Problem Set 9 Solutions

April 25, 2005

5.2.1

The given problem can be rewritten as

minimize
$$\sum_{i=0}^{m} f_i(x_i)$$

subject to $x_i \in X_i$, $i = 0, 1, \dots, m$
 $x_i = x_0$, $i = 1, 2, \dots m$.

The dual function for this problem is given by

$$q(\lambda_1, \dots, \lambda_m) = \min_{x_i \in X_i, i=0, \dots, m} \{ \sum_{i=0}^m f_i(x_i) + \sum_{i=0}^m \lambda'_i(x_i - x_0) \}$$

or equivalently

$$q(\lambda_1, \dots, \lambda_m) = \min_{x \in X_0} \{ f_0(x) - (\lambda_1 + \dots + \lambda_m)'x \} + \sum_{i=1}^m \min_{x \in X_i} \{ f_i(x) + \lambda_i'x \}$$

for $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}^n$. By introducing functions

$$q_0(\lambda) = \min_{x \in X_0} \{ f_0(x) - \lambda' x \},$$
$$q_i(\lambda) = \min_{x \in X_i} \{ f_i(x) + \lambda' x \}, \quad i = 1, \dots, m,$$

the dual problem reduces to

maximize
$$q_0(\lambda_1 + \dots + \lambda_m) + \sum_{i=1}^m q_i(\lambda_i)$$

subject to
$$\lambda_i \in \mathbb{R}^n$$
, $i = 1, \ldots, m$.

Because the primal feasible set $\bigcap_{i=1}^{m} X_i$ is nonempty and compact, and $f(x) = \sum_{i=1}^{m} f_i(x)$ is continuous over [since it is convex over], by Weierstrass theorem, the primal optimal solution exists. Furthermore, according to Prop. 5.2.1, there is no duality gap and the dual optimal solution exists.