K2 Easy Medium Hard

0 100 + + 100 110 111
30 70 + + 100 110 111
40 60 + ≈ − 9

4
K1 100 110/111 111/110

50 50 − − 111 110 100
70 30 − +, < 9

4
|K1| 111 110 100

The comparison with magnetization curves demonstrates the validity of
this model (see Fig. 7.8). It is obvious that with increasing amount of Co the
easy magnetization axis changes from [100]- to [111]-directions whereas the
hard axis behaves conversely. The medium magnetization axis remains along
the [110]-direction.

As discussed above the anisotropy constants additionally depend on the
temperature which may alter the magnetization axes as shown in Table 7.5
for the example Fe20Co15Ni65.

Table 7.5. Temperature dependence of the anisotropy constants K1 and K2 in
103 J/m3 for the alloy Fe20Co15Ni65 and correlation of the crystallographic directions
with the different magnetization axes

T K1 K2 Easy Medium Hard

22◦C 0.91 −11.2 111 100 110
201◦C −0.08 −1.8 111 110 100
398◦C −0.32 0.2 111 110 100
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Fig. 7.8. Magnetization curves for an CoFe alloy with different stoichiometries.
With increasing amount of Co the easy magnetization axis changes from [100]- to
[111]-directions whereas the hard axis behaves conversely. The medium magnetiza-
tion axis remains along the [110]-direction. (Data taken from [7])

Example for the Influence of the Magneto Crystalline Anisotropy

If an external magnetic field B is applied to an antiferromagnet which is per-
pendicular to the magnetization of the sublattices a continuous rotation of
each sublattice magnetization towards the field direction occurs with increas-
ing magnitude of the external field until saturation is reached (see Fig. 7.9(a)).

The situation becomes more complex if B is oriented parallel to each
sublattice magnetization. Then the magnetization of the different sublattices
behaves not so simple and significantly depends on the field strength. The sub-
lattices remain parallel for small magnetic fields. A large external field induces
a rotation of each sublattice magnetization being subsequently symmetrically
rotated related to the direction of the external magnetic field. This change is
called “spin-flop transition” (see Fig. 7.9(b)). In the antiferromagnetic case
the angles of the sublattice magnetization with respect to the external mag-
netic field are θ = 0 and φ = π. For the spin-flop phase they amount to θ = φ.
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Fig. 7.9. (a) If the external magnetic field is oriented perpendicular to the sublattice
magnetization a continuous rotation with increasing field strength occurs towards
the field direction. (b) For a parallel alignment of the external field and the sublattice
magnetization a critical field strength must be overcome in order to induce a rotation
towards the direction of the external field

In the isotropic case the corresponding energy density for this system is given
by:

E = −MB cos θ − MB cosφ + AM2 cos(θ + φ) (7.35)

with the last term describing the exchange interaction.
Considering the magneto crystalline anisotropy an additional term must

be taken into account because the magnetization tries to be aligned along a
low-index crystallographic direction:

Ecrys = −1

2
∆(cos2 θ + cos2 φ) (7.36)

The energy density of the antiferromagnetic phase amounts to:

E = −AM2 − ∆ (7.37)

The spin-flop phase exhibits an energy density of:

E = −2MB cos θ + AM2 cos 2θ − ∆ cos2 θ (7.38)

The energy minimum can be found by setting the first derivative to zero which
results in:

cos θ =
MB

2AM2 − ∆
(7.39)

Inserting into (7.38) leads to

Espin−flop = −AM2 − M2B2

2AM2 − ∆
(7.40)

Thus, below the critical field Bspin−flop which is given by:

Bspin−flop =
√

2A∆ − (∆/M)2 (7.41)
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M

B
B1 B2

Ms

M

B
B3

Ms

(a) spin-flop (b) spin-flip

Fig. 7.10. (a) Dependence of the magnetization if a spin-flop transition occurs at
the critical field B1. At B2 saturation is reached. (b) At a spin-flip transition the
magnetization abruptly changes at the magnitude of the external magnetic field B3

from zero to the saturation value MS

the antiferromagnetic phase remains energetically favorable whereas above
this value the system changes into the spin-flop phase.

Summarizing, the magnetization as a function of the external magnetic
field is shown in Fig. 7.10a. If the external magnetic field overcomes the criti-
cal magnitude Bspin−flop = B1 an abrupt change of the magnetization occurs.
A further increase of the magnetic field strength results in a continuous ro-
tation of each sublattice magnetization towards the direction of the external
magnetic field. Thus, the total magnetization monotonously increases until
saturation MS is reached at the field strength B2.

If the anisotropy effect plays a dominant role (i.e. ∆ cannot be neglected)
a spin-flip transition occurs. This situation is characterized by an abrupt and
without a subsequent continuous rotation at the critical field strength B3

(see Fig. 7.10b). Thus, the ferromagnetic phase is directly reached.

7.3 Shape Anisotropy

Polycrystalline samples without a preferred orientation of the grains do not
possess any magneto crystalline anisotropy. But, an overall isotropic behavior
concerning the energy being needed to magnetize it along an arbitrary direc-
tion is only given for a spherical shape. If the sample is not spherical then
one or more specific directions occur which represent easy magnetization axes
which are solely caused by the shape. This phenomenon is known as shape
anisotropy. In order to get a deeper insight we have to deal with the stray and
demagnetizing field of a sample.

The relationship B = μ0(H + M) only holds inside an infinite system. A
finite sample exhibits poles at its surfaces which leads to a stray field outside
the sample. This occurrence of a stray field results in a demagnetizing field
inside the sample.
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The energy of a sample in its own stray field is given by the stray field
energy Estr:

Estr = −1

2

∫

μ0M · Hdemag dV (7.42)

with Hdemag being the demagnetizing field inside the sample. The calculation
is rather complicated for a general shape. It becomes more easy for symmetric
objects which is shown in the following.

An ellipsoid possesses a constant demagnetizing field Hdemag which is
given by:

Hdemag = −NM (7.43)

with N being the demagnetizing tensor. Thus, the stray field energy amounts
to:

Estr = 1/2 · μ0

∫

MNM dV (7.44)

= 1/2 · V μ0MNM (7.45)

with V being the volume of the sample. N is a diagonal tensor if the semiaxes
a, b, and c of the ellipsoid represent the axes of the coordination system. Then,
the trace is given by:

trN = 1 (7.46)

An arbitrary direction of the magnetization with respect to the semiaxes can
be characterized by the direction cosine αa, αb, and αc. The tensor is given
by:

N =

⎛

⎝

Na 0 0
0 Nb 0
0 0 Nc

⎞

⎠ (7.47)

and the stray field energy per volume amounts to:

Estr = 1/2 · μ0M
2(Naα2

a + Nbα
2
b + Ncα

2
c) (7.48)

In the case of a sphere the tensor N amounts to:

N =

⎛

⎝

1/3 0 0
0 1/3 0
0 0 1/3

⎞

⎠ (7.49)

and the stray field energy density to:

Estr = 1/2 · μ0M
2 · 1/3(α2

a + α2
b + α2

c) (7.50)

= 1/6 · μ0M
2 (7.51)

due to the normalization condition of the direction cosine (cf. (7.4)). Thus, we
find an isotropic behavior because all directions are energetically equivalent.
This situation is only valid for a sphere.
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In the following θ represents the angle between the magnetization M and
the z-axis. For a spheroid the semiminor axes exhibit the same length a = b
but they are different to that of the semimajor axis being c. Thus, the diagonal
elements of the demagnetizing tensor N are Na = Nb and Nc = 1− 2Na. For
the stray field energy density we get:

Estr = 1/2 · μ0M
2
(

Na sin2 θ cos2 φ + Na sin2 θ sin2 φ

+(1 − 2Na) cos2 θ
)

(7.52)

= 1/2 · μ0M
2(Na + (1 − 3Na) cos2 θ) (7.53)

For an infinitely long cylinder, we have a = b, c = ∞, and

N =

⎛

⎝

1/2 0 0
0 1/2 0
0 0 0

⎞

⎠ (7.54)

In this case the stray field energy density amounts to:

Estr = 1/2 · μ0M
2 · 1/2(sin2 θ cos2 φ + sin2 θ sin2 φ) (7.55)

= 1/4 · μ0M
2 sin2 θ (7.56)

For an infinitely expanded and very thin plate, we have a = b = ∞, and

N =

⎛

⎝

0 0 0
0 0 0
0 0 1

⎞

⎠ (7.57)

Now, the stray field energy density amounts to:

Estr = 1/2 · μ0M
2 cos2 θ (7.58)

This result is important for thin magnetic films and multilayers. Equa-
tion (7.58) can be written as:

Estr = K0 + KV
shape sin2 θ (7.59)

with KV
shape ∝ −M2 < 0. The stray field energy reaches its minimum value

at θ = 90◦. This means that the shape anisotropy favors a magnetization
direction parallel to the surface, i.e. within the film plane.

A comparison of the anisotropy constants characterizing magneto crys-
talline and shape anisotropy (see Table 7.6 and cf. Table 7.1) shows that
KV

shape > K1. We see that the shape anisotropy dominates the magneto crys-
talline anisotropy which results in an in-plane magnetization for thin film
systems.
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Table 7.6. Shape anisotropy constant KV
shape of Fe, Ni, and Co

bcc-Fe fcc-Ni hcp-Co

in [J/m3] 1.92 · 106 1.73 · 105 1.34 · 106

in [eV/atom] 1.41 · 10−4 1.28 · 10−5 9.31 · 10−5

7.4 Induced Magnetic Anisotropy

For magnetic alloys exhibiting a cubic crystal structure a unidirectional mag-
netic anisotropy can often be achieved by tempering in an external magnetic
field.

The prerequisites are a disordered distribution of the atoms in the crystal
lattice (see Fig. 7.11(a)) and a high Curie temperature which allows rapid
site-exchange processes in the magnetic state.

The external magnetic field orients the magnetization at high temperatures
which must be below TC . During cool-down or rapid thermal quenching the
high-temperature state is frozen out under retention of the oriented magne-
tization direction. A magnetically induced anisotropic directional short-range
order is created as schematically shown in Fig. 7.11(c). The binding energy of
two neighbored atoms in a spontaneous magnetized crystal is given by:

E = a ℓ · (cos2 φ − 1/3) (7.60)

with φ being the angle between the magnetization M and the interatomic
vector, ℓ = ℓ(T ; type of atoms), and a a constant.

In the following a binary alloy with two type of atoms A and B will be
discussed. Three different kinds of bonds occur, between A and A, between B
and B, and between A and B. Using (7.60) the energy is given by:

E = a
∑

i

(NAAiℓAA + NBBiℓBB + NABiℓAB)(cos2 φi − 1/3) (7.61)

0 0 18 71212

(a) (b) (c)

Fig. 7.11. (a) Random distribution, (b) perfect isotropic long range order,
(c) anisotropic directional short range order characterized by neighbored atoms of
one particular type (filled circles)
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with

i : direction of bond i

φi : angle between M and the direction of bond i

NXXi : number of XX bonds in direction of bond i

Using NX as the number of atoms of type X we get:

2NAAi + NABi = 2NA (7.62)

2NBBi + NABi = 2NB (7.63)

which leads to:

NAAi = NBBi + const. (7.64)

NABi = const. − 2NBBi (7.65)

Inserting into (7.61) yields for the induced magnetic anisotropy energy:

Eind = aV
∑

i

NBBiℓ0 (cos2 φi − 1/3) + const. (7.66)

with ℓ0 = ℓAA + ℓBB − 2ℓAB. Now, this anisotropy energy is expressed as a
function of direction cosine:

Eind · 1/aV = −F (α2
1β

2
1 + α2

2β
2
2 + α2

3β
2
3)

−G(α1α2β1β2 + α2α3β2β3 + α1α3β1β3) (7.67)

with αi, βi being the direction cosine of M during measurement and during
annealing in an external magnetic field, respectively, and F and G being
material constants. For specific types of crystals one or both of the constants
can directly be given:

isotropic : G = 2F (7.68)

simple cubic (sc) : G = 0 (7.69)

body-centered cubic (bcc) : F = 0 (7.70)

face-centered cubic (fcc) : G = 4F (7.71)

For the isotropic system, for example, we get:

Eind · 1/aV = −F (α1β1 + α2β2 + α3β3)
2 (7.72)

= −K · cos2(θ − θann) (7.73)

with F = K being the anisotropy constant describing the induced magnetic
anisotropy leading to a uniaxial alignment and (θ − θann) being the angle
between the magnetization during the measurement and during annealing.
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The rearrangement of pairs of atoms does not only occur during annealing
in an external magnetic field but also by plastic deformation. Therefore, this
type of induced anisotropy is called roll-magnetic anisotropy. Its occurrence
is schematically explained for the example of an FeNi - alloy.

After a strong cold-rolling which reduces the thickness by about 98% a
recrystallization occurs. In this fcc-like alloy a cube texture is present with
the (100)-plane in the roll plane and the [100]-direction being parallel to the
roll direction. A final cold-rolling subsequently reduces the thickness to about
50% with a remaining cube texture. Such a sheet exhibits a uniaxial magnetic
anisotropy with its easy axis in the plane but perpendicular to the rolling
direction (see Fig. 7.12). Magnetization parallel to the rolling direction takes
exclusively place through domain rotation giving rise to a linear magnetization
curve until saturation is reached.

The explanation is given in the following for the example of an A3B-type
superlattice which exhibits a crystal structure shown in Fig. 7.13. During
rolling a plastic deformation takes place. One part of the crystal slips relative
to another part along a gliding plane which is parallel to a (111)-plane for
this fcc-like structure (see Fig. 7.14). One part of the crystal is displaced by
one atomic distance which results in the creation of BB-type pairs that are
not present in the undisturbed crystal. The distribution of these bonds is
anisotropic producing a unidirectional anisotropy.

M

H

H

roll direction

Fig. 7.12. Domain structure (left) and corresponding magnetization curve due to
the rolling procedure (right)

A

B

Fig. 7.13. Crystal structure of an A3B-type superlattice
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Fig. 7.14. Diagram indicating the appearance of BB pairs due to a single step slip
along the (111)-plane (gray shaded area) in an A3B-type superlattice

A further induced anisotropy is given by the exchange anisotropy. This
type is discussed on p. 233 in more detail.

7.5 Stress Anisotropy (Magnetostriction)

Up to now we have assumed a rigid solid with a fixed lattice constant, i.e. the
distance between atoms in the crystal was held constant. In the following an
elastic degree of freedom is additionally allowed. This displacement influences
the magnetic behavior of magnetic crystals. Vice versa, magnetic properties
can alter elastic properties. The responsibility of this interplay is the magneto
elastic interaction.

The magneto crystalline anisotropy energy per volume of cubic systems
was given by (cf. (7.19)):

Ecrys = Kcubic
1 · O(α4) (7.74)

whereas that of systems with a tetragonal crystal structure due to the reduced
symmetry amounts to (cf. (7.25)):

Ecrys = Ktetra
1 · O(α2) (7.75)

= Ktetra
1 sin2 θ (7.76)

= Ktetra
1 (1 − α2

3) (7.77)
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disregarding the constant part in each case. Because Ktetra
1 belongs to a term

of second order and Kcubic
1 to a term of forth order it is possible roughly to

estimate Ktetra
1 ≈ 100Kcubic

1 . We directly recognize that a small deformation,
being characterized by the deformation parameter ε, which induces the tran-
sition from cubic to tetragonal symmetry is responsible for a distinct change
of the anisotropy.

As a consequence the cubic unit cell spontaneously deforms to a tetragonal
system below the Curie temperature due to a decrease of the energy Ecrys.
The distortion is limited due to a simultaneous increase of the elastic energy
density Eel = 1/2 · Cε2. Thus, the total anisotropy energy density amounts
to:

E = K1(1 − α2
3)ε + 1/2 · Cε2 (7.78)

Calculating the minimum energy allows to determine the relative change in
length λ:

λ =
δℓ

ℓ
= −K1

C
(1 − α2

3) (7.79)

This spontaneous magnetostriction reaches typical values of λ ≈ 10−5.
In the following we will discuss magnetostriction using a phenomenological

description by means of the constant λ. It is important that λ depends on the
crystallographic direction. This means that the deformation parameter ε must
be replaced by the deformation tensor E if the magneto crystalline anisotropy
cannot be neglected.

The elastic energy density Eel can be characterized using the elements of
the deformation tensor εij and the elastic constants cij . For cubic systems we
obtain:

Ecubic
el =

1

2
c11(ε

2
11 + ε2

22 + ε2
33)

+ c12(ε11ε22 + ε11ε33 + ε22ε33) +
1

2
c44(ε

2
12 + ε2

13 + ε2
23) (7.80)

whereas for systems with a hexagonal symmetry we get:

Ehex
el =

1

2
c11(ε

2
11 + ε2

22) +
1

2
c33ε

2
33 + c12ε11ε22

+ c13(ε11 + ε22)ε33 +
1

2
c44(ε

2
13 + ε2

23) + (c11 − c12)ε
2
12 (7.81)

The elastic constants of Fe, Ni, and Co are listed in Table 7.7.
If the direction of the magnetostriction in the measurement is characterized

by the direction cosine βi then we find for cubic crystals:

λ =
δℓ

ℓ
=

3

2
· λ100

(

α2
1β

2
1 + α2

2β
2
2 + α2

3β
2
3 − 1

3

)

+ 3λ111(α1α2β1β2 + α1α3β1β3 + α2α3β2β3) (7.82)
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Table 7.7. Elastic constants cij in 1011 N/m2 of Fe, Ni, and Co at room temperature

bcc-Fe fcc-Ni hcp-Co

c11 2.41 2.50 3.07
c12 1.46 1.60 1.65
c13 1.03
c33 3.58
c44 1.12 1.18 0.76

with λ100 and λ111 being the saturation values of the magnetostriction for
the arrangement that the direction of the measurement and of the sponta-
neous magnetization are along the [100]- or [111]-direction, respectively. The
correlation between magnetostriction, elastic, and magneto elastic constants
are:

λ100 = −2

3
· B1

c11 − c12

(7.83)

λ111 = −1

3
· B2

c44

(7.84)

The magnitude of the magneto elastic constants are given in Table 7.8 and
that of the magneto elastic constants in Table 7.9. The magnetostriction in the
[110]-direction λ110 is not independent on λ100 and λ111 and can be expressed
as:

λ110 =
1

4
λ100 +

3

4
λ111 (7.85)

Assuming an isotropic magnetostriction, i.e. λ100 = λ111, we directly obtain
λ0 = λ100 = λ111 = λ110. In this situation (7.82) can be written as:

λ = λ0

(

cos2 θ − 1

3

)

(7.86)

with θ = arccos
∑

i αiβi being the angle between the spontaneous magne-
tization and the direction the magnetostriction is measured in. Due to the

Table 7.8. Magnitude of the magneto elastic constants B1, B2, B3, and B4 of Fe,
Ni, and Co at room temperature

bcc-Fe fcc -Ni hcp-Co

B1 [J/m3] −3.44 · 106 8.87 · 106 −8.10 · 106

[eV/atom] −2.53 · 10−4 6.05 · 10−4 −5.63 · 10−4

B2 [J/m3] −7.62 · 106 1.02 · 107 −2.90 · 107

[eV/atom] −5.56 · 10−4 6.97 · 10−4 −2.02 · 10−3

B3 [J/m3] −2.82 · 107

[eV/atom] −1.96 · 10−3

B4 [J/m3] −2.94 · 107

[eV/atom] −2.05 · 10−3
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Table 7.9. Magnitude of the magnetostriction constants of Fe, Ni, and Co at room
temperature

bcc-Fe fcc -Ni hcp-Co

λ100 24 · 10−6 −66 · 10−6

λ111 −23 · 10−6 −29 · 10−6

λA −50 · 10−6

λB −107 · 10−6

λC 126 · 10−6

λD −105 · 10−6

isotropic behavior of the magnetostriction a dependence on crystallographic
directions is no more given.

The magnetostriction for hexagonal systems is given by:

λ =
δℓ

ℓ
= λA

(

(α1β1 + α2β2)
2 − (α1β1 + α2β2)α3β3

)

+ λB

(

(1 − α2
3)(1 − β2

3) − (α1β1 + α2β2)
2
)

+ λC

(

(1 − α2
3)β

2
3 − (α1β1 + α2β2)α3β3

)

+ λD (α1β1 + α2β2)α3β3 (7.87)

with

λA + λB =
2B2c13 − (2B3 + B1)c33

c33(c11 + c12) − 2c2
13

(7.88)

λA − λB =
B1

c11 − c22

(7.89)

λC =
B2(c11 + c12) − (2B3 + B1)c13

c33(c11 + c12) − 2c2
13

(7.90)

4λD − (λA + λB + λC) =
B4

c44

(7.91)

Using the magnetostriction constants given in Table 7.9 we want to discuss
the magnetostrictive properties of pure Fe and Ni as well as of the alloy con-
sisting of Fe and Ni. Generally, a positive magnitude of λ means a dilatation
and a negative one a contraction.

In the case of Ni we find that λ100 and λ111 are negative. Using (7.85) we
see that λ110 is negative, too. Therefore, Ni contracts along all three directions
if it is becomes magnetic.

For Fe λ100 is positive whereas λ111 is negative. This results in a rather
complex behavior. Along the easy magnetization direction being [100] we find
a simple dilatation which leads to a distortion from a cubic to a tetragonal
crystal lattice.

The alloy consisting of Fe and Ni (known as Invar or Permalloy) exhibits
magnetostrictive properties which significantly depend on the stoichiometry
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Fig. 7.15. Magnetostriction in single crystals of an FeNi alloy concerning different
crystallographic directions (Data taken from [2])

(see Fig. 7.15). For Fe40Ni60 (see ellipse) one can see that λ100 = λ111 =
λ110. Thus, this particular alloy represents a cubic material with isotropic
magnetostriction. The same behavior is found for Fe15Ni85 (see box); the
measurements yield that λ100 = λ111 = λ110 ≈ 0 for this composition. Ad-
ditionally, the magnetostriction (nearly) vanishes. Due to that reason this
specific Fe15Ni85 alloy is of technological importance.

7.6 Magnetic Surface and Interface Anisotropies

The considerations above were carried out for volume systems neglecting in-
terfaces and surfaces. In the following low-dimensional systems are discussed
concerning the anisotropy which is related to these interfaces.

Due to the broken symmetry at interfaces the anisotropy energy contains
terms with lower order in α which are forbidden for three-dimensional systems.
Therefore, each effective anisotropy constant Keff is divided into two parts,
one describing the volume and one the surface contribution:

Keff = KV + 2KS/d (7.92)

with KV being the volume dependent magneto crystalline anisotropy constant
and KS the surface dependent magneto crystalline anisotropy constant. The
factor of two is due to the creation of two surfaces. The second term exhibits
an inverse dependence on the thickness d of the system. Thus, it is only
important for thin films.
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In order to illustrate the influence of the surface anisotropy we will discuss
the so-called “spin reorientation transition”. Rewriting (7.92) results in:

d · Keff = d · KV + 2KS (7.93)

Plotting this dependence as a d · Keff(d) diagram allows to determine KV as
the slope of the resulting line and 2KS as the zero-crossing which is exem-
plarily shown for a thin Co layer with variable thickness d on a Pd substrate
(see Fig. 7.16). Due to the shape anisotropy KV is negative. This can directly
be seen by the negative slope which results in an in-plane magnetization. The
zero-crossing occurs at a positive value KS. This leads to a critical thick-
ness dc:

dc = −2KS

KV
(7.94)

with

d < dc : perpendicular magnetization (7.95)

d > dc : in-plane magnetization (7.96)

due to the change of sign of Keff . Thus, the volume contribution always dom-
inates for thick films with a magnetization being within the film plane. The
relative amount of the surface contribution increases with decreasing thick-
ness followed by a spin reorientation transition towards the surface normal
below dc. This behavior is exemplarily illustrated in Fig. 7.17 representing
hysteresis loops of a Au/Co(0001)/Au(111) system for different thicknesses
of the ferromagnetic Co layer measured perpendicular (left part) and parallel

d [Å]Co

K
d

[m
J

/
m

]
C

o
2

2K
S

K
v

dc

0

1

-1
0 10 20

Fig. 7.16. Magnetic anisotropy of a Co thin film layer in a Co/Pd multilayer as
a function of the Co thickness dCo. The slope allows to determine KV. The zero
crossing amounts to 2KS. (Data taken from [8])
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Fig. 7.17. Hysteresis loops of Au/Co(0001)/Au(111) systems for different thick-
nesses of the Co layer. Left: Measurement perpendicular to the film plane.
Right: Measurement along the film plane. (Adapted from [9]; used with permis-
sion. Copyright 1988, American Institute of Physics)

to the surface plane (right part). We directly see that the easy magnetization
axis is perpendicular to the film plane below about dc = 12Å.

A further phenomenon which is caused by the surface anisotropy is the
rotation of the easy magnetization axis within the surface. A thin bcc-Fe(110)
film exhibits an easy axis along the [11̄0]-direction. Above a thickness of about
60 Å a rotation occurs towards the [001]-direction which is that of the bulk.

Problems

7.1. Show that the magneto crystalline anisotropy for tetragonal systems up
to the forth order in α:

Etetra
crys = K0 + K1α

2
3 + K2α

4
3 + K3(α

4
1 + α4

2)

(see (7.25)) can be expressed as:
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Etetra
crys = K ′

0 + K ′

1 sin2 θ + K ′

2 sin4 θ + K ′

3 sin4 θ cos 4φ

(see (7.27)) using the angles θ and φ (see (7.1)–(7.3)) by replacing the direction
cosine αi. Determine K ′

i as a function of Ki.

7.2. Show that the magneto crystalline anisotropy for hexagonal systems up
to the sixth order in α:

Ehex
crys = K0 + K1(α

2
1 + α2

2) + K2(α
2
1 + α2

2)
2

+K3(α
2
1 + α2

2)
3 + K4(α

2
1 − α2

2)(α
4
1 − 14α2

1α
2
2 + α4

2)

(see (7.28)) can be expressed as:

Ehex
crys = K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+K4 sin6 θ cos 6φ

(see (7.29)) using the angles θ and φ (see (7.1)–(7.3)) by replacing the direction
cosine αi.

7.3. Spin flop transition

(a) Show that below the critical field Bspin−flop which is given by:

Bspin−flop =
√

2A∆ − (∆/M)2

(see (7.41)) the antiferromagnetic phase remains energetically favorable
whereas above this value the system changes into the spin-flop phase.
(b) Show this behavior schematically by plotting the energy as a function of
the external magnetic field B.

7.4. After cooling a singly crystalline alloy exhibiting a body-centered cubic
symmetry in an external magnetic field being applied along the [001], [110],
or [111] direction the induced magnetic anisotropy is measured for a mag-
netization being within the (11̄0) plane. Determine the ratio of the induced
magnetic anisotropy constants for the three situations.
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Magnetic Domain Structures

Ferromagnetic materials possess uniformly magnetized regions which exhibit
a parallel orientation of all magnetic moments within this so-called magnetic
domain on the one hand but on the other hand different directions of the
magnetization in different domains. Thus, a demagnetized sample consists of
domains each ferromagnetically ordered with a vanishing total magnetization.
The boundary between neighbored domains are domain walls.

In this chapter general considerations on the behavior of magnetic domains
and domain walls are made for macroscopic systems exhibiting a lower length
scale of the order of microns. Properties concerning magnetic domains of low-
dimensional systems will be discussed in Chaps. 12–15.

8.1 Magnetic Domains

In the year 1907 it was stated by P. Weiss that a ferromagnet possesses a
number of small regions (“magnetic” domains). Each of them exhibits the
saturation magnetization. It is important that the magnetization direction of
single domains each along the easy axis are not necessarily parallel. Domains
are separated by domain boundaries or domain walls.

These considerations allow to describe a lot of properties of different mag-
netic systems. Two examples are:

• In soft magnetic materials smallest external fields (≈ 10−6 T) are sufficient
to reach saturation magnetization (µ0M ≈ 1 T). The external field need
not order all magnetic moments macroscopically (because in each domain
they are already ordered) but has to align the domains. Thus, a movement
of domain walls only occurs which requires low energy.

• It is possible that ferromagnetic materials exhibit a vanishing total mag-
netization M = 0 below the critical temperature without applying an
external field. In this situation each domain still possesses a saturated
magnetization but due to the different orientations the total magnetiza-
tion amounts to zero.
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The magnetization process consists of two independent steps:

• In small external magnetic fields
The volume of regions which exhibit a magnetization direction being nearly
the same as that of the external field grows at the expense of unfavorably
oriented domains. The boundary movements can be reversible as well as
irreversible.

• In strong external magnetic fields
A rotation of M occurs towards the direction of the external magnetic
field H .

Magnetization of an Ideal Crystal

In an ideal crystal which does not contain any defects the magnetization of
a demagnetized ferromagnet starts with reversible domain wall movements.
This process ends when all domain walls are annihilated or all walls are ori-
ented perpendicularly to the external magnetic field. If this is the only process
until saturation is reached we obtain a magnetization as a function of the ex-
ternal magnetic field which is shown in Fig. 8.1 labelled by “1”. Subsequently,
reversible rotation processes can occur. The magnetization curve which is ob-
tained for pure rotation processes is shown in Fig. 8.1 labelled by “2”. The
combination of both processes results in a magnetization curve like “3” in
Fig. 8.1.

Magnetization of a Real Crystal

A real magnetic system additionally possesses crystal defects which results in
a domain wall potential. For small external magnetic fields reversible domain
wall movements occur (Rayleigh regime). Higher fields (Barkhausen regime)
lead to large jumps of the domain walls due to pinning at crystallographic

1

2

3

M

H

Rayleigh regime

44

Barkhausen
regime

Fig. 8.1. Curve 1 : Pure domain wall movements in an ideal crystal. Curve 2 : Pure
rotation processes in an ideal crystal. Curve 3 : Combination of domain wall move-
ments and rotation processes in an ideal crystal. Curve 4 : Behavior of a real crystal
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M

H

Fig. 8.2. The enlargement enables to observe the Barkhausen jumps

defects. These so-called Barkhausen jumps are directly observable in the hys-
teresis loop (see Fig. 8.2).

An important relationship is given by the dependence of the magnetiza-
tion M as a function of an external magnetic field H . The graphic represen-
tation is known as the hysteresis curve or hysteresis loop (see Fig. 8.3) with
MS being the saturation magnetization, Mr the remanence, Hs the saturation
field, and Hc the coercive field or coercivity. These values can be determined
using the hysteresis loop by:

MS = max (M) (8.1)

Mr = M(H = 0) (8.2)

Hs = min (H ′|M(H ′) = MS) (8.3)

Hc = H(M = 0) (8.4)

The area surrounded by the hysteresis loop is a direct measure of the mag-
netic hysteresis energy which has to be applied in order to reverse the
magnetization.

M

H
Hs

Mr

H
c

Ms

Fig. 8.3. Hysteresis loop schematically shown
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8.2 Domain Walls

A classification of domain walls can be given by the angle of the magnetization
between two neighbored domains with the wall as boundary.

• 180◦ wall
A 180◦ domain wall represents the boundary between two domains with
opposite magnetization (see Fig. 8.4(a)).

• 90◦ wall
A 90◦ domain wall represents the boundary between two domains with
magnetization being perpendicular to each other (see Fig. 8.4(b)).

The perpendicular direction of a domain wall corresponds to the bisecting
line between the directions of the magnetization of neighbored domains. The
occurrence of different types of domain walls depends on the crystallographic
arrangement of the ferromagnet:

• Uniaxial ferromagnet
An example of this type is given by Co which only exhibits 180◦ domain
walls (see Fig. 8.5).

• Triaxial material
The most prominent example is bcc-Fe with its easy magnetization axis
along (100)-like directions. This material possesses 180◦ as well as 90◦

domain walls.
• Materials with four axes

One example is given by fcc-Ni with an easy axis along (111)-like direc-
tions. The domain walls exhibit angles of 180◦, 109◦, and 71◦.

A closer inspection of 180◦ domain walls reveals that they can be divided into
two classes:

• Bloch wall
The rotation of the magnetization occurs in a plane being parallel to the
plane of the domain wall (see Fig. 8.6a).

• Néel wall
The rotation of the magnetization vector takes place in a plane which is
perpendicular to the plane of the domain wall (see Fig. 8.6b).

(b)(a)

Fig. 8.4. (a) 180◦ and (b) 90◦ domain wall
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Fig. 8.5. Domains on the side plane of a Co crystal (From [10] (used with permis-
sion))

(a) (b)

e
a

s
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a
x
is

Fig. 8.6. Rotation of the magnetization in a (a) Bloch wall and (b) Néel wall

The Bloch wall assures a vanishing stray field. The Néel wall often occurs in
ferromagnetic thin film systems with an in-plane magnetization. The magneti-
zation remains within the film plane which is energetically favorable compared
to the situation that the magnetization vector has to be perpendicular to the
film plane (see Fig. 8.7) in order to reduce magnetic stray fields.

8.3 Domain Wall Width

The energy of two parallel spins is given by:

E = −2JS2 (8.5)

For a non-parallel arrangement of both spins S1 and S2, i.e. they exhibit an
angle of ϕ �= 0 with respect to each other, the energy amounts to:

E = −2JS1 · S2 (8.6)

= −2JS2 cosϕ (8.7)

which can be approximated for small angles ϕ by:
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d

Fig. 8.7. The Néel wall is energetically favorable in thin film systems exhibiting
only a small thickness d with an in-plane magnetization due to the avoidance of
stray fields

E = −2JS2 + JS2ϕ2 (8.8)

using cosϕ = 1 − ϕ2/2.
In a Bloch wall a rotation of 180◦ occurs across N spins. The mean rotation

angle between two spins therefore amounts to ϕ = π/N . Thus, the total energy
of every “spin rotation axis” is given by:

E = NJS2ϕ2 (8.9)

= π2JS2/N (8.10)

If a is the lattice constant a Bloch wall exhibits 1/a2 spin rotation axes per m2

leading to an exchange energy of:

EBW
ex = JS2 ·

π2

Na2
(8.11)

Consequently, a domain wall tends to an infinite length (N → ∞) due to a
non-vanishing energy of twisted spins. But, the magneto crystalline anisotropy
favors a short length. Thus, both energy contributions try to move the domain
wall width into the opposite direction. The magneto crystalline anisotropy
energy (cf. (7.34))

Ecrys = K sin2 ϕ (8.12)

with K > 0 thus favors a parallel or antiparallel alignment of the spins in
the two domains with the Bloch wall as boundary. The summation over all
contributions of N spins can be approximated by

N
∑

i=1

K sin2 ϕi ≈
1

2
NK (8.13)

Assuming a planes we obtain
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EBW
crys =

1

2
aNK (8.14)

Thus, the total energy of the Bloch wall is given by:

EBW = JS2 π2

a2
·

1

N
+

1

2
aKN (8.15)

The first term favors a large number N with spins involved in the domain wall
whereas the second term favors a small number. The energy minimum can be
determined by setting the first derivative to zero:

0 =
dE

dN
=

1

2
aK − JS2 π2

a2
·

1

N2
(8.16)

which results in:

N = πS

√

2J

a3K
(8.17)

The constant

A =
2JS2

a
(8.18)

represents a measure of the stiffness of the magnetization vector against twist-
ing as a consequence of the exchange forces which favor a parallel alignment.
The domain wall width δ is defined as:

δ = Na = π
√

A/K (8.19)

We directly recognize that a high value of the stiffness favors a large domain
wall width whereas a large magnitude of the anisotropy constant tries to
reduce the width. For Fe we find a domain wall width of δ ≈ 40 nm.

Domain walls exhibit a continuous rotation of the magnetization vector
between two domains. Therefore, this definition of a domain wall width is

Fig. 8.8. Calculated wall profile of a 180◦ Bloch wall and different wall width
definitions being given in the text (From [10] (used with permission))
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unfortunately not uniform. The definition given by (8.19) is graphically rep-
resented by WL (Lilley’s domain wall width) in Fig. 8.8. A second definition
deals with the slope of the magnetization component sinϕ in the origin and
leads to a width of 2

√

A/K represented by Wm in Fig. 8.8. A third definition
of a domain wall width bases on the total wall flux and leads to

∫

∞

−∞
cosϕ(x)dx

represented by WF in Fig. 8.8.

8.4 Closure Domains

In a three-dimensional magnetic crystal we find magnetic domains and Bloch
walls which exhibits no stray fields. The question arises what happens at the
surface due to the reduction of the symmetry. Generally, the system tends to
minimize its energy which is given by the sum of the Bloch wall energy EBW

and the stray field energy Estr concerning the magnetic part of the total en-
ergy. Therefore, the domain pattern becomes different at the surface compared
to the bulk. These different and mostly additional domains are called closure
domains.

Let us start with a sample which exhibits one single domain as the initial
state (see Fig. 8.9(a)). It is obvious that EBW = 0 because no Bloch wall
is present but Estr becomes rather large. In order to lower the energy Bloch
walls are created (see Fig. 8.9(b) and (c)). The appearance and number of
additional domains significantly depend on the anisotropy of the crystal.

Crystals Exhibiting a Strong Uniaxial Anisotropy

This type is often found for crystals with an hcp structure like Co. Only a
small number of domain walls occurs within the crystal. Near the surface
additional domains are created for a further reduction of the stray field as
schematically shown in Fig. 8.9(c). This leads to a branching of the different
domains. Nearby the surface a fine domain pattern is enforced to minimize

(b)(a) (c)

Fig. 8.9. The creation of Bloch walls reduces the stray field energy Estr but increases
the wall energy E

BW
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Fig. 8.10. Domain refinement and branching in two phase systems. (a) Planar two-
dimensional branching. (b, c) Three-dimensional branching. (From [10] (used with
permission))

the domain closure energy but in the bulk a wide pattern is favored to save
domain wall energy. The branching process connects the wide and the narrow
domains in a way that depends on crystal symmetry and in particular on the
number of available easy directions. A distinction can be done between

• a two dimensional branching which can completely be described in a cross
section drawing (see Fig. 8.10(a))

• a three dimensional branching which exploits geometrically the third di-
mension (see Fig. 8.10(b,c))

Further, we can distinguish between

• two-phase branching which has to achieve the domain refinement with two
magnetization phases only (see Fig. 8.10)

• multi-phase branching which can use more than two magnetization direc-
tions in the branching process.

The branching phenomenon can be explained by the progressive domain re-
finement towards the surface by iterated generations of domains as schemati-
cally depicted in Fig. 8.11.

Fig. 8.11. Sketch of the iterated generation of domains towards the surface
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Fig. 8.12. Domain pattern on the basal plane of a wedge-shaped Co crystal-like
thin film which exhibits a uniaxial anisotropy at room temperature. The easy axis
is perpendicular to the surface. With increasing thickness from the left to the right

the degree of branching increases. (From [10] (used with permission))

A cross section of the example Co was already shown in Fig. 8.5. The top
view is given in Fig. 8.12 The image shows the domain distribution at the
surface of a wedge-shaped Co thin film. On the left side a thin film is present
which is too thin in order to create additional domains near the surface. The
thicker film on the right side allows a dendritic occurrence of the domains
which are due to the branching process.

Crystals Exhibiting a Weak Uniaxial Anisotropy

In order to avoid stray fields these systems tend to create domain walls and
sometimes regions with a magnetization which are not aligned along an easy
direction as schematically depicted in Fig. 8.13.

Crystals Exhibiting a Non-Uniaxial Anisotropy

The domain arrangement in bulk cubic crystals as multiaxial materials is
primarily determined by the principle of flux closure which is due to stray field
minimization. Almost as important is magnetic anisotropy in these materials.
Most details of the domain patterns are therefore determined by the surface
orientation relative to the easy magnetization directions. Several cases must
be distinguished.

From the simplest case, a surface with two easy axes, to strongly misori-
ented surfaces with no easy axes the domain patterns become progressively
more complicated. In positive anisotropy materials, i.e. K1 > 0, such as Fe (see
Table 7.1) the (100)-surface contains two easy [100]-directions (see Table 7.2).
The (110)-surface of a negative anisotropy material, i.e. K1 < 0, such as Ni
(see Table 7.1) is analogous to the (100)-surface of Fe because it exhibits two



8.4 Closure Domains 127

(b)(a) (c)

Fig. 8.13. Generation of domain walls (b) and closure domains (c) which exhibit a
magnetization that is not parallel to an easy magnetization axis in order to reduce
stray field energy

easy [111]-axes (see Table 7.2). Surfaces with only one easy magnetization axis
are, for example, the (110)-surface for a positive anisotropy constant K1 > 0
and the (112)-surface for K1 < 0. The (111)-surface contains no easy axis for
positive anisotropy. The same is true for (100)- and (111)-surfaces of materials
with negative anisotropy. Certainly, domains in Ni-like materials are not the
same as domains in Fe-like materials even if they are investigated on equiv-
alent surfaces. They differ in the details of the allowed domain wall angles
because the easy axes in Fe are all mutually perpendicular whereas this is not
true for Ni-like substances (see p. 120). Domains in the two symmetry classes
are highly analogous, however, so that we need not discuss them separately
in each example.

• Two easy axes in the surface plane
As already mentioned above this situation occurs for the Fe(100)-surface
with two (100)-like directions in the bcc-(100) surface (see Fig. 8.14). For
this magnetic crystallographic system the domain patterns which contains
domains being separated by 180◦ and 90◦ domain walls are easy to in-
terpret (see Fig. 8.15(a)). At every point of a sample usually one of the
crystallographic easy axes is slightly preferred to the others due to small
residual stress and possibly induced anisotropies. Figure 8.15(b) shows a
pattern which was obtained at the same area as the pattern in Fig. 8.15(a)
after another demagnetizing treatment. The details, in particular the mag-
netization directions, differ from those in Fig. 8.15(a) but the locally pre-
ferred axes agree in both patterns.

• One easy axis in the surface plane
One example is given by Fe(110) with only one (100)-like axis within the
bcc-(110) surface (see Fig. 8.16). The basic domain structure is rather
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Fe(100)

<100>

<100>

Fig. 8.14. The bcc-Fe(100) surface exhibits two (100)-like directions both repre-
senting easy magnetization axes

Fig. 8.15. Domains on a (100) surface of silicon-stabilized Fe. (a) The domains
are all magnetized parallel to the surface yielding a particular clear pattern. (b) An
alternate pattern from the same area after another demagnetization. (From [10]
(used with permission))

simple. It consists of domains being magnetized parallel and antiparallel
to the easy [100]-direction (see Fig. 8.17).

• Slightly misoriented surface
This type of surface is characterized by an angle between the surface plane
and the closest easy magnetization direction of about θ < 5◦. In this situa-
tion the basic domains correspond to those of the ideally oriented crystal.
The different patterns are characterized by the introduction of shallow
surface domains collecting the net flux which would otherwise emerge
from the surface. Thus, the effective domain width at the surface is re-
duced. The flux is transported to a suitable surface of opposite polarity
of the magnetic charges and distributed again. Because this system of
compensating domains is superimposed on whatever basic domains would
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Fe(110)

<110>

<100>

Fig. 8.16. The bcc-Fe(110) surface exhibits one (100)-like direction which represents
an easy magnetization axis and a (110)-like direction being a hard magnetization
axis

Fig. 8.17. Domains on a largely undisturbed (110)-oriented Fe crystal which con-
tains small amounts of Si. The isolated lancets as well as the short kinks in the
main walls are connected with internal transverse domains. (From [10] (used with
permission))

be present without the misorientation these domains are known as sup-
plementary domains. In the examples given below the magnetization is
always assumed to follow strictly the easy magnetization directions.
– Two easy axes in the singular surface plane

Typical additional domains belonging to a misoriented (100)-surface
are shown in Fig. 8.18. There are two types of these so-called fir tree
pattern. One is associated with 180◦ domain walls whereas the other
one is connected with 90◦ domain walls. Both orientations of fir tree
pattern may coexist depending on the overall basic domain pattern as
demonstrated in Fig. 8.19.

– One easy axis in the singular surface plane
All surface domains are magnetized along the only available easy axis
but internally the additional easy directions due to the misorientation
help in the flux distribution. In this so-called lancet pattern the flux
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Fig. 8.18. Fir tree patterns on surfaces being misoriented by (a) 2◦, (b) 3◦, and
(c) 4◦ with respect to (100). The diagrams exhibit different scales. (From [10] (used
with permission))

Fig. 8.19. Two kinds of fir tree pattern (a) associated with different wall types in
the basic domain structure as schematically indicated in (b)(From [10] (used with
permission))

is transported away from the surface either to the opposite surface or
towards the neighboring domains. One example for the occurrence of
lancet domains was already given in Fig. 8.17 which are obvious as the
needle-like domains with the opposite magnetization within the large
domains.

• Strongly misoriented surface
The domain patterns encountered on strongly misoriented surfaces are
most involved and certainly not completed understood. Surface domains
on strongly misoriented surfaces are not at all representative for the under-
lying bulk magnetization. The interior domains can only be inferred from
subtle features and the dynamics of the surface pattern. As one example
the surface of Fe(100) with θ = 7◦ is shown in Fig. 8.20. The striking fat
walls are no real walls but traces of internal domains. The pattern mainly
consists of basic domains along the one of the easy axes which are covered
by shallow closure domains magnetized along the other axis. The cross sec-
tion in (c) demonstrates how the charges on the surface are compensated
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Fig. 8.20. Domain observation on an Fe(100)-surface deviating by about 7◦ from
both easy axes. The pattern mainly consists of basic domains along one of the easy
axes which are covered by shallow closure domains being magnetized along the other
axis. The cross section (c) demonstrates how the magnetic charges on the surface are
compensated by charges at the lower boundaries of the shallow domains. Wall energy
is saved in the second step by slightly opening the basic domains (d). (From [10]
(used with permission))

by charges at the lower boundaries of the shallow domains. Wall energy is
saved in the second step by slightly opening the basic domains (d). The
charges on the steeper wall segments formed in this opening process can
be distributed by a small zigzag folding shown in the inset



9

Magnetization Dynamics

The fundamental question of the reaction of the magnetization M for changes
of an external magnetic field H was already discussed in the chapters above
for the situation of a differently constant or slowly varying external field like
hysteretic behavior. Therefore, we have analyzed the static or nearly static
situation.

This chapter deals with the consequences of rapid changes of H , i.e. the
dynamic behavior. We will analyze the reaction of the magnetization

• if the external field is rapidly changed from one constant to another con-
stant value,

• for an alternating magnetic field,
• and for a high-frequent alternating external field.

9.1 Magnetic After-Effect

The magnetic after-effect describes the situation if the magnetization does
not follow the variation of an external magnetic field instantaneously, i.e. it
exhibits a delayed reaction.

Let us assume that an external magnetic field H = H1 is abruptly changed
to H = H2 at the time t = 0 (see Fig. 9.1).

The magnetization does not simultaneously follow the external field. The
magnetization M is modified by a sudden jump of Mi at t = 0 with a subse-
quent slow change of Mn which is time dependent (see Fig. 9.2).

Mn(t) additionally depends on the magnitude of Mi and the magnetic final
state at H2. If H2 is, for example, in the regime where irreversible changes
of the magnetization occur Mn is relatively large. If H2 is in the regime of
reversible rotation processes of the magnetization Mn is relatively small.

A simple situation is given for a logarithmic behavior of Mn with a relax-
ation time τ :

Mn(t) = Mn0 ·
(

1 − e−t/τ
)

(9.1)
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t = 0 t

H

H

H

1

2

Fig. 9.1. Assumed change of the external magnetic field H as a function of time

with Mn0 being the change of the magnetization without the amount of Mi.
A semi-logarithmic plot of Mn(t) as a function of t for Fe containing a small
amount of carbon demonstrates agreement with experiment (see Fig. 9.3).

Due to M = χH the susceptibility does not remain constant after the
change of the external magnetic field caused by the magnetic after-effect:

χ = χi for M ≤ M1 + Mi (9.2)

χ = χn for M > M1 + Mi (9.3)

Without loss of generality we assume H1 = M1 = 0 in order to simplify the
situation (see Fig. 9.4). Thus, we have:

Mi = χiH (9.4)

Mn0 = χnH (9.5)

which allows to define the constant ξ:

ξ :=
χn

χi
=

Mn0

Mi
(9.6)

With:

M∞ = M(t → ∞) = Mi + Mn0 (9.7)

= (χi + χn)H (9.8)

we get:

t = 0 t

M

M

M (t)

1

n

Mi

Fig. 9.2. Change of the magnetization M as a function of time assuming the vari-
ation of an external magnetic field as shown in Fig. 9.1
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Fig. 9.3. Magnetic after-effect at different temperatures observed for Fe which
contains small amounts of C (Data taken from [11])

M(t) = Mi + Mn(t) (9.9)

= Mi + Mn0 ·
(

1 − e−t/τ
)

(9.10)

= M∞ − Mn0 + Mn0 ·
(

1 − e−t/τ
)

(9.11)

t

H

H

t = 0 t

M

M (t)n

Mi

Mn0

M

Fig. 9.4. Time dependence of the external magnetic field H and magnetization M

assuming that H1 = M1 = 0 with respect to Figs. 9.1 and 9.2



136 9 Magnetization Dynamics

= M∞ − Mn0 · e−t/τ (9.12)

Using (9.5) and (9.8) leads to:

M(t) = (χi + χn)H − χnH e−t/τ (9.13)

= χiH + χnH
(

1 − e−t/τ
)

(9.14)

= χiH

(

1 +
χn

χi

(

1 − e−t/τ
)

)

(9.15)

With (9.6) we obtain:

M = M(t) = χiH
(

1 + ξ
(

1 − e−t/τ
))

(9.16)

Let us rewrite this relationship of (9.16) as a differential equation which will
be helpful for the discussion of external alternating magnetic fields. Equa-
tion (9.16) leads to:

M − χiH = χiHξ
(

1 − e−t/τ
)

(9.17)

which can be written as:

d

dt
(M − χiH) = χiHξ

d

dt

(

1 − e−t/τ
)

(9.18)

=
1

τ
χiHξ e−t/τ (9.19)

Equation (9.16) additionally leads to:

χiHξ e−t/τ = χiHξ + χiH − M (9.20)

Inserting into (9.19) results in:

d

dt
(M − χiH) = −1

τ
(M − χiH(1 + ξ)) (9.21)

This expression can be used to describe the influence of an alternating mag-
netic field H which is supposed to be:

H = H0 eiωt (9.22)

on the magnetization which reacts with a delay:

M = M0 ei(ωt−δ) (9.23)

with δ being a phase difference. The unknown quantities are δ and M0 which
will be determined in the following.

The derivatives of the external field and magnetization with respect to
time are:
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dH

dt
= iωH = iωH0 eiωt (9.24)

dM

dt
= iωM = iωM0 eiωt e−iδ (9.25)

Inserting into (9.21) results in:

iωM0 e−iδ − iωχiH0 = −1

τ
M0 e−iδ +

1

τ
χiH0(1 + ξ) (9.26)

Using the relationship eix = cosx + i sin x which can be rewritten as:

e−iδ = cos δ − i sin δ (9.27)

results in the following set of equations after inserting into (9.26):

iωM0(cos δ − i sin δ) − iωχiH0 =

−1

τ
M0(cos δ − i sin δ) +

1

τ
χiH0(1 + ξ) (9.28)

ωM0 sin δ + i(ωM0 cos δ − ωχiH0) =

1

τ
χiH0(1 + ξ) − 1

τ
M0 cos δ + i(

1

τ
M0 sin δ) (9.29)

Thus, two conditions must be fulfilled:

ωM0 sin δ =
1

τ
χiH0(1 + ξ) − 1

τ
M0 cos δ (9.30)

1

τ
M0 sin δ = ωM0 cos δ − ωχiH0 (9.31)

From (9.31) we get:

sin δ = ωτ cos δ − ωτχi
H0

M0
(9.32)

which is inserted into (9.30):

ω2τ2M0 cos δ − ω2τ2χiH0 = χiH0(1 + ξ) − M0 cos δ (9.33)

Thus:
cos δ(M0ω

2τ2 + M0) = ω2τ2χiH0 + χiH0(1 + ξ) (9.34)

which leads to:

cos δ =
1 + ω2τ2 + ξ

M0(1 + ω2τ2)
χiH0 (9.35)

This expression for cos δ is inserted into (9.32):

sin δ = ωτ
1 + ω2τ2 + ξ

M0(1 + ω2τ2)
χiH0 − ωτχi

H0

M0
(9.36)

=
ωτχiH0(1 + ω2τ2 + ξ) − ωτχiH0(1 + ω2τ2)

M0(1 + ω2τ2)
(9.37)



138 9 Magnetization Dynamics

=
ωτχiH0(1 + ω2τ2 + ξ − 1 − ω2τ2)

M0(1 + ω2τ2)
(9.38)

=
ωτξ

M0(1 + ω2τ2)
χiH0 (9.39)

With (9.35) and (9.39) we obtain:

tan δ =
ωτξ

1 + ω2τ2 + ξ
(9.40)

which allows to determine the phase angle δ. Now, we are able to get access
to M0 using (9.31):

M0 =
ωτ

ωτ cos δ − sin δ
χiH0 (9.41)

We directly see that the static behavior M0 = χiH0 is only valid if δ = 0.
Due to the time delay of the magnetization which is equivalent with δ > 0 it
is obvious that the magnetization M exhibits a loss in the dynamic situation.
Thus, δ is called loss angle and tan δ loss factor.

One example for the loss factor tan δ is shown in Fig. 9.5. The temperature
dependence of the loss factor tan δ is given at different frequencies for the same
material with regard to Fig. 9.3. We see that the maximum of the loss factor
occurs at different temperatures T which is a consequence of the temperature
dependence of the relaxation time τ .

The dependence of the loss factor on the relaxation time was already given
by (9.40). The loss factor decreases for large relaxations times due to τ2 in
the denominator. The loss factor also decreases for small relaxation times

200150100500

temperature [°C]

ta
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2000 Hz

4000 Hz

Fig. 9.5. Temperature dependence of the loss factor observed for Fe containing low
carbon amounts. The numerical values are the frequencies of an alternating current
field. (Data taken from [11])
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because the numerator reaches zero and the denominator equals to 1 + ξ �= 0
for decreasing τ . Thus, there must be a maximum of the loss factor which can
be determined by setting the first derivative to zero:

0 =
d tan δ(τ)

dτ
=

ωξ(1 + ω2τ2 + ξ) − ωτξ · 2ω2τ

(1 + ω2τ2 + ξ)2
(9.42)

Thus:
1 + ω2τ2 + ξ − 2ω2τ2 = 0 (9.43)

which results in:

τ =

√
1 + ξ

ω
(9.44)

This means that the relaxation time τ can experimentally be determined
by that frequency which leads to a maximum of the loss factor at a given
temperature.

9.2 Influence of High-Frequent Magnetic Fields

The reaction of the magnetic induction B (and thus also of the magnetization)
on an external alternating magnetic field H with a time dependence given by
(9.22) can be expressed as:

B = B0 ei(ωt−δ) (9.45)

As a consequence the permeability µ becomes complex:

µ =
B

H
(9.46)

=
B0 ei(ωt−δ)

H0 eiωt
(9.47)

=
B0

H0
e−iδ (9.48)

Using (9.27) we get:

µ =
B0

H0
cos δ − i

B0

H0
sin δ (9.49)

Characterizing the real and negative imaginary part of the permeability by:

µ′ =
B0

H0
cos δ (9.50)

µ′′ =
B0

H0
sin δ (9.51)

we obtain:
µ = µ′ − iµ′′ (9.52)
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with µ′ being that component of B which is in-phase with H, i.e. the per-
meability µ equals to µ′ for a vanishing loss. µ′′ denotes the component of B

which exhibits a phase shift of 90◦ compared to H. This means that energy
is required if µ′′ �= 0 in order to maintain this component. The ratio

µ′′

µ′
=

(B0/H0) sin δ

(B0/H0) cos δ
= tan δ (9.53)

corresponds to the loss factor tan δ. An increasing frequency ω results in dif-
ferent types of losses:

• Hysteresis loss
The most important reason for this kind of loss is the movement of domain
walls. It is therefore the dominant loss for low frequencies. For a small
magnetization the loss factor depends on the amplitude of the external
magnetic field. Thus, the distinction to other types of losses can be done
by changing the amplitude of the external field. Hysteresis loss becomes
less important with increasing frequency because the movement of domain
walls is strongly damped at high frequencies and replaced by rotation of
the magnetization.

• Eddy-current loss
This kind of loss is proportional to ω2 and therefore important in the
high-frequency regime. A minimization can be carried out by reducing the
dimension of the system in one or two directions perpendicularly to the
direction of the magnetization, e.g. for thin sheets or in thin film systems
which is important for high-speed data storage.

• Magnetic after-effect
The loss factor tan δ depends on the relaxation time τ and becomes max-
imum at the frequency ω =

√
1 + ξ/τ (see (9.44)). The relaxation time

decreases for increasing temperature. Thus, the loss factor exhibits a max-
imum at a specific temperature which depends on the frequency ω.

At high frequencies a reduction of the permeability can occur correlated with
an increase of the loss factor. This resonance behavior is due to the formation
of electromagnetic standing waves inside the magnetic material if its dimension
corresponds to an integer multiple of the wavelength in the material. This
behavior results in a dimensional resonance which is exemplarily shown in
Fig. 9.6 for a ferrite which is a magnetic alloy of the type MeO · Fe2O3 (Me:
metal) with a very high electric resistance. The significant decrease of the
permeability µ′ is shifted to a higher frequency ν when the size of the ferrite
is reduced.

A resonance behavior may also be induced due to the magneto crys-
talline anisotropy whose corresponding energy density is given by Ecrys =
−MH cos θ. The resonance frequency amounts to ω0 = γµ0Hr with γ = e/m
being the electron gyromagnetic ratio and Hr the field at resonance. This
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Fig. 9.6. Dimensional resonance observed for ferrite cores with different cross sec-
tions. The ordinate is normalized to the value at 1 kHz for µ′. (Data taken from
[12])

means that the rotation of M about the easy magnetization axis for an
external alternating magnetic field with the resonance frequency ω is in reso-
nance with this field. Consequently, abrupt changes of µ′ and µ′′ occur.

9.3 Damping Processes

In Chap. 9.2 we have investigated the influence of an alternating external field
on the magnitude of the magnetization. Now, we want to examine the influence
of a constant external magnetic field on the direction of the magnetization.

Consideration without Damping Processes

Without loss of generality we can assume that a constant external magnetic
field is oriented along the −z-direction, i.e. H = (0, 0,−H). Then, the time
dependence of the magnetization is given by:

dM

dt
= −γµ0(M × H) (9.54)

with γ being the gyromagnetic ratio. Writing (9.54) in Cartesian coordinates
we get:
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Fig. 9.7. Precession motion of the magnetization in the absence of damping

dMx

dt
= γµ0MyH (9.55)

dMy

dt
= −γµ0MxH (9.56)

dMz

dt
= 0 (9.57)

The solution of this set of equations is given by:

Mx = MS sin θ0 eiω0t (9.58)

My = MS sin θ0 ei(ω0t+π/2) (9.59)

Mz = MS cos θ0 (9.60)

with MS the saturation magnetization and ω0 = γµ0Hr. Thus, the magneti-
zation exhibits a precessional motion with a constant angle θ0 with respect
to the z-axis (see Fig. 9.7). As an important consequence the external field is
not able to rotate the magnetization towards its direction.

Consideration Including Damping Processes

Due to damping processes an additional term in (9.54) is necessary which
results in the so-called Landau–Lifshitz equation:

dM

dt
= −γµ0(M × H) − 4πµ0λ

M2
(M × (M × H)) (9.61)

with λ being a measure of the damping (“relaxation frequency”). Using the
relationship:

−M × (M × H) = M2 · H − ((M · H)M) (9.62)

we get for the Landau–Lifshitz equation:
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dM

dt
= −γµ0(M × H) + 4πµ0λ

(

H − (M · H)M

M2

)

(9.63)

A closer look to the individual terms shows that (M · H)M/M2 corre-
sponds to that component of H which is parallel to M . Consequently,
H − (M · H)M/M2 is the component of H which is perpendicular to M .
The additional term therefore describes a torque acting on M . This torque
leads to a rotation of the magnetization towards the direction of the external
magnetic field. Due to the damping process a precessional switching can there-
fore occur. Additionally, the precessional motion will decay unless a source of
external energy is present in order to maintain it.

An implicit assumption which led to the Landau–Lifshitz equation (9.63)
represents the ratio between the inertial term −γµ0(M × H) and the damp-
ing term 4πµ0λ(H − (M · H)M/M2). Equation (9.63) is only valid if the
inertial term is significantly larger than the damping term. By introducing
the damping parameter α:

α =
4πλ

γM
(9.64)

we can express the assumption by α2 ≪ 1. The accurate equation without re-
striction concerning the ratio of both terms is known as the Landau–Lifshitz–
Gilbert equation and given by:

dM

dt
= −γµ0

(

M ×
(

H − α

γµ0M
· dM

dt

))

(9.65)

The equations above are obtained by neglecting terms of higher order in α2.
Writing (9.65) in Cartesian coordinates we get:

dMx

dt
= ω0My + α

My

MS
· dMz

dt
− α

Mz

MS
· dMy

dt
(9.66)

dMy

dt
= −ω0Mx + α

Mz

MS
· dMx

dt
− α

Mx

MS
· dMz

dt
(9.67)

dMz

dt
= α

Mx

MS
· dMy

dt
− α

My

MS
· dMx

dt
(9.68)

Ordering concerning the derivatives results in:

dMx

dt
=

ω0

1 + α2
My +

ω0α

1 + α2

MxMz

MS
(9.69)

dMy

dt
= − ω0

1 + α2
Mx +

ω0α

1 + α2

MyMz

MS
(9.70)

dMz

dt
= − ω0α

1 + α2
MS +

ω0α

1 + α2

M2
z

MS
(9.71)

The solution of this set of equations amounts to:
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Mx = MS sin θ eiωt (9.72)

My = MS sin θ ei(ωt+π/2) (9.73)

Mz = MS cos θ (9.74)

with θ0 the initial angle of the magnetization vector, ω the angular frequency,
and τ the time constant which behave like:

tan
θ

2
= tan

θ0

2
· e−t/τ (9.75)

ω =
ω0

1 + α2
=

ω0

1 +
1

(ω0τ0)2

(9.76)

τ = τ0 · (1 + α2) = τ0

(

1 +
1

(ω0τ0)2

)

(9.77)

using

ω0 = γµ0Hr (9.78)

τ0 =
1

αω0
=

MS

4πλµ0Hr
(9.79)

The precessional motion of the magnetization vector can easily be described
for situations of a very small or a very large damping:

• Very small damping
This case is characterized by 0 < α2 ≪ 1. Due to τ0 = 1/(αω0) we get
ω = 1/(ατ) and therefore 1/ω ≪ τ . This means that a large number of
precessional circulations occurs until the magnetization is oriented along
the direction of external magnetic field H, i.e. until M points to the −z-
direction (see left part of Fig. 9.8).

• Very large damping
In this situation, we have α2 ≫ 1 and therefore 1/ω ≫ τ . Consequently,
the magnetization rotates with significantly less numbers of circulations
towards the −z-direction. The extremal case of less than one circulation
(creep behavior) is shown in the right part of Fig. 9.8.

z

H

�

z

H

Fig. 9.8. Motion of the magnetization for small (left) and large damping (right)
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Fig. 9.9. Relaxation time for switching the magnetization as a function of the
relaxation frequency

Therefore, the switching time of the magnetization increases for small as well
as large values of the relaxation frequency. It is given by:

τ(τ0) = τ0 (1 + α2) = τ0 +
1

τ0ω2
0

(9.80)

due to α = 1/(τ0ω0) (see Fig. 9.9). The minimum can be determined by setting
the first derivative to zero:

0 =
dτ

dτ0
= 1 − 1

τ2
0 ω2

0

(9.81)

which yields:

τ0 =
1

ω0
or λ =

γMS

4π
(9.82)

This condition describes the critical damping with a minimum value of τmin

which is given by:

τmin = τ(τ0 =
1

ω0
) =

2

ω0
=

2

γµ0Hr
(9.83)

9.4 Ferromagnetic Resonance

A perfect alignment of all magnetic moments results in a precession when
applying a static external magnetic field H which is referred to as uniform
mode or Kittel mode. Without damping the precession frequency amounts to
ω0 = γµ0Hr at resonance. The occurrence of a damping mechanism leads to
reversal of the magnetization towards the direction of H within several ns.
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Fig. 9.10. Torque components exerted on the magnetization M by the rotational
field H0

In order to maintain the precessional rotation an additional high-frequent
alternating field with amplitude H0 and angular frequency ω about the z-axis
is necessary which must exhibit a non-vanishing angle φ with respect to
the component of the magnetization perpendicular to the z-axis. The ap-
plied torque L on the magnetization M in cylindrical coordinates is given by
(see Fig. 9.10):

Lr = −MSH0 cos θ sin φ (9.84)

Lθ = MSH0 cos θ cosφ (9.85)

Lz = MSH0 sin θ sin φ (9.86)

Applying a static magnetic field Hz along the z-axis the corresponding
Landau–Lifshitz equation is expressed by the set of equations:

dMr

dt
= γµ0MSH0 cos θ sinφ − 4πλµ0Hz sin θ cos θ (9.87)

dMθ

dt
= −γµ0MSH0 cos θ cosφ + γµ0MSHz sin θ (9.88)

dMz

dt
= −γµ0MSH0 sin θ sin φ + 4πλµ0Hz sin2 θ (9.89)

In the stationary situation the following conditions are given:

dMr

dt
= 0 (9.90)

dMθ

dt
= MSω sin θ (9.91)

dMz

dt
= 0 (9.92)

Comparing both sets of equation leads to:
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γµ0MSH0 sin φ − 4πλµ0Hz sin θ = 0 (9.93)

H0 cos θ cosφ − Hz sin θ = − ω

γµ0
sin θ (9.94)

= −Hr sin θ (9.95)

with Hr = ω0/γµ0 being the resonance field. Using (9.93) we obtain

sin θ =
γMS

4πλ
· H0

Hz
sin φ (9.96)

=
1

α
· H0

Hz
sinφ (9.97)

With the assumption of θ ≪ π which leads to cos θ = 1, (9.95) results in:

H0 cosφ − Hz sin θ = −Hr sin θ (9.98)

Inserting the expression for sin θ into (9.97) we obtain:

H0 cosφ − 1

α
H0 sinφ = − 1

α
· H0Hr

Hz
sinφ (9.99)

and thus

α − tanφ = −Hr

Hz
tan φ (9.100)

which leads to

tan φ = α
Hz

Hz − Hr
(9.101)

For the determination of properties near the resonance Hz = Hr we have
to distinguish whether Hz is larger or smaller than the resonance field. If Hz

is smaller than and becomes equal to Hr, tanφ → −∞ and φ → −π/2. For a
further increase of Hz, tanφ changes to +∞ and φ to +π/2.

Analogously to the complex permeability the susceptibility also becomes
complex with χ = χ′ + iχ′′. The real and imaginary part are given by:

χ′ =
MS

H0
sin θ cosφ (9.102)

χ′′ =
MS

H0
sin θ sinφ (9.103)

Inserting sin θ as given in (9.97) we obtain:

χ′ =
MS

αHz
sinφ cos φ =

MS

2αHz
sin 2φ (9.104)

χ′′ =
MS

αHz
sin2 φ (9.105)

This means that a change of sign for χ′ and a maximum value for χ′′ occur at
the resonance condition Hz = Hr (see Fig. 9.11). It is obvious that the smaller
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Fig. 9.11. Dependence of the real (upper part) and imaginary parts (lower part)
of the susceptibility (χ′ and χ′′, respectively) on the intensity of the field Hz near
the resonance field Hr for different values of α

α is the behavior of χ′ and χ′′ is more pronounced. An increase of α or the
relaxation frequency λ results in a broadening of the absorption behavior
which is a measure of χ′′. The full width w at half maximum (FWHM) is
given for φ = π/4 because of sin2 π/4 = 1/2. Using tanπ/4 = 1 we obtain

1 = α
Hz

Hz − Hr
(9.106)

Therefore, the half maximum value is given at:

Hz =
1

1 − α
Hr (9.107)

Thus, the width w amounts to:

w = 2

(

1

1 − α
Hr − Hr

)

(9.108)

= 2Hr
α

1 − α
(9.109)
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=
2Hr · 4πλ

γMS (1 − 4πλ/γMS)
(9.110)

=
8πλ

γMS − 4πλ
Hr (9.111)

This relationship allows the determination of the relaxation frequency λ by
the measurement of the width w at half maximum.

Problems

9.1. Prove (9.62):

−M × (M × H) = M2 · H − ((M · H)M)

9.2. A spherically shaped sample with saturation magnetization MS = 2T
is magnetized along the z-axis which corresponds to θ = 0. The relaxation
frequency amounts to λ = 2×108 Hz. A constant external magnetic field H =
−200 Am−1 is applied along the −z-direction. Determine the time which is
required to rotate the magnetization from θ = 30◦ to θ = 150◦. Find the
number of precession rotations that occur in this time interval.
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Magnetism in Reduced Dimensions – Atoms

In the chapters above we have considered only bulk-like behavior of materials
with infinite extension in three dimensions. An exemplary consequence is the
neglect of surfaces. In the following chapters magnetic properties are discussed
for systems which exhibit a restriction to the micro- or nanometer regime in
at least one dimension (thin films, wires, nanoparticles, clusters, and atoms
(see Fig. 10.1)). Due to this restriction an influence on the magnetic behavior
occurs by additional parameters like:

3D

1D

2D

0D

Fig. 10.1. Reducing a bulk system from three dimensions without any restric-
tion (3D) to 2D leads to thin film systems, to 1D results in nanoscaled wires, and
to 0D deals with atoms, clusters, and nanoparticles
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• thickness of thin films
• possible magnetism of the underlying substrate
• crystallographic orientation between substrate and nanoscaled object
• interface between substrate and nanoscaled object
• additional interfaces or surface

In this chapter we will restrict our discussion to single atoms on surfaces or
in matrices.

10.1 Single Atoms on a Surface

It is obvious that nanoscaled objects need a support (except free clusters and
nanoparticles) which results in a significant influence due to the existence

of a substrate and the type of substrate itself on the magnetism of the low-
dimensional system.

For 3d metals only Fe, Co, and Ni are ferromagnetic. Some others like Cr
are antiferromagnetic. This behavior is different for low-dimensional systems.
Figure 10.2 shows the calculated local magnetic moments for 3d adatoms on
a Pd(001) surface in comparison to corresponding results for the monolayers
and the impurities in the bulk. It is seen that the moments of the 3d adatoms
are well saturated and, except for V and Cr, are similar to the monolayers and
the impurity moments. The impurity and adatom moments of Fe and Co are
slightly larger than the corresponding monolayer ones. The moment of Ni is
nearly the same for all cases. The more or less equal moments obtained for Fe,
Co, and Ni for the three different environments are basically a consequence of
the fact that in all these cases the majority band is practically filled so that
the moments are determined by the valence electrons and increase by about
1μB in the sequence of Ni, Co, and Fe. The effect of sp−d interactions is rela-
tively small since the major trends are determined by the d−d hybridization.
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Fig. 10.2. Comparison between the calculated magnetic moments per atom of 3d

transition metals as adatoms on Pd(001), 3d monolayers on Pd(001), and 3d impu-
rities in bulk Pd. (Adapted from [13] (used with permission))
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Dramatic environmental effects are, however, found for V and, to a somewhat
smaller extent, for Cr. For a V impurity in bulk Pd the Stoner criterion is
not satisfied since the 3d− 4d hybridization between the impurity 3d and the
bulk 4d states shifts the virtual bound state above the Fermi energy so that
the density of states at the Fermi energy EF is rather small. This can also
explain the rather small moment obtained for the V monolayer on Pd(001).
On the other hand the hybridization of the V adatom is sufficiently reduced
so that a rather large V moment of 2.8μB is obtained. The adatom moments
in Fig. 10.2 essentially follow Hund’s rules of isolated atoms with the largest
moment at the center of the series which is Mn.

Electronic and magnetic properties of ensembles consisting of one or a few
atoms as free particles can be different compared to the situation that the
atom(s) are in contact with matter:

• on a surface
• embedded in a matrix

The atom or particle can cause a charge transfer to or from the matter being
in contact with which leads to a screening by the surrounding electron gas.
The screening potential exhibits an oscillating behavior, resulting in the so-
called Friedel oscillations. This behavior will be discussed in connection with
Fig. 10.5.

For magnetic atoms or particles on non-magnetic surfaces or in non-
magnetic matrices not only a charge transfer can occur. Additionally, a trans-
fer of magnetic moments can be present. Again, the screening of charge results
in Friedel oscillations whereas the screening of magnetic moments can be car-
ried out in two different ways as schematically depicted in Fig. 10.3:

(a) Kondo screening (b) RKKY screening

Fig. 10.3. Different types of screening which can occur for a magnetic atom
on a non-magnetic surface or in a non-magnetic matrix: (a) Kondo screening;
(b) RKKY screening
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• Kondo screening
The Kondo screening results in a compensation of the magnetic moment,
i.e. in a reduction (see Fig. 10.3a). An example is given by Mn atoms in
Cu. A single magnetic atom in a non-magnetic matrix is often referred to
as a Kondo impurity.

• RKKY screening
This kind of screening tends to result in an increase of the magnetic mo-
ment of the atom as schematically shown in Fig. 10.3b. One example is
given by Co atoms in Pd.

Both kinds of screening lead to an oscillatory behavior of the magnetic mo-
ments with distance from the magnetic impurity. The RKKY screening can
result in a ferromagnetic ground state of the atom whereas Kondo screening
leads to a non-magnetic ground state.

The Kondo effect arises as a result of the exchange interaction between
the localized magnetic moment of the impurity and the delocalized electrons
in the metallic host. At sufficiently low temperatures T nearby conduction
electrons begin to align their spins to screen the spin on the local moment. A
many-body spin singlet state is thus formed consisting of the local magnetic
impurity surrounded by a spin compensation cloud of conduction electrons
such that no net moment remains at the Kondo site.

As the constituent electrons in the Kondo screening cloud come predom-
inantly from the Fermi surface of the metallic host the Kondo effect may
spectroscopically be observed as an acute perturbation or resonance in the
renormalized density of states near the Fermi energy EF .

This so-called Kondo resonance can by proven by means of photoelectron
spectroscopy. One example is shown in Fig. 10.4 for different Ce compounds
which exhibit a sharp peak directly at the Fermi edge well below the Konto
temperature.

In Fig. 10.5 scanning tunnelling spectra of Co atoms on Cu(111) are pre-
sented in which the Kondo resonance is manifest as a sharp suppression in
differential conductance dI/dU in the immediate vicinity of EF (U = 0). This
differential (tunnelling) conductance dI/dU is a measure of the local density
of states (LDOS) below the apex of the tip which is used in the scanning
tunnelling microscope. A more detailed discussion is given in Chap. 16.5.

As shown in Fig. 10.5a this resonance is spatially centered precisely on the
Co atoms and decreases over a lateral length scale of about 10 Å. The observed
spectroscopic feature is quite narrow (9 mV full-width at half-maximum,
FWHM) and very strong (the resonance magnitude is about 40% of the zero-
bias conductance).

Resonances associated with the Kondo effect over single magnetic atoms
have been interpreted in terms of the Fano model of interfering discrete and
continuum channels. The observed spectra can be fitted very well by a Fano
line shape in the limit of small coupling to the discrete state; such fits repro-
duce the “dip” structure along with the observed asymmetry and the shift in
the minimum from U = 0.
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Fig. 10.4. Difference spectra of He ii–He i taken with hν = 40.8 eV (He ii) and
hν = 21.2 eV (He i) for a series of heavy fermion Ce compounds which span a wide
range of the Kondo temperature TK . The original spectra were recorded with high
energy resolution of about 5 meV and at 12 K. (Figure reprinted with permission
from [14]. Copyright (1997) by the American Physical Society.)

Fig. 10.5. Detection of the Kondo resonance localized around a single Co atom on
Cu(111). (a) Tunnelling spectra acquired over the Co atom for increasing lateral
displacement. (b) Topograph of an isolated Co atom. (c) dI/dU map of the same
area. Dark to light corresponds to increasing conductance. (Reprinted by permission
from Macmillan Publishers Ltd: Nature (see [15]), copyright (2000))
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The Cu(111) surface exhibits a two-dimensional free electron gas. These
electrons inhabit a surface state band which starts 450 mV below EF . Co
atoms placed on the surface are immersed in the two-dimensional electron
sea. This fact is crucial to these results as it is precisely these electrons that
form the projection medium for the quantum mirage which is described in
Chap. 10.2. In the topograph of Fig. 10.5b the standing waves (equivalently,
the energy-resolved Friedel oscillations) formed from the two-dimensional elec-
trons scattering off a single Co atom are evident.

Using an STM it is possible to spatially map the Kondo screening cloud by
simultaneously acquiring a dI/dU image while U is tuned to a small bias U0

near the edge of the resonance (|U0| ranges from 5 to 10 mV). The presence of
the Kondo resonance at a particular location on the surface removes spectral
density between U = 0 and U = U0 and causes the tip to approach the
sample and thus increases the measured dI/dU signal. Figure 10.5c shows the
dI/dU map associated with the single Co atom topograph in Fig. 10.5b. This
visualization clearly reveals the location and extent of the Kondo resonance
localized at the Co atom site.

10.2 Quantum Mirage

Image projection relies on classical wave mechanics. Well-known examples in-
clude the bending of light to create mirages in the atmosphere and the focusing
of sound by whispering galleries. However, the observation of analogous phe-
nomena in condensed matter systems is a more recent development facilitated
by advances in nanofabrication.

Now, we want to discuss referring to [15] the projection of the electronic
structure surrounding a magnetic Co atom to a remote location on the surface
of a Cu crystal; electron partial waves scattered from the real Co atom are
coherently refocused to form a spectral image or “quantum mirage”. The
focusing device is an elliptical quantum corral being assembled on the Cu
surface. The corral acts as a quantum mechanical resonator while the two-
dimensional Cu surface state electrons form the projection medium.

The discrete electronic states of elliptical quantum corrals are used to
project the mirage. As illustrated in Fig. 10.6a and b an ellipse has the prop-
erty that all classical paths emanating from one focus F1 bounce specularly
off the wall at arbitrary point P and converge on the second focus F2. Fur-
thermore, this path length (dashed line in Fig. 10.6a and b) remains fixed
at F1PF2 =2a independent of the trajectory where a is the semimajor axis
length. Hence, if a scatterer is placed at one focus all scattered waves will add
with coherent phase at the other focus. Constructing a pair of resonators with
the geometries sketched in Fig. 10.6a and b by means of an STM working
at low temperature enables to position Co atoms to form the corral walls.
STM topographs of the assembled resonators are shown in Fig. 10.6c and d
where the electron-confining effects are evident. The mean spacing between
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Fig. 10.6. Elliptical electron resonators. (a) Eccentricity e = 0.5; (b) e = 0.786.
(c), (d) Corresponding topographs of the experimental realizations employing Co
atoms to corral two-dimensional electrons on Cu(111). (e), (f) dI/dU maps acquired
simultaneously with the corresponding topographs tuned to image the Kondo reso-
nance. (Reprinted by permission from Macmillan Publishers Ltd: Nature (see [15]),
copyright (2000))

the Co atoms comprising the resonator walls is roughly four atomic sites on
the underlying Cu(111) lattice. This pair of ellipses shares the same a = 71.3 Å
(hence the same focus-to-focus path length) but has significantly different ec-
centricity e =

√

1 − b2/a2 with b being the semiminor axis. The left and right
columns of Fig. 10.6 pertain to e = 1/2 and e = 0.786 ellipses which corral 84
and 56 electrons, respectively.

The associated dI/dU maps of the empty resonators are displayed in
Fig. 10.6e and f. These maps show the Kondo resonance localized around
each Co wall atom but lack any significant Kondo signal within the ellipse.
The faint interior features derive from the local density of states undulations of
the ellipse eigenmodes closest to EF . From these maps it is clear that the wall
atoms themselves are not projecting the observed Kondo effect (Fig. 10.5a)
into the confines of the resonator.

Next, the effects of placing a single Co atom at various locations inside
each resonator is studied. The results are summarized in Fig. 10.7. For a
given geometry with an interior atom a simultaneous topograph and dI/dU
map is acquired; and then the respective dI/dU map is subtracted shown in
Fig. 10.6e and f in order to remove the background electronic contribution of
the standing wave LDOS and emphasize the Kondo component of the signal.
The resulting dI/dU difference map was therefore tuned to spatially locate
the Kondo signature of Co inside the resonator while the associated topograph
revealed the actual atom locations. The striking results of this measurement
shown in Fig. 10.7a–d reveal two interior positions which the Kondo resonance
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Fig. 10.7. Visualization of the quantum mirage. (a), (b) Topographs showing the
e = 0.5 (a) and e = 0.786 (b) ellipse each with a Co atom at the left focus. (c),
(d) Associated dI/dU difference maps showing the Kondo effect projected to the
empty right focus resulting in a Co atom mirage. (e) and (f) Calculated eigenmodes
at EF (magnitude of the wave function is plotted). When the interior Co atom
is moved off focus ((g) and (h), topographs), the mirage vanishes ((i) and (j),
corresponding dI/dU difference maps). (Reprinted by permission from Macmillan
Publishers Ltd: Nature (see [15]), copyright (2000))

dominates at for each ellipse: One signal is localized on the real Co atom at
the left focus while the other signal is centered on the empty right focus. In
effect, a phantom (albeit weaker) copy of the Co atom has been created by
projecting the localized electronic structure from the occupied focus to the
unoccupied focus thus creating the quantum mirage. However, also visible in
the dI/dU difference maps of Fig. 10.7c and d is reproducible fine structure
throughout the interior of the resonators. Further insight into these observa-
tions comes from treating the system as strictly quantized. Calculations reveal
that the additional features in the conductance maps correspond very well to
the spatial structure of the eigenstate closest to EF (approximating the el-
liptical boundary as a hard-wall box). The magnitude of the corresponding
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Fig. 10.8. Overlap of topographic and electronic properties for the situation that
a Co atom is located in one focal point of the ellipse (From [16]. Image reproduced
by permission of IBM Research. Unauthorized use not permitted.)

eigenstate for each ellipse is plotted in Fig. 10.7e and f. The quantum mirage is
evidently projected predominantly through this state which acts as a conduit
between foci for the Kondo signature. Modified geometries show that if the
Co atom is placed at other positions within the ellipse besides one of the foci,
even at high symmetry points as shown in Fig. 10.7g and h, a corresponding
mirage is not observed (see Fig. 10.7i and j). The Kondo signature detected
at the unoccupied focus (see Fig. 10.7c and d) exhibits about a third of the
strength of that at the focal Co atom while possessing comparable spatial
extent. A component of this signal arises from the simple perturbation of the
eigenmodes pictured in Fig. 10.7e and f as their energies are shifted owing to
an impurity inhabiting a region of high electron probability.

This means that specific electronic properties can be transferred which
is shown in the left part of Fig. 10.8 representing an overlap of topographic
and electronic properties. Due to the correlation of the Kondo resonance with
magnetic behavior magnetic moments are also transferred to the second focal
point without the existence of a magnetic atom at this site (see right part of
Fig. 10.8).

10.3 Reversal of the Spin in a Single Atom

In an experiment using an STM the tunnelling current between the tip and
the sample is carried by elastic and inelastic “channels”. In an elastic tun-
nelling process the energy of the electron is conserved when it hops out of an
occupied state of the negatively biased electrode into an empty state of the
positive one. In contrast, an inelastic tunnelling process requires energy to be
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transferred between the tunnelling electron and the sample. Because this en-
ergy is quantized inelastic channels cannot contribute to the total tunnelling
current if the bias potential is lower than the quantization energy. Above this
threshold there will be a sudden conductance jump between tip and sample.
This effect is the basis of inelastic electron tunnelling spectroscopy (IETS).

When highly diluted magnetic atoms in a non-magnetic host matrix are
exposed to an external magnetic field B the electron potentials of spin up and
spin down atoms become slightly different. The energy required to overcome
the resulting energy gap in a spin-flip process amounts to twice the Zeeman
energy

Espin-flip = 2EZeeman = 2gμBB (10.1)

Because B is an adjustable experimental parameter and the Bohr magne-
ton μB is a fundamental constant this relation can be used to measure the
Landé – g-factor which determines the spin and orbital contributions to the
total magnetic moment.

In the investigation described in [17] and discussed below the reversal of
the spin in a single atom was measured using IETS in order to determine the
magnitude of g.

A topograph of a partially oxidized NiAl surface (see Fig. 10.9A) shows
that the bare metal and the Al2O3 oxide regions are atomically flat. Contrast
on the metal is caused by standing waves in surface state electrons. The cold
sample was subsequently dosed with a small amount of Mn and the same area
was imaged again (see Fig. 10.9B). Single Mn atoms are seen as protrusions
with an apparent height of 0.13nm on the bare metal surface and 0.16nm on
the oxide. The density of Mn atoms on the oxide is significantly smaller than
on the metal presumably due to a lower sticking probability and motion along
the oxide surface during adsorption. The upper set of spectra in Fig. 10.9C
shows the marked magnetic-field dependence of the conductance when the
tip is positioned over a Mn atom on the oxide. At B = 7T the conductance
is reduced near zero bias with symmetric steps up to a about 20% higher
conductance at an energy of ∆ = 0.8 meV. These conductance steps are
absent at B = 0. Furthermore, no conductance steps are observed when the
tip is positioned over the bare oxide surface.

The characteristic signature of spin-flip IETS is a step up in the differen-
tial conductance dI/dU at a bias voltage corresponding to the Zeeman en-
ergy EZeeman = ∆ = gμBB. Figure 10.10A shows that the conductance step
shifts to higher energy with increased field. The measured Zeeman splitting
is proportional to the magnetic field (Fig. 10.10B, black points). The data
fit well with a straight line through the origin and a slope that corresponds
to g = 1.88. A different Mn atom, this one within 1 nm of the edge of an
oxide patch, shows a significantly different g value (gray points) of g = 2.01.
The only difference between these two Mn atoms is the local environment.
Thus, different lateral distances of the Mn atoms to the bare metal region
significantly change electronic and magnetic properties.
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Fig. 10.9. Comparison of Mn atoms on oxide and on metal. (A) STM constant-
current topograph of a NiAl(110) surface partially covered with Al2O3 (upper right).
(B) Same area after dosing with Mn. (C) Conductance spectra on the Mn atom on
oxide (upper curves) measured at B = 7T (black) and B = 0 T (gray). The lower
curves (shifted for clarity) were measured over the bare oxide surface. (D) Conduc-
tance spectra on a Mn atom on NiAl (upper curves) and on the bare NiAl surface
(lower curves). (E) Topograph of the Mn atom on oxide. (F) Spatial map of dI/dU

acquired concurrently; an increased signal (light area) maps the spatial extent of the
spin-flip conductance step. (From [17]. Reprinted with permission from AAAS.)

10.4 Influence of the Substrate

A comparison of the magnetic moments of 3d adatoms on Pd, Ag, and Cu(001)
surfaces is presented in Fig. 10.11. The lattice constant of Cu is about 10%
smaller than the lattice constant of Ag which increases the sp−d hybridization
with the substrate considerably. As a result the magnetic moments of the
adatoms on the Cu surface are always smaller than those on the Ag surface.
Compared to the Ag and the Cu substrates the whole curve for the 3d adatoms
on the Pd substrate is shifted to the right. In fact, we obtain that the Ti
adatom is non-magnetic and the magnetic moments of V and Cr adatoms
are slightly suppressed while the moments of the adatoms at the end of the
d series are enhanced and larger than the moments on the Ag(Cu) surface.
Exactly the same trend was observed for the 3d monolayers on the Pd(001)
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Fig. 10.10. Shift of the spin-flip conductance step with magnetic field. (A) Conduc-
tance spectra (points) for an isolated Mn atom on oxide at different magnetic fields.
(B) Magnetic field dependence of the Zeeman energy ∆. Black points are extracted
from fits in (A), and gray points were taken on a Mn atom near the edge of an oxide
patch. Linear fits (see lines) constrained to ∆ = 0 at B = 0 yield g values of 1.88
and 2.01, respectively. (From [17]. Reprinted with permission from AAAS.)

surface and the 3d impurities in bulk Pd (see Fig. 10.2). It was shown that due
to the hybridization with the 4d band of Pd the d states of the impurities and
the monolayers at the end of the d series are shifted to higher energies leading
to an increase of the LDOS at EF and thus to higher moments. Due to the
large extent of the 4d and the 5d wave functions the differences between the
Pd(001) and the Ag(001) substrates should be more pronounced for the 4d and
5d adatoms. This is clearly shown in Fig. 10.12 where the results for the 4d and
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Fig. 10.11. Comparison of the calculated local magnetic moments of 3d adatoms
on different substrates (Ag(001), Cu(001), Pd(001)). (Adapted from [13] (used with
permission))
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Fig. 10.12. Comparison of the calculated local magnetic moments of (a) 4d

and (b) 5d adatoms on different substrates (Cu(001), Ag(001), Pd(001)). (Adapted
from [13] (used with permission))

the 5d adatoms on the Pd, Ag, and the Cu surfaces are presented. Compared
to the Ag surface the magnetic moments of Ru and Os being isoelectronic to Fe
on the Pd surface are enhanced but the moments of Mo and W (isoelectronic
to Cr) are suppressed while Nb and Ta (isoelectronic to V) are non-magnetic.



11

Magnetism in Reduced Dimensions – Clusters

In the following we want to increase the size, i.e. the number of atoms, of
the magnetic “system” and thus discuss the behavior of magnetic clusters. In
this context a cluster represents an ensemble of atoms which possesses vary-
ing properties with each additional atom (“every atom counts”). Contrarily,
nanoparticles do not show significant changes of their (magnetic) properties
if the number of atoms is changed by a few ones. The differentiation between
clusters and nanoparticles can thus be given by:

• Clusters
Every additional atom in a cluster significantly changes the properties. The
behavior is not monotonous with increasing number of atoms (non-scalable
regime).

• Nanoparticles
Additional atoms only slightly change the physical properties. Different
parameters like the Curie temperature exhibit a monotonous dependence
on the number of atoms in the particle (scalable regime).

In this chapter we will restrict our discussion to clusters whereas in the next
one the behavior of nanoparticles will be considered.

11.1 “Every Atom Counts”

To probe the magnetic properties of 3d ferromagnets x-ray absorption spec-
troscopy (XAS) at the 2p edges where electron transitions are predominantly
into empty 3d states is well suited since the magnetic moments in this case are
entirely carried by the 3d electrons. Using circularly polarized light the spin
and orbital contributions mS and mL, respectively, to the magnetic moments
of the cluster atoms can be separated.

The application of this experimental technique known as x-ray magnetic
circular dichroism (XMCD) to 2p → 3d absorption spectra requires the total
number of 3d hole states nh to be known in order to extract absolute values
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Fig. 11.1. Ratio of Fen orbital mL to spin magnetic moments mS vs. cluster size as
compared to bulk iron (dash-dotted line), ultrathin films (dashed line), and iron nan-
oclusters with an average cluster size of about 400 (dotted line). (Adapted from [18]
(used with permission))

of the spin and orbital magnetic moments. Since nh is not known for small
clusters coupled to a surface and could vary considerably as a function of
cluster size magnetic moments will often be given as moments per 3d hole. The
advantage of giving the ratio of orbital to spin contributions as a measure of
the clusters’ magnetic properties is that uncertainties in cluster magnetization
and photon polarization which would contribute to an error in the absolute
values will cancel each other upon dividing mL by mS .

Let us discuss the magnetic properties of Fen clusters (n = 2 − 9) on a
magnetized Ni surface. The results of the analysis of Fen XMCD spectra are
displayed in Fig. 11.1 and Fig. 11.2. Here, the ratios of mL to mS are plotted
as a function of cluster size for Fe2 through Fe9. These ratios range from 0.11
to 0.27 and, in general, are larger than those observed for bulk iron (dash-
dotted line in Fig. 11.1), iron ultrathin films (dashed line in Fig. 11.1), and
iron nanoscaled cluster films (dotted line in Fig. 11.1). An increasing ratio
of mL to mS is expected with decreasing dimensionality or coordination of
a system; this trend is visible in Fig. 11.1 when going from bulk iron (dash-
dotted line) to small iron clusters. In addition to this more general observation
there is also a non-monotonous variation in the data displayed in Fig. 11.1
with the lowest ratio of mL to mS observed for Fe3 and the highest ratio for
Fe6. This variation reflects the strong dependence of electronic and magnetic
properties on cluster size and geometry in the small size regime.

In addition, the large changes observed in going from n to n ± 1 atoms
per cluster gives evidence that the sample preparation procedure yields single
sized deposited clusters.
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clusters on Ni/Cu(100). (Adapted from [18] (used with permission))

From calculations for small iron clusters on Ag(001) it is expected that the
spin magnetic moment is enhanced over the bulk value and is constant within
10% for small clusters supported on a substrate. Furthermore, for iron atoms
on Ag(100) strongly enhanced orbital moments are predicted by theory which
was already discussed above (see Fig. 10.11). Applying these findings to Fen

on Ni/Cu(001) we can conclude that the large values of mL to mS plotted
in Fig. 11.1 are due to strongly enhanced orbital magnetic moments in Fen

rather than due to reduced values of mS . For a test of this conclusion Fen

magnetic moments per 3d hole are evaluated which are shown in Fig. 11.2.
Indeed, the upper panel in Fig. 11.2 shows that, with the exception of Fe2,
the spin magnetic moments of the Fen clusters are fairly large (approximately
1µB/3d hole) and vary only within 15%–20%. On the other hand the lower
panel in Fig. 11.2 proves that orbital moments per d hole are strongly enhanced
compared to bulk and surface iron and that there is a much larger variation
of these moments (by a factor of five from Fe3 to Fe6) which is responsible for
the observed strong variation in the ratio which was presented in Fig. 11.1.
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11.2 Influence of the Geometrical Arrangement

and Surface Symmetry

As already mentioned above an important factor is the geometrical arrange-
ment of the atoms in the cluster which is located on a surface. Five different
types of clusters on a surface with n = 1−5 atoms are shown in Fig. 11.3: one
single adatom, a dimer, a linear trimer, a square, and a cluster of five atoms
with four atoms forming a cross and one atom in the middle of it. Addition-
ally, different structures are possible for a constant number of atoms n in the
cluster Fen which exhibit different values of the magnetic moment. Further,
the possible arrangements significantly depend on the symmetry of the sur-
face. It is obvious that clusters on a cubic surface exhibit different properties
compared to clusters on a surface with a hexagonal symmetry. Thus, experi-
mentally only averaged values of magnetic moments are generally determined.
But, it is theoretically possible to distinguish between non-equivalent sites and
to calculate individually the magnetic moments.

Let us discuss such properties for planar Fe, Co, and Ni clusters on a
Ag(001) surface considering dimers and linear trimers oriented along the x-
axis, square-like tetramers, centered pentamers, as well as a cluster arranged
on positions of a 3× 3 square denoted in the following simply as 3× 3 cluster.
In Fig. 11.4 for each particular cluster the equivalent atoms with respect to an
orientation of the magnetization along the x- or y-axis are labeled by the same
number. Note that for a magnetization aligned in the z-direction the atoms
labeled by 2 and 3 in the pentamer and the 3 × 3 cluster become equivalent.

Calculations for different orientations of the magnetization prove that the
spin moments are fairly insensitive to the direction of the magnetization while
for the orbital moments remarkably large anisotropy effects apply. For a mag-
netization along the z-axis the calculated values of the spin and orbital mo-
ments for an adatom and selected clusters of Fe, Co, and Ni on Ag(100) are
listed in Table 11.1. In there the position indices in a particular cluster refer to
the corresponding numbers in Fig. 11.4 and the number of nearest neighbors
of magnetic atoms (coordination number nc) is also given.

Fig. 11.3. Possible arrangements of clusters on the Ag fcc (001) surface. The big dark

spheres represent transition metal adatoms and the smaller white ones represent
surface Ag atoms. (Adapted from [19])
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Fig. 11.4. Sketch of the planar clusters being considered. For an orientation of the
magnetization along the x- or y-axis within the plane the equivalent atoms in a
cluster are labeled by the same number. (Adapted from [20])

As compared to the corresponding monolayer values (3.15µB for Fe and
2.03µB for Co) the spin moment of a single adatom of Fe (3.39µB) and Co
(2.10µB) is slightly increased. In the case of Fe clusters the spin moments
decrease monotonously with increasing coordination number. A slight devi-
ation from that behavior can be seen for the 3 × 3 cluster where the atoms
with nc = 2 and 3 exhibit the same spin moment. For the central atom of
the pentamer and, in particular, of the 3 × 3 cluster the monolayer value is
practically achieved. The above results reflect a very short ranged magnetic
correlation between the Fe atoms.

The general tendency of decreasing spin moments with increasing coordi-
nation number is also obvious for the Co clusters up to the pentamer case.
For the 3 × 3 cluster, however, just the opposite trend applies. Establishing

Table 11.1. Calculated spin moments mS and orbital moments mL in units of µB

for small clusters of Fe, Co, and Ni on Ag(100) with magnetization perpendicular
to the surface. For each position in a particular cluster (see Fig. 11.4) nc refers to
the number of the neighboring magnetic (Fe, Co, Ni) atoms. (Data taken from [20])

Cluster Position nc mS(Fe) mL(Fe) mS(Co) mL(Co) mS(Ni) mL(Ni)

adatom 0 3.39 0.88 2.10 1.19

dimer 1 1 3.31 0.32 2.09 0.49

trimer 1 2 3.29 0.25 2.07 0.45 0.77 0.21
2 1 3.33 0.44 2.06 0.49 0.70 0.23

tetramer 1 2 3.26 0.18 2.08 0.32 0.76 0.28

pentamer 1 4 3.13 0.15 2.01 0.25 0.76 0.12
2 1 3.35 0.37 2.10 0.59 0.71 0.33
3 1 3.35 0.37 2.10 0.59 0.71 0.33

3× 3 cluster 1 4 3.15 0.12 2.06 0.23 0.79 0.24
2 3 3.23 0.16 2.04 0.30 0.71 0.20
3 3 3.23 0.16 2.04 0.30 0.71 0.20
4 2 3.23 0.33 2.00 0.29 0.63 0.19
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a correlation between mS and nc for Co seems to be more ambiguous than
for Fe because the changes of the spin moment are much smaller in this case.
Nevertheless, it is tempting to say that in the formation of the magnetic mo-
ment of Co further off neighbors play a more significant role than in the case
of Fe.

For clusters of Ni one can observe an opposite tendency as for Fe and Co:
The spin moment enhances with increasing number of neighbors. This can be
clearly seen from Table 11.1. Having in mind the calculated monolayer value
of 0.71µB the small cluster calculations indicate a fairly slow evolution of the
spin moment of Ni with increasing cluster size implying that the magnetism
of Ni is subject to correlation effects on a much longer scale than in Fe or Co.

Apparently, the orbital moments show a different, in fact, more complex
behavior as the spin moments. For single adatoms of Fe and Co orbital mo-
ments are enhanced by a factor of about 6 and about 4.5, respectively, as
compared to the monolayer values (0.14µB for Fe and 0.27µB for Co). This
is a direct consequence of the reduced crystal field splitting being relatively
large in monolayers, and, in particular, in corresponding bulk systems.

For dimers of Fe and Co, the value of mL drops to about 40% in magnitude
as compared to a single adatom. The evolution of the orbital moment seems,
however, to decrease explicitly only for the central atom of larger clusters. The
(local) symmetry can be correlated with the magnetic anisotropy, i.e., with the
quenching effect of the crystal field experienced by an atom. A single adatom
and the central atom of the linear trimers, pentamers, and the 3 × 3 clusters
exhibit well-defined rotational symmetry, namely, C1, C2, C4, and C4, respec-
tively. The corresponding values of mL, namely 0.88µB, 0.25µB, 0.15µB, and
0.12µB for Fe, and 1.19µB, 0.49µB, 0.25µB, and 0.23µB for Co, reflect the
increasing rotational symmetry of the respective atoms. Although the outer
magnetic atoms exhibit systematically larger orbital moments than the cen-
tral ones even a qualitative correlation with the local environment (nc) can
hardly be stated. The orbital moment for the trimer of Ni is already close to
the monolayer value (0.19µB) but shows rather big fluctuations with respect
to the size of the cluster and also to the positions of the individual atoms.

As already seen the magnitude of the magnetic moments depends on the
coordination number. A further example of this behavior is now given for
4d clusters consisting of Ru on an Fe/Cu(100) surface (see Fig. 11.5). A neg-
ative moment means an antiferromagnetic coupling. One can see that small
linear chains of Ru are ferromagnetic and ferromagnetically coupled to the Fe
surface. At the same time in small plane islands of 9 atoms the transition from
ferromagnetic to antiferromagnetic coupling is found. The central atom in the
plane island of nine atoms has the same coordination as atoms in monolayers.
One can see that the moment of this atom is very close to the moment of
atoms in the Ru monolayer. Thus, the interaction between Ru atoms on fcc-
Fe/Cu(100) leads to the transition from ferromagnetic to antiferromagnetic
coupling.
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Fig. 11.5. Magnetic moment of Ru clusters on fcc Fe/Cu(100). The linear chains are
orientated in the [110]-direction. All moments are given in Bohr magnetons. Negative
values denote antiferromagnetic coupling. (From [21] (used with permission))

As already mentioned above the symmetry of the surface directly influences
the magnetic properties of adsorbed clusters. It is obvious that the geometrical
arrangement of small clusters is rather different on surfaces of cubic crystals
(two- or fourfold) compared to that exhibiting a hexagonal symmetry (sixfold).

Thus, let us discuss this behavior on the magnetic properties of Con atoms
for the situation that the cluster is adsorbed on a hexagonal surface realized
by fcc-Pt(111). The spin and orbital moments as well as the anisotropy con-
stant K per Co atom for particles with up to five atoms are given in Table 11.2.
We see that mS is very stable and nearly independent of the coordination num-
ber because the majority spin band is almost filled in all cases. In contrast to
the spin moment the orbital moment strongly decreases with increasing Co
coordination number from 0.60µB for the single Co adatom to 0.22µB/atom
for the tetramer.

All Co particles prefer a moment orientation perpendicular to the sub-
strate. The values of K show the correct decrease with cluster size as well as
the correct order of magnitude compared with experimental results. Dimer
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Table 11.2. Calculated values of mS, mL, and the anisotropy constant in perpen-
dicular direction K per Co atom for Co particles on Pt(111) being averaged over all
Co sites (Data taken from [22])

n mS [µB ] mL [µB ] K [meV]

1 2.14 0.60 +18.45
2 2.11 0.38 +4.11
3 (chain) 2.08 0.34 +3.69
3 (triangle) 2.10 0.25 +2.22
4 2.08 0.22 +0.75
5 2.08 0.27 +1.81

and trimer chain-like structures also possess large in-plane anisotropies with
6.91 and 6.19 meV/atom, respectively. By comparing particles with different
shape, e.g., the tetramer and the pentamer the calculations show that the
atomic coordination has a stronger influence on mL and K than the absolute
particle size which was also obvious for clusters on Ag(100) (see Table 11.1).
But contrarily, no correlation is found between the particle point group sym-
metry (C3v for the monomer and compact trimer, C2v for the remaining par-
ticles) and changes of mL and K.

11.3 Clusters at Step Edges

In the following let us mainly concentrate on the influence of step edges exem-
plarily on the (100) terrace thus describing in more detail the surfaces vicinal
to the (100) surface. The two families of high-Miller-index surfaces which cut
the crystal along the (100)×(111) and (100)×(110) step edges have Miller in-
dices (2m− 1, 1, 1) and (m, 1, 0), respectively. The terraces exhibited by these
vicinal surfaces are m and (m + 1) atomic rows wide, respectively. As two
examples the fcc-(711) and fcc-(410) vicinal surfaces (see Fig. 11.6) are cho-
sen which exhibit terraces being four atomic rows wide. The calculation of 4d
magnetic monatomic rows on fcc-(711) and fcc-(410) Ag vicinal surfaces are
shown in Fig. 11.7. For both step orientations the rows were placed directly at
step edges or in the middle of the terraces. A direct comparison between the
magnetic moment profiles for the two different step orientations shows that
the magnetic moments for the (100)×(111) rows are smaller than the ones for
the (100)×(110) rows for all the elements except Rh. The main reason for this
decrease in the magnetic moments is the 4d−4d hybridization acting between
the atoms in each row which is much larger for the close-packed rows than
for the open rows where neighboring row atoms are separated by a second
neighbor distance.
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Fig. 11.6. Left: The fcc-(711) vicinal substrate considered to characterize the
monatomic rows at the (100) × (111) step edge. Right: The fcc-(410) vicinal sub-
strate considered to characterize the monatomic rows at the (100) × (110) step edge.
(From [23] (used with permission))
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terraces. (From [23] (used with permission))
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Fig. 11.8. Calculated local magnetic moments per adatom for 4d dimers (C2) on
the Ag(001) surface and for free 4d dimers in free space (with Ag nearest neighbor
distance). For comparison the local moments of single 4d adatoms are also given.
(From [24] (used with permission))

11.4 Comparison Between Free and Supported Clusters

The influence due to the existence of a substrate can be determined by the
comparison of supported clusters and layers with “free” ones. This is depicted
for the example of 4d dimers on Ag(001) in Fig. 11.8. which shows the calcu-
lated local moments per adatom. In order to see the effect of the Ag substrate
calculations for 4d dimers in free space are also performed which the molec-
ular separation has been fixed for to the nearest neighbor distance in Ag. As
a reference also the calculated moments of single adatoms are included. The
comparison of the dimers on Ag with the free dimers shows a strong decrease
of the moments due to the hybridization with the substrate. This is partic-
ularly dramatic for Nb where the moment of 3.16µB for an atom of the free
dimer is totally quenched at the surface. In addition to the reduction of the
moments the maximum of the moment curve is shifted from Mo to Tc. Both
effects arise from the strong hybridization of the 4d wave functions with sp-like
valence electrons of Ag which broadens the local density of states and reduces
the moments. Since the 4d wave functions of the early transition elements have
an especially large spatial extent these moments are much strongly reduced
than the ones of the later transition elements leading to the observed shift of
the peak position to Tc. Calculations for 4d dimers in the Ag bulk show no
or negligible magnetism. Thus, only at the surface the hybridization is weak
enough so that the 4d magnetism survives.
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Magnetism in Reduced

Dimensions – Nanoparticles

As already mentioned in the introduction of Chap. 11 a nanoparticle repre-
sents an ensemble of atoms which does not change its behavior if the number
of atoms is varied by only a small amount. In this chapter we will go into
detail concerning the magnetic properties of nanoparticles.

12.1 Magnetic Domains of Nanoparticles

Assuming a soft magnetic material without any anisotropy a continuous vector
field of the magnetization is expected. Neglecting any crystalline anisotropy
a regular domain pattern can already be present only caused by the shape
which is due to the minimization of the stray field energy. The conditions for
the vanishing of charges of a magnetization vector field are:

• It has to be divergence-free, i.e. free of volume charges.
• It must be oriented parallel to the edges of the nanoparticle and to the

surface in order to avoid surface charges.
• The magnitude of the magnetization vector must be constant.

For a rectangularly shaped element a continuous vector field does not simulta-
neously fulfill all conditions. Inside the element the stray field vanishes but the
magnetization lies not parallel to the whole rim (see Fig. 12.1). All conditions
are only fulfilled if the vector field exhibits linear discontinuities which are
domain walls in reality. The magnetic state which is presented in Fig. 12.1(b)
is known as Landau state. We see that an ordered domain pattern can already
be created only due to the shape of magnetic elements.

An algorithm to construct the domain structure for curved shaped ele-
ments consists of the following characteristics:

• Take circles that touch the edge at two or more points and lie otherwise
completely within the element. The centers of all circles represent a domain
wall.
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(a) (b)

Fig. 12.1. (a) Instead of a continuous vector field, (b) a rectangular shaped soft
magnetic element exhibits linear discontinuities. The magnetic state shown in (b) is
called Landau state. (Reprinted from [25] with permission of the FZ Jülich)

• In each circle the magnetization vector is perpendicular to each touching
radius (see Fig. 12.2a). The walls are then stray-field free.

• If the circle touches the edge in more than two points the center represents
a crossing point of domain walls (dark circle in Fig. 12.2a).

• If the touching points fall together the domain wall ends in the center of
the circle which becomes the central point of a domain with a continuous
rotation of the magnetization (see Fig. 12.2b).

• If sharply shaped edges are present the domain wall proceeds to the corner
(see Fig. 12.2c).

An unambiguousness of the domain pattern is not given as exemplarily shown
for a circularly-shaped element. The algorithm leads to a single circle which
touches the whole surface and the central point is the center of a domain which
exhibits a continuous rotation of the magnetization (see Fig. 12.2d). But,
different domain patterns are additionally observed (see Fig. 12.2e). These
metastable configurations can also be constructed using the algorithm by a
virtual cutting of the element and a subsequent applying of the algorithm
(see Fig. 12.2f).

The realization of a specific domain pattern depends on the magnetic
history and anisotropic effects. Thus, domain patterns are not identical when-
soever a demagnetization was carried out before using alternating magnetic
fields. This behavior is demonstrated using differently shaped permalloy el-
ements (see Fig. 12.3). Here, those domain patterns are shown which occur
with the highest probability. The elements exhibit different easy magnetiza-
tion axes oriented along Ku characterizing a uniaxial anisotropy and different
directions of the demagnetizing field H.

Easy axes oriented along the long axis of the elements (see Fig. 12.3a and
d) mostly result in domains being elongated in the direction of the easy axis
with closure domains at the front side. This is not true for sharp elements and
for ellipses with continuously changing domains (see Fig. 12.3b, c, e, f). If the
easy magnetization axis is oriented along the short axis of the element domains
occur which are rotated by 90◦ (see Fig. 12.3g-l). Despite of an identical
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Fig. 12.2. (a)–(c) Differently shaped soft magnetic elements with their equilibrium
domain structure (only one half of the elements is shown). The construction using
the algorithm discussed in the text is additionally given. A virtual cut (f) allows to
to construct metastable states (e) which possess more domain walls than the ground
state (d). (Reprinted from [25] with permission of the FZ Jülich)

demagnetization procedure different domain patterns can occur (see forth and
fifth row in Fig. 12.3).

Smaller magnetic particles possess simpler domain formations. Less do-
main walls are needed in order to minimize the stray field energy. The extremal
case is represented by single domain particles (see Fig. 12.4). Micromagnetic
simulations allow to calculate the different domain patterns (see Fig. 12.5).
Large particles exhibit a lot of domain walls. Below a size of about 500nm
it is no more energetically favorable to form many domains. Now, the energy
is minimized by the so-called C- and S-states. A further reduction of the size
leads to single domain particles.

An additional important influence is given by the interaction of domain
walls with the rim of the element, i.e. surface, of the magnetic particles
(see Fig. 12.6). If an asymmetric Bloch wall does not touch the surface a
reversible behavior is found (see the lower part of Fig. 12.6). An analogous
behavior occurs for roundly shaped elements (see Fig. 12.7a → d → f → i). A
contact of the domain wall with the surface is equivalent to its annihilation.
Thus, an irreversible behavior occurs (see Fig. 12.7a → e → j → n). The for-
mation of completely different backward pattern sequences results in different
final zero-field states.
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Fig. 12.3. Demagnetized states of various thick film elements. The particles differ
in their shape and in their orientation of their easy axis relative to the particle axis.
The resulting demagnetized states markedly depend on the alternating field axes
used in the demagnetizing procedure. Interestingly, this is not true for elliptical and
pointed shapes with a longitudinal easy axis (b–e, c–f). Different patterns can be
formed under the same conditions as shown in the last two lines which apply to
transverse easy axes and longitudinal alternating current fields. (From [10] (used
with permission))

Fig. 12.4. (a) Rectangular shaped soft magnetic element. (b)–(d) Elliptical Co
elements. The larger element shows either (b) a concentric state or (c) a three domain
state. (d) The concentric state can also be observed in the smaller element after
applying a field along the shorter axis. Otherwise a single domain state is observed
which can be recognized by its black and white contrast. (Reprinted from [25] with
permission of the FZ Jülich)
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Fig. 12.5. Calculated various magnetization states of soft magnetic elements. The
x- and y-components are gray coded. The diagram compares the reduced energy
of different states as a function of the length for a constant length-to-width ratio
of 2 : 1. For elements with a length being smaller than 0.3 µm the quasi single domain
states (C and S) are the stable configurations. (Reprinted from [25] with permission
of the FZ Jülich)

Fig. 12.6. Symmetrical demagnetized domain patterns (top row) of thick film ele-
ments. The domain walls are displaced reversibly in an applied field (second row) and
return almost to their previous position after removing the field. This is documented
in the third row by difference images between positive and negative remanent states.
(From [10] (used with permission))
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Fig. 12.7. Magnetization processes in circular thick film elements showing the in-
teraction of a domain wall that is formed in an applied field (a)–(d) with the sample
edge. If the repulsive interaction is not overcome the process stays reversible (f–(i).
After a punch-through (e) a complete different sequence is observed (j)–(n). The
field which is indicated in every element in units of A/cm starts (a) and ends in
both cases (i,n) at zero. (From [10] (used with permission))

12.2 Size Dependence of Magnetic Domain Formation

For the detailed discussion of size dependent magnetic domain formation let
us choose an array of circular disks consisting of an Ni–Fe–Mo alloy with
an in-plane anisotropy. The spacing between each nanomagnet is always at
least equal to the diameter of the nanomagnet. For the smallest structures it
is as large as three times the diameter. This ensures that there is negligible
magnetostatic interaction between the nanomagnets. Figure 12.8 shows the
complete data set of measured hysteresis loops as a function of the diameter
and thickness of the nanomagnets being normalized in height to remove the
effects of thickness, array size, and array filling factor. The magnetic field
was applied in the plane of the nanomagnets in the direction of the uniaxial
anisotropy easy axis. One sees from Fig. 12.8 two classes of loops which are
shown in detail in Fig. 12.9 with schematic annotation. The first class is typ-
ified by a loop of a nanomagnet with a diameter of 300nm and a thickness
of 10 nm (see Fig. 12.9a). As the applied field is reduced from minus satura-
tion the nanomagnets retain full moment until a critical field slightly below
zero. At this point nearly all magnetization is lost. The magnetization then
progressively reappears as the field is increased from zero until positive satu-
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Fig. 12.8. Hysteresis loops measured as a function of diameter d and thickness t
from circular nanomagnets. For each loop the horizontal axis is the applied field and
the vertical axis is the magnetization. (Figure reprinted from [26] with permission.
Copyright (1999) by the American Physical Society.)

ration is achieved. The sudden loss of magnetization close to zero field is very
characteristic of the formation of a flux closing configuration; the simplest one
is a magnetic vortex which the magnetization vector remains parallel to the
nearest edge in at all points in the circular nanomagnet. A detailed discussion
is given below.

In large structures this state lowers the energy of the system by reducing
stray fields and hence lowering magnetostatic energy. Increasing the field then
deforms the magnetic vortex by pushing its core away from the center of the
nanomagnet until it becomes unstable and the vortex is eventually annihilated
although a field of several hundred Oerstedt has not yet been reached.

The second class of loop is typified by a nanomagnet with a diameter
of 100 nm and a thickness of 10 nm (see Fig. 12.9b). These loops retain a
high remanence of about 80% and switch at a very low field of about 5 Oe.
This is characteristic of single domain behavior: All nanomagnets within the
array retain all of their magnetization to form an array of giant spins and
magnetization reversal occurs by each giant spin rotating coherently.
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(a)

(b)

Fig. 12.9. Hysteresis loops measured from nanomagnets of diameter d and thick-
ness t: (a) d = 300 nm, t = 10 nm; (b) d = 100 nm, t = 10nm. The schematic
annotation shows the magnetization within a circular nanomagnet, assuming a field
oriented up the page. (From [26] (used with permission))

Now, we discuss the more complex magnetic behavior of perpendicularly

magnetized particles on a ferromagnetic surface with an in-plane magnetiza-
tion referring to [27].

Using an STM which is sensitive to the spin polarization of the tunnelling
electrons (a short description of this experimental technique called spin po-
larized scanning tunnelling microscopy SPSTM is given on p. 288)) allows to
determine the topography (see Fig. 12.10(a)) and the magnetic dI/dU signal
(see Fig. 12.10(b)) of 1.28 monolayers (ML) Fe as grown on a W(110) sub-
strate held at room temperature. Thus, Fig. 12.10(b) represents an image of
the spin resolved density of states (SRDOS) at a given energy.

This preparation leads to Fe islands with a local coverage of 2 ML, i.e. dou-
ble layer (DL) islands, surrounded by a closed and thermodynamically stable
ML. As can be recognized in Fig. 12.10(a) the Fe DL islands which are about
10 nm wide are elongated along the [001] direction leading to a length of ap-
proximately 30 nm on average. This sample system can be characterized in
terms of a thickness dependent anisotropy. While the ML preferentially keeps
the magnetization within the film plane the DL islands exhibit a perpendic-
ular anisotropy. Consequently, a magnetic probe tip which is sensitive to the
perpendicular magnetization is expected to image the domain structure of
the DL islands. Indeed, as can be recognized in Fig. 12.10(b) two different
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Fig. 12.10. (a) Topography and (b) magnetic dI/dU signal as measured with a Gd
tip on Fe double-layer islands surrounded by a closed ML Fe/W(110) as prepared
by evaporation of 1.28 ML Fe/W(110). Approximately an equal number of black
and white double layer islands can be found representing opposite perpendicular
magnetization directions. The region in the rectangle is shown in more detail in
Fig. 12.11. (Reprinted from [27] with permission of IOP)

values of the dI/dU signal occur representing islands with their directions of
magnetization aligned parallel or antiparallel to the tip magnetization. Ap-
proximately an equal number of black and white DL islands can be found.
By changing the magnetization direction of adjacent Fe islands between up
and down on a nanometer scale the stray field above the sample surface can
dramatically be reduced.

Within the center of the box in Fig. 12.10(a) an island with a constriction
can be seen. It may be caused by the nearby nucleation of two individual
Fe DL islands in an early stage of the preparation process. As the growth
proceeded the islands coalesced at the constriction thereby forming a single
island. The region around this particular island is shown at higher magnifi-
cation in Fig. 12.11(a)–(c). It can clearly be recognized that a high dI/dU
signal is found in the upper part of the island while a much lower value is
found in the other part. The domain wall is located just at the position where
the constriction becomes narrowest which allows the domain wall energy to be
minimized. Figure 12.11(d) shows a line section of the dI/dU signal measured
along the line in (b). The y-scale indicates that at the position of the domain
wall the dI/dU signal changes by a factor of three which corresponds to an
effective spin polarization of the junction of about 50%. Examining the wall
profile results in a domain wall width w = 6.5 nm.

A close inspection of Fig. 12.11(b) also reveals that some Fe DL islands
are neither white nor black but instead exhibit an intermediate dI/dU signal.
Four of these islands have been marked by circles. Obviously, these islands
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Fig. 12.11. (a) Topography and (b) magnetic dI/dU signal of the region in the
rectangle in Fig. 12.10(a). In the center of the image an island with a constriction
can be recognized. (c) Rendered perspective representation of the topographic data
gray coded by the magnetic dI/dU signal. (d) Plot of dI/dU as measured on the
constricted island along the line in (b). The fit (gray line) results in a domain wall
width of 6.5 nm. (Reprinted from [27] with permission of IOP)

are rather small which suggests that a size dependent effect is responsible for
the variation of the dI/dU signal.

In order to check this first impression the strength of the dI/dU signal of
about 140 individual islands has been analyzed and plotted versus the width
of each particular island along the [11̄0] direction, i.e. the short island axis,
in Fig. 12.12(a). The error bar represents the standard deviation over the
island area. Three different size regimes can be recognized: (I) large islands
exhibit either a high or a low value of the dI/dU signal. An intermediate
signal strength has never been observed for islands with a width of more than
approximately 3 nm. (II) For islands which exhibit a width between 1.8 and
3.2 nm a strong variation of the dI/dU signal is observed. (III) Finally, Fe DL
islands with a width below 1.8nm show an intermediate dI/dU signal.

Qualitatively, this observation can be understood on the basis of the sam-
ple’s complicated nanostructure which is governed by the close proximity of
regions with different anisotropies: While the closed ML exhibits an in-plane
easy axis it is perpendicular for the DL. As long as the DL island is sufficiently
large the local magnetization rotates by 90◦ from in-plane to out-of-plane at
the boundary between the closed Fe ML and the DL islands. This situation is
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Fig. 12.12. (a) Plot of the dI/dU signal strength of about 140 individual Fe islands
versus their geometrical width along the [11̄0] direction, i.e. the short island axis.
(b) In large Fe double layer islands the magnetization rotates out of the easy plane
of the ML into the perpendicular easy axis of the double layer thereby forming a
90◦ domain wall. (c) As the Fe double layer islands become too small it is ener-
getically favorable to keep the magnetization in-plane as the domain wall costs too
much energy. (Reprinted from [27] with permission of IOP)

schematically represented in Fig. 12.12(b). Since the corresponding material
parameters of the Fe ML on W(110) allow the rotation to take place on a much
narrower scale than in the DL the lateral reorientation transition mainly oc-
curs in the ML region around the DL island. As the DL islands become smaller
and smaller the energy which is gained by turning the magnetization into the
easy magnetization direction of the DL decreases until it is smaller than the
energy that has to be paid for the 90◦ domain wall that surrounds the DL
island. Then, it is energetically favorable to keep the magnetization of the DL
in-plane in spite of the fact that the local anisotropy suggests a perpendicular
magnetization direction as shown in Fig. 12.12(c).

12.3 Ring Structures

For all ring structure geometries macroscopic measurements and micromag-
netic simulations suggest the existence of two magnetic states: the “onion”
state accessible reversibly from saturation and characterized by the presence
of two opposite head-to-head walls and the flux-closure magnetic vortex state
(see Fig. 12.13).

It is possible to use an appropriate minor loop field path to obtain rings
in the onion state or in the magnetic vortex state at remanence. Measuring
an array of such rings with a switching field distribution some of the rings
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Fig. 12.13. Two different magnetic states can occur in ring structures. Left:
“onion” state; right: flux-closure magnetic vortex state

can switch into the onion state while some will remain in the vortex state
by following the field path indicated by the arrows in the hysteresis loop in
Fig. 12.14a where the field is relaxed to zero from the middle of the switching
field distribution of the vortex to the onion transition. A low resolution image
by means of photoemission electron microscopy (PEEM) of four rings (outer
diameter D = 1100nm, inner diameter d = 850nm, and thickness t = 15nm of
polycrystalline Co, taken at remanence) is shown in Fig. 12.14b. As expected
some rings are still in the vortex state (two rings have a counter-clockwise
and one ring has a clockwise circulation direction) while one ring has already
switched into the onion state. The spin structure can also be calculated by
micromagnetic simulations. Figure 12.15 shows the result for an onion state
at remanence (a), a magnetic vortex state at applied field (b), and a reversed
onion state with applied field after switching (c).

Fig. 12.14. (a) Hysteresis loop measured on an array of rings of Co. The magne-
tization configurations of the onion and the vortex states are shown schematically.
The arrows indicate the field path used to obtain the rings in the states shown in
(b). (b) Image of four polycrystalline Co rings. The top ring is in the clockwise
vortex state, the bottom and right rings are in the counter-clockwise vortex state,
and the left ring is in the onion state pointing along the direction of the applied
field H . (From [28] (used with permission))
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Fig. 12.15. Micromagnetic calculations of the onion state and vortex state in an
applied field: (a) onion state at remanence, (b) vortex state, and (c) reversed onion
state after switching. The small arrows represent the magnetic moments. (Reused
with permission from [29]. Copyright 2002, American Institute of Physics)

12.4 Magnetic Vortices

A magnetic force microscopy (MFM) image of an array of 3×3 dots of permal-
loy with a diameter of 1 µm and a thickness of 50 nm is shown in Fig. 12.16.
For a thin film of permalloy the magnetic easy axis typically has an in-plane
orientation. If a permalloy dot has a single domain structure a pair of mag-
netic poles reflected by a dark and white contrast should be observed in an
MFM image. In fact, the image shows a clearly contrasted spot at the center
of each dot. It is suggested that each dot has a curling magnetic structure
and the spots observed at the center of the dots correspond to the area where
the magnetization is aligned parallel to the plane normal (see Fig. 12.17).
However, the direction of the magnetization at the center seems to turn ran-
domly, either up or down, as reflected by the different contrast of the center
spots. This seems to be reasonable as up- and down-magnetization are ener-
getically equivalent without an external applied field and do not depend on
the vortex orientation (clockwise or counter-clockwise).

The question arises what is the diameter of this core. The investigation
by MFM gives an upper limit of about 50 nm (see Fig. 12.16) caused by the

Fig. 12.16. MFM image of an array of permalloy dots which are 1 µm in diameter
and 50 nm thick (From [30]. Reprinted with permission from AAAS.)
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Fig. 12.17. Schematic of a magnetic vortex core. Far away from the vortex core
the magnetization continuously curls around the center with the orientation in the
surface plane. In the center of the core the magnetization is perpendicular to the
plane (highlighted). (From [31]. Reprinted with permission from AAAS.)

intrinsic lateral resolution which is due to the detection of the stray field. An
enhanced lateral resolution can be obtained using the technique of SPSTM
which will be discussed in the following for another type of ferromagnetic
nanoparticles referring to [31].

The magnetic ground state of high Fe islands on a W(110) surface of lateral
and vertical size of about 200nm and 10 nm, respectively, is expected to be a
vortex. The dimensions of the particles are too large to form a single domain
state because it would cost a relatively high stray field (or dipolar) energy. But
they are also too small to form domains like those found in macroscopic pieces
of magnetic material because the additional cost of domain wall energy cannot
be compensated by the reduction of stray field energy. The magnetization
continuously curls around the particle center drastically reducing the stray
field energy and avoiding domain wall energy.

A constant current topograph of a single Fe island is shown in Fig. 12.18A.
Though the dI/dU signal on top of such Fe islands is found to be spatially
constant if measured with non-magnetic W tips a spatial pattern can be rec-
ognized in the dI/dU map (see Fig. 12.18B) measured with a tip coated with
more than 100 ML of Cr. This variation is caused by spin polarized tunnelling
between the magnetic sample and the polarized tip. The magnetization of the
tip is parallel to the surface plane. Four different regions, referred to as do-
mains, can be distinguished in Fig. 12.18B. Assuming positive polarization
of tip and sample the observed pattern can be explained by a local sample
magnetization that is parallel (bottom) and antiparallel (top) to the magne-
tization of the tip, respectively. An intermediate contrast in the left and the
right domain shows that magnetization of tip and locally of the sample are
almost orthogonal. A corresponding domain pattern exhibiting a flux-closure
configuration is indicated by the arrows in Fig. 12.18B. However, because
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Fig. 12.18. (A) Topography and (B) map of the dI/dU signal of a single 8 nm high
Fe island recorded with a Cr coated W tip. The vortex domain pattern can be
recognized in (B). Arrows illustrate the orientation of the domains. Because the
sign of the spin polarization and the magnetization of the tip is unknown the sense
of vortex rotation could also be reversed. (From [31]. Reprinted with permission
from AAAS.)

neither the absolute direction of magnetization of tip nor the sign of polariza-
tion of tip and sample is known the opposite sense of rotation would also be
consistent with the data.

In order to gain a detailed insight into the magnetic behavior of the vortex
core a zoom into the central region is carried out where the four “domains”
touch and where the rotation of the magnetization into the surface normal
is expected. Maps of the dI/dU signal measured with Cr-coated tips that
are sensitive to the in-plane and out-of-plane component of the local sample
magnetization are shown (see Fig. 12.19A and B, respectively). The dI/dU
signal as measured along a circular path at a distance of 19 nm around the
vortex core (circle in Fig. 12.19A) is plotted in Fig. 12.19C. The cosine-like
modulation indicates that the in-plane component of the local sample magne-
tization continuously curls around the vortex core. Figure 12.19B which was
measured with an out-of-plane sensitive tip on an identically prepared sample
exhibits a small bright area approximately in the center of the island. There-
fore, the dI/dU map of Fig. 12.19B confirms that the local magnetization in
the vortex core is tilted normal to the surface (cf. Fig. 12.17). Figure 12.19D
shows dI/dU line sections measured along the lines in (A) and (B) across the
vortex core. It is predicted theoretically that the shape of a vortex core is
determined by the minimum of the total energy which is dominated by the
exchange and the magnetostatic or demagnetization energy. Compared with
the latter, the magneto crystalline anisotropy energy, which is relevant for the
width of bulk Bloch walls and the surface anisotropy are negligible as long as
thin films made of soft magnetic materials like Fe are used. For the thin film
limit (i.e., thickness = 0) the vortex width as defined by the slope of the
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Fig. 12.19. Magnetic dI/dU maps as measured with an (A) in-plane and an
(B) out-of-plane sensitive Cr tip. The curling in-plane magnetization around the
vortex core is recognizable in (A) and the perpendicular magnetization of the vor-
tex core is visible as a bright area in (B). (C) dI/dU signal around the vortex core
at a distance of 19 nm [s. circle in (A)]. (D) dI/dU signal along the lines in (A) and
(B). (From [31]. Reprinted with permission from AAAS.)

in-plane magnetization component in the vortex center is given by w =
2
√

A/K (see p. 124) and amounts to 6.4 nm. This value is in reasonable
agreement with the experimental result of w = 9 nm.

12.5 Single Domain Particles

Particles which exhibit only one single domain are called Stoner–Wohlfarth-
particles and are therefore uniformly magnetized to saturation MS . The de-
scription is given below in the Stoner–Wohlfarth model.
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The variation of the magnetization in an external magnetic field depends
on the anisotropy of this element characterized by the anisotropy constant K
which can be due to the shape or to the crystalline structure. Without any
anisotropy the magnetization MS is always oriented parallel to the external
magnetic field H.

If we assume a uniaxial anisotropy the corresponding anisotropy energy
density term is given by:

E = K sin2 θ − μ0HMS = K sin2 θ − μ0HMS cos(γ − θ) (12.1)

with θ being the angle between MS and the easy magnetization axis which
shall be oriented along the x-axis (see Fig. 12.20). The plane which the magne-
tization can rotate in is defined by the easy axis and the vector of the external
magnetic field H which exhibits the angle γ with respect to the x-axis. The
decomposition of H in its Cartesian components leads to:

E = K sin2 θ − μ0MSHx cos θ − μ0MSHy sin θ (12.2)

The shape or magneto crystalline anisotropy and the external magnetic field
are acting in the opposite direction on the magnetization. Thus, the energy
becomes minimum at a specific angle θ which can be determined by setting
the first derivative to zero:

0 =
dE

dθ
= 2K sin θ cos θ + μ0MSHx sin θ − μ0MSHy cos θ (12.3)

With:

α =
2K

μ0MS
(12.4)

we obtain:
α sin θ cos θ + Hx sin θ − Hy cos θ = 0 (12.5)

which can be rewritten as:

Hy

sin θ
−

Hx

cos θ
= α (12.6)

This equation is a quartic expression in cos θ. Therefore, two or four real
solutions exist which depends on the magnitude of H . Two solutions result in

�

H

M

easy axis

hard
axis



Fig. 12.20. Magnetization M of a single domain particle exhibiting a uniaxial
anisotropy in an external magnetic field H
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Fig. 12.21. Functional dependence of E/K on the angle θ between the easy magne-
tization axis and the direction of the magnetization for a constant value of γ = 30◦

which represents the angle between the easy axis and the direction of the external
magnetic field. The curves differ in the magnitude of the external field. Curve A:
H = 0.5K/µ0MS ; curve B : H = 1.0K/µ0MS ; curve C : H = 1.5K/µ0MS ; curve D:
H = 2.0K/µ0MS

one minimum, i.e. the magnetization MS exhibits one equilibrium orientation.
Four solutions lead to two minima and thus to two equilibrium orientations
of MS . A graphical representation of both cases is given in Fig. 12.21 which
shows the dependence of the energy E/K on the angle θ between the easy
magnetization axis and the direction of the magnetization. The angle between
the easy axis and the external magnetic field is set to γ = 30◦ for all curves
which differ in the magnitude of the external field.

Let us first discuss the situation that the external magnetic field is ori-
entated parallel to the easy axis, i.e. Hx = H and Hy = 0 which results in
(cf. (12.5)) α · cos θ + H = 0. We obtain two real solutions for all values of
−1 ≤ H/α ≤ +1 and only one for |H/α| > 1. Thus, if the applied field and
the magnetization of the single domain particle are oriented along the positive
value of the easy axis, i.e. γ = 0 and θ = 0, the first derivative possesses a
positive value in a stable position. Reducing the external field to zero and
subsequently increasing it to negative values (γ = 180◦) until −1 ≤ H/α
the magnetization has its saturation magnitude and is aligned along the pos-
itive direction of the easy axis. With an increase of the external field the first
derivative of the energy decreases and the energy of the domain is approach-
ing the local extremum. As soon as the external field reaches the value of α
the first derivative changes its sign and the magnetization becomes unstable.
It shows a sudden switch into the direction of the external field. Thus, the
magnetization is switching from a positive to a negative value. Due to this
behavior α is called switching field. This process leads to a completely irre-
versible magnetization as it can be seen in the right part of Fig. 12.23 for
γ = 0.
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Let us now assume that the external field is applied perpendicular to the
easy axis, i.e. γ = 90◦, Hx = 0, and Hy = H . In this situation (12.5) is given
by α · sin θ − H = 0. Therefore, the component of the magnetization parallel
to the applied field is a linear function of the external field and depicted in the
right part of Fig. 12.23 for γ = 90◦. We do not observe any hysteretic behavior;
the magnetization is completely reversible. The saturation is reached if the
magnitude of the external field exceeds the switching field. The first derivative
of the energy changes sign while the magnetization turns to the direction of
the applied field.

If the external field is applied towards an arbitrary direction to the easy
axis the magnetization is partly reversible and partly irreversible. The critical
angle which the magnetization switches at from one stable position to the
other one can be determined using (12.5). One example is given in the right
part of Fig. 12.23 for γ = 45◦.

Within the plane defined in Fig. 12.20 two regions exist with one or two
equilibrium orientations of MS . The boundary between both regions where
the equilibrium direction becomes discontinuous for a continuous change of
the external field is characterized by the condition:

∂2E

∂θ2
= 0 (12.7)

This second derivative amounts to:

∂2E

∂θ2
= Hx cos θ + Hy sin θ + α(cos2 θ − sin2 θ) (12.8)

Inserting of α (see (12.6)) leads to:

∂2E

∂θ2
=

Hx

cos3 θ
+

Hy

sin3 θ
(12.9)

Thus, at the boundary the following two conditions are fulfilled (see (12.6)
and (12.9)):

Hy

sin θ
−

Hx

cos θ
= α (12.10)

Hy

sin3 θ
+

Hx

cos3 θ
= 0 (12.11)

The solution of this set of equations is given by:

Hx = −α cos3 θ (12.12)

Hy = α sin3 θ (12.13)

Introducing reduced magnetic fields:

hx =
Hx

α
= − cos3 θ (12.14)

hy =
Hy

α
= sin3 θ (12.15)
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Fig. 12.22. Astroid curve of a Stoner–Wohlfarth particle with (a) two or (b) one
equilibrium direction of the magnetization which depends on the magnitude of the
reduced magnetic field h

we obtain:
h2/3

x + h2/3
y = 1 (12.16)

The graphical representation of the solution allows to determine the equilib-
rium direction of the magnetization M and is called Stoner–Wohlfarth astroid
which is depicted in Fig. 12.22.

One of the possible tangent lines through the tip point of h represents the
equilibrium direction of the magnetization. If h is within the astroid four tan-
gent lines exist and there are two equilibrium directions of the magnetization
which are given by that lines with the smallest angles with respect to the easy
axis θ1 and θ2 (see Fig. 12.22a). But, if h is outside the astroid two tangent
lines are possible and then only one equilibrium direction of M occurs which
is realized by the line which exhibits the smaller angle with respect to the
easy axis θ1 (see Fig. 12.22b).

The astroid also allows to generate the hysteresis curve for an arbitrary
direction of the external magnetic field. This is exemplarily shown in the left
part of Fig. 12.23 assuming that the external field has a direction of A – B
and its reduced magnitude varies between −h and +h characterized by the
points 1 to 6.

A hysteresis loop of the Stoner–Wohlfarth particle is represented by
starting its magnetization from the magnitude −h, given by point 1, then
monotonously increasing the value along the path from point 2 to 5 to +h,
given by point 6, and subsequently decreasing the magnitude back to −h.
Moving the value of the external field along the path A – B the equilibrium
direction of the magnetization is changing with the corresponding tangent
lines to the right side of the astroid (solid lines) until point 5 is reached.
At this point the magnetization flips and the tangent lines switch from the
right to the left side of the astroid (dashed line). The stable orientation of the
magnetization is characterized by the tangent line to the last point 6. At
the way back along the path B – A the equilibrium direction belongs to the
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Fig. 12.23. Left: Variation of the reduced external magnetic field along the
path (A)–(B) in relation to the astroid of a Stoner–Wohlfarth particle (details see
text). Right: Hysteresis loop of a Stoner–Wohlfarth particle for different angles γ
between the external magnetic field and the easy magnetization axis

tangent lines of the left side of the astroid (dashed lines). At point 2 the mag-
netization flips again and the tangent line switches from the left to the right
side (solid line).

Therefore, the equilibrium direction of the magnetization is continuously
changing if the external field is moving from the outside to the inside region
of the astroid. An abrupt change of the direction of the magnetization occurs
if the reduced external field crosses the astroid from the inside to the outside
region. The points of the path A – B being inside the astroid exhibit two stable
orientations of the magnetization which results in two different branches of
the hysteresis loop (see right part of Fig. 12.23).

12.6 Superparamagnetism of Nanoparticles

As discussed above a sufficiently small ferromagnetic nanoparticle consists of
a single domain. The direction of its magnetization M is determined by an
external magnetic field H and by internal forces.

Let us assume that M can only rotate within a particular plane, e.g.,
being coplanar to the surface of a particle. Due to the magneto crystalline
anisotropy the energy density Ecrys depends on the rotation angle θ and char-
acterizes the situation for a given direction of M . The difference between the
maximum and minimum value of the energy density amounts to ∆Ecrys. If
the energy difference ∆E, i.e. V ·∆Ecrys with V being the volume of the par-
ticle, is very large in comparison with the thermal energy kT it is allowed to
ignore thermal excitations for any reasonable measurement times. The static
magnetization curves can simply be determined by minimizing the energy
density at each H resulting in hysteresis because in certain field ranges there
are two (e.g. upon uniaxial anisotropy shown) or more minima and transi-
tions between them are neglected. If the energy difference ∆E is very small in
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Fig. 12.24. Assuming a uniaxial magnetic anisotropy for a small nanoparticle the
energy minimum is realized for both opposite magnetization states. A change be-
tween both states can only occur if the energy barrier ∆E is overcome which may
be possible due to thermal excitations, i.e. if kT > ∆E. Below the blocking temper-
ature TB = ∆E/k each magnetization state is stable

comparison with kT thermal excitation causes continual changes in the orien-
tation of the magnetization for each individual particle which is schematically
depicted in Fig. 12.24. In an ensemble of such particles it maintains a distribu-
tion of orientations. This behavior is like that of an ensemble of paramagnetic
atoms (see Chap. 2.3). Thus, there is no hysteresis. This phenomenon is called
“superparamagnetism”.

Under intermediate conditions changes of the orientation occur with relax-
ation times being comparable with the time of a measurement. The fluctuation
exhibits a period of:

τ = τ0 e∆E/kT (12.17)

with ∆E being the energy difference between two opposite magnetization
states. We directly see that the thermal fluctuations occur if the temperature T
is larger than a critical temperature TB. Thus, M vanishes. Below TB the
spin blocks are frozen out. Therefore, TB is called blocking temperature and
represents the superparamagnetic limit for a stable magnetization.

The fluctuation period becomes reduced if the temperature increases and
if the volume of the particle decreases which is important concerning magnetic
data storage devices.

As one example concerning superparamagnetism of small particles we will
discuss, referring to [32], the magnetic behavior of Fe nanoparticles consisting
of one atomic layer high patches on a Mo(110) surface. Figure 12.25(a) shows
the correspondent constant-current STM image of the topography of 0.25 ML
Fe deposited on Mo(110) at room temperature. Two atomically flat Mo(110)
terraces are visible. They are decorated with Fe islands which are slightly
elongated along the [001]-direction. Simultaneously with the topography maps
of the differential conductance dI/dU were recorded using an out-of-plane
sensitive Cr coated probe tip (see Fig. 12.25(b)). Although the spin averaged
electronic properties of all Fe islands are identical one can recognize bright
and dark islands in Fig. 12.25(b) representing two different values of the local
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Fig. 12.25. (a) Topographic STM image and (b) the simultaneously measured out-
of-plane sensitive magnetic dI/dU signal of two Mo(110) terraces decorated with
Fe islands (overall coverage 0.25 ML). The line section (lower panel) reveals that
the substrate’s step edge and the islands are of monatomic height. During image
recording one island switches from dark to bright (inset). (From [32] (used with
permission))

dI/dU signal. This variation is caused by spin polarized vacuum tunnelling
between the magnetic tip and islands which are magnetized perpendicularly
either up or down.

Most of the islands exhibit a surface area A ≥ 40 nm2 and therefore possess
a barrier large enough to inhibit superparamagnetic switching at T = 13K be-
ing the temperature during measurement. Consequently, their magnetization
direction remains constant resulting in the same dI/dU signal in successive
scans. Few smaller islands, however, are found to be magnetically unstable
on the time scale of the experiment, i.e. several minutes. Such an island with
A = 26 nm2 is shown at higher magnification in the inset of Fig. 12.25(b).
The dI/dU signal changes between two subsequent scan lines from a low
value (dark) at an early time of the scan (bottom part of the image) to a
higher value (bright). This signal variation is caused by superparamagnetic
switching.

From (12.17) it is expected that the switching rate exponentially increases
with increasing temperature. This can be checked by successively scanning
along the same line thereby periodically visiting four islands “a”–“d”(inset
of Fig. 12.26). Measurements were performed at temperatures T1 = 13K and
T2 = 19K for 5.5 min with a line repetition frequency of 3 Hz. At every passage
the dI/dU signal of the islands was recorded (see Fig. 12.26). At T1 = 13 K
(left panel) the relatively large islands “a” (A = 30 nm2), “d” (A = 71 nm2),
and “c” (A = 28 nm2) do not switch. This magnetic stability is a result of
their large anisotropy energy that prevents superparamagnetic switching at
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Fig. 12.26. Magnetic switching behavior of the Fe islands (a)–(d) (inset) measured
at T = 13 K (left panel) and T = 19 K (right panel). The switching rate increases
with increasing temperature thereby proving the thermal nature of the observed
effect. At T = 19 K the switching rate of island b exceeds the line repetition rate
resulting in an intermediate and blurred signal. (From [32] (used with permission))

this temperature. In contrast, island “b” (A = 18 nm2) with its lower barrier
reverses its magnetization direction 31 times within the observation time. In
qualitative agreement with (12.17) the switching rate of any island increases
as the temperature is increased to T2 = 19 K (right panel). Islands “a”, “c”,
and “d” reverse their magnetization direction 18, 10, and 1 times, respectively.
Since the switching rate of island “b” exceeds the line repetition rate single
switching events cannot be resolved and an intermediate and blurred dI/dU
signal is measured above island “b”.

With regard to magnetic data storage the critical size for the superparam-
agnetic limit can be estimated for room temperature. Typical parameters in
(12.17) are τ0 ≈ 10−10 s, kT = 25 meV for T = 300 K, and E ≈ n · 0.2 meV
with n being the number of atoms. Assuming a long-term stability of 10 years
we get τ = 3 · 108 s. Equation (12.17) can be rewritten as:

E = kT ln
τ

τ0

(12.18)

Inserting the parameters we obtain n = 5300 atoms as the lower limit. As-
suming a cube this number corresponds to an edge length of about 4 nm.
For thin films with a thickness of five monolayers it corresponds to a size of
8 nm. Such cubes correspond to a storage density of about 10000 Gbit/inch2

whereas today’s hard disks exhibit a value of about 100 Gbit/inch2.
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12.7 Magnetism of Free Nanoparticles

The preparation of nanoparticles as free particles enables the characterization
without the influence of a surface or a matrix. Their properties are between
that of atoms and of the solid state due to the enhanced number of surface
atoms with reduced coordination number. Assuming a cube-shaped nanopar-
ticle the amount of surface atoms is given in Table 12.1 for different sizes.
This means that particles containing 1000 atoms exhibit 50% surface atoms.
And even particles with 100000 atoms possess 13% atoms at the surface.

The preparation of free nanoparticles can be carried out in a gas beam
under vacuum conditions in order to avoid the influence of contaminants. The
magnetic moments of free Fen nanoparticles with n = 25 − 700 at a temper-
ature of 120K are given in Fig. 12.27. Up to about n = 120 the magnetic
moment amounts to about 3μB with relatively large oscillations and max-
ima near n = 55 and n = 110. The magnetic moment gradually decreases
from 3μB at n = 240 to 2.2μB at n = 520. For larger sizes it remains nearly
constant.

Several features can qualitatively be understood from element-specific
properties of Fe. Atoms of this element possess 8 valence electrons; as al-
ready discussed on p. 37 approximately 7 electrons are in the 3d bands and
one in the 4s band. In the case that the 3d spin up band is fully polarized it is
occupied with 5 electrons (since it is completely below the Fermi level) leaving
2 electrons in the 3d spin down band. Consequently, each atom contributes
(5−2)μB = 3μB to the total moment. (i.e. intersect the Fermi level) the mag-
netic moment is reduced to less than 3μB. This is the case for bulk Fe where
the magnetic moment amounts to about 2.2μB. Applying this knowledge to
Fig. 12.27 it appears that the fully polarized majority spin band case applies
for small nanoparticles (n < 140). Between n ≈ 140 and n ≈ 550 there seems
to be a gradual transition from the fully polarized band to a more bulk-like
situation. For larger n the magnetic moment corresponds approximately with
the bulk value.

Table 12.1. Atoms in the bulk and at the surface for cube-shaped nanoparticles
with different sizes

Ratio of surface
Shells Atoms Bulk atoms Surface atoms atoms [%]

1 1 0 1 100
2 8 0 8 100
3 27 1 26 96
5 125 27 98 78

10 1000 512 488 49
20 8000 5832 2168 27
50 125000 110592 14408 12

100 1000000 941192 58808 6
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Fig. 12.27. Magnetic moments per atom of iron nanoparticles at T = 120 K. Hor-
izontal bars indicate nanoparticle size ranges with n being the number of atoms in
the nanoparticle. (Data taken from [33])

Figure 12.28 shows the magnetic moments of nickel and iron nanoparticles
as a function of their sizes for two temperatures. We see a decrease of the
magnetic moments with increasing size and with increasing temperature as
well as the trend towards the bulk limit. For free Ni particles bulk-like behavior
is given above 400 atoms at T = 78K (see Fig. 12.28a). The magnetic moments
of Fe nanoparticles as a function of temperature are shown in Fig. 12.28b.
At room temperature Fe particles with about 600 atoms exhibit a reduced
magnetic moment compared with the bulk. This is due to a different crystalline
structure of the particles (fcc) compared to the bulk (bcc).

As a first estimation of the structure of a free nanoparticle a truncated
octahedron is shown in Fig. 12.29. This polyhedron is the equilibrium shape
of fcc cobalt or nickel nanoparticles. The different positions are depicted in
Fig. 12.29.

A more realistic morphology for cobalt nanoparticles is given in Fig. 12.30a.
The surface of a perfect truncated octahedron is randomly covered with ad-
ditional Co atoms. This particle contains 1489 atoms. Considered surface
anisotropy constants are nearly one order of magnitude larger than shape
anisotropy ones. Easy and hard axes for shape and surface anisotropies are
reported on the switching field distribution in Fig. 12.30b. The aspect ratio
is equal to 1.014. The shape and surface anisotropies add up. However, the
resulting anisotropy is not large enough compared with experimental results.
Therefore, surface atoms must be “organized” in order to increase the aspect
ratio and anisotropy constants.

The most probable cluster geometries are displayed in Fig. 12.31a and
Fig. 12.31b. The first particle contains 1357 atoms, (001)- and (111)-facets are
filled with surface atoms; its aspect ratio is 1.09. The second particle contains
1405 atoms; (001)-, (111)-, and (1̄1̄1̄)-facets are filled with surface atoms. Its
aspect ratio is 1.15. Considered anisotropy constants are close to experimental
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Fig. 12.28. Magnetic moment per atom in Bohr magneton units as a function of
size. The lines are guides for the eyes. (a) Nickel results at 78 K. The values of
the magnetic moment at 295 K are not reported as they would be superposed to
the ones pictured. With increasing size the magnetic moment of the nanoparticles
converges towards the bulk value (dashed line). (b) Iron results at 78 K and 295 K.
Note the decrease from 130 up to 600 atoms below the bulk value (dashed line)
and the progressive convergence as the size is further increased. (Adapted from [34]
(used with permission))
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Fig. 12.29. The different atomic positions at the surface of a perfect truncated
octahedron containing 1289 atoms. This polyhedron is the equilibrium shape of
fcc clusters according to the Wulff theorem. It exhibits 8 (111)- and 6 (100)-facets.
(From [35] (used with permission))

Fig. 12.30. (a) Perfect truncated octahedron (bright atoms) randomly covered with
surface atoms (dark atoms). This particle contains 1489 atoms and the surface cov-
erage is 42%. Aspect ratios are different from one which leads to second-order terms
in the anisotropy energy. (b) Corresponding three-dimensional switching field distri-
bution. This surface is very complex due to the mixing of second- and fourth-order
anisotropy terms with different easy and hard magnetic axes. Easy and hard axes
for shape and surface anisotropies are directly reported on the surface. (From [35]
(used with permission))
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Fig. 12.31. (a) Perfect truncated octahedron (bright atoms) whose (001)- and (111)-
facets are filled with surface atoms (dark atoms). It contains 1357 atoms and the
surface coverage is 14.2%. Its aspect ratio is close to one and adding shape and sur-
face anisotropies leads to anisotropy constants close to experimental ones. (b) Perfect
truncated octahedron (bright atoms) whose (001)-, (111)-, and (1̄1̄1̄)-facets are filled
with surface atoms (dark atoms). It contains 1405 atoms and the surface coverage
is 24.2%. Its aspect ratio is close to one and adding shape and surface anisotropies
leads to anisotropy constants close to experimental ones. (From [35] (used with
permission))

values. Moreover, these two last geometries are consistent with the growth
mode of cobalt nanoparticles. Indeed, the growth of a truncated octahedron
to one which is one atomic layer larger occurs by the filling of successive facets.
The resulting nanoparticles are nearly spherical, i.e. their aspect ratio is close
to one, but the surface anisotropy is strong enough to explain the large value of
experimental anisotropy constants. The physical picture is the following: The
interface anisotropy leads to easy and hard axes for the whole surface spins
which are strongly exchange coupled with core spins. As a result magnetic
anisotropy is completely driven by interface anisotropy. This assertion is only
available for small nanoparticles with large surface-to-volume ratios. For the
cobalt nanoparticles the mean value is 37%. However, surface contribution
becomes negligible for larger particles.

12.8 Nanoparticles in Contact with Surfaces

After the discussion concerning free nanoparticles, i.e. without any interaction
between the particle and the environment, given above we start our consider-
ations assuming only weak interactions.

In order to realize experimentally a weak interaction between particle
and surface chemically inert substrates like HOPG (highly oriented pyrolytic
graphite) can be used.

Figure 12.32. shows the experimental values of mL and mS as a function of
nanoparticle size for exposed Fe nanoparticles. The effect of the dipole contri-
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Fig. 12.32. Atomic orbital magnetic moment mL (left) and spin term mS (right) as
a function of nanoparticle size for exposed Fe nanoparticles on HOPG. In both plots
open circular and filled square symbols represent measurements taken for different
geometric arrangements. Lines A and B in the plot for the orbital magnetic moment
indicate the value measured in the 25 nm Fe film and the true typical value found
in bulk Fe, respectively. Line C in the plot for the spin term indicates the value
measured for the Fe thin film. (Reprinted from [36]. Copyright 2002, with permission
from Elsevier)

bution to the spin term is evident across the size range being studied. It is also
evident that its contribution increases in the smaller nanoparticles. The spin
moment gradually increases as the size is reduced. For the 180 atom nanopar-
ticles an enhancement relative to the bulk value of about 10% is measured.
Initially, the orbital moment also increases with decreasing nanoparticle size
reaching a maximum for 300 atom nanoparticles of about 2.5 times the true
bulk value. Both increases can be attributed to the increasing proportion of
surface atoms. A sharp drop in mL is evident, however, for the 180 atom
nanoparticles. As the nanoparticle size shrinks, apart from an increasing frac-
tion of surface atoms, there will also be an increase in the proportion influenced
by the crystalline field at the surface/nanoparticle interface; this will act to
reduce mL. This effect starts to dominate for nanoparticle sizes <180 atoms.

A stronger interaction between particle and solid state which can experi-
mentally realized using metallic surfaces results in significantly different mag-
netic properties.

A more systematic overview on the size dependence of mL/mS is given
in Fig. 12.33 where the results for exposed Fe nanoparticles on HOPG up
to 2.3 nm are combined with data for Fe nanoparticles between 6 and 12 nm
on Co/W(110). In the left part of Fig. 12.33 the data from very small Fe
nanoparticles on Ni/Cu(100) are included as one data point (see Fig. 11.1) as
the average of the results from Fe nanoparticles with 1–9 atoms. The exper-
imental data for large Fe nanoparticles (filled circle) exhibit mL/mS values
from 0.07 at a nanoparticle size of 12 nm up to 0.095 for Fe nanoparticles
with 6 nm. All these values are clearly above the corresponding bulk value of
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Fig. 12.33. Ratio of orbital to spin moment for Fe nanoparticles on various surfaces:
Fe nanoparticles on Ni/Cu(100) (left part), Fe nanoparticles on HOPG (middle), and
large Fe nanoparticles on Co/W(110) (right part). The bulk value is indicated by
the solid line. (Reprinted from [37]. Copyright 2005, with permission from Elsevier)

0.043. The enhanced ratio is related to an increase of the orbital moment in
the outer two shells which exhibit a large number of surface atoms compared
to the total number of atoms in the nanoparticle. Assuming a spherical shape
the ratio of surface-to-volume atoms amounts to 43% in case of a 6 nm Fe
nanoparticle and still 23% for Fe nanoparticles with a size of 12 nm.

In the discussion above the large Fe nanoparticles have been deposited
onto ferromagnetic Co(0001) films on W(110) where the clusters feel the pres-
ence of a strong exchange field inducing an in-plane magnetic anisotropy in
the nanoparticles. Now, let us concentrate on the magnetic behavior of Fe
nanoparticles on a non-magnetic support. For the realization of this situation
12 nm Fe nanoparticles have been deposited onto a clean W(110) surface and
variable external magnetic fields have been applied in-plane and out-of-plane
to the sample. The measured total magnetic

moments (i.e. the sum of orbital and spin moment) are the projections of
the real magnetic moments on the direction of the magnetic field. Clearly, the
nanoparticles can be much more easily magnetized in the surface plane than
perpendicular to it (see Fig. 12.34). Although a magnetic saturation could
not be reached with such small magnetic fields the in-plane magnetization
nevertheless shows a total magnetic moment of about 1.7μB at 14 mT. Ad-
ditionally, the inset shows an in-plane hysteresis loop confirming a small but
finite remanence that could not be observed in an out-of-plane magnetization.
This pronounced in-plane anisotropy can be explained by two effects which
both favor an in-plane magnetization: (i) A strong surface anisotropy at the
Fe/W interface as known from Fe(110) films on W(110) and (ii) due to a
wetting of the tungsten surface which leads to an oblate nanoparticle shape.
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Fig. 12.34. Total magnetic moment of 12 nm Fe nanoparticles on W(110) plotted
for in-plane and out-of-plane magnetization. The inset displays a hysteresis loop
taken with an in-plane magnetization (Reprinted from [37]. Copyright 2005, with
permission from Elsevier)

Thus, the shape anisotropy favors an in-plane magnetization compared to the
perpendicular direction because the Fe particles are flattened being in contact
with the surface whereas free particles are spherically shaped.

The results discussed above are related to particles on the surface being
largely separated from each other. Now, let us discuss what happens if the
number of nanoparticles on the surface increases. In Fig. 12.35 the ratio of
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Fig. 12.35. Ratio of orbital to spin moment of 9 nm Fe nanoparticles on Co/W(110)
as a function of the surface coverage. The x-axis denotes the area on the surface
covered by Fe nanoparticles when assuming the mean size of the free particles.
The dotted line serves to guide the eye. (Reprinted from [37]. Copyright 2005, with
permission from Elsevier)
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Fig. 12.36. Wet chemically prepared Co nanoparticle surrounded by a ligand shell
due to decomposition of the precursor material di-cobalt octa-carbonyl Co2(CO)8

orbital to spin moment mL/(mS + 7mT ) (with mT = 〈Tz〉 considering the
dipole interaction) for 9 nm Fe nanoparticles is displayed as a function of the
surface coverage. Under the assumption that the spin moment is bulk-like it
is obvious that the percolation of individual particles to larger ones reduces
the orbital moment similar to smaller Fe nanoparticles. At a coverage of less
than one monolayer the orbital moment nearly reaches the bulk value of iron.

12.9 Wet Chemically Prepared Nanoparticles

A totally different procedure to produce magnetic nanoparticles is realized by
wet chemical preparation. Suitable reactions of metal salts lead to nanopar-
ticles which are surrounded by a ligand shell (see Fig. 12.36). The size of the
particles can be tuned by different salts, solvents, concentration, temperature,
and time of reaction. The size distribution may be rather small. Ordered struc-
tures are often formed due to the ligand shell (see Fig. 12.37). The distance
between the particles can be adjusted using different types of ligands and by
varying their length. Additionally, the ligand shell prevents an agglomeration
and passivates the metallic nanoparticles against oxidation.

Fig. 12.37. TEM image of a 2D assembly of 9 nm Co nanoparticles. Inset: High
resolution TEM image of a single particle. (Reused with permission from [38]. Copy-
right 1999, American Institute of Physics)
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Fig. 12.38. (A) TEM micrograph of a 3D assembly of 6 nm as-synthesized Fe50Pt50
particles deposited from a hexane/octane dispersion onto a SiO-coated copper grid.
(B) TEM micrograph of a 3D assembly of 6 nm Fe50Pt50 sample after replacing oleic
acid/oleyl amine with hexanoic acid/hexylamine. (C) HRSEM image of a 180 nm
thick, 4 nm Fe52Pt48 nanocrystal assembly. (D) High-resolution TEM image of 4 nm
Fe52Pt48 nanocrystals. (From [39]. Reprinted with permission from AAAS.)

A TEM image (see Fig. 12.38A) shows a thin section of a hexagonally
closed packed 3D array of 6 nm Fe50Pt50 particles with a nearest neighbor
spacing of about 4 nm maintained by oleic acid and oleyl amine capping
groups. Room temperature ligand exchange of long-chain capping groups
for shorter ones allows the interparticle distance to be adjusted. Ligand ex-
change with hexanoic acid/hexylamine yields a cubic packed multilayer of
6 nm Fe50Pt50 particles with about 1 nm spacings (see Fig. 12.38B). The sym-
metry of the observed superlattices is influenced by several experimental pa-
rameters including the relative dimensions of the metal core and the organic
capping as well as the annealing history of the sample.

Annealed FePt nanocrystal assemblies may be smooth ferromagnetic films
that can support high-density magnetization reversal transitions (bits). Such
an ordered ensemble consisting of hard magnetic FePt particles can be used for
magnetic data storage. A 120nm thick assembly of 4 nm Fe48Pt52 nanocrys-
tals with an in-plane coercivity of Hc = 1800 Oe was selected for initial
recording experiments. Atomic force microscopy studies of this sample indi-
cate a 1 nm root-mean square variation in height over areas of 3 mm by 3 mm.
The read-back sensor voltage signals (see Fig. 12.39) from written data tracks
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Fig. 12.39. Magnetoresistive (MR) read-back signals from written bit transitions
in a 120 nm thick assembly of 4 nm diameter Fe48Pt52 nanocrystals. The individual
line scans reveal magnetization reversal transitions at increasing linear densities.
(From [39]. Reprinted with permission from AAAS.)

correspond to linear densities of 500, 1040, 2140, and 5000 flux changes per
millimeter (fc/mm) (curves a to d, respectively). These write/read experi-
ments demonstrate that this 4 nm Fe48Pt52 ferromagnetic nanocrystal assem-
bly supports magnetization reversal transitions at moderate linear densities
that can be read back non-destructively. Much higher recording densities be-
yond the highest currently achievable linear densities of about 20000 fc/mm
can be expected if the thickness of these ferromagnetic assemblies can be
reduced to about 4 nm.

The characteristics of magnetic nanoparticles make them interesting for
biomedical applications, too. Magnetic particle aggregates stabilized by hy-
drophilic (water-soluble) polymers are small enough to enter cells or pass
borders like the blood-brain barrier. Their surface can be functionalized for
selective interaction and their magnetic properties make them controllable by
an external magnetic field. The controllability includes magnetic separations
as well as far more complicated methods such as guided drug delivery or hy-
perthermia. The superparamagnetism of the particles ensures that no further
aggregation or even coagulation of the particles occurs during and after pa-
tient treatment with a magnetic field. Aggregation and coagulation to large
particle clusters could have fatal effects, especially in small blood vessels.

Among the magnetic materials with suitable properties magnetite (Fe3O4)
is the only one that has up to now been allowed for use in humans. It is the
only material which is known to be biocompatible without relevant toxicity
in the applied dosing range. Once injected into the blood stream the particles
will stay in the body until they are washed out through the liver and kid-
ney. The systems being used are magnetite nanoparticles with a size of about
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10 nm being stabilized by hydrophilic polymeric shells like dextrane or car-
bodextrane. By functionalizing the shell it is possible to attach, for example,
drugs by ionic links that can be set free at a desired site after being directed
there by an external magnetic field. Magnetite nanoparticles produce enough
heat in an alternating magnetic field to be applied in hyperthermia treatment.

Problems

12.1. Prove that one of the possible tangent lines through the tip point
of h in the astroid of a single domain particle represents the equilibrium
direction of the magnetization for the situation that h is within the astroid
(see Fig. 12.22a)).
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Magnetism in Reduced

Dimensions – Nanoscaled Wires

In the following chapter we want to consider the magnetic properties of
nanoscaled wires. They are characterized by a large aspect ratio of their length
to their width and height. We will distinguish between wires with a width in
the sub-micrometer regime on the one hand and those which a built up by
only single atoms on the other hand. It is obvious that such systems exhibit
a pronounced anisotropic behavior due to its shape.

13.1 Wires Exhibiting a Width

in the Sub-Micrometer Regime

Let us assume that the height and the width of the wire is in the sub-
micrometer regime whereas the length is significantly larger. This implies a
high aspect ratio. One example of such a system is presented in Fig. 13.1. The
sample is a thin Fe film of 13 nm thickness which has been transformed into a
periodic nanoscaled wire array by an anisotropic plasma etching process after
film deposition. The Fe film was grown on an Al2O3(11̄02) substrate onto
a 150 nm thick Nb buffer layer which has a (001)-orientation as can be de-
rived from the three-dimensional epitaxial relationship between niobium and
sapphire. Finally, an array of well separated Fe wires on top of a Nb buffer
is obtained. The measurement confirms the regularity of the Fe nanoscaled
wires having a width of 150nm and a periodicity of 300nm as well as that the
wires are completely separated from each other. The stripes have a sinusoidal
shape.

Due to the shape anisotropy the magnetization is expected to be oriented
along the wire. The upper part of Fig. 13.2 shows the remanent Kerr signal
θrem

K normalized to the Kerr signal at saturation θsat
K as a function of the angle

of rotation χ about the surface normal of the Fe film which yields information
about the squareness of the hysteresis loops. The signal θK represents the
rotation of linearly polarized monochromatic light due to the reflection on a
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Fig. 13.1. Surface morphology of a periodic array of Fe nanowires on a Nb/sapphire
substrate imaged with atomic force microscopy AFM. (Reprinted from [40] with
permission of IOP)

ferromagnetic surface. This experimental technique is known as the magneto-
optical Kerr effect (MOKE). According to Fig. 13.2 the remanent Kerr signal
is significantly reduced at certain angles χ without reaching zero-values signi-
fying the hard axis orientations (around 90◦ and 270◦). For the corresponding
angles χ along the easy axis orientations (0◦ and 180◦) the ratio θrem

K /θsat
K
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Fig. 13.2. The upper panel shows results from hysteresis loop measurements at
different angles of rotation χ for the nanowire array as measured at remanence nor-
malized to the Kerr rotation as measured at saturation. The lower panel depicts the
results of MOKE hysteresis loop measurements as a function of the angle of rotation
of the unpatterned sample where θrem

K as measured at remanence is normalized to
θsat

K as measured at saturation and plotted as a function of the angle of rotation χ

which is a measure of the magnetic anisotropy. (Adapted from [40] with permission
of IOP)
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Fig. 13.3. Left: Atomic force microscopy image of a grating with wFe = 2.1 µm.
Middle: Kerr microscopic image in the demagnetized state of a corresponding grat-
ing with about the same stripe width being wFe = 2.5 µm. The field direction during
demagnetization was perpendicular to the stripes. Right: Orientation of the magne-
tization within the domains schematically depicted. (Reused with permission from
[41]. Copyright 2002, American Institute of Physics)

measures almost unity. The twofold symmetry is clearly to be seen. In the
lower part the behavior of an unpatterned polycrystalline Fe film is shown.
The Kerr rotation is measured at remanence normalized to the Kerr rota-
tion in saturation as a function of χ. As can be readily seen the remanent
magnetization amounts to about 88% of the saturation magnetization and is
almost independent of the angle of rotation. Thus, the overall in-plane mag-
netic anisotropy is negligible.

The part of the coercivity of magnetic nanoscaled wires due to their low
dimensionality is reciprocally proportional to the width w:

Hc ∝
MS

π
·

d

w
(13.1)

with d being the thickness. The width of the wire determines whether it is
energetically favorable to stabilize a single domain particle or to introduce
domain walls.

Let us discuss this behavior with a sample of a polycrystalline Fe film which
was grown on Al2O3(112̄0). The width amounts to about 2 µm, the height to
50 nm, and the periodicity to 5 µm. An AFM image is given in the left part of
Fig. 13.3. The domain pattern observed for a grid with a width of 2.5 µm in
the demagnetized state is shown in the medium part of Fig. 13.3 using a Kerr
microscope. This instrument enables to determine laterally resolved signals
being obtained by means of MOKE. There is a very regular domain structure
with closure domains at the stripe edges observed as depicted schematically
in the right part of Fig. 13.3. In the remanent state one essentially observes
similar domains with one magnetization direction in the interior of the stripes.
Thus, for wires with a large width domains exhibiting the Landau state are
found (cf. Fig. 12.1).

The influence of the aspect ratio is demonstrated in Fig. 13.4 for Co wires
with a different width, constant height, and a uniaxial anisotropy along the
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Fig. 13.4. MOKE images of Co wires with a different width. Wires exceeding a
width of about 4 µm exhibit a complex domain pattern. Reducing the width results
in vanishing closure domains, i.e. the wire only possesses two domains with opposite
magnetization. Below a width of about 550 nm single domain wires occur. (From
[42])

wire axis. Wires with a large width exhibit a complex domain formation which
becomes easier with decreasing width w. For w = 2 µm the domain pattern
consists of such which possess a magnetization along the wire and thus along
the easy magnetization axis and are separated by 180◦ domain walls. At the
ends of the wires closure domains are created. Exceeding a critical value of
the aspect ratio, i.e. falling below a critical value of the width assuming a
constant height, results in the occurrence of single domain wires.

Now we change the situation and discuss Co wires which exhibit an easy
magnetization axis being perpendicular to the wire. Figure 13.5 shows the
domain pattern of Co(1010) wires exhibiting a thickness of 60 nm and dif-
ferent widths w after in-plane and easy axis saturation. For w = 800nm a
pure transverse single-domain state is stabilized while for w = 150nm the
stripe-domain and transverse single-domain state coexist. For w = 100nm a
complete stripe structure is induced.

If such nanoscaled wires are not isolated interactions occur between neigh-
bored wires. Such a behavior is presented in Fig. 13.6. The single domain
stripes exhibit an alternating behavior of the magnetic domains in order to
minimize the stray field.

An additional influence is caused by the shape which is exemplarily shown
in Fig. 13.7a–c. A high remanence state is stabilized for interacting rectangular
elements (see Fig. 13.7a) whereas the isolated particle prefers a demagnetized
state in equilibrium. This state is favored by effective flux distribution config-
urations at the sample ends. Small closure domains are also found in elliptical
particles in high-remanence states (see Fig. 13.7b) but they are much smaller
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Fig. 13.5. Magnetic force microscopy MFM images taken on Co(1010) wires after
in-plane easy-axis saturation for wires being 60 nm thick with widths of 800, 150
and 100 nm. (Reprinted from [43] with permission of IOP)

and obviously less effective in reducing the stray field. This may explain why
interacting elliptical particles prefer a demagnetized state in equilibrium. The
pointed elements (see Fig. 13.7c) are designed with parabolic contours to
mimic ellipsoidal particles in their cross sections along the axis. They prefer
the saturated state and under the influence of interactions even a regularly
alternating arrangement can be observed.

Fig. 13.6. Switching in an interacting array of pointed elements with a thickness
of 26 nm consisting a of soft magnetic NiFe alloy. About every second particle has
switched in a field along the particle axis showing lighter contrast. (From [10] (used
with permission))
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Fig. 13.7. Equilibrium state of interacting elements of (a) rectangular, (b) elliptical,
and (c) pointed NiFe alloy elements of 240 nm thickness generated in an alternating
field of decreasing amplitude along the particle axis. The equilibrium demagnetized
state of the isolated particles is shown on the right side. (From [10] (used with
permission))

13.2 Wires Consisting of Single Atoms

In the previous part the width of the wires was in the range of several nanome-
ters up to about two microns. Now, we want to examine the magnetic proper-
ties of wires which possess a width of only one to a few atoms and will follow
the results presented in [44, 45, 46].

The preparation of such wires is experimentally a difficult task. Two pos-
sibilities allow the realization of such systems:

• Atom by atom by means of a scanning tunnelling microscope
This procedure is rather time-consuming because it represents a serial pro-
cess. Additionally, low temperatures below approximately 10K are neces-
sary.

• Growth at step edges on single crystalline surfaces
Due to its parallel character this procedure is fast but an ideal growth
does not succeed for every preparation. A crucial parameter is given by
the temperature which is exemplarily shown in Fig. 13.8 for Co/Pt(997)
exhibiting an average terrace width of about 20 Å.

The nucleation and growth of metals on densely stepped substrates al-
lows to create arrays of 1D nanoscaled wires with precise morphological
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Fig. 13.8. (a) Different growth modes on a stepped substrate. (b) Co growth modes
on Pt(997) as a function of the substrate temperature. Although the temperature
scale refers to the Co/Pt(997) system this description applies to other metals such
as Ag and Cu. (Reprinted from [44] with permission of IOP)

characteristics. Depending on the surface temperature adatoms on vicinal
surfaces self-assemble into chain like structures by decorating the step edges.
This is simply due to the increase of binding energy at the step sites. An
advantage of this growth method is that by adjusting the adatom coverage
and the average step spacing one can independently control the wire width
and separation, respectively.

Growth proceeds either as a smooth step-wetting process or as nucleation
of two-dimensional (2D) islands at the step edges provided that the adatom
placement prior to nucleation is larger than the terrace width of the substrate.
In Fig. 13.8 different scenarios of heteroepitaxy on a stepped substrate are
shown. One can distinguish (i) the ideal case of row-by-row growth, (ii) wires
of different widths due to interlayer crossing of the adatoms resulting in a non-
periodic arrangement of the chains, (iii) formation of irregular 2D islands at
the step edges, (iv) alloying, and (v) formation of double-layer wires. As a gen-
eral trend wire formation is limited at low temperature by slow edge-diffusion
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processes and at high temperature by interlayer diffusion and, eventually, by
alloying between the metal adspecies and the substrate.

Single Co atoms on Pt(111) terraces are mobile above T = 55K. At higher
temperature, as the terrace width of Pt(997) is small compared to the mean
free path of Co adatoms, nucleation at the step sites occurs. The wire growth
proceeds via incorporation of adatoms in 1D stable nuclei attached to the step
edges. However, below 250K the wire formation is kinetically hindered by slow
edge- and corner-diffusion processes. Regular Co wires grow only above 250K
as shown in Fig. 13.9. A monatomic chain array is obtained as the coverage
equals the inverse of the number of atomic rows in the substrate terraces, i.e.
0.13 monolayer for Pt(997). The average length of a continuous Co chain is
estimated to be about 80 atoms from the average kink density per Pt step.

In Fig. 13.10a the magnetic response of a set of monatomic wires at
T = 45K is presented. The zero remanent magnetization reveals the absence
of long range ferromagnetic order. However, the shape of the magnetization
curve indicates the presence of short range order, i.e. of significant interatomic
exchange coupling in the chains. For non-interacting paramagnetic moments
the magnetization would be significantly smaller as indicated by the dotted
line in Fig. 13.10a. The observed behavior is that of a 1D superparamagnetic
system, i.e. a system composed by segments or spin blocks each containing
N exchange-coupled Co atoms whose resultant magnetization orientation is
not stable due to thermal fluctuations.

Fig. 13.9. Co monatomic chains decorate the Pt step edges following deposition of
0.07 ML Co at T = 250 K (the vertical scale has been enhanced for better render-
ing). The chains are linearly aligned and have a spacing equal to the terrace width.
The protrusion on the terrace is attributed to Co atoms incorporated in the Pt
layer. (Reprinted by permission from Macmillan Publishers Ltd: Nature (see [45]),
copyright (2000))
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Fig. 13.10. Magnetization of a Co monatomic wire array as a function of the
applied field B. (a) Magnetization at T = 45K in the easy direction (solid squares,
+43◦) and 80◦ away from the easy direction (empty circles, −57◦) in the plane
perpendicular to the wire axis (see the inset). The (solid curves) are fits to the data.
The dashed curve represents the magnetization expected for an isolated Co atom on
Pt(997). (b) Magnetization at T = 10K for the same geometry as in (a). Hysteretic
behavior sets in due to long-range ferromagnetic order. The unsaturated zero-field
magnetization is attributed to the inhomogeneous lengths of the chains (Reprinted
by permission from Macmillan Publishers Ltd: Nature (see [45]), copyright (2000))

A noticeable dependence of the magnetization on the direction of the ap-
plied field is present as shown in Fig. 13.10. The strongest magnetic response
is found in the +43◦ direction with respect to the terrace normal. Clearly, the
shape of the superparamagnetic curves depends on the magnetic anisotropy
energy of each spin block NEcrys as well as on N times the magnetic moment
per Co atom. By fitting the curves in Fig. 13.10a assuming dominant uniaxial
anisotropy and a classical model of the magnetization one obtains N = 15±1
and Ecrys = (2.0± 0.2) meV/atom. Thus, on average, about 15 Co atoms are
coupled in each spin block at T = 45K. A simple argument shows that this re-
sult does not contradict the spin lattice models treating magnetic order in 1D.

Let us consider a chain consisting of N moments described by the Ising
Hamiltonian given in (6.22). The ground state energy of the system is E0 =
−J(N−1) and corresponds to the situation where all the moments are aligned.
The lowest-lying excitations are those in which a single break occurs at any
one of the N sites. There are N − 1 such excited states all with the same
energy E = E0 +2J . At temperature T the change in free energy due to these
excitations is ∆F = 2J − kT ln(N − 1). For N → ∞ we have ∆F < 0 at
any finite temperature and the ferromagnetic state becomes unstable against
thermal fluctuations. For (N − 1) < e2J/kT , however, ferromagnetic order is
energetically stable. Assuming 2J = 15 meV we get an upper limit of N = 50
exchange-coupled atoms at T = 45K. Measurements of the magnetization in
the Co monatomic chains agree with this limit.
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The large magnetic anisotropy energy of the monatomic spin chains is di-
rectly related to the anisotropy of mL along the easy and hard directions. The
large anisotropy energy plays a major role in stabilizing long range ferromag-
netic order in 1D in particular in inhibiting the approach to the thermody-
namic limit described above.

As in bulk ferromagnetic systems anisotropy energy barriers can effectively
pin the magnetization along a fixed direction in space. By lowering the sample
temperature below TB = 15K a transition to a long range ferromagnetically
ordered state with finite remanence can be observed (see Fig. 13.10b). The
threshold temperature is the so-called blocking temperature where the magne-
tization of each spin block aligns along the common easy axis direction and the
whole system becomes ferromagnetic. Long range order in 1D atomic chains
therefore enters as a metastable state thanks to slow magnetic relaxation.

As the wire width increases the average magneto anisotropy energy per Co
atom Ecrys changes in a non-monotonic way with n. Figure 13.11. presents
the magnetization curves M(Φ1) and M(Φ2) where Φ1 and Φ2 represent two
directions in the plane perpendicular to the wires close to the easy and hard
axis, respectively. A fit of M(Φ1) and M(Φ2) in the superparamagnetic regime
shows that Ecrys = (2.0± 0.2) meV/atom is largest for the monatomic wires.
Since in small as well as large 2D clusters Ecrys is a rapidly decreasing function
of the local coordination number of the magnetic atoms it is not surprising that
Ecrys reduces abruptly to about 0.33 meV/atom in the two atom wide wires.
The magneto crystalline anisotropy energy reduction is such that the low tem-
perature hysteretic behavior almost vanishes going from the monatomic to the
two atom wide wires (see Fig. 13.11b) despite the larger size of the superpara-
magnetic spin blocks in the two atom wide wires relative to the monatomic
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Fig. 13.11. Magnetization of (a) monatomic wires, Φ1 = +43◦ (solid squares),
Φ2 = −57◦ (open circles); (b) two atom wide wires, Φ1 = −67◦; Φ2 = +23◦; (c) three
atom wide wires, Φ1 = −7◦; Φ2 = +63◦; (d) 1.3 ML, Φ1 = −7◦; Φ2 = +63◦. Solid

lines are fits to the data. (From [46] (used with permission))
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wires. In the three atom wide wires, however, Ecrys shows a significant and
unexpected 35% increment up to 0.45 meV/atom. In concomitance with the
increased size of the spin blocks in the three atom wide wires such increment
favors again ferromagnetic order at T = 10 K (see Fig. 13.11c). This Ecrys

upturn is opposite to that expected for the increasing average coordination
number of the Co atoms from two atom wide to three atom wide wires.

This example highlights that interaction on the atomic scale significantly
influences magnetic properties of nanoscaled objects.
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Magnetism in Reduced Dimensions – Single
Thin Films

In the following chapter we will deal with the magnetic behavior of single thin
metallic layers.

Our discussion will contain the influence of a capping layer. In this context
we will distinguish between a non-magnetic and a magnetic capping material.
Further, we will compare the ideal and real interface between the thin film
and a substrate which the film is deposited on. Finally, the behavior of a
specific situation, a ferromagnetic layer on an antiferromagnetic substrate,
will be examined.

14.1 Single Thin Film on a Substrate

The magnetization across a thin film is characterized by constant magnetic
moments within the film but deviations occur at both interfaces (see Fig. 14.1).
At the interface between substrate and thin film the magnetic moments are
reduced due to hybridization between the electronic states of the atoms in
the ferromagnetic thin film and at the interface of the substrate. The sur-
face exhibits an increased magnetization because of the reduced coordination
number, i.e. a more atomic-like behavior is present. An increasing tempera-
ture results in a decreasing magnetization over the whole film. This reduction
is more pronounced at the interface and surface compared to the inner layers
of the thin film.

An important parameter represents the thickness of a thin film. Let us
discuss its influence on the anisotropy, Curie temperature, (spin dependent)
transport properties, and quantum well states.

Influence on the Anisotropy

The behavior of the anisotropy for different film thicknesses was already dis-
cussed in Chap. 7.6. The effective anisotropy constant:
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T = 0
T > 0

ferromagnetic thin film
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m

interface surface

Fig. 14.1. Schematic illustration concerning the variation of the magnetic mo-
ment m per atomic layer near an interface to a substrate and near the surface
at T = 0 and T > 0

Keff = KV + 2KS/d (14.1)

with d being the thickness of the thin film opens up, e.g., the possibility of a
spin reorientation transition from an in-plane to a perpendicular magnetiza-
tion with increasing thickness.

Influence on the Curie Temperature

In thin film systems the Curie temperature TC is often decreased compared
to the bulk as exemplarily shown for Ni(111) films exhibiting various thick-
nesses d on a Re(0001) surface (see Fig. 14.2). This reduction is due to the
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Fig. 14.2. Saturation magnetization of Ni(111) films on Re(0001) as a function
of temperature with the number of atomic layers d as parameter. The data were
taken with increasing (closed symbols) and decreasing temperature (open symbols).
(Reprinted from [47]. Copyright 1984, with permission from Elsevier)
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absence of magnetic neighboring atoms. A quantitative description can be
given using a finite-size scaling model which results in:

TC(∞) − TC(d)

TC(∞)
=

(

d

d0

)1/ν

(14.2)

The critical exponent ν = 0.7 is nearly independent of the anisotropy. For
cubic systems the normalized Curie temperature TC(d)/TC(∞) exhibits a
uniform behavior as a function of the thickness (see Fig. 14.3). The full
curve represents a fit to the Re(0001)/Ni(111) data by a power law. The
critical thickness d0 amounts to nearly two atomic layers. It is characterized
by the minimum thickness which exhibits the loss of magnetic order already
at T = 0 K.

But, (14.2) is not more valid for such thin films. Therefore, already the
monolayer (d = 1) is often ferromagnetic.

Influence on the (Spin Dependent) Transport Properties

The decreasing intensity I of electrons moving through a ferromagnetic thin
film depends on their kinetic energy. This function is nearly independent of
the material and represents therefore a universal curve. The corresponding
inelastic mean free path λ (see Fig. 14.4) is given by:

I(d) = I0 e−d/λ (14.3)

The intensity additionally depends on the magnetization of the magnetic thin
film which is due to a spin dependence of the inelastic mean free path char-
acterized by λ+ and λ− for spin up and spin down electrons, respectively.
At a given kinetic energy the number of electrons leaving the interface of a
non-magnetic substrate is the same for electrons with spins being parallel and
antiparallel to the magnetization of the ferromagnetic thin film I↑↑ = I↑↓.



226 14 Magnetism in Reduced Dimensions – Single Thin Films

electron kinetic energy [eV]
1 10 100 1000

1

10

100

1000

�
[m

o
n

o
la

y
e

rs
]

Fig. 14.4. Inelastic mean free path λ given in monolayers as a function of kinetic
energy for electrons in solids of various elements (black dots) (From [49]. Copyright
1979. Copyright John Wiley & Sons Limited. Reproduced with permission.)

After passing the magnetic thin film both intensities are no more identical:
I↑↑ �= I↑↓. Figure 14.5 presents this behavior for a thin ferromagnetic Co
film on a W(110) substrate. Electrons with a binding energy of 3 eV (be-
low EF = 0) are only related to the substrate. After excitation with monochro-
matic radiation they pass several layers of ferromagnetic Co. We recognize that
the intensity of the majority electrons is much less reduced compared to that
of minority electrons. This spin filter effect is due to a spin dependence of the
inelastic mean free path and is discussed on p. 227 in more detail.

Fig. 14.5. Spin resolved photoelectron spectra for Co thin films on a W(110) sub-
strate as a function of film thickness. The evaluated tungsten structures at a binding
energy of 2.9 eV are shaded, the upper curve represents the majority and the lower

curve the minority spin channel. The different intensities in the two channels are
clearly visible at higher coverage. The peak areas which were obtained by integration
assuming a linear background and indicated by light gray (for minority) and dark
gray shaded areas (for majority electrons) allow to determine the inelastic mean free
paths λ+ and λ

−
for spin up and spin down electrons, respectively
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Influence on the Quantum Well States

The fundamental difference between the electronic structure of a thin film
and of a three dimensional crystal is due to the boundary conditions at the
interfaces.

In the ideal case of an isolated film composed of n layers the finite size of the
system imposes a quantization of the electronic states resulting in n discrete
levels. The energy level spectrum changes with film thickness as schematically
indicated in the right part of Fig. 14.6 being in analogy with the simple case
of a particle in a potential well. The number of allowed states increases with
the film thickness while their electronic separation decreases. The electronic
structure converges to that of a bulk material with increasing film thickness.
For a thin film on a substrate or as a part of a multilayer the reflection at the
interfaces (with the vacuum and with other materials) determines the degree
of confinement of the electron wave functions in the film.

The electron reflection depends on the energy and wave vector of the
corresponding electronic state and also on the spin character if an interface
component is ferromagnetic. Strongly reflected electron waves remain confined
within the film and form “quantum well states”. Photoelectron spectroscopy
allows to determine the electronic structure of the film as a function of bind-
ing energy and film thickness. The complexity (i.e. roughness, interdiffusion,
clustering) of the film growth often makes the observation of the quantization
effects difficult or even impossible. However, in a few cases which the film
grows almost perfectly layer-by-layer in the formation of quantum well states
can directly be observed in photoemission spectra.

As one example of such a situation the left part of Fig. 14.6 shows the
photoemission spectra of thin Cu films epitaxially grown on fcc-Co(100). The
spectra of the films exhibit several features derived from the Cu electronic
states with binding energy varying with film thickness. The quantization ef-
fects on these levels are visible in the spectra up to a thickness of about
50 atomic layers.

Considering the magnetization of the substrate it can also be shown that
the spin dependent reflection at the interface induces a magnetic character in
these quantum well states. The polarization analysis of the emitted electrons
by means of spin resolving photoelectron spectroscopy demonstrates that the
quantum well states in the Cu film on Co(100) possess a predominantly minor-
ity spin character. Figure 14.7(a) shows the spectra of Cu films decomposed
into the two spin components. The corresponding non-spin resolved spectra
are also presented for comparison. The quantum well states appear as promi-
nent structures in the minority spin channel whereas they are weak or absent
in the majority spin spectra.

This behavior can easily be understood since the Co substrate acts as a
spin dependent potential barrier for the confinement of the electronic wave
function in the Cu film (see Fig. 14.7(b)). The electron waves are reflected at
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Fig. 14.6. Photoemission spectra of ultrathin Cu films on fcc-Co(100). The shad-
owed spectral structures with binding energies depending on the film thickness de-
rive from the quantization of the energy levels due to electron confinement. They
are observed up to 50 atomic layers. On the right side a simple representation of
the electron states of a thin film is presented in analogy to quantum well states.
The confinement of the wave functions is due to the reflection at the potential bar-
riers at the interface with the substrate and the vacuum. (Reprinted from [50] with
permission of the FZ Jülich)
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Fig. 14.7. (a) The photoemission spectrum (middle) of thin Cu films on fcc-Co(100)
is decomposed into the two spin channels, minority (↓) and majority (↑), by the
measurement of the photoelectron spin polarization. The quantized levels giving
rise to the shadowed structures have predominantly minority spin character. (b) The
ferromagnetic substrate acts as a spin dependent potential barrier and confines to
a different degree the electronic wave function of opposite spin.(Reprinted from [50]
with permission of the FZ Jülich)

the interface to a degree that depends on their spin character. The minority
spin electrons which the potential is very different in the two metals for are
strongly reflected at the interface and become effectively confined in the Cu
film. Conversely, the majority spin electrons which possess a similar energy
in the two metals are weakly reflected and become delocalized over the two
materials. The electronic structure of the paramagnetic Cu film in contact
with the ferromagnetic substrate acquires in this way a magnetic character,
i.e. a dependence on the electronic spin orientation.
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14.2 Influence of a (Non-Magnetic) Capping Layer

As already seen in Fig. 14.1 the free surface of a ferromagnetic thin film
exhibits enhanced magnetic moments. Capping with a non-magnetic layer
leads to the following changes:

• The increase of the coordination number of the surface atoms results in a
reduction of the magnetic moments in the topmost layer.

• The overlap between the wave functions of atoms at the magnetic substrate
and the non-magnetic capping layer results in a hybridization which leads
to a decrease of the magnetic moments not only of the topmost but of
several layers near the interface.

As one example of this behavior the reduction of the magnetic moment ∆m is
shown in Fig. 14.8 for the situation that a ferromagnetic Ni thin film is capped
with a Cu film with various thickness. A decrease of the magnetic moment in
units of that concerning one monolayer of Ni(111) occurs up to a thickness of
one atomic Cu capping layer followed by a slight further increase in reduction
to the saturation value of 0.79 units with further increasing thickness.

Additionally, this observation gives evidence that in this system no in-
terdiffusion takes place which would result in a continuing reduction of the
magnetic moment.
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Fig. 14.8. Change of magnetic moment ∆m in units of the magnetic moment of
one monolayer Ni(111) caused by Cu(111) on Ni(111) thin films with a thickness
of about 10 monolayers on Re(0001) as a function of the thickness dCu of the Cu
coating layer. (Reprinted from [51]. Copyright 1985, with permission from Elsevier)

14.3 Influence of a Magnetic Capping Layer

The behavior of a magnetic capping layer on a ferromagnetic substrate which
exhibit different Curie temperatures as well as different anisotropy contribu-
tions results in complex properties.
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An example of this situation is given by a thin Fe film on a Gd(0001)
substrate. Gadolinium possesses an in-plane magnetization and a Curie tem-
perature of T Gd

C = 293K. Because the Fe overlayer is exchange coupled to Gd
the magnetization of the Fe film is held in-plane. The Fe/Gd interface, how-
ever, has a strong perpendicular magnetic anisotropy. Additionally, Fe films
exhibit a thickness dependent Curie temperature being above T Gd

C .
The determination of the spin polarization of secondary electrons permits

to obtain independently the in-plane component of the magnetization as well
as the out-of-plane component (see Fig. 14.9a).

Fig. 14.9. Secondary electron spin polarization as a function of temperature for
increasing thickness of Fe deposited on the Gd(0001) surface. The data is completely
reversible on decreasing the temperature. The sample was remanently magnetized
at each data point. (Reused with permission from [52]. Copyright 1998, AVS The
Science & Technology Society)
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The properties for increasing thickness of the Fe overlayer is shown in
the lower panels of Fig. 14.9. A reduction of the in-plane component of the
magnetization occurs at a thickness of 2 monolayers (note the different scales
for the electron spin polarization) which proves an antiferromagnetic coupling
between the Fe thin film and the Gd substrate at low temperatures. With
increasing thickness a reversal of sign of the in-plane component takes place.
This is due to the surface sensitivity for slow secondary electrons (cf. Fig. 14.4)
which amounts to only a few layers.

The onset of an out-of-plane component at TSR = 275K for Gd being
capped with a thin Fe film gives evidence for a spin reorientation transition
in the Fe film for a thickness up to about 4 atomic layers. For this thickness
regime the in-plane component vanishes at the Curie temperature of the bulk
material T bulk

C = 293K and the out-of-plane component at the Curie temper-

ature of the Fe overlayer T overlayer
C ≥ 320K. The first step at low temperature

is a continuous reorientation of the surface moment from in-plane to canted
out-of-plane. The second step at higher temperature is a rotation from this
canted direction to perpendicular to the film plane.

The lower spin reorientation temperature TSR compared to the bulk Curie
temperature T bulk

C points to a stronger exchange interaction at the interface
than in the bulk: EFe−Gd

exch > EGd−Gd
exch . The spin reorientation transition re-

sults from the competition of the perpendicular surface anisotropy of the Fe
overlayer and the exchange interaction of the overlayer with the in-plane Gd
magnetization.

For a thickness of 6 monolayers the perpendicular component vanishes.
Thus, the dipole energy is large enough to stabilize the magnetization within
the plane of the Fe film. The inversion of the magnetization direction occurs
at T bulk

C . Gd becomes paramagnetic above T bulk
C but the Fe film is magnetic

T
TCTSR TC

Gd

Gd

Gd

Gd

6 ML Fe

4 ML Fe

2 ML Fe

overlayerbulk

Fig. 14.10. Illustration of the magnetic properties of an Fe overlayer with various
thickness on a Gd substrate as a function of temperature
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up to T overlayer
C . Therefore, the magnetic moments in the Fe film are no more

influenced by the substrate in this temperature regime between T bulk
C and

T overlayer
C .

An overview of this complex system for different temperatures with varying
film thickness is given in Fig. 14.10.

14.4 Comparison Between an Ideal and Real Interface

The influence on the magnetic properties of a real, i.e. generally not ideal,
interface is illustrated by a ferromagnetic thin film on an antiferromagnetic
substrate (see Fig. 14.11). Assuming a ferromagnetic coupling at the ideal,
i.e. smooth, interface six uncompensated spins occur with respect to the anti-
ferromagnet in this example. But, a real interface is not smooth. Its roughness
leads to the formation of terraces with opposite spin direction thus preventing
a ferromagnetic coupling over the whole area. In order to reduce the number
of uncompensated spins (here from six to two) frustration (marked by circles)
or domain walls (white box) occur.

Fig. 14.11. (a) Ideal interface being smooth. Assuming a ferromagnetic coupling
across the interface results in six uncompensated spins concerning the antiferromag-
net. (b) In reality most of the interfaces are rough and exhibit steps which separate
different terraces. Now, the ferromagnetic coupling across the interface cannot si-
multaneously be fulfilled. Thus, frustration (circles) and domain walls (white box)
can occur which leads to a reduction of uncompensated spins, in this example from
six to two

14.5 Exchange Bias

One of the most interesting interfaces for basic study and application is the
interface between a ferromagnet and an antiferromagnet. A ferromagnet such
as iron exhibits a large exchange parameter but a relatively small anisotropy.
This makes ferromagnetic order stable at high temperatures but the ori-
entation may not be, particularly if the dimensions are a few nanometers.
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Hc1 Hc2HEB

Fig. 14.12. Shifted hysteresis loop in an exchange biased ferromagnet. Character-
istic fields are the exchange bias field, HEB, and coercivities, Hc1 and Hc2

Many antiferromagnets have large anisotropies and consequently very stable
orientations. In heterostructures exchange coupling between the ferromag-
net and antiferromagnet can, in principle, produce a ferromagnetic behavior
with stable order combined with a high anisotropy. In such a structure the
anisotropy may behave as unidirectional or uniaxial. This phenomenon is not
found in ferromagnets and is called exchange bias because the hysteresis loop
associated with the ferromagnet/antiferromagnet structure can be centered
about a non-zero magnetic field.

An example of such a shifted hysteresis loop is sketched in Fig. 14.12. The
center of the hysteresis loop is shifted from zero applied magnetic field by an
amount HEB, the exchange bias field. There are three different fields used to
characterize the bias: the left and right coercive fields, Hc1 and Hc2, and the
bias field HEB.

A shifted hysteresis loop, such as that sketched in Fig. 14.12, can be ob-
tained experimentally in the following way. First, a magnetic field is applied in
order to saturate the ferromagnet in field direction. This is done at a temper-
ature above the ordering temperature TN of the antiferromagnet. The second
step is to cool the sample below TN while in the field. A shift in the hysteresis
loop can appear if measured after cooling.

This shift is due to a large anisotropy in the antiferromagnet and a weaker
exchange energy coupling between the ferromagnet and antiferromagnet. A
schematic diagram of the process is given in Fig. 14.13 for a ferromagnet with
no anisotropy. In Fig. 14.13(a) the saturating magnetic field is applied for a
temperature above TN . This aligns the ferromagnet. After cooling the system
while still in the field the magnetization remains pinned along the original
direction for small negative fields (see Fig. 14.13(b)). A field large enough to
overcome the interlayer exchange reverses the ferromagnet (see Fig. 14.13(c)).
On the reverse path the ferromagnet rotates back into the original positive
direction while the applied field is still negative. This gives a shifted magne-
tization curve as shown in Fig. 14.12.

The magnitude of the shift is equal to the effective field associated with
the interlayer exchange. A hysteresis loop appears when anisotropy is included
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Fig. 14.13. (a) A saturating magnetic field is applied in order to align the ferromag-
net above TN . After cooling the system in field the magnetization remains pinned
along the original direction when the field is reversed as shown in (b). A sufficiently
large field reverses the ferromagnet as shown in (c)

in the ferromagnet. Bounds for the coercive fields Hc1 and Hc2 can be found
by examining the stability of an energy per unit area of the form

E = −HMSdF cos θ − J cos θ + K sin2 θ (14.4)

In this model the applied magnetic field is H , MS is the saturation mag-
netization of the ferromagnet, dF the thickness of the ferromagnetic film, J
the interlayer exchange constant between the ferromagnet and the antiferro-
magnet, and K a measure of the uniaxial anisotropy in the ferromagnet. The
angle θ is taken between M and the uniaxial anisotropy easy axis. The field
is aligned along the easy axis and the magnetization is assumed to remain
uniform in this model. The most important restriction is that the antiferro-
magnet remains rigidly aligned along the direction of its easy axis assumed to
lie also parallel to the ferromagnet easy axis.

Experimentally, exchange anisotropy has been discovered in fine Co parti-
cles exhibiting a CoO coating (see left part of Fig. 14.14). CoO is an antiferro-
magnet with a Néel temperature TN of 293K. When cooling the particles from
300K (CoO in a paramagnetic state) to 77K (CoO in an antiferromagnetic
state) in a saturating magnetic field a unidirectional anisotropy was observed.
The two hysteresis loops shown in the right part of Fig. 14.14 were taken
at 77K. The CoO coated Co particles were at first cooled from room tem-
perature to 77K in a zero external field. The corresponding hysteresis loop
(drawn as a dashed line with open symbols) is symmetric about the vertical
axis. When the specimen is cooled to 77K in a strong magnetic field (so-called
field cooling) the hysteresis loop (drawn as a full line with closed symbols) is
displaced to the left along the applied field axis.
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M

H

Co

CoO

Fig. 14.14. Left: Co particles being coated by CoO. Right: Hysteresis loops of
oxide coated particles of Co taken at 77K. Open symbols show the hysteresis loop
when the material is cooled in the absence of a magnetic field. The closed symbols
show the hysteresis loop when the material is cooled in a saturating magnetic field.
(Data taken from [53])

The energy given in (14.4) has extremum values corresponding to satura-
tion in the directions of θ = 0 and θ = π. Stability of the θ = 0 configuration
is possible if J + HMSdF + 2K > 0 and stability of the θ = π configuration
is possible if 2K − J − HMSdF > 0. This corresponds to coercive fields

Hc1 = −
J + 2K

MSdF
(14.5)

and

Hc2 =
2K − J

MSdF
(14.6)

Because the coercive fields are not equal in magnitude the total hysteresis is
biased. The bias field in this model can be defined as the midpoint of the
hysteresis and is directly proportional to the exchange coupling:

HEB =
Hc1 + Hc2

2
= −

J

MSdF
(14.7)

The bias field is determined by competition between the Zeeman energy and
the interlayer exchange energy and therefore depends on the thickness of the
ferromagnet dF . The coercive field Hc is given by:

Hc =
|Hc1 − Hc2|

2
=

K

MSdF
(14.8)

and thus proportional to the anisotropy constant K.
A typical temperature dependence of the hysteresis loop is presented in

Fig. 14.15 for a system consisting of a layered structure of Co/CoO. The
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Fig. 14.15. Hysteresis loops for different temperatures of CoO(25 Å)/Co(120 Å).
For each hysteresis the bilayer was cooled in a field of +2000 Oe from 320 K to the
respective temperature. (Adapted from [54] (used with permission))

hysteresis loops show the following typical and general features: Hc1 strongly
increases with decreasing temperature while Hc2 remains almost constant at
a field value of about several hundreds Oe. The slope of the hysteresis loops
at Hc1 is steeper than at Hc2 on the return path.

Figure 14.16 summarizes the analysis of the temperature dependence of
Hc1 and Hc2 for a similar sample. Both coercive fields start to slightly in-
crease just below the Néel temperature with the same rate. At the blocking
temperature of about TB = 186 K the slope increases drastically. Below TB a
bifurcation for the temperature dependence of Hc1 and Hc2 develops. While
Hc1 keeps rising with a rate of 11 Oe/K Hc2 levels off and reaches saturation
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Fig. 14.16. Coercive fields Hc1 and Hc2 (cf. Fig. 14.15). The line is a fit to the linear
region of Hc1. It intersects the abscissa at the blocking temperature TB = 186 K.
(Adapted from [54] (used with permission))



238 14 Magnetism in Reduced Dimensions – Single Thin Films

0

2

4

6

0.00 0.01 0.02 0.03 0.04

-H c1
H c2

-H EB
H c

fie
ld

s
[k

O
e
]

1 / [Å ]dCo
-1

Fig. 14.17. −Hc1 (open squares), Hc2 (full squares), −HEB (full circles), and
Hc (open circles) are plotted as a function of the Co thickness. The samples were
cooled down through the Néel temperature of CoO to 10 K in an applied magnetic
field of +2000 Oe. The lines are linear fits to the data points. (Adapted from [54]
(used with permission))

at the lowest temperature. Thus, there are three distinguishable temperature
regimes.

First, from TN to TB the coercive fields are equal and increase slowly.
Second, close to TB the slopes increase drastically and Hc1 is slightly smaller
than Hc2. Third, below TB both coercive fields develop linearly but with
different slopes such that the absolute value of Hc1 is larger than Hc2. Only
in this last region a strong negative exchange bias is observed.

The dependence of the coercive fields as well as the exchange bias field
on the thickness of the ferromagnetic film dF is shown in Fig. 14.17. It is
obvious that all fields exhibit a 1/dF dependence which gives evidence that
the exchange bias effect is due to the existence of an interface.

The most important characteristics concerning the exchange bias are:

• It only occurs for a ferromagnetic thin film on an antiferromagnetic sub-
strate.

• It is necessary to cool the system in an external magnetic field below the
blocking temperature TB < TN .

• A unidirectional anisotropy is induced due to the field cooling procedure.
• Generally, the exchange bias field is negative.
• The exchange bias field increases with decreasing temperature.
• An increase of exchange bias field leads to a rise of the coercive fields.
• The exchange bias scales with the reciprocal value of the film thickness.

Further discussions are given in Chap. 16.



15

Magnetism in Reduced
Dimensions – Multilayers

In this chapter we will discuss systems which consist of a lot of magnetic thin
films (so-called multilayers).

The principle arrangement consists of a ferromagnetic bulk-like or thin
film substrate covered by a non-magnetic thin film which itself is capped by
a ferromagnetic layer. This stacking may be continued by additional non-
magnetic and ferromagnetic thin films. The non-magnetic layer consists of
a metal, an oxide, a semiconductor, or vacuum. The latter case stands for
two ferromagnetic electrodes which are separated by several Å. An important
feature is given by the coupling over the interface, the so-called interlayer
exchange coupling (IEC).

Additionally, the electrical resistance or the electrical conductance of this
layered system depends on the relative orientation of the magnetization of
two neighbored ferromagnetic layers. The resistance of an antiparallel orien-
tation Rap is enhanced compared to a parallel alignment:

Rap > Rp (15.1)

This phenomenon is called magnetoresistivity and will be discussed in more
detail in Chap. 16.

15.1 Interlayer Exchange Coupling (IEC)
Across a Non-Magnetic Spacer Layer

The coupling between two localized magnetic moments being separated by
a non-magnetic material can be described by means of the RKKY exchange
interaction (see Chap. 4.3):

JRKKY(R) ∝
x cosx − sin x

x4

x→∞

−→
1

x3
(15.2)

with x = 2kF R and R the distance between the moments. This oscillatory
behavior is exemplarily shown in Fig. 15.1 for Mn atoms embedded in a Ge
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Fig. 15.1. Exchange interaction for Mn atoms as a function of their distance in
Mn2Ge62. The solid line is the RKKY model fitted with kF = 1.02 Å−1. (Adapted
from [55] (used with permission))

matrix. This dependence is different in magnetic thin film systems being sep-
arated by a non-magnetic interlayer. Assuming an interlayer thickness of z
the exchange coupling constant exhibits the dependence of:

JRKKY(z) ∝
1

z2
(15.3)

which is schematically shown in Fig. 15.2. In layered systems the RKKY
interaction is a pronounced effect and acts over long distances. A positive
value of J means a ferromagnetic coupling between both ferromagnetic thin
films whereas J < 0 results in an antiferromagnetic arrangement. We directly
see that the thickness of the spacer layer determines the type of coupling.

J

z

Fig. 15.2. Interlayer exchange coupling between two ferromagnetic thin films ex-
hibiting an RKKY behavior. Depending on the thickness z of the spacer layer a
ferromagnetic or antiferromagnetic alignment occurs for J > 0 or J < 0, respec-
tively
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Fig. 15.3. Calculated interlayer coupling for a Cu(001) spacer as a function of the
Cu thickness dCu at T = 0 K. The solid circles correspond to physically achiev-
able thickness, i.e. dCu integer. (a) Zero roughness, (b) rough interface. (Adapted
from [56] (used with permission))

A calculation of this RKKY interaction is exemplarily presented in Fig. 15.3
for a Co/Cu-system with smooth and rough interface. Figure 15.3(a) shows
the calculated coupling exhibiting a strong short-period oscillation and a much
weaker long-period oscillation. The layers were assumed to be atomically flat
whereas real samples always possess some interfacial roughness. In order to
consider the effect of the roughness the spacer layer of average thickness d
is assumed to consist actually of large (compared to the spacer thickness)
patches with local thickness equal to d − 1, d, and d + 1. The coupling be-
havior for this situation is shown in Fig. 15.3(b). The coupling strength is
strongly reduced and the apparent period is increased. This is because the
short period is almost suppressed by the roughness and only the weak long-
period oscillation is seen. This simple example illustrates how important the
influence of the roughness can be.

The determination of the interlayer exchange coupling can only be carried
out at positions of the discrete lattice planes. The thickness of the interlayer
amounts to:

z = (N + 1) · d (15.4)
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Fig. 15.4. Full curve: Coupling function for a fcc(100) metal calculated using the
RKKY model. Broken curve: Actual coupling with the experimentally measured
periodicity as a function of the spacer thickness. (Data taken from [57])

with d being the distance between lattice planes and N the number of planes.
The Fermi surface of the non-magnetic interlayer determines the strength of
the oscillation as well as the oscillation period λF = π/kF . This oscillation
period is often incommensurable with the lattice constant which results in an
effective period λeff being larger than λF (see Fig. 15.4):

λeff =
2π

2kF − 2π/d
=

d · λF

|d − λF |
(15.5)

Thus, the situation of interlayers consisting of different materials with identi-
cal density can result in a different relative orientation of the magnetization
in both ferromagnetic films (see Fig. 15.5). The type of coupling, i.e. ferro-
or antiferromagnetic, can be determined by the shape of the hysteresis loop
(see Fig. 15.6).

An additional influence is given by magnetic anisotropy effects which can
be realized by different values of the anisotropy constant K. This is exem-
plarily discussed for a system with a uniaxial anisotropy. The shape of the
hysteresis loops and thus the magnetic properties are significantly different
for K = 0, small value of K, and a large value of K. The system consists
of two identical magnetic layers of thickness d which are antiferromagneti-
cally coupled across the spacer layer with a strength J possessing an uniaxial

Fe

Fe

Cr

Fe

Fe

Au

Fig. 15.5. Spacer layers of a given thickness can result in an antiferromagnetic and
ferromagnetic coupling in dependence of the interlayer material
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Fig. 15.6. The shape of the magnetization curve is significantly different for an
(a) antiferromagnetic and (b) ferromagnetic coupling between two ferromagnetic
thin films being separated by a spacer layer

anisotropy constant K and saturation magnetization MS . The applied field H
is directed along the easy axis which is in this case the film normal, i.e. K > 0.

Calculating the absolute minimum energy allows to determine the thermo-
dynamically stable state and corresponding transitions which result in mag-
netization curves shown in Fig. 15.7. The shape of the magnetization curve
depends on the ratio between the strength of the magnetic anisotropy and the
magnitude of the antiferromagnetic coupling. For K > −J/d and K < −J/d
the respective curves are shown in Fig. 15.7(a) and Fig. 15.7(b), respectively.
The curve in Fig. 15.7(c) is a special case of the one shown in Fig. 15.7(b).
The characteristic fields Hf , Hsf , and Hs occurring in Fig. 15.7 are given by
Hf = −2J/MS for K > −J/d, Hs = −2(K + 2J/d)/MS for K < −J/d,

M

H

(a) > - /K J d

Hf

M

H

(b) < - /K J d

HsHsf

M

H

(c) = 0K

Hs

Fig. 15.7. Theoretical magnetization curves for two identical antiferromagnetically
coupled ferromagnetic layers exhibiting a uniaxial magnetic anisotropy which is
(a) larger than the coupling strength and (b) smaller than the coupling strength.
The arrows schematically indicate the orientation of the magnetization directions
relative to the vertical easy axis which the field is applied along. The situation of
zero anisotropy (c) is a special case of (b). (Adapted from [58])
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Hsf = 2
√

−K(K + 2J/d)/MS for K < −J/d, and Hs = −4J/dMS for
K = 0. These formulas are derived from absolute minimum energy calcu-
lations; no hysteresis occurred. However, if one allows for coherent rotation
of the magnetic moments only and takes the magnetic layers always to be in
a single domain state, i.e. excluding the mechanisms which usually drive the
system to the state of the absolute minimum energy such as domain nucle-
ation and domain wall propagation, the above results are modified. The curves
necessarily show hysteretic behavior due to the existence of energy barriers
resulting from the magnetic anisotropy.

Generally, measurements of the hysteresis loop allow to determine the
oscillation period as well as the negative, i.e. antiferromagnetic, part of the
coupling constant.

Experimental techniques which permit a lateral resolution enable the
determination of the coupling constant and oscillation period in only one

measurement if structures are investigated which are shaped as a wedge
(see Fig. 15.8). This is exemplarily shown for the system of a Au wedge with
an increasing thickness of 0 to 20 monolayers on a ferromagnetic Fe substrate.
The Au layer itself is capped with an Fe film exhibiting a constant thickness
of 12 monolayers. An image obtained by means of SEMPA (secondary elec-
tron microscopy with polarization analysis) is presented in Fig. 15.9 which
shows the x-component of the magnetization Mx for the top surface of the
Fe/Au/Fe wedge structure. White (black) indicates that Mx is directed in
the +x(−x)-direction while gray indicates that Mx = 0. With no applied
magnetic field the whisker is divided by a horizontal domain wall into two
equivalent but oppositely magnetized domains. The bottom half of the image
in Fig. 15.9 shows a pattern that oscillates between black and white with in-
terspersed regions of gray. Since the substrate domain is oriented in the +x-,
or white, direction, white regions correspond to ferromagnetic coupling, black
to antiferromagnetic coupling, and gray to 90◦ coupling.

The corresponding coupling strength given by J and the oscillation behav-
ior are shown in Fig. 15.10. Two different oscillations can be observed, one
with a small period of λ1 ≈ 2.5 monolayers and one with a longer period of
λ2 ≈ 8.5 monolayers.

x

d x( )

Fig. 15.8. Wedge-shaped structure. Due to the increasing thickness of the spacer
layer d(x) in dependence of the lateral position x the determination of thickness
dependent properties can be achieved in only one measurement
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Mx

y

x

Fig. 15.9. (a) SEMPA measurements of the x-component of the magnetization Mx

of the top Fe layer of the first 22 ML of an Fe/Au/Fe wedge structure (From [59]
(used with permission))

The oscillation periods of the interlayer exchange coupling can be pre-
dicted by considering the Fermi surface of the spacer material. One finds that
oscillatory coupling is related to a critical spanning vector Q in reciprocal
space with the following properties:
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Fig. 15.10. Coupling strength for Fe/Au/Fe. (a) Circles indicate the measured
values of Javg and the (gray areas) show the best fit function on a semilog scale
over a wide range of coupling strength and spacer layer thickness. (b) Solid squares

(circles) show the variation in the short (long) period bilinear coupling strength
determined by these experiments. The dark (light) (dashed lines) indicate the cal-
culated maximum theoretical envelope for the short (long) period contribution to
the bilinear coupling strength. (From [59] (used with permission))



246 15 Magnetism in Reduced Dimensions – Multilayers

Fig. 15.11. Cross section of the Fermi surface of Au. Included are the critical
spanning vectors Q1 and Q2 in the [100]-direction

• The critical spanning vector points perpendicular to the interface.
• The critical spanning vector connects two sheets of the Fermi surface which

are coplanar to each other.
• The critical spanning vector is in the first Brillouin zone.

The last condition follows the Bloch theorem and reflects the atomic period-
icity of the spacer material. The oscillation period is then given by 2π/Q. For
real materials several Qi (i = 1,2, . . . ) may exist each of them corresponding
to a different oscillation period 2π/Qi. In this case the experimentally mea-
sured coupling as a function of the interlayer thickness is the superposition of
all these oscillations.

As an example let us consider an interlayer material with fcc structure
grown in [100]-direction. For the Fermi surface as shown in Fig. 15.11 there
are two critical spanning vectors Q1 and Q2 in the [100]-direction. The periods
of the oscillatory coupling are given by λi = 2π/Qi and thus are determined
solely by the electronic properties of the interlayer material. The strength J
and oscillation periods concerning the interlayer exchange coupling for various
systems are given in Table 15.1. Two different periods seem to be related to
a (100) interlayer interface.

Table 15.1. Bilinear coupling strength −J in mJ/m2 at an interlayer thickness z

in nm and oscillation periods in monolayers (and nm) of various systems

System −J z Oscillation periods

Co / Cu / Co(100) 0.4 1.2 2.6 (0.47), 8 (1.45)
Co / Cu / Co(110) 0.7 0.85 9.8 (1.25)
Co / Cu / Co(111) 1.1 0.85 5.5 (1.15)
Fe / Au / Fe(100) 0.85 0.82 2.5 (0.51), 8.6 (1.75)
Fe / Cr / Fe(100) >1.5 1.3 2.1 (0.3); 12 (1.73)
Fe / Mn / Fe(100) 0.14 1.32 2 (0.33)
Co / Rh / Co(111) 34 0.48 2.7 (0.6)



15.2 Across an Antiferromagnetic Spacer Layer 247

15.2 Interlayer Exchange Coupling Across
an Antiferromagnetic Spacer Layer

The behavior of the exchange interlayer coupling drastically changes if the
non-magnetic interlayer is replaced by a layered itinerant antiferromagnet
like Cr. Chromium has a bcc structure. If Cr would have a commensurate an-
tiferromagnetic structure the magnetic moment density at the corners would
be opposite to the ones at the center of the bcc unit cell as sketched in the left
part of Fig. 15.12 forming a commensurate spin density wave structure. Thus,
the antiferromagnetic bcc structure consists of a sequence of ferromagnetic
(001) planes with alternating spin direction. Pure Cr exhibits, in fact, a lin-
early polarized incommensurate spin density wave structure which consists of
a sinusoidal modulation of the magnetic moments and is schematically shown
in the right part of Fig. 15.12. It can be visualized as a spin lattice which is
slightly expanded as compared to the crystal lattice yielding a beating effect
between both.

Thus, one would expect that the IEC exhibits a period of 2 monolayers
(see Fig. 15.13). For thin Cr films up to about 25 monolayers this expectation
is in agreement with experiment (see Fig. 15.14) exhibiting many short-period
oscillations with a period of two monolayers (in addition to a long-period
oscillation).

A wedge-shaped structure Fe/Cr/Fe with a thickness of the Cr interlayer
ranging from 0 to about 70 monolayers which is schematically shown in the
left part of Fig. 15.15 exhibits an oscillation with a period of two monolayers
(see right part of Fig. 15.15). In this SEMPA image white (black) corresponds
to a magnetization to the right (left). The Fe substrate possesses a domain
wall running along its length which provides a useful way to verify the zero
of the magnetization. The short-period oscillation in the exchange coupling
which causes the magnetization to change each layer is superposed on a long-
period coupling. In the thinner parts of the wedge the short-period oscillations
dominate only after the first antiferromagnetic transition at five layers and
initially are not symmetric about zero which leads to the black and white

corner atoms center atoms

Fig. 15.12. Commensurate and incommensurate spin density wave structure of
bcc Cr. In the right part a spin density wave is illustrated with the magnetic moments
perpendicular to the wave vector
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Fe

Cr

Fe

Fig. 15.13. If the spacer layer is realized by a topological antiferromagnet like Cr
which additionally favors an antiferromagnetic coupling at the interface one would
expect that the IEC exhibits a period of two monolayers depending on the number
of spacer layers which can be odd (left) or even (right) leading to a ferro- or
antiferromagnetic coupling, respectively, between both ferromagnetic thin films on
both sides of the interlayer

stripes of slightly different width in the image. Coupling is observed through
over 75 layers corresponding to a Cr thickness of over 10 nm.

There is a change in phase or “phase slip” apparent between layers 24 and
25, 44 and 45, and 64 and 65. Thus, just below the phase slip at 24 layers the
Fe overlayer is coupled ferromagnetically to the substrate when the number
of Cr layers is even. Just above the phase slip at 25 layers it is coupled fer-
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Fig. 15.14. Interlayer coupling in Fe/Cr/Fe as a function of the Cr thickness dCr

measured at room temperature. The substrate temperature during preparation
was 523 K. The thickness of each Fe film amounts to 5 nm. (Data taken from [60].
Copyright 1993, with permission from Elsevier)
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Cr film

Fe film

~200 �m
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T � 5-20 nm

Fe whisker

z

yx

24 44 64

Fig. 15.15. Left: A schematic exploded view of the Fe/Cr/Fe(100) sample structure
showing the Fe(100) single crystal substrate, the Cr wedge, and the Fe overlayer. The
arrows show the magnetization direction in each domain. The z-scale is expanded
approximately 5000 times. (From [61] (used with permission)) Right: SEMPA image
of the magnetization in an Fe layer covering a varying thickness Cr film as a wedge
grown on an Fe(100) single crystal substrate. The arrows mark the Cr interlayer
thickness in atomic layers where phase slips in the magnetization oscillations occur
due to the incommensurability of the spin density wave. The actual area imaged is
approximately 0.1 mm high × 1mm long. (From [62] (used with permission))

romagnetically when the number of Cr layers is odd. The phase slips are due
to the fact the wave vector Q which governs the coupling is incommensurate
with the lattice wave vector.

The Fe/Cr interface coupling is strong enough to place an antinode at
the interface and induce proximity magnetism in the Cr layer. Whenever the
Cr thickness is incremented by one monolayer the Fe in-plane magnetization
switches direction. Thus, magnetic domains are not created in the Cr film but
in the top Fe layer to overcome possible frustration effects following a step at
the Fe/Cr interface. Stretching of the spin density wave seems not to take place
since the distance between phase slips is constant. The highly regular pattern
points to a rather rigid spin density wave period. The distance between the
steps is larger than the average magnetic domain wall width in the Fe layer.
Therefore, the magnetic domains in the top Fe layer can follow the directional
change of the Cr spins at the Fe/Cr interface. We directly see that the surface
of Cr is ferromagnetically ordered with a layered antiferromagnetic structure.
Further, we can infer that in the Cr film the incommensurate spin density
wave transverse with the wave vector being perpendicular to the plane and
spins in the plane as sketched in Fig. 15.16.
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Fe

Cr

Fe

Fig. 15.16. Schematic representation of the ideal magnetic structure for a Cr spacer
layer in-between two ferromagnetic Fe layers. The incommensurate spin density wave
propagates perpendicular to the interface. The Cr spins are oriented within the plane
which allows an antiferromagnetic exchange interaction at each Cr/Fe interface

15.3 Influence of the Interface Roughness on the IEC

The most important effects of the interlayer roughness on the interlayer ex-
change coupling are the reduction of the amplitude, a loss of fine structures of
the oscillation period, the so-called orange peel effect, and frustration effects.

Reduction of the Amplitude

This behavior was already illustrated in Fig. 15.3.

Loss of Fine Structures of the Oscillation Period

This effect becomes obvious in a wash-out of the short-period structures. In
Fig. 15.17 SEMPA images of the Fe top layer magnetization is shown for two
different cases of the Cr wedge growth. The Cr wedges in the lower panel and
upper panel were grown on Fe substrates at room temperature and elevated
temperature, respectively. Measurements concerning the crystallographic or-
der prove in both cases a perfect single crystal of the Fe substrate. The room
temperature grown Cr exhibits indication of some disorder whereas Cr grown
at higher temperatures is just as well ordered as the substrate. The difference
in the crystallinity of the Cr layer drastically changes the coupling of the Fe
layers as can be seen in Fig. 15.17. The lower panel shows the characteristic
long-period oscillatory coupling of Fe through the Cr layer. In striking con-
trast the magnetization in well ordered Cr shown in the top panel changes to
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Fig. 15.17. The difference in the magnetic coupling of the Fe layers in the Fe/Cr/Fe
sandwich for the Cr wedge grown on a substrate at room temperature (lower panel)
and elevated temperature (upper panel) is directly obvious in these SEMPA images
which characterize the My direction. (From [61] (used with permission))

the much shorter period of about two atomic layers. Thus, the magnetization
changes with each atomic layer change in Cr thickness. The loss of fine struc-
ture (see left part of Fig. 15.18) is also obvious in graphical representations
of the coupling strength (see Fig. 15.18).

Orange Peel Effect

Let us consider a correlated roughness at the interface exhibiting a topography
which has been described as that of an orange peel. The flux closure due to
stray field minimization within the system of the poles on one side by the
poles on the other side of the interface as shown in Fig. 15.19 yields a parallel
positive coupling between the magnetization of the two sides. This behavior
gives rise to a ferromagnetic interlayer exchange coupling.

Frustration Effects

Frustration effects are induced by variation of the thickness of an antiferro-
magnetic interlayer (see Fig. 15.20). Let us discuss this behavior in more detail
on the example of an Fe film on a Cr substrate.

Covering a Cr(001) substrate with a thin Fe layer one expects that the in-
plane magnetization of the Fe layer matches the Cr spin structure such that
at the interface the Fe and Cr spins lie antiparallel as schematically depicted
in Fig. 15.21(a). This requires a reorientation of the spin density wave from
a longitudinal out-of-plane propagation to a transverse out-of-plane propa-
gation with spins in the plane. Surface roughness introduces steps of varying
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Fig. 15.18. Interlayer coupling in Fe/Cr/Fe as a function of the Cr thickness dCr

measured at room temperature. The thickness of each Fe film is 5 nm. The substrate
temperature during preparation was 293 K (left) and 523 K (right), respectively. A
positive coupling strength J1 corresponds to a ferromagnetic arrangement whereas a
negative one to an antiferromagnetic coupling. (Data taken from [60] with permission
from Elsevier)

+-+- +- +-

+- +- +- +-

Fig. 15.19. Illustration of ferromagnetic coupling between two magnetic layers
due to interface roughness. Stray fields emerging from protrusions are presented by
“magnetic charges” − and +. The given parallel alignment of the two magnetic
layers minimizes the stray field energy because charges with different sign from the
upper and lower film oppose each other. This so-called “orange peel” coupling is of
dipolar nature

heights. Any step height with an odd number of atomic layers introduces frus-
tration to the interlayer exchange coupling at the Fe/Cr interface due to the
antiferromagnetic order of the Cr (see Fig. 15.21(b)–(e)).

How the system overcomes this frustration depends on the relative magni-
tude of the intralayer exchange energies JCr−Cr and JFe−Fe and the interlayer
exchange energy JFe−Cr. In case of a very small magnitude of JFe−Cr the
frustration at the interface can be overcome by breaking the antiferromag-
netic coupling at the Fe/Cr interface (see Fig. 15.21(b)) thus avoiding the
formation of domain walls in Fe or Cr. On the other hand, in the case of a
very large JFe−Cr a domain wall could form either in the Fe or the Cr layer
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Fig. 15.20. If two ferromagnetic thin films are separated by an antiferromagnetic
coupling spacer layer the variation of the thickness can result in a frustration within
one of the ferromagnetic layers. This is exemplarily shown for a monatomic step in
the spacer which leads to an additional layer. In order to maintain the antiferromag-
netic coupling at the interface one ferromagnetic film exhibits two domains being
separated by a domain wall where the step is located

(a)

(b)

(d)

(c)

(e)

Fig. 15.21. Schematic and simplified representation of the interface between a thin
ferromagnetic Fe layer and a thicker antiferromagnetic Cr film. The black arrows
indicate the orientation of the magnetic moments in the Fe film, the white arrows
the Cr magnetic moments. (a) represents an ideal and flat interface with antiferro-
magnetic coupling between the Fe and Cr moments. (b)–(e) show interfaces with
monatomic high steps causing frustration of the interface exchange coupling. The
frustration can be overcome by formation of a domain in the Fe layer (c), in the
Cr film (d), or by a reorientation of the spin density wave (e). The latter case is
experimentally observed in thick Cr films. (Adapted from [63])
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(see Fig. 15.21(c) and (d)). For an intermediate value of JFe−Cr the system can
react by forming a domain wall along the Fe/Cr interface by reorienting the
Cr moments perpendicular to the Fe film (see Fig. 15.21(e)). Reorientation of
the Cr moments requires less energy than reorientation of the Fe moments.
In the latter case work has to be done against the shape anisotropy energy
which is not required for the antiferromagnetic Cr film. The reorientation of
the spin density wave indicates that with decreasing thickness more energy is
gained by forming domain walls in the Cr (see Fig. 15.21(d)) than by forming
a 90◦ wall along the Fe/Cr interface (see Fig. 15.21(e)). The case of domain
walls in Fe (see Fig. 15.21(c)) which would lead to a vanishing magnetization
of the Fe layers is experimentally not observed. Since the energy gained by do-
main wall formation in the Cr film scales with the Cr film thickness dCr while
the energy gained by reorienting the Cr moments perpendicular to the Fe/Cr
interface scales with the separation L of the steps and kinks at the interface
one expects that the crossover from out-of-plane to in-plane spin orientation
takes roughly place when the condition JCr−Cr · dCr = JFe−Cr · L is fulfilled.

To make this model more realistic interdiffusion at the Fe/Cr interface in
addition to well defined steps can be included. In Fig. 15.22 the calculated cor-
responding ground state spin configuration is shown. Clearly, the frustration
induces an effective 90◦ coupling between the Fe and the Cr magnetization.
Together with the small uniaxial anisotropy of the Cr atoms this leads to an
orientation of the Cr spins perpendicular to the surface. In this model the
90◦ orientation occurs independently of the presence of interdiffusion as long
as there are steps.

Fe

Cr

Fe + Cr

Fig. 15.22. Ground state spin structure near an Fe/Cr interface with monatomic
steps from computer simulations assuming interdiffusion over two layers. Note that
the Fe moments are also affected. (Adapted from [64])
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Two length scales are important, the thickness of the Cr layer and the sep-
aration of the steps at the interfaces. When dCr is reduced below the distance
between steps more energy can be gained by the exchange interaction at the
interface than is lost by roughness induced domain wall formation within the
Cr. Consequently, for thin Cr films the Cr moments are oriented in the film
plane with domain walls in the Cr layer connecting the interfacial steps.

15.4 “Spin Engineering” by Interlayer Exchange
Coupling

In a three layer or multilayer system the exchange behavior can be tuned by
setting the different exchange coupling constants Ji to specific values.

If we assume a system consisting of three ferromagnetic layers which are
separated by non-magnetic thin films as schematically shown in Fig. 15.23 and
layer “FM 0” represents the dominating layer, e.g. due to its thickness, with
its magnetization M0 being aligned along a given direction determined by an
external magnetic field then the coupling constants J1 and J2 are responsible
for the shape of the hysteresis loop. The setting of J1 < 0, i.e. antiferro-
magnetic coupling between the dominating and neighboring layer, J2 > 0,
i.e. ferromagnetic coupling between layers 1 and 2, and |J1| > |J2| result in
a complex behavior which is shown in Fig. 15.24. The variation of J1 and J2

allows to tune the shape of the magnetization curve.

J1

J2

FM 0

FM 1

FM 2

Fig. 15.23. Spin engineering samples consist of a thick ferromagnetic film “FM 0”
which is coupled to the layered system to be studied, here the structure “FM 1”/in-
terlayer/“FM 2” via an additional spacer layer

15.5 Spin Valves

Spin valve systems consist of ferromagnetic layers being separated by non-
magnetic thin films and are therefore nearly identical to systems which show
the giant magneto resistance effect (GMR) which will be discussed in more
detail in Chap. 16.3. The only difference is given by the type of coupling.
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0
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M

H

Fig. 15.24. Exemplary magnetization curve assuming a strong antiferromagnetic
coupling between the topmost layer which follows the external magnetic field and
the medium one. In moderate external fields layer “FM 2” (cf. Fig. 15.23) exhibits a
parallel orientation with respect to layer “FM 1” assuming J2 > 0 and an antiparallel
orientation to the external field. Increasing the magnitude of the external field leads
to a rotation of the magnetization of layer “FM 2” into field direction

Whereas in GMR systems an antiferromagnetic coupling between adjacent fer-
romagnetic layers is present the GMR effect also occurs in spin valve systems
but the ferromagnetic thin films are magnetically decoupled. Ferromagnetic
layers with different coercive fields represent one example.

15.6 Additional Types of Coupling

In the discussion above we have only considered a collinear type of coupling.
It can be ferro- or antiferromagnetic depending on whether the angle between
both directions of the magnetization M1 and M2 is 0◦ or 180◦, respectively.
The energy density of the interlayer exchange coupling assuming only this
bilinear coupling can be given by:

EIEC = −JBL

M 1 · M2

|M1| · |M2|
(15.6)

= −JBL cos(φ1 − φ2) (15.7)

with φi the angle of the magnetization of one magnetic film with respect to
a given direction and thus (φ1 − φ2) the angle between the magnetization of
the films on both sides of the interlayer.

Taking into account an additional quadratic term the energy density
amounts to:
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Fe

Fe

Cr Cr

Fig. 15.25. Left: Bilinear coupling between two ferromagnetic Fe layers being sep-
arated by a Cr spacer layer results in an (anti)ferromagnetic alignment. Right: Bi-
quadratic coupling may lead to an angle of 90◦ between both ferromagnetic layers

top layer bottom layer net magnetization

easy magnetization axes

FM 90° AFM

Fig. 15.26. Magnetic domains of an Fe/Cr/Fe sample. A cross section is shown
in the lower panel of the left part. The thickness of the Cr spacer layer increases
from 0.44 nm at the left to 0.57 nm at the right. The directions of the magnetization
concerning both ferromagnetic Fe layers which exhibit a thickness of 10 nm each are
given by black arrows for the top layer and white arrows for the bottom layer. A
small thickness of the Cr interlayer results in a ferromagnetic coupling whereas a
large thickness leads to an antiferromagnetic coupling. The net magnetization in the
middle region where a 90◦ coupling is present is indicated by the gray arrow. The
easy magnetization axes are shown in the lower right part. (Reprinted from [65].
Copyright 1995, with permission from Elsevier)

EIEC = −JBL

M 1 · M2

|M 1| · |M2|
− JBQ

(

M1 · M 2

|M1| · |M 2|

)2

(15.8)

= −JBL cos(φ1 − φ2) − JBQ cos2(φ1 − φ2) (15.9)

with JBQ being the coupling constant of this so-called biquadratic term. Now,
it is possible to realize a 90◦ coupling between both ferromagnetic layers
(see Fig. 15.25). The type of coupling depends on the thickness of the inter-
layer. For the determination of the type two different experimental techniques
can be used: the observation of magnetic domains and magnetization curves.
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Fig. 15.27. Calculated easy axis magnetization curves for κ2 = 0.1 and different
values of κ1. (From [66] with permission from Wiley)

Figure 15.26 presents an Fe/Cr/Fe sample with a Cr wedge as interlayer.
At the bottom of the figure a cross section of the sample is displayed. There
are two Fe films each 10 nm thick being separated by a Cr interlayer whose
thickness increases from the left to the right. Due to the different thickness
various types of coupling occur which is reflected by the magnetic domains.
In the left part the original picture is displayed. The right part shows the
magnetization directions in the different domains as evaluated from the gray
tones of the original data. The relative orientation of the magnetization of the
two films reveals the associated types of coupling. It is ferromagnetic on the
left hand side, of 90◦ type in the middle, and antiferromagnetic on the right
hand side.

The detailed shape of a magnetization curve also depends on the val-
ues of the different coupling constants. Let us exemplarily assume K as the
anisotropy constant and set κ1 = JBL/K and κ2 = JBQ/K. In this situation
different hysteresis loops can be calculated for fixed κ2 = −0.1 and differ-
ent values of κ1 which is shown in Fig. 15.27. Generally, plateaus at M ≈ 0
are related to antiferromagnetic coupling whereas those at M ≈ ±MS/2 are
connected with biquadratic coupling. Taking into account a fourfold in-plane
anisotropy the plateaus at M ≈ ±MS/2 can be explained by assuming that
one of the magnetization is aligned along an easy axis parallel to the external
magnetic field while the other is aligned along the easy axis perpendicular to
the field. Figure 15.27(b) shows the behavior of a relatively strong 90◦ coupling
which overrides the plateau due to antiferromagnetic coupling at M ≈ 0. In
Fig. 15.27(a) the antiferromagnetic coupling is again strong enough to develop
its own plateau at M ≈ 0. Figure 15.27(d) represents a pure ferromagnetic
coupling.
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Magnetoresistivity

Magnetoresistivity deals with the influence of the static magnetic properties
of solid states on the dynamic electronic behavior, i.e. the influence of the spin
arrangement in a magnetic layer on the motion of electrons.

In an external magnetic field the spin arrangement changes and subse-
quently the mobility of the electrons. Thus, a variation of the resistance oc-
curs which is referred to as magnetoresistivity. The magnitude of this effect
is defined as:

MR =
R(H) − R(H = 0)

R(H = 0)
=

∆R

R
(16.1)

with R(H) being the resistance in an external field H . This value is often
expressed as a percentage. The sensitivity concerning magnetoresistive effects
is defined by:

S =
∆R

R
/Hs (16.2)

with the unit of S given in %/Oe and Hs being the minimum external field
which leads to a saturation of the magnetoresistive effect.

The most important magnetoresistive effects are:

• Normal magnetoresistance
• AMR: Anisotropic magnetoresistance

It is caused by anisotropic scattering in the bulk. The effect amounts to
several %. The sensitivity is about 1. Hs is rather small.

• GMR: Giant magnetoresistance
It is due to a spin dependent scattering of electrons at interfaces. The
magnitude is about 5% up to about several 100% at room temperature.
The sensitivity is between S = 0.01 . . .3. Hs exhibits medium values.

• CMR: Colossal magnetoresistance
This effect is caused by a spin dependent scattering of electrons in the bulk
of specific materials. The effect is several 100% at room temperature and
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reaches values up to 108% at low temperatures. The sensitivity is rather
small with about S = 0.001. Hs is large.

• TMR: Tunnelling magnetoresistance
It is due to spin dependent tunnelling processes. The effect can reach values
up to about 50% at room temperature with a sensitivity up to 1.5. The
values of Hs are small.

A general differentiation must be carried out concerning:

• Transversal magnetoresistance
The external magnetic field is perpendicular to the electric current.

• Longitudinal magnetoresistance
The magnetic field is oriented along the direction of the electric current.

16.1 Normal Magnetoresistance

The general situation is characterized by an increase of the resistance when ap-
plying an external magnetic field. Thus, it is called positive or normal magne-
toresistance. It occurs in non-magnetic metals as a consequence of the Lorentz
force. The external field forces the electrons on spiral trajectories. Thus, the
effective mean free path between two collisions is reduced which leads to an
increase of the resistance.

Below the Curie temperature ferromagnetic transition metals exhibit
a reduced resistance compared to non-magnetic transition metals like Pd
(see Fig. 16.1). This occurrence is therefore called negative magnetoresistance.
For transitions metals the electric current is mainly due to s electrons exhibit-
ing a small effective mass. The resistance can be explained by scattering of the
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Fig. 16.1. Reduced resistance as a function of temperature for Ni and Pd. The
curves are normalized with respect of the Curie temperature of Ni. (Data taken
from [67]. Used with permission from Taylor & Francis Ltd. (http://www.info-
rmaworld. com))
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Fig. 16.2. Schematic illustration of the spin resolved density of states for a non-
magnetic or a ferromagnetic material above TC (left) and for a ferromagnet below
the Curie temperature (right). The latter one exhibits a shift between majority and
minority electrons

s electrons into empty states of the d band near the Fermi level EF . Transition
metals are characterized by a large density of states (DOS) of the d band at
EF (see Fig. 3.8) which causes a large scattering cross section and thus a high
resistance. Contrarily, nobel metals exhibit a low DOS at EF (see Fig. 3.10)
which results in a low resistance.

In the following we will distinguish between majority and minority elec-
trons. For a non-magnetic material or a ferromagnet above TC the spin re-
solved DOS is identical for both types of electrons (see left part of Fig. 16.2)
But, an exchange splitting of the bands is present for a magnetic material
below the Curie temperature as schematically depicted in the right part of
Fig. 16.2. As a consequence majority s electrons can no longer be scattered
into d states which leads to an increased mobility and a reduced resistance.
Applying an external magnetic field increases the degree of spin order which
results in a reduction of the resistance. Therefore, we observe a negative mag-
netoresistance.

A descriptive explanation of this situation was carried out by Mott us-
ing a two spin channel model. An illustration is given by the following cir-
cuit diagram (see Fig. 16.3). The total resistance Rtotal is determined by the
parallel connection of the resistance for majority electrons R↑ and minority

R

R

Fig. 16.3. Circuit diagram concerning the two spin channel model by Mott with R↑

being the resistance for majority electrons and R↓ the resistance for minority elec-
trons allowing the determination of the total resistance Rtotal
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electrons R↓ and therefore amounts to:

Rtotal =
R↑ · R↓

R↑ + R↓
(16.3)

Using the approximation that a variation of magnetic order being character-
ized by the parameter a induces an (inverse) proportional behavior of the
resistances R↑ and R↓, i.e.:

R↑ =
1

a
R and R↓ = aR (16.4)

the total resistance can be expressed as:

Rtotal =
1
aR · aR
1
aR + aR

= R ·
a

1 + a2
(16.5)

Without magnetic order we get a = 1 and thus Rtotal = 1/2·R. The maximum
resistance as a function of magnetic order can be calculated by:

0 =
∂Rtotal

∂a
= R ·

1 − a2

(1 + a2)2
(16.6)

Thus, the maximum is reached if a = 1 which corresponds to a vanishing
magnetic order. Consequently, the occurrence of magnetic order reduces the
resistance.

This negative magnetoresistance behaves isotropically, i.e. it does not de-
pend on the direction of the electric current relative to the magnetization
direction, to the direction of the external magnetic field, and to the orienta-
tion of the crystalline axes.

16.2 AMR – Anisotropic Magnetoresistance

The anisotropic magnetoresistance effect is current induced and exists in ferro-
magnetic metals such as Ni, Co or Fe upon application of an external field H .
The physical origin of the AMR effect is spin orbit coupling on the 3d or-
bitals caused by an applied magnetic field. Without spin orbit interaction,
i.e. L · S = 0, an s-d scattering of majority electrons cannot occur. For a
non-vanishing spin orbit interaction spin-flip scattering is allowed, i.e. major-
ity s electrons can be scattered into empty minority d states which results
in an increase of the resistance. Additionally, the momentum of the scattered
electrons must be conserved. Thus, the scattering cross section is different due
to the orbital anisotropy of the empty d states for a parallel and a perpendic-
ular orientation between the magnetization direction and the direction of the
electric current which is schematically depicted in Fig. 16.4.
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Fig. 16.4. Origin of the anisotropic magnetoresistance

The magnitude of the AMR effect depends on the angle between the elec-
tric current I being θI and the angle of the magnetization M being θM in the
ferromagnetic metal with respect to a given direction. The angle θM is usually
the same as the angle of the applied field θH but can be influenced by other
factors such as shape or magneto crystalline anisotropy in the ferromagnetic
thin film.

The resistance of a ferromagnetic thin film is at a maximum when the
current is parallel to the magnetization direction R‖ and is at a minimum
when the current is perpendicular to the magnetization direction R⊥. The
magnetic field dependence of the AMR effect for a ferromagnetic thin film is
shown Fig. 16.5. There is no difference in resistance at zero field between the
two current field orientations. Upon application of a magnetic field the dif-
ference in resistance between the R‖ and R⊥ becomes immediately apparent.
The resistance with the current set perpendicular to magnetic field direction
decreases while the resistance increases with the current set parallel to the
field direction. With increasing magnitude of the magnetic field the difference
in resistance between the two orientations rapidly reaches a maximum at Hs.

R

M = Ms

R H( )

R H( )

R
B(

=
0
)

R
B(

=
0
)

0 HextHs

Fig. 16.5. Resistance as a function of an external magnetic field for a parallel R‖

and perpendicular orientation R⊥ between the direction of the electric current and
the magnetic field
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The angle dependence of the resistance change due to the AMR effect can
be expressed as follows:

R(θ) = Rmin + ∆RAMR · cos2(θM − θI) (16.7)

with ∆RAMR being the resistance change due to the AMR effect. According
to this relationship the resistance change exhibits a 180◦ periodicity when the
ferromagnet is rotated in a constant applied magnetic field. Equation (16.7)
can be expanded to include the terms R‖ and R⊥:

∆RAMR = R‖ − R⊥ (16.8)

Rmin = R⊥ (16.9)

R(θ) = R⊥ + (R‖ − R⊥) · cos2(θM − θI) (16.10)

The determination of R‖ and R⊥ can be carried out by extrapolation to a
vanishing slope. This procedure is necessary in order to eliminate the influence
of the external field and the inner field due to the magnetization being caused
by the asymmetric charge distribution due to spin orbit interaction.

If the external magnetic field is larger than Hs the positive or negative
magnetoresistance occurs, respectively, as discussed in Chap. 16.1.

16.3 GMR – Giant Magnetoresistance

Whereas the normal, the anisotropic, and the colossal magnetoresistance oc-
cur in bulk material the giant magnetoresistance is restricted to systems which
consist of magnetic thin layers. The giant magnetoresistance is present for fer-
romagnetic layers which are separated by a non-magnetic or an antiferromag-
netic metallic thin film. Thus, the giant magnetoresistance is closely related
to the interlayer exchange coupling which deals with the observation that the
relative orientation of the magnetization in ferromagnetic multilayer systems
depends on the thickness of the spacer layer and is discussed in Chap. 15.

The pioneering work was carried out by P. Grünberg [68] and A. Fert [69]
on Fe/Cr/Fe multilayers.

The magnitude of the electric current and thus the resistance depend on
the relative orientations of the magnetization in the thin film system. The
resistance is low (large) for a parallel (antiparallel) alignment of the magneti-
zation of neighbored magnetic layers (see Fig. 16.6). Thus, in layered systems
with an antiferromagnetic coupling the parallel orientation forced by an ex-
ternal magnetic field significantly reduces the resistance. The variation of the
resistance ∆R/R(B = 0) can be extremely large (about 80% in the example)
which gives rise for this “giant” magnetoresistance GMR.

The GMR effect cannot be based on the AMR because it is significantly
larger and exhibits no dependence on the angle between the magnetization
and the direction of the electric current.
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Fig. 16.6. (a) Magnetoresistance of three Fe/Cr superlattices at 4.2 K. The resis-
tance is referenced to that without magnetic field. The current and the applied field
are along the same axis in the plane of the layers. (Adapted from [69] (used with
permission)) (b) The corresponding relative magnetization orientation for zero and
applied field for a part of the Fe and Cr layers within the stack. Whereas a high
external magnetic field results in a parallel orientation of all Fe layers which corre-
sponds to a low resistance an antiparallel arrangement occurs without applying an
external field which significantly increases the resistance

The magnitude of the GMR effect is defined by:

GMR =
ρap − ρp

ρp

=
σp

σap

− 1 (16.11)

with ρp (ρap) being the resistivity for a parallel (antiparallel) alignment of the
magnetization in neighbored layers and σp (σap) the corresponding specific
conductance.

The effect can be explained using the Mott model of two spin channels.
The scattering cross section and thus the resistivity is different for a parallel
ρ+ and an antiparallel orientation ρ− of the spins and thus the magnetiza-
tion in neighbored layers. The parallel connection for majority and minority
electrons in multilayer systems is shown in Fig. 16.7. Neglecting the resistiv-
ity ρ of a non-magnetic interlayer and assuming a parallel alignment of the
magnetization ρp is given concerning two magnetic layers by:

ρp =

(

1

2ρ+
+

1

2ρ−

)−1

(16.12)
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Fig. 16.7. Mott’s model of the two spin channel for illustrating the resistivity in
the situation of a parallel (left) and antiparallel orientation (right) in a multilayer
system. Each upper channel corresponds to spin up, each lower part to spin down
electrons

=
2ρ+ρ−

ρ+ + ρ−
(16.13)

and assuming an antiparallel alignment ρap by:

ρap =

(

1

ρ+ + ρ−
+

1

ρ− + ρ+

)−1

(16.14)

=
ρ+ + ρ−

2
(16.15)

The resistivity of the antiparallel configuration is larger than for the parallel
alignment:

ρap − ρp =
ρ+ + ρ−

2
−

2ρ+ρ−

ρ+ + ρ−
=

(ρ+ − ρ−)2

2(ρ+ + ρ−)
≥ 0 (16.16)

Thus, the magnitude of the GMR effect amounts to:

GMR =
ρap − ρp

ρp

=
(ρ+ − ρ−)2

4ρ+ρ−
(16.17)

and is large if the scattering cross sections are significantly different for a
parallel and antiparallel alignment.

Let us discuss this behavior of ferromagnetic 3d metals using the spin
resolved density of states as depicted in Fig. 16.8 which is known as the
Stoner model. As already mentioned the electric transport is carried out by
the 4s electrons due to their reduced effective mass compared to 3d electrons.
A large DOS of the 3d electrons at the Fermi energy results in an enlarged
scattering of 4s electrons into empty 3d states followed by a high resistiv-
ity. Due to the exchange splitting of the DOS for 3d electrons the scattering
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Fig. 16.8. Dependence of the resistivity on the relative orientation of the magnetiza-
tion. For a parallel alignment one spin channel exhibits a low resistivity which gives
rise to a low total resistivity. For an antiparallel alignment an alternating change in
the resistivity occurs for each spin channel which leads to large total resistivity

probability for an antiparallel alignment in both ferromagnetic thin films is
significantly higher than for the parallel alignment. This behavior gives di-
rectly evidence for the equivalent circuit diagrams shown in Fig. 16.7.

Now we take into account the resistivity ρ of the non-magnetic interlayer
with a cross-sectional area A and thickness d assuming a thickness of the
magnetic layer of dm. Introducing the parameters:

γ =
dm

d
(16.18)

a =
ρ+

ρ
(16.19)

b =
ρ−

ρ
(16.20)

we obtain:

Rp =
(1 + aγ)(1 + bγ)

2 + aγ + bγ
·
2ρd

A
(16.21)

Rap = (2 + aγ + bγ) ·
ρd

2A
(16.22)

Thus, the magnitude of the GMR effect amounts to:
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GMR =
(a − b)2

4(a + 1/γ)(b + 1/γ)
(16.23)

Using the example given in Fig. 16.6 with a thickness of the Fe layer of
dm = 3nm and of the Cr layer of d = 0.9 nm which led to a GMR effect
of 83% we get γ = 3/0.9 = 3.3. Assuming ρ+ = ρ we obtain a = 1. This
allows to determine b to b = 6.5. Thus, the resistivity of an antiparallel con-
figuration is 6.5 times larger than for the parallel orientation.

In the discussion above we assumed that the direction of the electric cur-
rent is perpendicular to the layered system. But, in most of the experiments
this direction is parallel along the thin film system. Therefore, two differ-
ent configurations must be distinguished: CIP (current in plane) and CPP
(current perpendicular to plane) configuration (see Fig. 16.9). The CIP con-
figuration allows easier measurements whereas the CPP one requires litho-
graphic procedures or shadow masks for the production of the layered stack.
Additionally, the resistivity for CPP is significantly smaller compared to CIP.
Concerning the magnitude of the GMR effect each layer in CIP geometry ex-
hibits its own conductivity and can shunt the effect. This is not possible for
the CPP configuration where each spin current must go through the whole
stack. Therefore, the GMR effect is larger for the CPP than for the CIP
configuration.

The spin dependent scattering occurs at the interfaces. Thus, the mag-
nitude of the GMR effect depends on the temperature and the number of
interfaces. Figure 16.10 shows the magnitude of the GMR effect as a function
of temperature for (Fe/Cr)n/Fe samples with n = 1, 2, 4. It is obvious that
the effect increases if the temperature is reduced and scales with the number
of interfaces.

I I

Fig. 16.9. Left: Current in plane (CIP) configuration. Right: Current perpendic-
ular to plane (CPP) configuration
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Fig. 16.10. Temperature dependence of the GMR effect, i.e. of the relative change
of the resistivity (ρap − ρp)/ρp in epitaxial (Fe/Cr)n/Fe structures with n = 1, 2, 4
(Data taken from [70])

The GMR effect consists of a decrease in the resistivity when the magne-
tization of the ferromagnetic layers being separated by a non-magnetic or an-
tiferromagnetic layer rotate from the antiparallel to the parallel alignment. In
the Fe/Cr layered structures described in Fig. 16.10 the antiparallel alignment
was induced by an antiferromagnetic exchange coupling between neighboring
Fe layers across the Cr interlayers. The origin of the antiparallel alignment,
however, is not important for the description of the effect. One may thus
expect similar effects in double layers with no antiferromagnetic coupling be-
tween the ferromagnetic layers but with the antiparallel alignment obtained
by other means. In this situation we have spin valve systems.

One of these possibilities is given by different coercivities Hc of both
ferromagnetic films. The realization of this situation can be carried out by
Co/Au/Co double layers with the Au interlayer thick enough that there is no
exchange coupling between the Co films. The first Co layer is evaporated on a
GaAs substrate whereas the second one is grown on the Au spacer layer. Ow-
ing to this fact both Co films possess different coercive fields. In Fig. 16.11(a)
the hysteresis loop obtained via the magneto-optical Kerr effect at room tem-
perature is shown. As one can see there is a range of magnetic fields where the
directions of magnetization of both Co layers are aligned antiparallel being
indicated by arrows. In Fig. 16.11(b) the resistance is shown scanning through
the hysteresis loop given above.

The experimental configuration is the same as in the case of the Fe/Cr
structures being discussed above with the current being directed parallel to
the external magnetic field. At sufficiently high magnetic field the directions
of the magnetization of both ferromagnetic films are parallel. We see that the
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Fig. 16.11. (a) Relative magnetization (determined by MOKE technique) and
(b) resistance of a Co/Au/Co structure. The corresponding magnitude of the
GMR effect is given at the right scale. The measurements were carried out at
T = 294 K. (Data taken from [70])

resistance increases each time the antiparallel alignment is achieved during
the scan through the hysteresis loop. At the right scale of Fig. 16.11(b) the
corresponding relative change of resistance is given. We therefore observe that
the GMR effect amounts to about 1.1%.

16.4 CMR – Colossal Magnetoresistance

The colossal magnetoresistance was found in mixed valence Manganese oxides
which exhibit Mn ions in different oxidation states and localized magnetic
moments. It is related to a negative magnetoresistance effect due to spin
disorder.

Let us discuss this effect using the compound LaMnO3 which occurs as
La3+Mn3+O2−

3 , i.e. only Mn3+ ions are present which exhibit 4 electrons in
the 3d shell. Due to Hund’s rules (see Chap. 2.4) a parallel alignment of the
four spins is energetically favored. The compound represents an isolator and
behaves as an antiferromagnet below 140K.

Replacing a part of the La atoms by Sr atoms results in the compound
La1−xSrxMnO3 exhibiting the oxidation states La3+

1−xSr2+x Mn3+
1−xMn4+

x O2−
3 ,

i.e. mixed valences of the Mn ions are present: Mn3+ and Mn4+. In the regime
0.15 < x < 0.5 a transition from paramagnetic and semiconducting to ferro-
magnetic and metallic behavior occurs. The Curie temperature depends on
the stoichiometry.
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The transport of electrons in this type of compound can be understood as
follows. The remaining 3d electron of the Mn3+ ion is mobile whereas the other
ones as well as the three of the Mn4+ ions are localized. This free electron
of the Mn3+ ion can hop via the O2− ions to neighbored Mn4+ ions, i.e. the
oxidation state is reversed and the hopping can continue. Thus, the electron
possesses a high mobility.

Now, the spin orientation is additionally taken into consideration. Due to
Hund’s coupling the spin of the mobile electron must be parallel to the spins
of the localized electrons. Therefore, hopping can only occur if the spins of the
localized electrons at neighbored sites are parallel. We see that a high mobil-
ity is correlated with a ferromagnetic arrangement of neighbored Mn atoms.
The transition from para- to ferromagnetism denotes an isolator-metal tran-
sition. The disorder of spin moments in the paramagnetic regime inhibits the
transport of electrons and gives rise to a high resistivity.

The temperature dependence of this resistivity is shown in Fig. 16.12 for
a different type of a Manganese oxide Nd1−xPbxMnO3 with x = 0.5. This
compound exhibits a Curie temperature of 184K. We see that the colossal
magnetoresistance mainly occurs near the Curie temperature in an external
magnetic field which leads to a reduction of the disorder. Thus, the resistiv-
ity is decreased. Well below TC the spin system is already ordered and the
influence of the external field vanishes.

The magnitude of the colossal magnetoresistance amounts up to 100000%
and even more!
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Fig. 16.12. Resistivity of Nd1−xPbxMnO3 with x = 0.5 as a function of temperature
and applied magnetic field. (Data taken from [71]. Copyright 1989, with permission
from Elsevier)
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16.5 TMR – Tunnelling Magnetoresistance

For the occurrence of the GMR effect it was essential that the two ferromag-
netically or antiferromagnetically coupling layers were separated by a metal-
lic and non-magnetic thin film. Now, we change this situation by replacing
the metallic spacer with an insulator between both magnetic films (see left
part of Fig. 16.13). The discussion below can also be extended to ferromag-
netic nanoparticles being located in an insulating matrix (see right part of
Fig. 16.13).

The electric current can no longer be due to diffusive transport of electrons
but only through the insulating barrier. As a prerequisite the thickness of the
barrier must be small enough to allow quantum mechanical tunnelling. It is
essential for our discussion that we assume that this process conserves the
spin orientation.

The dependence of the tunnelling current on the relative magnetization is
shown in Fig. 16.14 for two ferromagnetic thin layers. The total resistivity for
the parallel alignment is less than for the antiparallel orientation as already
found for the GMR effect. But, the TMR represents a band structure effect
which relies on the spin resolved DOS at the Fermi level whereas the GMR is
caused by a spin dependent scattering at the interfaces.

In the following we want to discuss different situations in dependence of
the properties concerning both electrodes. We will use the abbreviations “N”
for normal metallic conductors, “SC” for superconductors, “FM” for ferro-
magnetic metals, and “I” for insulators. Especially, the tunnelling current
between the two electrodes separated by an insulating barrier as a function
of the voltage between both electrodes represents an important property for
the understanding of tunnelling magnetoresistance and can be calculated on
the basis of Fermi’s golden rule to be:

I = 2e
2π

h̄

∞
∫

−∞

|M(E)|2 n1(E − eU) n2(E) [f(E − eU) − f(E)]dE (16.24)

FM 1

FM 2
insulator

I ferromagnetic nanoparticles

insulating matrix

I

Fig. 16.13. The tunnelling magnetoresistance can occur for ferromagnetic thin films
being separated by an insulating layer (left) and for ferromagnetic nanoparticles
being embedded in an insulating matrix (right)
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Fig. 16.14. Dependence of the tunnelling current on the relative magnetization of
two ferromagnetic layers. For a parallel orientation a large amount of spin down
electrons at the Fermi energy can tunnel into empty down states which results in a
high tunnelling current whereas for an antiparallel orientation the amount of empty
down states is significantly lower leading to a reduced tunnelling current

with E being the energy with respect to the Fermi energy EF , U the applied
bias voltage, M the tunnelling matrix element, n1,2 the density of states of
the first and second electrode, respectively, and f(E) the Fermi function:

f(E) =
1

exp(E/kT ) + 1
(16.25)

with E being referenced to the Fermi energy (cf. (3.13)).

Planar N-I-N Contacts

Both electrodes are normal metallic conductors. Assuming that near EF the
density of states does not depend on the energy and that the tunnelling matrix
element is independent on E which is given if eU is negligible compared to
the barrier height the tunnelling current amounts to:

I = 2e
2π

h̄
nN1 nN2 |M |2

∞
∫

−∞

(f(E − eU) − f(E)) dE (16.26)
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I
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U

Fig. 16.15. Left: Linear dependence of the tunnelling current I on the applied
bias voltage U . Right: Thus, the differential tunnelling conductance G = dI/dU is
constant, i.e. it does not depend on U

For T = 0 we obtain a linear dependence of the tunnelling current I on the
applied bias voltage U , i.e. I ∝ U (see left part of Fig. 16.15). Thus, the
differential tunnelling conductance G = dI/dU is proportional to nN1 nN2

and does not depend on U (see right part of Fig. 16.15). These properties
can easily be understood using Fig. 16.16. The number of occupied states in
one electrode which are responsible for the tunnelling into empty states of the
other electrode linearly increases with the applied bias voltage U .

The typical tunnelling current as a function of the applied bias voltage
between real non-magnetic metals is shown in the left part of Fig. 16.17.
The right part of Fig. 16.17 represents the corresponding conductance which
possesses an approximately parabolic shape. This behavior is due to the bias
dependence of the tunnelling matrix element which typically leads to an order-
of-magnitude increase in the tunnelling current for each volt increase in mag-
nitude of the applied bias voltage.

Nevertheless, the linear correlation between I and U is still given for a
small bias voltage.

E

E

EF

eU

n
N1

n
N2

EF

Fig. 16.16. Schematic illustration of the tunnelling processes between two elec-
trodes which are energetically shifted by eU
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I

U

G

U

Fig. 16.17. Left: Typical tunnelling current I on the applied bias voltage U be-
tween real non-magnetic metals. Right: The corresponding conductance exhibits an
approximately parabolic shape

Planar N-I-SC Contacts

Superconductors exhibit a gap in the density of states at the Fermi energy.
Let us assume the width of the gap to be 2∆. In this energy region no al-
lowed electronic states of the quasiparticles are present. Thus, if we replace
one of the electrodes of an idealized N-I-N contact with a superconductor the
tunnelling current I as a function of the applied bias voltage U is zero at the
corresponding values of U within the gap (see left part of Fig. 16.18). The
linear dependence remains at larger values of U . Consequently, the conduc-
tance G also vanishes within the gap and is constant for e|U | > ∆ (see right
part of Fig. 16.18 and cf. Fig. 16.15).

More realistically the density of states of the quasiparticles nSC can be
described in the BCS theory (Bardeen, Cooper, Schrieffer) by:

nSC(E) =

⎧

⎨

⎩

|E|
√

E2 − ∆2
if |E| ≥ ∆

0 if |E| < ∆
(16.27)

Applying a low voltage U , i.e. eU < ∆, no tunnelling current occurs for
T = 0 (curve 2 in Fig. 16.19) or only a small one for T > 0 (curve 3). In the

I

eU

G

eU

2�

2�

Fig. 16.18. Left: Linear dependence of the tunnelling current I on the applied
bias voltage U between a superconductor and a normal metal for larger values of U .
The tunnelling current vanishes in a gap around U = 0 exhibiting a width of 2∆.
Right: The conductance also vanishes within the gap and is constant with a positive
value outside the gap
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Fig. 16.19. Characteristic tunnelling current for a junction between (1) normal
metal and normal metal, (2) normal metal and superconductor at T = 0, and
(3) normal metal and superconductor at 0 < T ≪ TC . (Adapted from [72] with
permission from Wiley)

latter case only a few thermally filled states in one electrode face a similar
number of empty states in the other one. When eU exceeds the gap energy
the tunnelling current rapidly increases. In this situation electrons from the
filled states at EF of the normal conductor can tunnel into a large number of
empty states in the superconductor. A further increase of eU results in the
linear dependence of I as a function of U comparable to the N-I-N contact
(curve 1).

Assuming that the density of states of the normal conductor nN is inde-
pendent on E it can be removed from the integral and the tunnelling current
is given by:

I = 2e
2π

h̄
nN |M |2

∞
∫

−∞

nSC(E) (f(E − eU) − f(E)) dE (16.28)

The density of states of the quasiparticles nSC, characterized by (16.27), is
shown in the upper part of Fig. 16.20. For the differential conductance we
obtain:

G(U) =
dI(U)

dU
∝

∞
∫

−∞

nSC(E) K(E − eU)dE (16.29)

which is shown in the lower part of Fig. 16.20. In this Figure G(U) is nor-
malized to the density of states of a normal metal nN and thus reaches the
corresponding values outside the gap (see dashed line in Fig. 16.20(c)). It
results from the convolution of nSC and the derivative of the Fermi func-
tion f(E − eU) with respect to U :
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Fig. 16.20. Superconductor–normal metal tunnelling. (a) BCS density of states
of a superconductor exhibiting a gap of 2∆ as a function of voltage. (b) Temper-
ature dependent function K. (c) Theoretical normalized differential conductance
(dI/dU)SC/(dI/dU)N. The voltage is given with respect to the Fermi energy of the
superconductor. The dashed line represents the differential conductance of a normal
metal assumed to be independent on the energy

K =
E

kT
·

exp((E − eU)/kT )

(1 + exp((E − eU)/kT ))2
(16.30)

This function K is exemplarily shown in the middle part of Fig. 16.20.

Planar N-I-SC Contacts in an External Magnetic Field

Before we start our discussion concerning FM-I-SC contacts we deal with the
behavior of a superconductor in a magnetic field. Pioneering experiments and
related discussions are given in [73, 74].

It was experimentally observed that for the planar Al/Al2O3/Ag system
far below the critical temperature of 2.4K which Al becomes superconducting
at the quasiparticle density of states exhibits a splitting if a magnetic field
is applied (see Fig. 16.21). At B = 5.2T the field strength is high enough to
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Fig. 16.21. Experimental plots for several values of magnetic field of the supercon-
ductor conductance (dI/dU)SC divided by the normal state conductance (dI/dU)N
for planar Al/Al2O3/Ag contacts. Curve a: without external magnetic field; curve b:
B = 1.1 T; curve c: B = 3.0 T; curve d : B = 4.5 T; curve e: B = 5.2 T. (Data
taken from [75])

suppress the superconducting behavior (curve e). Thus, the superconductor
conductance (dI/dU)SC equals the normal state conductance (dI/dU)N.

Plotting the magnitude of the bias voltage U which the differential conduc-
tance possesses the maximum at shows a linear dependence with respect to
the applied magnetic field (see Fig. 16.22). This Zeeman splitting of the den-
sity of states for spin up and spin down electrons is in good agreement to the
theoretical value of U = (∆±μμ0H)/e = (∆±μB)/e with μ = gμBS/h̄ ≈ μB

being the magnetic moment of the electron.
Analogously to the interpretation carried out concerning Fig. 16.20 for

N-I-SC contacts Fig. 16.23 allows to understand the differential conductance
for N-I-SC contacts with an additional external magnetic field. We see in the
upper part of Fig. 16.23 that the density of states for spin up electrons is
shifted by μB to the left (gray line) whereas that for spin down electrons is
shifted by the same value to the right (black dashed line). Thus, due to the
Zeeman splitting spin up electrons are primarily responsible for the tunnelling
current at the energy ∆ − μB whereas the tunnelling current at the energy
∆ + μB is mainly due to spin down electrons.

The density of states nSC(E) can be divided into two parts concerning the
spin up n↑(E) and spin down electrons n↓(E):

nSC(E) = n↑(E) + n↓(E) =
1

2
(nSC(E − μB) + nSC(E + μB)) (16.31)

Thus, the differential conductance amounts to:
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Fig. 16.22. Bias voltage U corresponding to the maxima of the spin up and spin
down density of states curves determined from Fig. 16.21 as a function of the applied
magnetic field B. The lines represent the theoretically expected results of eU =
(∆ ± µB) (Data taken from [75])

G(U) ∝

∞
∫

−∞

nSC(E + μB) K(E − eU)dE +

∞
∫

−∞

nSC(E − μB) K(E − eU)dE

(16.32)
Both contributions are shown in the lower part of Fig. 16.23 represented by
the solid gray and black dashed line. The black solid line corresponds to the
total differential conductance.

This straightforward analysis is based on some assumptions. Neglecting
spin orbit or spin flip scattering in the superconductor allows to assume that
the quasiparticle density of states exhibits the same functionality for each spin
direction in an applied magnetic field and is merely shifted by ±μB. A further
requirement is given by the spin conservation in the tunnelling process, i.e. a
spin flip during tunnelling does not occur.

Planar FM-I-SC Contacts

Now, we replace the normal metal electrode by a ferromagnetic one. Concern-
ing the ferromagnetic electrode it is important that the density of states at
the Fermi energy is different for majority electrons n↑(EF ) and minority elec-
trons n↓(EF ). Majority or spin up electrons exhibit magnetic moments being
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Fig. 16.23. (a) Magnetic field splitting of the density of quasiparticle states into spin
up (gray line) and spin down intensities (black dashed line). (b) Spin up conductance
(gray line), spin down conductance (black dashed line), and total conductance
(black solid line) for N-I-SC contacts in an external magnetic field

parallel to the applied magnetic field. Thus, minority or spin down electrons
possess magnetic moments which are antiparallel to the external field. The
fraction of majority electrons is given by a = n↑(EF )/(n↑(EF )+n↓(EF )) and
that of minority electrons by 1−a = n↓(EF )/(n↑(EF )+n↓(EF )). This allows
to define the spin polarization by:

P =
n↑(EF ) − n↓(EF )

n↑(EF ) + n↓(EF )
= a − (1 − a) = 2a − 1 (16.33)

Therefore, if we assume that in the system Al/Al2O3/Ag being discussed
above the non-magnetic Ag electrode is replaced by a ferromagnetic material
the Zeeman splitting results in an asymmetric behavior of the dI/dU char-
acteristic which is shown for Al/Al2O3/Ni in Fig. 16.24 and obvious near
U = 0. In this situation the differential tunnelling conductance is given by an
expression being similar to that in (16.32) and amounts to:
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Fig. 16.24. Normalized conductance, i.e. superconductor conductance (dI/dU)SC

divided by the normal state conductance (dI/dU)N, of an Al/Al2O3/Ni junction
measured as a function of the bias voltage applied to the Al film for three values
of the applied magnetic field. The asymmetry of the conductance peaks a and b as
well as c and d for B = 3.4 T result from the polarization of the Ni carriers. (Data
taken from [76])

G(U) ∝

∞
∫

−∞

a·nSC(E+μB)K(E−eU)dE+

∞
∫

−∞

(1−a)·nSC(E−μB)K(E−eU)dE

(16.34)
if we assume that nSC is only shifted by ±μB and no spin-flip process is
present. Thus, the interpretation of (16.34) using Fig. 16.25 is similar to that
of (16.32) by means of Fig. 16.23. The important difference concerns the spin
polarization of the ferromagnetic electrode being included in both integrals in
(16.34).

The qualitative behavior of the differential conductance becomes obvious
if the density of states of the majority electrons is dominant, i.e. a high de-
gree of a positive spin polarization is present. For a quantitative analysis we
compare the maxima of the differential conductance shown in the lower part
of Fig. 16.25.

Let us define g(U) as the differential conductance as a function of the
applied bias voltage U without Zeeman splitting. The contribution of spin
up electrons to the conductance with an energy shift by the Zeeman term
of h = μB/e amounts to a · g(U −h). The contribution of spin down electrons
is thus given by (1 − a) · g(U + h). The total differential conductance G(U)
amounts to the sum of both contributions and is shown in the lower part of
Fig. 16.25. For any value of U we obtain four equations for the total differential
conductance at the four maxima Gi with i = 1, 2, 3, 4 at the energies −U −h,
−U + h, U − h, and U + h, respectively, which can be expressed by the
function g:

G1 = G(−U − h) = a · g(−U) + (1 − a) · g(−U − 2h) (16.35)



282 16 Magnetoresistivity

- U + U

(a)

(b)

(c)

q
u
a
si

p
a
rt

ic
le

d
e
n
si

ty
o
f
st

a
te

s
d
iff

e
re

n
tia

l c
o
n
d
u
ct

a
n
ce

�

�
�

�

2�B

Fig. 16.25. Superconductor–ferromagnetic metal tunnelling. (a) Density of states
of a superconductor as a function of voltage in a magnetic field. (b) Temperature
dependent function K for each spin direction assuming a = 0.75 which corresponds
to a spin polarization of 50%. (c) Normalized conductance for each spin direction
(gray solid and black dashed lines, respectively) and the total conductance (black
solid line). The four maxima 1–4 correspond to the four values Gi

G2 = G(−U + h) = a · g(−U + 2h) + (1 − a) · g(−U) (16.36)

G3 = G(U − h) = a · g(U) + (1 − a) · g(U − 2h) (16.37)

G4 = G(U + h) = a · g(U + 2h) + (1 − a) · g(U) (16.38)

Due to g(U) = g(−U) we obtain:

G4 − G2 = a · (g(U + 2h) − g(U − 2h)) (16.39)

G1 − G3 = (1 − a) · (g(U + 2h) − g(U − 2h)) (16.40)

which allows to define the tunnelling spin polarization Pt as:

Pt =
(G4 − G2) − (G1 − G3)

(G4 − G2) + (G1 − G3)
= 2a − 1 (16.41)
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The second equals sign, i.e. Pt = P , is only valid if the tunnelling matrix
element M does not differ for majority and minority electrons.

Analyzing experimental values [73] using the scheme shown in Fig. 16.25
results in a spin polarization for Ni of P = 11%. These early measurements
relied on oxidizing the Al films in laboratory air saturated with water vapor
to form the tunnelling barrier and resulted in low values of P for Ni. Later,
barriers were formed in-situ with a glow discharge in pure oxygen leading
to values of the polarization for Ni from 17% to 25%. It was conjectured
that in the older method, OH−-ions were present in the Al2O3 leading to a
contamination of the Ni surface. New measurements with improved quality of
the tunnel junctions yield larger values of 33% for Ni, 42% for Co, and 44%
for Fe.

It is astonishing that the values of the spin polarization are positive which
is in disagreement to the negative spin polarization for ferromagnetic bulk
materials. This discrepancy is related to the electronic structure of the inter-
face between the ferromagnetic electrode on the one hand and the insulating
barrier material on the other hand because it is comparable neither to the
pure bulk nor to the clean surface.

Planar FM-I-FM Contacts

For the discussion of the behavior of two ferromagnetic electrodes separated
by an insulating barrier we use the model of Jullière [77] which exhibits the
assumptions that the tunnelling process is spin conserving and the tunnelling
current is proportional to the density of states of the corresponding spin ori-
entation in each electrode. Thus, the tunnelling current for a parallel magne-
tization is given by:

I↑↑ ∝ n↑
1n

↑
2 + n↓

1n
↓
2 (16.42)

with ni being the electron density of electrode i at the Fermi level EF . For
the antiparallel orientation the tunnelling current amounts to:

I↑↓ ∝ n↑
1n

↓
2 + n↓

1n
↑
2 (16.43)

With ai = n↑
i /(n↑

i + n↓
i ) being the part of majority electrons of electrode i

and 1− ai = n↓
i /(n↑

i +n↓
i ) that of the minority electrons the spin polarization

Pi of electrode i is analogously to (16.33) given by:

Pi =
n↑

i − n↓
i

n↑
i + n↓

i

= 2ai − 1 (16.44)

This allows to express the differential conductance for a parallel orientation
as:

G↑↑ = Gp ∝ a1a2 + (1 − a1)(1 − a2) =
1

2
(1 + P1P2) (16.45)

and for an antiparallel orientation as:
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G↑↓ = Gap ∝ a1(1 − a2) + (1 − a1)a2 =
1

2
(1 − P1P2) (16.46)

The magnitude of the TMR effect is given by:

TMR =
G↑↑ − G↑↓

G↑↓
=

Gp − Gap

Gap

=
Rap − Rp

Rp

(16.47)

Using the spin polarization the TMR effect can be written as:

TMR =
∆R

Rp

=
2P1P2

1 − P1P2

(16.48)

The difference of the differential conductance can also be normalized to the
differential conductance of the parallel alignment. This situation defines the
junction magnetoresistance JMR which exhibits the magnitude of:

JMR =
G↑↑ − G↑↓

G↑↑
=

Gp − Gap

Gp

=
Rap − Rp

Rap

=
∆R

Rap

=
2P1P2

1 + P1P2

(16.49)

Both effects are often given as a percentage. We directly see that for a total
spin polarization of both electrodes (P1 = P2 = 1) the JMR reaches its
maximum value with 100% whereas the TMR becomes infinite. FM-I-FM
contacts with identical material of the electrodes allow the determination of
the tunnelling spin polarization (P1 = P2 = P ) if the conductance for parallel
and antiparallel orientation of the magnetization is known:

P =

√

Gp − Gap

Gp + Gap

(16.50)

Additionally, it is possible to quantify the spin polarization of one electrode if
that of the other one is known provided that Gp and Gap can experimentally
be determined.

The TMR effect significantly depends on the temperature, bias voltage,
and barrier properties like width and purity.

As one example for the influence of temperature on the TMR effect
Fig. 16.26 shows the resistance curves measured at T = 77K and T = 295 K
using a Co-Al2O3-NiFe junction. Due to the strongly different coercivities
of both ferromagnetic electrodes an antiparallel alignment is achieved in an
intermediate field range whereas strong magnetic fields induce a parallel orien-
tation of the magnetization. At T = 77K we obtain a magnitude of the JMR
effect of 27% whereas it is reduced to about 20% at room temperature. For
the understanding of this behavior we introduce a variation of the electrode
polarizations Pi with temperature. It is well established that in the case of
alloys P scales approximately with the magnetic moment of the alloy as its
composition is varied. A logical extension of this proportionality is to adopt
a polarization P that varies with T as does the magnetization.
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Fig. 16.26. Resistance as a function of an applied magnetic field for a
Co/Al2O3/Ni80Fe20 junction at room temperature (black curve) and 77K (gray
curve) showing JMR values of 20.2% and 27.1%, respectively. Arrows indicate the
magnetization configuration of the two ferromagnets; the upper arrow corresponds
to Co whereas the lower one to Ni80Fe20. (Data taken from [78] (used with permis-
sion))

The temperature dependence of the magnetization was already discussed
in Chap. 6.5 and is fairly well described by thermal excitation of spin waves
for T far below the Curie temperature. This results in a term proportional
to T 3/2 in the magnetization (see (6.102)). For the polarization we thus can
write:

P (T ) = P0 · (1 − αT 3/2) (16.51)

which leads to reduced spin polarization in the ferromagnetic electrodes with
increasing temperature and thus to a decreased magnitude of the TMR and
JMR effect.

Additionally, the TMR and JMR effect becomes reduced with increasing
bias voltage. Figure 16.27(a) shows the magnitude of the JMR as a function
of the bias voltage U for a Co-Al2O3-NiFe junction. The JMR monotonically
decreases with increasing |U |. The data being normalized to the magnitude of
the JMR effect at zero bias voltage which are shown in Fig. 16.27(b) prove a
negligible dependence of the reduction on temperature. The magnitude of the
reduction additionally depends on the quality of the insulating barrier and of
the interfaces.

Figure 16.28 shows the influence of the Al barrier thickness on the JMR
for two different junctions Co-Al2O3-CoFe and Co-Al2O3-NiFe. Both types
exhibit a broad maximum centered around 1 nm and 1.5 nm. Beyond 1.8 nm
the JMR magnitude rapidly decreases. If the barrier thickness is too low the
effect also becomes reduced.

In order to understand this behavior we have to deal with the making of
the Al2O3 spacer layer. It is produced by deposition of a metallic thin Al
film on the base electrode with a subsequent oxidation. Thus, if the layer is
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Fig. 16.27. JMR as a function of the applied bias at 77K (closed symbols) and
295 K (open symbols) for the same junction as in Fig. 16.26. Data shown are (a) the
actual percentages and (b) normalized at zero bias voltage. (Data taken from [78])

too thin an oxidation layer also occurs on the ferromagnetic electrode which
results in a reduced magnetization at the interface and thus in a reduced
polarization of electrons being responsible for the tunnelling current. If the
layer is too thick the insulating Al2O3 spacer additionally exhibits a metallic
Al layer within which leads to spin-flip processes of the tunnelling electrons.
Thus, the magnitude of the TMR effect also becomes reduced.

For the investigation of the influence of barrier impurities on the mag-
netoresistance Co-Al2O3-NiFe junctions were prepared with submonolayer
amounts of metals incorporated into the middle of the insulating oxide layer.
Figure 16.29 shows the magnetoresistance curves for tunnel junctions con-
taining different amounts of Ni. For comparison the values of the resistance
are multiplied by constant factor for each curve to have an equal value in
the high magnetic field state. A significant reduction of the JMR is obvious
with increasing Ni content. The shape of the JMR curves practically remains
unchanged. This reduction does also occur for non-magnetic impurities.
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Fig. 16.28. Junction magnetoresistance plotted as a function of the thicknesses of
the Al metal overlayer used to form the Al2O3 barrier in Co/Al2O3/Ni80Fe20 and
Co/Al2O3/Co50Fe50 tunnelling junctions in (a) and (b), respectively. JMR percent-
age is the change in junction resistance normalized to its highest value in an applied
magnetic field. The lines are only a guide to the eye. Uncertainties in the determi-
nation of Al film thicknesses and the JMR values are smaller than the size of the
data points. (Data taken from [79])
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Fig. 16.29. Magnetoresistance curves for tunnelling junctions containing 0.6, 1.2,
and 1.8 Å of Ni, respectively, together with the corresponding control junction with-
out Ni. Data are obtained at 77 K and the resistances are multiplied by a constant
factor for each curve to have an equal value of 20 kΩ at high fields. (Adapted
from [80] with permission. Copyright 1998, American Institute of Physics)
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Fig. 16.30. Normalized JMR as a function of the thickness of the layer of impurities
present in the tunnel barrier. Data, measured at 77 K, are shown for Co (filled
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corresponding linear fits (solid lines). (Data taken from [80])

The influence of their amount given as the thickness of the interlayer is pre-
sented in Fig. 16.30. The normalized JMR as a function of thickness exhibits
a linear decrease and can be understood assuming that, for the submonolayer
thicknesses being used, the covered junction area increases linearly with the
thickness. This is a reasonable assumption considering the fact that the im-
purity atoms were deposited with the substrate cooled with liquid nitrogen
thereby minimizing surface diffusion and clustering effects. The net result is
that the fraction of tunnelling electrons that experience a spin-flip linearly
scales with the thickness provided that the spin scattering properties of the
impurities are not affected by the increasing interaction among the impurities
at higher coverage.

In our considerations above we have assumed that the magnetization in
both ferromagnetic electrodes are oriented parallel or antiparallel. But, the dif-
ferential conductance additionally depends on the angle Θ between both direc-
tions of magnetization. This behavior is shown in Fig. 16.31 for an Fe-Al2O3-Fe
junction. Thus, up to now the situation was discussed for Θ = 0 and Θ = 180◦,
respectively. For an arbitrary angle Θ the differential conductance can be ex-
pressed as:

G = G0 · (1 + P1 P2 cosΘ) (16.52)

with G0 = (Gp + Gap)/2 being the spin averaged conductance.

FM-I-FM Contacts in a Scanning Tunnelling Microscope

The substitution of one of the ferromagnetic electrodes by a ferromagnetic
probe tip represents the situation of spin polarized scanning tunnelling mi-
croscopy SPSTM. The insulating barrier is realized by the vacuum between
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Fig. 16.31. Dependence of the tunnelling conductance (inverse resistance) of a
planar Fe–Al2O3–Fe junction on the angle Θ between the magnetization vectors of
both electrodes (Data taken from [27])

sample and tip which are separated by several Å. This allows the laterally
resolved determination of magnetic properties.

In pioneering experiments the Cr(001) surface was imaged by using non-
magnetic W tips as well tips made from the half-metallic ferromagnet CrO2

which is highly spin polarized (nearly 100%) at about 2 eV below the Fermi
level. The Cr(001) surface which the topological step structure is directly
linked for to the magnetic structure represents a topological antiferromagnet,
i.e. each terrace exhibits a ferromagnetic alignment of the magnetic moments
but between two adjacent terraces the magnetization possesses an antiparallel
orientation. Some line sections across several steps of the Cr(001) surface
measured with either of both tip materials are shown in Fig. 16.32. While a
uniform step height of 0.14 nm was measured using a non-magnetic tungsten
tip (see Fig. 16.32(a)) two different apparent step heights of 0.12 and 0.16 nm,
alternately, can be recognized in the line sections measured with the magnetic
CrO2 tip (see Fig. 16.32(b)).

Due to the spin polarization of the probe tip the tunnelling current is
enhanced for a parallel alignment of the magnetization of sample and tip:

I↑↑ = I0 (1 + P ) (16.53)

with I0 being the tunnelling current without the contribution due to spin
polarized tunnelling and P the effective spin polarization of the junction.
Contrarily, the tunnelling current for an antiparallel orientation is reduced:

I↑↓ = I0 (1 − P ) (16.54)

The line scans shown in Fig. 16.32 were taken in the constant current mode,
i.e. the magnitude of the tunnelling current was held constant by varying the
distance s between sample and probe tip. Thus, the parallel alignment results
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Fig. 16.32. (a) In the left part a single line scan over two monatomic steps taken
with a non-magnetic tungsten tip is shown. In this case the measured step height
value is constant with 0.14 nm and corresponds to the topographic monatomic step
height. (b) Single line scans over the same three monatomic steps being obtained
with a magnetic CrO2 tip. The same alternation from the step height values (0.16,
0.12, and again 0.16 nm) in all single line scans is evident. (Adapted from [81] (used
with permission))
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Fig. 16.33. Schematic drawing of a ferromagnetic tip scanning over alternately
magnetized terraces separated by monatomic steps of height h. An additional con-
tribution from spin polarized tunnelling leads to alternating step heights h1 =
h + ∆s1 + ∆s2 and h2 = h − ∆s1 − ∆s2 which is therefore based on the relative
orientation between tip and sample magnetization being either parallel or antipar-
allel. In the first case the effective tunnelling current is given by I↑↑, in the latter
one by I↑↓. (Adapted from [81] (used with permission))
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Fig. 16.34. (a) Topography and (b) spin resolved map of the dI/dU signal of a
clean and defect free Cr(001) surface as measured with a ferromagnetic Fe-coated tip.
The bottom panels show averaged sections drawn along the line. Adjacent terraces
are separated by steps of monatomic height. (From [82]) (used with permission)

in an increase of s by ∆s1 with respect to the distance s0 using a non-magnetic
tip whereas the antiparallel configuration leads to a reduction of the distance
by ∆s2 (see Fig. 16.33).

If the magnetization changes at a step exhibiting a height of h the measured
step height amounts to hp→ap = h+∆s1 +∆s2 for the transition of a parallel
to an antiparallel orientation of the magnetization. At the next step which
thus exhibits the transition of an antiparallel to a parallel orientation the
apparent step height is given by hap→p = h − ∆s1 − ∆s2.

Using the scanning possibilities the antiferromagnetic coupling between
neighbored terraces of a Cr(001) surface can directly be imaged. The to-
pography (see Fig. 16.34(a)) presents a regular step structure with terrace
widths of about 100 nm. The line section in the bottom of Fig. 16.34(a) reveals
that all step edges in the field of view are of single atomic height, i.e. 1.4 Å.
This topography should lead to a surface magnetization that periodically al-
ternates between adjacent terraces. Indeed, this is experimentally observed
(see Fig. 16.34(b)). The line section of the differential conductance drawn
along the same path as in (a) indicates two discrete levels with sharp transi-
tions at the positions of the step edges.
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Applications

Industrial products which are based on magnetoresistive effects are already
established at the market. In this chapter we will discuss a few typical exam-
ples which are non-volatile data storage elements, read-heads in hard disks,
and various sensors.

17.1 MRAM – Magnetic Random Access Memory

Magnetic random access memories are data storage elements which are based
on magnetoresistive effects. They exhibit the following important advantages:

• They are non-volatile in contrast to common dynamic random access mem-
ories DRAM.

• Thus, MRAM elements can simultaneously be used as main memory and
mass storage device. This allows a simplification of the chip architecture
which leads to reduced dimensions of the chip. Therefore, the equipment
can be produced much cheaper.

• MRAM elements can be used in stationary systems like computers as well
as mobile systems like laptops or mobile phones.

• No charging time is necessary. Thus, computers are in the same state
after switching on they had at the moment they were switched off. The
raising time can be neglected. Similarly, mobile phones are ready to be
used directly after switching on.

• No refresh cycles are necessary like for DRAM elements. This allows longer
operating times of batteries and accumulators.

The principle setup of an MRAM cell consists of a magnetic tunnel junc-
tion TMJ as shown in Fig. 17.1.

Types of MRAM Cells

Figure 17.2 illustrates structures used to engineer the response of magnetic
tunnel junctions in ways beneficial for memory applications. Figure 17.2(a)
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Fig. 17.1. The heart of a magnetic tunnel junction consists of two layers of magnetic
material such as nickel iron and cobalt iron that sandwich a very thin insulator
typically a layer of aluminum oxide only a few atoms thick. Current flows down
through the layers and it meets less resistance when the two magnetic layers are
magnetized in the same direction and more resistance when they are magnetized
in opposite directions. The two states serve to encode a “0” or a “1”. (Adapted
from [83]. Reprinted with permission from AAAS.)

(a) (b) (c)

Fig. 17.2. Tunnel junctions engineered for MRAM applications. (a) Basic mag-
netic tunnel junction structure consisting of two ferromagnetic metals separated by
a thin insulating layer. With the same anisotropy direction for both magnetic film
layers, the junction has a hysteretic TMR response characteristic like that shown
in Fig. 16.11. (b) By exchange coupling one of the magnetic layers to an antiferro-
magnetic layer, i.e. by “pinning” the layer, the TMR response reflects the hysteresis
of the other so-called “free” layer and has a response curve more suitable for mem-
ory. (c) The magnetic offset caused by fields emanating from the pinned layer can
be avoided by replacing a simple pinned layer with a synthetic antiferromagnetic
pinned layer which consists of a pair of ferromagnetic layers antiferromagnetically
coupled through a ruthenium (Ru) spacer layer. The lower layer in this artificial
antiferromagnet is pinned via exchange bias as shown in (b). This flux closure in-
creases the magnetic stability of the pinned layer and reduces coupling to the free
layer. (Adapted from [84]. Image reproduced by permission of IBM Research. Unau-
thorized use not permitted.)
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shows the basic magnetic tunnel junction structure with specific character-
istics which were already illustrated in Fig. 16.11. While in principle this
structure could be made to work for a memory if the coercivity of one of the
layers, a “reference” layer, is much higher than that of the other one difficulties
would arise with this approach.

First, field excursion would have to be restricted to being lower than a
maximum value so that the high-coercivity layer would never be disturbed.
Even so it is possible that repeated low-field excursions could reverse small
domains in the higher-coercivity reference layer that have no way of returning
to their original state. The possibility of upsetting the reference layer could be
avoided by pinning one of the magnetic electrodes via exchange coupling to an
adjacent antiferromagnet as illustrated in Fig. 17.2(b). Only the other “free
layer” electrode responds to the field. The low-field electrical response of such
a structure would very directly reflect the memory function of the magnetic
hysteresis of the free layer. In subsequent structures such as the one illustrated
in Fig. 17.2(c) the antiferromagnetic material is replaced by a synthetic anti-
ferromagnet (SAF) sandwich comprising, for example, CoFe/Ru/CoFe, with
the Ru thickness being about 7 Å. In this thickness range the Ru exchange-
couples the moments of the two ferromagnetic layers in opposite directions.
Thus, a “fixed” reference layer, the SAF, could be produced with no net mag-
netic bias on the other, “free”, magnetic layers which is important if a suitable
response is to be obtained for a magnetic memory in the absence of a magnetic
field bias.

MRAM Array Architecture

Using these elements an array of magnetic storage cells can be built up which
are based on the tunnelling magnetoresistance. There exist two basic architec-
tures for constructing an MRAM array, the cross-point (“XPT”) architecture
and the one-transistor one-MTJ (“1T1MTJ”) architecture.

In the XPT architecture (see Fig. 17.3) the MTJs lie at the intersection
of the word lines and the bit lines which connect directly to the fixed and
free layers (or vice versa). This arrangement allows for a considerable packing
density. Since no contact is made to the silicon within the cell it is possible
to stack such arrays thus further increasing MRAM density. In addition, it
is possible to place peripheral circuits under the array which increases the
density even further.

In the 1T1MTJ array architecture (see Fig. 17.4) each MTJ is connected
in series with an n-type field effect transistor (n-FET). The n-FET the gate of
which is the read word line is used to select the cell for the read operation. The
write word line runs directly below but does not actually contact the MTJ.
The read and write word lines run parallel to each other and perpendicular
to the bit line which contacts the free layer of the MTJ. The source of the
n-FET is grounded whereas the drain connects to the fixed layer of the MTJ
via a thin local interconnect layer. This layer and the dielectric below it are
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Fig. 17.3. Cross-point architecture for an MRAM array (From [85]. Image repro-
duced by permission of IBM Research. Unauthorized use not permitted.)

Fig. 17.4. MRAM architecture with an additional field effect transistor as a switch
(From [84]. Image reproduced by permission of IBM Research. Unauthorized use
not permitted.)

relatively thin in order to ensure good magnetic coupling from the write word
line to the MTJ.

Read Operation

The MTJ device is read by measuring the effective resistance of the structure
which is a function of the magnetic state of the MTJ free layer. This can be
achieved by applying a voltage and sensing the current (current sensing) or
by applying a current and sensing the voltage (voltage sensing). In either case
the sensed parameter (assumed to be current in the following) is compared to
a reference value to determine the state of the device.

The fractional value change in effective resistance or MR is not constant
but rather decreases with increasing read voltage. Therefore, the relative signal
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or fractional difference between the data and reference currents decreases with
increasing voltage. However, the absolute signal or absolute difference between
the data and reference currents vanishes as the voltage approaches zero. Both
relative and absolute signals are critical for a robust and high-performance
design. Therefore there exists an optimum value of the read voltage which
appears to be approximately 200 to 300 mV.

The reference value must be designed to compensate for process-related
variations in MTJ parameters (R0 and MR) and for environmental variations
such as voltage and temperature. Three general methods are known for gen-
erating the reference value: the twin cell, reference cell, and self-referenced
methods.

Because of its attractive combination of high density, high performance,
low power, and high degree of symmetry the current-sensing two-reference-cell
design is the most popular approach. With this method the raw signal must be
sufficiently large to compensate for parameter mismatch between the data and
reference cells as well as offsets within the sense amplifier. This requirement
places strict requirements on the MR, MTJ parameter matching, and design
of the sense amplifier.

Write Operation

The MRAM write operation is illustrated in Fig. 17.5. The selected MTJ
is situated between the selected word line and the selected bit line which
are orthogonal to each other. During the write process currents (depicted
by arrows) are forced along the selected word line and the selected bit line
creating magnetic fields in the vicinity of these wires. The vector sum of the

Fig. 17.5. MRAM write operation (From [85]. Image reproduced by permission of
IBM Research. Unauthorized use not permitted.)
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Fig. 17.6. Resistivity as a function of current of an TMR device. When a particular
word line current is applied the hysteresis loop collapses so less bit line current is
required to change the resistance state of a bit. A bit line current of ±5mA will
write the selected bit (gray curve) but not the other bits along the same bit line
(black curve) (Adapted from [86] with permission from Wiley)

fields at the selected MTJ must be sufficient to switch its state. However, the
field generated by the word line or bit line alone must be small enough that
it never switches the state of the so-called half-selected MTJs that lie along
the selected word line and bit line.

The process is designed in such a way that the word lines and bit lines
are as close as possible to the MTJs for good magnetic coupling to the MTJs.
Nonetheless, currents of the order of 5 mA are typically required to switch the
state of an MTJ. This behavior can directly be seen in the corresponding re-
sistivity response on the bit line current (see Fig. 17.6). The word line current
tilts the magnetization in the free layer and reduces the field for switching
the bit (gray curve in Fig. 17.6). This allows to distinguish between the bit
to be written and the other bits along the same bit line which should remain
unaffected by the write operation (black curve in Fig. 17.6).

The pulse widths of the word line and bit line current pulses are typically
approximately equal to or less than 10 ns. However, the two pulses are typically
offset by a few ns with the word line pulse beginning first so that the free layer
can be switched to its new state in a controlled manner.

The magnetic field experienced by word line or bit line half-selected MTJs
is perpendicular to the wire that generates the field. Further, the field applied
to the fully selected MTJ points in a third somewhat diagonal direction. A
typical hysteresis loop as shown in Fig. 17.6 is insufficient to fully describe
these situations since it is limited to fields in one direction only (along the long
axis). The Stoner–Wohlfarth astroid plot (see Fig. 17.7) which was already
discussed in Chap. 12.5 describes the switching of the free layer in response
to both field strength and direction. The x- and y-axes represent the x- and
y-components of the magnetic field applied to the MTJ. In Fig. 17.7 the long
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Fig. 17.7. Ideal astroid plot describing the switching of the free layer of a magnetic
tunnel junction (a) and the corresponding MRAM array (b) (Adapted from [85].
Image reproduced by permission of IBM Research. Unauthorized use not permitted.)

axis of the MTJ and the word line are assumed to be horizontal and the bit line
to be vertical. Since the word line field applied to the MTJ is perpendicular
to and proportional to the word line current the y-component of the field is
proportional to the word line current. Similarly, the x-component of the field
is proportional to the bit line current.

The astroid plot is interpreted in the following manner. If the applied field
begins at the origin (no applied field), moves to a point to the right of the
y-axis and the diamond-shaped region or astroid, and returns to the origin
the free layer will point to the right (data state “1”). Similarly, if the applied
field begins at the origin, moves to a point to the left of the y-axis and the
astroid, and returns to the origin the free layer will point to the left (data
state “0”). If the applied field remains inside the astroid the state of the MTJ
remains unchanged.

The fully selected MTJ experiences both x- and y-field components placing
it in the first or second quadrant of the figure depending on the data state
to be written. Since the polarity of the x-field component or bit line current
determines the written data state the bit line write circuitry must support a
bidirectional current. The y-field component is independent of the data state
to be written simplifying the design of the word line write circuitry because
bidirectional currents are not required. In order to write successfully the fully
selected field points must always lie outside the astroid.

As indicated in Fig. 17.7 word line half-selected MTJs experience a y-
field component only whereas bit line half-selected MTJs experience an x-field
component only. The polarity of the field experienced by a bit line half-selected
MTJ depends on the state being written to the fully selected MTJ. To avoid
half-select disturbs (data loss between an MTJ being written and read) the
half-select field points must always lie inside the astroid.
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Old Version of MRAM-Like Storage Cells

An old version of an MRAM-like storage cell was a ferrite core storage device
(see Fig. 17.8). This system needs three wires. Two are used for addressing
and writing the information and are arranged horizontally and vertically. The
“bits” are represented by the opposite magnetization states within the ferrite
rings as exemplarily shown by black and white arrows (see Fig. 17.9). A third
line utilizes to read the encoded information by means of inductive signals.

Fig. 17.8. Photographs of ferrite cores acting as non-volatile memories

Fig. 17.9. Schematics of a magnetic core memeory which can be switched by cur-
rents through the horizontally and vertically arranged wires. Reading the stored
information is carried out using a third line by means of inductive signals
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Comparison between Different Storage Technologies

A comparison of different storage technologies is given in Table 17.1.

Table 17.1. Comparison of typical parameter values for different storage technolo-
gies

DRAM EEPROM Flash FeRAM MRAM

Read endurance > 1015 > 1015 > 1015 1012
− 1015 > 1015

Write endurance > 1015 104
− 106 105

− 106 1010
− 1015 > 1015

Operating voltage 2.5 − 5 V 12 − 18 V 10 − 18 V 0.8 − 5 V –
Programming time 10 ns 1 ms 1 µs 10 ns 10 ns
Read time 10 ns 40 ns 40 ns 50 ns 10 ns
Cell size 8f2 40f2 8 − 12f2 9 − 13f2 4f2

Cell area (f=0.25µm) 0.5 µm2 2.5 µm2 0.5 - 0.7 µm2 0.6 - 0.8 µm2 0.25 µm2

Retention time volatile >10 years >10 years >10 years >10 years

17.2 Read Heads in Hard Disks

In the recording process information is written and stored as magnetization
patterns along concentric tracks in the magnetic recording medium being on
a spinning disk. This is done by scanning the write head over the medium and
energizing the write head which is basically an electromagnet with appropriate
current waveforms. Next, in the read-back process the stored information is
retrieved by scanning a read head over the recording medium. The read head
intercepts magnetic flux from the magnetization patterns on the recording
medium and converts it into electrical signals which are then detected and
decoded.

A very important performance criterion for a disk recording system is the
amount of information it can store per unit area. Since information is typically
stored as abrupt magnetization changes designated as transitions and charac-
terized by a transition parameter along a track on the disk the areal density
is the product of the linear bit density and the track density. The former is
the density with which magnetic transitions can be packed along a track; the
latter is the density with which these tracks can in turn be packed together. A
high track density therefore implies recording with narrow tracks. The areal
density performance of disk recording systems has increased consistently and
dramatically for the last thirty years culminating in an improvement by more
than five orders (see Fig. 17.10). This continuous and tremendous increase of
storage density of hard disks is possible by improvement of:

• storage media
They consist of thin film layers. Modern developments additionally include
granular systems and ferromagnetic nanoparticles .

• write heads
• read heads
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Fig. 17.10. Growth in the typical storage density of laboratory demos for magnetic
disk drives since 1990

Fig. 17.11. Schematic view of an inductive read/write element

Traditionally, the recording head is a single inductive element energized as an
electromagnet for writing and used according to the Faraday effect for reading
(see Fig. 17.11). Early inductive heads were made primarily from individually
machined polycrystalline ferrites wound with fine wires as write and read coils.

In the early 1990s dual-element heads with inductive write elements and
magnetoresistive read elements were introduced. In these dual-element heads
writing is performed by producing a writing field in the gap between the
magnetic poles P1 and P2 as before. But, the stray fields arising at the tran-
sitions between areas of opposite magnetization direction is read back by a
magnetoresistive sensor (see Fig. 17.12). This leads to a modulation of the
sensor resistance through the magnetoresistance effect which is in turn con-
verted into voltage signals by passing a sense current through the sensor. In
comparison with the single inductive recording heads the dual-element heads
have the advantages of separate optimization of read and write performance
as well as a signal sensitivity which is several times larger because of the use
of magnetoresistive sensors.
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Fig. 17.12. Schematic illustration of longitudinal magnetic recording. Bit patterns
are recorded along tracks using an inductive write head. A shielded GMR read head
senses the stray fields from transitions between bit cells of opposite magnetization
directions. (From [87] with permission from Wiley)

The stray field which is used to read the information of a bit is shielded
between two soft magnetic layers to avoid interferences with stray fields from
neighboring transitions. The magnetic pole P1 may also serve as one of the
sensor shields. The geometry of a shielded read head which is commonly used
is shown in Fig. 17.13. The magnetoresistive element is present in between
the two soft magnetic shields that confine the length of the region along a

Fig. 17.13. Schematic view of the read principle for a shielded head in a hard
disk recording system (Reprinted from [88]. Copyright 2003, with permission from
Elsevier)
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(a) (b)

Fig. 17.14. Comparison of (a) longitudinal and (b) perpendicular arrangement of
bit cells

track to which the MR element is sensitive to essentially the bit length. For
that purpose the optimal distance between the shields is approximately two
times the bit length. In addition to the magnetoresistive material the read
gap contains two dielectric gap layers that electrically isolate the MR material
from the metallic shields. The head is mounted on a slider which flies at a very
small fixed distance above the disk (typically 10 nm) due to the formation of
an air film that functions as an air bearing in between the head and the slider.

In contrast to longitudinal recording (see Fig. 17.12) where the magnetiza-
tion lies in the plane of the recording layer information can also be stored using
a perpendicular or vertical recording scheme where the medium is magnetized
perpendicular to the film plane. In longitudinal recording the demagnetizing
fields between adjacent magnetic bits tend to separate the bits making the
transition parameter large. Perpendicular recording bits do not face each other
and can therefore be written with higher density (see Fig. 17.14). In compar-
ison to a longitudinal medium a perpendicular medium supporting the same
areal density can be thicker and problems with superparamagnetism due to
the decreasing size of magnetic material which the information is stored in
can be delayed.

A narrow write gap is formed between the right magnetic pole P2 and a
soft magnetic underlayer which is serving as a flux return path towards the
much wider left magnetic pole piece P1 (see Fig. 17.15). A step further to
achieve ultimate high storage densities may be given using suitable media
materials with perpendicular magnetic anisotropy (see Fig. 17.16) or using
ferromagnetic nanoparticles. The latter possibility was already discussed in
Chap. 12.9. Additionally, a further enhancement of the storage density is
possible by the improvement of spin valves which nowadays become rather
complex.

17.3 Sensors

Sensors which are used to transform magnetic or magnetically coded infor-
mation into electric signals already play an important role in nowadays ap-
plications due to their robust design, their non-contact and thus wear free
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Fig. 17.15. Schematic illustration of perpendicular magnetic recording using a
probe head and a soft magnetic underlayer in the medium (From [90]. Image repro-
duced by permission of IBM Research. Unauthorized use not permitted.)

Fig. 17.16. Schematic illustration of perpendicular magnetic recording using a ring
head and no soft magnetic underlayer (From [90]. Image reproduced by permission
of IBM Research. Unauthorized use not permitted.)
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operation, and their low manufacturing costs, e.g. solid state sensors which
can be fabricated using batch processes. Many different parameters can be
recorded like

• lateral position
• velocity
• angularity
• rotational frequency

One main field of application is given for automotive systems, in particular
the sensing of speed and position, e.g. the wheel speed detection for anti-lock
braking systems (ABS). Wheel speed information is also needed in modern
vehicle dynamics control and navigation systems. Additionally to the wheel
speed both require the steering angle as an input value which is also often pro-
vided by magnetic sensors. A classic field of application is the power train. The
magnetic sensors deliver information about the cam and crank shaft positions
as well as the transmission speed.

Besides these applications more and more position sensors are replaced by
magnetic sensors in safety-relevant and drive- or fly-by-wire systems because
they work without any contact and thus without wear. Examples are pedal
position sensors for electronic gas and electrohydraulic braking. Additional
quantities are the position of electric motors, steering torque, and electrical
current.

These applications are mainly implemented using inductive sensors or us-
ing sensors based on the Hall or magnetoresistive effects like AMR and GMR.
Sensors basing on the anisotropic magnetoresistance are already widely spread
whereas those basing on the giant magnetoresistance become more and more
used. Typical properties of sensors basing on different principles are given in
Table 17.2.

Table 17.2. Operating principle and typical properties of magnetic sensors

Sensor type Operating principle Typical properties

Inductive voltage induction in circuit signal ∝ dH/dt
loops due to a change
of the magnetic field

Hall cross voltage of a current in signal ∝ H
semiconductor devices due to signal ∝ cos θ
a magnetic field

AMR resistance change of the signal ∝ H up to saturation
magnetic material due to an signal ∝ cos 2θ
external magnetic field ∆R/R ≈ 2%

GMR resistance change of a signal ∝ H up to saturation
magnetic multilayer system due signal ∝ cos θ
to an external magnetic field ∆R/R ≈ 10%
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Whereas read heads must only distinguish between two opposite magne-
tization states encoding “0” and “1” the requirements on sensors are signif-
icantly higher. For the determination of mechanical parameters the readout
is often carried out for continuously varying values with sufficient resolution.
Thus, the sensors must satisfy requirements on:

• temperature stability
• shape of characteristics
• long-term stability

In the case of automotive sensors the specific application and the place
in the car where the sensor is installed defines these requirements. Sen-
sors in the interior for example have to withstand temperatures only up to
about 80◦C whereas near the engine block or near the brakes temperatures
can reach 150◦C. One very specific requirement for magnetic sensors is electro-
magnetic compatibility. Due to the fact that more and more electronic systems
and electric actuators are being installed one has to deal with higher magnetic
stray fields which may affect the sensor properties and falsify their output sig-
nal. Therefore, tomorrow’s magnetic sensors need not only to have a better
performance like enhanced accuracy, higher sensitivity, and longer lifetime but
must be even more robust. Additionally, the sensor costs decide whether the
developed solution will be successful in the market. An overview of relevant
properties concerning different kinds of sensors is given in Table 17.3.

Table 17.3. Properties of GMR and AMR based sensors compared to Hall and
inductive magnetic field sensors (+: fair, ++: good, + + +: very good)

Property GMR AMR Hall inductive

Temperature stability ++ ++ + ++
Output signal + + + ++ + size dependent
Sensitivity + + + + + + ++ ++
Power consumption + + + + ++ size dependent
Size + + + + + + + +
dc operation yes yes yes no
Costs + + + + + + + ++

AMR Sensors

AMR sensors are based on the anisotropic magnetoresistive effect which occurs
in ferromagnetic transition metals and was already discussed in Chap. 16.2.
The electrical resistance is a function of the angle θ between the electric
current and the direction of magnetization:

R(θ) = R0 + ∆R0 · cos2 θ (17.1)
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Fig. 17.17. Electrical resistance R as a function of the angle θ between the electric
current and the direction of magnetization. A linear dependence is given around an
angle of θ = 45◦ (see gray line)

This dependence is shown in Fig. 17.17. It is obvious from the concerning
quadratic expression that the resistance behaves non-linear and in addition
not unambiguous, i.e. one specific value of the resistance corresponds to more
than one value of the angle θ. A linear dependence is given around an angle
of θ = 45◦ (see gray line in Fig. 17.17).

An external magnetic field can change the direction of the magnetization,
thus the angle θ and therefore the resistance allowing the AMR to be used as
the transducer effect in magnetic field sensors.

We see that the AMR sensors utilize the effect that the internal magneti-
zation vector can by rotated by an external magnetic field. In the simplified
model of Stoner–Wohlfarth a magnetoresistive layer is always completely mag-
netized up to its saturation magnetization. Therefore, an external field can
only change the direction of the magnetization and not its amplitude. In the
ideal case the magnetization vector would directly follow the external field
and is independent of its strength.

In this situation we are able to substitute the angle θ by the magnitude of
the external field Hy in perpendicular direction to the electric current by:

sin2 θ =

⎧

⎨

⎩

H2

y

H2

0

if Hy ≤ H0

1 if Hy > H0

(17.2)

with H0 being material dependent. Inserting this relationship into (17.1) re-
sults in:

R = R0 + ∆R0 ·

(

1 −
H2

y

H2
0

)

(17.3)

for Hy ≤ H0. For Hy > H0 we obtain R = R0. This dependence of the
resistance R on the y component of the external field is shown in Fig. 17.18.

But, in order to get a usable magnetic field sensor with a preferably linear
characteristic a more sophisticated design is necessary.

The magnetoresistive effect can be linearized by depositing aluminum
stripes (called barber poles) on top of the permalloy strip at an angle of 45◦ to
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Fig. 17.18. Electrical resistance R as a function of the magnitude of the external
field Hy in perpendicular direction to the electric current. This characteristic is non-
linear. Additionally, each value of the resistance does not necessarily correspond to
a particular magnetic field strength
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Fig. 17.19. Principle arrangement of a magnetoresistive element with additional
barber poles which often consist of aluminum and are rotated by 45◦ with respect
to the magnetization direction. Due to their much higher conductance compared
to the magnetoresistive material like permalloy the electric current flows along the
shortest way in the high-resistivity gaps thus forming an angle of 45◦ with regard
to the direction of the magnetization (see arrows)

the strip axis. This choice is due to the linear dependence of the resistance as
a function of the angle θ (cf. Fig. 17.17). The principle arrangement is shown
in the right part of Fig. 17.19. As aluminum has a much higher conductance
than permalloy the effect of the barber pole is to rotate the current direction
by 45◦ thus effectively changing the angle between the magnetization and the
electrical current from θ to (θ + 45◦). Now, the resistance amounts to:

R = R0 +
∆R0

2
+ ∆R0 ·

Hy

H0

·

√

1 −
H2

y

H2
0

(17.4)

This relationship is shown as curve 2 in Fig. 17.20. We directly see that we
have significantly changed the situation. The change of resistance exhibits a
linear dependence on the external field for small values of Hy (see gray line).
For comparison the dashed curve 1 represents the case for θ = 0◦.
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Fig. 17.20. Electrical resistance R as a function of the magnitude of the external
field Hy in perpendicular direction to the electric current of a magnetoresistive
element without (dashed line 1 ) and with barber poles being arranged at an angle
of 45◦ with respect to the magnetization direction (solid line 2 ). For the latter
situation, the resistance exhibits a linear dependence on the external field for small
values of Hy (see gray line)

By this means the transfer curve is symmetric around zero field with max-
imum sensitivity and linear for small external fields.

For sensors using barber poles arranged at an angle of 45◦ the resistance
is given by:

R = R0 +
∆R0

2
− ∆R0 ·

Hy

H0

·

√

1 −
H2

y

H2
0

(17.5)

which represents the mirror image of curve 2 in Fig. 17.20.
Therefore, a Wheatstone bridge arrangement consisting of four magne-

toresistive elements is used to build up a complete sensor element. In this
arrangement diagonal elements have barber poles of the same orientation.
This means that one diagonal pair has barber poles orientated +45◦ to the
strip axis while the other pair has an orientation of −45◦ (see Fig. 17.21).
This ensures a doubling of the output signal while still having an almost lin-
ear output signal. Moreover, the inherent temperature coefficients of the four
bridge resistances are mutually compensated.

AMR sensors often made of permalloy possess a strong temperature coef-
ficient. To minimize drifts due to temperature changes four AMR sensors are
usually arranged in a Wheatstone bridge configuration which also leads to an
output signal twice as large as for a single resistor when constant voltage is
applied. AMR resistors are meander-shaped to increase their base resistance
which is typically in the kΩ range. The sensitivity can be tuned over a large
range depending on the application. AMR sensors are used to detect magnetic
fields in the range from a few µT, e.g. in compass applications, up to several
10 mT in position and angle sensors.

The AMR sensor elements fit into standard mold packages with iron-free
leadframes. Often, the application necessitates a specific package design as for
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Fig. 17.21. Principle arrangement of a Wheatstone bridge configuration. One pair
of diagonally opposed magnetoresistive elements exhibits barber poles at +45◦ with
respect to the magnetization direction whereas in the other pair they are arranged
at −45◦. The magnitude Hy is determined along the specified magnetic sensitive
axis

speed sensors which the reading configuration does not allow much space in.
Today, the assembly and packaging technology is the limiting factor for the
AMR temperature range. Although an AMR sensor by itself can operate at
temperatures well above 200◦C the standard sensor packages are specified for
temperatures below 150◦C.

AMR Angle Sensors

AMR angle sensors are operated in the saturating mode at magnetic fields
typically above 50 mT. As discussed above the AMR effect turns into a pure
angle dependency for large fields. Variations in the applied field do not af-
fect the output signal. This measuring principle is fairly independent from
assembly and magnet tolerances as well as from aging and temperature in-
duced changes in the magnetic field strength. One example is given by the
non-contact observation of a faultless spray arm rotation in dish washers.

The principle setup and layout of a conventional AMR sensor is shown
in Fig. 17.22 which consists of 8 AMR resistors that are combined into two
Wheatstone bridges. One of these bridges is turned by 45◦. When an in-plane
sensing field is rotated by, for example, simply rotating a permanent magnet
above the sensor the first bridge delivers a sine output signal whereas the
other bridge a cosine signal according to

U1 = A(T ) · sin(2θ) and U2 = A(T ) · cos(2θ) (17.6)

Using the arc tangent function the angle of the external magnetic field can be
calculated as

θ =
1

2
· arctan

(

U1

U2

)

(17.7)

This calculation is usually done in an evaluation circuit. The amplitudes
of both bridges are almost the same because the bridges are placed into
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Fig. 17.22. Principle setup of an AMR angle sensor for a measuring range of 180◦

one another and thus have experienced the same manufacturing process
and will be operated at the same temperature. The different sensitive ele-
ments of both Wheatstone bridges are marked by 1a to 1d and 2a to 2d
(see Fig. 17.23). Therefore, in this operation the temperature dependent signal
amplitudes A(T ) are removed resulting in delivery of pure angle information
largely without any temperature drifts. Of course, small asymmetries in the

1a

1b

1c

1d

2a

2b2c

2d

1a

1b

1c

1d

2a
2b

2c
2d

Fig. 17.23. Schematic arrangement (left) and layout (right) of a sensor which
exhibits two Wheatstone bridges being placed into one another. 1a to 1d and 2a
to 2d indicate the sensitive elements of Wheatstone bridge 1 and 2, respectively.
(Layout reproduced with permission from NXP Semiconductors Germany GmbH)
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bridges always remain leading to offset voltages with their own temperature
dependencies.

As obvious from (17.6) and (17.7) the AMR output signal depends on
twice the external magnetic field angle θ restricting the absolute measuring
range to 180◦. Many applications, e.g. in steering systems, need absolute angle
information over a full rotation which cannot be provided using this AMR
sensor. This becomes possible by replacing the AMR sensor by a type which
is based on the GMR effect.

GMR Sensors

GMR-based sensors are often used in CIP (current in plane) configuration
because the resistance of the element in CPP (current perpendicular to plane)
is too low. The market requirement on sensors are a wide temperature window
of about −40◦C to +150◦C and low field strengths for save and optimum
working conditions.

Different types of GMR-based sensors were already shown in Fig. 17.2. The
working principle of that in Fig. 17.2(a) is characterized by a thickness of the
non-magnetic interlayer which enables an antiferromagnetic coupling of the
ferromagnetic thin layers without an external magnetic field. Applying such
a field leads to a parallel alignment which corresponds to a reduction of the
resistance. In type (b) the antiferromagnetic substrate forces the neighboring
ferromagnetic thin film to a given direction. This reference layer is therefore
magnetically hard. The thickness of the non-magnetic interlayer is so large
that the coupling between both ferromagnetic thin films can be neglected.
Thus, the soft magnetic top layer acts as the testing layer. The sensors shown
in Fig. 17.2(b) and (c) are very similar. The latter one differs in a synthetic
antiferromagnet which exhibits an enhanced temperature stability.

GMR Angle Sensors

This type of sensor is used for the determination of a rotation angle over
the whole range of 360◦ (see Fig. 17.24). In GMR angle sensors only spin
valves can be used as the sensing material because the GMR effect in coupled
multilayers and granular systems is isotropic.

Analogously to AMR sensors GMR resistors are arranged in two Wheat-
stone bridges. The elements are characterized by positive and negative signals
at the same external magnetic field. This situation can be realized by differ-
ent orientations of the synthetic antiferromagnetic layers. All these reference
layers can be sensitive to a parallel alignment. In this situation, given e.g. in
the sensor GMR B6 from Siemens/Infineon (see left part of Fig. 17.25), only
the orientation of the external field can be determined due to the cosine-like
characteristic curve (see Fig. 17.26(a)). In sensor C6 the reference layers ex-
hibit a perpendicular orientation with respect to each other (see right part of
Fig. 17.25). In a rotating external field one of these bridges generates a sine



314 17 Applications

S N

Fig. 17.24. Typical application of a GMR angle sensor
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GMR B6

U U

GMR C6

Fig. 17.25. Types of GMR Sensors and set-up of the bridge types GMR B6, GMR
C6; the direction of internal magnetization is indicated by the arrows. (Used with
permission from Siemens Application Note “Giant Magneto Resistors”)

signal whereas the other one a cosine signal (see Fig. 17.25(b)). The angle
of the external field is derived by applying the arc tangent function to both
signals.

The main advantage of GMR is that it represents a uniaxial effect, i.e. the
resistance is proportional to the cosine of the angle θ of the external field with
respect to the pinning or reference direction:

R = R0 − ∆R0 · cos θ (17.8)

Therefore, GMR angle sensors exhibit a “natural” 360◦ measuring range being
in contrast to the 180◦ range covered by AMR sensors. The angle signal from
the arc tangent does not repeat after 180◦ as occurs with AMR sensors.

To create a sine- and a cosine-like signal producing GMR bridge the sin-
gle resistors need at least two pinning directions with a 90◦ phase difference
and additionally two directions to double the output signal. After deposition
the pinning in spin valves containing antiferromagnets usually has a preferred
direction. To change it the material has to be heated above the Néel tem-
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Fig. 17.26. Bridge voltages of full bridges of sensor B6 (U↑ − U↓) and half bridges
of sensor B6(U↑, U↓) and sensor C6 (U↑, U→), respectively, while the external field
is rotated by 360◦ (Adapted from Siemens Application Note “Giant Magneto Resis-
tors” (used with permission))

perature of the antiferromagnet while applying an external magnetic field in
the desired pinning direction. During cooling the pinning direction is fixed.
The challenge is to do this imprinting of different pinning directions on the
micrometer scale. Two different methods were developed for industrially pro-
duced devices. The first method consists of current flowing through the GMR
resistor with an additional circuit which provides local heating. The second
method utilizes short laser pulses which are focussed on the selected sensor
region.

Figure 17.27 shows an example layout of a GMR angle sensor. The full
bridges are split into 16 single elements that are arranged in a circle. The
rotational symmetry further minimizes angle errors. An accuracy better than
1.5◦ over the complete temperature range from −40◦C to +150◦C is achieved.
Since the spin valve material is extremely robust another feature of the sensor
is its immunity against interfering fields exceeding 100 mT at 200◦C.

Fig. 17.27. Example layout of a GMR angle sensor (Image used with permission
from Robert Bosch GmbH, Germany)
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Fig. 17.28. Relative change of the resistance giving rise to small hysteretic effects
(Used with permission from Siemens Application Note “Giant Magneto Resistors”)

The angular resolution is given by hysteretic effects which is shown in
Fig. 17.28. Using the entire range for the determination of the angle, i.e. the
regime between 0◦ and 360◦, the resolution amounts to about 2◦. If only the
first quadrant is important (angles between 0◦ and 90◦) the angular resolution
is significantly better with about 0.1◦.

An essential advantage of magnetoresistive sensors for the determination
of rotation angles is the large distance between sensor and rotating perma-
nent magnet. Thus, a non-contact readout is enabled. The operating range
concerning the distance is given by the “magnetic” window:

Hmin < Hfunction < Hmax (17.9)

If the external magnetic field is too large (H > Hmax) the synthetic antiferro-
magnet becomes influenced, i.e. the reference layer changes its properties. If
the external field is too small (H < Hmin) the soft magnetic sensing layer is
not saturated. Within this range a constant amplitude of the signal is given.
Thus, a second window occurs for the working distance (see Fig. 17.29). A
different but constant amplitude exists in the range of several mm. This al-
lows a large air gap as well as large tolerances concerning lateral deviations.
The sensitivity is only given for the rotation angle because the amplitude of
the signal is nearly independent on the field strength of the external magnetic
field.

Rotational Speed Sensor

Rotational speed measurement using magnetoresistive sensors is achieved by
counting ferromagnetic marks such as teeth of a passive gear wheel or the
number of magnetic elements of a magnetized ring. Beside magnetoresistive
sensors also the inductive sensors and Hall Effect sensors can be used for this
task. However, the magnetoresistive effect offers some essential advantages.
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Fig. 17.29. Left: Magnitude of the GMR sensor signal as a function of the magnetic
field strength. Right: Relative strength of the GMR sensor signal as a function of
the relative position of magnet and sensor. (Adapted and used with permission from
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First, the output signal level of a MR sensor does not vary with rotation
speed as it is the case in inductive sensor systems. Inductive sensors show a
direct relation between the rotational speed and the output amplitude and
therefore require sophisticated electronics to evaluate the large signal voltage
range, especially in applications requiring low jitters. Magnetoresistive sen-
sors, in contrast, are characterized by the fact that the sensor is static and
the output signal is generated by the bending of magnetic field lines according
to the position of the target wheel. This principle is shown in the lower part of
Fig. 17.30. As bending of the magnetic field lines also occurs when the target
is not moving magnetoresistive sensors can measure very slow rotations even
down to 0 Hz. The necessary magnet is already attached to the sensor element
so that the sensor modules are ready for use. Costs are further reduced as fer-
rite magnets can be used rather than the expensive samarium cobalt magnets
required for Hall effect sensors. All these advantages recommend magnetore-
sistive sensor modules for rotational speed measurements in a wide range of
both automotive and industrial applications

The magnetoresistive sensor cannot directly measure rotational speed but
is sensitive to the motion of toothed wheels made from ferrous material (pas-
sive targets) or rotating wheels having alternating magnetic poles (active tar-
gets).

The general arrangement for a passive target wheel is shown in Fig. 17.31.
The sensor is fitted with a permanent magnet. Without a ferromagnetic target
or a symmetric position of the toothed wheel no component of the magnetic
field would be in the sensitive direction and therefore the sensor output would
be zero. For non-symmetric positions, for example if the passive target rotates
in front of the sensor, the magnetic field is bent according to the actual wheel
position and an alternating field component in the sensitive direction arises.
This alternating field component is used to generate an output signal that
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Fig. 17.30. Measurement of the rotation of an axis using a magnetoresistive sensor.
The sensor is positioned between a soft magnetic gear wheel and a permanent mag-
net (top part) with its sensitivity direction in the tangential direction. A varying
position of the teeth of the wheel gives rise to a varying tangential component of
the field at the sensor position (lower part). The number of peaks per unit time
of the approximately sinusoidal output signal is a measure of the rotation speed.
(Reprinted from [88]. Copyright 2003, with permission from Elsevier)

Fig. 17.31. Rotational speed measurement using an active target wheel (From
Application Note AN98087 from Philips Semiconductors; used with permission)
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varies according to the wheel position. The amplitude of the sensor output
voltage depends on the magnetic field strength of the biasing magnet, the
distance between sensor and target and, obviously, on the structure of the
target. Large solid targets will give stronger signals at larger distances from
the sensor than small targets.

In contrast to passive targets that are not magnetized active targets show
alternating magnetic poles as depicted in Fig. 17.31. Here the target provides
the “working” field and no magnet is required for operation. However, a small
stabilization magnet is still applied to the sensor. The structure of an active
target can be expressed similarly to that for passive targets. In this case a
north-south magnetic pole pair represents a tooth-valley pair.

Non-Contacting Rotary Selector

Another example is given by non-contacting rotary selectors. It represents
the special case of an absolute determination of the rotation angle being sup-
plemented by a fixed number of switching points. Typical applications are
the use in control panels of washing machines, dish washers, tumble driers,
electric kitchen stoves, and equipment of the consumer electronics. Different
switch settings represent, for example, different radio channels, different wash-
ing programs, or adjustments of hot plates. The rotary switch can be used
to detect the movement and position of objects located on the other side of
a glass or plastic screen. Even a distance up to 3 cm away from the sensor
presents no problems for the evaluation (see Fig. 17.32). The advantages are
huge lifetimes due to neglecting wear, low expenses for assembling, and use

Fig. 17.32. Thanks to the large mounting tolerances, GMR sensors are well suited
for insertion in the panels of household appliances (Used with permission from Ap-
plication Note “Sensors” of Siemens/Infineon)
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of the same kind of switch for different types of equipment which allows the
realization of different functions by variation of the corresponding software.

Linear Sensor

Due to their high sensitivity GMR sensors can effectively provide positional in-
formation of actuating components in machinery, proximity detectors, and lin-
ear position transducers. Figure 17.33 illustrates two simple sensor/permanent
magnet configurations used to measure linear displacement. In the left dia-
gram displacement along the y-axis varies the field magnitude detected by the
sensor that has its sensitive plane lying along the x-axis. The right diagram
has the direction of displacement and the sensitive plane along the x-axis.

Using the sensor within the operating range the sensitivity is only given
on the direction of the magnetic field and not on the amplitude. Thus, the
signal amplitude varies for a linear motion of the sensor caused by the curved
lines of magnetic flux (see Fig. 17.34).

Linear sensors can be used to determine a linear position, for measurements
of lengths, and liquid level indicators. A subsequent comparator circuit for
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x (axis of sensitivity)
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y

x (axis of sensitivity)

Fig. 17.33. Configuration to measure linear displacement along the y-axis (left)
and x-axis (right) with the latter one being the axis of sensitivity

sensor

N S

(a) (b)

position

output
signal

Fig. 17.34. (a) Linear translation of the GMR sensor through the field of a magnet.
The white arrow indicates the sensitive axis of the sensor. (b) Corresponding output
signal. Directly above the magnet the signal vanishes due to the perpendicular ori-
entation between the magnetic flux lines and the direction of the sensor’s sensitive
axis
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readout allows the realization of, e.g., proximity switches or, more generally,
non-contact switches.

Position Sensor

Nowadays inkjet printers exhibit a high resolution. As a prerequisite the po-
sition of the print head must very accurately be determined. Such a position
sensor can be realized using GMR-based sensors directly at the print head
in combination with a guide bar which exhibits a continuous magnetization
consisting of alternating magnet poles (see Fig. 17.35). This type of position
sensor is characterized by its durability and reliability which is caused by
the non-contact measurement principle and insensitiveness against contami-
nations from ink.

Instead of using one sensor combined with a lot of magnets one can also
realize the opposite situation (see Fig. 17.36). Now, the varying magnetic
field of only one magnet is measured with several magnetoresistive sensors. A
subsequent read unit enables the accurate determination of the position of,
e.g., a valve actuator stem.

print head

S N

sensor

Fig. 17.35. Positioning of a print head

moving direction

sensors

magnet

valve actuator stem

Fig. 17.36. Magnetoresistive sensors monitoring the axial position of a valve actu-
ator stem
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Sensors in String Instruments

Conventional pickup elements for guitars consist of a permanent magnet and
a coil of isolated wire. The amount of flux through the coil is modulated
by the vibration of the nearby soft-magnetic string and therefore induces an
alternating current in the coil. Usually, one magnet or pole piece is used per
string while the coil surrounds all six magnets together. The sound of the
guitar depends in a subtle way on many parameters like the magnet material,
the number of windings in the coil, etc.

A new type of pickup element uses magnetoresistance instead of induc-
tance as the sensing principle. The sensors were mounted on small ferrite
bias magnets and positioned close to the guitar strings. The vibration of the
string modulates the magnetic field at the location of the MR sensor and
thus modulates its resistance resulting in an oscillating electronic output sig-
nal. Of course, this signal may subsequently be amplified and/or processed
electronically.

The inductive pickup of the electric guitar was replaced by six of these
packaged GMR sensors which were glued on a ferrite bias (see Fig. 17.37). In
order to warrant a symmetric and identical magnetic environment for each of
the strings, two additional bias magnets without sensors were added at the
sides. A small printed circuit board with some electronics was included in
order to sum the sensor output signals. The required small amount of power
for the electronics was taken from the amplifier but could also be supplied by
a small battery in the guitar as is also quite common, e.g., for piezo guitar
pickups. The output can directly be connected to the standard guitar ampli-
fier. One of the biggest advantages of the magnetoresistive pickup elements
over the conventional inductive elements is the dramatically lower sensitivity
to disturbing external electromagnetic fields.

Fig. 17.37. Photograph of the magnetoresistive pickup elements (Reused with per-
mission from [91]. Copyright 2002, American Institute of Physics)



17.3 Sensors 323

Vehicle Detection

Vehicle detection technology has evolved quite a bit in the last couple decades.
From air hoses to inductive loops embedded in roadways most legacy detec-
tion methods were concentrated on getting vehicle presence information to
a decision making set of control systems. Today, much more information is
required such as speed and direction of traffic, the quantity of vehicles per
time on a stretch of pavement, or just very reliable presence or absence of a
class of vehicles which will be discussed in the following.

Due to the fact that almost all road vehicles have significant amounts
of ferrous metals in their chassis magnetic sensors are a good candidate for
detecting vehicles. Nowadays, they are fairly miniature in size and thanks
to solid state technology both the size and the electrical interfacing have
improved to make integration easier.

But not all vehicles emit magnetic fields that magnetic sensors could use
in detection. This fact eliminates most “high field” magnetic field sensing
devices like Hall effect sensors. Thus, “low field” magnetic sensors are used
to determine this field and also the field disturbances that nearby vehicles
create. The upper part of Fig. 17.38 shows a graphical example of the lines of
flux from the earth between the magnetic poles and the bending they receive
as they penetrate a typical vehicle with ferrous metals.

As the lines of magnetic flux group together (concentrate) or spread out
(deconcentrate) a magnetic sensor placed nearby will be under the same mag-
netic influence the vehicle creates to the earth’s field. However because the
sensor is not intimate to the surface or interior of the vehicle it does not
get the same fidelity of concentration or deconcentration. With increasing

Fig. 17.38. Earth’s magnetic field through a vehicle and corresponding signature of
the sensor being located within the roadbed (Used with permission from Honeywell
Application Note AN218)
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distance from the vehicle the amount of flux density changes with vehicle
presence drops off at an exponential rate.

Typical vehicle detection applications using magnetic sensors and the
earth’s field are:

• Railroad crossing control (for trains)
• Drive through retail (banking, fast-food, etc.)
• Automatic door/gate opening
• Traffic monitoring (speed, direction)
• Parking lot space detection
• Parking meters

Vehicle detection signature

Using the earth’s magnetic field provides a magnetic background or “bias”
point that substantially stays constant with a fixed sensor installation.

A typical magnetic field direction on the northern hemisphere with a truck
moving southbound is shown in Fig. 17.38. The boxes represent possible sensor
locations near the roadbed and the relative amounts of flux concentration they
could sense. The adjoining graph shows what a signal axis sensor bridge might
see when it has the sensitive axis also pointing southbound and as the truck
drives past the sensor. Since the natural earth’s magnetic field would bias the
sensors with a slight negative voltage output increasing flux concentration
would further lower the voltage and decreasing concentration would raise the
voltage.

Sensors oriented sideways (horizontal, across the roadbed) and vertical
would likely also shift during the vehicle passage but the bias values and sig-
nature shifts would be different. For most applications the amplitude and di-
rection of voltage shift is not important but the detection of a significant shift
in output voltage is what would matter most. For vehicle presence applications
the vector magnitude shift from the earth’s magnetic field would be the most
reliable method. As a vehicle parks alongside or overtop the magnetic sensor
location the magnitude would shift suddenly from the earth’s bias (no-vehicle)
magnitude. This would be most applicable for parking meters, parking space
occupancy, door openers, and drive through service prompting.

The amount of sensor output shift has a large dependance on proximity
of the sensors to the vehicle. If the distance between vehicle and sensor is less
than about several 10 cm, such as on the middle of the roadbed lane at the
surface, the signature will have quite a bit detail and will pickup the intricacies
of the ferrous construction of the vehicle chassis. Further away such as one
meter the vehicle signature may be a tenth in magnitude depending on the
vehicle size and the signature bandwidth looks more as a flux concentration
hump than a squiggle. As the distance increases the signature changes from
flux concentration to deconcentration to returning to the baseline.
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Vehicle direction sensing

In the previous vehicle signature example a single sensor was shown as the
vehicle overpasses it on the roadbed. This is traditionally known as an x-axis
system since it uses the sensitive axis in the expected vehicle direction. By
employing a sensor off the side of the vehicle path the basic vehicle direction
can be detected. Figure 17.39 presents a typical sensor placement for vehicle
direction detection. As the vehicle approaches the sensor lines of magnetic
flux begin to bend at the sensor toward the vehicle. Thus, the flux density
decreases and the signature voltage from the sensor goes negative from its
bias value. As the vehicle leaves the sensor the flux density chases the vehicle
and a positive signature voltage results. If the vehicle backs up or returns in
the opposite direction the signature plot looks like a mirror image. A second
and more reliable method involves two sensors displaced by a small distance
apart but with their sensitive axis’ in the same direction. The intent is that a
vehicle in motion will create the same signature but displaced in time.

Fig. 17.39. x-axis direction sensing (Used with permission from Honeywell Appli-
cation Note AN218)

With the dual displaced sensors the rear sensor will hit the detection
threshold a fraction of a second before the front sensor in forward traffic.
And the opposite occurs in reverse direction traffic. With a known displace-
ment distance and a reasonably precise time measurement between threshold
detections a speed computation can be made as well. Figure 17.40 depicts this
typical mounting.

The displacement distance of the sensors does not have to be a very large
value. With today’s high speed microcontrollers and precision analog circuitry
speed measurement accuracy and resolution can be within single km per hour
graduations.



326 17 Applications

Fig. 17.40. Dual displaced sensors (Used with permission from Honeywell Appli-
cation Note AN218)

Thus, magnetoresistive sensors are very good candidates for vehicle pres-
ence, speed, and direction data gathering. Compared to optical, ultrasonic,
and inductive loop solutions the sensors offer the possibility of very small size
installations into and onto roadway structures for reliable function. In the rail-
road crossing application sensors can easily detect locomotives from 20 meters
away which means a very reliable detection from track roadbed positions.

Automatic door and gate keeping can be made simple and low cost us-
ing sensors by recording background field levels and controlling for vehicle
waiting and vehicle parked logical decisions. A classic example is overhead
door lifting for factory forklift transit through door thresholds. Vehicle de-
tection ranges from simple inductive loop replacement to multi-lane speed
and direction sensing. Both wired and wireless sensor mounts would apply in
this application. Parking space and parking meter applications have similar
constraints for low-cost and reliable presence/absence detection of stationary
vehicles. Figure 17.41 shows a typical parking meter arrangement with three
possible sensor locations.

Current Sensing

Currents in wires create magnetic fields surrounding the wires or traces on
printed wiring boards. The field decreases as the reciprocal of the distance
from the wire. GMR sensors can be effectively employed to sense this magnetic
field. Both dc and ac currents can be detected in this manner. Bipolar ac
current will be rectified by the sensors omnipolar sensitivity unless a method
is used to bias the sensor away from zero. Unipolar and pulsed currents can
be measured with good reproduction of fast rise time components due to
the excellent high frequency response of the sensors. Since the films which the
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Fig. 17.41. Parking meter sensing (Used with permission from Honeywell Applica-
tion Note AN218)

sensors consists of are extremely thin a response to frequencies up to 100 MHz
is possible. Figure 17.42 shows the relative position of a GMR sensor and a
current carrying wire to detect the current in the wire. The sensor can also be
mounted immediately over a current carrying trace on a circuit board. High
currents may require more separation between the sensor and the wire to keep
the field within the sensor’s range. Low currents may be best detected with
the current being carried by a trace on the chip immediately over the GMR
resistors. This application allows for current measurement without breaking
or interfering with the circuit of interest.

direction of current

magnetic field

axis of
sensitivity

Fig. 17.42. Appropriate orientation of a GMR bridge sensor to detect the magnetic
field created by a current carrying wire
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Detection of Counterfeit Financial Transaction Documents

In addition to several other features like holograms the signature of magnetic
information encoded in many currencies can be used to distinguish valid cur-
rency from counterfeit copies. The inclusion of magnetic particles like iron
oxide as a pigment in black ink has provided a way of reading and validating
not only currency but also other negotiable documents.

The magnetic fields from these particles are smaller than the terrestrial
magnetic field being in contrast to the fields from stripes on credit cards
which are considerably larger. Their small fields produce signatures when
read by magnetic sensors that can be used to identify the denominations of
currency presented to vending machines. The signature of additional magnetic
information can be used to distinguish between valid currency and copies.

Unfortunately, the “magnetic” reading of currency represents a difficult
task because the amount of magnetic ink is considerably small. Inductive read
heads designed similarly to tape recorder heads need to be in direct contact
to yield an adequate signal. But to avoid jamming in high-speed transport
mechanisms it is desirable to be able to read the bill from up to 2 mm away. To
achieve this goal sensitive low-field sensors such as GMR sensors are utilized.

Magnetic biasing is often important in low-field sensing procedures. In
contrast to permanent magnets most magnetic materials will not have a re-
liable, readable signature unless a permanent magnet or the magnetic field
from a current in a coil has magnetized them. This limitation is especially
true for small particles of magnetic materials. The art of biasing is to be able
to magnetize the magnetic particles in the ink and also any magnetic stripes
on the currency to be detected so that it produces a magnetic field along the
sensitive axis of the sensor while not saturating the sensor with the biasing
field.

The simplest method of biasing is to pass the object to be magnetized
over a permanent magnet and then transport it to the vicinity of the sensor
(see Fig. 17.43). The articles to be read are being moved by a transport
mechanism and passed over the magnetic sensor one at a time. A permanent
magnet can be placed at some point upstream remote enough not to saturate
the magnetic sensor. This set-up enables to prepare the bills or checks (see
below) with their particles in a reproducible magnetic state.

The small size of GMR sensors offers the possibility of making closely
spaced arrays of sensors to image a larger area rather than just obtaining a
signature from a single trace along or across the material. Magnetic sensor
arrays are used to achieve a magnetic image which can then be used to obtain
additional information encoded in the document or object.

A second method of magnetic biasing is to make use of the fact that thin
film GMR sensors are relatively unsusceptible to fields being perpendicular to
their sensitive axis. A permanent magnet can be placed in close proximity to
the GMR sensor with its magnetic axis perpendicular to the sensor’s sensitive
axis. With proper positioning the sensor will detect only a little or no field
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Fig. 17.43. Possible arrangement to verify a particular magnetic field signature for
currency detection. In this situation the magnetic particles in the ink or toner are
magnetized by a permanent magnet which is separated from the sensor or sensor
array. The bank note itself is transported by feed rollers

(see Fig. 17.44(a)). When a magnetizable object approaches the end of the
sensor there will be a component of the magnetic field along the sensitive axis
as shown in Fig. 17.44(b). This method of biasing is often called back biasing
because the magnet is usually attached to the back of the sensor.

magnet
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magnetic
material

sensitive
axis

(a) (b)

Fig. 17.44. Back biasing procedure. A magnetizable object in vicinity to the sensor
induces a component of the magnetic field along the sensitive axis of the sensor
(see right part) which is absent without this object (see left part)

Another financial application which small magnetic fields are detected in
is the reading of magnetic ink character recognition (MICR) numbers which
may be printed in lines on the bottom of a check. The stylized MICR numbers
(see Fig. 17.45) produce a unique magnetic signature when documents which
they appear in (e.g., checks) are sorted at high speeds. The MICR line is
printed with magnetic ink or toner which results in a magnetic signal that
allows to identify each unique character.
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Fig. 17.45. Typical magnetic ink character recognition (MICR) numbers which
are printed on, e.g., checks by means of ink or toner which contain small magnetic
particles

Financial documents are processed on special MICR reader and sorter
machines. They first magnetize the MICR line and then read the magnetic
signals. Each character, if printed correctly and with the appropriate amount
of magnetic material in the ink or toner, will give a magnetic signal unique
and identifiable to that character. The magnetic signal is developed from
two elements. These are the character’s shape, i.e. the horizontal and verti-
cal attributes, and the magnetic content, i.e. the amount and distribution of
magnetic material in the ink or toner which the character is formed from. If
the shape and magnetics of the characters do not meet specified standards
the machine will reject the document.

Detection of Material Defects

The sensing of eddy currents is an effective and non-destructive way of detect-
ing cracks in conductive materials. It is also possible to detect hidden corro-
sion which typically produces a gradual thinning or roughening of structures.
Because safety-critical systems depend on early detection of fatigue cracks to
avoid major failures there is an increasing need for probes that can reliably de-
tect very small defects. Additionally, there are increasing demands for probes
which can detect deeply buried defects to avoid disassembling structures.

Eddy current testing probes combine an excitation coil that induces eddy
currents in a specimen and a detection element that identifies the perturbation
of the currents caused by cracks or other defects. The main components consist
of either a relatively large cylindrical coil (see Fig. 17.46(a)) or a flat spiral
coil with the GMR sensor located on the axis of the coil (see Fig. 17.46(b)).
The use of low-field magnetic sensors represents a significant advance over
more traditional inductive probes. Two key attributes open opportunities for
increased use of eddy current probes: constant sensitivity over a wide range
of frequencies and development of smaller sensors.

Eddy currents induced in the surface of a defect-free specimen are circu-
lar because of the circular symmetry of the field produced by the coil. The
tangential component of the field created by the eddy currents is zero at the
location of the sensor (see Fig. 17.47(a)). In the presence of defects the eddy
currents are no longer symmetrical, and the probe provides a measure of the
perturbed eddy currents caused by the underlying flaws (see Fig. 17.47(b)).
The size of the coil is related to the resolution necessary to detect the defects.
For large defects and for deep defects large coils surrounding the sensor are
required.
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Fig. 17.46. Arrangement of coil and GMR sensor for eddy current detection of
defects in conductors. (a) Cross section of the assembly utilizing a cylindrical coil
surrounding the sensor. (b) Schematic diagram of a flat coil placed on the sensor
package
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Fig. 17.47. (a) Magnetic fields from the excitation coils create circular eddy cur-
rents in the conducting surface below the coils. (b) A crack or defect alters the
eddy current paths resulting in magnetic fields parallel to the conducting surface
and along the sensitive axis of the sensor

Eddy currents shield the interior of the conducting material with the skin
depth d:

d =

√

ρ

πμ0μrν
(17.10)

with ν being the excitation frequency and ρ the resistivity of the sample.
Exemplarily, we see that the frequency must be below 44 Hz for Cu in order
to reach a depth of 1 cm for the eddy current. By changing the frequency
we can probe different depths of the material. GMR sensors with their wide
frequency response from dc into the multi-megahertz range are well suited to
this application. The small size of the sensing element increases the resolution
of defect location while the detector is scanned over the surface. More rapid
scans can be performed using an array of detectors.

Probes that detect eddy current fields using inductive coils have less sen-
sitivity at low frequencies. Unfortunately, this is where the device would have
to operate to detect deep flaws. Small sensing coils, which are required to
detect small defects, also have low sensitivity. In contrast, small GMR sensors
with their high sensitivity can locally measure a magnetic field over an area
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comparable to the size of the sensor itself. Thus, to achieve high resolution
for detecting small surface and near-surface defects one has to reduce the di-
mensions of the excitation coil. The minimum length of a detectable crack is
roughly equal to the mean radius of the coil.

Additionally, the unidirectional sensitivity of GMR sensors enable the de-
tection of cracks at and perpendicular to the edge of a specimen. This dis-
crimination is possible because the sensitive axis of the GMR sensor can be
rotated to be parallel to the edge. Consequently, the signal is due only to the
crack. With inductive probes the edge will produce a large signal that can
mask the signal produced by a crack. This capability represents a very simple
solution to a difficult problem encountered in the aircraft industry namely
detecting cracks that initiate at the edge of turbine disks or near the rivets.

Geophysical Surveying

Magnetically sensitive sensors can also be used for geophysical surveying. Ex-
emplarily, airborne surveys of magnetic anomalies are utilized in order to
locate potential magnetic ore bodies.

But, not only the detection of magnetic material within the soil are carried
out by means of GMR sensors. As discussed above changes in conductivity
of buried objects can be determined using eddy currents. Therefore, mag-
netic sensors allow to locate conducting pipes or even non-conducting pipes
containing water.

Eddy current detection is a non-contacting method that does not require
placing electrodes in order to pass currents through the ground and measuring
potentials.

On the one hand the magnetic fields of interest are considerably less than
the earth’s magnetic field. Ground based magnetic surveys require portable
equipment on the other hand. Thus, highly sensitive GMR sensors are ideal
for equipment packed into remote survey areas. Additionally, arrays of sensors
make simultaneous two-dimensional imaging possible.

Biosensors

Magnetic particles have been used for many years in biological assays. The
magnetic component of these particles is invariably iron oxide usually in the
form of maghemite (γ–Fe2O3). Iron oxide is the favored magnetic component
because of its stability and biocompatibility. These particles range in size from
a few nanometers up to a few microns and are encapsulated in plastic or ce-
ramic spheres. Nanometer-sized particles of iron oxide are superparamagnetic
and therefore only magnetic in the presence of a magnetic field; the particles
immediately demagnetize when the field is removed. Thus, the beads do not
attract each other and do not agglomerate.

The magnetic beads are subsequently coated with a chemical or biological
species such as DNA or antibodies that selectively binds to the target analyte.
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M

H

x

y
z

sensitive axis

electromagnet

substrate

GMR film

capping layer

magnetic particle

Fig. 17.48. Cross-section of a GMR sensor illustrating the method being able to
detect superparamagnetic beads. A magnetizing field H magnetizes the bead which
produces regions of positive and negative magnetic induction B in the plane of the
underlying GMR film. Because the film is only sensitive to the x component of
external magnetic fields the magnetizing field does not affect the GMR resistance.
Due to a capping layer the sensor can be used in liquids

Primarily, these types of particles are applied to separate and concentrate
analytes for off-line detection.

As an improvement, the distinct selectivity of sample and target can be
used as a rapid sensitive detection strategy with the on-line integration of a
magnetic detector. This integration is facilitated by the development of GMR
sensors as the magnetic detectors.

These sensors have the unique advantage of being compatible with silicon
integrated circuit fabrication technology resulting in a single detector or even
multiple detectors that can be made on a single chip along with any of the
required electrical circuitry.

The beads are magnetized by an electromagnet (see Fig. 17.48). If the
magnetoresistive sensors lie in the xy plane and current flows through them
in the x direction the sensors detect only the x component of the magnetic
field. Therefore, to detect a superparamagnetic bead resting on a GMR strip
a magnetic field is externally generated in the z direction causing the bead
to produce a magnetic field with a detectable x component. An additional
capping layer, often consisting of silicon nitride, on top of the GMR thin film
device allows to operate under liquid conditions, e.g. in salt solutions.

However, since the magnetizing field is often not homogeneous, and there-
fore not exactly perpendicular to the GMR sensors over the entire sensor
array, the sensors exhibit an offset that varies with their position in the field.
To obtain an enhanced signal-to-noise ratio, a “reference” GMR sensor iden-
tical to the “main signal” sensor is additionally used nearby (see Fig. 17.49).
With this detection system the presence of as few as one microbead can be
detected.
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magnetic
bead

reference
sensor

signal
sensor

electromagnet

Fig. 17.49. Schematic arrangement of an additional reference GMR sensor being
located in vicinity to the signal sensor in order to reduce the influence of inhomo-
geneities of the field produced by the electromagnet

antibodies antigens magnetically labelled
antibodies

(a)

(b)

(c)

Fig. 17.50. (a) Antigens are detected by flowing them over a sensor coated with
antibodies which they bind to. (b) Antigens which do not find their corresponding
antibody cannot be stabilized in the solution on top of a sensor (here represented
by the hexagon). (c) Subsequently, the magnetic particle-labelled antibodies bind
to the antigens providing a magnetic indication of the presence of those antigens. In
this example three types of antigens are detected whereas one is absent
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The magnetic beads coated with a material that binds to the biological
molecules to be analyzed are allowed to settle on a substrate that is selectively
coated in different areas with substances that bond to specific molecules of
interest. Non-binding beads can be removed by a small magnetic field. The
presence of the remaining magnetic microbeads is detected by magnetic sen-
sors within the array. Several bioassays can be simultaneously accomplished
using an array of magnetic sensors each with a substance that bonds to a
different biological molecule. Figure 17.50 schematically shows the bonding of
the beads to the sites via the molecules to be detected.

The chemical sensitivity increases with active area, i.e. the area which
binding events can occur in and be detected in. Since magnetic beads can
only be detected when they bind on top of a sensor the active area is the total
surface area of all sensors devoted to a particular analyte. Thus, the optimum
array would consist of a large number of small sensors.
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Solutions

Problems of Chapter 2

2.1 Using (2.132) we obtain for the susceptibility:

χ =
Nμ0

3V kT
· g2

Jμ2
BJ(J + 1) (18.1)

= N
4π × 10−7

3 × 1 × 1.381× 10−23 × 300
· 4

×(9.274 × 10−24)2 × 1 × 2 (18.2)

= N × 6.96 × 10−32 (18.3)

The ideal gas is characterized by:

pV = NkT (18.4)

which allows to determine the number of atoms or molecules to be:

N =
pV

kT
(18.5)

=
101325× 1

1.381× 10−23 × 300
(18.6)

= 2.45 × 1025 (18.7)

for T = 300 K, V = 1 m3, and p = 1013 mbar = 101325 Pa. Using (18.3) we
obtain:

χ = 1.7 × 10−6 (18.8)

which is positive and rather small.

2.2 From Fig. 2.5 we obtain:

S =
1

2
L = 3 J =

5

2
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Using these values we are able to calculate gJ using (2.160):

gJ =
3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)

=
3

2
+

1/2 · 3/2 − 3 · 4
2 · 5/2 · 7/2

=
3

2
+

3/4 − 12

35/2

= 0.86

2.3 Term Symbols

(a) d electrons have ℓ = 2. The number of electrons in the d shell amounts to
p = 6. Thus, we obtain

2ℓ + 1 = 5

|2ℓ + 1 − p | = 1

|2ℓ − p | = 2

In order to satisfy Hund’s first rule we get:

S = 1/2 · ((2ℓ + 1) − |2ℓ + 1 − p |) = 1/2 · (5 − 1) = 2

Concerning Hund’s second rule we obtain:

L = S · |2ℓ + 1 − p | = 2 · 1 = 2

which results in D for the symbol. Hund’s third rule reveals:

J = S · |2ℓ − p | = 2 · 2 = 4

Therefore, the term symbol 2S+1LJ is given by 5D4.
(b) f electrons possess ℓ = 3. The number of electrons in the f shell is p = 7.
This allows to determine the following relations:

2ℓ + 1 = 7

|2ℓ + 1 − p | = 0

|2ℓ − p | = 1

For Hund’s first rule we obtain:

S = 1/2 · ((2ℓ + 1) − |2ℓ + 1 − p |) = 1/2 · (7 − 0) = 7/2

For Hund’s second rule we get:

L = S · |2ℓ + 1 − p | = 7/2 · 0 = 0

which results in S for the symbol. Using Hund’s third rule reveals:

J = S · |2ℓ − p | = 7/2 · 1 = 7/2

Therefore, the term symbol 2S+1LJ is given by 8S7/2.
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Problems of Chapter 3

3.1 Ferromagnetic Alloys

(a) The Slater–Pauling curve (see Fig. 3.12) yields an electron number of 27.6
for the NixCo1−x alloy. The number of electrons for Ni amounts to 28, that
for Co to 27. Thus:

28x + 27 · (1 − x) = 27.6 (18.9)

which leads to x = 0.6. This alloy therefore exhibits the composition Ni60Co40.
(b) For CoxCr1−x we find an electron number of 26.7. The number of electrons
for Co amounts to 27, that for Cr to 24. Therefore:

27x + 24 · (1 − x) = 26.7 (18.10)

which results in x = 0.9 and thus Co90Cr10.
(c) For FexCr1−x we observe an electron number of 25.1. The number of
electrons for Fe amounts to 26, that for Cr to 24. Therefore:

26x + 24 · (1 − x) = 25.1 (18.11)

which results in x = 0.55. This alloy consists of Fe55Cr45.

Problems of Chapter 5

5.1 The saturation magnetization of Ni is therefore given by MS = 0.6nμB.
This value is inserted into (2.96) which results in:

gJ =
MS

nμBJ
=

0.6nμB

nμBJ
=

0.6

J
(18.12)

Now, this result is inserted into (5.16):

Bmf =
3kTC

gJμB(J + 1)
=

3kJTC

0.6μB(J + 1)
(18.13)

Using the given experimental values leads to Bmf = 1576 T.

5.2 Using (5.61):

χ(T ) =
c

T + TN

we are able to determine the susceptibility at TN :

χ(TN ) =
c

TN + TN
=

c

2TN
= χ0 (18.14)

Thus, the constant c amounts to:

c = 2χ0TN (18.15)
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This allows us to calculate the susceptibility to be:

χ(T ) =
2χ0TN

T + TN
(18.16)

Therefore:

χ(T3) = χ(2TN) =
2χ0TN

3TN
=

2

3
χ0 (18.17)

The susceptibility along the perpendicular direction at or below the Néel
temperature is independent on temperature and given by (see (5.101)):

χ⊥(T ) = χ⊥(TN ) = χ(TN) = χ0 (18.18)

Thus:
χ⊥(T1) = χ⊥(0) = χ0 χ⊥(T2) = χ⊥(TN/2) = χ0

5.3 Using the parameters:

a = v(αc1 + βc2) (18.19)

b = c1c2v
2(αβ − 1) (18.20)

x = c1 + c2 (18.21)

y = c1c2v(2 + α + β) (18.22)

we can rewrite (5.121) to:

μ0
1

χ

=
T 2 − aT + b

xT − y
(18.23)

=
x2T 2 − ax2T + bx2

x2(xT − y)
(18.24)

=
x2T 2 − xyT + xyT − ax2T − y2 + axy + bx2 − axy + y2

x2(xT − y)
(18.25)

=
xT (xT − y) + (y − ax)(xT − y) + (bx2 − axy + y2)

x2(xT − y)
(18.26)

=
T

x
+

y − ax

x2
− axy − bx2 − y2

x3
(

T − y

x

) (18.27)

=
T

x
+

1

x2

y − ax

−
axy − bx2 − y2

x3

T − y

x

(18.28)

We see that this equation can be written as:
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μ0
1

χ
=

T

c1 + c2
+

1

χ0
− σ

T − θ
(18.29)

with the parameters θ, χ0, and σ given by:

θ =
y

x
(18.30)

χ0 =
x2

y − ax
(18.31)

σ =
axy − bx2 − y2

x3
(18.32)

Inserting the parameters a, b, x, and y being defined above we finally obtain:

θ =
c1c2v(2 + α + β)

c1 + c2
(18.33)

χ0 = − (c1 + c2)
2

v(αc2
1 + βc2

2 − 2c1c2)
(18.34)

σ =
c1c2v

2(c1(α + 1) − c2(β + 1))2

(c1 + c2)3
(18.35)

5.4 Helimagnetism

(a) The prerequisites for helimagnetism (see (5.141) and (5.134)) are: J2 < 0
and |J1| ≤ 4|J2|. The first condition is fulfilled. The second condition can be
written as:

∣

∣

∣

∣

J1

J2

∣

∣

∣

∣

≤ 4 (18.36)

Inserting results in:
∣

∣

∣

∣

J1

J2

∣

∣

∣

∣

=
6√
3

= 3.46 ≤ 4 (18.37)

Thus, this material exhibits helical arrangement.
(b) The angle θ between adjacent layers can be calculated (see (5.133)) by:

cos θ = − J1

4J2
=

−6J1

−4
√

3J1

= 0.866 (18.38)

which leads to θ = 30◦.

Problems of Chapter 7

7.1 Replacing the direction cosine αi by the angles θ and φ we obtain:

Etetra
crys = K0 + K1α

2
3 + K2α

4
3 + K3

(

α4
1 + α4

2

)

(18.39)

= K0 + K1 cos2 θ + K2 cos4 θ + K3 sin4 θ(sin4 φ + cos4 φ)(18.40)
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Due to:
sin2 θ + cos2 θ = 1 (18.41)

we obtain:
cos2 θ = 1 − sin2 θ (18.42)

which results in
cos4 θ = 1 + sin4 θ − 2 sin2 θ (18.43)

Using (18.41) we get:

1 = (sin2 φ + cos2 φ)2 (18.44)

= sin4 φ + cos4 φ + 2 sin2 φ cos2 φ (18.45)

Thus:
sin4 φ + cos4 φ = 1 − 2 sin2 φ cos2 φ (18.46)

Using:
2 sinφ cos φ = sin 2φ (18.47)

Equation (18.46) results in:

sin4 φ + cos4 φ = 1 − 1

2
sin2 2φ (18.48)

Due to:
cos 2x = cos2 x − sin2 x (18.49)

we obtain:

sin2 x = cos2 x − cos 2x (18.50)

= 1 − sin2 x − cos 2x (18.51)

Thus:

sin2 x =
1

2
− 1

2
cos 2x (18.52)

With x = 2φ we obtain:

sin2 2φ =
1

2
− 1

2
cos 4φ (18.53)

which leads to:

sin4 φ + cos4 φ =
3

4
+

1

4
cos 4φ (18.54)

using (18.46). Inserting of (18.42), (18.43), and (18.54) into (18.40) results in:

Etetra
crys = K0 + K1(1 − sin2 θ) + K2(1 + sin4 θ − 2 sin2 θ)

+K3 sin4 θ

(

3

4
+

1

4
cos 4φ

)

(18.55)

= K0 + K1 + K2 − K1 sin2 θ − 2K2 sin2 θ + K2 sin4 θ

+
3

4
K3 sin4 θ +

1

4
K3 sin4 θ cos 4φ (18.56)

= K ′

0 + K ′

1 sin2 θ + K ′

2 sin4 θ + K ′

3 sin4 θ cos 4φ (18.57)
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with

K ′

0 = K0 + K1 + K2 (18.58)

K ′

1 = −K1 − 2K2 (18.59)

K ′

2 = K2 +
3

4
K3 (18.60)

K ′

3 =
1

4
K3 (18.61)

7.2 Due to:
sin2 x + cos2 x = 1 (18.62)

we obtain:
sin2 x = 1 − cos2 x (18.63)

which results in
sin4 x = 1 + cos4 x − 2 cos2 x (18.64)

Both equations lead to:

sin6 x = 1 − 3 cos2 x + 3 cos4 x − cos6 x (18.65)

Now we use:

0 = cos6 x + cos4 x − cos6 x − cos2 x − cos6 x + 2 cos4 x

−1 + 3 cos2 x − 3 cos4 x + cos6 x + 1 − 2 cos2 x (18.66)

= cos6 x + (1 − cos2 x) cos4 x − (1 + cos4 x − 2 cos2 x) cos2 x

−(1 − 3 cos2 x + 3 cos4 x − cos6 x) + (1 − cos2 x) − cos2 x (18.67)

Replacing the expressions in brackets by (18.63)–(18.65) results in:

0 = cos6 x + sin2 x cos4 x − sin4 x cos2 x − sin6 x + sin2 x − cos2 x (18.68)

Next, we will transform the following expression Y :

Y = cos6 x − 15 sin2 x cos4 x + 15 sin4 x cos2 x − sin6 x (18.69)

By adding three times (18.68) we obtain:

Y = 4 cos6 x − 12 sin2 x cos4 x + 12 sin4 x cos2 x

−4 sin6 x + 3 sin2 x − 3 cos2 x (18.70)

= 4 sin4 x cos2 x + 4 cos6 x − 8 sin2 x cos4 x − 3 cos2 x

−4 sin6 x − 4 sin2 x cos4 x + 8 sin4 x cos2 x + 3 sin2 x (18.71)

= (cos2 x − sin2 x)(4 (sin4 x + cos4 x − 2 sin2 x cos2 x) − 3) (18.72)

Next, we make use of the following addition theorem:

2 cosnx cosmx = cos(n − m)x + cos(n + m)x (18.73)
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Setting n = 1 and m = 1 in (18.73) we get:

2 cos2 x = 1 + cos 2x (18.74)

Using (18.62) we obtain:

cos 2x = cos2 x − sin2 x (18.75)

and therefore:

cos2 2x = cos4 x + sin4 x − 2 sin2 x cos2 x (18.76)

Setting n = 2 and m = 2 in (18.73) we get:

2 cos2 2x = 1 + cos 4x (18.77)

which results in:
cos 4x = 2 cos2 2x − 1 (18.78)

Setting n = 4 and m = 2 in (18.73) we get:

2 cos 4x cos 2x = cos 2x + cos 6x (18.79)

which results in:
cos 6x = 2 cos 2x cos 4x − cos 2x (18.80)

Now, we use (18.75) and (18.76) to transform (18.72) into:

Y = cos 2x (4 cos2 2x − 3) (18.81)

= 4 cos3 x − 3 cos 2x (18.82)

= 2 cos 2x (2 cos2 2x − 1) − cos 2x (18.83)

Using (18.78) we obtain:

Y = 2 cos 2x cos 4x − cos 2x (18.84)

which finally leads to:
Y = cos 6x (18.85)

using (18.80). Comparison with (18.69) shows us that we have proven:

cos6 x − 15 sin2 x cos4 x + 15 sin4 x cos2 x − sin6 x = cos 6x (18.86)

Now, we are able to calculate the anisotropy energy density using (7.1)–(7.3):

Ehex
crys = K0 + K1(α

2
1 + α2

2) + K2(α
2
1 + α2

2)
2

+K3(α
2
1 + α2

2)
3 + K4(α

2
1 − α2

2)(α
4
1 − 14α2

1α
2
2 + α4

2) (18.87)

= K0 + K1(sin
2 θ cos2 φ + sin2 θ sin2 φ)

+K2(sin
2 θ cos2 φ + sin2 θ sin2 φ)2

+K3(sin
2 θ cos2 φ + sin2 θ sin2 φ)3

+K4(sin
2 θ cos2 φ − sin2 θ sin2 φ)

×(sin4 θ cos4 φ − 14 sin4 θ sin2 φ cos2 φ + sin4 θ sin4 φ) (18.88)
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By means of (18.62) we obtain:

Ehex
crys = K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+K4 sin6 θ(cos2 φ − sin2 φ)(sin4 φ + cos4 φ − 14 sin2 φ cos2 φ)

= K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+K4 sin6 θ(cos6 φ − 15 sin2 φ cos4 φ + 15 sin4 φ cos2 φ − sin6 φ)

= K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ + K4 sin6 θ cos 6φ (18.89)

using (18.86).

7.3 Spin Flop Transition

(a) At the critical field Bspin−flop the energy of the antiferromagnetic phase is
equal to that of the spin-flop phase which leads to:

−AM2 − ∆ = −AM2 −
M2B2

spin−flop

2AM2 − ∆
(18.90)

Thus, we obtain:

B2
spin−flop =

2AM2∆ − ∆2

M2
(18.91)

which gives us:

Bspin−flop =

√

2A∆ −
(

∆

M

)2

(18.92)

(b) Plotting the energy of the antiferromagnetic and spin-flop phase in depen-
dence of the magnetic field B (shown below) allows to determine Bspin−flop

graphically which corresponds to the crossing point.

Eind · 1/aV = −G(α1α2β1β2 + α2α3β2β3 + α1α3β1β3) (18.93)

E

B
0

Eafm

Espin-flop

Bspin-flop

7.4 Due to the bcc structure the constant F amounts to F = 0 (see (7.70)).
The induced anisotropy energy can thus be given by (see (7.67)):
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with αi being the direction cosine of the magnetization during measure-
ment and βi that during annealing. The (11̄0) plane can be characterized by
the angle θ, being that between the z-axis and the plane, and φ = 45◦. Due to
sinφ = cosφ = 1/

√
2 we obtain for the direction cosine αi (see (7.1)–(7.3)):

α1 =
1√
2

sin θ (18.94)

α2 =
1√
2

sin θ (18.95)

α3 = cos θ (18.96)

Setting E∗

ind = −Eind/aV G we get:

E∗

ind =
1

2
β1β2 sin2 θ +

1√
2
β2β3 sin θ cos θ +

1√
2
β1β3 sin θ cos θ (18.97)

(a) Annealing along the [001] direction
Due to θ0 = 0 and φ0 = 0 we obtain for the direction cosine βi (see (7.1)–
(7.3)):

β1 = 0 (18.98)

β2 = 0 (18.99)

β3 = 1 (18.100)

Inserting into (18.97) results in:

E∗

[001] = 0 (18.101)

(b) Annealing along the [110] direction
Due to θ0 = 90◦ and φ0 = 45◦ we get:

β1 =
1√
2

(18.102)

β2 =
1√
2

(18.103)

β3 = 0 (18.104)

Therefore:

E∗

[110] =
1

4
sin2 θ (18.105)

Using the relation

sin(x − y) = sin x cos y − cosx sin y (18.106)

we get:
sin(θ − θ0) = sin θ cos θ0 − cos θ sin θ0 (18.107)
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which simplifies to (due to θ0 = 90◦):

sin(θ − θ0) = − cos θ (18.108)

Thus:
sin2(θ − θ0) = cos2 θ = 1 − sin2 θ (18.109)

which gives:
sin2 θ = 1 − sin2(θ − θ0) (18.110)

Inserting into (18.105) results in:

E∗

[110] =
1

4
− 1

4
sin2(θ − θ0) (18.111)

(c) Annealing along the [111] direction
Due to θ0 = 54.7◦ and φ0 = 45◦ we get:

β1 =

√

2

3
×

√

1

2
=

1√
3

(18.112)

β2 =

√

2

3
×

√

1

2
=

1√
3

(18.113)

β3 =
1√
3

(18.114)

Additionally, the following relations are valid:

sin 2θ0 =
2
√

2

3
(18.115)

cos 2θ0 = −1

3
(18.116)

Inserting into (18.97) results in:

E∗

[111] =
1

6
sin2 θ +

√
2

3
sin θ cos θ (18.117)

Using
cos(x ± y) = cosx cos y ∓ sin x sin y (18.118)

we obtain for x = y:

sin2 x = cos2 x − cos 2x = 1 − sin2 x − cos 2x (18.119)

which results in:

sin2 x =
1

2
(1 − cos 2x) (18.120)

Inserting the relation:
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sin 2x = 2 sinx cosx (18.121)

and (18.120) into (18.117) leads to

E∗

[111] =
1

12
− 1

12
cos 2θ +

√
2

6
sin 2θ (18.122)

=
1

12
+

1

4

(

−1

3
cos 2θ +

2
√

2

3
sin 2θ

)

(18.123)

=
1

12
+

1

4
(cos 2θ cos 2θ0 + sin 2θ sin 2θ0) (18.124)

The last relation was obtained using (18.115) and (18.116). Making use of
(18.118) we get referring to (18.124):

E∗

[111] =
1

12
+

1

4
cos 2(θ − θ0) (18.125)

Rewriting (18.120) to:
cos 2x = 1 − 2 sin2 x (18.126)

results in:

E∗

[111] =
1

3
− 1

2
sin2(θ − θ0) (18.127)

Finally, we can compare the different induced magnetic anisotropy constants
neglecting constant parts and obtain for the ratio:

E∗

[001] : E∗

[110] : E∗

[111] = 0 : −1

4
sin2(θ − θ0) : −1

2
sin2(θ − θ0) (18.128)

= 0 : 1 : 2 (18.129)

Problems of Chapter 9

9.1 Using M = (Mx, My, Mz) and H = (Hx, Hy, Hz) we obtain:

−M × (M × H)

= −

⎛

⎝

Mx

My

Mz

⎞

⎠ ×

⎛

⎝

MyHz − MzHy

MzHx − MxHz

MxHy − MyHx

⎞

⎠

= −

⎛

⎝

My(MxHy − MyHx) − Mz(MzHx − MxHz)
Mz(MyHz − MzHy) − Mx(MxHy − MyHx)
Mx(MzHx − MxHz) − My(MyHz − MzHy)

⎞

⎠

= −

⎛

⎝

MxMyHy − M2
y Hx − M2

z Hx + MxMzHz

MyMzHz − M2
z Hy − M2

xHy + MxMyHx

MxMzHx − M2
xHz − M2

y Hz + MyMzHy

⎞

⎠
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=

⎛

⎝

(M2
y + M2

z + M2
x − M2

x)Hx − MxMyHy − MxMzHz

(M2
x + M2

z + M2
y − M2

y )Hy − MxMyHx − MyMzHz

(M2
x + M2

y + M2
z − M2

z )Hz − MxMzHx − MyMzHy

⎞

⎠

=

⎛

⎝

M2
xHx + M2

y Hx + M2
z Hx − M2

xHx − MxMyHy − MxMzHz

M2
xHy + M2

y Hy + M2
z Hy − MxMyHx − M2

y Hy − MyMzHz

M2
xHz + M2

y Hz + M2
z Hz − MxMzHx − MyMzHy − M2

z Hz

⎞

⎠

= (M2
x + M2

y + M2
z )

⎛

⎝

Hx

Hy

Hz

⎞

⎠ − (MxHx + MyHy + MzHz)

⎛

⎝

Mx

My

Mz

⎞

⎠

= M2 · H − ((M · H)M )

9.2 First, we calculate the parameter α (see (9.64)):

α =
4πλ

γM
(18.130)

=
4π × 2 × 108

1.761× 1011 × 2
(18.131)

= 0.007 (18.132)

Thus:
α2 = 5.1 × 10−5 ≪ 1 (18.133)

The resonance frequency is given by (see (9.78)):

ω0 = γμ0H (18.134)

= 1.761 × 1011 × 4π × 10−7 × (−200) s−1 (18.135)

= −4.4 × 107 s−1 (18.136)

For the corresponding relaxation time τ0 we therefore obtain (see (9.79)):

τ0 =
1

αω0
(18.137)

=
1

0.007 × (−4.4 × 107)
s (18.138)

= −3.2 × 10−6 s (18.139)

Using the approximation for α2 we are able to calculate the angular fre-
quency ω (see (9.76)) to be:

ω =
ω0

1 + α2
≈ ω0 = −4.4 × 107 Hz (18.140)

and the related time constant τ (see (9.77)) to be:

τ = τ0 · (1 + α2) ≈ τ0 = −3.2 × 10−6 s (18.141)

Using (9.75):
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tan
θ

2
= tan

θ0

2
· e−t/τ (18.142)

we get:

− t

τ
= ln tan

θ

2
− ln tan

θ0

2
(18.143)

which enables to calculate the time which is required to rotate the magneti-
zation from θ0 = 30◦ to θ = 150◦:

t = −τ

(

ln tan
θ

2
− ln tan

θ0

2

)

(18.144)

= 3.2 × 10−6 s × (ln tan 75◦ − ln tan 15◦) (18.145)

= 8.4 × 10−6 s (18.146)

Using (18.140) the precession frequency ν results in:

ν =
ω

2π
= 7.0 × 106 Hz (18.147)

Thus, we can calculate the number of precession rotations n that occur in this
time interval t using the result of (18.146):

n = ν t = 7.0 × 106 Hz × 8.4 × 10−6 s = 59 (18.148)

Problems of Chapter 12

12.1 Let us consider that tangent line that passes through the tip point of
the reduced applied magnetic field h with coordinates (hx, hy). The point of
contact with the astroid is assumed to possess the coordinates (hx1, hy1). The
angle between the tangent line and the easy magnetization direction along the
x-axis is given by β.

The slope s of this tangent line can be expressed as:

s =
hy − hy1

hx − hx1
(18.149)

which is equivalent to:

hy − hy1 = s(hx − hx1) (18.150)

Because the point of contact is a point of the astroid we know (see (12.16)):

h
2/3
x1 + h

2/3
y1 = 1 (18.151)

Using the implicit differentiation with respect to hx1 we obtain:

2

3
h
−1/3
x1 +

2

3
h
−1/3
y1

dhy1

dhx1
= 0 (18.152)
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which leads to:
dhy1

dhx1
= −

(

hy1

hx1

)1/3

(18.153)

This derivative describes the slope of the astroid curve at the point with the
coordinates (hx1, hy1). Thus, we have:

dhy1

dhx1
= s (18.154)

The slope can be expressed using the angle β as:

s = tanβ (18.155)

Thus, we obtain:
hy1

hx1
= − tan3 β (18.156)

Using this expression and (18.151) we derive:

hx1 = − cos3 β (18.157)

hy1 = sin3 β (18.158)

Substituting (18.155), (18.157), and (18.158) into (18.150) we get:

hy − sin3 β =
sin β

cosβ
(hx + cos3 β) (18.159)

which results in:

hx sin β − hy cosβ + sin β cos3 β + cosβ sin3 β = 0 (18.160)

hx sinβ − hy cosβ + sinβ cosβ(cos2 β + sin2 β) = 0 (18.161)

hx sinβ − hy cosβ + sinβ cosβ = 0 (18.162)

This proves the condition to be satisfied:

hx sin θ − hy cos θ + sin θ cos θ = 0 (18.163)

(see (12.5)) by setting β = θ.
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10. A. Hubert, R. Schäfer: Magnetic domains (Springer-Verlag, Berlin 2000)
11. Y. Tomono: Magnetic after effect of cold rolled iron (I), J. Phys. Soc. Jpn. 7,

174–179 (1952)
12. F.G. Brockman.P.H. Dowling, W.G. Steneck: Dimensional effects resulting from

a high dielectric constant found in a ferromagnetic ferrite, Phys. Rev. 77, 85–93
(1950)

13. V.S. Stepanyuk, W. Hergert, K. Wildberger et al: Magnetism of 3d, 4d, and 5d
transition-metal impurities on Pd(001) and Pt(001) surfaces, Phys. Rev. B 53,
2121–2125 (1996)

14. M. Garnier, K. Breuer, D. Purdie et al: Applicability of the single impurity
model to photoemission spectroscopy of heavy Fermion Ce compounds, Phys.
Rev. Lett. 78, 4127–4130 (1997)

15. H.C. Manoharan, C.P. Lutz, D.M. Eigler: Quantum mirages formed by coherent
projection of electronic structure, Nature 403, 512–515 (2000)

16. www.almaden.ibm.com/almaden/media/image mirage.html
17. A.J. Heinrich, J.A. Gupta, C.P. Lutz et al: Single-atom spin-flip spectroscopy,

Science 306, 466–469 (2004)



354 References
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Abbreviations

1D one-dimensional
1T1MTJ one transistor one magnetic tunnelling junction
2D two-dimensional
3D three-dimensional
ABS anti-lock braking system
AF antiferromagnet
AFM atomic force microscopy, atomic force microscope
AMR anisotropic magnetoresistance
bcc body centered cubic
BCS Bardeen, Cooper, Schrieffer
CIP current in plane
CMR colossal magnetoresistance
CPP current perpendicular to plane
DL double layer
DOS density of states
DRAM dynamic random access memory
EEPROM electrically erasable programmable read-only memory
fc flux changes
fcc face centered cubic
FeRAM ferroelectric random access memory
FET field effect transistor
FM ferromagnet, ferromagnetic metal
FWHM full-width at half-maximum
GMR giant magnetoresistance
hcp hexagonally closed packed
HOPG highly oriented pyrolytic graphite
HRSEM high resolution scanning electron microscopy,

high resolution scanning electron microscope
I insulator
IEC interlayer exchange coupling
IETS inelastic electron tunnelling spectroscopy



360 Abbreviations

JMR junction magnetoresistance
LDOS local density of states
MOKE magneto-optical Kerr effect
MR magnetoresistivity, magnetoresistance
MRAM magnetic random access memory
N normal conductor
PEEM photoemission electron microscopy,

photoemission electron microscope
RKKY Ruderman, Kittel, Kasuya, Yosida
SAF synthetic antiferromagnet
SC superconductor
SEMPA secondary electron microscopy with polarization analysis
SPSTM spin polarized scanning tunnelling microscopy,

spin polarized scanning tunnelling microscope
STM scanning tunnelling microscopy,

scanning tunnelling microscope
TEM transmission electron microscopy,

transmission electron microscope
TMJ tunnelling magnetic junction
TMR tunnelling magnetoresistance
XMCD x-ray magnetic circular dichroism
XPT cross-point



Symbols

a length of the semimajor axis
A area
A exchange stiffness constant
A magnetic vector potential
A vector perpendicular to an area A
b length of the semiminor axis
B magnetic induction, magnetic flux density
Bi magneto elastic constants
BJ Brillouin function
Bmf magnetic flux density of a molecular field
Bspin-flop critical field between the antiferromagnetic

and spin-flop phase
cCurie Curie constant
cH specific heat
Ci i-fold rotational symmetry
cij elastic constants
d thickness
d (inner) diameter
d dimensionality of the crystal lattice
D outer diameter
D dimensionality of the spin lattice
dc critical thickness
e magnitude of the electron charge
e eccentricity
E energy
E deformation tensor
EBW Bloch wall energy per area
Ecrys magneto crystalline anisotropy energy per volume,

magneto crystalline anisotropy energy density
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EBW
crys magneto crystalline anisotropy energy of a Bloch wall

per area
Ecubic

crys Ecrys of a cubic system
Ehex

crys Ecrys of a hexagonal system
Etetra

crys Ecrys of a tetragonal system
Eel elastic energy density
Ecubic

el elastic energy density of a cubic system
Ehex

el elastic energy density of a hexagonal system
Eexch exchange energy
EBW

exch exchange energy of a Bloch wall per area
EF Fermi energy
EIEC energy density due to interlayer exchange coupling
Eind induced magnetic anisotropy energy
Ekin kinetic energy
Epot potential energy
Espin-flop energy density of the spin-flop phase
ES energy of a singlet state
Estr stray field energy
ET energy of a triplet state
EZeeman Zeeman energy
F Helmholtz free energy
f(E) Fermi function
g g-factor
G (differential) conductance
G↑↑ conductance for a parallel magnetization
G↑↓ conductance for an antiparallel magnetization
Gap conductance for an antiparallel magnetization
gJ Landé – g-factor
gJ g-factor of the total angular momentum
gL g-factor of the orbital angular momentum
Gp conductance for a parallel magnetization
gS g-factor of the spin angular momentum
g(E) density of states in energy space
g(k) density of states in wave vector space
g(U) differential conductance without Zeeman splitting
h (step) height
h reduced magnetic field
h Planck’s constant
h̄ Planck’s constant /2π
H Hamiltonian
Hc coercive field, coercivity
H magnetic field
Hdemag demagnetizing field
HEB exchange bias field
Hi part of the Hamiltonian



Symbols 363

Hr field at resonance
Hs saturation field
Hspin spin dependent term of the Hamiltonian
Hdia diamagnetic term of the Hamiltonian
Hpara paramagnetic term of the Hamiltonian
I current
I↑↑ (tunnelling) current for a parallel magnetization
I↑↓ (tunnelling) current for an antiparallel magnetization
J total angular momentum quantum number
J exchange constant
J exchange integral
J exchange constant
J total angular momentum
JBL bilinear coupling constant
JBQ biquadratic coupling constant
Jij exchange constant between spin i and spin j
JRKKY exchange constant of the RKKY interaction
k Boltzmann’s constant
k wave vector
kF Fermi wave vector
Ki anisotropy constants
K ′

i anisotropy constants
Kcubic

i anisotropy constants of cubic systems
Ktetra

i anisotropy constants of tetragonal systems
Keff effective anisotropy constant
KS surface contribution of the anisotropy constant
KV volume contribution of the anisotropy constant
KV

shape volume contribution of the shape anisotropy constant

ℓ length
ℓ orbital angular momentum quantum number
L orbital angular momentum quantum number
L torque
L orbital angular momentum
L(y) Langevin function
m electron mass
m = M/|M | magnetization direction
M tunnelling matrix element
M magnetization
MA magnetization of sublattice A
MB magnetization of sublattice B
me effective electron mass
Mi initial jump of the magnetization
M i magnetization of sublattice i
mJ magnetic quantum number
mL orbital magnetic quantum number
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Mn(t) time dependent subsequent change of the magnetization
Mr remanence
mS spin magnetic quantum number
MS saturation magnetization
mT magnetic dipole term
n number (of electrons) per volume
n density of states
N demagnetizing tensor
n↑ number of spin up (majority) electrons per volume
n↑(E) density of states of spin up (majority) electrons
n↓ number of spin down (minority) electrons per volume
n↓(E) density of states of spin down (minority) electrons
Na elements of the demagnetization tensor
nc number of nearest neighbors, coordination number
nd number of d electrons per volume
nh number of d holes per volume
nh number of d holes per volume
nSC density of states of quasiparticles in a superconductor
NX number of atoms of type X
NXXi number of XX bonds in direction of bond i
O(xα) term of αth order in x
p number of electrons in a specific electron shell
p momentum
P spin polarization
Pt tunnelling spin polarization
q wave vector
Q (critical) spanning vector
r position vector
R electrical resistance
R↑ electrical resistance for spin up (majority) electrons
R↓ electrical resistance for spin down (minority) electrons
R‖ electrical resistance for a parallel orientation between

current and magnetization
R⊥ electrical resistance for a perpendicular orientation

between current and magnetization
Rp electrical resistance for a parallel alignment of the

magnetization in neighbored layers
Rap electrical resistance for an antiparallel alignment of the

magnetization in neighbored layers
S spin angular momentum quantum number
S entropy
S sensitivity
S spin angular momentum
t time
t thickness
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T temperature
T ∗ critical temperature
TB blocking temperature
TC Curie temperature
T +

C temperature T near TC but T ≥ TC

T−
C temperature T near TC but T ≤ TC

Tcomp compensation temperature
TK Kondo temperature
TN Neel temperature
Ts substrate temperature
TSR spin reorientation temperature
〈TZ〉 magnetic dipole term
U voltage
U Coulomb energy
V volume
w width
w probability
WL Lilley’s domain wall width
Wm domain wall width based on the magnetization profile
Z partition function
α damping parameter
α critical exponent characterizing the specific heat cH

αi direction cosine
β critical exponent characterizing the order parameter M
βi direction cosine
γ critical exponent characterizing the susceptibility χ
γ gyromagnetic ratio
δ critical exponent characterizing the influence of an external

magnetic field H on the magnetization for T = TC

δ domain wall width
δ phase difference
∆ difference
∆ exchange splitting
∆ Zeeman energy
∆ half the gap width of a superconductor
ǫ deformation parameter
ǫij elements of the deformation tensor
θ angular variable
θ Weiss temperature, paramagnetic Curie temperature
θann angle of magnetization during annealing
θrem

K angle of the Kerr rotation measured at remanence
θsat

K angle of the Kerr rotation measured at saturation
λ molecular field constant
λ strain, relative change in length
λ (oscillation) period
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λ relaxation frequency
λ wave length
λ inelastic mean free path
λ+ inelastic mean free path of spin up (majority) electrons
λ− inelastic mean free path of spin down (minority) electrons
λeff effective period
λijk magnetostriction constants of cubic systems
λX magnetostriction constants of hexagonal systems
μ chemical potential
μ′ real part of the permeability
μ′′ imaginary part of the permeability
µ magnetic moment
μ0 magnetic permeability of free space
μB Bohr magneton
μeff effective magnetic moment
μr relative magnetic permeability
ν frequency
ν critical exponent characterizing the correlation length ξ
ξ correlation length
ξ ratio of χn to χi

ρ resistivity
ρ+ resistivity for a parallel alignment of the spins
ρ− resistivity for an antiparallel alignment of the spins
ρap resistivity for an antiparallel alignment of the

magnetization in neighbored layers
ρp resistivity for a parallel alignment of the

magnetization in neighbored layers
σ conductivity, specific conductance
σap conductivity for an antiparallel alignment of the

magnetization in neighbored layers
σp conductivity for a parallel alignment of the

magnetization in neighbored layers
τ relaxation time
φ angular variable
Φ angular variable
χ rotation angle
χ spin part of the wave function
χ (magnetic) susceptibility
χ′ real part of the susceptibility
χ′′ imaginary part of the susceptibility
χ‖ component of the susceptibility being parallel to H

χ⊥ component of the susceptibility being perpendicular to H

χi initial change of the susceptibility
χn susceptibility after changing the magnetization
χpoly magnetic susceptibility of polycrystalline material
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χS spin part of a wave function describing a singlet state
χT spin part of a wave function describing a triplet state
χcoll susceptibility of systems exhibiting collective magnetism
χdia diamagnetic susceptibility
χLangevin Langevin paramagnetic susceptibility
χpara paramagnetic susceptibility
χPauli Pauli paramagnetic susceptibility
ψ (spatial part of the) wave function
ψS spatial part of a wave function describing a singlet state
ψT spatial part of a wave function describing a triplet state
ω angular frequency
∇ nabla operator



Constants

c speed of light 2.998× 108 ms−1

e electron charge 1.602× 10−19 C
h Planck’s constant 6.626× 10−34 Js
h̄ Planck’s constant /2π 1.055× 10−34 Js
k Boltzmann’s constant 1.381× 10−23 JK−1

m electron mass 9.109× 10−31 kg
γ electron gyromagnetic ratio 1.761× 1011 As kg−1

ǫ0 dielectric constant 8.854× 10−12 AsV−1m−1

μ0 magnetic permeability of free space 4π × 10−7 VsA−1m−1

μB Bohr magneton 9.274× 10−24 Am2



Units in the SI and cgs System

Table 18.4. Units in the SI system und the cgs system (g: gramme, G: Gauss,
Oe: Oerstedt, emu: electromagnetic unit)

Quantity Symbol SI unit cgs unit

length x 10−2 m = 1 cm
mass m 10−3 kg = 1 g
force F 10−5 N = 1 dyne
energy E 10−7 J = 1 erg
magnetic induction B 10−4 T = 1 G
magnetic field H 103/4π A/m = 1 Oe
magnetic moment µ 10−3 J/T = 1 erg/G
magnetization M 103 A/m = 1 Oe
magnetic susceptibility χ 4π = 1 emu/cm3
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1T1MTJ architecture, 295

ABS, 306
active target, 319
adatom, 168
agglomeration, 207
alloy, 36, 97, 105
AMR, 262, 306
AMR angle sensor, 311
AMR sensor, 306, 307
angle

loss, 138
angle sensor, 306

AMR, 311
GMR, 313

angular momentum
orbital, 8, 21
spin, 8, 21
total, 14, 20, 21

angular momentum quantum number
orbital, 21
spin, 21
total, 14, 21

anisotropic magnetoresistance, 262, 306
anisotropic magnetoresistive effect, 262,

306
anisotropy

exchange, 233, 235
induced magnetic, 105
magnetic, 89, 242
magnetic interface, 112, 203
magnetic surface, 112, 203, 205
magneto crystalline, 90, 263

non-uniaxial magnetic, 126
orbital, 262

roll-magnetic, 107
shape, 102, 211, 263

stress, 108

uniaxial magnetic, 124, 176, 213, 219,
234, 242, 314

anisotropy constant, 203
shape, 200

surface, 200

anisotropy energy, 197
induced magnetic, 106

magnetic, 219
shape, 254

anti-lock braking system, 306

antibody, 334
antiferromagnet, 4

artificial, 294
synthetic, 294, 295

topological, 61, 247, 289

antiferromagnetic coupling, 232, 240,
291, 313

antiferromagnetic exchange coupling,
269

antiferromagnetic order, 4, 55
antiferromagnetic spacer layer, 247

antiferromagnetism, 4, 55
antigen, 334

antisymmetric wave function, 42

application, 293
biomedical, 209, 332

MRAM, 293
read head, 301
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sensor, 304
architecture

1T1MTJ, 295
chip, 293
cross.point, 295
MRAM array, 295

areal density, 301
artificial antiferromagnet, 294
astroid

Stoner–Wohlfarth, 194, 298
asymmetric charge distribution, 264
atomic diamagnetism, 9
atomic force microscopy, 211
atomic paramagnetism, 10
automotive sensor, 307
axis

easy, 90, 200, 220
easy magnetization, 90, 200, 220
hard, 95, 200, 220
hard magnetization, 95, 200, 220

band
majority, 37, 152
minority, 37
spin down, 30
spin up, 30

band ferromagnet, 4, 30, 33
band structure, 36

spin resolved, 35
band structure effect, 272
barber pole, 308
Barkhausen jump, 119
Barkhausen regime, 118
barrier

insulating, 272
barrier height, 273
BCS theory, 275
bead

magnetic, 332
Bethe–Slater curve, 62
bilinear coupling, 256
binding energy, 227
biocompatibility, 332
biomedical application, 209, 332
biosensor, 332
biquadratic coupling, 256
bit density, 301
bit line, 295
Bloch theorem, 246

Bloch wall, 120
Bloch wall energy, 123
Bloch–T 3/2 law, 87
blocking temperature, 196, 220, 237
Bohr magneton, 8
Bohr–van Leeuwen theorem, 6
Boltzmann distribution, 27
Bose distribution, 86
branching process, 124
bridge

full, 315
half, 315
Wheatstone, 310, 313

Brillouin function, 17, 48
Brillouin zone, 246
broken symmetry, 71

C-state, 177
capping layer

magnetic, 230
non-magnetic, 230

cell
magnetic storage, 295, 300
MRAM, 293
reference, 297
twin, 297

cgs units, 371
charge

surface, 175
volume, 175

charge transfer, 153
charging time, 293
chemical potential, 27
chip architecture, 293
CIP, 268, 313
circular dichroism, 165
circularly polarized light, 165
closure domain, 124, 213, 214
cluster, 165

free, 174
supported, 174

cluster at step edges, 172
cluster magnetization, 166
CMR, 270
coating, 235
coercive field, 119, 234
coercivity, 119, 213, 269, 295
collective magnetism, 4, 47
colossal magnetoresistance, 270
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colossal magnetoresistive effect, 270
commensurate spin density wave, 247
compensation temperature, 65
conductance

differential, 154
differential tunnelling, 154, 274
electrical, 239
specific, 265
spin averaged, 288

confinement, 227
constant

anisotropy, 203
elastic, 109
exchange, 43
exchange coupling, 240, 255
magneto crystalline anisotropy, 92, 94
magneto elastic, 110
magnetostriction, 110
molecular field, 48
shape anisotropy, 200
stiffness, 123
surface anisotropy, 200

contact
FM-I-FM in an STM, 288
planar FM-I-FM, 283
planar FM-I-SC, 279
planar N-I-N, 273
planar N-I-SC, 275

contribution
dipole, 204

coordination number, 166, 168, 199, 230
reduced, 223

core memory, 300
correlated roughness, 251
correlation length, 79
Coulomb energy, 31
Coulomb gauge, 7
coupling

antiferromagnetic, 232, 240, 291, 313
antiferromagnetic exchange, 269
bilinear, 256
biquadratic, 256
exchange, 218, 234, 295
ferromagnetic, 233, 240
interlayer exchange, 239, 241, 264
intralayer exchange, 252
orange peel, 252
oscillatory, 245
spin orbit, 262

coupling constant
exchange, 240, 255

CPP, 268, 313
critical exponent, 78, 225
critical regime, 77
critical spanning vector, 245
critical temperature, 4, 71
cross point architecture, 295
cross-tie wall, 179
crystal field, 170
Curie law, 3, 14, 20
Curie temperature, 4, 49, 224, 230, 260

in molecular field approximation, 50
Fe, Co, Ni, 6

Curie–Weiss law, 53, 56
currency detection, 328
current

eddy, 330
tunnelling, 272

current in plane, 268, 313
current perpendicular to plane, 268, 313
current sensing, 296, 326
curve

Bethe–Slater, 62
Slater–Pauling, 36
universal, 225

damping parameter, 143
damping process, 141
data storage, 140

magnetic, 208
deformation parameter, 109
deformation tensor, 109
degenerate limit, 27
demagnetized state, 214
demagnetizing field, 102, 176

cylinder, 104
ellipsoid, 103
sphere, 103
thin film, 104

demagnetizing tensor, 103
density

areal, 301
bit, 301
storage, 198, 301, 304
track, 301

density of states, 26, 154, 261, 273, 275
local, 154
spin resolved, 182, 261, 266, 272
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detection
currency, 328
material defects, 330
vehicle, 323

detector
proximity, 320

device
mass storage, 293

diamagnetism, 3
atomic, 9

dichroism
circular, 165
x-ray magnetic circular, 165

differential conductance, 154
differential tunnelling conductance, 154,

274
diffusive transport, 272
dimensional resonance, 140
dimensionality, 76, 166, 213
dimer, 168
dipole

magnetic, 1
dipole contribution, 204
dipole interaction, 207
direct exchange, 42
direct exchange interaction, 42
direction cosine, 90
dispersion relation, 83
distribution

asymmetric charge, 264
Boltzmann, 27
Bose, 86

domain
closure, 124, 213, 214
fir tree, 129
lancet, 129
magnetic, 117, 175

domain boundary, 117
domain nucleation, 244
domain rotation, 107, 118
domain wall, 120, 233, 252

180◦, 120, 127, 129
90◦, 120, 127, 129, 185, 254

domain wall energy, 254
domain wall pinning, 118
domain wall propagation, 244
domain wall width, 121, 249
DOS, 26, 154, 261, 273, 275

spin resolved, 36

double exchange, 46
double exchange interaction, 46
DRAM, 301
drive-by-wire system, 306
dual element head, 302
dynamic random access memory, 293,

301
dynamics

magnetization, 133

easy axis, 90, 200, 220
easy magnetization axis, 90, 200, 220
eddy current, 330
eddy-current loss, 140
EEPROM, 301
effect

anisotropic magnetoresistive, 262, 306
band structure, 272
colossal magnetoresistive, 270
Faraday, 302
frustration, 233, 249, 251
giant magnetoresistance, 255
giant magnetoresistive, 264, 306
Hall, 306
junction magnetoresistive, 284
Kondo, 154
magnetic after-, 133
magneto-optical Kerr, 212, 213, 269
magnetoresistive, 259, 293, 306
Meißner–Ochsenfeld, 3
negative magnetoresistive, 260, 270
normal magnetoresistive, 260
orange peel, 251
positive magnetoresistive, 260
quantization, 227
quenching, 170
tunnelling magnetoresistive, 272, 295

effective electron mass, 27
effective magnetic moment, 20
effective mean free path, 260
effective oscillation period, 242
elastic constant, 109
elastic energy, 109
elastic tunnelling, 159
electric transport, 266
electrical conductance, 239
electrical resistance, 239
electrically erasable programmable

read-only memory, 301
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electron gas, 153
free, 156

electron gyromagnetic ratio, 140
electron microscopy

photoemission, 186
transmission, 208

electron microscopy with polarization
analysis

secondary, 244
electron spectroscopy

photo-, 227
electrons

itinerant, 25
majority, 36, 226, 229
minority, 36, 226, 229
resistance of majority, 261
resistance of minority, 262
spin down, 29, 225
spin polarized secondary, 231
spin up, 29, 225

energy
anisotropy, 197
binding, 227
Bloch wall, 123
Coulomb, 31
domain wall, 254
elastic, 109
Fermi, 26, 261
Helmholtz free, 10, 73, 76, 219
induced magnetic anisotropy, 106
interlayer exchange, 236
kinetic, 7, 225
magnetic anisotropy, 219
magnetic hysteresis, 119
magnetic moment, 1
magneto crystalline, 91
molecular field, 31
potential, 7, 31
shape anisotropy, 254
stray field, 103, 175
Zeeman, 160, 236

entropy, 10, 76
equation

Landau–Lifshitz, 142
Landau–Lifshitz–Gilbert, 143

exchange
direct, 42
double, 46
indirect, 43

super, 43, 61
exchange anisotropy, 233, 235
exchange bias, 233, 294

loop shift, 234
exchange bias field, 234
exchange constant, 43
exchange coupling, 218, 234, 295

antiferromagnetic, 269
interlayer, 239, 241, 264
intralayer, 252
oscillatory, 240, 244

exchange coupling across a spacer layer,
239, 247

exchange coupling constant, 240, 255
exchange energy

interlayer, 236
exchange field, 205
exchange integral, 43
exchange interaction, 4, 154, 232

RKKY, 44, 239
exchange splitting, 33, 261, 266
excitation, 77

magnetic, 83
thermal, 285

factor
loss, 138

Fano line shape, 154
Fano model, 154
Faraday effect, 302
FeRAM, 301
Fermi energy, 26, 261
Fermi function, 27, 273
Fermi sphere, 25
Fermi surface, 28, 154, 242, 245
Fermi’s golden rule, 272
ferrimagnet, 4
ferrimagnetic order, 4, 62
ferrimagnetism, 4, 62
ferrite core storage, 300
ferroelectric random access memory,

301
ferromagnet, 4

band, 4, 30, 33
half-metallic, 289
itinerant, 4, 30, 33, 247
strong, 37
triaxial, 120
uniaxial, 120



378 Index

weak, 37
ferromagnetic coupling, 233, 240
ferromagnetic nanoparticle, 301, 304
ferromagnetic order, 4, 48
ferromagnetic probe tip, 288
ferromagnetic resonance, 145
ferromagnetism, 4, 48
field

coercive, 119, 234
crystal, 170
demagnetizing, 102, 176
exchange, 205
exchange bias, 234
magnetic, 2
molecular, 48
reduced magnetic, 193
saturation, 119
stray, 102, 188, 215, 251, 302
switching, 192

field cooling, 235
field effect transistor, 295
finite-size scaling model, 225
fir tree domain, 129
flash memory, 301
fluctuation

thermal, 58, 61, 75, 196, 218
flux

magnetic, 301, 323
flux change, 209
flux closure, 126, 181, 185, 188, 251, 294
fly-by-wire system, 306
FM-I-FM contact in an STM, 288
force microscopy

atomic, 211
magnetic, 187, 215

free cluster, 174
free electron gas, 156
free nanoparticle, 199
frequency

relaxation, 142
resonance, 141

Friedel oscillation, 153
frustration effect, 233, 249, 251
full bridge, 315
function

Brillouin, 17, 48
classical partition, 6
Fermi, 273
Langevin, 12

partition, 14

g-factor, 8
Landé, 20, 160
orbital angular momentum, 20
spin angular momentum, 20

geophysical surveying, 332
giant magnetoresistance, 255, 264, 306

discovery, 264
giant magnetoresistive effect, 264, 306
GMR, 255, 264, 306

discovery, 264
GMR angle sensor, 313
GMR sensor, 306, 313
granular system, 301
gyromagnetic ratio, 140

half bridge, 315
half-metallic ferromagnet, 289
Hall effect, 306
Hall effect sensor, 306, 316
hard axis, 95, 200, 220
hard disk, 301
hard magnetization axis, 95, 200, 220
head

dual-element, 302
inductive, 302
inductive write, 302
magnetoresistive read, 302
print, 321
read, 301
recording, 302
write, 301

head-to-head wall, 185
heavy fermion, 155
Heisenberg model, 43, 75
helical order, 65
helimagnetism, 66
Helmholtz free energy, 10, 73, 76, 219
hole state, 37, 165
Hund’s rules, 21, 270
hybridization, 174, 223, 230

d electrons with d electrons, 152, 162,
172

s-p electrons with d electrons, 152,
161

hysteresis loop, 113, 119, 194, 205, 211,
234, 235, 242, 244, 269

hysteresis loss, 140
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ideal interface, 233
IEC, 239, 264
IETS, 160
impurity, 152, 286

Kondo, 154
incommensurate spin density wave, 247
indirect exchange, 43
indirect exchange interaction, 43
induced magnetic anisotropy, 105
induced magnetic anisotropy energy,

106
inductive head, 302
inductive sensor, 306, 316
inductive write head, 302
inelastic electron tunnelling spec-

troscopy, 160
inelastic mean free path, 225

spin dependent, 225
inelastic tunnelling, 159
insulating barrier, 272
interaction

dipole, 207
direct exchange, 42
double exchange, 46
exchange, 4, 154, 232
indirect exchange, 43
magnetic dipole, 41
magnetostatic, 180
RKKY exchange, 44, 239
spin orbit, 90, 262, 264
superexchange, 43, 61

interdiffusion, 227, 230, 254
interface, 152, 223

ideal, 233
real, 233
rough, 241
smooth, 241

interface roughness, 250
interlayer exchange coupling, 239, 241,

264
interlayer exchange energy, 236
intralayer exchange coupling, 252
Ising model, 76

one-dimensional, 76, 219
three-dimensional, 77
two-dimensional, 77

itinerant electrons, 25
itinerant ferromagnet, 4, 30, 33, 247
itinerant moment, 3

JMR, 284
Jullière model, 283
junction

tunnelling magnetic, 293
junction magnetoresistance, 284
junction magnetoresistive effect, 284

Kerr effect
magneto-optical, 212, 213, 269

Kerr microscopy, 213
Kerr rotation, 213
kinetic energy, 7, 225
Kittel mode, 145
Kondo effect, 154
Kondo impurity, 154
Kondo resonance, 154
Kondo screening, 154
Kondo temperature, 154

lancet domain, 129
Landé – g-factor, 20, 160
Landau state, 175, 213
Landau theory, 73
Landau–Lifshitz equation, 142
Landau–Lifshitz–Gilbert equation, 143
Langevin function, 12
Langevin paramagnetism, 3
Langevin susceptibility, 3
laptop, 293
law

Bloch–T 3/2, 87
Curie, 3, 14, 20
Curie–Weiss, 53, 56
scaling, 83

layer
antiferromagnetic spacer, 247
non-magnetic spacer, 239
reference, 295

LDOS, 154
length

correlation, 79
light

circularly polarized, 165
limit

degenerate, 27
non-degenerate, 27

line
bit, 295
word, 295



380 Index

linear material, 2
linear sensor, 306, 320
local density of states, 154
local magnetic moment, 152
localized magnetic moment, 270
localized moment, 3
long-period oscillation, 241
longitudinal magnetoresistance, 260
longitudinal recording, 304
loss

eddy-current, 140
hysteresis, 140

loss angle, 138
loss factor, 138
low-dimensional systems

atoms, 151
clusters, 165
multilayers, 239
nanoparticles, 175
thin films, 223
wires, 211

magnetic after effect, 133
magnetic anisotropy, 89, 223, 242

perpendicular, 231, 304
magnetic anisotropy energy, 219

induced, 106
magnetic bead, 332
magnetic circular dichroism, 165
magnetic data storage, 198, 208
magnetic dipole, 1
magnetic dipole interaction, 41
magnetic domain, 117, 175
magnetic excitation, 83
magnetic field, 2

reduced, 193
magnetic flux, 301, 323
magnetic flux density, 2
magnetic force microscopy, 187, 215
magnetic hysteresis energy, 119
magnetic induction, 2
magnetic interface anisotropy, 112, 203
magnetic junction

tunnelling, 293
magnetic moment, 1

energy, 1
free cluster, 174
free nanoparticle, 199
local, 152

localized, 270
magnetic order, 47
magnetic permeability, 2
magnetic pole, 319
magnetic quantum number, 14

orbital, 165, 168, 203, 220
spin, 165, 168, 203

magnetic random access memory, 293,
301

magnetic recording, 209, 301
magnetic storage cell, 295, 300
magnetic storage device, 301, 304
magnetic surface anisotropy, 112, 203,

205
magnetic susceptibility, 2
magnetic vector potential, 7
magnetic vortex, 181, 185, 187
magnetism

antiferro-, 4, 55
atomic para-, 10
collective, 4, 47
ferri-, 4, 62
ferro-, 4, 48
heli-, 66
Langevin para-, 3
para-, 3
Pauli para-, 3, 29
superpara-, 195, 209, 218, 304

magnetization, 2
cluster, 166
relative, 13, 14
saturation, 13, 119, 308
spontaneous, 4
surface, 291

magnetization dynamics, 133
precessional switching, 143

magneto crystalline anisotropy, 90, 263
magneto crystalline anisotropy constant,

92, 94
magneto crystalline energy, 91
magneto elastic constant, 110
magneto-optical Kerr effect, 212, 213,

269
magnetoresistance, 259

anisotropic, 262, 306
colossal, 270
giant, 255, 264, 306
junction, 284
longitudinal, 260
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negative, 260, 270
normal, 260
positive, 260
transversal, 260
tunnelling, 272, 295

magnetoresistive effect, 259, 293, 306
anisotropic, 262, 306
colossal, 270
giant, 264, 306
junction, 284
negative, 260, 270
normal, 260
positive, 260
tunnelling, 272, 295

magnetoresistive read head, 302
magnetoresistive sensor, 302
magnetoresistivity, 239, 259
magnetostatic interaction, 180
magnetostriction, 108
magnetostriction constant, 110
magnon, 83
main memory, 293
majority band, 37, 152
majority electrons, 36, 226, 229

resistance of, 261
mass storage device, 293
matrix

atoms in a, 67, 153, 160, 240
nanoparticles in a, 272

mean free path
effective, 260
inelastic, 225
spin dependent inelastic, 225

mean-field theory, 74, 78
Meißner–Ochsenfeld effect, 3
memory

core, 300
dynamic random access, 293, 301
electrically erasable programmable

read-only, 301
ferroelectric random access, 301
flash, 301
magnetic random access, 293, 301
main, 293
non-volatile, 293, 300

Mermin–Wagner–Berezinskii theorem,
89

method
self-referenced, 297

MFM, 187
microscopy

atomic force, 211
Kerr, 213
magnetic force, 187, 215
photoemission electron, 186
scanning tunnelling, 159, 216
secondary electron with polarization

analysis, 244
spin polarized scanning tunnelling,

182, 188, 288
transmission electron, 208

minority band, 37
minority electrons, 36, 226, 229

resistance of, 262
mixed valency, 46, 270
mobile phone, 293
mode

Kittel, 145
uniform, 145

model
Fano, 154
finite-size scaling, 225
Heisenberg, 43, 75
Ising, 76
Jullière, 283
Mott, 261, 265
one-dimensional, 76
one-dimensional Ising, 76, 219
rigid band, 37
spherical, 76
Stoner, 266
Stoner–Wohlfarth, 190, 308
three-dimensional Ising, 77
two-dimensional Ising, 77
Weiss, 48, 55, 74
XY, 76

model of free electrons, 25
molecular field, 48
molecular field constant, 48
molecular field energy, 31
molecular field theory, 30
moment

effective magnetic, 20
itinerant, 3
local magnetic, 152
localized, 3
localized magnetic, 270
magnetic, 1
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momentum
orbital angular, 8, 21
spin angular, 8, 21
total angular, 14, 20, 21

monochromatic radiation, 226
Mott model, 261, 265
MRAM, 293, 301
MRAM array, 295
MRAM cell, 293
multilayer, 239
multiplet, 22
multiplicity, 22

Néel temperature, 4, 56, 315
Néel wall, 120
nanoparticle, 165, 175, 272

ferromagnetic, 301, 304
free, 199
wet chemically prepared, 207

navigation system, 306
negative anisotropy material, 126
negative magnetoresistance, 260, 270
negative magnetoresistive effect, 260,

270
non-contacting rotary selector, 319
non-degenerate limit, 27
non-magnetic spacer layer, 239
non-scalable regime, 165
non-volatile memory, 293, 300
normal magnetoresistance, 260
normal magnetoresistive effect, 260

one-dimensional Ising model, 76
onion state, 185
operation

read, 296
write, 297

orange peel effect, 251
orbital angular momentum, 8, 21
orbital angular momentum quantum

number, 21
orbital anisotropy, 262
orbital magnetic quantum number, 165,

168, 203, 220
orbitals, 262
order

antiferromagnetic, 4, 55
ferrimagnetic, 4, 62
ferromagnetic, 4, 48

helical, 65
magnetic, 47

order parameter, 71, 79
oscillation

Friedel, 153
long-period, 241
short-period, 241

oscillation period, 242
effective, 242

oscillatory coupling, 245

paramagnetic Curie temperature, 57
paramagnetic susceptibility, 29
paramagnetism, 3

atomic, 10
Langevin, 3
Pauli, 3, 29
super-, 195, 209, 218, 304

parameter
damping, 143
deformation, 109
order, 71, 79

particle
single domain, 177, 190
Stoner–Wohlfarth, 190

partition function, 14
classical, 6

passive target, 319
Pauli exclusion principle, 21, 25, 41, 42,

44
Pauli paramagnetism, 3, 29
Pauli susceptibility, 30
PEEM, 186
percolation, 207
period

effective oscillation, 242
oscillation, 242

permeability
magnetic, 2
relative, 2

perpendicular magnetic anisotropy, 231,
304

perpendicular recording, 304
phase slip, 248
phase transition, 51, 72, 78
phonon, 83
photoelectron spectroscopy, 154, 227

spin resolving, 36, 227
photoemission electron microscopy, 186



Index 383

photon polarization, 166
pinning, 294, 314

domain wall, 118
planar FM-I-FM contact, 283
planar FM-I-SC contact, 279
planar N-I-N contact, 273
planar N-I-SC contact, 275
polarization

photon, 166
spin, 182, 281, 289
tunnelling spin, 282

polarized light
circularly, 165

position sensor, 306, 321
positive anisotropy material, 126
positive magnetoresistance, 260
positive magnetoresistive effect, 260
potential

magnetic vector, 7
screening, 153
spin dependent, 227

potential energy, 7, 31
precessional motion, 142
precessional switching, 143
print head, 321
process

branching, 124
damping, 141
elastic tunnelling, 159
inelastic tunnelling, 159
recording, 301
spin-flip, 30, 160, 286

proximity detector, 320

quantization effect, 227
quantum mirage, 156
quantum number

magnetic, 14
orbital angular momentum, 21
orbital magnetic, 165, 168, 203, 220
spin angular momentum, 21
spin magnetic, 165, 168, 203
total angular momentum, 14, 21

quantum well state, 227
quasiparticle, 275
quasiparticle density of states, 275, 277
quenching effect, 170

radiation

monochromatic, 226
raising time, 293
random access memory

dynamic, 293, 301
ferroelectric, 301
magnetic, 293, 301

Rayleigh regime, 118
read head, 301
read operation, 296
real interface, 233
recording

longitudinal, 304
perpenducular, 304
vertical, 304

recording head, 302
recording process, 301
reduced coordination number, 223
reduced magnetic field, 193
reduced temperature, 51
reference cell, 297
reference layer, 295
reflection

spin dependent, 227
regime

Barkhausen, 118
critical, 77
non-scalable, 165
Rayleigh, 118
scalable, 165

relation
dispersion, 83

relative magnetization, 13, 14
relative permeability, 2
relaxation frequency, 142
relaxation time, 133
remanence, 119
resistance, 264

electrical, 239
majority electrons, 261
minority electrons, 262
s and d electrons, 261, 267
total, 261

resistivity, 265
total, 272

resonance
dimensional, 140
ferromagnetic, 145
Kondo, 154

resonance frequency, 141
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rigid band model, 37
rigidity, 77
ring structure, 185
RKKY exchange interaction, 44, 239
RKKY screening, 154
roll-magnetic anisotropy, 107
rotation

domain, 107, 118
Kerr, 213

rotational speed sensor, 306, 316
rotational symmetry, 170
rough interface, 241
roughness, 227, 233

correlated, 251
interface, 250

S-state, 177
SAF, 294, 295
saturation field, 119
saturation magnetization, 13, 119, 308
scalable regime, 165
scaling law, 83
scanning tunnelling microscopy, 159,

216
spin polarized, 182, 188, 288

scattering
spin dependent, 268
spin-flip, 262

screening
Kondo, 154
RKKY, 154

screening potential, 153
secondary electron microscopy with

polarization analysis, 244
secondary electrons

spin polarized, 231
self referenced method, 297
SEMPA, 244
sensing

current, 296, 326
voltage, 296

sensor, 304
AMR, 306, 307
AMR angle, 311
angle, 306
automotive, 307
bio-, 332
current, 326
GMR, 306, 313

GMR angle, 313
Hall effect, 306, 316
inductive, 306, 316
linear, 306, 320
magnetoresistive, 302
position, 306, 321
rotational speed, 306, 316
speed, 306
velocity, 306

sensors in string instruments, 322
shape anisotropy, 102, 211, 263
shape anisotropy constant, 200
shape anisotropy energy, 254
shifted hysteresis loop, 234
short-period oscillation, 241
SI units, 371
single domain particle, 177, 190
single domain state, 214, 244
singlet state, 42, 154
Slater–Pauling curve, 36
smooth interface, 241
spacer layer

antiferromagnetic, 247
non-magnetic, 239

spatial part, 42
specific conductance, 265
specific heat, 79
spectroscopy

inelastic electron tunnelling, 160
photoelectron, 154, 227
spin resolving photoelectron, 36, 227
x-ray absorption, 165

speed sensor, 306
rotational, 316

spherical model, 76
spin angular momentum, 8, 21
spin angular momentum quantum

number, 21
spin averaged conductance, 288
spin block, 218
spin chain, 220
spin density wave, 251

commensurate, 247
incommensurate, 247

spin dependent inelastic mean free path,
225

spin dependent potential, 227
spin dependent reflection, 227
spin dependent scattering, 268
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spin dependent transport, 225
spin down band, 30
spin down electrons, 29, 225
spin engineering, 255
spin glass, 67
spin magnetic quantum number, 165,

168, 203
spin orbit coupling, 262
spin orbit interaction, 90, 262, 264
spin part, 42
spin polarization, 182, 232, 281, 289

tunnelling, 282
spin polarized scanning tunnelling

microscopy, 182, 188, 288
spin polarized secondary electrons, 231
spin polarized tunnelling, 182, 188, 272

Jullière model, 283
superconductor, 279

spin reorientation transition, 113, 224,
232

spin resolved band structure, 35
spin resolved density of states, 36, 182,

261, 266, 272
spin resolving photoelectron spec-

troscopy, 36, 227
spin split state, 30
spin subband, 29
spin up band, 30
spin up electrons, 29, 225
spin valve, 255, 269, 304, 313
spin wave, 85, 285

dispersion, 85
spin-flip process, 30, 160, 286
spin-flip scattering, 262
spin-flip transition, 102
spin-flop transition, 100
splitting

exchange, 33, 261, 266
Zeeman, 160, 278

spontaneous magnetization, 4
SPSTM, 182, 188, 288
SRDOS, 182, 261, 266, 272
state

C-, 177
demagnetized, 214
hole, 37, 165
Landau, 175, 213
onion, 185
quantum well, 227

S-, 177
single domain, 214, 244
singlet, 42, 154
spin split, 30
surface, 156
triplet, 42

step edge, 172, 216
stiffness constant, 123
STM, 159, 216
Stoner criterion, 32, 153
Stoner enhancement, 33
Stoner model, 266
Stoner–Wohlfarth astroid, 194, 298
Stoner–Wohlfarth model, 190, 308
Stoner–Wohlfarth particle, 190
storage

ferrite core, 300
magnetic data, 198, 208

storage cell
magnetic, 300

storage density, 198, 301, 304
storage device

mass, 293
storage technology, 301
stray field, 102, 188, 215, 251, 302
stray field energy, 103, 175
stress anisotropy, 108
strong ferromagnet, 37
sublattice, 55, 62
superconductor, 3, 275
superexchange interaction, 43, 61
superparamagnetic limit, 196
superparamagnetic switching, 197
superparamagnetism, 195, 209, 218, 304
supported cluster, 174
surface, 152

atoms on a, 152, 153
Fermi, 28, 154, 242, 245
vicinal, 172

surface anisotropy constant, 200
surface charge, 175
surface magnetization, 291
surface state, 156
surface symmetry, 168
susceptibility

Langevin, 3
magnetic, 2
paramagnetic, 29
Pauli, 30
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switching
precessional, 143
superparamagnetic, 197

switching field, 192
symmetric wave function, 42
symmetry

broken, 71
rotational, 170
surface, 168
twofold, 213
uniaxial, 94

synthetic antiferromagnet, 294, 295
system

anti-lock braking, 306
drive-by-wire, 306
fly-by-wire, 306
navigation, 306

target
active, 319
passive, 319

temperature
blocking, 196, 220, 237
compensation, 65
critical, 4, 71
Curie, 4, 49, 224, 230, 260
Kondo, 154
Néel, 4, 56, 315
paramagnetic Curie, 57
reduced, 51
Weiss, 57

tensor
deformation, 109
demagnetizing, 103

term symbol, 22
theorem

Bloch, 246
Bohr–van Leeuwen, 6
Mermin–Wagner–Berezinskii, 89
Wulff, 202

theory
BCS, 275
Landau, 73
mean-field, 74, 78
molecular field, 30

thermal excitation, 285
thermal fluctuation, 58, 61, 75, 196, 218
thermal quenching, 105
thin film, 223, 301

three-dimensional Ising model, 77

time

charging, 293

raising, 293
relaxation, 133

TMR, 272, 295

topological antiferromagnet, 61, 247,
289

torque, 84

total angular momentum, 14, 20, 21

total angular momentum quantum
number, 14, 21

total resistance, 261
total resistivity, 272

track density, 301

transfer

charge, 153

of magnetic moments, 153
transistor

field effect, 295

transition

phase, 51
spin reorientation, 113, 224, 232

spin-flip, 102

spin-flop, 100

transmission electron microscopy, 208

transport
diffusive, 272

electric, 266

spin dependent, 225

transversal magnetoresistance, 260
triaxial ferromagnet, 120

trimer, 168

triplet state, 42

tunnelling

spin polarized, 182, 188, 272
tunnelling conductance

differential, 274

tunnelling current, 272

tunnelling magnetic junction, 293
tunnelling magnetoresistance, 272, 295

tunnelling magnetoresistive effect, 272,
295

tunnelling matrix element, 273

tunnelling spin polarization, 282

twin cell, 297

two-dimensional Ising model, 77
twofold symmetry, 213
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uniaxial ferromagnet, 120
uniaxial magnetic anisotropy, 124, 176,

213, 219, 234, 242, 314
uniaxial symmetry, 94
uniform mode, 145
units

cgs, 371
SI, 371

universal curve, 225
universality class, 78

vehicle detection, 323
velocity sensor, 306
vertical recording, 304
vicinal surface, 172
voltage sensing, 296
volume charge, 175

wall
180◦ domain, 120, 127, 129
90◦ domain, 120, 127, 129, 185, 254
Bloch, 120
cross-tie, 179
domain, 120, 233, 252
head-to-head, 185
Néel, 120

zigzag, 131
wave function, 9

antisymmetric, 42
symmetric, 42

weak ferromagnet, 37
Weiss model, 48, 55, 74
Weiss temperature, 57
Wheatstone bridge, 310, 313
width

domain wall, 249
wire, 211, 216

word line, 295
write head, 301
write operation, 297
Wulff theorem, 202

x-ray absorption spectroscopy, 165
x-ray magnetic circular dichroism, 165
XAS, 165
XMCD, 165
XPT, 295
XY model, 76

Zeeman energy, 160, 236
Zeeman splitting, 160, 278
zigzag wall, 131
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