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To my parents 



PREFACE 

The book was written in the long Buffalo winter of 1971-72. It is an 
attempt to show the place of the Axiom of Choice in contemporary mathe- 
matics. Most of the material covered in the book deals with independence 
and relative strength of various weaker versions and consequences of the 
Axiom of Choice. Also included are some other results that I found relevant 
to the subject. 

The selection of the topics and results is fairly comprehensive, nevertheless 
it is a selection and as such reflects the personal taste of the author. So does 
the treatment of the subject. The main tool used throughout the text is 
Cohen’s method of forcing. I tried to use as much similarity between sym- 
metric models of ZF and permutation models of ZFA as possible. The 
relation between these two methods is described in Chapter 6 ,  where I pre- 
sent the Embedding Theorem (Jech-Sochor) and the Support Theorem 
(Pincus). 

Consistency and independence of the Axiom of Choice (due to Godel and 
Cohen, respectively) are presented in Chapters 3 and 5. Chapter 4 introduces 
the permutation models (Fraenkel, Mostowski, Specker). Chapters 2 and 10 
are devoted to the use of the Axiom of Choice in mathematics. Chapter 2 
contains examples of proofs using the Axiom of Choice, whereas Chapter 10 
provides counterexamples in the absence of the Axiom of Choice. 

Chapters 7 and 8 deal with various consequences of the Axiom of Choice. 
The topics considered in Chapter 7 include the Prime Ideal Theorem, the 
Ordering Principle and the Axiom of Choice for Finite Sets, while Chapter 
8 is concerned with the Countable Axiom of Choice, the Principle of De- 
pendent Choices and related topics. In Chapter 9 we discuss the differences 
between permutation models of ZFA and symmetric models of ZF. 

Chapter 11 is devoted to questions concerning cardinal numbers in set 
theory without the Axiom of Choice. Finally, in Chapter 12 we discuss 

VII 
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briefly the Axiom of Determinacy and related topics. This subject has been 
recently in the focus of attention, and it seems that solution of the open 
problems presented at the end of Chapter 12 would mean an important con- 
tribution to the investigation of the Foundations of Mathematics. 

The book is more or less self-contained. Most of the theorems are accom- 
panied by a proof of a sort. There are, however, several instances where I 
elected to present a theorem without proof, and an insatiable reader will 
have to resort to looking up the proof in the journals. 

Each chapter contains a number of problems. Some of them are simply 
exercises, but many of the problems are actually important results which 
for various reasons are not included in the main text. These are in most 
cases provided with an outline of proof. To help the reader, I adopted the 
classification used by producers of French brandy: The one star problems 
are generally more difficult than the plain problems. Two stars are reserved 
for results presented without a proof (in most cases, such a result is the 
main theorem of a long paper). And finally, three stars indicate that the 
problem is open (there are still a few left). 

Among those whose work on the subject has had most influence on this 
book are (apart from Godel and Cohen) A. Levy, A. Mostowski and A. 
Tarski, to name a few. My special thanks are due to P. VopEnka, who is 
responsible for my interest in the subject and under whose guidance I wrote 
my 1966 thesis ‘The Axiom of Choice’. 

I am very much indebted to D. Pincus, for two reasons. Firstly, many of 
the results of his 1969 thesis found its way into this book, and secondly, his 
correspondence with me throughout the past five years had a significant 
influence on my treatment of the subject. Finally, I am grateful to U. Felgner 
for his valuable comments after he was so kind to read my manuscript last 
summer. 

Princeton, N.J. December 1972 



CHAPTER 1 

INTRODUCTION 

1.1. The Axiom of Choice 

A mathematician of the present generation hardly considers the use of the 
Axiom of Choice a questionable method of proof. As a result of algebra and 
analysis going abstract and the development of new mathematical I s -  
ciplines such as set theory and topology, practically every mathematician 
learns about the Axiom of Choice (or at least of its most popular form, 
Zorn’s Lemma) in an undergraduate course. He also probably vaguely 
knows that there has been some controversy involving the Axiom of Choice, 
but it has been resolved by the logicians to a general satisfaction. 

There has been some controversy about the Axiom of Choice, indeed. 
First, let us see what the Axiom of Choice says: 

AXIOM OF CHOICE. For every family 9 of nonempty sets, there is u function 
f such that f ( S )  E S f o r  each set S in the family 9. 

(We say that f is a choice function on F.) In some particular instances, 
this is self-evident. E.g., let 9 consist of sets of the form {a ,  b} ,  where a 
and b are real numbers. Then the function 

IS  a choice function on 9. Or, if all the sets in 9 are singletons, i.e. sets of 
the form { a } ,  then one can easily find a choice function on 9. Finally, if 
.F is a j k i t e  family of nonempty sets, then there is a choice function. (To 
show this, one uses induction on the size of 9; naturally, a choice function 
exists for a family which consists of a single nonempty set.) 

1 
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Thus the idea of having a choice function on every family of nonempty 
sets is not against our mathematical mind. But try to think of a choice func- 
tion on the family of all nonempty sets of reals! Or, let 2F be the family of 
all (unordered) pairs { S,  T } ,  where S and T are sets of reals. 

After thinking about these problems for a while, one should start to 
appreciate the other point of view. The Axiom of Choice is different from 
the ordinary principles accepted by mathematicians. And this was one of 
the sources of objections to the Axiom of Choice, as late as in the thirties. 
The other source of objections is the fact that the Axiom of Choice can be 
used to prove theorems which are to a certain extent ‘unpleasant’, and even 
theorems which are not exactly in line with our ‘common sense’ intuition. 

The rest of Chapter 1 is devoted to such examples. 

1.2. A nonmeasurable set of real numbers 

The most popular example of an ‘unpleasant’ consequence of the Axiom 
of Choice is the existence of a set of real numbers which is not Lebesgue 
measurable. 

Let p ( X )  denote the Lebesgue measure of a set X of real numbers. As is 
well-known, p is countably additive, translation invariant and ,u( [a, b]) = 
b-a for every interval [a, b].  

For real numbers in the interval [0, 11, let us define 

x - Y  

whenever x - y  is a rational number. The relation - on [0, I ]  is an equiva- 
lence; denote by [XI the corresponding equivalence class, for each x E [0, I]. 
By the Axiom of Choice, we can choose one element out of each equivalence 
class. Thus there is a set M of real numbers, M c [0, 11, with the property 
that for each real number x, there exists a unique y E M and a unique 
rational number r such that x = y + r. If we let 

M,. = { y  + r  : y E M }  

for each rational number Y, then we have a partition of the set R of all real 
numbers into countably many disjoint sets 

(1.1) R = u {M,. : r rational). 

It follows that the set M is not measurable. Assuming that M is measurable, 
we get a contradiction as follows: First, p ( M )  = 0 is impossible, since this 
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would imply p ( R )  = 0, using (1.1). However, p ( M )  > 0 is also impossible, 
since this would imply 

p([O, 11) > p ( u  { M ,  : r rational and 0 < r < l}) 

r rational 

using the fact that each Mr would have to have the same measure as M. 

1.3. A paradoxical decomposition of the sphere 

The theorems presented here demonstrate what 'absurd' results can be 
expected when employing the Axiom of Choice. 

THEOREM 1.1. A sphere S can be decomposed into disjoint sets 

S = A U B U C U Q  
such that: 

(i) the sets A ,  B, C are congruent to each other; 
(ii) the set B u C is congruent to each of the sets A ,  By C ;  
(iii) Q is countable. 

Let us consider the following relation between sets in the three-dimensional 
Euclidean space: We let 

(1-2) X G Y  

if there is a finite decomposition of X into disjoint sets 

x = XI v ... v x, 

Y = Y ,  u ... v Y, 
and a decomposition of Y into the same number of disjoint sets 

such that X i  is congruent to Y ,  for each i = 1, ..., m. We have the fol- 
lowing remarkable theorem: 

THEOREM 1.2. A closed ball U can be decomposed into two disjoint sets, 
U = X u Y  

such that U M Xand U w Y. 

Thus, using the Axiom of Choice, one can cut a ball into a finite number 
of pieces and rearrange them to get two balls of the same size as the original 
one! 
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The following sequence of lemmas will establish the proofs of Theorems 
1 and 2. Let G be the free product of the groups (1, cp }  and (1, $, $'}, 
i.e., the group of all formal products formed by cp, $ and $', with the speci- 
fication that ( p 2  = 1 and +b3 = 1. Let us consider two axes of rotation up, aS 
going through the center of the ball U, and consider the group of all rotations 
generated by a rotation cp by 180" about up, and a rotation $ by 120" about a+.  

LEMMA 1.3. W e  can determine the axes arp and aS in such a way that distinct 
elements of G represent distinct rotations generated by cp and $. 

PROOF (outline). What we have to do is to determine the angle 9 between 
up, and uS in such a way that no element of G other than 1 represents the 
identity rotation. Consider a typical element of G, e.g. a product of the 
type 
(1.3) G! = q . * * l  . . . ' c p . $ + ?  

Using the equations for orthogonal transformations and some elementary 
trigonometry, one can prove that the equation 

G! = 1 ,  

where a is some product of type (1.3), has only finitely many solutions. 
Consequently, except for a countable set of values, we are free to select 
any angle 9 to satisfy the requirements. 

Thus we consider such 9 and then G is the group of all rotations generated 
by cp and $. 

LEMMA 1.4. The group G can be decomposed into three disjoint sets 

G = A u B u C  
such that 

(1.4) A . 9  = B u C ,  A * $  = B, = C .  

PROOF. We construct A ,  B, C by recursion on the lengths of the elements of 
G.  We let 1 E A ,  cp, $ E B and +' E C and then continue as follows for any 
EEG:  

CY€A Cf€B Lt€C 
$'I:  a c p ~ B  a q ~ A  c1cp~A 

- ' E C  CY$-'EA ~ $ - ' E B  

c1 ends with 

This will guarantee that condition (1.4) is satisfied. 



CH.I,P31 A PARADOXICAL DECOMPOSITION OF THE SPHERE 5 

So far, we have not used the Axiom of Choice. To complete the proof 
of Theorem 1.1, we use a similar argument to that in the construction of a 
nonmeasurable set of real numbers in section 1.2. 

Let Q be the set of all fixed points on the sphere S of all rotations a E G. 
Each rotation ct E G has two fixed points; thus Q is countable. The set 
S - Q  is a disjoint union of all orbits P, of the group G :  

P, = {xa  : a E G } .  

By the Axiom of Choice, there exists a set M which contains exactly one 
element in each P,, x E S -  Q. If we let 

A = M * d ,  B = M * L # ,  C = M * % ’ ,  

it follows from (1.4) that A ,  B, C are disjoint, congruent to each other, 
and B u C is congruent to each of them; moreover, 

S = A u B u C U  Q. 

This completes the proof of Theorem 1.1. 

LEMMA 1.5. Let x be the relation defined in (1.2). Then: 
(a). w is an equiualence. 
(b). If X and Y a r e  disjoint unions of X ,  , X ,  and Y,  , Y, , respectively, and 

(c). I f X ,  E Y E  X a n d i f X = X X , , t h e n X x  Y .  

PROOF. (a) and (b) are easy. 
To prove (c), let X = X’ u ... u X” and X ,  = X :  u ... u X ;  such that 

X i  is congruent to X i  for each i = 1 , . . . , n. Choose a congruence? : Xi -+ X i  
for each i = 1, . . . , n, and letfbe the one-to-one mapping of X onto Xi which 
agrees with? on each Xi. Now let 

ifxi w Y ,  for  each i = 1,2, then X x Y. 

xo = x, X ,  =f”xo,  x, = f”X1, ..., 
Yo = Y,  Yi =f”Y,,  Y ,  = f ” Y , ,  ..., 

(wheref”X = { f ( x )  : x E X ]  is the image of X ) .  If we let 
m 

thenf’fZ and X- Z are disjoint, Z x f “Z and 

X = 2 u ( X - Z ) ,  Y =f”z u ( 1 - Z ) ,  

and hence X x Y by (b). 
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PROOF OF THEOREM 1.2. Now, let U be a closed ball and let 

S = A U B U C U Q  

be the decomposition of its surface from Theorem 1. We have 

u = A  u B  u c uQ u { c } ,  

where c is the centre of the ball and for each X c S , x  is the set of all 
x E U ,  other than c, such that its projection onto the surface is in X.  Clearly, 

A w B  w c Z B  U c. (1.5) 

Let 
x = A u Q u { c } ,  Y = u-x. 

From (1.5) and Lemma 1.5, we get 

A Z A U B U C ,  

and so 

(1.6) x w u. 
Now, it is easy to find some rotation LY (not in G )  such that Q and Q * CI 

are disjoint, and so, using 

C M A U B U C ,  
there exists S c C such that S M Q. Let p be some point in S-c. Ob- 
viously, 

(1.7) A u Q u { c }  M B u s u { p } .  

B u S u { p } E  Y G  u, 
Since 

we can use (1.6), (1.7) and Lemma 1.5(c), to get 

Y w u. 
This completes the proof of Theorem 1.2. 

1.4. Problems 

1. Prove that the Axiom of Choice is equivalent to the following principle: 
Let 9 be a family of disjoint nonempty sets. Then there is a set M such that 
M n X contains exactly one element, for each X E 9. 
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2. Let 9 be a family of nonempty sets of natural numbers. Then there 
exists a choice function on 9. 

3. Let 9 be a family of finite nonempty sets of real numbers. Then there 
exists a choice function on 9. 

4. Assuming that there is a nonmeasurable set of real numbers, construct 
a subset of the interval [0, 11, whose inner measure is 0 and whose outer 
measure is 1. 

A set of real numbers is called meager if it is the union of a countable 
family of nowhere dense sets. A set X has the Baire property if for some 
open set G, the symmetric difference X A G is meager. 

5. Without using the Axiom of Choice, prove that the set R of all real 
numbers is not meager (Baire Category Theorem). 

[Hint: The intersection of countably many open dense sets is non- 
empty. 1 
6. Using the Axiom of Choice, prove that the union of countably many 
countable sets is countable. 

7. Using the Axiom of Choice, prove that the union of countably many 
meager sets is meager. 

8. Assuming that there is a set of real numbers which does not have the 
Baire property, construct a set X which is not meager and such that for no 
nonempty open set G, G - X is meager. 

9. The set M from Section 1.2 does not have the Baire property. 
[Hint: If there is an open interval (a,  b)  such that (a, b)  = M u  N ,  where 

N is meager, then there is x E M such that x + r  6 N for any rational r, a 
contradiction. ] 

*lo. Prove the existence of a nonmeasurable set using only the assumption 
that a choice function exists on every family of pairs. 

[Hint' : Work in the Cantor space (the set *2 of all functions a : o -+(O, 1>) 
with the product measure. Let a - b iff a(.) # b(n) for only finitely many 
n's; let [a]  be the equivalence classes of a.  Let a* be such that a*(.) = 1 
iff a(.) = 0. Using choice for the family of all pairs { [ a ] ,  [a*]>, obtain 
A c "2 such that for each x ,  

Note that in fact one uses a weaker assumption: There exists a nontrivial ultrafilter 
over o. 
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(i) x E A if and only if x* q! A ;  
(ii) i f x E A a n d x - y t h e n y E A .  

By (ii), if some basic interval is included in A up to a set of measure 0, then 
every basic interval of the same length is; thus the measure of A would 
have to be either 0 or 1. On the other hand, A should have the same measure 
as A* = { x * :  x E A ) ,  but A uA* = "2, a contradiction.] 

*I 1. Prove the existence of a set without the Baire property using the same 
assumption as in Problem 10. 

[Hint: The set A would have to be either meager or a complement of a 
meager set.] 

1.5. Historical remarks 

The Axiom of Choice was first formulated by Zermelo [1904]. The 
formulation in Problem 1 is due to Russel [1906]. The construction of a 
nonmeasurable set in Section 1.2 is due to Vitali [1905]; the construction 
in Problems 10 and 11 follows Sierpihski [1938]. Theorem 1.1 is in Haus- 
dorff [1914], and Theorem 1.2 was proved by Banach and Tarski [1924]. 



CHAPTER 2 

USE OF THE AXIOM OF CHOICE 

2.1. Equivalents of the Axiom of Choice 

While in the first chapter we tried to convince the reader that the Axiom 
of Choice has unpleasant consequences, we shall devote this chapter to 
the task of improving its image by presenting several important theorems 
of contemporary mathematics in which the Axiom of Choice is indispens- 
able. 

We start by giving several equivalents of the Axiom of Choice. The 
literature gives numerous examples of theorems which are equivalent to 
the Axiom of Choice. Most popular among them are the three following 
principles. 

WELL-ORDERING PRINCIPLE (Zermelo’s Theorem). Every set can be well- 
ordered. 

We recall that an ordering < of a set S is a well-ordering if every non- 
empty X c S has a least element in the ordering < . 

To state the second principle, we need some definitions: A subset C of 
a partially ordered set (P, <) is a chain in P if C is linearly ordered by < ; u 
is an upper bound of C if c < u for each c E C.  We say that a E P is a maximal 
element if a < x for no x E P. 

MAXIMAL PRINCIPLE I (Zorn’s Lemma). Let (P, <) be a nonemptypartially 
ordered set and let every chain in P have an upper bound. Then P has a maximal 
element. 

Finally, let 9 be a family of sets. We say that F hasfinite character if 
for each X ,  X belongs to 9 if and only if every finite subset of X belongs to 
9. 

9 
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MAXIMAL PRINCIPLE 11 (Tukey’s Lemma). Let 9 be a nonempty family of 
sets. If F has jinite character, then 9 has a maximal element (maximal with 
respect to inclusion c ). 
THEOREM 2.1. The fo2lowing statements are equivalent: 

(i) Axiom of Choice. 
(ii) Well-ordering Principle. 
(iii) Maximal Principle I. 
(iv) Maximal Principle II. 

PROOF. (i) * (ii). Let S be a set. To find a well-ordering of S means to find 
an ordinal number a and a one-to-one a-sequence 

(2.1) a,, a,, ..., at, ... ( 5  < a> 

which enumerates S.  Let F be a choice function on the family of all non- 
empty subsets of S;  we construct a sequence (2.1) by transfinite recursion: 

a0 = F(S),  
at = F(S-{a ,  : q < t}). 

The construction stops as soon as we exhaust all elements of S. 
(iii). Let (P, <) be a nonempty partially ordered set and assume 

that every chain in P has an upper bound. We find a maximal element of 
P. By assumption, the set P can be well-ordered, i.e., thereis an enumeration 

(ii) 

p = {P o,P1, .*.,Pc, ...I (t -= 
for some ordinal number a. By transfinite recursion, let 

and 

where y is the least ordinal such that p y  is an upper bound of the chain 
C = {c, : q < t} and p y  # C.  Note that {c, : q < t} is always a chain and 
that p y  exists unless ct;-l is a maximal element of P. Eventually, the con- 
struction comes to a halt, and we obtain a maximal element of P. 

(iii) 3 (iv). Let 9 be a nonempty family of sets and assume that 9 has 
finite character. F is partially ordered by the inclusion c . If %‘ is a chain 
in 9 and if A = u { X  : X E  V}, then every finite subset of A belongs to 
F and therefore A belongs to 9. Obviously, A is an upper bound of %?. 
Hence we may apply Zorn’s Lemma and get a maximal element of the 
family F. 
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(iv) - (i). Let 2F be a family of nonempty sets. We want to find a choice 
function on 9. Let us consider the family 

B = {f :f is  a choice function on some 8 E 9). 

A subset of a choice function is a choice function and thus it is easy to see 
that B has finite character. By assumption, '3 has a maximal element F. 
A simple appeal to the maximality of F shows that the domain of F is the 
whole family S. 

2.2. Some applications of the Axiom of Choice in mathematics 

The equivalents of the Axiom of Choice which were discussed in Section 
2.1 are the most popular variants of the choice principle and are most often 
used in mathematical proofs. In this section, we give several examples of 
mathematical theorems whose proofs require the use of one of the forms of 
the Axiom of Choice. 

2.2.1. Example: Tychonof Product Theorem 
Let {Si : i E I >  be a family of topological spaces. The product space 

S = X { S i :  i E I }  
is defined as the Cartesian product of the family (Si : i E I }  endowed with 
the product topology. 

TYCHONOFF'S THEOREM. The product of a family of compact spaces is COM- 

pact in the product topology. 

Ons popular proof of this theorem uses the characterization of compact 

Afilter 9 over a set S is a nonempty proper subset of the family of all 
spaces by filters. 

subsets of S such that 
(i) Xe 9 and X E Y implies Y E  9; 
(ii) X E 9 a n d  Y E F i m p l i e s X n   YE^. 

(iii) for each X E S, either X E  9 or S - X E  9. 
A filter is an ultrajilter if 

AJilter-base is a family 98 such that 
( X  2 XI n ... n X,  : XI, ..., X, E 9i?) 

is a filter. A space S is compact if for every filter-base &? over S, 
(2.2) n { w : X E q  
is nonempty. 
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Let 
S = Xisi: i E Z )  

be a product of compact spaces. The family of all filter-bases over S has 
finite character and so by Tukey’s Lemma (or rather by its self-refinement, 
cf. Problem 3), every filter-base is included in a maximal filter-base (an 
ultrafilter). To show that the intersection (2.2) is nonempty whenever 
93 is maximal (which is obviously sufficient), we use: 

(1) the compactness of the spaces Si to show that the intersections of 
the projections A i  = 

(2) the Axiom of Choice again, to pick x i  in each A i ,  and 
(3) the maximality of 93 to show that the point x = ( x i  : i E I )  belongs 

{pri(X) : X E  B} are nonempty; 

to the intersection (2.2). 

2.2.2. Example 

THEOREM. Every vector space has a basis. 

PROOF. Let 9 be the family of all linearly independent sets of vectors. 
Obviously, 9 has finite character and so by Tukey’s Lemma, there exists 
a maximal linearly independent set B.  Using the maximality, one proves 
without much effort that B is a basis. 

2.2.3. Example: Nielsen-Schreier Theorem 
A group G is a free group if it has a set of generators A with the following 

property: Every element g of G other than 1 can be uniquely written in the 
form 

a, a2 ... a; , f l  fl + 1  

where the a i  are in A and no a appears adjacent to an a - l .  

NIELSEN-SCHREIER THEOREM. Every subgroup of a free group is a free group. 

The proof of this theorem is rather involved and we will not present it. 
Let us only mention that the standard proof uses the fact that the given 
subgroup can be well-ordered and this is used to construct, by transfinite 
recursion, a set of free generators of the subgroup. 

2.2.4. Example: Hahn-Banach Theorem 
Let E be a real vector space. A functional p on E is sublinear if p ( x +  y )  < 

p ( x ) + p ( y )  for all x ,  y E E and p ( r x )  = rp(x)  for all nonnegative reals r 
and all x E E. 
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HAHN-BANACH EXTENSION THEOREM. Let p be a sublinear functional on E 
and let cp be a linear functional deJined on a subspace V of E such that 
q(x)  6 p(x )  on V. Then there exists a linear functional + on E which extends 
cp, and $(x) < p ( x )  holds for all x E E. 

PROOF. One considers the family 9 of all linear functionals I) extending 
cp, defined on a subspace of E, and satisfying $ ( x )  6 p(x). The family 9, 
partially ordered by extension, satisfies the assumption of Zorn’s Lemma and 
so there is a maximal functional + in S. It remains to be verified that a 
maximal t,h is defined everywhere on E. This requires a lemma to the effect 
that if + E S and x E E is outside the domain of 9, then there exists a 
IJ E 9 which is defined at x. 

It should be mentioned that the Hahn-Banach Theorem can be proved 
from a weaker assumption than the full Axiom of Choice. In Problem 19, 
the reader will find an equivalent of the Hahn-Banach Theorem, and its 
relative strength will be discussed in due course. 

2.2.5. Example: Algebraic closure of afield 
An algebraic closure of a field F is an algebraically closed extension C of 

F which is algebraic over F; i.e., every nonconstant polynomial has a root 
and every element of C is a root of a polynomial in F [ X I .  
THEOREM. For any field F, an algebraic closure of F exists and is unique (up 
to isomorphism). 

PROOF (outline): For every polynomial p E F [ x ]  of nth degree, consider n 
indeterminates y?’, ..., yg’; let Y be the set of all such yp’. In the ring 
F [ x ] [ Y ] ,  let I be the ideal generated by all the elements of the form 

p(x) - (x-y ip’ )  - ... * (x-y?)) .  

Using Zorn’s Lemma, there is a maximal ideal J 2 I in the ring P [ x ] [ Y ] .  
The quotient F [ X I  [ Y ] / J  is a field, extends F and is algebraically closed. Once 
we have one algebraically closed extension of F, we can get one which is 
algebraic over F. The uniqueness of algebraic closure follows by application 
of Zorn’s Lemma to the family of all partial isomorphisms between the two 
given algebraic closures of F. 

2.2.6. Example: Maximal Ideal Theorem for Lattices 
Let L be a lattice. An ideal in L is a nonempty proper subset I of L such that 
(i) a E I and b < a implies b E I;  
(ii) a E I and b E I implies a v b E I. 
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MAXIMAL IDEAL THEOREM FOR LATTICES. Every lattice with unit and at 
least one other element has a maximal ideal. 

PROOF. Let 9 be the family of all ideals in the given lattice. The family 
9 satisfies the assumption of Zorn's Lemma and so it has a maximal 
element. 

2.3. The Prime Ideal Theorem 

In the examples of the preceding section, we showed that using the Axiom 
of Choice, we can establish the existence of maximal ideals in rings, lattices, 
or set algebras. Among the theorems of this type, one - the (Boolean) 
Prime Ideal Theorem - plays a particularly prominent role. Firstly, because 
it can be used in many proofs instead of the Axiom of Choice; secondly, 
because it is equivalent to several other statements; and finally, because it is 
essentially weaker than the gensral Axiom of Choice (this will be discussed 
in Chapter 7). 

A Boolean algebra is an algebra B with two binary operations +, 
(Boolean sum and product), one unary operation - (complement) and two 
constants 1,O.  The axioms governing Boolean algebras are the following: 

u+u = u, 
u+u = u+u, 

u - u  = u, 
U ' V  = V ' U ,  

u+(u+w) = (u+u)+w,  u . ( u - w )  = ( u * u ) . w ,  
(u+u)  * w = ( 2 4 .  w ) + ( v .  w), 
(u * u)+w = (u+w)  * (v+w), 

u+( -u)  = 1, 
-(u+v) = - u *  -u,  

u -  -u  = 0, 
- ( u . u )  = - u + - u .  

- - u  = u .  

Besides the above operations, one often considers a partial ordering 6 of 
B which is introduced in terms of + by 

u < u + + u + z ) = u .  

Then 1 and 0 are the greatest and the smallest element of B, respectively, 
and + and . represent the 1.u.b. and the g.l.b., respectively. 

An ideal I on B is a nonempty proper subset of B such that: 
(i) u E I and u < u implies z) E I; 
(ii) u E I and u E I implies u+u E I.  
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An ideal is a prime ideal if 
(iii) for each u E B, either u E Z or - u E Z. 

In a Boolean algebra, an ideal is a prime ideal if and only if it is maximal. 
The dual notions of an ideal and a prime ideal are afilter and an ultra- 

jilter on B, satisfying: 
(i) u E F and v 2 u implies v E F; 
(ii) u E Fand u E Fimplies u - v E F; 

(iii) for each u E B, either u E F or -u  E F. 
and for an ultrafilter: 

PRIME IDEAL THEOREM. Every Boolean algebra has a prime ideal. 
The Prime Ideal Theorem is a consequence of the Axiom of Choice; the 

proof is an elementary exercise in the use of Zorn’s Lemma. It will be shown 
in a later chapter that the converse is not true. The Axiom of Choice cannot 
be proved from the Prime Ideal Theorem (in contrast to that, see Problems 
10,ll). We shall give several equivalents of the Prime Ideal Theorem. First, 
note that the Prime Ideal Theorem is equivalent to its stronger version: 

In every Boolean algebra, every ideal can be extended to a prime ideal. 

To show that the stronger version follows from the weaker version, 
let B be a Boolean algebra and I an ideal in B. Consider the equivalence 
relation 

u - 0 0  (2.4. - v ) + ( v *  - U ) E I .  

Let C be the set of all equivalence classes [u] and define operations +, - 
and - on C as follows: 

[u]+ [ v ]  = [u+v],  [u] * [ v ]  = [u * v ] ,  - [u]  = [-u].  

Then C is a Boolean algebra, the quotient of B: 
C = B/I. 

By the Prime Ideal Theorem, C has a prime ideal K. It is easy to verify that 
the set 

J =  { u E B :  [ u I E K }  

is a prime ideal in B and I E J. 

formulations of the Prime Ideal Theorem: 
Using the duality between ideals and filters, we have the following 

Every Boolean algebra has an ultrafilter, 

Every filter in a Boolean algebra can be extended to an ultrafilter. 
or : 
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In the special case that the algebra is the set 9 ( S )  of all subsets of S, with 
set theoretical operations LJ, n and - ; the notion of a filter and ultrafilter 
coincides with the earlier definition. Thus we have: 

ULTRAFILTER THEOREM. Every j l t e r  over a set S can be extended to an ultra- 
filter. 

We shall show that the Ultrafilter Theorem is equivalent to the Prime 
Ideal Theorem. However, the corresponding weaker version of the Ultra- 
filter Theorem, viz. 

For each nonempty set S, there is an ultrafilter over S,  

is trivially true without any use of choice: Letp E S; then the set 
{Xc S : p E X }  

is a trivial ultrafilter over S.  Let us say here that even the statement 

For each injnite set S,  there is a nontrivial ultrafilter over S, 

although unprovable without the Axiom of Choice, is essentially weaker 
than the Prime Ideal Theorem (see Problem 8.5). 

Another principle to be considered here is the following: Let S be a set 
and let M be a set of functions defined on finite subsets of S, with values 0 
or 1. We say that M is a binary mess on S if M satisfies thefollowing 
properties : 

(i) For each finite P c S, there is t E M such that t is defined on P ;  
dom ( t )  = P. 

(ii) For each t E Mand each finite P c S, the restriction tlP belongs to M. 
Let f be a function on S with values 0, 1. Then f is consistent with a mess 

M if every restriction f IP, P a finite subset of S, belongs to M. 

CONSISTENCY PRINCIPLE. For every binary mess M on a set S, there exists 
a function f on S which is consistent with M.  

The last principle to be mentioned here is the Compactness Theorem for 
the first order predicate logic. Let 9 be a language of first-order logic; the 
set of predicates in 9 is arbitrary, not necessarily countable. Let ,Z be a 
set of sentences of 9. 

COMPACTNESS THEOREM. I f  every finite subset of ,Z has a model, then Z has 
a model. 

We shall show that the above principles are all equivalent to the Prime 
Ideal Theorem. 
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THEOREM 2.2. The following are equivalent: 
(i) Prime Ideal Theorem. 
(ii) Ultrafilter Theorem. 
(iii) Consistency Theorem. 
(iv) Compactness Theorem. 

PROOF. (i) => (ii). The Ultrafilter Theorem is an immediate consequence 
of the stronger version of the Prime Ideal Theorem. 

(ii) * (iii). Let M be a binary mess on S ;  we shall find a binary function 
f on S ,  that is consistent with M.  Let I be the set of all finite subsets P of S .  
For each P E I, let Mp be the finite set of all t E M such that dom ( t )  = P .  
Let 2 be the set of all functions z such that: 

(a) dom (z) c I; 
(b) z ( P )  E M p  for each P E dom (2); 

(c) for any P,  Q E dom (z), the functions t ,  = z(P)  and t ,  = z (Q)  are 
compatible. 

Let F be the filter over 2 generated by the sets 
X ,  = {zEZ:PEdom(z)} 

(the set { X p  : P E I} is a filter-base). By the Ultrafilter Theorem, there is an 
ultrafilter U over Z which extends F. For every P E I, the set X ,  is a finite 
disjoint union 

where { t , ,  ..., t,} = M p  and 

x, = x,, u ... u xtm, 

x, = (2 E 2 : z(P) = t } .  
Thus there is a unique t = t ( P ) e M ,  such that X,E U. The functions 
t , ,  P E I, are pairwise compatible and thus their union is a binary function 
f on S which is consistent with M. 

(iii) => (iv). Let C be a consistent set of sentences of a first-order language 
9. By a well-known labeling method, every consistent theory can be 
expanded to a consistent Skolem theory and so we may assume that C 
contains all the Skolem sentences o4 for all formulas 4 of the language 
9 with one free variable; i.e., o is the sentence 

30 4 ( 4  4(e4>, 
where e4 is the Skolem constant associated with 4. It is sufficient to find an 
extension C* of ,Z which is complete; then one can build a model of C* from 
the constant terms. Thus the problem is to embed a consistent theory into 
a complete theory. 
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Let S be the set of all sentences of the language 9. We define a mess M 
on S as follows: 

t E M o  (3521)[% is a model of Z n dom ( t )  and 
Vo E dom ( t )  ( t (o)  = 1 t, Wo)]. 

Since every finite subset of Z has a model, M is a mess. By the Consistency 
Principle, there exists a binary function f on S, consistent with M. Now 
we let 

z* = {. E s :f(cT) = l}. 

C* is a complete theory and .Z E P. 
(iv) 3 (i). Let B be a Boolean algebra. Let 9 be a language which has 

a constant for every element of B. (We can identify u E B with the corre- 
sponding constant in 9.) Furthermore, let 9 contain a unary predicate 
I. Let C be the following set of sentences of 9: 

I@), +(1), 
I(u) v I( - u )  (for each u E B), 
I ( U 1 ) A  ... AI(uk)  + I ( U 1 - k  . + .  +uk) (for all U1y - . . y  Uk E B). 

Every finite subset of C has a model. To see that, realize that every finite 
subset of B generates a finite subalgebra of B and that every finite Boolean 
algebra has a prime ideal. By the Compactness Theorem, Z has a model. 
This in turn yields a prime ideal on B. 

Now we shall give some examples of the use of the Prime Ideal Theorem 
in mathematical proofs. More examples will be given in the problem sec- 
tion. 

2.3.1. Example: Stone Representation Theorem 

(2.3) (a) S E  d,  

A family d of subsets of a given set S is a set-algebra if: 

(b) i f X , Y E d t h e n X n Y E d a n d X u  Y E & ,  
(c) if XE d then S-XE d. 

STONE REPRESENTATION THEOREM. Every Boolean algebra is isomorphic to 
a set algebra. 

PROOF. Let B be a Boolean algebra; let 

S = { U : U is an ultrafilter on B ) .  
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For u E By we let 

It is easy to see that 
n(u) = { u € s : u E  V ] .  

n(u+v) = n(u) u n(v),  

n(-u) = s-n.  
n(u - v) = n(u) n n(v), 

One has to use the Prime Ideal Theorem to show that 7c is one-to-one. Thus 
n is an isomorphism of B onto d = n"B. 

Actually, the Stone Representation Theorem is equivalent to the Prime 
Ideal Theorem; see Problem 12. 

2.3.2. Example: Ordering Principle 
We shall show that the Prime Ideal Theorem implies that every set can 

be linearly ordered. Actually, we get a stronger theorem. If < and < are 
partial orderings of a set P, then we say that .< extends < if for anyp, q E P, 
p < q impliesp < q. 

ORDER EXTENSION PRINCIPLE. Every partial ordering of a set P can be 
extended to a linear ordering of P. 

PROOF. We use the Compactness Theorem. Let (P ,  < ) be a partially ordered 
set. Let 2 be a language containing constants for all p E P and a binary 
predicate < . Let Z be the set of sentences 

~ < q ~ q < r + p  < r  (alip,q,rEP), 
P < q A q < P + P = q  (allP,qEP)> 
P < q v q  < P  (all P, 4 E P), 
P < 4  (all p, q E P such that p < q). 

Since every finite subset of C has a model, the application of the Compact- 
ness Theorem yields a linear ordering < of P which extends < . 
2.3.3. Example: A rtin-Schreier Theorem 

A field F is an orderedfield if there is a linear ordering < of F satisfying: 

(2.4) (a) i f a <  b , thena+c<  b+cforallc; 
(b) if a < b and c 2 0, t h e n a - c  < b - c .  

ARTIN-SCHREIER THEOREM. Every3eld in which - 1 is not a sum of squares 
can be ordered. 
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PROOF. As in Example 2.3.2, use the Compactness Theorem. We must 
include in C the sentences reflecting the conditions (2.4). The assumption 
of the theorem guarantees that every finite subset of C has a model. 

2.4. The Countable Axiom of Choice 

Very often, especially when dealing with real numbers, one does not need 
the full Axiom of Choice but only its weaker variant, the Countable Axiom 
of Choice. 

COUNTABLE AXIOM OF CHOICE. Every countable family of nonempty sets has 
a choice function. 

We shall give several examples of applications of this principle. 

2.4.1. Example: The Countable Axiom of Choice implies that every infinite 
set has a countable subset. 

PROOF. Let S be an infinite set. Consider all finite one-to-one finite 
sequences 

9 , ...) 
of elements of S.  The Countable Axiom of Choice picks out one k-sequence 
for each natural number; more exactly: 

9 = {A, :  ~ E W } ,  

A,  = {(a, ,  ..., a,) : a,, ..., a, distinct elements of S } ,  

and 9 has a choice function: f (A,) E A,  for all k. The union of all the chosen 
finite sequences is obviously countable. 

2.4.2. Example: The Countable Axiom of Choice implies that the union of 
countably many countable sets is countable. 

PROOF. See Problem 1.6. 

COROLLARY 1. The set of all real numbers is not a countable union of coun- 
table sets. 

COROLLARY 2. TheJirst uncountable ordinal o1 is not a limit of a countable 
increasing sequence of ordinals. 

where 

(Both things can happen in the absence of the Axiom of Choice, as we 
shall see later; cf. Theorem 10.6.) 
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2.4.3. Example: Topological properties of the real line. 
There are two kinds of definitions of the basic topological properties of 

the real line: (1) &-&definitions and (2) definitions using limits of 
sequences. 

(a). Closed sets: A point x is in the closure of a set A if 
(1) every neighborhood of x intersects A ;  
(2) x = 1imnAmx,, for some sequence {x,} of points in A. 

(b). Continuous functions: A function f is continuous at a point x if 
(1) V~36etc. 
(2) whenever lim x, = x, then lim f(xJ = f(x). 

(c). Compact sets: A set A is compact if 
(1) A is dosed and bounded; 
(2) every sequence {x,} of points in A has a convergent subsequence 

(Notice that the Heine-Bore1 theorem can be proved for the closed and 
bounded sets - see Problem 25). 

PROPOSITION. In the presence of the Countable Axiom of Choice, the de- 
$nitdons under (1) and (2) are equivalent in each of the cases (a), (b), (c). 

PROOF. One direction is trivial in each case. 
(a). If x is in the closure of A, then each (l/n)-neighborhood of x inter- 

sects A .  We can choose x, by the Countable Axiom of Choice. 
(b). Iff is discontinuous at x, then there is E > 0 such that for each n, 

we can choose x, in the (l/n)-neighborhood of x such that If (x,) - f (x)l 2 E. 

Then f (x) = lim f (x,) is false. 

with lim x, E A .  

(c). Similar. 

2.4.4. Example: The Countable Axiom of Choice implies that every subspace 
of a separable metric space is separable. 

PROOF. A metric space S is separable if it has a countable dense subset 
{x,,, xl ,  ..., x,, ...}. The family 

{Urn, : m E o, n E o}, 

where Urn, is the (l/m)-neighborhood of x,, is a countable base of S. If 
T is a subspace of S, then the family 

{Urn, n T :  rn E o, n E o) 

is a countable base of T. By the Countable Axiom of Choice, we can choose 
ymn E Urn, n T for each m and n, thus getting a countable dense subset of T. 
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2.4.5. Example: The Countable Axiom of Choicc implies the countable ad- 
ditivity of the Lebesgue measure and of meager sets. 

PROOF. For meager sets, see Problem 1.7. As for the Lebesgue measure, 
suffice it to say that in the standard development of the theory of Lebesgue 
measurability, the only applications of the Axiom of Choice have the 
following form: If Fi, i E o, are nonempty families of open sets, then there 
is a sequence of open sets {Gi}  with Gi E Si for each i. 

2.4.6. Example: Borel sets 
There are two definitions of Borel sets of real numbers: 
(a). The family B of Borel sets is the smallest countably additive algebra 

Among the standard properties of Borel sets are: 
(i). 

(ii). Ba $ gar+ 1, for each a < ol. 
If the Axiom of Choice is absent, then we have to replace (i) by a weaker 

property, with w1 replaced by some unspecified ordinal (the least ordinal 
9 such that BStl = Bs). The property (ii) cannot be proved either (see the 
remark at the end of Example 2.4.2.). 

(b). In recursion theory, one defines the hierarchy of Borel sets (sets 
hyperarithmetical in some real) using codes. Roughly speaking, each Borel 
set has a code, but without choice, one cannot choose a code for each Borel 
set. Thus one cannot prove that the family of Borel sets is closed under 
arbitrary countable unions. 

In the presence of the Countable Axiom of Choice, both definitions of 
Borel sets are equivalent, and the properties (i) and (ii) can be proved. 

of sets of reals containing the open sets. 

= ua<o, Ba, where go are the open sets and aa are all count- 
able unions of elements of Uy<a g7 and their complements. 

2.4.1. Principle of Dependent Choices 
Finally, let us mention a principle closely related to the Countable Axiom 

of Choice. Its meaning is that one is allowed to make a countable number 
of consecutive choices. 

PRINCIPLE OF DEPENDENT CHOICES. Zf p is a relation on a nonempty set A 
such that for every x E A there exists y E A with xpy, then there is a sequence 
(xn} of elements of A such that 

~ o P X I ,  X I P X Z ,  XnPXn+l, 
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PROPOSITION. The Principle of Dependent Choices implies the Countable 
Axiom of Choice. 

PROOF. Let So, S , ,  ..., S,,, ... be a countable family of nonempty sets. To 
find a choice function, let A be the set of all finite sequences 

s = ( x O ,  x1,  * - - ,  x k )  

such that x o  E So, ..., x k  E s k ,  and let spt just in case s = (xo, ..., xk) and 
t = ( x o ,  ..., & + I ) .  An application of the Principle of Dependent Choices 
gives a choice function for the family {S,,} .  

As an application of the Principle of Dependent Choices, we give a 
characterization of well-orderings: 

PROPOSITION. A linear ordering < of a set P is a well-ordering if and only 
i f  P has no infinite descending sequence 

xo > x1 > x ,  > ... > x,, > .... 

PROOF. The condition is obviously necessary. 

the Principle of Dependent Choices to construct the descending sequence. 
To show that it is sufficient, assume that < is not a well-ordering and use 

2.5. Cardinal numbers 

Sets can be compared by their cardinality, using the definition 

1x1 < IYI iff there exists a one-to-one mapping of X into Y,  
1x1 = I Y I iff there exists a one-to-one mapping of X onto Y. 

We may run into difficulties when we want to define the symbol 1x1, but 
that we shall discuss later. 

First, we prove that the relation < is a partial ordering: 

PROOF. It suffices to prove that if A ,  E B E A and lAll = IAI, then 
IBI = IAI. Let f be a one-to-one function of A onto A ,  ; let 

A ,  = A ,  A ,  = f r ' A o ,  A ,  = f l ' A l ,  ..., 
Bo = B, B,  = f " B o ,  Bz =fl'B,, .... 
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If we let 
x) if x E A ,  - B, for some n, 

otherwise, 

then g is a one-to-one mapping of A onto B. 

There is not much more one can prove about the ordering < . The well- 
orderable sets are equivalent to ordinal numbers and so we can define 
cardinals of well-ordered sets, using initial ordinals (i.e. those which are 
not equivalent to smaller ordinals). As is customary, X, = w, is the at' 
infinite cardinal number. The elementary arithmetric of alephs is fairly 
simple, due to the following formula: 

THEOREM 2.4. For all a, X, . N, = N,. 

PROOF. There is a canonical one-to-one mapping of w, onto w,xw,. We 
define an ordering of w, x w, by: 

(a17 a21 (Pl,  a21 iff max ( E l ,  .2> < max (Pl? P z )  

" [max (a1 > a2) = max ( P 1 7  B 2 )  A a1 < PI1 
v [max (a1,  az) = max (P1 , Pz> A a1 = PI A a2 < P21. 

The relation 4 well-orders w, x o, and a proof by transfinite induction 
shows that the order-type of this ordering is w,. 

As a consequence, we have 

X, + X~ = N, . cts = max (N,, x ~ ) ,  
K,+N, = H,. N, = X u .  

This means that in the presence of the Axiom of Choice, we have 

(2-5) m+m = m * m  = m, 

for every infinite cardinal m. There will be more discussion about (2.5) in 
Chapter 11. 

One of the properties in whose proof one needs the Axiom of Choice 
is regularity of successor alephs N,+ (An infinite cardinal K is regular if 
cf K = K, where cf ic, the cofinality of K ,  is the least ordinal CL such that fc is 
a limit of an increasing a-sequence ( y e  : 5 < a}  of ordinals less than K. If 
cf ti < K then K is singular.) E.g., to show that K, is regular, one uses the 
fact that the countable union of countable sets is countable; see Example 
2.4.2. Similarly for x,+ 
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Another problem involving the Axiom of Choice is the definition of in- 
finite sums and products of cardinal numbers. To have a meaningful de- 
finition of, say, 

we have to  know that 

m, . m2 . ... . m, . ... (n E o), 

(2.6) IX {M, ,  : n E w}I = ( X { M : ,  : It E o}I 

whenever ]M,I = IMkI for each n. The proof of (2.6), however, requires 
the Axiom of Choice. For a counterexample, assume that IMAI = 2 and 
that {MA} does not have a choice function; compare this with M,, = (0, l} 
for each n. * 

To complete this section, we will look into the questions of finiteness. 
While by the standard definition a set is finite if it is equivalent to a natural 
number, there is another definition of finiteness, which is equivalent to the 
standard definition if the Axiom of Choice is true: 

DEFINITION 2.6. A set Xis  Dedekindfinite if there is no one-to-one mapping 
of X onto a proper subset of A’. 

How this notion is related to finiteness is clear from the following charac- 
terization of Dedekind finite sets: 

LEMMA 2.7. X is DedekindJinite if and only if X does not have a countable 
subset. 

PROOF. If X contains a countable subset then obviously X is Dedekind 
infinite. 

On the other hand, if X is Dedekind infinite, then let f be a mapping of 
X onto a proper subset of X and a E X which is not in the range off. The set 
( a , f ( a ) , f ( f ( a ) ) ,  ...} is a countable subset of X .  

2.6. Problems 

1. The following statement is equivalent to the Axiom of Choice: The 
Cartesian product of any family of nonempty sets is nonempty. 

2. Prove the following self-refinement of Zorn’s Lemma: If every chain 
in (P, <) has an upper bound, then there is a maximal element above any 
given element of P. 

3. Prove the following self-refinement of Tukey’s Lemma: If 9 has finite 
character, then every X E 9 is included in a maximal Y E 9. 
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4. The following statement is equivalent to the Axiom of Choice: Every 
family of sets contains a maximal subfamily consisting of mutually disjoint 
sets. 

[Hint: Let S be a family of disjoint sets; find a choice function on S .  
This can be obtained using a maximal disjoint subfamily of 9 = (((0, a), 
(1, A ) }  : A E S and a E A } . ]  

Let us call a set X of real numbers independent if no linear combination 
rl  a, + . .. +rkak with distinct a,, ..., ak E X and nonzero rational coeffi- 
cients r ,  , ..., rk is equal to zero. A set H of real numbers is a Hamel basis 
if every real number x can be uniquely written in the form x = r ,h ,  + 
... +rkhk,  where h , ,  ..., h, E H and rl  , ..., r, are rational numbers. 

5. Using some form of the Axiom of Choice, prove that a Hamel basis 
exists. 

6 .  There is a discontinuous function from R to R which satisfies the equation 

[Hint: Use Problem 5: Let h E H and for each x = rh+r ,h ,+  ... +r,h,, 
f ( x + y )  = f ( x )+ f (u ) .  

let f ( x )  = r . ]  

7. Using the Axiom of Choice, prove the following: If B ,  and B, are both 
bases of a vector space V, then lBll = &I. 

[Hint: There is a mappingfof B, into the finite subsets of B, and every 
b, is in somef(b,); and vice versa.] 

8. Tychonoffs Theorem implies the Axiom of Choice. 
[Hint: Find a choice function on a given family { X i  : i E I } .  Adjoin a 

fixed element a to each Xi and topologize Yi = Xi u {a} by letting only Y,,  
Xi and finite sets be closed. In the product of Yi’s, consider, for each i, 
the closed set Zi of allfsuch thatf(i) E Xi. The family (Zi : i E I} is a filter- 
base and by Tychonoffs Theorem has a nonempty intersection.] 

9. The following statement implies the Axiom of Choice: The product of 
any number of copies of the same compact space is compact. 

[Hint: Find a choice function on a disjoint family { A ,  : i E I ] .  Let S 
be the union of all A with the least topology such that all A i  are closed. In 
the product X{S : iE I>, consider, for each i, the closed set Zi of allfsuch 
that f ( i )  E A , . ]  

10. The following statement is equivalent to the Axiom of Choice: Every 
lattice with a unit element and at least one other element contains a maximal 
ideal. 
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[Hint: Use this to prove Tukey's Lemma. Let 9 C B ( A )  have finite 
character. Let L = % u { A }  and let X A  Y = X n  Y, X v  Y = either 
X u Y or A (if X u Y 4 F). A maximal ideal in the lattice L gives a maximal 
element of %. 1 
11. The following statement is equivalent to the Axiom of Choice: For 
every set S of nonzero elements of a Boolean algebra B, there is a maximal 
ideal disjoint from S. 

[Hint: Use this to prove Tukey's lemma. Let 9 c B ( A )  have finite 
character. Put B = the set algebra B(A) ,  Y = B ( A ) - 9 .  A maximal 
ideal disjoint from 9' gives a maximal element of 9 . 1  
12. The Stone Representation Theorem implies the Prime Ideal Theorem. 

[Hint: Let B be a Boolean algebra, n"B = 9 an ison~orphic set algebra. 
Let p E u F and let U = {u  E B : p  E n(u)).] 

The next five problems establish the equivalence of the Prime Ideal 
Theorem with weaker versions of Tychonoff's Theorem. 

13. If U is an ultrafilter over a Hausdorff space, then the intersection 
0 {X : XE U }  contains at most one point. 

14. The Ultrafilter Theorem implies that every product of compact Haus- 
dorff spaces is nonempty. 

[Hint: Let S = X{Si : i E I}. Let Z be the set of all functions with 
dom (f) E I andf(i) E Si; Zi = { f ~  Z : i E dom (f)}. Let 9 be the filter 
over Z generated by Zi, i E Z, and let U 2 9 be an ultrafilter. Let Ui be 
the projection of U onto Si, each Ui is an ultrafilter over Si. For each i, 
the intersection n {X : X E  U,> contains exactly one point xi E S, . ]  

15. The Ultraiilter Theorem implies that every product of compact Haus- 
dorff spaces is compact. 

[Hint: The product is nonempty by Problem 14. In the proof of Tycho- 
noff's Theorem in Section 2.2, the first part uses only the Ultrafilter Theorem. 
The use of Axiom of Choice in point 2 is eliminated by Problem 13.1 

16. The following statement implies the Prime Ideal Theorem: The product 
of any family of discrete two-point spaces is compact. 

[Hint: Let B be a Boolean algebra, let S = X { { u ,  - u }  : u E B ) .  If A is 
a finite subalgebra of B and I a prime ideal on A,  let XI = {x E S : x(u) E Z 
for each u E A } ;  further let X, = u {XI : Z a prime ideal on A } .  The 
family { X ,  : A a finite subalgebra} is a filter-base of closed sets; its inter- 
section gives a prime ideal of B.]  
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17. The following statement implies the Prime Ideal Theorem: The gen- 
eralized Cantor space (0, l}' is compact for any Z. 

[Hint: Use this to prove the statement from Problem 16. It suffices to 
show that every product of two point sets is nonempty. Let S be a set of 
disjoint (unordered) pairs p = {a, b }  and let Z = u ( p  : p  E S > .  In the 
product (0, l)', the sets X ,  = { f : f ( a )  # f ( b )  if {a,  b )  = p }  are closed and 
form a filter-base. The intersection gives a choice function on S.] 

"18. The Prime Ideal Theorem implies the Stone-Cech Compactification 
Theorem. 

[Hint: The space PX is the closure of the natural embedding of X into 
the product [0, 1IF('), where P ( X )  is the set of all continuous functions of 
X into LO, 11. The product is compact by the Prime Ideal Theorem.] 

A (real-valued) measure on a Boolean algebra B is a nonnegative func- 
tion p on B such that p(0) = 0, p(1) = 1, and p ( a + b )  = p(a)+,u(b) when- 
ever a .  b = 0. 

**19. The Hahn-Banach Theorem follows from the Prime Ideal Theorem. 
Moreover, it is equivalent to the statement that every Boolean algebra 
admits a real-valued measure. 

In the following five problems, C, is the following statement: 

Every family of n-element sets has a choice function. 

An n-coloring of a graph is a partition of its vertices into n classes such 
that no two vertices in one class are joined by an edge. P, is the following 
statement: 

For every graph G, if every finite subgraph is n-colorable, then G is n- 
colorable. 

20. The Prime [deal Theorem implies P,, for any n. 
[Hint: Use the Compactness Theorem.] 

21. P,+l implies P,. 

and join it to a11 vertices of G; now use P,+ .] 

22. P, implies C,. 
[Hint: Let S be a family of disjoint n-element sets. Make its union into 

a graph by joining those and only those vertices which are in the same 
set in S. Use P, to get a choice function.] 

[Hint: Let G be a graph satisfying the hypothesis of P,. Add a new vertex 
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23. C2 implies P,. 
[Hint: Let G be a graph satisfying the hypothesis of P,. G does not 

contain any cycles of odd length. Thus every component of G is 2-colorable. 
Use C,  to choose a 2-coloring for each component.] 

**24. P3 implies the Prime Ideal Theorem. 

25. The Heine-Bore1 Theorem can be proved without using the Axiom of 
Choice: Every descending sequence of closed subsets of [O, 11 has a non- 
empty intersection. 

*26. Prove Urysohn's Lemma, using the Principle of Dependent Choices: 
If A ,  B are disjoint closed sets in a T,-space S,  then there is a continuous 
function from S to [0, 11 which takes the value 1 everywhere in A and 0 
everywhere in B. 

[Hint: Follow the standard proof in a topology textbook.] 

*27. Use the Countable Axiom of Choice to prove the following theorem: 
The set R of all real numbers is not a union of countably many subsets, 
S,,, n E o, such that IS,,[ < IRI for each n. 

[Hint: [RJ = 2" = IRl". Let *R be the set of all functions from w into 
R; let S,, c "R, IS,l < IRI, for all n E o. Let T,, c R be the set { f ( n )  :feS,,}. 
Pick g ( n )  E R-T,,, for each n;  then g # S,, for any n.] 

2.7. Historical remarks 

The Well-ordering Theorem was proved by Zermelo [1904]. The Maximal 
Principle I is due to Kuratowski [1922] and Zorn [1935]. It is known to 
the public as Zorn's Lemma (cf. e.g., Frampton [1970]). Similarly, the 
Maximal Principle I1 was formulated independently by Teichmuller [ 19391 
and Tukey [1940]. 

A large collection of equivalents of the Axiom of Choice was accumulated 
by Rubin and Rubin [1963]. The proof of Tychonoffs Theorem given in 
this book is due to Bourbaki. The Nielsen-Schreier Theorem was proved 
by Nielsen for finitely generated free groups, and by Schreier in the general 
case. 

Equivalents of the Prime Ideal Theorem were considered by several 
people; let us mention at least Tarski [1954a], Scott [1954b], Rado 119491, 
and Henkin [I9541 - the latter proved its equivalence to the Compactness 
Theorem. The Stone Representation Theorem and its equivalence to the 
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Prime Ideal Theorem is due to Stone [1936]. The Order Extension Principle 
was proved by Marczewski [1930]. The observation that in the proof the 
Axiom of Choice can be replaced by the Prime Ideal Theorem is due to 
Scott; a similar observation in case of the Artin-Schreier Theorem is due 
to Tarski [1954a]. 

The Principle of Dependent Choices was formulated by Bernays [1942]. 
The example in Problem 4 was given by Vaught [1952]. The proof that 

Tychonoffs Theorem, or its weaker version in Problem 9, implies the 
Axiom of Choice, is due to Kelley [1950] and Ward [1962], respectively. 
The example in Problem 10 was given by Scott [1954a]; the statement in 
Problem 11 was considered by Mr6wka [1955], Rubin and Rubin [1963], 
and Rousseau [1965]. The equivalence of the Prime Ideal Theorem to 
Tychonoffs Theorem for compact Hausdorff spaces is due to EoS and Ryll- 
Nardzewski [1955], and Rubin and Scott [1954]. The stronger version of 
this equivalence in Problem 17 is due to Mycielski [1964a]. The proof of the 
Hahn-Banach Theorem from the Prime Ideal Theorem was given by LoS 
and Ryll-Nardzewski [1951] and Luxemburg [1962]; the equivalence stated 
in Problem 19 is due to Ryll-Nardzewski (unpublished) and Luxemburg 
[1969]. The statements P,, were considered by Mycielski [1961] and Levy 
[1963a]; the theorem in Problem 24 is due to Lauchli [197I]. 



CHAPTER 3 

CONSISTENCY OF THE AXIOM OF CHOICE 

3.1. Axiomatic systems and consistency 

The discussion in Chapter 2 makes it obvious that the benefits of the 
Axiom of Choice outweigh the inconveniences; one can easily put up with 
nonmeasurable sets and their likes in order to have another device to use 
in mathematical proofs. It would be naturally nice if one could prove the 
Axiom of Choice, from other, less controversial principles. It was realised 
very soon that this is very unlikely, since the Axiom of Choice is so dif- 
ferent. 

The next best thing to proving the Axiom of Choice is to show that it 
is not contradictory. That is to show that it is consistent with other prin- 
ciples of mathematics. 

In general, the problem of consistency of a certain statement CJ consists in 
showing that CJ cannot be disproved in a given axiomatic system (provided 
the system itself is not contradictory). The usual way is to give an inter- 
pretation of the language of the system, in which all the axioms are true, 
together with the statement CJ. 

3.2. Axiomatic set theory 

The language of set theory consists of two primitive symbols, = and E, 

and predicates, operations and constants defined from the primitive symbols. 
The formulas are built by means of logical connectives and quantifiers. 

Technically, all objects occuring in axiomatic set theory are sets. How- 
ever, we shall sometimes informally use classes, which represent collections 
of sets of the form 

c = { x  : C b ( X , P ) }  

(where p is a parameter). 
31 
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In the customary way, we define the standard set-theoretical operations, 
unordered and ordered pairs, the latter by the definition 

(% 0) = { ( 4 7  {u, 4>, 
relations and functions. Let us mention that the symbols 

dom(f), rng(f), f " X  fix, ' Y ,  g ( X ) ,  0 

denote respectively the domain of f ,  the range of f ,  the image of X under 
f ( = { f ( x )  : x E X } ) ,  the restriction off to X ,  the set of all functions from 
X to Y,  the power set of X ( = {u : u s X } )  and the empty set. 

The axioms of Zermelo-Fraenkel axiomatic set theory ZF are as fol- 
lows: 

A1 . EXTENSIONALITY: 

V u ( u E X o u E Y ) + X =  Y. 

V u V v 3 x v z ( z E X c * z  = u v z = u ) .  

A2. PAIRING: 

A3. COMPREHENSION: 

v p ' ~ ' X 3 Y \ J U ( U E Y ~ U € x A  # ( U ,  $)), 

for any formula of set theory.' 

A4. UNION: 
V X 3 y V Z v U ( U E Z A Z E X - t U € Y ) .  

A5. POWER-SET: 

V X 3 Y V u ( u S  X + U € Y ) .  

A6. REPLACEMENT: Let 4 be a formula such that 9 = { (x ,  y )  : 4 ( x ,  y ,  @)} 
is a function. Then 

V X 3 Y  ( 9 " X  c Y) .  

A7. INFINITY: 

3Y [OE Y A V U  ( U E  Y +  {U} E Y )  

A8. REGULARITY: 

(VS # 0 )  (3x  E S )  [x n S = 01 

3 stands for p l ,  . . ., pn.  
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A set S is transitive if 

(3.1) v x ( x E S + x - c  S).  
(Similarly, a transitive class is a class which satisfies (3.1).) One can define 
ordinal numbers as transitive sets which are well-ordered. Then ordinal 
numbers are representatives of well-ordered sets and each ordinal a is the 
set of all smaller ordinals: 

a = ( p  : /?<a>. 

It follows from the axiom of regularity that every set has a rank, and that 
the universe V is the union of sets 

V = U V ,  
aeon 

where On denotes the class of all ordinals and V, is the set of all sets of 
rank less than a: 

V, = 0, V,,, = Y(V,), V, = u V, (ct limit). 

Transitive sets and classes are in a way a generalization of well-ordered 
sets. They have two important properties: 

1. No two transitive sets are isomorphic (that is, there is no one-to- 
one mapping n such that x E y c) nx E ny). The only automorphism of a 
transitive set is the identity. 

2. We can carry out induction and recursion on elements of a transitive 
class, like on ordinals (so-called E-induction and erecursion). E.g., if 

[(V. E Y )  +)I + 4(v),  
for every y in a transitive class T, then every y E T has the property 4 (see 
Problem 3). 

3.3. Transitive models of ZF 

A natural way of interpretation of set theory in set theory is by the con- 
struction of models. We consider a class & and a binary relation E on A, 
and interpret the formulas of set theory as follows: We define 

& b 4  
(& satisfies 4 )  inductively on the complexity of 4:  

& ! = x ~ y  iff x E y  
A k Vx E 4 iff for all x E A, & != 4(x), 
etc. 
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Let us restrict ourselves to the simple case when E is the ordinary E. 

For the purpose of getting models of set theory, it suffices to consider 
transitive classes only, in view of the following theorem, which is proved 
by transfinite or erecursion. 

THEOREM 3.1. (Isomorphism Theorem). If .A k Extensionality, then A is 
isomorphic to a transitive class. 

It is easy to see that if 4(2) is a formula without quantifiers, then it is 
true in a transitive model A if and only if 4 is true in the universe. The same 
is true even for a formula 4 with quantifiers, provided the only occurrence 
of quantifiers are restricted quantifications, 

(VX E v), (3x E y >. 

A k 4(x) iff +(x), 

9 ( x )  = 9 ” y x ) ;  

97”() = {v 4(X,Y)}? 

Call a formula 4 absolute (for a given transitive 4) if for all x E A, 

Similarly, an operation 9 is absolute if for all x E 4, 

here 

P y x )  = ( y  E A : A k +(x, y ) } ,  

where 4 is the formula which defines 9. 
We can use the above observation about restricted quantification and 

similar rules like ‘if 4 and 9- are absolute then (3y E F(x)) 4 is absolute’ 
to verify that many fundamental properties are absolute. In particular, if 
A Is a transitive class which is closed under the operation { }, i.e., x, y E A 
implies {x, y }  E A, then the following formulas are absolute: 

x 5 y ,  x = 0, x is a pair, x is a singleton, x is a binary relation, x is a 
function, x is transitive, x is an ordering, u x, x-y, x x y ,  dom (x), 
rng (x ) ,  E n x2 (= {(u, v )  : u EX, V E  x ,  U E  u } ) ,  x u y ,  x is an ordinal,’ 
x is a limit ordinal, x is a successor ordinal, etc., 

On the other hand, P(x) is not absolute, and neither is the formula ‘x is a 
cardinal number’. 

We say that a transitive class A is a model of ZF if it satisfies all the 
axioms of ZF. There is a useful criterion for transitive classes to be models 
* Caution: we have to use the equivalence ‘x is an ordinal iff x is transitive and linearly 
ordered by E’, which follows from the axiom of regularity. 
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of ZF. A transitive class A? is almost universal if every subset of A is in- 
cluded in an element of A: 

(VS c A) ( 3 Y E A )  [ S  c Y]. 

If A is transitive and almost universal, then .k satisfies all the axioms of 
ZF except possibly Infinity and Comprehension. Infinity is obviously no 
probIeni since A? contains infinite sets, and as soon as A satisfies Com- 
prehension, it must satisfy Infinity also. 

To verify that A? satisfies Comprehension, it suffices to verify that it 
satisfies eight particular instances of it. The following operations are called 
Godel operations (note that they are absolute for transitive classes closed 
under { }): 

T I ( X  y )  = { X ,  y>, 
F2(X,  Y )  = X - Y ,  
F 3 ( X ,  Y )  = X x  Y, 
F 4 ( X )  = dom ( X ) ,  
F5(X)  = E ~ X ’ ,  
F 6 ( X )  
F 7 ( X )  
9 B ( X )  

= {(a,  b, c) : (b, c, a )  E XI, 
= { (a ,  b, c) : (c, b, a> E XI, 
= {(a,  b, c )  : (a, c, b )  E X } .  

THEOREM 3.2. Zf A? is transitive, almost universal and closed under Godel 
operations then A? is a model of ZF. 

PROOF. Let A? be a transitive class, almost universal and closed under 
gl, ..., 9 8 .  We will show that A satisfies the axioms Al-A8. 

Extensionality: A? is transitive. 
Pairing: A? is closed under { }. 
Union: If X E  A?, then U”X = U X E d and is a set; since .k is 

Power-set: The same argument, except that 9’”(X) = P ( X )  n A. 
Regularity: A? is transitive and Regularity holds in the universe. 
Znjinity: There is a subset Y of A? satisfying A7. Since A is almost 

universal, Y is included in some X E  A?. As soon as we have Comprehension, 
Y becomes a set in A? satisfying A7. 

almost universal, U” Xis included in some Y E  A. 

Replacement: Let 

9 = { ( x ,  Y )  E d2 : A I= 4(& v)}, 
X I= 9 is a function. 
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We show that A k V X 3 Y  ( 9 " X  E Y).  Let 59 : dZ + A be the function 
defined by 

y = g ( x )  iff dZ k 4 ( x , y ) .  

If X E A?, then there exists Y E  A such that 3 " X  S. Y. Then dZ k ~ " X G  Y. 
Comprehension: Let 4 be a formula; we show that for every X E dZ, the 

set3 

(3.2) Y = { ( u l ,  ...) u,) E X "  : A k 4(2) )  
is in A. We do that by showing that there is an operation 9, a composition 
of Godel operations, such that for every X E  dZ, if Y is as in (3.2), then 
Y = g ( X ,  X,, ..., X,) for some X,, ..., X ,  E A. The proof is by induction 
on the complexity of 4. 

(i). 4 is an atomic formula. We will handle one typical case, the other 
cases being similar (including the cases involving a parameter). Let 
4 ( u l ,  ..., u,) be ui E u j ,  where i # j. Thus we have 

Y = {(ul,  ...) u,) : u1, ...) u, E X ,  ui E U j } .  

We find 9 by induction on n. Let u = (u, , ..., u , - ~ ) .  
Case 1. i = n - 1 , j  = n. We have 

Y = ((0, un-,, u,) : u E X n - 2 ,  (u,-,, u,) E X 2 ,  un-,  E u,} 
= { (u,  u,- 1 ,  u,) : u E X" - 2, (un- 1 ,  u,) E F 5 ( X ) }  
= 2F6(F5(X) x X n - 2 ) .  

Y = ( ( u ,  u,- 1 ,  u,) : u € X n - 2 ,  (u,, u,-l) E 9-5(X)) 

Case 2. i = n, j = n-  1. Here 

= S 7 ( F 5 ( X )  x X n - 2 ) .  

Case 3. i, j # n. By the induction hypothesis, there is 59 such that 

{ (u , ,  ..., u n - l )  : 2.41, ..., u,-1 E X ,  ui E U j }  = qx). 
So we have Y = 3 ( X )  x X. 

Case 4. i, j # n-  1. By the induction hypothesis, there is 3 such that 

( ( u ,  u,) : u E X n - 2 ,  u, E X, ui E U j >  = 3 ( X ) .  

Y = { (u ,  u,- 1, u,) E X" : ui E U j >  = 9 * ( 3 ( X )  x X). 

Thus we have 

For simplicity, we drop the parameters in 4. 
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(ii). The connectives. Let Yi = {(ul, ..., u,) E X" : 4i(c)}, i = 1, 2. Then 

{ (u l  ) ...) un) E X" : 1 &(ii)} = X"- Yl = 3 q X " ,  Y1) ,  

( ( ~ 1 ,  un) E Xn : 41(u'), 4 Z ( ; ) }  = Y1 n Yz = TZ(Y1,  F z ( Y ,  9 Yz))* 

(iii). The existential quantifier. Consider a formula 

30 4(uly u n 7  u )  

and assume that there is 9 such that for every Z E 

E JZ such that 
there exist Z, ..., Z,  

{ ( G ,  v )  E Zn+' : k4(;, u) }  = %(zj z1, ...) 2,). 

We will show that for every X E A, there exist X, , . . ., X,, E d such that 

(3.3) ( U E X "  :..dk%C$(s,Z))] =X",dom(g(X,+, ,X~,  . . - 7 X k ) ) .  

We need the following lemma: 

LEMMA 3.3. Let 4 ( x ,  y') be a formula. For each set So there is S 2 So such 
that for all y' E S, 

h 4 ( x ,  y') + (3x E S )  C$(& 9 ) .  
PROOF. If C is a class, denote 

6 = {x E C : (Vy E C )  (rank(x) < rank(y))}; 

then 6 is a set and 6 E C. Let 

c, = {x : w, v)), 
and let 

Y ( X )  = xu u ( 6 , : y E X ) .  

By recursion, let S ,  = 9-(So), ..., S,+, = 9-(Sn), ..., S = u:= S,. The 
set Swill do because if y' E Sand  3x 4(x, y') then (3x E S )  @(x, y'). 

Now let X E A. Using Lemma 3.3, there exists S G A such that S 2 X 
and for all u' E X ,  

(30 E A) [A I= 4(;, u ) ]  iff (3u E S )  [A 1 b(;, u ) ] .  

Since 4 is almost universal, there exists X,,, E A& such that Xk+, 2 s. 
Then for all E X, 

(3u E A) [d k 4(C, u ) ]  iff (30 E Xk+l) [A k 4(G, .)I. 
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Now let X , ,  ..., X ,  E A be such that 9(X,+ ,, X , ,  ..., X,) c X:: and 
for all E;, V E X , + , ,  

A? k 4(G, v) iff (ii, v) E 9 ( X k  + , X ,  , . . . , X,). 
It follows that for all i; E X ,  
d' k 3v 4(i;, v) iff (3v E A) != d(G, v) 

iff (3v E A',+,) A k 4(G, u )  

iff (u,, ..., u , , ) ~ X " n d o m ( ~ ( X , + , , X ~ ,  ...,X'), 
iff ( ~ ~ ~ ~ , + 1 ) ( ~ , ~ ) ~ ~ ( ~ , + 1 , ~ 1 ,  ..., X,) 

which proves (3.3), and completes the proof of the theorem. 

3.4. The constructible universe 

It will be proved in this section that there exists a least transitive model 
of ZF which contains all ordinals and that this least model satisfies the 
Axiom of Choice. That will establish the consistency of the Axiom of 
Choice with the axioms of ZF. 

By the results of the preceding section, the ordinals are absolute, and 
every transitive model has to be closed under Godel operations, which are 
absolute. This reasoning leads to the following definition: The closure cl(S) 
of a set S is the least S' 2 S closed under Godel operations; in fact, 

where 
cI(S) = So u S ,  u ... u S,, u ..., n E o, 

So = S ,  S,,,, = S,, u { F i ( x ,  y )  : i = 1, ..., 8, X , Y  E S,,}. 
Define 

Lo = 0, 

La = U L, if CI is a limit ordinal, 
@ < a  

(3.4) 

L u + 1  = @(La) n (k7 u {La}),  
and let L be the class 

L =  U L a .  
aEOn 

It is easy to see that L is transitive, almost universal and closed under 
Godel operations; hence: 

THEOREM 3.4. L is a model of ZF. 

ible sets. 
L is called the constructible universe and the elements of L are construct- 
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The class L can obviously be well-ordered: one simply goes through the 
construction (3.4) and keeps enumerating the constructible sets by ordinals; 
this is possible because every new constructible set is either Si(x, y ) ,  where 
x and y have been enumerated, or L,. Consequently, if every set is con- 
structible, then the universe can be well-ordered, and the Axiom of Choice 
holds. 

AXIOM OF CONSTRUCTIBILITY: V = L, i.e., every set is constructible. 

THEOREM 3.5. L C Axiom of  Constructibility, and therefore L is a model of 
ZF + Axiom of Choice. 

PROOF. Since every set in L is constructible, it suffices to show that the 
form u 1 a 

x is constructible 

is absolute for L. This can be done in a succession of simple observations: 
(a). The operations 3 i ( X )  = S j ' ( X x X ) ,  i = I ,  ..., 8, are absolute. 
(b), If X E  L, then 'iYi(X) E L ,  i = 1, ..., 8. 

(d). The following formula $(g ,  x) is absolute: 

dom (9) = w A g(0 )  = X A (Vn E 0) [g(n+ 1) = g(n)  u u!= g i ( g ( n ) ) ] .  

(e). If X E  L and +(g ,  x) then g E L .  
(f). The operation X ( X )  = 9 ( X )  n cl ( X  u ( X I )  is absolute. 
(g). If X E L, then X ( X )  E L .  
(h). The following formula $(f, a) is absolute, 

(c). w EL. 

domf = a + l  A f ( 0 )  = 0 
A (VP E domf) [P limit -, f (B)  = f "PI 
A (VP < a) [ f ( P + 1 )  = = q f ( a ) > l .  

(i). If a E L and $(A a), then f E L. 
(j). The formula X E L ,  is absolute. 

The proof of Theorem 3.5 actually gives a somewhat stronger result: 

I f A  is a transitive model of ZF, then the formula 'x is constructible' is 
absolute for  d. (See Problem lo.) 

Thus if &' is a transitive model of ZF and contains all ordinals, then d 
contains all constructible sets. Hence L is the least transitive model of ZF 
containing all ordinals. 



40 CONSISTENCY OF THE AXIOM OF CHOICE [CH.3,  $ 5  

3.5. Problems 

1. For every set S, there exists the transitive closure of S, TC(S), which is 
the least transitive T 2 S. 

[Hint: TC(S) = S u u S u u S u ...,I 
2 .  Prove the following stronger version of Regularity: If C is a nonempty 
class, then for some x E C,  x n C = 0. 

[Hint: Let S E C, S n C # 0. Apply AS to the set TC(S) n C . ]  

3. Use Problem 2 to prove the einduction. 

4. Prove the following version of erecursion: If C is a class, then there is a 
unique class HC such that 

x € H C  iff x E C a n d x c H C .  

5. Prove that V = UaeOn V,, using the einduction. 

6. Use Regularity to show that the following principle implies Replacement: 

V X 3 Y  ( V U  E X )  [3v @(u, v, p') + (3u E Y )  4(u, v, $)I 
7. Repection Principle. Let 4 be a formula. For each set So,  there is a set 
S 2 So such that for all x' E S, 

4(2) iff S k 4(.'), 
[Hint: Apply Lemma 3.3 to all subformulas of 4.1 

8. Using the Axiom of Choice, show that the set S in Lemma 3.3 can be 
found such that IS1 = ISoI (provided So is infinite). 

[Hint: In the proof, choose one element in each c,.] 
9. Using the Axiom of Choice, prove the stronger version of the Reflection 
Principle which requires that IS( = ISoI (provided So is infinite). 

[Hint: Use Problem 8.1 

"10. There is a theorem 0 of ZF such that the formula 'x is constructible' 
is absolute for every transitive A? which satisfies 0. 

has the closure properties mentioned in (a)-($ 
in the proof of Theorem (3.5).] 

"11. 2" = N, holds in L. 
[Hint: Assume V = L, and prove that if X c w, then X E  La for some 

a < wI. Let p be such that X E L ~ .  By the Reflection Principle, there is a 

[Hint: 0 says that 
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countable S containing all n E o, X and p, satisfying Extensionality and 0. 
Let M be the transitive isomorph of S.  X E La for some a E M ;  a is countable.] 
*12. L satisfies the Generalized Continuum Hypothesis (2', = Na+l for 
every a). 
[Hint: Generalize Problem 1 I.] 
Let A be a set of ordinals. Let 

LCAJ = U LaCAI9 
ason 

where 
L,[AI = 0, 

L,[A] = u LB[A] if CI is limit, 
B<a 

La+,[AI = g(La[AI) n cl(L,EAI u {La[AI} u {La[AI n A ) ) .  
13. Show that: 

(a) A€L[AI; 
(b) U A l  k (V = W I ) ;  
(c) L [ A ]  is a model of ZF+Axiom of Choice; 
(d) L[A] is the least model of ZF which contains all ordinals and A .  

14. Show that V, = L, is a model of ZF-Infinity. 
15. Let A be a transitive model of ZF. Show that: 

(a) 9'"(~)  = P(x)  n A; 
(b) V t  = Va n A; 
(c) if 4 k 1x1 = IYl, then 1x1 = IYI; 
(d) if a is a cardinal (resp. regular cardinal, singular cardinal), then 

J? k a is a cardinal (resp. regular cardinal, singular cardinal). 

A relation p on a set A is well-founded if for every nonempty X c A there 
is u E X such that there is no u E X with xpu. 

16. A relation p on A is well-founded if and only if there is a mapping n 
from A to ordinals such that xpy implies nx < ny. 

17. Using the Principle of Dependent Choices, show that p is well-founded 
if and only if there is no infinite sequence xo  , x i ,  x2 ,  . . . such that x1 px, , 
x2px1, etc.. 

18. The formula ' p  is well-founded' is absolute for models of ZF. 

or as 3n $(n, p), where 4 and $ are absolute.] 

[Hint: Use transfinite or erecursion.] 

[Hint: Use Problem 16. The formula can be written either as V X  4(X, p )  
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*19. Let &,A- be transitive models of ZF which have the same sets of 
ordinals. If one of them satisfies the Axiom of Choice, then 4 = N. 

[Hint: A and .N have the same subsets of On x On. Assume d k Axiom 
of Choice. First show that A c N. If X E  d, then E on TC({X}) can be 
represented by a well-founded relation p on ordinals. By assumption, 
p EN, and since well-founded, it is isomorphic to a transitive set which 
must be TC({X}) and so X E N .  To show N c A, use the €-induction. 
Prove that X E M ,  X c Y and Y E  ,I implies XE A; this uses the Axiom 
of Choice in A.] 

For any set X and any natural number n, define P ( X )  as follows: 

@'"(X) = X ,  P + l ( X )  = @ ( P ( X ) > .  

Consider the following statements: 

K ( n )  For every set S there exists an ordinal a and a one-to-one function 
,f which maps S into gn(a).  

K(0) is equivalent to the Axiom of Choice. K( 1) is equivalent to the Selection 
Principle (Froblem 4.12). 

The following result is a generalization of Problem 19. 

"20. Let n be a natural number. Let -X, M be transitive models of ZF such 
that ( P " ( a ) ) "  = (.Pn"(a))" for every ordinal a. If one of the models 
satisfies K(n) ,  then = N .  

The class of all ordinally definable sets, OD, is the closure under Godel 
operations of the class of all V,, a E On. 

*21. The ordinally definable sets are exactly all the sets of the form 

X = { U  : 4 ( ~ ,  ~ 1 , .  * ., an)}, 

where eel,. . ., c(, are ordinals. 
[Hint: As in Theorem 3.2, one can prove that X can be obtained by ap- 

plication of Godel operations to V,,, . . ., Ven and additional parameters 
V ? , ,  . . ., V,,.l 

22. There is a class HOD such that x E HOD if and only if x E OD and 
x c HOD. 

[Hint: Use Problem 4.1 
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*23. HOD is a model of ZF + Axiom of Choice. 

use Problem 21.1 
[Hint: To show that HOD is almost universal, prove that V, n HOD €OD; 

This gives another consistency proof of the Axiom of Choice. Caution: 
‘ x  is ordinally definable’ is not absolute. 

3.6. Historical remarks 

The consistency of the Axiom of Choice and of the Generalized Con- 
tinuum Hypothesis was proved by Godel [1938, 1939, 19401, who also 
invented constructible sets. Other contributors to the theory of transitive 
models include Shepherdson [ 19511 (transitive models), Mostowski [1949] 
(the Isomorphism Theorem), Montague [ 19611 (the Reflection Principle) 
and Levy [1957] (L  [A]). The result in Problem 19 was proved by VopEnka 
and Balcar [1967]; the generalisation in Problem 20 is due to Monro [1972]. 
The basic results about ordinally definable sets are due to VopEnka and 
Balcar [1967] and Myhill and Scott [1967]. 



CHAPTER 4 

PERMUTATION MODELS 

4.1. Set theory with atoms 

Having established the consistency of the Axiom of Choice, our next goal 
will be to show that the Axiom of Choice is independent from the other 
axioms; that is, to show that it is consistent to assume that the Axiom of 
Choice fails. 

The independence of the Axiom of Choice will be the main result of 
Chapter 5. In the present chapter, we describe an older method which, 
although it does not solve the problem of independence of the Axiom of 
Choice in the ordinary set theory, sheds some light on the problem by 
establishing its independence in the axiomatic set theory with atoms. 

The set theory with atoms, ZFA, is a modified version of set theory, and 
is characterized by the fact that it admits objects other than sets, atoms. 
Atoms are objects which do not have any elements. 

The language of ZFA consists of = and E and of two constant symbols 
0 and A (the empty set and the set of all atoms). The axioms of ZFA are 
like the axioms of ZF, except for the-following changes: 

0. Empty set 3x (x E 0). 

Atoms are the elements of A ;  sets are all objects which are not atoms. 

A1 . Extensionality 

A. Atoms VZ[ZEA++Z # OAi3X(XEZ)]. 

(V set X )  (V set Y )  [Vu ( u  E Xt, u E Y )  - X = Yl .  

A8. Regularity 
(V nonempty S )  (3x E S )  [x n S = 01. 

Note that ‘Xis nonempty’ is not the same as ‘ X  # 0’; it is the same only if 
X is a set. Some operations make sense only for sets, e.g., O X  or Y ( X ) ,  

44 
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some also for atoms, like { x , y } .  If we add to ZFA the axiom A = 0, 
then we get ZF. However, we are now more interested in the case A # 0. 
Incidentally, the theory 

ZFA + A is infinite 

is consistent, provided ZF is consistent (see Problem 1). 
The development of the theory ZFA is very much the same as that of ZF. 

(Caution: In the definition of ordinals, we have to insert the clause that 
an ordinal does not have atoms among its elements.) One can define the 
rank of sets and build a hierarchy analogous to the Va)s. For any set S, 
let 9 ' " (S )  be defined as follows: 

BO(S) = s, 
Ba+ l (S )  = B" (S)  u B(B"(S)) ,  

B"(s) = U B'B(s) ( a  limit) 
B<a 

and let 
B " ( S )  = u B"(S). 

v = 9 " ( A ) .  

c E O n  

Then we have 

The class 9 " ( 0 )  is a model of ZF and is called the kernel. Note that all 
the ordinals are in the kernel. 

A transitive set does not necessarily contain 0 and may have nontrivial 
automorphisms (e.g., the set { a l ,  a,}, where a,, a2 E A). A transitive class 
which is almost universal and closed under Godel operations is a model of 
ZFA, provided it contains 0 (that is, when we want to interpret E as E, 
0 as 0, and atoms as atoms). 

4.2. Permutation models 

The underlying idea of permutation models is the fact that the axioms of 
ZFA do not distinguish between the atoms, and that they are used to 
construct models in which the set A has no well-ordering. 

Let n be a permutation of the set A .  Using the hierarchy of P ( A ) ) s ,  
we can define nx for every x as follows: 

n(0) = 0, n(x)  = n"x = {n(y) : y E X }  

(either by €-recursion or by recursion on the rank of x ) .  Under this defini- 
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tion, n becomes an E-automorphism of the universe and one can easily 
verify the following facts about n: 

(a). x E y t--, x x  E ny. 

(c). rank (x) = rank (nx). 
(d). n { x ,  U }  = {nx, v},  ~ ( x ,  V )  = (EX, XY). 
(e). If R is a relation, then ~ E R  is a relation and (x, y )  E R t--, (EX, xy)  E R. 
(f). Iff is a function on X ,  then nf is a function on nX and 

(g). nx = x for every x in the kernel. 

(b). +(xi ..., x,) t--, +(.xi --., 71~"). 

(nf )(.XI = 4.f (4). 

(h). (. . P I X  = X(P(X) ) .  
Let 9 be a group of permutations of A .  A set 9 of subgroups of 9 is a 
normalfilter on 9 if for all subgroups H, K of 9: 

(i) 9 E 9; 
(ii) if H E  9 and H E K, then K E 9; 

(iii) if H E 9 and K E 9, then H n K E 9; 
(iv) if n E 9 and H E  9, then nHn-l E 9; 
(v) for each a E A ,  {n E 9 : na = a} E 9. 

For each x, let 
sym, (x) = {n E 9 : nx = x}; 

sym, (x) is a subgroup of 9. 

class 
Let 9 and 9 be fixed. We say that x is symmetric if sym ( x )  E 9. The 

V = {x : x is symmetric and x c V }  

consists of all hereditarily symmetric objects (cf. Problem 3.4); we call '9- 
a permutation model. 

THEOREM 4.1. 9'- is a transitive model of ZFA; V contains all the elements 
of the kernel and also A E V .  

PROOF. Obviously, V is transitive. To see that V is closed under Godel 
operations, it suffices to show that for all x, y ,  

sym (Fi(x, y ) )  2 sym (x) n sym ( y ) ,  i = 1, ..., 8.  

We leave it to the reader to verify this. To show that V is almost universal, 
let us prove that for each c1, the set P ( A )  n V is symmetric; actually, 
we show that sym ( P a ( A )  n V )  = 9. It is easy to see that for all x, 

sym (nx) = n sym (x) - n-'; 
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thus if x is symmetric and n E 3, then nx is symmetric, and so, by induction, 
if x E 'V, then nx E V for all x, and all n E 8. Since rank (nx) = rank (x), 
it follows that n ( P ( A )  n V )  = P ( A )  n 9'- for all a, all n E 3. Thus 
is transitive, almost universal and closed under Godel operations. It remains 
to be shown that 8 " ( 0 )  E V and A E V .  The former is true because 
sym ( x )  = 9? for all x E P " ( O ) ,  and the latter is true because sym ( A )  = 9? 
and sym (u) E 9 for each a E A .  

Most of the permutation models we will consider will be of the following 
simple type: Let 9? be a group of permutations of A .  A family I of subsets 
of A is a normal ideal if for all subsets E, F of A :  

(4.1) (i) O E I ;  
(ii) i f E E I a n d F c  X,thenFEI; 
(iii) if E E  I and FE I, then E v F E  I; 
(iv) if n E 9? and E E I,  then n"E E I; 
(v) for each a E A,  (u) E I. 

For each x, let 

fixg(x)= { n ~ 8 : n y = y  fora l lyEx};  

fix, (x) is a subgroup of 9. 
Let 9 be the filter on 9 generated by the subgroups fix (E), E E I. 
9 is a normal filter, and so it defines a permutation model V .  Note that x 
is symmetric if and only if there exists E E I such that 

fix (E) E sym (x). 

We say that E is a support of x .  
Now, everything is ready to start with applications of permutation models. 

Before doing so, one more remark will be useful. When constructing 
permutation models, we shall always work in the theory ZFA+Axiom 
of Choice. (For the consistency, see Problem 1). If 'Y is a permutation 
model, 'Y contains all elements of the kernel and so the Axiom of Choice 
holds in the kernel. In particular, every x E g'"(0) can be well-ordered. 
Therefore any x E 'V can be well-ordered if and only if there is a one-to-one 
mapping f of x into the kernel. For any such f, however, nf = f if and only if 
n E fix ( x ) .  Thus we have 

(4.2) 'V k ( x  can be well-ordered) iff fix ( x )  E 9. 
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4.3. The basic Fraenkel model 

We present a simple example of a permutation model that does not satisfy 
the Axiom of Choice. 

Assume that the set A is countable.' Let 9 be the group of all permuta- 
tions of A,  and let Z be the set of all finite subsets of A .  Obviously, Z satisfies 
the conditions (1.1); let V be the corresponding permutation model. 
Note that x is symmetric if and only if there is a finite E c A such that 
nx = x whenever nu = a for all a E E. 

It is easy to see that the subgroup fix ( A )  is not in the filter generated by 
{fix ( E )  : E c A finite}: For every finite E c A ,  one can easily find n E 9 
such that n ~ f i x  ( E )  and 7c4fix ( A ) .  By (4.2), it follows that the set has 
no well-ordering in the model V .  Thus we get: 

THEOREM 4.2. The Axiom of Choice is unprovable in set theory with atoms. 

4.4. The second Fraenkel model 

In this section, we shall construct a model in which the Axiom of Choice 

Assume that the set A is countable and divide it into countably many 
fails even for countable families of pairs. 

disjoint pa&: 
rn 

Let 3 be the group of all those permutations of A which preserve the pairs 
P,,, i.e., 

n({an* bn)) = { a n ,  bn}, 12 = 1,2, - * . -  

Let I be the ideal of finite subsets of A .  Clearly, Z is a normal ideal. A set 
x is symmetric iff there is k such that nx = x whenever n E 9 and 

nuo = a o ,  nbO = b,, ..., 7cUk = U k ,  Zbk = bk. 

Let V- be the permutation model determined by 9 and 1. Then 9'- has 

(a). Each Pn is in V. 
(b) The sequence (P,, : n E w )  is in V;  thus the set {P, : n E w }  is count- 

(c) There is no function f E V such that dom f = o and f ( n )  E P,, for 

the following properties: 

able in y .  

each 11. 

Countnble means always 'infinite countable' 



CH.4, $51 THE ORDERED MOSTOWSKI MODEL 49 

Proof. (a). zP, = P, for each n and each z E 9. 
(b). n((P,  : n E o)) = (P,, : n E o) for each z E 9. 
(c). Assume that f is such a function and {ao, b, , . . ., a,, b,} is its support. 

Then nf =f, n(k+ 1) = Let 71 E fix {ao, b o ,  ..., a,, bk)  and XUk+ 

k +  1 and n ( f ( k +  1)) # f ( k +  l), a contradiction. 

{ P ,  : n E o} and we have the following: 

THEOREM 4.3. The Axiom of Choice for countable families of pairs is un- 
provable in set theory with atoms. 

= b,, 

Thus in the model V there is no choice function on the countable family 

4.5. The ordered Mostowski model 

In both examples in Sections 4.3 and 4.4, the Axiom of Choice is violated 
in a very strong way; in each case there exists a family of finite sets which 
does not have a choice function (see Problem 3). The present example shows 
how to violate the general Axiom of Choice and still preserve a weaker 
version; in this case, the Ordering Principle (and a fortiori the Axiom of 
Choice for families of finite sets). 

First, a few words about permutation models in general: Let V be a 
permutation model (given by 9 and S) and let C G V be a class. We say 
that C is symmetric if sym ( C )  E S, where 

sym ( C )  = {n E 9 : n"C = C}. 
If for each a, C, = C n B " ( A )  is the set of all x E C of rank less than a: 
we notice that if C is symmetric, then C, E V for each a (and C n x E V 
for each x E V). 

If one works in a set theory which admits classes, like the Godel-Bernays 
set theory, then one can consider symmetric classes as classes of the permuta- 
tion model. In our case, when we use classes informally, symmetric classes 
serve as a canonical way of construction of sets in the model V .  

LEMMA 4.4. Let 9 be a group of permutations of A and let I be a normaf 
ideal of supports; let V be the permutation model given by 9 and I .  Then 
the class of all pairs (E, x )  such that E E I ,  x E V and E is a support of x ,  
is symmetric. 
PROOF. If n E 3, then 

fix (nE) = n fix ( E )  . z-l, 
sym ( z x )  = z sym ( x )  * z-'. 

Thus if E is a support of x ,  then zE is a support of nx. 
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Now we shall construct the Mostowski model. Assume that the set A 
is countable, and let < be an ordering of A such that A is densely ordered 
and without smallest or greatest element (thus A is isomorphic to the 
rationals). Let 9 be the group of all order-preserving permutations of A ,  
and let I be the ideal of finite subsets of A .  

Let V be the permutation model given by 9 and Z. We shall show that 
V has the following properties: 

(a). The set A cannot be well-ordered in V. 
(b). There is a linear ordering < of -Y which is a symmetric class. 
It is easy to see that fix E $ fix A for any finite E c A ,  and so we 

have (a). 
To prove (b), we need several lemmas. The first one is crucial and shows 

that this model 9'- has the important feature that every x E V has a least 
support. 

LEMMA 4.5 

support of x. 

where x E -Y and E is the least support of x,  is symmetric. 

(a). I f  El is a support of x and E, is a support, then E = El n E, is a 

(b). Every symmetric x has a least support. The class of all pairs (x, E ) ,  

'PROOF. (a). The proof is based on the following fact, which can be proved 
more easily by drawing a picture than in writing, and thus we leave it to 
reader's imagination: Let El and E, be finite subsets of A,  E = El n E,. 
If z E 9 is such that .(a) = a for each a E E, then we can find a finite 
number of permutations n i p 1 ,  ..., nnpn such that ni E fix ( E l )  and 
p i  E fix (E,) for each i = 1, ..., n, and n = nipi ... nnpn. Thus fix ( E )  = 

[fix (En)  u fix (E,)], where [XI  denotes the group generated by X .  In 
particular, if both El and E, are supports of x and n E fix ( E ) ,  then 
nx = nipi ... nnpnx = x and so E is a support of x. 

(b). The least support of x is the intersection of all supports of x. Since 
their number is finite, the intersection is a support of x by (a). The rest is 
as in Lemma 4.4: If E is the least support of x, then nE is the least support 
of nx. 

LEMMA 4.6 
(a). Zf E is a support of x and nE = E, then nx = x. 
(b). There is a symmetric class F which is a one-to-one function of V into 

On x I .  
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PROOF. (a). Since every n E $9 is order-preserving, it follows that if xE = E, 
then n E fix (E) .  

(b). For each x E Y", let orb ( x )  be the orbit of x :  

orb ( x )  = {nx : 7t E 9}. 

The orbits are pairwise disjoint and sym (orb (x))'= $9 for each x .  Thus 
if we enumerate the orbits by ordinals, the enumeration is a symmetric class. 
Let F,(x)  be the number of orb ( x )  and let Fz(x)  be the least support of x ,  
for each x E V. Let F(x)  = (F,(x),  Fz(x));  obviously, F is symmetric. 
To see that it is one-to-one, note that if x and nx are in the same orbit 
and if E is the least support of x,  then nE is the least support of nx, and 
we have x = nx if and only if E = nE by (a). 

The rest is easy. The ordering < of A is in V since the group $9 consists of 
order-preservingpermutations and so sym (<) = $9. The set I consists of 
finite subsets of a linearly ordered set and thus can be linearly ordered 
(lexicographically). Therefore the class On x I can be linearly ordered 
(lexicographically again). And since we have a symmetric one-to-one map- 
ping of 'Y into On x I, we obtain a linear ordering < of V,  which is a 
symmetric class. Thus every set can be linearly ordered in V. (As a con- 
sequence, every family of finite sets has a choice function.) This constitutes 
the proof of the following theorem. 

THEOREM 4.7. The Axiom of Choice is independent from the Ordering 
Principle in set theory with atoms. 

4.6. Problems 

1. The theory (ZFA + Axiom of Choice + A is infinite) is consistent relative 
to ZF+Axiom of Choice. 

[Hint: Let C be an infinite set of infinite subsets of o. Construct a model 
ll = UaeOnIIa, where 

n, = c, n,, 1 = nu u 9'(nu>- (0). 

Choose a, E C, and interpret it as the empty set, and interpret C -  {a,)  
as atoms. If X E  n, then each well-ordering < E X x  X is also in n.] 
2. If x can be well-ordered in V, then 9 ( x )  can be well-ordered in V. 

[Hint: Use (4.2).] 
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3. In the basic Fraenkel model, the family S = {{a,  b} : a, b E A }  has no 
choice function. Consequently, A cannot be linearly ordered. 

4. In each of the three models constructed in this chapter, the set A is 
Dedekind finite (D-finite). 

[Hint: X is D-infinite iff 1x1 2 No .] 

5. In both the basic Fraenkel model and the Mostowski model, the set 
P ( A )  is Dedekind finite. 

[Hint: For every finite E c A ,  there are only finitely many subsets of A 
which have E as a support.] 

6. For every infinite set X ,  B(B(X)) is D-infinite. 
[Hint: Consider the set (Sn)2=o, where S,, = ( Y  c X :  IYl = n}.] 

Call a set amorphous iff it is infinite but is not a union of two disjoint 
infinite sets. 

7. In the basic Fraenkel model, the set A is amorphous. 

8. A set S i s  finite if and only if everynonempty X c B ( S )  has a c-maximal 
element. 

[Hint: Consider the set X = {x c S : x is finite}.] 

Call a set S T-Jinite if every nonempty monotone X c B ( S )  has a 
E -maximal element. 

9. Every finite set is T-finite. Every T-finite set is D-finite. 
[Hint: S is D-finite iff IS I !I: No .] 

10. Every amorphous set is T-finite. 
[Hint: Let S be amorphous and T-infinite; let X be a c-chain in P ( T )  

without a maximal element. Show that the order-type of X must be w and 
derive a contradiction by dividing w into even and odd numbers.] 

This together with Problem 7 shows that one cannot prove that every 
T-finite set is finite. 

11. Every infinite 1inea;ly ordered set is T-infinite. 
[Hint: Consider the c-chain (Sx : x E S } ,  where S, = { y  E S : y < x}.] 
This together with Problem 4 shows that we cannot prove that every 

D-finite set is T-finite. 



CH.4, $61 PROBLEMS 53 

Consider the following statement: 
SELECTION PRINCIPLE. For every family 9 of sets, each containing at least 
two elements, there is a function f such that 

for each set S in the family 9. (We say that f is a selector on 9.) 

12. The Selection Principle is equivalent to the following statement (K(2) 
of Problem 3.20): 

For every set A4 there exists an ordinal a and a one-to-one function g which 
maps M into B(a) .  

Consequently, the Selection Principle implies the Ordering Principle. 
[Hint: (a). Assume that the Selection Principle is true. Let M be a set 

and let f be a selector on B ( M ) .  By recursion on the length of the sequences, 
construct sets M , ,  where t ranges over transfinite sequences of 0’s and 1’s: 
M ,  = f ( M ) ,  M I  = M-M,, MT, = f ( M , ) ,  Mr; = M,-MT, ,  and 
M ,  = n s C t M s  for t of limit length. For some ct, all M,’s are either empty 
or singletons, for all t E “2. This gives a one-to-one mapping of M into “2. 

(b). Assume that the statement is true. It suffices to prove the Selection 
Principle for families of sets which are subsets of some P(a ) .  Let 9 be 
such a family. For each S E 9, S E B ( a ) ,  let p be least such that /3 E X 
for some X E S  and /ICY for some Y E S .  Let f ( S )  = { X E S : B E X } ;  
thenfis a selector on 9 . 1  
13. The Selection Principle fails in every permutation model in which the 
set A cannot be well-ordered. 

[Hint: A one-to-one mapping into the kernel yields a well-ordering.] 
Thus the Selection Principle is independent from the Ordering Principle 

0 # f ( S )  s s 

in set theory with atoms. 

14. The following version of the Axiom of Choice holds in the Mostowski 
model: 

For every family of nonempty well-orderable sets there exists a choice 
function. 

[Hint: For each E E I, let d ( E )  be the class of all x E V such that x is 
a support of x. The function F : V --t On x I from Lemma 4.7 restricted to 
d ( E )  has values in On x B ( E ) .  Since B ( E )  is finite, the ordering < of 
9‘- is a well-ordering on d ( E ) .  If S E 9‘- is well-orderable, then for some 
E E I, fix ( E )  c fix ( S )  and so S E d ( E ) ;  hence < well-orders S.  Choose 
the <-least element in each well-orderable S.] 
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4.7. Historical remarks 

The method of permutation models was introduced by Fraenkel [1922-371 
and, in a precise version (with supports) by Mostowski [1938-391. The 
present version (with filters) is due to Specker [1957]. Theorems 4.2 and 
4.3 are Fraenkel's; for Theorem 4.7, see Mostowski [1939]. 

The results of Problems 4-11 are in Lindenbaum and Mostowski [1938], 
and Mostowski [1938] and Levy [1958]. The equivalence in Problem 8 
and the definition of T-finiteness are due to Tarski [1924b]. The Selection 
Principle was formulated by Kuratowski [I9221 and the equivalence in 
Problem 12 was proved by Kinna and Wagner [1955]; the observation in 
Problem 13 is due to Mostowski [1958]. The result of Problem 14 is by 
Lauchli [ 19641. For additional contributions to the method of permutation 
models, cf. Doss [1945], Mendelson [ 1948, 19561, Jesenin-Vol'pin [1954], 
Shoenfield [1955] and FraYssC [1958]. 



CHAPTER 5 

INDEPENDENCE OF THE AXIOM OF CHOICE 

5.1. Generic models 

By the result of Chapter 3, it is consistent to assume that V = L, i.e., 
that the universe itself is the only transitive proper class which is a model of 
set theory. Thus if we want to construct models of ZF in which the Axiom 
of Choice fails, we have to look for extensions of the universe, rather than 
its submodels. 

In the present section, we describe a general method of extending a given 
transitive model JZ to a model dzf [G] ,  a generic model; the following 
section will deal with certain submodels of generic models, and these will be 
used in subsequent sections to prove the independence of the Axiom of 
Choice. 

We start with introducing so-called Boolean-valued models. These are a 
generalization of ordinary models in the sense that the truth-values are not 
0 and 1 (false or true), but are elements of a given complete Boolean algebra. 
Since the Boolean-valued models will be subsequently used to obtain generic 
extensions of transitive models, we will use the following more general 
framework: Instead of working in the universe, we fix a transitive model JZ 
(the ground model) and will carry out the construction of a Boolean-valued 
model inside dl. Moreover, we shall always assume that JZ satisfies the 
Axiom of Choice. 

Let B be a Boolean algebra with operators +, . and - , and the corre- 
sponding partial ordering < . The algebra B is complete if every nonempty 
subset of B has a least upper bound and a greatest lower bound. Then we 
introduce infinitary operators c and n (sum and product) as follows: 

c {a  : a E A }  = lub(A), n ( a  : a E A ]  = glb(A). 

55 
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For our convenience, let us introduce another operation on a Boolean 
algebra: 

u =+- u = -u+v 

(compare with q5 + $ - 7 4 v$). 

5.1.1. Boolean-valued models 
Let A be a transitive model of ZF+AC. Until further notice, we will be 

working inside A. Let B E J& be a fixed complete Boolean algebra (that is, 
complete in A).’ We define a class AB, a Boolean-valued model, by 
recursion: 

AB = 0, 

A: = u A; if a is a limit ordinal; 
@ < a  

At+1 = (x: x is a function, dom (x) E A: and rng (x) E B } ;  
AB = U A:. 

a e o n  

There is a natural embedding ” of A in AB. We define ” by the €-recursion: 
” 
0 = 0, 

;I- is the element of AB whose domain is ( 5  : y E x} and 
5 ( j )  = 1 for all y E x. 

For every formula (p(x,, . . ., x,) with variables in A’, we shall define its 
Boolean value [q5] which will be an element of B. First, we give (a somewhat 
involved) definition of the Boolean values [x E y ]  and [x = y ]  for all 
x, y E AB. The definition is by recursion on pairs of ordinals (p(x), p ( y ) ) ,  
in the canonical well-ordering of On x On, where p(x) denotes the least 01 
such that x E A:+ We let 

ITX E v n  = c ( y w .  (rz = x u  

[rx = Yn = n [ z  E a  a n ( A Z )  - E a .  

ZE dom ( y )  

z ~ d o m  (x) zedom(y) 

(Compare with 

and 
XEy- ( 3 2 E y ) [ z  = XI 

X = y f-) (VZ E X)[Z EY]  A (VZ EY)[Z E XI.) 

Being a Boolean algebra is an absolute property. On the other hand, B 6 d may be 
complete in A! but not in the universe, since the former means only that 1.u.b. exists 
for every subset of B which is in A. 
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Once we have defined the Boolean values [x  E y ]  and [ x  = y ] ,  we can 
define the Boolean values for any formula, by recursion on its complexity: 

4n = -[a 
14 A+n = wn . [a, 
w v+n = 144 + wn, 

~4 -, +n = + rr+a, wn = n {w)n : x E dBi, 
cwn = c {m)n : x E 

The following two lemmas, which list the basic properties of Boolean values, 
can be proved by direct computation, using induction on (p(x), p(y) ) .  The 
reader can either believe them or prove them himself (herself) or turn to 
the literature. 
LEMMA 5.1 

(i). [x  = xl] = 1. 

(iv). E X  = y l ]  - cy  = 

(vi). [ X  = x l]  - [v E X I  < Ey E xl]. 

(ii). w)n IV =n. 

(.). E X  = 

(i). IIX = yn - [mn 6 Ewn. w. I P ~  E x ) w ) a  = c { ( X ( Y )  . [ ~ 4 ( m :  y E dom (.)I. 
w. IPY E x)+(y)n = n {w) 3 cwn): y E dom ( X I > .  

(iii). [ x  = y ]  = [ y  = x].  
G [ X  = 

. [TX E yn 6 [xi E Yn. 

LEMMA 5.2 

We shall now present the fundamental theorem of Boolean-valued models. 
Let 4(x1, ..., xn) be a formula, with variables in dB. We say that 
4(x l ,  ..., x,,) is valid in AB if [ 4 ( x 1 ,  ..., x,)] = 1. 

THEOREM 5.3 
(i). Every axiom of the predicate logic is valid in AB. The rules of inference 

of the predicate logic if applied to formulas valid in dB result in formulas 
valid in AB. 

(ii). Every axiom of ZF +AC is valid in AB. Consequently, every statement 
provable in ZF + AC is valid in the Boolean-valued model. 

The proof of Theorem 5.3 (i) is by direct computation. The proof of (ii) 
is nontrivial, but since it is available in the literature and its knowledge is not 
essential for the practical applications of the method, we take the liberty 
of omitting it. 
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5.1.2. Generic extensions. 
Now having introduced the Boolean-valued models, we shall step outside 

the model & and try to extend & to a larger model. Let B E  & be a 
complete Boolean algebra in A. A set G c B is called an &-generic 
ultrajilter on B if 

(5.1) G has the properties of an ultrafilter, 

(5.2) A c G and A E A implies n {u : a E A }  E G. 

(Notice that G need not be in A%.) 

partition of B if 
condition (5.2) can be replaced by 

(5.3) If A EJ is a partition of B, then there is a (unique) u E A such 
that u E G .  

We give another formulation of genericity: A subset A E B is called a 
(u  : ~ E A )  = 1 and if u - 0  = 0 for all u # 0 in A .  Then 

Let G be an &-generic ultrafilter on B. We define (by recursion on p ( x ) )  
the interpretation iG of AB by G: 

(a) i (0 )  = 0, 
(b) i ( x )  = { i ( y )  : x ( y )  E G}. 

The generic extension of & by G is the range of i,: 

&[GI = { i ( x )  : x E A”}. 

We shall show that &[G ] is a model which extends & and can be considered 
as an adjunction of G to A. 

LEMMA 5.4. For each x E A, i (2 )  = x ;  hence A E &[GI. 

PROOF. By the €-induction, 

i (6 )  = 0, 

i(%) = {i@) : 20) E G} = x.  

LEMMA 5.5.  G E &[GI. 

PROOF. We define the canonical generic ultrafilter _G E AB as follows: 

dom (G) = {z : u E B) ,  
- G(;) = u for every u E B. 

Obviously, 

i ( G )  = { i ( x )  : _G(x) E G )  = (i(u) : u E G} = G. 
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If x E A [ G ]  and if x E AB is such that i(5) = x, then we say that 5 is 
a name for x. 

LEMMA 5.6. If 5, are names for  x, y ,  then 

x E y ++ ([z E fl E G, 
x = ~ + + @ = . Y ] E G .  

PROOF. By induction on (p(x) ,  p (y) ) .  We prove that 15 E 

x E y and leave the rest to the reader. If @ E 21 E G, then 
E G implies 

c (m cz = xn) E G. 
z Edom ( y )  

By the genericity, there is z E dom (y )  such that y ( z )  - * [z = x] - E G; i.e., 
- y ( z )  E G and [z  = E G. Hence i(z) E Y ,  and by the induction hypothesis, 
i ( z )  = X; thus x E y.  

Now we present the main theorem of generic models. It expresses the 
connection between Boolean values and the truth in generic extension. 

THEOREM 5.7. Let 4 be a formula. If _xl, .. .,zn are names for  xi,. . ., x,, E A [ G ] ,  
then 

&[GI C 4(xl, ..., x,) i fand only if [[4(z1, ..., ?,,)I E G. 

PROOF. By induction on the complexity of 4. Use Lemma 5.6 and the 
genericity of G.  E.g., 

A [ G ]  C 7 4- 7 (&[GI b 4)- --I (141 EG)* - [ 4 ] E G + + ( [ T  41 E G. 

COROLLARY 5.8. 
(i). A [ G ]  is a model ofZF+AC. 

(ii). A [ G ]  is the least m o d e l N  of ZF such that A c M and G EN. 

PROOF. We proved A E &[GI and G E A ( G ) .  If JI' 2 A is a model 
of ZF and if G E M ,  then for all u E A, A," E JV and iGIAE E N (the 
definition of iGIA: is absolute for every N containing G and A,"). Thus 
A [ G ]  c N. 

Until now, we carefully avoided the question of whether a generic ultra- 
filter exists. As a matter of fact, if the algebra B is atomless, then G cannot 
be an element of A; thus we cannot prove that G exists. Still, we shall 
always make the following assumption: 

In each case, we shall assume that a generic ultrajilter exists. 
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The reasons are practical. We use generic extensions to establish consistency 
results; we could do as well without generic ultrafilters and work entirely 
with Boolean-valued models. For instance, we shall present a generic 
modeld[G],  in which there is a nonconstructible set. Instead, we could 
prove that in the corresponding dB, the value [every set is constructible] 
is not 1. In each case, we conclude that the Axiom of Constructibility is 
unprovable in ZF. 

(We actually have a justification to assume that a generic ultrafilter exists. 
In the Boolean-valued model, it is valid that the canonical generic ultrafilter 
- G is generic; see Problems 1 and 2.) 

5.1.3. Forcing. 
In practical applications of generic models, one does not work much with 

Boolean values. Instead, one uses so-called forcing conditions. 
Let d be a fixed transitive model of ZF+AC. Let (P,  6 )  be a partially 

ordered set in d. The elements of P are called forcing conditions; p is 
stronger than q if p 6 q. Two conditions p and q are compatible if there is 
a condition r stronger than both p and q. A set D E P is said to be dense 
in P if for each p E P there is d E D stronger than p .  

Let G be a set of conditions, not necessarily in A. We say that G is 
A-generic, if: 

(5.4) (a) x E G and x d y implies y E G; 
(b) the elements of G are pairwise compatible; 
(c) if D is dense in P and D E d, then D n G # 0. 

Note that if B is a complete Boolean algebra in A and if we let P be the 
set of all nonzero elements of B, then G c P is generic if and only if it is 
a generic ultrafilter. Moreover, if B is a complete Boolean algebra in A, 
and P is dense in B -  {0}, then: 

(i) if G is a generic ultrafilter on B, then G, = G n P satisfies (5.4); 
(ii) if G, G P satisfies (5.4), then G = { u  E B : (3p E P ) p  6 u> is a 

generic ultrafilter. 
(We leave the easy proofs to the reader.) 

which we may formulate as follows: 

(5.5) d [ G i l  = &[GI 

(the model d [ G ]  is the least model JV such that Jlr 1 4 and GI EM). 
Hence if (P, <) is a dense subset of a complete Boolean algebra, a generic 
set of conditions determines a generic extension of A. However, every 

Thus G, is definable in terms of G and elements of 4, and vice versa, 
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partially ordered set can be associated with a complete Boolean algebra B 
(which is unique up to isomorphism) such that we get the correspondence 
(5.5) between generic subsets of P and generic ultrafilters on B. We shall 
sketch the proof of this fact. 

Consider a topological space. A regular open set is a set which is equal to 
the interior of its closure. It is a well-known fact that the family of all 
regular open sets of a given space is a complete Boolean algebra (with 
operations u and n and ordering E; the Boolean complement is not 
the set theoretical complement). 

Let (P, < ) be a partially ordered set. Let us endow P with the topology 
generated by the basic open sets [ p ]  = { q  E P : q < p } .  Let us denote by 
RO(P) the complete Boolean algebra of all regular open sets in this space. 
Let e be the following mapping of P into RO(P): 

e(P)  = the interior of the closure of [ p ] .  

One can verify that e has the following properties: 

(5.6) (i) i f p  < q, then e(P)  C e(Q);  
(ii) p ,  q are compatible if and only if e(P)  n e ( Q )  # 0;  

(iii) the set { e ( p )  : p  E P }  is dense in RO(P)- (0). 

We call e the natural homomorphism of P into RO(P). (The reader will 
find an alternate construction of RO(P) in Problems 3 and 4.) 

Now let (P ,  < ) be a partially ordered set in d, and let e be the natural 
homomorphism of P into RO(P) (in A). We ask the reader to use (5.6) 
to verify the following correspondence between generic subsets of P and 
generic ultrafilters on RO(P):  

(i) if G is a generic ultrafilter on B, then G I  = e - , ( G )  satisfies (5.4); 
(ii) if GI c P satisfies (5.4), then G = { u  E B : (3p E G , ) [ e ( p )  < u ] }  is 

a generic ultrafilter. 
As a consequence, we have d [ G l ]  = &[GI. 

Thus every partially ordered set in A determines a generic extension 
A [ G ] .  The natural embedding e gives us, however, more information and 
enables us to reformulate the main theorem of generic models. (We shall 
consider P a subset of RO(P) and write p instead of e(p) . )  

Let (P ,  <) E d, let B = RO(P) and let e : P + B be the natural em- 
bedding (in A). If 4(x1, ..., ?.) is a formula with variables in dB, then 
we say that a condition pforces  4(zl, ..., zn), 

P I t  4(?1, Zn), 
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if e (p )  < [4(x, , . . ., z,,)]. The forcing relation It has the following properties, 
which can be derived from the properties of Boolean values: 

p I k  4 iff no q < p forces 4, 
p I t  C$A$ iff p I t -  4 andp I t -  I), 
p It 4 v$ iff (Vq Q p)(3r < q ) [ r  It 4 v r I t -  $1, 
p I F  V X ~  iff ( V Z E & ” ) P  ~ t -  4 ( x ) ,  
p I F  3x4 iff (Vq < p)(3r Q q ) ( 3 x  E dB) r I!= +(x) ;  

and, if we say that p decides 4 just in case either p IF 4 or p IF 1 (6, then 

Vp(3q < p )  q decides 4. 
The main theorem of generic models now takes the following form: 

THEOREM 5.9. Let 4 be a formula. If G c P is &-generic and if - x l ,  ..., x, 
are names for x l ,  . . . , x,  E & [GI, then 

&[GI I= # ( x l ,  ..., x,) ifand only i f  (3p E G)p I t  4(‘xl, ..., z,). 

5.1.4. Examples of generic models. 

EXAMPLE 5.10. Let & be a transitive model of ZF+AC. We shall describe 
a set of conditions which adds a new set of integers to the ground model. 
Let (P, <) be the set of all finite sequences of 0’s and I’s, partially ordered 
by 2 (i.e., p is stronger than q if p 2 4 ) .  Let G be an &-generic set of 
conditions. It is easy to see that for each n, the set { p  E P : p ( n )  = I} is 
dense in P, so that there is p E G such that n E dom ( p ) .  Also, if p and q 
are compatible, then either p 2 q or q 2 p ,  Thus 

(5.7) { p : p  E G }  is a function from w into (0, I}. 

Let z be the following name: dom (z )  = {2 : n E a} and ~ ( h )  = 
p ( h )  = l}; _z is a name for the set z = {n : g(n )  = I}. We shall prove 

g = 

{ p  E P : 

(5 .8 )  G # & ,  

which in turn gives: 

(5.9) there is a set z E w such that z E &[GI and z .$ A. 
Assume that G E &. For each q E P, either q-0 or q-1 is not in G. Hence 
{ p  : p 4 G} is dense in P. This contradicts the genericity of G.  

EXAMPLE 5.11. We shall describe a set of conditions which adds a new 
subset of a1 to the ground model without adding new subsets of o. Let 
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(P, 6 ) be (in A) the set of all a-sequences of 0's and l's, for all a < o1 , 
and order P by 2. Let G be an A-generic set of conditions. As in Example 1, 
we get G 4 A and G determines a subset of w1 which is not in A. However, 
we have to show that 

(i) every subset of o in &[GI is in A, 
(ii) (X~)&[~I = (s1)&. 

Both (i) and (ii) follow from the following: 
(5.10) I f f  E &[GI is a function from o to 4, then f E &. 
The property (5.10) follows from specific properties of (P, <). We prove 
a general lemma which is one of the most typical examples of using proper- 
ties of (P, <) to establish properties of &[GI, and leave the reader to 
verify that the provisions of the lemma apply in our special case. 

LEMMA 5.12. Assume that (in A) for  every descending sequence 

p o  2 p 1  2 ... 2 P ,  > ... (n E O )  

of conditions there exists p E P such that p < p ,  for  all n. Then &[GI has 
the property (5.10). 

PROOF. A subset D E P is open dense if it is dense and if p 1  < p z  and 
p z  E D implies p 1  E D .  First we show that under the assumption of the 
lemma, any intersection of countably many open dense sets is open dense. 
Let D,, n E o, be open dense. I f p  E P, we let, by recursion, p n  be an element 
of D, stronger than all p m ,  m < n; then we let q be stronger than all p n .  
Clearly, q < p and q E n:= D,. 

Letf:  w --r A and f E &[GI, and let f be a name for$ Let A E& be 
such that rng (f) c A and assume that 

u = [f is a mapping of G into 21 = 1; 

we can assume this since U E  G, and we can restrict ourselves to P' = 
{ p  E P : p < u} .  For each n, the set 

D, = { p  : ( 3 ~  E A ) p  I k f ( 5 )  = E> 
is open dense. Hence D = is dense and so there exists p E D such 
that p E G. For each n, there is x, such that p 1 I f  (2)  = 2, . If we denote by 
g the function g : n H x, (obviously, g E A), - we have p I I- f = 5 and 
therefore f = g .  

In a similar fashion, if x, is a regular cardinal in -I, and if we take as 
forcing conditions transfinite sequences of 0's and 1's of length less than 
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w,, we get a generic model with a new subset of w, , without adding subsets 
of smaller cardinals. (For the analogue of Lemma 5.1.6, see Problem 5 . )  

5.2. Symmetric submodels of generic models 

The generic extensions satisfy all axioms of set theory including the 
Axiom of Choice. Still they can be used to establish the independence of 
the Axiom of Choice, by considering certain submodels of generic models. 
The idea behind symmetric models is analogous to the ideas used in connec- 
tion with permutation models. Although the universe of ZF does not admit 
eautomorphisms, the Boolean-valued universe does (via automorphisms 
of the Boolean algebra), and the automorphisms of the names of elements 
of &[GI can be used to construct submodels of &[GI resembling the 
permutation models. 

Let B be a Boolean algebra. An automorphism n of B is a one-to-one 
mapping of B onto itself which preserves the Boolean operations: 
n(u+u) = n(u)+n(v),  n ( -u)  = -n(u) etc. If B is a complete Boolean 
algebra and n is an automorphism of B, then n preserves infinite sums and 
products as well. 

Let 4 be a transitive model of ZF+AC, let B be a complete Boolean 
algebra in A, and let dB be the corresponding Boolean-valued model. 
(Needless to say, until the appearance of a generic ultrafilter we stay within 
d.) Let n be an automorphism of B. We can extend n to AB as follows, 
by recursion on p ( x ) :  

(i) n0 = 0; 
(ii) assuming that n has been defined for all y E dom (x), let dom (nx) = 

Clearly, n is a one-to-one function of dB onto itself, and n; = $ for every 
X E A .  

LEMMA 5.13. Let 4(xl, ..., x,,) be a formula with variables in AB. Then 

n" dom (x), and (nx)(ny) = n(x(y)) for all ny E dom (nx).  

bb(7~1 , ..., nx,)n = , . .., X,)n. 

PROOF. First, one proves the lemma for x E y and x = y by induction on 
(p(x) ,  p(y) ) .  The rest follows by induction on the complexity of 4. 

Let 9 be a group of automorphisms of B. For each x E AB, let 

sym, (x) = {n E 9 : n(x) = x}; 

sym, (x) is a subgroup of 9. A nonempty set 9 of subgroups of 9 is called 
a normal5lter on 9 iff for all subgroups H, K of 9, 
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(i) if K E  9 and H 2 K, then H E  9; 
(ii) if H E  9 and K E  9, then H n K E  9; 

(iii) if n: E 9 and HE 9, then n:Hn:-l E 9. 
Let 9 be fixed. We say that x E AB is symmetric if sym ( x )  E 9. The class 
HS E dB of all hereditarily symmetric names is defined by recursion: 

(a) OEHS; 
(b) if dom (x) c HS and if x is symmetric, then x E HS. 

Since ~ ( 2 )  = % for each n: E 9 and each x E .A, it follows that HS contains 
each 2. 

Now let G be an &-generic ultrafilter on 3. Let ic be the interpretation 
of dB by G.  We let 

Jf = { iC(x)  : x E HS}, 

we have & E JV G &[GI. 

THEOREM 5.14. JV is a model of ZF. 

PROOF. Assume that & is a proper class and we show that it is transitive, 
closed under Godel operations and almost universal. If -.4 is a set, then 
the proof can be modified to show that Jf is a model of ZF. 

The transitivity of Jlr follows from the fact that if X E  HS, then 
dom (x) E HS. 

For all x, y E .AB, one can define canonically zl, . .., z8 E AB such that 
[zi = S i ( x ,  y ) ]  = 1 for i = 1, ..., 8 and sym (zi) z sym ( x )  n sym ( y )  and 
zi E HS whenever x ,  y E HS; we leave the details to the reader. It follows 
that JI' is closed under Godel operations Fl , . . . , S8. 

To show that JI' is almost universal, notice that if X is a subset of JV, 
then X E i;,'(HS n A:) for some CI. Thus it suffices to show that each 
Y = i;;'(HS n A:) is in JV. Let - Y E  dB be as follows: dom (1) = 
HS n and _Y(x) = 1 for each x E dom (Y) .  - 1 is a name for Y, and 
dom (x) c HS; hence we only have to show that is symmetric. We will 
actually show that sym @) = 3. If x E AB and n E 3, then sym (nx) = 
n * sym ( x )  * n-'; hence if x E HS, then nx E HS for each n: E 3. Also, if 
x E J%:, then nx E &: for each n: E 9. Hence 7c"(HS n &:) = HS n A%:, 
and so .(I) = 1, for all E 9. 

We call JI' a symmetric extension of A. In the subsequent sections we 
use symmetric extensions to establish the independence of the Axiom of 
Choice. 
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5.3. The basic Cohen model 

Let d be a transitive model of ZF+AC. Consider the following set 
(P, <) of forcing conditions: the elements of P are finite functions p with 
values 0, 1, and dom ( p )  c w x w ;  the ordering is by 2 .  Let B = RO(P) 
in A. 

We shall define 9 and 9 in such a way that the Axiom of Choice will 
fail in the symmetric extension J. Before doing that, we shall describe the 
motivation. Let G be an A-generic ultrafilter on B. For each n ~ w ,  let 
x, be the following real number (a subset of w ) :  

(5.11) 

We intend to construct A‘. in such a way that the set 

x, = {m E w : (3p E G )  p ( n ,  m) = 1). 

A = { x n : n E w }  

is in  A’” but the enumeration n H x, is not; we want that 

JV k A cannot be well-ordered. 

The reals x,, n E w, have canonical names s,: 
(5.12) 

so does the set A :  

(5.13) 

Let n be a permutation of w ;  n induces an order-preserving 1-1 mapping of 
(P, < ) onto itself as follows: 

dom (np)  = {(nn, m) : (n, m) E dom ( p ) } ,  

&,(A) = u,, = { p  E P : p ( n ,  m )  = l} for all m, n E w ;  

dom ( A )  = (5, : n E o}, A(?,) = 1 for all n E w. 

(np)(nn, m) = p ( n ,  m). 

In turn, this n induces an automorphism of B: 

nu = c {np : p  < u}.  

Let 9 be the group of all automorphisms of B which are induced by 
permutations of w, as described above. For every finite e c w, let 

fix ( e )  = {n E 9 : nn = n for each n E e l .  

Let 9 be the filter on 9 generated by fix ( e ) ,  e finite; i.e., 

H E P o 3 e ( H z  fix(.)). 
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We leave it to the reader to verify that 9 is a normal filter on g. 
g and 9 determine the class HS of hereditarily symmetric names, and 

if we let G be an A-generic ultrafilter on B, the interpretation iG of HS 
yields a symmetric model JV of ZF. 

LEMMA 5.15. In the model N, the set of all real numbers cannot be well- 
ordered. 

PROOF. We show that the set A = {xn : n ~ o } ,  where x, are the reals 
defined in (5.1 l), cannot be well-ordered in N. To start with, all the reals 
x,, as well as the set A ,  are in N ,  since their names, defined in (5.12) and 
(5.13) are symmetric: For all x E 9? and all n, m, we have x(u,,) = unn,,,; 
hence ~ ( 5 ~ )  = znn, and consequently, sym (5) = fix {n} E 9. Also n(4)  = A 
for all x E 93, and so A E N .  

Next, notice that these reals are pairwise distinct: we show that 
[[xi = S j ]  = 0 whenever i # j .  For assume that there is p E P such that 
p It- xi  = z j .  There is m such that neither (i, m )  nor ( j ,  m )  belong to dom ( p ) ;  
let 4-2 p be such that q(i, m )  = 1 and q( j ,  m )  = 0. Then 

q l t - r n E ; Y i  and qlth$xj,  
d 

hence q It _x i  # T~ although q < p ,  a contradiction. 
We shall show that in A'' there is no one-to-one mapping of o onto A.  

Assume that there is some, and let f~ HS be its name. Thus for some 

po IF f i s  a one-to-one mapping of & onto 4. 
Po E G ,  

We shall find q < po such that 

(5.14) 

which will be a contradiction. 

i E  o, p < po and n # e such that 

q I t  f is not a function, 

Let e be a finite subset of w such that sym (.f) 2 fix (e).  There exist 

< 

p I k f ( i )  = &. 

We shall find a E '3 such that: 

(5.15) (i) np andp are compatible; 
(ii) x E fix (e ) ;  

(iii) xn f n. 
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Y ”  

Then we will have n.f = f b y  (ii), ni = i, and since 
V 

np It (nf)(ni) = nx,, 

4 = p u n p I k ( f ( i )  = s ~ f ( i )  =&n,), 

we will have ” 

and since [Lx, = Xnn]  = 0 by (iii), we will have (5.14). 
To get n, let n’ be such that n’ 4 e and (n‘, m) 4 dom ( p )  for any m. 

Let n be the permutation of w bhich interchanges n and n’, and n(i)  = i 
for all i # n, n’. This permutation satisfies (5.15) and the proof is complete. 

As a consequence, we have: 

THEOREM 5.16. The Axiom of Choice is unprovable in set theory. 

5.4. The second Cohen model 

Let A be a transitive model of ZF+AC. We shall construct a symmetric 
extension JV of dl in which there is a countable family of pairs which has 
no choice function. 

In the symmetric model of Section 5.3, the non-well-orderable set consisted 
of real numbers. Obviously, we cannot use real numbers in the present case 
to construct the pairs, since pairs of reals do have a choice function. How- 
ever, the method will work when the intended elements of the pairs are sets 
of reals. 

Let (P, <) be the set of all finite functions p with values 0, 1 and 
dom ( p )  c ( o x  {0,1> x o ) x  o; let < = 2. Let B = RO(P) in A. 

Let G be an &-generic ultrafilter on B. We define the following elements 
of A [ G ] ,  together with their canonical names: 

xnCi = { j ~  o : (3p E G ) [ p ( n  E i, j )  = I]], 
” 

&,&) = unEi,j = C {P E P : p ( n e i , j )  = I }  (n,  i, j E w, E = 0, I), 
x,, = { X f l E i  : i E 01, 

p ,  = {XIi,, ~ n d 7  

dom (En) = {Knm & i l l 7  

dom (&) = {zne : i E w ] ,  &(zflEi) = I for all i E w, 

Efl(KnJ = 1 ( E  = 0, I), 
A = { P , : n E o ) ,  

dom ( A )  = {En : n E a], @’,) = 1 for all n E w. 
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Each xnei is a real (a subset of o), X,,, are sets of reals. Similarly as in 
Lemma 5.15, we have 

[Xnei = xnr&.i.] = 0 

whenever (n, E, i) # (n', E',  i'). 

mapping .n of P onto itself: 
Every permutation n of (w x (0, 1) x o) induces a one-to-one preserving 

(w)( .n(nEi) , j )  = ~ ( n ~ i , j ) ,  

and, in turn, an automorphism of B. Clearly, 

and 

We intend to define the group 9? and the filter 2F in such a way that the 
names sei, &, En and A_ are all symmetric. Let $9 be the group of all 
automorphisms of B induced by those permutations n of o x  (0, l} x w 
which satisfy the following conditions: if n(nei) = ( E E i ) ,  then 

(i) ii = n ;  
(ii) for each n, either V i  ( E  = E )  or V i  (2 # E ) .  

Notice that for each n E 9?, 

~ ( K n c )  = X n e  or Kn, 1 - e ,  

n(Pn) = E n ,  ~ ( 4 )  = A* 
For each finite e c w x (0, l} x w, let 

fix ( e )  = ( n  E 9? : (Vs E e ) [ m  = s]}, 

and let 9 be the filter on 9? generated by 

{fix ( e )  : e E o x  (0, l} x w, e finite}. 

9 is a normal filter. Let HS be the class of all hereditarily symmetric names 
in A'. Let JV be the symmetric extension of 4, given by the interpretation 
of HS by G. 

LEMMA 5.17. Thesetsx,,,., X,,,, P,, andA are in the mode1.N for  all n, i E w, 
& = 0, 1. 

PROOF. Note that sym (xnci) = fix {(mei)},  sym (&) = fix {(mi)} (where 
i is arbitrary), sym (En) = 9 and sym (4) = 9'. 
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LEMMA 5.18. The set A is countable in N. 

PROOF. It suffices to find a symmetric name for the function g : n H P,,. 
Let - 9 E AB be as follows: 

dom (9) = {(k En)’ : n E w} ,  g(x) = 1 for all x E dom (g). 

Since n(h) 5 i2 andn(P,) - = En for all n E 59, n E o, it follows that n(g) = _s 
for all n E 3’. 

LEMMA 5.19. There is no function f E Jz.” such that dom (f) = A and 
f(P,,) E P,,for all n. 

PROOF. Assume that f is such a function; let .f be a symmetric name for f 
and let p o  E G be such that 

p o  I t  .f is a function on A and Vn (.[(En) E En). 
We shall find q < p o  such that 

(5.16) 

which will be a contradiction. 

There exist n E o, c0 (let us assume that go = 0) and p < po  such that 

q I t .f is not a function, 

Let e be a finite subset of o x  (0, l} x o such that sym (f) 2 fix (e). 

P I t f ( E n )  = K n O -  

We shall find 71 E 59 such that 

(5.17) (i) np and p are compatible, 
(ii) n E fix (e) ,  
(iii) n(Kno) = gn1. 

Then we will have nf = .f by (ii), xf,, = p,,, and since 

XP I t  (Xf)(ntn) = n_X7 
we will have 

4 = P u XP It (-l(En) = Xno * fen) = 

and since [gn0 = gnl] = 0, we will have (5.16). 
To get X, let k be such that 

(V i  2 k)(Vc)[(n&i) $ dom ( p ) ] .  

The Boolean pair (x, y ) R  for x, y E -dB is defined as follows: z = {x, y}” has domain {x, y }  
and z(x )  = z ( y )  = 1; (x, y)” = {{x, x}”, {x, y)”}”. Obviously, any interpretation of 
(x, y)” gives a pair ( ix ,  iy). 
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Let n be the permutation of o x (0, l }  x o defined as follows: 

(n, l , i + k )  if i < k,  
n(n, 0, i )  = (n, 1 ,  i - k )  if k < i < 2k, 

n(n, 1, i) ... accordingly 
n(n'si) = n'si for all nf  z n. 

[ (n, 1, i )  if 2k < i, 

This permutation satisfies (5.17), and the proof is complete. 

As a consequence, we have: 

THEOREM 5.20. The Axiom of Choice for countable families of pairs is 
unprovable in set theory. 

5.5. Independence of the Axiom of Choice from the Ordering Principle 

In this section, we prove: 

THEOREM 5.21. The Axiom of Choice is independent from the Ordering 
Principle. 

We will do this by showing that in the basic Cohen model, every set can be 
linearly ordered. 

Let A be a transitive model of ZF+AC, and let ~4'- be the symmetric 
extension of A defined in Section 5.3. We shall keep the notation introduced 
in Section 5.3; in particular, A is the set of reals 

A = {x,, : n E o}, 

where x,, are defined in (5.11). 
We shall make one assumption which simplifies matters for us a little. 

We shall assume that A is a class of the model M .  This is the case, e.g., 
when A = L, but in general it need not be true. More generally, let us say 
that a class C c HS of names is symmetric if sym ( C )  E 9, where 

sym ( C )  = {n E 9? : n"C = C } .  

We make the assumption that for each symmetric class C its interpretation 
i c (C)  = {ic(x) : x E C }  is a class of the model M .  As was the case with 
permutation models, this assumption enables us to formulate statements 
and construct sets in ~ t '  uniformly. E.g., we will be able to show that in 
the basic Cohen model the universe can be linearly ordered; this is the 
uniform version of the statement that every set can be linearly ordered. 
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In Chapter 4, when we proved the analogue of Theorem 5.21 for set 
theory with atoms, we used the ordered Mostowski model and the crucial 
property of the model was that each set in the model has a least support. 
A similar idea will be employed in the proof of Theorem 5.21. 

Let 5 E HS be a symmetric name, and let e be a finite subset of o. We say 
that e is a support of 5 if 

sym (5) 2 fix ( e )  = {n E 3 : m = n for each n E el.  
Consider the canonical names x, for elements of A ,  defined in formula (5.12). 
Each finite E c A has a canonical name _E: 

E(5,) = 1 for all x, E E. 
If x E HS, let us say that _E is a support of 5 whenever E = {xnl, ..., x,J 
and { n l ,  ..., nk} supports x. Similarly as in Lemma 4.4, we can see that 
the class 

- A = {(&, x ) ~  : _E is a support of z>, 
is a symmetric class. Thus the relation d ( E ,  x) (where E is a finite subset 
of A and x E N ) ,  the interpretation of 4, is a class of the model N. If 
A ( E , x ) ,  we say that E is a support of x. The crucial step in the present 
proof is: 

LEMMA 5.22. Every x E Jlr has a least support. 

This lemma follows quite easily from: 

LEMMA 5.23. Let x, y - be elements of HS, let p be a condition and assume 
that p It - -  x = y .  If e ,  and e2 areJinite subsets of w and if el is a support of x 
and e2 is a support of v, then there exists z E HS such that el n e2 is a support 
o f z a n d p I t _ x  = _ z ,  

To see that Lemma 5.23 implies Lemma 5.22, let E ,  and E ,  be supports 
of x E Jlr. There exists x such that El is a support of _x and i&) = x, and 
there exists and i&) = x. Hence for some 
p E G, p It g = 2, and applying Lemma 5.23, it follows that El n E, is a 
support of x. Thus it suffices to prove Lemma 5.23. 

Before we proceed with the proof, we will prove another lemma. Let p 
be a forcing condition, i.e., a function defined on a finite subset of w x o 
with values 0 and 1. Let e be a finite subset of w. We let 

(5.18) p : e = the restriction of p to e x o. 

Clearly, p : e is a weaker condition than p ,  p : e E p .  Let u E B = RO(P).  

such that E2 is a support of 
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We let 

(5.19) 

Again we have u : e 2 u. Finally, let 

(5.20) Be = { ( u  : e )  : u E B}. 

It is easily seen that Be is a complete subalgebra of B. 

LEMMA 5.24. Let 4(x1, ..., x,,) be a formula. If _ x l ,  ..., _x, E HS and i f  e 
is a support for each of the xl ,  ..., z,,, then for each condition p, 

ifp It 4(_x1 , . .., s) then p : e I t  4(x1, .. ., _xJ. 
Hence [14(xl, . . . , s)] E Be. 

(Note that in particular [4(il,  ... ,;.)] is either 0 or 1 for any 
x1 , ..., x,, E A. This kind of homogeneity is of course a specific property 
of this particular Cohen model and is not true for every Boolean-valued 
model.) 

PROOF. It suffices to show that no condition q stronger than p : e forces 
1 4(3). Let q 2 p : e;  let el , e2 be finite subsets of o such that 
dom (p) E el x o and dom (4 )  E e2 x o. There exists a permutation n E 3 
such that a E fix ( e )  and el n n"e2 = e (visualize!). It is obvious that p 
and n(q) are compatible. Assuming q I t  4(x), we have nq It 1 4(nz), 
and because n E fix (e), we have nq I t  4(z), which is a contradiction 
since p I k +(.) and p and nq are compatible. 

PROOF OF LEMMA 5.23. First note that every symmetric name has a least 
support e G w. The proof is easier than in Lemma 4.5 because we can use 
arbitrary permutations of u. For each w E HS, let 

(5.21) 

Note that for each n E 9, 

s ( ~ )  = the least support of E. 

(5.22) .(atv) = n"(&)). 

If p is a forcing condition, let 

(5.23) s(p) = (n  E o : (n, m) E dom (p) for some m>. 

Before starting the proof, notice one more thing: If w E HS and e = ~(HJ), 

then for any two permutations n, p E 9, 

(5.24) if ale = pie, then ~(Iv) = p ( w ) .  
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(This is because p-’n E fix e . )  Thus 7zb) depends only on the restriction 

To prove Lemma 5.23, let el = s(x), e,  = s (y )  and let p It _x = 2. By 
of n to s@). 

virtue of Lemma 5.24, we may actually assume that 

(5.25) s(p) c el u e, .  

We are looking for a g E HS such that s(g) c el n e2 and p IF _x = g. 
We shall make one assumption which simplifies the arguments somewhat: 

we assume that el n e ,  = 0. At the end of the proof, we will discuss the 
general case el n e2 # 0 (whose proof is nothing but a ‘parametric’ version 
of the present proof). Thus we wish to construct _z E HS such that s(z) = 0 
andp  It & = z. 

To begin with, we prove that for each _w E HS, 

(5.26) 

To show that (5.26) holds, let e = s(w); it suffices to show that for each 
4 P, 

(5.27) if q It w E 3, then p u (q  : e )  IF w E x, 
if q It ~ $ 5 ,  then p u (q  : e )  IF  p$g. 

Let us prove the first part of (5.27). By a repeated application of Lemma 
5.24 and the fact that p It g = v, we get for q 6 p: 

q l t  Y E & ;  

q I t  KEY; 
q : (e  u e , )  IF w EY; 

p u (q  : e u e2)lt FEZ; 
(p u (q : e u e,)) : ( e  u el)  It w €3; 

E 3; 
p u ( q :  e )  It M , E & .  

p u (q  : (e  u e,)  n ( e  u el)) It 

Now we shall define z. For each ~1 E HS with p ( w )  < p(x) ,  let 

(5.28) a(w) = {nw : 7z E 3). 

In each ~(w), pick one ly such that its support e = s(w) satisfies 

(5.29) e n (el u e,) = 0, 
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and let 

(5.30) 

and then 

- z@) = [[yE,J : e 

(5.31) z(nw) = R(d-w>)> 
for each R E  9. The condition (5.31) will guarantee that RZ = g for each 
Z E  9, as soon as we know that the definition (5.31) is unambiguous; 
that is, we have to show that pl(&)) = p 2 ( z _ ( ~ ) )  whenever p l y  = p2w. 
It suffices to show that 

(5.32) if RF = w, then ~ ( z ( y ) )  = g@) 

(consider R = pY1p1). By (5.30), ~ ( y )  belongs to Be and so the value of 
n(z@)) depends only on the restriction of R to e. By (5.22), d’e = e and 
since e n el = 0, we may assume that n E fix (el). Hence n_x = _x and so 

Rb = Rzi = 

and by (5.30), we get R&v)) = ~ ( y ) .  
It remains to show that 

pll-_x =z. 
That is, we have to show that for each _v E HS with p(.) < pk), 
(5.33) p * b E z ]  = p * z @ ) .  

Let e = s@). By (5.31) there exists a permutation R E 3, and w E HS such 
that _v = R@), s(w) = n-,(e) is disjoint from el u e,, and 

(5.34) - zb) = Rk(cv)) = .([Lw E : +)). 

Since z k )  E B,- I (e) ,  the value n(&)) depends only on the restriction of n 
to R- l(e), and so does R@) since s(!) = R- (e). Hence we may assume that 

(5.35) R E  fix (el u e2-e). 

On the one hand, we have 

P . z(?) = P . (cv E RTn) : el, 

by (5.34), and on the other hand, by (5.26), 

p . f~ E iJ = p 1 ([t) E XJ : e). 
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Since [E EX] : e E  Be, it suffices to show: For every q d p such that 
4 r l - P )  c e, 

(5.36) (i) if q I t -  .v EX, then (3r < q )  r It- g E ns, 
(ii) if q I!- $ x, then (3r < q)  r It _v $ ns. 

Let us prove (5.36)(i). Let q < r such that s (q-p)  
shall show that q and .n are compatible and that 

(5.37) r = q u n p I t - g E n s .  

Let p = n-’; we have 

(5.38) p E fix (el u e , - e )  and p”e n (el u e,) = 0. 

Remembering (5.25) that s ( p )  G el u e , ,  it follows that p and p q  are 
compatible and hence q and np are compatible. We shall show that 

e and q I!- _v E 3. We 

(5.39) p p u p l t - x  = p x .  

Then we will have 

r = n(pg  u p )  < n(pp u p )  li- ns = 5 
r d qlt-.vex 

and (5.37) will follow. 
To prove (5.39), let o E 9 be such that 

(5.40) ale, = pie, and 0 E fix (e,);  

this is possible because of (5.38). It follows that o(p) = p ( ~ ) ,  o(f) = 
and o ( p )  E p(p)  u p .  Sincep Il- 5 = f, we have 

pp U p  I t -  5 = Y A o(5) = o(V_), 
and consequently, 

P P U P l t - P C x )  =x. 
This completes the proof of Lemma 5.23, under the assumption that 
el n e, = 0. In general, one has to change several places in the proof to 
replace 0 by el n e2. In particular, (5.26) becomes 

P. c K E  xa = P - ( IT : (+) u (el n m9 
$9 is replaced in (5.28) and (5.31) by fix (el n e,);  (5.29) becomes 

e n  (el u e , )  c el n e , ,  

etc. We leave this to the reader as an exercise. 
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Similarly as in Section 4.5, Theorem 5.21 will follow from the following 
Lemma 5.25 because A is linearly ordered ( A  is a set of reals) and conse- 
quently Lemma 5.25 yields a linear ordering of .N - via the lexicographical 
ordering of I x  On. 

LEMMA 5.25. In Jlr, there is a one-to-one function 9 of .N into I x O n  
where I is the set of alljinite subsets of A. 

PROOF. The idea is to associate with each x E N  a finite subset of A 
(the least support of x) and an element of HS; since HS 5 A and 4 is 
well-ordered, the lemma will follow. Obviously, one cannot simply choose 
a name x of x,  because the interpretation function i ( z )  is not i n M .  However, 
we can define a good approximation of the function i, and this one is in JV. 
(For a general version of Lemma 5.26, see Problem 23.) 

We say that t is an assignment if t is a one-to-one function whose domain 
is a finite subset of o and whose values are elements of A .  Let t be an 
assignment, 
(5.41) t (n l )  = xil ,  ..., t(nk) = xik7 
and let x E HS be such that (nl , ..., nk)  c s(x). If n is any permutation 
such that 

n(nl )  = i l ,  ..., n(nk) = ik, 
then by (5.24), nz is unique regardless of the behavior of TC outside 
{ n l ,  ..., n k } .  Let us define 
(5.42) e(t, x) = i(n5). 
LEMMA 5.26. The function e is in N. 
PROOF. There are canonical names for the assignments (using the names x, 
for x,, E A ) :  t is a name for (5.41), and 
(5.43) k(jil) = &j = 1, etc.. 
The function e is a result of the interpretation by i of a symmetric class p 
consisting of Boolean pairs 

where nn, = i, etc.. The class p is symmetric since if p E 99, then 

p ( ( x r )  = (z)” and p ( m )  = (pn)(x), and pnn, = p i , ,  etc.. 
Notice that whenever t is an assignment and _x E HS such that It1 > s(x), 

then there is y E HS such that i(x) = e(t, y) ;  namely, 2 = nx for some 
n € g .  

((!? @)“)B7  nX)B, 

Cj)t(nl) = xpi,n = 1, etc., 
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Now we define (in N) a one-to-one mapping of N into I x  On. For 
x E N, let Fl (x) = E be the least support of x; let E have k elements 
x,, < x,, < ... < xnr (in that order). Let t be the assignment 

t ( 1 )  = x,, , t (2)  = x,,, ..., t (k)  = xnr. 

There exists V_ E HS such that 
x = e(t,y_). 

Assuming that we have a fixed enumeration of HS by ordinals, let F,(x) 
be the least ordinal corresponding to such y .  Let F(x)  = (F,(x), F,(x)); 
clearly, if F(x)  = F(y) ,  then x = y and so F is one-to-one. 

5.6. Problems 

If B is a Boolean algebra and 9 a family of subsets of By then a filter G 
on B is 9-complete if n ( a  : a E A }  E G whenever A E G, A E 9 and n A exists. 

1. If B is a complete Boolean algebra in the ground model A, then an 
ultrafilter G on B is A-generic if and only if it is B&(B)-complete. 

2. Let B be as in Problem 1, let 9 = BA(B) and let G be the canonical 
generic ultrafilter in AB. Then 

v " 
@ is an 9-complete ultrafilter on B] = 1. 

[Hint: [A" c G ]  = [a A)v E G ]  = fl A . ]  

A partial ordering is separative if for all p ,  q such that p C q, there exists 
r 6 p which is incompatible with q. 

3. For every partially ordered set (P, <) there exists a unique (up to iso- 
morphism) separative partially ordered set (Q,  <) and a homomorphism 
h of P onto Q such that for all p ,  q E P, 

p ,  q are compatible in P cf hp, hq are compatible in Q. 

[Hint: Let p < q if q is compatible with each x 6 p . ]  

4. Every separative partial ordering (Q ,  6 ) can be embedded isomorphically 
onto a dense subset of a (unique) complete Boolean algebra. 

[Hint: Consider subsets A of Q with the following properties: (a) if 
y 6 x E A ,  then y E A ,  (b) if (Vy 6 x)(3z 6 y )  [z  E A ] ,  then x E A.  The family 
of all such sets, partially ordered by inclusion, is a complete Boolean algebra.] 
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5. Let K be a cardinal and assume that for every descending sequence 
po  2 p 1  2 ... 2 pe 2 ... (t < K )  of conditions, there exists p E P such that 
p < p,: for all 5 < K .  Then i f f€  &[GI is a function from K into A, then 
f e d .  Consequently, A [ G ]  has the same cardinals below K as A (in- 
cluding K ) .  

[Hint: As in Lemma 5.12. The intersection of K open dense sets is open 
dense.] 

A partially ordered set (P, <) satisfies the countable chain condition if 
every set of pairwise incompatible elements of P is countable. P satisfies 
the K-chain condition (where K is a cardinal) if every set of pairwise incom- 
patible elements of P has cardinality less than K .  

6 .  (P, <) has the rc-chain condition if and only if RO(P) has the Ic-chain 
condition. 

*7. Let K be a regular cardinal and assume that B E A satisfies the K-chain 
condition. Then K is a regular cardinal in A [ G ] .  

is not a regular cardinal] # 0, then there exists a family 
(w(a,  P) : a < 2, P < TC), where R < K ,  of elements of 3 such that (a) 

This contradicts the K-chain condition.] 

every cardinal in d is a cardinal in A[G]. 

*8. Assume that A satisfies the Generalized Continuum Hypothesis. Let 
H, be a regular cardinal in A. Let (P, <) be the set of all transfinite 0-1- 
sequences of length less than 0,; the partial ordering is by the inverse 
inclusion. Then every cardinal in A is a cardinal in &[GI, and K, is the 
least cardinal which has a new subset in &[GI. 

[Hint: For cardinals below K,, use Problem 5. For cardinals above K,, 
use Problem 7: (P, <) satisfies the K,+,-chain condition.] 

9. Let (P, <) be the set of all functions p whose domain is a set 
(0, 1, ..., n- l} for some n, with values being countable ordinals; the 
partial ordering is by the inverse inclusion (in A). Then (wl)& is a countable 
ordinal in A[G].  

[Hint: A generic set of conditions yields a function from w onto wl.] 

* 10. Let (P, < ) be the set of all functions p whose domain is a finite subset 
of o x w2 with values 0 and 1; the partial ordering is by the inverse inclusion. 
In d [ G ] ,  2''' > xl. 

[Hint: If 

w(a, P )  * w(a, A) = 0 if P f P1 and (b) VP (3Pl > P )  3a [w(a, P I )  # 01. 

Consequently, if B satisfies the countable chain condition in A, then 
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[Hint: u { p  : p E G} is a function from w x w2 into (0, l}. For a < w2, 
let z, = {n E o : F(n, a) = I}; show that bn = zfl] = 0 for a # /?. Show 
that (P, <) satisfies the countable chain condition; thus &[GI has the 
same cardinals as &.I 
11. Let G be &-generic on B E  A; let K be a cardinal in &[GI. Then 
(2")"[G1 < (IBI")". 

[Hint: If A c K in &[GI and if A is a name of A ,  then A_ represents a 
function a t+ [& E A] from K into B.]  

12. If A satisfies the Generalized Continuum Hypothesis, then in &[GI 
there is some a. such that 2'" = N,+ for all a 2 a,, . 

[Hint: Use Problem 1 I . ]  

**13. Assume that A satisfies the Generalized Continuum Hypothesis. 
Let F be a function (in &) from regular cardinals into cardinals such that 
(a) if a < B then F ( a )  < F(P) and (b) cf (F(a)) > a. There exists a model 
N of ZF+ AC such that N 2 A, N has the same cardinals as d, and 

The construction of the model Jlr is a generalization of generic models 
defined in Section 5.1. (Note that by Problem 12, Jlr cannot be a generic 
model in the sense of Section 5.1.) Instead of a set of forcing conditions, one 
has to use a proper class of forcing conditions. 

**14. Let dl be a transitive model of ZF+AC. There exists a model JV 
of ZF such that Jlr 2 A, Jlr has the same cardinals as &, and the following 
statement is true in N: For each a there exists a set X such that X is a 
countable union of countable sets and Y ( X )  can be partitioned into K, 
nonempty sets. 

Notice that there is no transitive model dl  of ZF+AC such that JV 
is a submodel of dll with the same ordinals: would satisfy that 2"O 
can be partitioned into any number of nonempty sets. 

(2")" = F(a). 

Let N be a symmetric extension of d given by By 9 and 9. If H is a 
subgroup of 93, let bH = { u  E B : .nu = u for each .n E H ) ;  bHis a complete 
subalgebra of B. Let 9(S) be the ideal of complete subalgebras of B 
generated by {bH : H E  P}. 

"15. If Fl and S 2  are two normal filters on g, if Jlr, and N 2  are the 
two symmetric extensions of A given by F1 and F2 respectively (B and 
G are the same), and if $(F,) = 9(F2), then N1 and Jtrz have the 
same sets of ordinal numbers. 
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[Hint: Each set of ordinals A e d [ G ]  has a name A whose domain 
consists of for some ordinals u. Let B(& be the complete subalgebra of 
B generated by {A(.) : & E dom A } .  Note that sym (4) = fix (B(4 ) )  = 
{n E 9 : nu = u for each u E B(A_)),] 

Compare the following result with Problem 3.19. 

*16. There exist two different symmetric extension d 4 p l ,  Jlrz of Jl which 
have the same sets of ordinal numbers. 

[Hint: (P, <) consists of finite functions p with values 0, 1 and 
dom ( p )  E o x  o. Let x, and A - be as defined in (5.12) and (5.13). Every 
permutation A of w induces an automorphism of RO(P) via (.np)(zn, m) = 
p(n, m) as in Section 5.3. Let g1 be the group of all such permutations; 
let S1 be the filter on g1 generated by the groups fix (e), e E o finite. 
(Thus Jtrl is the basic Cohen model.) 

Every permutation n of o x o  induces an automorphism of RO(P) via 
(.np)(n(n, m)) = p(n, m). Let g2 be the group of all permutations .n of 
o x o which move only finitely many elements; let Sz be the filter on gZ 
generated by {fix (e)  : e E o finite}. One can prove that (a) F2 is a normal 
filter, (b) 4(Sl) = 4(Fz), and (c) the set A is not in N,. The last state- 
ment is proved by a method analogous to (5.15), for example.] 

**17. There exists an o-sequence of models of ZF such that the nth and 
(n+ lYh models have the same sets of sets ... (n times) of ordinals. 

As a consequence, none of the statements K(n) is provable in ZF alone 
(see Problem 3.20). 

18. The basic Cohen model has an infinite set of real numbers which is 
Dedekind finite. 

[Hint: A = {x,  : n E o} is the set. The proof is implicit in Lemma 5.15.1 

19. If X is an infinite set of reals then Y ( X )  is Dedekind infinite. 
[Hint: Let X E *2 be infinite. Let S be the set of all finite sequences of 

0's and 1's. For s E S,  let X, = { f ~  X : s is an initial segment off). The set 
{X, : s E S }  is an infinite countable subset of B ( X ) . ]  

20. In the basic Cohen model, if X is infinite, then Y ( X )  is Dedekind 
infinite. 

[Hint: By Lemma 5.25, there exists u such that 1x1 < IB(o) x a!. Use 
Problem 19.1 

Compare this result with Problem 4.5. 



82 INDEPENDENCE OF THE AXIOM OF CHOICE [CH. 5, 96 

21. The Selection Principle holds in the basic Cohen model. 
[Hint: Use Lemma 5.25 and Problem 4.12.1 
Thus the Axiom of Choice is independent from the Selection Principle. 

Compare this with Problem 4.13. 

22. In the basic Cohen model, every family of nonempty well-orderable 
sets has a choice function. 

[Hint: Let SEN be well-orderable; there is a one-to-one function f 
from ordinals to S.  Let X E  S, let p IF X - =f(z). Let e be a support of 
e ,  a support of _X; we may assume s ( p )  c e u e l .  Let z E fix ( e )  such that 
e n  nel = e n  el = el n re1. For each q < p such that s(q)  E e u e l ,  
q u nq It .Y = f(&) = nx; thus p It X = nX. By Lemma 5.23, the least 
support of X is included in the least supportoff. Hence for some finite E, 
we have S c A ( E ) ,  the class of all x such that E is a support of x. The rest 
is as in Problem 4.14.1 

The following is a general version of Lemma 5.26. 

23. Let I be a subset of HS such that: 
(a) {sym (g) : E E  I> generates 9; 
(b) if EE I and n E 5, then n(E) E I; 
(c) if _El # _E, E I ,  then [gl = = 0. 

An assignment is a pair t = (g, i(zg)) where E E I and n E 9. If x E HS and 
t = (E, i ( n g ) ) ,  and if sym (E) 5 sym (s), then we define 

e(t, x) = i(z5). 

THEOREM: The function e is in ..x. 
24. Let (P, <) be the set of all finite functions p with values 0,1, and 
dom ( p )  E w x w. Every X c w x w induces an automorphism nx of 
RO(P) via (np)(n, m)  = either p(n, rn) or I -p(n, m), according to whether 
(n, m)  6 X or (n, m )  E X .  Let 9 = {zX : X E w x w } .  Let 9 be the a t e r  on 
9 generated by {fix ( e )  : e c w finite}, where fix (e )  = {zX : X n (e x o) = O}. 
Let Jzr be the corresponding symmetric model. 

THEOREM. In A'-, there is no nontrivial ultraJilter over w. 

[Hint: Let - D E HS and let p I t  O_ be an ultrafilter over &; let sym (D) 2 
fix (e )  for some finite e E o. Let n 4 e and let x, be the subset of o defined 
in (5.11).If q l t ~ , ~ Q , l e t  m,be suchthatforeachm2 m,,(n,rn)$dom(q); 
let X = ( (nm),  rn B m,}. Then we have nxq = q It nx(x,) E 0. Similarly 
for q i i -  5, 6 D .  Since x, n i(mn) c m,, D must be trivial.] 
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*25. Independence of the Hahn-Banach Theorem. Modify the construction of 
the model Jlr in Problem 24 as follows: in addition to the ‘symmetries’ n,, 
consider those ‘permutations of w x w’ which move only elements in finitely 
many columns (compare with Problem 16). In the resulting model, there is 
no measure on the Boolean algebra B(w) / I ,  where I is the ideal of finite 
sets. Therefore (cf. Problem 2.19), the Hahn-Banach Theorem fails in the 
model. 

[Hint: Let p E HS be a measure on B(w), vanishing on finite sets, with 
sym(p) 2 fix(e). The same argument as in Problem 24 gives p(x,)  = 
~ ( c o - x , , )  whenever n # e; therefore p(x,)  = 3. Then use a permutation n 
which maps 5, and 5, (up to a finite set) onto disjoint subsets of 5, and 
such that np = p. A contradiction.] 

It should be mentioned that the models in Problems 24 and 25, as well 
as the model Jzrz in Problem 16 are the same. This model is the least sub- 
model of the basic Cohen model which contains all the sets x, (but not the 
collection A = {x, : n E CO] of these sets). 

*26. Let (P, <) be the set of all finite functions p with values 0, 1, and 
dom ( p )  c w x o1. Let A [ G ]  be the corresponding generic extension. 
In .A[G], let Jzr be the class of all sets which are hereditarily definable from 
a countable sequence of ordinals. (The actual construction is as for HOD 
sets, cf. Problem 3.21.) Jlr is a model of ZF (see Problem 3.23). In N, 
the Axiom of Choice fails, and the Principle of Dependent Choices is true. 
Thus the Axiom of Choice is independent of the Principle of Dependent 
Choices. 

[Hint: (a). The Axiom of Choice fails in N. The set of all reals cannot be 
enumerated by ordinals. Using the Countable Chain Condition, show that 
every countable sequence of ordinals in A [ G ]  has a name which involves 
only countably many conditions. Thus every x E Jlr has a name which 
involves only countably many conditions (use Lemma 5.24, which holds for 
this model also). Similarly as in (5.11) and (5.12), one can define reals 
x,, a < wl. Iff€ Jlr is a function from the reals into ordinals, then we can 
find a # /3 such thatf(x,) = f ( x s ) ;  here we use permutations and Lemma 
5.13. 

(b) The Principle of Dependent Choices holds in N. First show that if 
f E &[GI is a function from w into Jlr, thenfe Jlr. The proof goes roughly 
as follows: For each n, f ( n )  is definable from some countable sequence of 
ordinals, choose one such s,. The sequence of sequences <so, sl, s2, ...) 
can be coded by a single countable sequence of ordinals. Thusfis definable 
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from a countable sequence of ordinals and so f E N .  If p E JV is a relation 
on A E A'- such that (Vx E A)(3y E A) [xpy] ,  then there is a sequence 
( x 0  , xi, x 2 ,  . . .) = f i n  &[GI such that x o p x l ,  x1 p x ,  etc. By the preceding 
claim, f is in N . ]  

5.7. Historical remarks 

The method of forcing was invented by Cohen [1963a, b, 1964, 19661, 
who also proved the independence of the Continuum Hypothesis and of 
the Axiom of Choice, and constructed the models in Sections 5.1, 5.3 and 
5.4, and in Problems 8, 9 and 10. The Boolean-valued version is due to 
Scott and Solovay [1967] and VopEnka [1967]. The proof of the indepen- 
dence of the Axiom of Choice from the Ordering Principle is due to Halpern 
and Levy [1964]. 

The theorem in Problem 13 is due to Easton [1964]. The model in Problem 
14 was constructed by Morris [1970]. The result in Problem 16 is due to 
Jech [t967]; Problem 17 is due to Monro [1972]. The observation in Prob- 
lem 20 is from Pincus' thesis [1969]. Problem 21 is a part of the above- 
mentioned result of Halpern and Levy. The statement of Problem 22 was 
probably first noticed by Mathias [1967]. The theorem in Problem 23 was 
proved by Feferman [1965]. Problem 25 is due to Pincus [1973b] (also, 
Solovay [1970] notes that the Hahn-Banach Theorem fails in his model). 
The construction in Problem 26 is due to Solovay. The independence of the 
Axiom of Choice from the Principle of Dependent Choices was first an- 
nounced by Feferman in [I9641 (for ZFA see Mostowski [1948]). 



CHAPTER 6 

EMBEDDING THEOREMS 

6.1. The First Embedding Theorem 

An observant reader could hardly fail to notice that there is a certain 
similarity between permutation models of ZFA and symmetric models of 
ZF. For instance, in the basic Cohen model in Section 5.3, the set A behaves 
similarly to the set of atoms in a permutation model (either in the basic 
Fraenkel model or in the linearly ordered Mostowski model). The analogy is, 
however, far from complete. The set A ,  being a set of reals, carries already a 
certain structure and so it must necessarily be different from a set of atoms 
which in general are unrecognizable one from another. [Notice, e.g., that 
the Selection Principle holds in the basic Cohen model while it fails in the 
Mostowski model. Also, Y ( A )  is Dedekind finite in the Mostowski model, 
while each Y ( X )  is either finite or Dedekind infinite in the basic Cohen 
model; cf. Problems 4.5, 4.13, 5.20 and 5.21.1 

The second Cohen model in Section 5.4 suggests that sets of reals, rather 
than reals, are more suitable to play the role of atoms and this can be 
utilized to the extent that every permutation model can be simulated by a 
symmetric model, with atoms being replaced by sets of sets of ordinals. 
The present chapter deals with a general method of transfer and some of its 
refinements. 

THEOREM 6.1 (First Embedding Theorem). Let @ be a model of ZFA+ AC, 
let A be the set of all atoms of @, let A be the kernel of @ and let CY be an 
ordinal in @. For every permutation model V c @ ( a  model of ZFA), 
there exists a symmetric extension Jlr 2 4 (a  model of ZF) and a set 
2 E Jlr such that 

(Ya(A))Y is €-isomorphic to (Y'"(2))". 
85 
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PROOF. Let c( be an ordinal in @, let 3,F E @ be a group of permutations 
of the set A of all atoms of @ and a normal filter on 3, respectively. Let V 
be the class of all hereditarily symmetric elements of 42 (w.r.t. 5, 9) 
and let A be the kernel of 42. First we construct a generic extension A [ G ]  
of A. 

Let ic be a regular cardinal such that ic > IP(A)I  (in %). The set P of 
forcing conditions consists of functions p with values 0, 1 such that 
ldom (p) l  < ic and dom(p)  c (Axic)xic; as usual, < = 2. [In fact, 
we rather let dom ( p )  E (A' x ic) x K, where A' E A has the same cardinality 
as A ,  in order to satisfy the formality that (P, <) E A.] 

Let G be an A-generic ultrafilter on B = RO(P). We define the following 
elements of &[GI ,  together with their canonical names in AB: 

(6-1) xa< c ' 1 ~ x a t t , ( 3 p ~ G ) [ p ( a , t , r )  = 11  ( a ~ A , t  < K), 

(6.2) a" = {Xar : 5 < .} (a E A),  

(6.3) A = {a" : U E A } ,  

dom (?at) = {G : 'I < K}, ?at(?)  = uatq = C ( P E P  :P(u, t, 'I) = 11, 

- = 1 for all ( < ic, 

A(4) = 1 for all a E A .  

For every x E @, we define I E A [ G ]  and its canonical name g E AB by 
erecursion: if x is a set in % and if j j  and f have been defined for every 
y E x, let 

(6.4) 

Since a" and E have been defined for all a E A ,  I and 
X E  @. 

LEMMA 6.2. For all x, y E 92, 

2 = ( j j  : y E X } ,  

dom ( g )  = { 2 : y E x } ,  g ( J )  = 1 for all y E x. 

are defined for all 

x E y t , l E j j ,  x = y t , X  = j j .  

PROOF. Clearly, if x E y ,  then [ ~ E J J  = 1 and so 2 = j j .  To show that 
jY E p implies x E Y  and X = j implies x = y ,  we have to  use the induction 
on ranks, simultaneously for E and = (simultaneously as in Lemma 5.6, 
for example). First note that [zat = Sarr.I] = 0 whenever (a, t) # (u', t'), 
and [gas = kj = 0 for any x E A; the proof is as in the proof of Lemma 
5.15. Consequently, a", # whenever a, # a2 E A .  We claim that for all 
x E @, X is not equal to any xat. If x E A, then X = x and so X # xac. 
If x E V - A, then 1 is of higher rank than any xa5; viz., xat is a set of 
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ordinals, whereas the transitive closure of X contains some of the x,,;s. Now 
we can prove the lemma: 

(a). If X E J ,  then y cannot be an atom, because then we would have 
f = xac for some a, l ,  which is impossible. Hence X = P for some z EY, 
and by the induction hypothesis, x = z ;  thus x E y. 

(b) If x # y ,  then either both x and y are atoms and then X # J ,  or, 
e.g., x contains some z which is not in y, and then by the induction hypoth- 
esis, P E X and P 4 J ;  thus X # J .  

Now we construct a symmetric submodel JI’ of A [ G ] ;  we shall define 
a group 3 of automorphisms of B and a normal filter % on 9. 

For every permutation p of A,  let [ p ]  be the group of all permutations 7c 
of A x ic such that for all a, 5 ,  
(6.5) n(a, 5 )  = @(a), t’) for some {‘.I 

We let 
- 

(6.6) 9 = u { b l : p E 9 } ;  

similarly, we let R = u { [ p ]  : p E H }  for every subgroup H of $3. Since 
every permutation n of A x ic induces an automorphism n of B via 

(6.7) (w)(n(a,  r ) ,  r )  = p(aY r,  r )  for all a, r,  vl(P E P )  
n u = z { n p : p ~ P a n d p <  u }  ( u E B ) ,  

we consider 9 as a group of automorphisms of B. For every finite e E A x IC, 
let 

(6 .8)  h ( e )  = (7c~g:nnx =xforeachxEe}. 

We let 9 be the hlter on 

(6.9) 
The reader will gladly verify that F is a normal filter. 

Let HS E AB be the class of all hereditarily symmetric nanies (w.r.t. 
9, F), and let the symmetric model JV be the interpretation of HS by G. 
It is clear that 

generated by 

{ R  : H E  F} u {fix (e) : e G A x ic, e finite}. 

_ _  

(a) xac E JV for all a E A ,  5 < K, because sym, 
(b) a“ EN for all a E A ,  because sym-, (i) = sym, (a); 
(c )  2 E A”, because sym @) = 3. 

= fix {(a, r )} ;  

We recommend that the reader visualizes A x K as a set A of disjoint blocks, each block 
consisting of K elements; p moves the blocks while 7z moves the elements; n acts on the 
blocks exactly as p does. 
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LEMMA 6.3. For all x E @, 

x E y - g  E HS. 

PROOF. It suffices to show that 

(6.10) sym, (x) E 9 cf sym, (g) E F.  
If p E 9 and x E [p ] ,  then = x ( Q  and so symg @) = sym, (x); thus if 
sym, (x) E 3, then symg (2) E g .  On the other hand, if sym, (2) E F, 
then sym, (x) 2 R n fix ( e )  for some H E  9 and finite e E A x K. If 
E G A is the projection of e into A (i.e., E = { a  E A : (a, 5) E e for some C}), 
then sym, (x) 3 H n fix ( E )  and hence sym, (x) E 9. 

LEMMA 6.4. For all x E a, 
X E  v - 2  E N .  

PROOF. In  view of Lemma 6.3, it suffices to show that if x" E N ,  then 
x E 'V. Assume that x E @ is of least rank such that x" E N and x $ V. 
Thus x G V ;  since x" E M ,  there exists g E HS and p E G such that 
p It z = 2.  - We have sym, (z) E and so there exists H E  9 and a finite 
e c A x IC such that syin (g) 3 B n fix (e) .  We shall find p E 9 and x E [ p ]  
such that: 

(6.1 1) (i) xp and p are compatible; 
(ii) TC E R n fix (e ) ,  
(iii) p ( x )  f x. 

Then we will have xz = z by (6.11)(ii), [ ~ ( g )  = z] = 0 by (6.11)(iii), 
and since 

we will have 

a contradiction. 
To get TC, note that x is not symmetric, so that there is p E 9 such that 

p ( x )  # x and p E H n fix (E), where E is the projection of e into A .  Since 
IpI < IC, there exists y < K such that (a, 5) 4 dom ( p )  and (a, 5) 4 e for any 
a E A ,  ( 3 y. Thus we define TC E [ p ]  as follows: 

(6.12) 

xp It TCz = ng, 

q = p  U xp It (z = 3 A _Z = 7@), 

(i) if a E E, then x(a, 9 )  = (a, 5) for all 5 < IC; 
(ii) if a 4 E, then x(a, 9 )  = (pa, y + <) 

and ~ ( a ,  y + 5 )  = (pa, 5) for 5 < Y 
and ~ ( a ,  5) = (pa,  5) for 5 2 2y. 
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It follows that n E n fix (e) and that p and np are compatible. 

The following lemma will complete the proof of Theorem 6. I. 

LEMMA 6.5. ( P ( A ) y ) -  = Pa(A”)”. 

PROOF. It suffices to show that the right-hand side is included in the left-hand 
side. The proof is by induction; we show that if x E P a ( A ) y  and y c x,  y E N ,  
then there exists z E 9’- such that y = Z. Let 2 be a name for y.  Note that 
every descending sequence of less than IC conditions has a lower bound. 
Since 1x1 c IC, we may use the same argument as in the proof of Lemma 5.12 
(or Problem 5.5),  to obtainp E G which decides z E 2 for all t E x .  It follows 
that y = Z, where z = { t  E x : p It 1 E?}. By Lemma 6.4, since z” E JV, 
we have z E V. 

6.2. Refinements of the First Embedding Theorem 

The First Embedding Theorem enables us to embed a segment of a 
given permutation model into a symmetric model. Thus the statements 
whose validity depends only on a segment of the universe are true in the 
permutation model if and only if they are true in the corresponding sym- 
metric model. (The reader will find a precise formulation and examples in 
the problem section). This makes it possible, in many cases, to reduce 
the problem of consistency in ZF to the construction of a permutation 
model. Not every property of the permutation model V holds in the 
symmetric model M - naturally, because V is a model of ZFA while JV 
is a model of ZF. (We shall give some specific counterexamples in Chapter 
9.) We can look at the First Embedding Theorem as a first approximation 
of the permutation model by a symmetric model. The method described in 
Section 6.1 can be refined to transfer additional properties of V into JV. 

In the proof of the independence of the Axiom of Choice froa the 
Ordering Principle, the key property of the model (in both cases) was the 
existence of a least support for every element of the model. This property 
plays an important role in the construction of both permutation and 
symmetric models; it is our intention to show that this property can be 
preserved in the transfer from V to JV. 

Let V be a permutation model determined by a group 59 of permutations 
of A ,  and the ideal I of the finite subsets of A. We say that V is a support 
model if the group ’3 has the following property: 
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(6.13) If E l ,  E, are finite subsets of A and if n E fix (El n E,), then 
there exists a finite number of permutations p1 , ql, p z  , 0, , .. ., pn , on 
such that p i  E fix (El) and oi €fix (E,) (i = 1, ..., n)  and 
?c = p1 0, * ... * p" * 0". 

If 3 has the property (6.13), then every x E V has a least support, and the 
relation ' E  is the least support of x' is in the model V ;  see Section 4.5 for 
the details. 

If we embed a support model in a symmetric model by the method 
described in Section 6.1, then obviously every name _x E dB is symmetric 
if and only if there exists a pair (e,  E) of finite sets, e c A x IC and E c A 
such that symg ( x )  2 fix (e, E), where 

(6.14) fix (e,  E )  = {n E 3 : ?c E fix ( e )  and n E [ p ]  for some p E fix (E)}. 

We can - and always will -assume that Eincludes the projection of e into A .  
We may say that (e,  E )  is a support of 5. Actually, we may (as we did in 
Section 5.5) identify e = {(al, tl), ..., (ak, g k ) }  with the canonical name _e 
of the set 

(6.15) e = {xa,,,, XakCL}, 

and similarly, E = { a l ,  ..., ak} with the canonical name of the finite set 

(6.16) E = {GI, ..., a"k}. 

The class 

(6.17) 

is symmetric and its interpretation defines a relation A in N: 

(6.18) (e,  E) is a support of x ++ ( ( e ,  E), x) E A .  

We say that Jlr is a support model if every x E N  has a least support, i.e., 
a support (e, E) with the property that whenever (e', E') is also a support 
of x then e G e' and E E E'. 

- A = {((g, - E)B, 5)" : (g, _E) is a support of ,y}, 

THEOREM 6.6 (Support Theorem). If V is a support model (of ZFA) and 
if we use the method of Section 5.1 to embed V in a symmetric model N ,  
then JV is a support model (of ZF). 

PROOF. We shall more or less follow the proof of Lemma 5.23, and verify 
that it goes through in the present situation. Let x E N and let both (el , El) 
and ( e z ,  E,) be supports of x; we want to show that (el n e, ,  El n E,) 
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is a support of x.  It suffices to consider three special cases: (1)  El = E,, 
(2) el = e, ,  and (3) el c e,  and E, G El. The general case is deduced as 
follows: 

(el  , E l )  and (e ,  , E,) are supports, 
(el  , El u E,)  and (e , ,  El u E,)  are supports, 
(el  n e, ,  El u E,) is a support, (use case (1)) 

(el  n e, ,  El) and (el n e, ,  E,)  are supports, (use case ( 3 ) )  
(el n e 2 ,  El n E,) is a support. (use case (2)) 

We are proving the analogue of Lemma 5.23. Let p IF _x = v. First note 
that the analogue of Lemma 5.24 holds: 

If (g, I?) is a support for each of the xl , ..., 
condition p ,  

E HS, then for each 

(6.19) i f p l t - # ( ~ 1 ,  *..,xn), thenp : ~ l t - # ( ~ i ?  -..,~n)* 

(Note that (6.19) does not depend on E, only on g.) The proof goes exactly 
as in Lemma 5.24: For every q 2 p :c, there exists a permutation 
n E fix (g, E )  such that p and nq are compatible. 

Since V is a support model and because our permutations act inside the 
blocks arbitrarily, we can easily conclude that every symmetric name has 
a least support (g, E ) .  We also notice that if ( g ,  E )  is a support of w, if 
p1 , p 2  are permutations of A,  and if nl E [ p , ] ,  n, E [p,], then 

(6.20) 

(the analogue of (5.24)). 

respectively, By (6.19), we may assume that 

if p1@ = p z @  and nllg = nzlg, then nl(w) = n,(w) 

Let p I I- x = 2 and let (el , El) and (g, , _E2) be supports for _x and y, 

(6.21) 4P) c g1 u C2. 
Case 1 : El = _E,. The proof is virtually the same as the proof of Lemma 

5.23. Of course, we consider only those permutations which preserve each 
a E E l .  

Case 2: _el = e2.  In this case, we use the property (6.13) of '3. 
If n E fix klY El n E2), then we prove that p I t -  x = nz: there are 

and by (6.21), p i p  = oip = np = p ;  thus we have: 
p 1 , 0 1 ,  . . . , p k , C T k  such that PiEfiX(k1,&1), 0iEfiX@1,E2), i = 1, ... , k ,  
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p It 715 = ... = = z. 
Now we can simply define - z E dB as follows: for E HS, p ( ~ )  < p(&), let 

(6.23) 

Obviously, p I t  z = _x, and (el, E ,  n E 2 )  is a support for 2 because if 
n E fix (el ,  E l  n &), then np = p and 

(6.24) +_W) = unY zj - = uny nzj np = R(z(W))  = (nz)(.W), 

and hence nz = g. 
Case 3: el c g 2  and E, E E l .  For simplicity, let El - = {a, b) ,  E ,  = {a) ,  

gz = {(a,  S ) ,  (a,  q ) } ,  el = { (a ,  c)>. Following the proof of Lemma 5.23, 
we define 

(6.25) d.’) = [Tw E dl (4W) u _el>, 

where s(w) is the g in the least support (g, E )  of E, and this we do for one 
chosen w in each {ny : n E fix (el ,  g2)}, and the w is chosen such that 
s@) is disjoint from g 2  and from b. When done this way, _z(ny) can be 
unambiguousIy defined as n ( g ( ~ ) )  and sym (z) z fix (g, , c2). 

To show that p It x = g, we proceed as in Lemma 5.23. At the point 
where we specify the permutation n (see (5.35)), we notice that n may be 
taken as a composition nl n2 of two permutations n, and n2 such that 

n2(a, S )  = (a, t) for all 5 < K. (6.26) 

We have n l x  = g, n2? = y ,  and since s ( p )  E e 2 ,  we also have n2p  = p 
and np = n l p .  The proof is completed by showing the analogue of (5.36). 
To see that np u p  It nx = z, we use 

(6.27) 

n, fix (el , El), 

np = n1p I t  _x = n1x = n,?, 
np = n1n2p IF nz = n1n,2 = nlz. 

In Section 5.5, when we proved that the Ordering Principle holds in the 
basic Cohen model A”, we used the existence of a least support for each 
x E JV to construct a one-to-one function F in JV with values (e,  a), where 
01 E On and e is a finite set of reals. The support model Jlr obtained from ‘f 
by the method of Section 6.1 enjoys a similar property. 
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THEOREM 6.7. If “Y is a support model (of Z F A )  and if we use the method of 
Section 6.1 to embed “Y in a support model A’” (of ZF),  then there is a one- 
to-one function P i n  Jlr which maps &“ into P(K)  x V. 

(Note that the family of all subsets of K is linearly ordered by the lexico- 
graphical ordering. We shall refer to it as the natural linear ordering of 
P‘(4.) 
PROOF. We follow the proof that the Ordering Principle holds in the basic 
Cohen model and use the Support Theorem. An aAsignment is a finite func- 
tion 

t(Z1) = i(nzl), * . . Y  t(%) = i(nzk), 
= i(ngl), ..., t(gn) = i(.g,), 

where _ a l ,  ..., g, are canonical names for elements of 2 and x l ,  ..., x k  are 
canonical names for elements of elements of A” (see (6.1)-(6.3)). We let 

for every _x E HS and an assignment t such that the domain of t includes 
the support of 5. The function e is in A”. We construct F as follows: Let 
x EN. Let (e, E )  be the least support of x, and let e = { x l ,  ..., xk), 
where x 1  < ... < x k  in the natural linear ordering. There exist y l ,  ..., J ~ ,  

e l ,  ..., LZ,,, 2 E HS, and an assignment t such that 

(6.28) 

Let xl,  ..., Y k ,  _al, ..., g,,, 2 be least (in the well-ordering of dR) such that 
(6.28) holds for some assignment t. Obviously, the set S’ of all such 
assignments is finite (of size at most the number of permutations of E ) ,  
and since every such t has fixed values on V l ,  . . . , f k ,  the set S‘ can be defined 
from a finite set S of finite functions from {a,, . . ., a,) to E. The set S is in 
V and since dB E “Y, we can assign to each x E A” a pair (e, v), where e 
is the first part of the least support of x and v = (( yl ,  . . . , y k ,  a_, , . . ., g, ,?), S) 
where v E “Y. This gives a one-to-one function from A’” into I x V, where 
I is the family of ail finite subsets of 9 ( ~ ) .  Now we use the fact that there is 
a one-to-one correspondence between I and P(K) ,  and thus we obtain a 
one-to-one function which maps JV into Y(K)  x V. 

NOW we shall deal with another refinement of the First Embedding 
Theorem. In Section 6.1, we started with a permutation model V given by 
9 and 9, and a prescribed ordinal a and constructed a symmetric model 
JV such that (P(,4))v is isomorphic to (9a(A”))”y for some A” E JV. This 

dom (t)  = ( y l ,  .-.,zk,_al, ..., a,}, rng ( t )  = e u E, 
t(v1) = x1, * * - ,  t ( x k )  = xk- 
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was done by constructing a generic model A [ G ]  and then specifying a 
group 3 of automorphisms of B and a normal filter 
was defined in (6.9), and it is actually the least filter which can simulate 9 
and make sure that each xas is in M .  

However, in the proof of Theorem 6.1, we used only some specific proper- 
ties of the filter 3. It turns out that these properties can be satisfied by other, 
richer filters on g,  which give us more control over the model N ,  while 
still preserving the basic requirement that V embeds in M .  

Let (P,  <) be the forcing conditions used in the proof of Theorem 6.1 
and let 3 be as defined in (6.6). For every n E 3, let pn be the unique p E 9 
such that .n E [p]. Let be a normal filter on 3 generated by a set 3? of 
subgroups of 3. We say that 9 is feasible if the following two conditions 
are satisfied: 

(6.29) 

and 

(6.30) 

on 9. The filter 

If H E  9, then H E F, and conversely, 
if  HE^, then {p, : ~ E H }  €9 

If X c A x K and 1x1 -= K ,  and if K E  3” and p E 9 are such that 
K n [ p ]  # 0, then there exists a permutation .n E K n [p]  such that 
for each x E X, either nx = x or nx $ X. 

Notice that if the condition (6.30) is satisfied, then for every condition 
p E P and every K and p as in (6.30), there exists n E K n [ p ]  such that p 
and 7cp are compatible. If one goes through the proof of the First Embedding 
Theorem, one can see that the conditions (6.29) and (6.30) are exactly what 
we need in the proof of Lemma 6.4. Thus we have the following theorem: 

THEOREM 6.8 (Second Embedding Theorem). Under the assumptions of 
Theorem 6.1, i f  B and 3 are constructed as in the proof of Theorem 6.1, 
and ifF is a feasible normal filter on 3, then the corresponding symmetric 
model satisfies the conclusion of Theorem 6.1. 

The filter constructed in (6.9) is an example of a feasible filter. For 
another example, see Problem 12. We will have use for it in Chapter 8. 

6.3. Problems 

1. Let be a formula of the form 3X t,b(X,v), where the only quantifiers 
we allow in t,b are 3u E P ( X )  and Vu E P v ( X ) .  Let V be a permutation 
model such that V k 3Xq5(X).  Then there exists a symmetric model M 
of ZF such that A” k 3X 4 ( X ) .  
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[Hint: Let XE -tr be such that V 1 $(X,  v ) ;  let a be such that 
P " ( X )  E P ( A ) .  By Theorem 6.1, there exists Jzr such that P ( A ) @  w 
P(A")N. Thus Jzr C $(x", v).] 

In Problems 2-10, show that the formula #(X) is of the type described in 
Problem 1 and conclude, using the results from Chapter 4, that the existence 
of such Xis consistent with the axioms of ZF. (The statement in Problem 10 
is shown to be consistent with ZFA in Chapter 10.) 

2. X cannot be well-ordered. 

3. X cannot be linearly ordered. 

4. Xis a countable set of pairs without a choice function. 

5. Xis amorphous. 

6. X is infinite and g ( X )  is Dedekind finite. 

7. X is infinite and D-finite and P ( X )  is D-infinite. 

8. Xis infinite and T-finite. 

9. X is T-infinite and D-finite. 

10. X, is a vector space over the field X ,  and X ,  has no basis. 

11. The Selection Principle is independent from the Ordering Principle in 
ZF. 

[Hint: Express the Selection Principle by a formula of the type described 
in Problem 1 and embed the linearly ordered Mostowski model V in a 
support model Jzr of ZF. By the Embedding Theorem, the Selection 
Principle fails in A". By Theorem 6.7, .N has a one-to-one function F into 
9 ( ~ )  x V, and both 9 ( ~ )  and V are linearly ordered. Thus Jlr is linearly 
ordered]. 

12. Let x, be a cardinal and let A be the set of all atoms, 1-41 2 X,. Let '22 
be a group of permutations of A and let 9 be the normal filter determined 
by the ideal of sets of cardinality less than x, (i.e., F is generated by 
(fix ( E )  : IEl < X,}). Let dB be constructed as in Theorem 6.1 and let 9 
be as in (6.6). Let be the filter on 3 generated by { g  : H E  F} u 
{fix (e )  : e E A x K and (el < x,}. Then 9 is feasible. 

The following result is mentioned here because its proof is closely related 
to the Embedding Theorem and its application gives counterexamples to 
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the Axiom of Choice. The proof requires some facts from model theory. 
A theory Tis x,-categoricalif T has a unique (up to isomorphism) countable 
model. (The most popular example is the theory of linear order.) 

**13. If A is the countable model of an No-categorical theory T (in A), 
then there is a symmetric extension A’- of the ground model -4 and A’ E JV 
isomorphic to A such that the only subsets of A’ in A’- are those definable 
over A’ (in the language of T) with parameters from A’. 

This can be proved by using the automorphisms of A as permutations 
and finite subsets as supports to construct a permutation model, and then 
to use the Embedding Theorem to get a symmetric model of ZF. One uses 
facts such as: T has only finitely many n-types for each n, etc.. 

Here are several applications: The statements in Problems 14-16 are 
consistent with ZF: 
14. There is an amorphous set. 

subset of A’ is either finite or a complement of a finite set.] 

15. There is a linearly ordered set whose only subsets are finite unions of 
intervals and points. 

[Hint: Let T be the theory with no axioms; T is No-categorical. Every 

[Hint: Let T be the No-categorical theory of linear order.] 

*16. There is a vector space without a basis. 
[Hint: Let T be the N,-categorical theory of infinite-dimensional vector 

spaces over a two element field. Let 4(x, p’) define a basis B in A ;  let 
x, JJ, z E B be such that neither of them is a linear combination of the p’s. 
There is an automorphism TC of A which leaves l j  fixed and n(x) = y+z.  
Then y + z  E B, a contradiction.] 

*17. (For model theorists.) The A‘ from Problem 13 is D-finite. 
[Hint: If A is the countable model of an No-categorical theory, then no 

infinite subset of A has a well-ordering definable over A with parameters 
from A.] 

6.4. Historical remarks 

The two Embedding Theorems and their applications (Problems 1-10) 
are due to Jech and Sochor [1966a, b]. The Support Theorem and the 
example in Problem 11 are due to Pincus [1969, 1971, 1972al (Problem 11 
is independently due to Felgner [1971b]). The theorem in Problem 13 and 
the subsequent applications are due to Plotkin [1969]. 



CHAPTER 7 

MODELS WITH FINITE SUPPORTS 

7.1. Independence of the Axiom of Choice from the Prime Ideal Theorem 

In this chapter, we present several independence results which are ob- 
tained by constructing a permutation or a symmetric model with the filter 
given by the ideal of finite sets. In all the examples, except the first one 
concerning the Prime Ideal Theorem, it suffices to deal with permutation 
models, and the Embedding Theorem and the Support Theorem provide an 
easy transfer to set theory without atoms. 

In this section we prove: 

THEOREM 7.1. The Axiom of Choice is independent from the Prime Ideal 
Theorem. 

Theorem 7.1 is true for set theory ZF (without atoms). There is a symmetric 
model JV of ZF in which the Axiom of Choice fails while the Prime Ideal 
Theorem holds. Actually, this is true in the basic Cohen model JV. By the 
results of Section 5.5, the Axiom of Choice fails in JV and every set can be 
linearly ordered. Since the Prime Ideal Theorem implies the Ordering 
Principle, we get a stronger result than in Section 5.5. 

We shall not give the proof of the Prime Ideal Theorem in the basic 
Cohen model. Rather, we show that the Prime Ideal Theorem holds in the 
Mostowski permutation model (see Section 4.5). Similarly, as the proof of 
the Ordering Principle in the Cohen model requires more subtle methods 
than the proof in the Mostowski model, although the idea is similar, the 
proof of the Prime Ideal Theorem is considerably more complicated than 
the proof in the Mostowski model. In particular, one apparently cannot 
avoid the necessity of a heavy use of involved combinatorial properties. 

The rest of this section is devoted to the proof that the Prime Ideal 
Theorem holds in the linearly ordered Mostowski model of ZFA. 

97 
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We recall that the set A of atoms is ordered like the rationals, that 59 
is the group of all order-preserving permutations of A and that an element x 
is symmetric if 

sym ( x )  2 fix ( E )  

for some finite E; E is a support of x. Every x has a least support. 

Consistency Principle: 
We further recall that the Prime Ideal Theorem is equivalent to the 

For every binary mess M there exists a function f which is consistent with M .  

(See Section 2.3.) We shall show that if M is a mess in the Mostowski model 
Y,  then there is f E V which is consistent with M. 

Let M E V be a binary mess on a set S. Let EM be the least support of M. 
For every x E S, let 

(7.1) [XI = the orbit of x = {zx : n E fix (EM)) 
and let = { [ x ]  : x E S ). We shall define a binary mess h on s. We let &f 
consist of all binary functions h defined on finite subsets of A? that satisfy 
the following condition: 

(7.2) For every finite subset P c u { [ X I  : [ X I  E dom h),  the following 
function t on P is in M :  

t ( x )  = h( Ex]) for every x E P. 
If this is the case, we say that P admits h. We have to show that the following 
condition is satisfied, in order to know that 

(7.3) For every finite Q -C 3, there exists h E i@ defined on Q. 

Once we know that M is a mess, we take any g on 3 consistent with M and 
define 

is a mess: 

(7.4) f ( X )  = g([xI), 

for every x E S. The function f is obviously symmetric and hence f E ?f 
and we are done. 

Thus all we have to do is to prove (7.3). We shall distinguish two cases: 

7.1.1. Case I :  EM is empty. 
Let Q be a finite subset of 3 = {[XI : x E S > .  We are looking for a binary 

function h on Q which satisfies (7.2). Notice that we have k = 24 functions 
to choose from, where q = lQ \ .  Let Q = { X E  S :  [x]EQ>. Fix some 
Po c Q which has exactly one element in each [ X I  E Q and notice that 
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(7.5) Q = u {nP,  :7r€9}. 

Let us say that P c Q is an n-set if there are n permutations n, , . . ., n, E 9 
such that P = nlP0  u ... u nnPo. Since we have only k choices of h and 
since every finite subset of Q is included in an n-set for some n, it is sufficient 
to show that for any n, there exists an h such that every n-set P admits h. 

Let n be fixed. We say that two n-sets P l  and P ,  have the same type if 
P ,  = n l ( P )  for some n E 9. Certainly, if P ,  and P ,  have the same type and 
if P ,  admits h, then P ,  admits h. Thus it suffices to prove that there exists 
an h such that for each type, there is an n-set P of that type which admits h. 

First we show that there are only finitely many types of n-sets. Let E, 
be the least support of Po; let r = IEoI. Let E l ,  ..., En, E; , ..., Ei be subsets 
of A,  each having r elements. We say that { E l ,  ..., En} and { E ; ,  ..., EL) have 
the same type if there is n E 9 which transforms { E l ,  ..., En} into 
{ E ; ,  ..., EL}. Notice that there are only finitely many types of these n-tuples; 
e.g., if El = {a,  b }  and Ez = {c ,  d } ,  then there are exactly three types: 
a < b < c < d, a < c < d < b and a < c < b < d .  Let m be the number 
of types of the n-tuples. For each E = nE,, let PE = nP,; similarly, for 
each = { E l ,  ..., En}  = {n lEo ,  ..., nnEo}, let P; = 7rlE u ... u n,E. If 
B, E’ have the same type, then P; and P;, have the same type. Thus it 
suffices to find h such that each of the m types of n-tuples admits h. 

At this point, we have to resort to combinatorial methods. 

LEMMA 7.2. There exists a Jinite set U of r-element subsets of A which is 
so big that whenever we partition U into k = 24 disjoint sets U = U ,  u . . . v Uk,  
then at least one Ui contains as subsets n-tuples {El, ..., Em) of all m types. 

Once we prove Lemma 7.2, we will be done. For consider such a set U 
and let P = u {PE : E E U } .  Let t E M be a function defined on P.  Each 
tlPE corresponds to one of the k possible functions h , ,  ..., h, on Q ,  this 
induces a partition of U into k parts. Some Ui contains n-tuples of all types, 
and so every type admits the function h i .  

To prove Lemma 7.2, we use a popular combinatorial lemma, known as 
Ramsey’s Theorem. If W is a set and r a number, then [W]r = 
{ X  G W: 1x1 = r } .  If [W]’ = Yl u ... u Yk is a partition, then a set 
H E W is homogeneous (for that partition) if [H]’ is included in some Y j .  

LEMMA 7.3 (Ramsey’s Theorem). Let k and r be given numbers. For every 
number z, there is a number w such that whenever W is a set having w elements 
and [ w]r = Y ,  u . .. u Yk is a partition, then there is a homogeneous set H 
which has z elements. 
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For the proof of Ramsey’s Theorem, see Problem 3. 

PROOF OF LEMMA 7.2. First notice that whenever H is a set of atoms and 
]HI = n r, then each of the types of n-tuples is represented by some 
{ E l ,  ..., En} with Ei c H, i = 1, ..., n. Let z = n . r .  Let w be a number 
satisfying Ramsey’s Theorem. Let W be a set of w atoms and let U = [ W]r. 
If U = U ,  u ... u uk, then by Ramsey’s Theorem, there is H c W of 
size n . r such that [H] ’  c Ui for some i .  The set Ui contains as subsets 
n-tuples of all m types. 

This completes the proof of Case I. 

7.1.2. Case II: EM is nonempty 
Here the combinatorics gets more involved. For simplicity, assume that 

EM = { a } .  The proof goes as before, except that we have fix (EM) instead 
of 9, and E ranges over subsets of A not of size r but of a given signature 
P = ( r l ,  r2) ,  where rl  is the number of elements of E, less than a, and r2 
the number of elements greater than a.  Again, the key is Lemma 7.2, 
with ‘r-element subsets’ replaced by ‘sets of signature 7. 

As before, all we have to do to prove Lemma 7.2 is to produce a set 
H c A of signature (nr l ,  nr2) such that = 
{ X  c H :  X has signature ( r l ,  r 2 ) } .  Instead of Ramsey’s Theorem, we use 
the following lemma: 

LEMMA 7.4. Let k,  r1 and r2 be given numbers. For every number z, there is 
a number w such that whenever W is a set having w elements and 
[ W]r’ x [WII, = Yl u ... v Yk is a partition, then there exist Z ,  and Z 2 ,  
each having z elements, such that [ZIT1 x [ Z 2 p  5 Yi for  some i. 

c Ui, where 

For the proof of this lemma, a generalization of Ramsey’s Theorem, 
see Problems 4 and 5. The case when EM has more than one element is 
handled similarly. 

7.2. Independence of the Prime Ideal Theorem from the Ordering Principle 

The Prime Ideal Theorem implies that every set can be linearly ordered, 
as shown in Section 2.3, where the Prime Ideal Theorem is used to prove 
the Order Extension ’Principle which says that every partial ordering can be 
extended to a linear ordering. In this section, we show that the Ordering 
Principle is weaker than the Prime Ideal Theorem by exhibiting a model 
(first a permutation model and then a symmetric model) in which every 
set can be linearly ordered but in which there exists a partial ordering which 
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cannot be extended to a linear ordering; consequently, the Prime Ideal 
Theorem fails in the model. The partial ordering that will be used in the 
model is the universal homogeneous partial ordering of a countable set. 
Before we construct the model, we better say a few words about the 
universal homogeneous partial ordering. 

A countable partially ordered set (P, <) is universal if every finite 
partially ordered set (E, 4 )  can be embedded in (P, <). (P, <) is homo- 
geneous if whenever El and E ,  are finite subsets of P, and i is an isomorphism 
of ( E l ,  <) and ( E 2 ,  <), then i can be extended to an automorphism of 

Notice that if we consider linear ordering rather than partial ordering, 
then the rationals are the unique (up to isomorphism) countable universal 
homogeneous linearly ordered set. The proof of uniqueness - the well-known 
zig-zag argument - uses a property somewhat stronger than universality, 
which, however, follows from universality and homogeneity. Using the 
following lemma, we can similarly show that the countable universal 
homogeneous partial ordering (if it exists) is unique (Problem 7). Moreover, 
it follows easily from Lemma 7.5, that every countable (E, <) can be 
embedded in (P, <). 
LEMMA 7.5. Let (P, < ) be a countable universal homogeneous partially 
ordered set. If (E, <) is a finite partially ordered set, E ,  c E, and if e, 
is an embedding of (E,,  <) into (P, <), then there is an embedding e of 
(E,  <) into (P,  <) which extends e, .  

PROOF. We may assume that E ,  G P and that e ,  is the identity on E,. 
The set (E, 4) can be embedded in (P,  <); let i be an embedding. The 
mapping ilE, can be extended to an automorphism n of (P, <). Then 
e = n-' i ( i  followed by n-') is an embedding of (E, <) in (P ,  <) which 
is the identity on E,. 

We shall show that a countable universal homogeneous partial ordering 
exists. We shall stress which properties of partial order we use, so that 
the reader can see that the existence of universal homogeneous partial 
orders is a special case of a much more general theorem. 

Let Po 5 P I  c ... E P, E ... be a sequence of finite sets, each partially 
ordered such that the ordering of P, is the restriction of the ordering of 
P,,+l. Then P = u:==oPn is the direct sum of the partially ordered sets 

Let A and B be two finite partially ordered sets and let A ,  c A and 
B, E B be such that A ,  is isomorphic to B , .  Then there is a partially 

(P,  <). 

P n , n = O , l  ,.... 
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ordered set A' u B' such that A' is isomorphic to A,  B' is isomorphic to B, 
and A' n B' is isomorphic to B, . To see this we may assume that A n B = 
A, = B, and the orderings of A and B agree on B,. All we have to do is to 
define the order between the elements of A and the elements of B. The 
result is an amalgamated sum of A and B (w.r.t. A , ,  B,). 

The above two properties are used to construct a universal homogeneous 
partial ordering. 
LEMMA 7.6. A countable universal homogeneous partially ordered set exists. 
PROOF. Let P = {p, ,p , ,  ..., p n ,  ...} be a countable set; we construct a 
universal homogeneous partial order on P by constructing finite Po 5 P, E 
... c P,, E ... such that P is the direct sum of P,,'s. Let E,, E l ,  ..., En, ... 
be a sequence of finite partially ordered sets such that every finite partially 
ordered set is isomorphic to some En. Let i, , i, , . . ., in, . . . be an enumeration 
of all i ' s  such that i is an isomorphism of two finite partially ordered sets 
A,, and B,,, where both A,, 5 P and B,, c P. (We may assume that 
A ,  u B,, E {p,, ..., p,}.) We construct (P,,, <), n = 0, 1, ..., so that each 
P,, is { p , ,  ...,pk} for some k, and the ordering < on P,, is the restriction of 
the ordering < on P, ,+ l .  If P,,, = {p,, ...,pk} and IEnI = m, then Pn+i = 
P, u ( P k + l ,  ...,pk+,,,}, with the added elements ordered isomorphically to 
En. If P2n+l = { p , ,  ...,pk}, then if the orderings of A,, and B, agree with 
the ordering of P2,,+ 1 ,  consider an amalgamated sum of PZnfl and 
P2,,+ with respect to A,, and B,, . We can assume that the sum is P2,+ u Q, 
where Q = B,, u {Pk+l,  . . . ,pk+,, ,} .  This gives us an extension of in to the 

The direct sum P = u:=,P,, is universal and homogeneous: Every finite 
partially ordered set is embedded in P via one of the E,'s. And if i is an 
isomorphism of two finite subsets of P, then i = in, for some no and this 
extends to an isomorphism j with domain P2no+l ;  then j = in, for some 
n ,  , etc.; in this way, we get an extension n of i which is defined everywhere 
on P (of course, we have to zig-zag between domains and ranges to make 
sure that the range of n is PI. 

The reader remembers from Chapter 4 that the rationals also enjoy the 
following property: 
LEMMA 7.7. Let (P, < ) be a countable universal homogeneous partially 
ordered set and let 59 be the group of all automorphisms of (P, <). If El 
and E ,  are finite subsets of P and if n E fix (El  n E,), then there are 
n l ,  p , ,  ..., n,,, p,, such that xi E fix ( E l )  and p i  €fix (E,)  and 72 = p ,  . x, * 

... * p r  x i .  

set P 2 n +  1 
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PROOF. First we prove the special case when El = {a }  and E, = {b}. 
This case breaks into several subcases according to the constellation of 
a, b, na and nb; we will handle two typical subcases and leave the rest to 
the reader. First, let a < b < nu < nb. We let n, be an automorphism 
which extends the isomorphism i(a) = a, i(b) = n(b), and p,  an auto- 
morphism such that p,(a) = .(a) and p,(nb) = nb. Although p1 - nl need 
not be equal to n, we have n = it. p,  * nl, where n =it - ( p ,  * nl)-' E fix {a,b}. 
Secondly, let a < nb and b < xu, and otherwise incomparable. We let 
a ,  bl be elements incomparable with any of them and with each other and 
let 

n,a = a, nlb  = b,; p , a  = a,, p,b  = b, p l b l  = nb; 
X ~ U  = a, n,~, = ZU; nz(nb) = nb. 

Next we notice that the same proof works in the case when El = E u {a} 
and E, = E u {b) for some E; all the automorphisms involved have to be 
in fix ( E ) .  

The general case when El n E2 = E is proved by induction on 
(IE,-El, lE,-E/). E.g., IetE, = El u {a}, and bytheinductionhypothesis: 
n is a product of automorphisms which leave either El or E; fixed. Also by 
the induction hypothesis, each automorphisni which leaves E; fixed is a 
product of automorphisms which leave either E; u {a} or El u E; fixed. 

Now we are almost ready to construct the permutation model. However, 
we need something a little more general than a universal homogeneous 
partial ordering. Let us consider structures (P, <, <) where < is a partial 
and < a linear ordering of P. An isomorphism of such structures is a 
one-to-one mapping which preserves both < and <. We can define a 
universal homogeneous structure in the same way as before, and as before, 
we can prove the analogues of Lemmas 7.5-7.7 (only the special case of 
Lemma 7.7 breaks into more subcases, otherwise the proofs are the same). 

Let the set A of atoms be countable, and let < and < be a partial and a 
linear ordering such that (A ,  <, <) is a universal homogeneous structure. 
Let '3 be the group of all automorphisms of ( A ,  <, <), and let the model Y 
consist of all hereditarily symmetric elements, where x is symmetric if it 
has a finite support E G A :  sym ( x )  3 fix (E). 

If El and E, are supports of x E V ,  then El n E, is also a support because 
every n E fix (El n E,) is a product of automorphisms each leaving either 
E,  or E, fixed. Thus each x E V has a least support and this, as in the 
Mostowski model (see Lemma 4.6), gives a one-to-one mapping (in Y )  
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of V into On x I ,  where I is the set of all finite subsets of A .  Obviously, 
the linear ordering < of A is in V and so every x E 9‘- can be linearly 
ordered in V. 

The partial ordering < of A cannot be extended in 9‘- to a linear ordering. 
To see this, assume that <* is an extension of < and that E E A is its 
support. Let a, b, c, d be elements of A which are all bigger in both orderings 
< and < than all elements of E, and such that: 

(i) a < b < c < d ,  
(ii) a < c, d < b and otherwise incomparable. 

We show that both a <*  b and a >*  b lead to a contradiction. If a >* b, 
then let n E fix ( E )  be such that nu = b and nb = c;  since .n preserves <*, 
this gives b > * c, while a < c, a contradiction. If a < * b, then we similarly 
conclude that b <* c and c <* d. This is a contradiction since b > d. 

Thus we have a permutation model in which every set can be linearly 
ordered but not every partial ordering can be extended to a linear ordering. 
This constitutes the proof of the following theorem (at least in ZFA): 
THEOREM 7.8. The Prime Ideal Theorem is independent from the Ordering 
Principle. 

PROOF. To establish this independence result for set theory without atoms, 
we have to produce a symmetric model. To do that, we simply use the 
First Embedding Theorem (Theorem 6.1). The statement ‘A has a partial 
ordering which cannot be extended to a linear ordering’ is of the type 
described in Problem 6.1, and thus is automatically true in the symmetric 
model Jlr. To show that JV has linear orderings, we use Theorem 6.7. By 
Theorem 6.7, JV has a one-to-one function F into Y ( K )  x V,  and P(K)  is 
linearly ordered; the permutation model V is in this case also linearly 
ordered. Thus we obtain a linear ordering of /. 

We conclude this section by the remark that the independence of the 
Prime Ideal Theorem from the Ordering Principle in the ZF setting can be 
established directly by the construction of a model similar to  the basic 
Cohen model (see Problem 8). 

7.3. Independence of the Ordering Principle from the Axiom of Choice for 

In this section, we give an outline of the proof of the following theorem: 

THEOREM 7.9. The Ordering Principle is independent from the Axiom of 
Choice for  jamilies ofjinite sets. 

Finite Sets 
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We exhibit a model in which every family of finite sets has a choice 
function but not every set can be linearly ordered. As a matter of fact, 
the model satisfies a stronger version of the Axiom of Choice than choice 
from finite sets. The following is true in the model: Every family of well- 
from finite sets. The following is true in the model: 

Every family of well-orderable sets has a choice function. 

In Problems 4.14 and 5.22, we gave examples of models, both permutation 
and symmetric, which satisfy the choice from well-orderable sets. However, 
both models satisfy the Ordering Principle too (see also Problems 7.9, 7.10). 
If one analyzes the proof of the choice from well-orderable sets in those 
models, one can find out that two properties are used: (a) every set has a 
least support, and (b) every support is assigned one fixed enumeration. 
Thus we could prove Theorem 7.9 if we had a group of permutations which 
would satisfy (a) and (b), and if, in addition, the set A could not be linearly 
ordered. All this is possible in view of the following lemma. 
LEMMA 7.10. There exists a group 9 of permutations of a countable set A 
such that: 

then there exist 7c1, p l ,  ..., 7cn, pn E 3 such that 7~ = pn * 7cn ... * p1 * 7cl and 
ni €fix (E l ) ,  p , ~  fix (E,), i = 1, ..., n. 

(ii). If E is a finite subset of A and i f  7c E 3 is such that n"E = E, then 
n is the identity on E. 

(iii). For every finite E c A ,  there are a, b, c E A and n, p E fix ( E )  such 
that 

(i). If E l ,  E, arefinite subsets of A and i fn  E 3 is the identity on El n E,  

7 c : a ~ b w c  and p : c ~ a ~ + b .  
We shall not give a proof of this lemma. The group with these properties 

cannot be found among frequently used permutation groups. It has to be 
constructed and the construction is rather involved. Let us only mention 
that the hard part is to construct a group 9' satisfying (i), (ii) and (iii')* 
where (iii') is like (iii) but weakened by the assumption E = 0;  then one 
can take 9 as a weak direct product of t t ,  copies of 9'. The group 9 is 
a homomorphic image of the free group with No generators, and the kernel 
is the union of an infinite chain of subgroups which are constructed by 
recursion. Throughout the recursion, one tries to secure the validity of 
conditions (i), (ii) and (iii') in the resulting homomorphic image. For 
details, we refer the reader to the literature. 

With Lemma 7.10 at hand, we shall have no problems in proving Theorem 
7.9. First, we construct a permutation model V.  We let the set of atoms A 
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be countable and let 99 be a permutation group on A satisfying the conditions 
7.lO(i)-(iii). The model ?'- is determined by 9 and the ideal of finite subsets 
of A,  i.e., an x is symmetric just in case there is a finite E E A such that 
fix ( E )  E sym (x). 

By Lemma 7.10 (i), every x E 9'" has a least support. By (ii), if E is the 
least support of x and nE = E, then nx = x. Thus the function which 
assigns to each x E V the pair (E, X ) ,  where E is the least support and 
X = {nx:  7-c E 3) is the orbit of x, is one-to-one. Also, this function is in 
V (i.e., symmetric as a class) and the class of all orbits is in a one-to-one 
correspondence (afso in ?y-) with On. So V has a one-to-one function F 
from the universe into On x I ,  where I is the set of all finite subsets of A.  
If X E  ?y- is well-orderable, then there exists a one-to-one f E V from X 
into the ordinals, and we have sym ( y )  3 fix ( X )  = sym (f) for each y E X.  
Thus the union of the least supports of all elements of X is a finite set E, and 
the function F restricted to X has values in On x 9 ( E ) .  Now notice that by 
Lemma 7.10(ii), I has a choice function in V and this choice function 
induces a well-ordering of P(E) ,  canonically for each E E I. Consequently, 
each On x Y ( E )  has a canonical well-ordering in V,  and this enables US 

to choose an element from each well-orderable X.  Thus in ?y-, each family 
of well-orderable sets has a choice function. 

Now we use condition 7.lO(iii) to show that A cannot be linearly ordered. 
Assume that < is a linear ordering of A and that E is a support of <. Let 
a,  b, c E A ,  and let n, p E be as in condition (iii). Then both a < b and 
b < a lead to a contradiction. E.g., if a < b, then b = nu < nb = c and SO 

a < c; hence b = pa < p c  = a, a contradiction. 

To establish the result for ZF, we use the First Embedding Theorem and 
the model V above to get a symmetric model Jlr of ZF. The statement 
' A  cannot be linearly ordered' transfers to Jlr and we only have to show 
that in Jlr, every family of well-orderable sets has a choice function. By 
Theorem 6.6, we can make JV a support model. Then the proof goes as 
outlined for the basic Cohen model in Problem 5.22. 

The first step is to show that JV has a one-to-one function F from the 
universe into On x I x  J, where J is a family of finite sets of sets of ordinals 
and l i s  the family of finite subsets of the set A .  The proof is as in Theorem 
6.7. Specifically, the assignment t satisfying (6.28) is unique, since we have 
a choice function on I and therefore have a fixed enumeration of each 
finite E E A .  Consequently, each x E Jlr is uniquely determined by (e, E )  
and fl, ..., Y k ,  a,, ..., a,, 2 E &? and this gives a one-to-one function F 
of Jlr into On x I x  J. 
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If X E N  is well-orderable, then since .N is a support model, the 
argument used in Problem 5.22 shows that there exist finite E c A" and 
e G u (a:  a E 2) such that whenever y E X and ( E l ,  e l )  is the least support 
of y ,  then El E E and el Z e. For each well-orderable X ,  let E and e be 
minimal with that property. Then the one-to-one function 1" restricted to X 
has values in On x B ( E )  x B(e ) ,  which has a canonical well-ordering for 
each E and each e. This gives us the way to pick an element in X for each 
well-orderable X .  

7.4. The Axiom of Choice for Finite Sets 

In Chapter 5, we showed that the existence of a choice function for every 
family of two element sets is unprovable in ZF. In this section, we investigate 
the relationship between the Axiom of Choice for Finite Sets, 

every family of finite sets has a choice function, 

and the statements 

C n  

for different n E w. 

every family of n-element sets has a choice function, 

The main results of this section are: 

THEOREM 7.1 1. The Axiom of Choice for Finite Sets is unprovable even if 
we assume that C, is true for each n; 

and furthermore, Theorems 7.15 and 7.16, which give a necessary and 
sufficient condition for C,  being provable from a conjunction of C2, . . . , C,,, . 

The independence result will be established by means of a permutation 
model, but it will be shown how to transfer the results into ZF. 

We postpone the proof of Theorem 7.11 and give first two examples to 
show the relationship between various C,. 

EXAMPLE 7.12. Cz implies C, . 
PROOF. We are given a family 9 of four-element sets and are looking for 
a choice functionf; we assume that we have a choice function g for two- 
element sets. Let A E 9; we give a rule (using g) for which element of A 
to choose. There are six two-element subsets of A .  For every a E A ,  let 
q(a) be the number of all pairs {a, b} c A such that g({a, b } )  = a. 
Obviously q(a) is not the Same for all a E A ;  thus if q is the least such q(a), 
the set B = {a: q(a) = q )  has 1, 2 or 3 elements. If B has one element, 
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B = {a} ,  then we letf(A) = a. If B has three elements, then A -  B has one, 
A-B = { u }  and we let f ( A )  = a. If B has two elements, then we let 
f ( A )  = m. 
EXAMPLE 7.13. C,  does not imply C,, i.e., C, is unprovable from C, .  

First we construct a permutation model V in which every family of pairs 
has a choice function and there is a family of triples without a choice 
function. Assume that the set A of atoms is a countable union u;'=,Tn 
of triples T,, = {a,,, b,, c,}. Let 9 be the group generated by the following 
permutations n, of A: 

n,: a,, i-+ b,, H c,, wan,  
n,x = x for all x $ T , , .  

(9 is the weak direct product of X, cyclic groups of order 3.) The model V 
is determined by 3 and the ideal of finite subsets of A .  Thus for each X E  -V, 
there exists a finite E c A such that sym ( X )  2 fix ( E ) .  

tt is easy to see that the family {T,,: n E o} does not have a choice function. 
For assume that some f E V chooses one element from each T,,, and that 
E c A is a support for$ Let n be such that T,, n E = 0; then n,, E fix ( E )  
so that n,, f = f and n,,T,, = T,,, but n,x # x for each x E T,, . 

To show that the Axiom of Choice for pairs holds in v, we prow that 
whenever S E 9'" has two elements then: 

(7.6) for some x E S, sym ( x )  2 sym (5'). 

First we show that if 9 E V and if every S E 9 satisfies (7.6), then 9 
has a choice function in V. (This holds in every permutation model and we 
shall use it several times.) 9 is a disjoint union of orbits {nS: n E sym ($)I, 
S E 9. Let us choose one S in each orbit and for that S, choose x E S 
such that sym (x) z sym ( S ) ;  call this x = f ( S ) .  It follows from (7.6) that 
whenever n ( S )  = p(S),  then n(x) = p ( x ) ,  and so we may defineffor all 
sets in 9 byf(nS) = n ( f ( S ) ) ,  nEsym (9). Obviously, sym (f) 2 sym (9). 

To show that (7.6) holds in our model for every S with two elements, 
let S = {x, y )  and let H = sym (S ) .  If we let K = sym (x) n sym ( S ) ,  
then note that if n, p E H then nx = px if and only if n * K = p . K. Hence 
either K = H or [ H  : K ]  = 2,  where [ H :  K ]  is the index of K in H, the 
number of cosets. Thus it suffices to show that [ H :  K ]  is not 2 for any 
H 5 K E 9; then (7.6) holds for every S = { x ,  y) .  

Let K c H E 9 and assume that [H : K ]  = 2. Let TC E H be such that 
K ,  7 1 .  K are the two cosets of K in H. It follows from the definition of 9 
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that there is no such that IT is the identity on each T,, n 2 no.  Let 
H *  = { p  E H :  p is the identity on each T,, n 2 no}, and K* = K n H*.  
Note that K* and ITK* are the two cosets of K* in H* and so we have 
[H* : K * ]  = [ H :  K ]  = 2. However, H* c { p  E 9 : p is the identity on 
each T,, n 2 no}, and the latter group has order 3"". The index [H* : K * ]  
should therefore be a divisor of 3"" which it is not. A contradiction. 

To construct a model of ZF in which C2 holds and C ,  fails, we use the 
First Embedding Theorem to get a symmetric model N ,  and C3 fails in 
the model because the statement '{T": n E o} has no choice function' will 
transfer from V to M .  We show that we can use Theorem 6.6 to make M 
a support model, and that the statement C,  transfers to M by Theorem 6.7. 

To be able to apply Theorem 6.6, we have to change the definition of a 
support. In Y", the supports will not be all finite subsets of A,  but we restrict 
ourselves to sets of the form E = Tnl v ... v Tnk. With this restriction, 
one can easily see that if n ~ f i x  (El n E,), then TC = p . r~ for some 
p E fix ( E l ) ,  CT E fix (E2).  Now we can apply Theorem 6.6 to show that every 
x E M has a least support (e, E ) ,  where e is a finite set of sets of ordinals 
and E = Fnl v ... v Fnk. 

By Theorem 6.7, there is in Jlr a one-to-one function F from J'" into 
9(ic) x V,  and P(K)  is linearly ordered. We define a function G on all 
finite sets in M as follows: If S is a finite set, S = {zl, ..., z,), then let 
(y l ,  vl) = F(zl) ,  ..., (y,, v,) = F(zn) and let e, = { y l ,  ..., y,}. The set es 
is finite and has a canonical enumeration e, = {xl, ..., x k )  such that 
x1 < ... < x,. We let G ( S )  = {(ml, v l ) ,  ..., (m,,, u,)}, where mi is the 
image ofy i  under the correspondence x1 H 1,  ..., xk H k .  It is obvious that 
the values of G are in V and that G ( S )  has the same number of elements 
as S for every finite S E M .  

Now it is clear that for any n, if C, holds in V then C, holds in N, 
because G assigns to n-element sets in M ,  n-element sets in V.  In particular, 
since C2 holds in V, we have C, in N. 

Example 2 illuminates the methods which are used in independence results 
concerning the Axiom of Choice for finite sets. We will now prove the first 
general result of this section. 

PROOF OF THEOREM 7.1 1. We shall construct a permutation model Y" which 
satisfies C, for each n but has a family of finite sets without a choice function. 
This will establish the independence result for the ZF set theory in view of 
the transfer method explained in Example 7.13, which works in this case as 
well. 
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Assume that the set of atoms A is countable and let A = U~=,,P,, 
where P,, = {a:, ..., a:,,}, p ,  being the nth prime number ( p o  = 2, p 1  = 3, 
p z  = 5, etc.). Let 9 be the group generated by the following permutations 
n, of A :  

(7.7) 

(9 is the weak direct product of cyclic groups of order p , . )  The model ‘Y 
is determined by 9 and the ideal of finite subsets of A .  

We will follow the arguments in Example 7.13. To begin with, one can 
easily see that the family of {P,: n E w} does not have a choice function. 
To show that for every n, every family of n-element sets in ‘Y does have a 
choice function, we shall prove an analogue of (7.6). For n E W ,  let 
9, = fix (Po u ... u P,); 9, is the weak direct product of cyclic groups of 
order P k ,  k > n. It suffices to show that whenever S E ‘Y has n elements, 
then 

(7.8) for some x E S, syni (x) 2 sym ( S )  n g,,. 

As in Example 7.13, if (7.8) is true and 9 is a family of n-element sets 
in V ,  then we can construct a choice function f on 9 such that 
sym (f) 2 sym (9) n 9,,. 

To show that (7.8) holds, we will actually show that (7.8) holds for 
every x E S.  Let x E S, let H = 9, n sym ( S )  and K = H n sym (x ) .  
As in Example 7.13, if K # H, then the index [H : K ]  is equal to the size 
of the orbit {nx: n E H } .  Since S has n elements, it is clear that it suffices 
to prove the following lemma: 

n , : ~ l - + + d ; . . . H a ” p n ~ u ~ ,  
nnx = x for all x#P,. 

LEMMA 7.14. I f  K E H E g,, then either K = H or [H : K ]  > n. 

PROOF. Assume that [ H :  K ]  < n. Then H = K u nl . K u ... v z,,-~ * K, 
and there is k such that all nl, ..., T C , - ~  are the identity on each P j ,  j > k. 
Similarly as in Example 7.13, we have [ H :  K ]  = [H* : K*] ,  where 
K* E H *  -c { p  E g,,: p is the identity on each Pi, j > k }  and the latter 
group has order pn+ - ... * p k .  Thus [H : K ]  would have to be a divisor of 
P,+~ . ... * p k ,  which is impossible since we assumed [H : K ]  < n < P , + ~ .  

Theorems 7.15 and 7.16 deal with the relationship of the statements C,, 

Let rn, n be two natural numbers. We say that m, n satisfy condition (S) 
for different n. 

if the following is true: 
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(S) There is no decomposition of n in a sum of primes, 
n = p l +  ... +ps ,  

such that pi > m for all i = 1,  ... , s. 
(In particular, if n > m, then n is not a prime.) 

THEOREM 7.15. If m, n sutisJL condition ( S )  and i f  C ,  holds for every k < m, 
then C,  holds. 

PROOF. The proof follows closely the proof of C ,  + C, in Example 7.12. 
We shall prove the theorem by induction on n. Let m be fixed, let m, n 
satisfy condition ( S )  and assume that the implication of the theorem is true 
for every I < n. Since n satisfies ( S ) ,  n is not a prime and so n is divisible 
by some prime p < n. Necessarily, p < ni, since otherwise we would have 
n = p +  ... + p ,  contrary to ( S ) .  We shall describe a way to choose from 
sets with n elements. Let A be an n-element set. Consider the set P of all 
p-element subsets of A ;  it has (;) elements. A given choice function g chooses 
one u E A in each X E  P. For every a E A ,  let q(a) be the number of all 
X E P  such that g(X) = a, and let q be the least such q(u). We let 
B = (a  E A :  q(a) = q}.  Since (;) is not divisible by n, it follows that both B 
and A - B  are nonempty. Let IBI = I ,  and IA-BI = I,. We claim that 
either m, I, or m, l2 satisfy condition ( S ) .  Otherwise, I ,  = p 1  + .. . +pr and 
I ,  = pr+  , + ... +ps ,  where p ,  , ..., ps  are primes bigger than m, and then 
n = p1 + . . . +ps , contrary to the assumption. By the induction hypothesis, 
either C,, holds and we choose an element in B, or if C,, fails, then C,, 
holds and we choose an element in A - B. 

THEOREM 7.16. If m, n do not satisfy condition ( S ) ,  then there is a model of 
set theory in which Ck holds for every k < m but C,  fails. 

PROOF. Again, we shall construct a permutation model V and the result 
transfers to ZF, as explained in Example 7.13. Let m, n be two natural 
numbers which do not satisfy condition ( S ) .  That is, 

n =pl+  ... +ps, 
wherep,, ..., ps are primes, all bigger than m. 

Assume that the set of atoms is countable and let A = U z o N i ,  with 
N i  = P i ,  u ... u Pis and P i j  = {u,!~, ..., a;;}. Let ’3 be the group generated 
by the permutations 

nij: a;j I+ a; H ... H a;j I+ a,!j, 
ni jx  = x for all x E A - P i j .  
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The model is determined by 9? and the ideal of finite subsets. 
As in Theorem 7.11 or Example 7.13, on5 can easily see that the family 

(Ni: i E o} does not have a choice function, and so C, fails in ‘V. To show 
that C, holds in V for every k < m, it suffices to show that whenever 
S E V has k elements, then 

(7.9) sym (x) 2 sym ( S )  
for each x E S .  Again, as in Theorem 7.1 1, it suffices to show that if H G 
and K c H ,  then either K = H or [H: K ]  > m. As in Lemma 7.14, 
one can prove that the index [H : K ]  must be a divisor of some product of 
the primes p1 , . . . , p s ,  and consequently, [H : K ] > m, since all the primes 
p 1  , . , . , ps  exceed m. 

7.5. Problems 
1. For every partition of [o]’ into two classes, there exists an infinite 
homogeneous set H E o. 

[Hint: Let$ [oI2 + (0, l} be a partition. Let D be a nontrivial ultrafilter 
over o. Define f ’ :  w --f (0, l} as follows: f ( n )  = 1 if and only if 
P, = (rn > n:f(n, m )  = l} E D; assume that P = (n : f ’ (n )  = l }  E D (the 
proof is the same in the other case). Let h, = niin (P) ,  h,  = min (P n P,,), 
h, = min ( P  n Ph, n Ph,), etc.; H = {ho ,  h , ,  ...}.I 

2. Let r, k be given. For every partition of [or into k classes, there exists 
an infinite homogeneous set H E o. 

[Hint: Let f: [oIr + (1, ..., k )  be a partition. Let D be nontrivial ultra- 
filterovero.Definef’: [or-’ + (1, ..., k}asfollows:f’((n,, ..., n,-,}) = i 
if and only if ( m > n ,  _, : f ( ( n , ,  ..., n , _ , , m } ) = i } E D ,  then define 
f”: [o]I-’ -, (1, ..., k }  similarly, etc.; finally, let iE (1, ..., k }  be such that 
{n:f@-’)(n)  = i} ED. Every finite set X c o such that f ( x )  = i for all 
X E  [X]’  can be extended to a larger X’ with the same property and that 
gives an infinite homogeneous H.] 

“3.  Let r, k be given. For every z there is some w such that whenever 
I WI 3 w and [W]r is partitioned into k classes, then there is a homogeneous 
set H E W with at least z elements. 

[Hint: Use the Compactness Theorem and Problem 2. Consider the 
theory with k r-ary predicates Pi (i = 1, . . ., k)  and infinitely many constants 
c,, n = 0, 1, ..., and consider the sentence saying that the P i s  constitute a 
partition of r-tuples and that no z elements form a homogeneous set, and 
the infinitely many sentences c, # c, (n # m). If the theorem is false, 
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then any finite number of our sentences has a model, and by the Compactness 
Theorem, the set of all these sentences has a model. This defines a partition 
of [ {c , } ,"=~~ which does not have a homogeneous set of size z ;  this con- 
tradicts Problem 2.1 

*4. Let rI , r 2 ,  k be given. For every z, there is some w such that whenever 
IWl 2 w and [ W p  x [W]" is partitioned into k classes, then there are 
2, , 2, E W ,  IZ,I = IZ,I = z such that [Z,]" x [Z,]" is included in one 
class. 
[Hint: Use Problem 3. There is w 1  such that if IW,] > w1 and [W,]" 

is partitioned into k classes, then there exists 2, c W ,  , 12, I = z such that 
[Z,l'l is included in one class. Let k, be the number of k-partitions of 
r,-tuples in a w,-element set. By Ramsey's Theorem, there is w, such that 
if IW21 > w, and [W2]12 is partitioned into k, classes, then there exists 
2, c W 2 ,  IZ,I = z such that [ Z 2 P  is included in one class. Now take 
w = max (w,, w,).] 

"5 .  Let k, I ,  r ,  , ..., r, be given. For every z, there is some w such that 
whenever IWl 2 w and [W]rl x ... x [W]l i  is partitioned into k classes, 
then there are Z,, ..., 2, c W, IZ,I = ... = lZ,l = z such that [Z,]*l x 
. . . x [Z,r' is included in one class. 
[Hint: Use induction on I and Problem 4.1 

**6. Let N be the model of ZF obtained by the First Embedding Theorem 
from the linearly ordered Mostowski model. Then the Prime Ideal Theorem 
holds in A'-. 

Notice that both this model JV and the basic Cohen model establish the 
independence of the Axiom of Choice from the Prime Ideal Theorem. 
Notice also that the Selection Principle (which is a stronger version of the 
Ordering Principle) holds in the basic Cohen model while it fails in .M. 

7. Let (P, <) and (Q, i) be countable universal homogeneous partially 
ordered sets. Then P and Q are isomorphic. 
[Hint: Let P = { p o , p l ,  ...}, Q = {qo,  q l ,  ...}. Define an isomorphism 

by a zig-zag argument, taking in turn p ,  and q, and finding an appropriate 
counterpart, using Lemma 7.5.1 

*8. Let the forcing conditionsp E P be finite 0, l-functions defined on subsets 
of w x w. As in the basic Cohen model, define canonical names x1 , . . . , x,, . . . . 
Endow o with a universal homogeneous partial order < and let '3 be the 
group of all automorphisms of RO(P) induced by <-automorphisnis of 
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the set {xl, ..., 5,  ...}; let 9 be generated by fix (e), e finite. Let A‘ be 
the symmetric model given by 92 and 9. Jlr satisfies the Ordering Principle, 
but the Prime Ideal Theorem fails in M .  Moreover, the Selection Principle 
holds in M ,  and the partial ordering < of the set {xl, x 2 ,  ..., x,, ...> 
cannot be extended to a linear ordering. 

[Hint: As in Section 5.5, one proves that every x E .N has a least support, 
and that there is a one-to-one function F in M from the universe into 
OnxZ, where I consists of finite sets of reals. This yields the Selection 
Principle. Assume that < can be extended to a linear ordering <. Let < be 
a name for <, with support e and let p o  (with support e )  force that < is 
a linear ordering. Choose x l ,  ..., - x6 outside e such that z4 < z6 and 
otherwise <-incomparable, and such that p 2 p o  forces _xl < zz < z3. 
be such that n(&) = z6, &) = -ys and &) = 34. Then i ~ p ~ , ~  u ppz ,3  
forces 5 6  < -ys < s4, contrary to _x4 < Z6.1 

Both this model Jlr and the model from Section 7.2 establish the indepen- 
dence of the Prime Ideal Theorem from the Ordering Principle. Notice that 
the Selection Principle holds in Jt/’ but fails in the other model. 

9. The model from Problem 8 satisfies the Axiom of Choice for families 
of well-orderable sets. 

Let p1,2 = P: (e  u {xl , xz>), P 2 , 3  = P: (e  u {_x2, x3)). Let 71, P E fix (e)  

[Hint: The same proof as in Problem 5.22.1 

10. Let JV be the model of ZF obtained by the First Embedding Theorem 
either from the linearly ordered Mostowski model, or from the model in 
Section 7.2. Then Jlr satisfies the Axiom of Choice for families of well- 
orderable sets. 

[Hint: The same proof as in Section 7.3; use the fact that each finite E 
has a fixed enumeration given by the linear ordering of A.]  

11. If V is a permutation model of ZFA and if V satisfies the Axiom of 
Choice for families of finite sets, then V satisfies the Axiom of Choice for 
families of well-orderable sets. 

[Hint: Let ?f be given by a group 92 and a filter 9. Let Y E  V be a family 
of well-orderable sets, let A = (J { S :  S E 9’) and let f~ V be a choice 
function on finite subsets of A u B ( A ) .  Let H = sym (f) n sym (9’) E 9. 
It suffices to show that if S E 9 then there is x E S such that 

(7.10) sym (x) 2 H n sym ( S ) ;  

for sufficiency, see (7.6) in Section 7.4. We show that (7.10) holds for each 
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X E  S. If not, then there is n E H n  sym ( S )  such that nx # x. Let 
X = {n’x: k = ..., -3, -2, - l , O ,  1,2, 3, ...}; Xis a subset of S.  If X is 
finite, then nX = X and ny # y for each Y E  X ,  a contradiction since 
z ( f ( X ) )  = (nf)(zX)  = f ( X ) .  If X is infinite, let XI = {nZkx: k = ..., -2, 
- 1, 0, 1, 2, ...} and X ,  = { n Z k f l x :  k = ..., -2, - 1, 0, 1,2, ...}. Since S is 
well-orderable in V ,  both XI and X ,  are in V .  We have nX,  = X, and 
nX2 = X , ,  a contradiction since n ( f { X , ,  X 2 } )  = (nf)(n{X,,  X,}) = 

**12. There is a model of ZF which satisfies the Ordering Principle (and 
hence the Axiom of Choice for families of finite sets) and which has a 
countable family of countable sets without a choice function. 

**13. There is a model of ZF which satisfies the Axiom of Choice for 
families of countable sets but does not satisfy the Axiom of Choice for 
families of well-orderable sets. 

Let S be a set and let T be a set of finite sequences t = (so, sl, . . ., s,) of 
elements of S such that (a) t‘ c t E T, implies t’ E T, (b) for each n E o, 
T has an element of length n, and (c) if t E T, then there are only finitely 
many (possibly none) elements of S such that t-s E T. The set T partially 
ordered by inclusion is called an w-tree. 

14. The Axiom of Choice for finite sets implies that every o-tree has an 
infinite chain. 

[Hint: Construct to  c t ,  c ... c t ,  c ... so that each t, has infinitely 
many extensions in T.] 

An antichain in a partially ordered set consists of mutually incomparable 
elements. 

15. The model used in the proof of Theorem 7.1 1 has an o-tree which has 
no infinite chain and no infinite antichain. 

*16. If m and n satisfy condition ( S ) ,  then n < 8m2. 
[Hint: The proof uses two facts from number theory. Let n 2 8m2. 

We find a decomposition of n into primes greater than m. By Bertrand’s 
Postulate, there are primes p and q such that m < p < 2m < q < 4m. 
By another number theoretical fact, there are integers (, q such that 
n = t . p + q . q .  If 5 , q  2 0, then we have a decomposition n = p +  ... 
+ p + q +  ... +q.  Let q < 0. There is 1 such that 0 d q+Ap < p ;  let 
q’ = q+;lq, 5’ = C-Aq. We have n = t‘ * p + q ’  * q and q’ > 0; show that 
5’ > 0. This must be so because q’ * q < p q  -= (2m)(4m) < n.] 

f((X17 Xz>).l 
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17. C ,  -+ C, is provable if and only if n = 1,2 or 4. 
[Hint: Example 7.12 is the if part. For the only if part, use Theorem 7.16 

and Problem 16, and verify the cases n < 32 = 8 * 2'.] 
Let Z be a finite set of positive integers and let C, denote the conjunction 

of C,,, m E 2. We say that Z, n satisfy condition ( S )  if for every decomposi- 
tion of n into a sum of primes, n = p 1  + ... +ps, at least one p i  belongs 
to 2. 

18. If 2, n satisfy condition ( S ) ,  then C, implies C,.  
[Hint: The same proof as in Theorem 7.15.1 

19. (C, and C,) implies C , .  
[Hint: Verify condition (S).] 
Let S,  be the group of all permutations on (1 ,  ..., n}. A subgroup 93 of S, 

is without fixed points if each i < n is moved by some n E 93. We say that 
Z,  n satisfy condition (D) if for every subgroup 9 of S, without fixed 
points there is a subgroup H of 9 and a finite sequence H ,  , . . ., Hk of proper 
subgroups of H such that the sum of indices [ H  : H,]+ ... + [ H  : H k ]  is 
in 2. 

*"20. Condition (D) is sufficient for the implication C, +. C,. 

**21. If 2, n do not satisfy condition (D), then there is a model of Z F  
in which C, holds and C, fails. 

22. It is not provable that (C3, C, and C13) implies C1,. 
[Hint: Apply Condition (D).] 

Consider the following Cofinality Principle: Every linearly ordered set 
has a cofinal well-ordered subset. 

23. The Cofinality Principle together with the Order Extension Principle 
imply the Axiom of Choice. 

[Hint: Show that every set can be well-ordered. Let S be a set; consider 
the family 9 of pairs ( X ,  W ) ,  where X G S is well-ordered by W, and the 
partial ordering of 9 given by (XI , W,)  < ( X ,  , W,) if and only if XI c X ,  . 
There is a linear ordering < of 9 extending < and a cofinal well-ordered 
sequencep, < p ,  < ... < pa < ... (a  < A), of elements of 9. It is obvious 
that the set Y = U { X :  ( X ,  W )  = pa for some a < A }  can be well-ordered. 
Show that Y = S .  If u E S -  Y, then Y u {u }  can be well-ordered by some 
W and hence for some a, ( Y  u ( a } ,  W )  < p,  = ( X ,  U ) .  This is a contra- 
diction because X c Y u {u} and < extends <.] 
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**24. There is a model of ZF which satisfies the Cofinality Principle but 
does not satisfy the Order Extension Principle. 

**25. The Prime Ideal Theorem is independent from the Hahn-Banach 
Theorem. 

We shall outline the independence proof for ZFA: 

*26. In the second Fraenkel model (of ZFA), the Prime Ideal Theorem 
fails while the Hahn-Banach Theorem holds. 

[Hint: The Prime Ideal Theorem fails because the Axiom of Choice for 
pairs fails. For each n, let Vn be the class of all X E  9'- such that 
Po u . . . u P,, supports x. Let E, p, (b E V be, respectively, a real vector 
space, a sublinear functional on E and a linear functional on a subspace of E, 
(b(x) < p(x). Let n be such that E, p ,  (b E V,,. Using choice, extend the 
restriction b]V,, to a $ < p on E n V,,; we have $ E V,,. Show that $ extends 
to a x on E such that x E V,,, x < p .  If x E v n + k  then [x] = {nx: n E fix (Po u 
. . . u P,)} has at most Zk elements, [x] = (xl , . . .,xzk}, and x1 f . . . + x 2 k  E Vn . 
Let ~ ( x )  = $ ( 2 - k ( ~ ,  + ... +xzk)). Then x extends 9 because both x, (b E V,, 
and agree on E n V,,.] 

""27. There is a model of ZF in which the Prime Ideal Theorem fails, but 
every partial ordering can be extended to a linear ordering. 

7.6. Historical remarks 

The independence of the Axiom of Choice from the Prime Ideal Theorem 
was proved by Halpern [1964] for ZFA (the present proof is somewhat 
different from Halpern's proof), and by Halpern and Levy (19671 for ZF, 
using a combinatorial result of Halpern and Lauchli 119661. Ramsey's 
Theorem (Problems 1-3) is due to Ramsey [1929]; the generalization in 
Problems 4 and 5 is due to Rado [1954]. The result in Problem 6 is due to 
Pincus [1969,1973a]. The independence of the Prime Ideal Theorem from the 
Ordering Principle was proved by Mathias [1967], using the model con- 
structed in Problem 8; the observation in Problem 9 is also his. The model 
we used appears in Pincus [1969]. The results about universal homogeneous 
structures are due to J6nsson [1960]. The independence of the Ordering 
Principle from the Axiom of Choice for finite sets was proved by Lauchli 
[1964] for ZFA, and transferred to ZF by Pincus [1968]. The result of 
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Problem 11 is due to P. E. Howard.’ The results of Problems 12 and 13 
were announced by Pincus. 

The independence result in Theorem 7.1 1 was proved by Levy [I9621 for 
ZFA and transferred to Z F  by Pincus [ 1969,1973b1, whose is also the observa- 
tion in Problem 15.’ Example 7.12 in Section 7.4 is due to Tarski. Conditions 
(S) and (D) were formulated by Mostowski [1945], who proved the indepen- 
dence result of Theorem 7.16 (for ZFA) and the sufficiency of Condition 
(D) (Problem 20); the result of Problem 16 is also his. The proof of the 
sufficiency of condition ( S )  given here is due to Szmielew [1947]. The 
independence result in Problem 21 was announced by Gauntt [1970]. 3 * 4  

For additional results concerning the Axiom of Choice for finite sets, see 
the papers of Wiiniewski and Zuckerman. The results of Problems 23 and 24 
are due to Morris [1969].5 The independence of the Prime Ideal Theorem 
from the Hahn-Banach Theorem was proved by Pincus [1972b]. The 
independence of the Prime Ideal Theorem from the Order Extension 
Principle (Problem 27) is due to Felgner [1971b]. 

The result of Problem 11 contradicts the results announced by Levy [1963b]. Un- 

The transfer to Z F  was also claimed by Marek [I9661 but the outlined method appears 

A contradicting result was announced and later withdrawn by Truss [1970]. 
The example in Problem 22 is a counterexample to another condition of Mostowski, 

who conjectured its sufficiency and singled out this example as a test case. 
The independence result contradicts the claim of Felgner [1969] that the Cofinality 

Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s 
corrections to [1969]). 

fortunately, the construction presented there cannot be completed. 

to be unsatisfactory and has not been published. 



CHAPTER 8 

SOME WEAKER VERSIONS OF 
THE AXIOM OF CHOICE 

8.1. The Principle of Dependent Choices and its generalization 

The Principle of Dependent Choices was formulated in Section 2.4: 
If R is a relation on a nonempty set S such that for every x E S there exists 
y E S with xRy, then there is a sequence (x , :  n = 0, 1,2, ...) of elements 
of S such that 

XO Rx, ,  XI R x ~ ,  .. ., x,, Rx,+ 1 , . .. . 
We have also shown in Section 2.4 that the Principle of Dependent Choices 
implies the Countable Axiom of Choice and this in turn implies that every 
infinite set has a countable subset (in other words, every cardinal number is 
comparable with No, i.e., 1x1 < No or 1x1 > X, hold for any X ) .  It will be 
shown in this chapter that neither of these implications can be reversed. 
In addition, we will generalize each of the three statements and investigate 
the relationship among them, 

In the present section, we introduce the statements DC, , AC, and W, , 
where ti is an aleph, and prove some implications among these statements. 
In the next section, we present models showing that the implications proved 
in the present section are in a way best possible. 

Let K be an aleph. Consider the following statements: 

DC,. Let S be a nonempty set and let R be a binary relation such that for  
every u < K and every u-sequence s = <x6: 5 < a)  of elements of S 
there exists y E S such that sRy. Then there is a function f: K + S 
such that for every u < K, (f Iu)Rf(u). 

AC,. Every fumily % of nonempty sets such that l%l = ti has a choice 
function. 

For every X ,  either 1x1 < K or 1x1 2 ti. W,. 
119 
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Obviously, AC,, is the Countable Axiom of Choice, and W,, says that 
every infinite set has a countable subset. Also, it is not difficult to see that 
DC,, is a reformulation of the Principle of Dependent Choices. 

THEOREM 8.1. 
(a). If K < A, then DC, implies DC, , AC, implies AC,, and W, implies W, . 
(b). DC, implies both AC, and W,. 
(c). (VK)DC, is equivalent to AC; ( V K ) ~ ,  is equivalent to AC. 
(d). If 7c is singular, then (VA < rc)DC, implies DC,, and (VA < K)AC, 

(e). If K is a limit cardinal and x0 = cf (K), then AC,, and (V1 < K)W, 
implies AC, . 

implies W, . In particular, AC,, implies W,, . 
PROOF. (a). Let IC < A. It is clear that AC,. implies AC,, and W, implies 
W, . Let S be a nonempty set and R a relation which satisfies the assuniptions 
of DC,. One can extend R to apply to a-sequences for all a < 1 (e.g., 
pick yo  E S and let sRyo for each a-sequence s if K d a 6 A). Then use DC, 
to get g:  1 --f S and take f = glrc. 

(b). Assume DC, and let E = {X,: a < K >  be a family of nonempty 
sets. We shall find a choice function on %. Let S = U a < , X a  and if a < K 

and s is an a-sequence in S, then let sRy just in case y E X,. The assumptions 
of DC, are satisfied and so we have f: K -+ S such that ( f  Ia)Rf(a) for every 
a < K. Obviously, f determines a choice function on E. 

To show that DC, implies W,, let X be a set such that 1x1 K IC. We use 
DC, to show that 1x1 3 K. Let S = X ,  and if a < K and s is an a-sequence 
in S,  let sRy if and only if y $ rng (s). Since IS1 4 IC, such y always exists 
and so the assumptions of DC, are satisfied. The function f which we obtain 
from DC, is one-to-one, which proves that IS[ 3 IC. 

(c). If W, holds for every K, then every set can be well-ordered and so 
AC holds. By (b), (VK)DC, implies ( V K ) ~ , .  

(d). Let IC be singular and let I C ~  = cf (K). Let IC = lim {ay:  5 < x0}, 
where CQ is an increasing sequence of alephs. First we show that (VA < rc)DC, 
implies DC, . Let S be a nonempty set and let R be a relation such that for 
every a < K and every a-sequence s in S, there exists y E S with sRy. We 
want to findf: K -+ S such that (fla)Rf(a) for every a < IC. Note that since 
we assume (VA < K)DC,, we can find, for any 1 < K, a function g: 1 -+ S 
such that (glz)Rg(a).  Let 7' be the set of all at-sequences s in S, for all 
5 < K ~ .  We shall define a relation R between y-sequences in T, for y < I C ~  , 
and elements of T. If y i ic0 and t is a y-sequence in T, then let s, be the 
transfinite sequence in S obtained by concatenation of the terms of T; 
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s, is an a-sequence in S for some a < K. If 5 < K,, t is a 5-sequence in T, 
and if z tz T, then we let t a z  if and only if z is an ae-sequence in S and if 
st-(zlq)Rz(q) for all q < a,. By the remark we made about ( V A <  ti)DC,, 
there is always such z E T,  and so R satisfies the assumptions of DC,,. 
Thus we have g: IC,, -, T with (glE)Rg(<)  for all 5 < ti,. It is now clear 
that iff is the concatenation of g(()’s, f is a ti-sequence in S and satisfies 
(fJa)Rf(a) for every a < K. 

To show that (VA < K)AC, implies AC,, let X = {Xa: a < ti} be a 
family of nonempty sets; as before, let K = lim {ae: 5 < K,}. Let 
9 = {S,: 5 < tiO}, where each S, is the set of all choice functions on 
{Xa:  a < a,}. Since AC, holds for every A < K, each S, is nonempty. By 
AC,,, we choose one element in each S ,  and then combine them to obtain 
a choice function on X. 

(e). Let IC be a limit cardinal, let IC, = cf (K) and assume AC,, and 
(VA < K)W,. Let K = lim {a,: 5 < K,}, where ue is an increasing sequence 
of alephs. Let X be a set such that 1x1 4: K. We want to show that 1x1 2 K. 
For every 5 < K,, let S ,  be the set of all pairs (Y, W )  such that Y c X ,  
IYI = ae and W is a well-ordering of Y of type at. Since 1x1 4: a5 and 
Wag holds, we have 1x1 > at and so S, is nonempty. By AC,,, we can 
choose one (Y, W )  in each S,. Then it is easy to see that the union of the 
Y’s has cardinality IC and so 1x1 > K. 

THEOREM 8.2. The statement (Vlc)AC, implies the Principle of Dependent 
Choices. 

PROOF. Let S be a nonempty set and let R be a relation on S such that for 
every x E S there exists y E S such that xRy. We want to show that there is 
a sequence ( x ,  :It E o) with xnRxn+ I for all n. First note that there is no 
functionffrom S into ordinals with the property that f ( y )  < f ( x )  whenever 
xRy. For, iff is such a function, let x E S be such that f ( x )  has the least 
possible value; then there is y E S with xRy and so f ( y )  < f ( x ) .  

We shall show that if AC, holds for every K, then there is a sequence 
(x , :  n E o) with x,Rx,+ for all n, by contradiction. Assuming that there 
is no such sequence, we will construct a function f from S into ordinals such 
that f(y) < f ( x )  whenever xRy. Let X be a well-orderable subset of S .  
Every subset Y of X contains an x such that xRy for no y E Y; otherwise 
we could use a well-ordering of X to construct a sequence (x,: n E w) with 
x,, Rx,+ for all n. Thus the inverse of R is a well-founded relation on X and 
there is a unique ordinal a and a unique function fx: X +. a such that 
fx(y) < f x ( x )  if and only if xRy for all x,  y E X.  Now we define f as follows: 
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f(x) = sup {fx(x): x E X and X is a well-orderable subset of S } .  It is clear 
that f is a function from S into ordinals and that f ( y )  < f ( x )  whenever 
xRy. To show that f( y )  < f(x) whenever xRy, it suffices to show that for 
every x E S there is a well-orderable set X c S such that f ( x )  = f x ( x ) .  

Let x E S and letf(x) = a. For every 5 < a, let S, be the set of all pairs 
( X ,  W )  such that Xis a well-orderable subset of S, Wis a well-ordering of X ,  
andfx(x) 2 5 .  Each S, is nonempty, and by ACl,, , we can choose one (X, W )  
in each S,. If Y is the union of the X’s, then Y can easily be well-ordered, 
using the W’s, and it is easy to see that fy(x) 2 f,(<) for all the X’s. Thus 
fY(X) = a- 

8.2. Independence results concerning the Principle of Dependent Choices 
In this section, we present four models which provide us with counter- 

examples to complete the study of interdependence started in Section 8.1. 
In Theorems 8.3, 8.6, 8.9, 8.12, we construct certain permutation models 
and outline how to transfer the results from ZFA to ZF. The first two cases 
are applications of the Second Embedding Theorem: The negative statements 
transfer automatically, and the positive statements, in this case DC, and 
W,, transfer from the permutation model into the symmetric model by a 
proper choice of a feasible normal filter. The transfer of Theorem 8.9 
involves the statement (Vic)AC, and needs a further refinement of the 
Second Embedding Theorem. 

We already mentioned that the implications in Theorems 8.1 and 8.2 are 
in a certain sense best possible. Let us be more specific: 

(1). If ic is regular, then there is a model in which DCA (and hence also 
AC, and W,) holds for every I I  < IC but both AC, and W, (and also DC,) 
fail (Theorem 8.3). If ic is singular, then there is a model in which WA 
holds for every ;1 < IC but W, fails (Theorem 8.6). This shows that (a) and 
(d) of Theorem 8.1 are best possible. 

(2). For every u there is a model in which both AC, and W, hold but 
DC,, fails (Theorem 8.12). For every K, there is a model in which W, holds 
and AC,, fails (Theorem 8.6). There is a model in which (Vlc)AC, holds 
and W,, fails (Theorem 8.9). This shows that the implication in Theorem 
8.l(b) cannot be reversed, that AC,, -+ WR0 cannot be improved and that 
unlike DC, and W, in Theorem S.l(c), (Vk-)AC, does not imply the Axiom 
of Choice. 

(3). Theorem 8.2 is also best possible because (Vu)AC, does not imply 
DC,, (Theorem 8.9), and for every ic, there is a model in which AC, holds 
and DC,, fails (Theorem 8.12). 
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THEOREM 8.3. Let N, be a regular aleph. There exists a model in which: 
(i) DC, holds for each 1 < N,; 

(ii) AC,, fails; there is a family of IC pairs without a choice function; 
(iii) WR, fails; there is a set A such that 1 A1 > 1 for all 1 < N, but 1 A (  2 N, . 

PROOF. First we exhibit a permutation model V and then we outline the 
embedding of 3GT in a symmetric model N. 

Assume that the set A of all atoms has cardinality N, and that A is a 
disjoint union of N, pairs A = Uy<N,Py,  P ,  = (a , ,  by } .  Let 9 be the group 
of all permutations n of A with the property that for every y < N,, either 
nay = ay and nb,, = by, or nu,, = by and nb, = a,,. Let 9 be the filter on 
9 generated by the groups 

f i x ( E )  = {n,rsE:nx = x f o r a l l x E E } ,  

where E s A ,  IEl < 8,. The filter S is apparently normal and determines 
a permutation model V. Every x E V has a support E _C A such that 
IE] < N, and fix ( E )  G sym (x). 

To show that DC, holds in ?'- for every 1 < N,, let S E 9'- and let R E ..Y 
be such that for every y < 1 and every y-sequence s in S there exists x E S 
such that sRx. We are looking for a function f E V such that ( f  Iy)Rf(y) 
for all y < 1. 
LEMMA 8.4. If p < N, and g is a function on p with values in V, then g E V. 

PROOF. For every 5 < 8, g (5 )  E V has a support Es such that JEtl < N,. 
Let E = us<8 E;. Clearly, IEl < N, and E is a support for each g ( Q ,  5 < p. 
Consequently, if n E fix ( E ) ,  then ng = g and so sym (9) 2 fix ( E ) ,  which 
means that g E V.  

Now we can finish the proof of DC, in V. By Lemma 8.4, for every 
y < 1, each y-sequence s in S belongs to ?'- and so R satisfies (in the universe) 
the assumptions of DCA. Thus there exists fi 1 -P S such that ( f  Iy)Rf(y) 
for all y < 1. By Lemma 8.4 again, f belongs to V and so DC, holds in V. 

It is easy to see that the enumeration (P,,: y < N,> is in V and so the set 
of pairs {P,,: y < N,} has cardinality N, in V. This set does not have a 
choice function in V since iff is a choice function, then there is no E c A ,  
IEI < N,, such that fix ( E )  c sym ( f ) :  For every IEl < El,, there exists 
y < X, and n E 9 such that n E fix ( E )  and nu,, = by and hence nf # f. 
Thus AC,. fails in V. 

Similarly, one can see that there is no one-to-one function f from N, 
into A :  Iff: N, --f A is one-to-one and IEl < N,, then there exists n E fix ( E )  
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and y N, such that n ( f ( y ) )  # f ( y )  and so nf # f. Hence WN, fails in V.  
To get a symmetric model N of ZF in which Theorem 8.3 (i), (ii), (iii) 

hold, we use the Second Embedding Theorem and the feasible filter described 
in Problem 6.12. 

Let us use the notation from Chapter 6. 42 is a model of ZFA+AC, 
A (the ground model) is the kernel of a, V E % is the permutation 
model described above. We choose some large regular cardinal K and define 
4 [ G ]  as in the first Embedding Theorem, with a" = {xat: 5 < K>, as in 
(6.2). Then we have the embedding - of in A [ G ] .  We define %' as in 
(6.6), and let be the filter on 3 generated by 

( H :  HE 9) u {fix (e):  e E A x IC and lei < N,}, 

F is a feasible filter and we may use the Second Embedding Theorem 
to show that ACHa and WN, fail in the corresponding symmetric model M .  

The proof of (VA < H,)DC, in N is along the same lines as in 'Y and is 
based on the following fact: 
LEMMA 8.5. If  P < N, and g E &[GI is a function on B with values in h", 
then g E N .  
PROOF. First note that since P < IC and so ifp, E p1 E ... p, E ..., 5 < p, 
are forcing conditions, then p = Ue.spe  is a forcing condition, and so, 
as in Lemma 5.12, every P-sequence of elements of which is in &[GI 
is in A. A similar argument shows (see also Lemma 6.5) that there exists 
a function f :  P -+ AB, f E A!, such that g(5) = i G ( f ( 5 ) )  for each 5 < p. 
Even better, since g has a name _S E HS, the function f can be found such that 
f: P --f HS. For each <, f ( 5 )  has a support (E,, e,), where E, c A and 
ey E U,,,a",andbothIE,I < N,andlesl < E t a .  LetE = ur<sE , , e  = u,<se ,  
and l e t fEAB be such that [ f ( z )  =f(t)J = 1 for every 5 < p. Since ]El < N, 
and lel < N,, (E,  e )  is a support of J' and so .[E HS. We have g = i ( f )  
and hence g E N .  

Now, if S E A / '  and R E N  is a relation satisfying the assumptions of 
DCx, in N, then by Lemma 8.5, R satisfies the assumptions in &[GI. 
Using the Axiom of Choice in &[GI, we get a function8 N, + S, f E A [ G ]  
such that ( f ly )Rf (y )  for every y < X,. By Lemma 8.5, f belongs to M .  
This completes the proof of Theorem 8.3. 
THEOREM 8.6. Let E l ,  be a singular aleph. There exists a model in which: 

(i) DC, holds for  each A < cf (N,); 
(ii) W, holds fo r  each L < K,; 
(iii) Wxa fails and ACcf(N,) fails. 

- 
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(Thus for every K, there is a model in which W, holds and ACx, fails; it 
suffices to take K, > JC such that cf (Xu) = No.) 

PROOF. Again, we exhibit first a permutation model V and then outline 
how the result transfers to ZF. 

Let the set A of all atoms have cardinality Re. Let 9 be the group of all 
permutations of A,  and let 9- be the normal filter on 9 given by the ideal 
of sets of atoms of cardinality less than X,. That is, 9 is generated by the 
groups fix (E) ,  where IE I < X,. Let Y be the permutation model determined 

It is easy to see that DCA holds in V for all A < cf (N,). This follows 
from the fact that if p < cf (K,) and g is a function from p to V, then 
g E V. The proof of this fact is the same as in Lemma 8.4. That DC, holds 
in Y for all A < cf (N,) is deduced from that as in Theorem 8.3. 

It is equally easy to see that W,. fails in V. The set .4 is not comparable 
by the cardinality to N,. The proof is a routine use of permutations of A .  

Once we show that W, holds for every 1 < X,, then by Theorem S.l(e), 
we will have immediately that AC,,,,., fails. This is because Wxz fails. 
Thus it remains to show that for every A < K,, WA holds in V.  

Let A < K, and let XE V. We will show that 1x1 < 1 or 1x1 3 1. Let 
E, be a support of X ,  E, E A ,  lEol < K,. 

by 9. 

Case (i): For every x E X ,  E, is a support of x. Then fix ( X )  E 9 and by 
(4.2), X can be well-ordered in V. 

Case (ii): Let x E X be such that E, is not a support of x. Let E c A 
be such that IEl < N,, E n  E, = 0 and E, u E is a support of x. Let 
{E5:  5 < A} be a family of mutually disjoint subsets of A such that for each 
5 < A, Et; n E, = 0 and IEcl = [El.  For each < < 1, let nt; be a permutation 
of A such that n, €fix (E,) and ni'E = E5; let xt; = nr(x). Let 
Y = (xt: < < A}. Since ring E fix (E, )  G sym ( X ) ,  we have x5 E X for each 5,  
and so Y E  X.  Let E' = E u u 5 < L E 5 .  Clearly, IE'I < N, and E' is a 
support of Y so that Y E  V. Actually, Y is well-orderable and the function 
f: 1 -+ Y defined by f ( 5 )  = xr is in Y because E' is a support off. Thus if 
we prove thatfis one-to-one, we will have 1x1 3 IYJ = 1. 

We show that nngx # .n,x whenever 5 # q. If nt;x = n,x, then since 
n;'(Eo u E )  = E, u E5 and nC(Eo u E )  = Eo u E,, we conclude that both 
E, u E, and E, u E, are supports of x5. It will follow from the following 
lemma that E, = (E, u EE) n (E ,  u E,) is a support of Et; and so 
E, = nFIEo is a support of x = nF1x5. This is a contradiction. 
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LEMMA 8.7. Let E l ,  E2 be subsets of A ,  lEll < N,, lE21 < X,. If 
n: E fix (El n E2),  then n: is a product of permutations z l ,  ..., n,, each of 
them either in fix ( E l )  or fix (E2).  Consequently, i f x  E V, and El and E2 are 
supports of x, then El n E2 is a support of x .  

PROOF. After the several lemmas of this kind, this should be a routine 
exercise for the reader (n = 3 is sufficient). 

To transfer this result to ZF, we use the Second Embedding Theorem. 
We choose a regular cardinal K ,  large enough to make sure that, say, 
P”(A)Y = ?(A)” under the embedding, and let be the feasible filter 
described in Problem 6.12. That is, 

a“ = {xuc: 5 < K >  

for each a E A ,  and is the filter on 3 generated by 

f i x ( E ) ,  E E A ,  [El < E l ,  

fix (e), e c A x K ,  ]el < X-. 
and 

(3 is defined as in (6.6).) 
Let Jlr be the symmetric model. We will show that Theorem 8.6 (i), (ii), 

(iii) hold in JV. 
That WRn fails in .N is an immediate consequence of the Embedding 

Theorem. 
To show that DC, holds for each A < cf ( X , ) ,  we notice that if /? < cf ( X a )  

and g E &[GI is a function from /? to N, then g EN (as in Lemma 8.5).  
Then the assertion follows. 

Thus it remains to be shown that for every ,I < N,, W, holds in N. 
Let A < X, and let X E M .  We will show that either 1x1 2 1 or there is 
Y E  $“- such that 1x1 = IYI in N .  Since W, holds in V,  we will be done. 

Let - A consist of all Boolean pairs ((g, E)B,  3)” such that (g, E )  is a 
support of x; i.e., fix (g) n fix ( E )  c sym (5). 4 is a symmetric class and 
so its interpretation A is a class of A*. For e c u A = {xu<: a E A, 5 < K > ,  

lel < X ,  and E c A ,  !El < X , ,  we denote by A(e, E )  the class (in A””) of 
all x E M  such that ((e,  E ) ,  x )  E A .  Let X be a name for X and let k0, go)  
be a support of g. We distinguish two cases: 

Case (i): For every x E X there exists E such that x E A (eo , E) .  As usual, 
there is a function e in Jlr such that for each x E M ,  

x = e(t, 21, 
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where t is an assignment and 2 is a symmetric name. In this context, an 
assignment is a pair t = ( t , ,  t,) such that t l  is a one-to-one function on 
some e and t ,  is a one-to-one function on g, and for some ~ € 3 ,  
tl(z)  = i ( m )  and tz(cz) = i(ng). 

Let us fix some t ,  such that eo = rng ( t l )  and for every x E X, consider 
the pair (y, w(x)) ,  where 2 is the least element of HS such that there exists t ,  
with x = e ( ( t l ,  t , ) ,  y )  and w(x)  is the set of all t ,  such that x = e ( ( t l ,  t z ) ,  y ) ;  
let Y be the set of all these pairs. Notice that the correspondence between 
X and Y is one-to-one, so that 1x1 = I Y I in JV and Y E  @. Actually, each t ,  
represents a well-ordering of a subset of A ;  and since S m ( A ) v  = Po(A)”, 
it can be concluded that Y E  f .  

Case (ii): There is some x E X such that x 6 A(eo, E )  for any E. We will 
show that X has a subset of cardinality 1. The method we use is similar to 
the proof of Theorem 6.6. Let _x be a name for x and let 5 E A @ ,  _E) for some 
e 2 e, .  As in (6.19), we have: 

if Y - E 45 E )  and P It 4(y) ,  then P: _e It. @(v_),  
and so it suffices to find Y = {yr  : 5 < A} E JV such that: Ifp It x $ d_k0, g), 
and p = y : E, then there is q 1 p such that q I t fr E _X for every 5 < A, and 
q I t  yc # zS whenever 5: # q. There exist permutations IT{ E g, 5 -= A such 
that no is the identity, n<(a) = a for each a E A ,  nt; E fix (eo) and ns_e n n,,g = go 
whenever 5 # y; moreover, _e* = u {nrg t < A} has cardinality < Nu. Let 
yr = ntz and Y = {yc : 5 < A}. We have - YE 4 ( g  v f*, E). If p is as above, 
let q = u (ncp: 5 < A}; q is a condition, q 2 p ,  and q It ntz E _X for every 
t < A because ring E fix (go) n fix Go), so that ng_X = x. We will be done 
if we can prove that q It nrg # n , , ~  whenever 5 # q. For this, we use a 
lemma whose proof follows closely either Theorem 6.6 or Lemma 5.23. 

LEMMA 8.8 If g1 has a support (el, El) and xz has a support (gz, E,)  and if 
q It x1 = x,, then there is - z with support (el n e , ,  _El n E2)  such that 

Now, if q1 is a stronger condition than q and forces ncx = n , , ~  for some 
5 # y, then q1 It nrx E d(g0, _E) and nF1ql It x E &,, g). However, 
n,,-lql 2 p ,  a contradiction. 

THEOREM 8.9. Let Nu,  be a successor aleph. There exists a model in which: 
(i) DCNa holds; 

(ii) both DCNa+., and WNa+l fail; 
(iii) ACA holds for every 1. 

q l t  x, = E. 

(In particular, (VA)ACA does not imply D G ,  or W,, .) 
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PROOF. First we exhibit a permutation model V and then outline the 
transfer into ZF. 

Let the set A of atoms have cardinality N,+ , . Let 9 be the group of all 
permutations of A and let 9 be the normal filter on 9 given by the ideal of 
sets of atoms of cardinality at most 8,. Let 9'- be the permutation model 
determined by 9. Each x E V has a support E c A such that ]El < N,. 

It is easy to check that functions from o, to V belong to 9"" and so 
DCN, holds in V. It is even easier to see that the set A has no subset of 
cardinality , and so WN,+I fails in V ;  consequently, DCN,+, fails in V. 

To show that AC, holds in 9'" for each A, let 3 = {X?: y < A} be a 
family of nonempty sets, 3 E V.  We find a choice function f E 9'- on A?. 
Let E,  be a support of X and let El  be a subset of A such that El n E,, = 0 
and IE, I = N,. We will show that for each y < A there is x E X ,  such that 
x E A(Eo u El) .  If we choose one such x for each y, then the choice function 
f will have support E, u El (because X, E A(E,)  for each y )  and so f E 9'". 
Let y < A, and let y be an arbitrary element of X ,  . There is some E such that 
y E A ( E ) .  There exists a permutation TC E 9 such that n E fix (E,,) and 
n"E c E, u E l .  Hence T C ~  E nX, = X,,, and since E, u E,  2 n"E is a 
support of T C ~ ,  we can take x = ny. 

Now we briefly sketch the transfer of the above results into ZF. There is 
no problem with the transfer of WNa+t and DCN,. It seems, however, 
that the Second Embedding Theorem is too weak to enable to transfer 
(VA)C,. We introduce a further refinement of the Embedding Theorem. 

In the Second Embedding Theorem, one chooses a large regular cardinal 
ti > ( A ( ,  and lets a" = {xa5: i;" < ti> for each a E A ,  where xa5 are subsets of 
IC (obtained from a generic subset of A x K). In the present proof, we will 
use a slightly different embedding. If s c ti, Is1 < N,, consider for each 
a E A and ( < IC the following subset x,,, of IC 

y E xat, ++ either v]  E x,, and y 6 s 
or y # x,, and y E s. 

The canonical name for each xatS is of course obtained from the canonical 
name for x,, by interchanging 0's and 1's at every y E s. Now we let for each 
U E  A ,  

(8.1) a" = { x , , ~ :  5 < IC and s E K, Is1 < N,}. 

We shall define the group 3 a little differently from (6.6). Let X be a subset 
of ( A  x ti) x IC, 1x1 < N,. By ox we denote the automorphism of B which 
interchanges 0's and 1's at every point of X .  More exactly, i fp  is a condition, 
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let ( a ~ p ) ( a ,  5, r )  = 1 -p(a, 5, r )  whenever (4 5 ,  r )  E X and (axp)(a,  5 ,  r )  = 
p(a,  5, r )  otherwise. (Compare with Problem 5.24.) Now for each p E 9, 
we let (as before) [ p ]  be the group of all permutations n of A x K such that 
~ ( a ,  t) = (p(a), 5') for some 5' (cf. (6.5)), and we let be generated by u { [ p ] :  p E S} and {aX: X c ( A  x K )  x K, 1x1 9 K,}. Then we let be 
the filter on generated by fix ( E ) ,  E E A ,  IEl < N a y  and fix (e),  
e E A x K ,  ]el d K,, where 

( 8 . 2 )  fix ( e )  = {n E 3: n(rc,rs) = x_ass for every (a, 5) E e and every s]. 

(Note that (8.2) means that ax2 fix ( e )  if and only if X n  ( e x K )  = 0.) 
The filter is a normal filter on 2? and A" has a symmetric name. If one goes 
through the proof of the First Embedding Theorem, one can verify that 
the same result holds in the present context. In particular, one can choose 
K > 8, so large as to get 9'"(A)v = Q'"(A)"V. The failure of WN,+ transfers 
from 9'- to A" easily, and so does DC,., due to the choice of (if 
g: o, + JV, g E &[GI, then 9 EM). 

It remains to show that ACA holds in JV for every A. Let A be fixed and 
let X = {X,: y < A} be a family of nonempty sets in N. We are looking 
for a choice function f ~ J r  on X .  Let - A be the support relation, with 
- E G A and g E A x K (convention: e = (xae : (a, 5) E _e, s E K ,  Is1 9 K,}). 

LEMMA 8.10. There exists E, c 2, lEol 6 K, with the following property: 
For every y < A there exists an x E X ,  such that for  some e, x E A(e, E,). 

PROOF. For each y,  let Y, be the set of all pairs (E, W) such that E c A", 
W is a well-ordering of E and there exists an x E X ,  such that for some 
e,  X E  A(e, E ) .  The sets Yy are nonempty for each y < A and since 
Y = {Yy:  y < A} E Pa(A")", it follows that Y E  V. Thus there is a choice 
function on Y. Take the union of all the chosen E's; this set E, can be 
well-ordered (using the chosen W's) and since it is a subset of A", it follows 
that Eo E V and lEol 9 N,. Obviously, this E, will do. 

be a name for .% and let (go, go) be a support of X ;  we may 
assume that E, satisfies the assertion of Lemma 8.10. Let g, G A x K be 
such that g, n go = 0 and that for each a E go, le, n ( { a }  x K ) I  = K,. 

LEMMA 8.11. For every y < A, there exists an XEX, such that X E  A(e, u e l ,  E,). 

PROOF. Let v_ E d(g, go) and let p It v_ E gy. We may assume that p = p : g. 
We shall find a stronger condition q which forces y E u e l ,  go). There 
is n E such that n E fix k,), .(a) = a for all a E A and n'e E go u e l .  

Let 
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However, p and np may not be compatible. Let X be the set of all places 
where p and np disagree; let (T = cx. Then p and anp are compatible. Since 
X n  ko x K )  = 0, we have (T €fix (e,) - and so a 3  - = ". Also, we have 
an; = 5, and so 

Since an? E d(e0 u _ e l ,  go), we have 

cnp Il- c7y E K?. 

p u anp IF (3x E - X,)x E LI@, u f?, , go). 
Now we fix an assignment t with range e, u el and Eo and define (in N) 

a choice function f on X as follows: f ( y )  = x,  where x = e(t, 2) with y - 
being the least such name (such 2 exists by Lemma 8.11). 

THEOREM 8.12. Let K be a regular cardinal. There exists a model in which: 
(i) the Principle of Dependent Choices fails; 
(ii) AC, holds f o r  each 1 < rc; 

(iii) W, holds f o r  each 1 < K .  

(Zn particular, ACN, does not imply DC,, .) 

PROOF. Assume that IAl = K and identify the elements of A with finite 
sequences s = (to, t1 , ..., tn-l) of ordinals smaller than K .  The set A is 
partially ordered by the extension of sequences, and we let 9 be the set of 
all automorphisms of (A ,  c); that is, n(s) has the same length as s, and 
s c t implies n(s) E n(t). Let I be the following ideal of subsets of A :  
A set E G A is in Z if: 

(i) IEl < K ;  
(ii) s c t and t E E implies s E E; 

(iii) E has no infinite branch; i.e., there is nof: o .+ K such thatfln E E 
for all n. 

Let F be the filter on 9 generated by {fix ( E ) :  E E  I } .  Let V be the perrnuta- 
tion model given by F. 

It is easy to see that the principle of dependent choices fails in V .  The 
relation s c t on A satisfies the assumptions of the principle but there is no 
infinite sequence {s,,: n E o} E V of elements of A such that so c s1 c 
... c s,, c .... This is because for every E E I there exists 7 c n ~  fix ( E )  such 
that ns, # s,, for some n. 

To show that AC, holds in V for every 1 < K ,  let X = {X,: y < A} E V 
be a family of nonempty sets, for some 1 < K .  We want to find a choice 
function f E  Y on 3. Let E E I  be a support of X .  Notice that 
sym (X,) 2 fix ( E )  for each y < 1. For each y < 1, choose some y ,  E X ,  
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and some Ey E Z such that E,, 2 E and yy E A(E,). By recursion on y, one 
can find automorphisms ny E 9 such that n, E fix ( E )  for each y ,  and 
ny(Ey) n n,(E,) = E whenever y # 6 (exercise). Let x,, = ny(yy)  for each 
y < 1. Let 

E ’ = U (  n,(Ey): Y < 4. 
The reader can easily verify that E‘ E Z. It follows that E‘ is a support of 
each x y  , and that x y  = n,, y, E n,, X,, = X ,  . Hence the function f defined on 
% byf(X,,) = xu is in A(E’) and so belongs to V. 

To show that WA holds in V for every 1 < IC, we proceed as in the earlier 
theorems of this section. Let 1 < IC, and let X E  V with a support E,. 
Either Eo is a support for every x E X and then X can be well-ordered, 
or we take X E  X with a support E 2 Eo such that x # d ( E , )  and find 1 
automorphisms ne;, 5 < 1, such that nr E fix (E,) and nc(E) n n,(E) = E, 
whenever 5 # r ] .  Then ntx E X for each ( and the furctionf: H nrx has 
support u ( q E :  5 < A].  To show that nrx z n,x whenever 5 # 9, one 
uses the, by now notorious, lemma which says that if El and E, are both 
supports of some z, then El n E, is also a support of z. (Compare with 
the proof of W, in Theorem 8.6.) 

To transfer this result to ZF, one can use the methods outlined in the 
proof of Theorems 8.3, 8.6, 8.9. 

8.3. Problems 

1. There-is a model in which ACA holds for every A, but for finite n there 
is a family of n-element sets without a choice function. 

[Hint: Show that in the model in Theorem 8.9 the family of all n-element 
subsets of A has no choice function.] 

*2. Assume 2’O = K, . There is a model in which (i) ACA holds for all 1, 
(ii) WR, holds, (iii) W,, fails, and (iv) DCR, fails. 

[Hint: Let 1.41 = Kl, and order A as the real numbers. Let 9 be the 
group of all order-preserving permutations, and let 9 be given by the ideal 
of intervals (-my a). Let V be the permutation model. Proofs in V: 
(i) The same idea as in Theorem 8.9. (ii) The same idea as in Theorem 8.6. 
(iii) JAl > K ,  in V but not < K , .  (iv) Let R be the following relation on 
A :  sRx if and only if x > sup (3). If s E V, then s is bounded, but there is no 
increasing w,-sequence of elements of A (in V or otherwise) and so R 
is a counterexample.] 

3. Wuo implies that every countable family of finite sets has a choice function. 
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*4. There is a model which satisfies W,, and which has a countable family of 
countable sets without a choice function. 

[Hint: Let { A i :  i E  o} be a disjoint family of countable sets and let 
A = U z o A i .  Let 3 be the set of all permutations of A which preserve 
each A i ;  let 29- be the filter given by the ideal Z generated by finite unions of 
Ai's. In the permutation model V,  {Ai: i E o} is a countable family of 
countable sets without a choice function. To show that V satisfies W,,, 
proceed as in Theorem 8.6. If X E  V, X E  A(,!?,), then either X c A(,!?,) 
and X is well-orderable or there is X E X ,  x# A(&) and we let Y = 
{nx: rc E fix (Eo)} .  Y has at least two elements and is well-orderable. To 
show that Y is infinite, argue as follows: otherwise, there is a homomorphism 
of the symmetric group S, of all permutations of o onto some S,,, and S, 
has a normal subgroup of finite index. This is impossible due to a group- 
theoretical truth saying that S,  has only normal subgroups of infinite 
index.] 

5. There is a model of ZF in which the Ultrafilter Theorem (see Section 2.3) 
fails but every infinite set has a nontrivial ultrafilter. 

[Hint: In the model AT of Theorem 8.3, with X, = XI ,  the Axiom of 
Choice fails for a family of pairs and so the Prime Ideal Theorem fails. On 
the other hand, every infinite X E N  has a countable subset, and since 
countable subsets of o are the same in M as in the ground model which 
satisfies the Axiom of Choice, an ultrafilter on o in yields a nontrivial 
ultrafilter on X in M . ]  

8.4. Historical remarks 

The generalized version of the Principle of Dependent Choices was 
formulated by Levy [1964], who also proved Theorem 8.1 and the ZFA 
versions of Theorems 8.6 and 8.9 and Problem 2. Theorem 8.3 is due to 
Mostowski [I9481 (the ZFA version) and Jech [1966c] (the ZF version).' 
The transfer of W, in Theorem 8.6 and of (VA)AC, in Theorem 8.9 is due 
to Pincus [1969]. Theorems 8.2 and 8.12 were proved by Jensen [1967]. The 
result in Problem 1 was announced by Gauntt [1967]; the result in Problem 4 
is in Pincus [1969]. 

' As for the announcement of Marek [1966], see footnote 2 in Chapter 7. 



CHAPTER 9 

NONTRANSFERABLE STATEMENTS 

9.1. Statements which imply AC in ZF but are weaker than AC in ZFA 

Judging from the results of Chapters 5-8, the reader might get the wrong 
impression that every independence result obtained in ZFA can be trans- 
ferred into ZF. The transfer was sometimes easier, sometimes harder, but 
always possible. This is, however, not always the case. In this chapter, 
we consider several consequences of the Axiom of Choice which are its 
equivalents in ZF but do not imply it if atoms are permitted. 

Let AC denote the Axiom of Choice and consider the following statements: 

MC. AXIOM OF MULTIPLE CHOICE. For every family S of nonempty sets, 
there exists a function f on S such that f ( X )  is a nonempty Jinite 
subset cf  X for  each X E S .  

A. ANTICHAIN PRINCIPLE. Each partially ordered set has a maximal anti- 
chain (i.e., a maximal subset of mutually incomparable elements). 

L. Every linearly ordered set can be well-ordered. 
P. The power set of every well-ordered set can be well-ordered. 

We will show that all these statements follow from AC in ZFA, are equivalent 
to AC in ZF, and AC is independent from each of them in ZFA. 

THEOREM 9.1 
(a). In ZFA, AC --t MC + A + L -+ P. 
(b). In  ZF, P implies AC. 

PROOF. (a). AC 3 MC is obvious. 
MC -+ A: Let (P, <) be a partially ordered set. By MC, there is a 

function f such that for each nonempty X c P, f ( X )  is a nonempty finite 
subset of X.  Let g be the following function: for each nonempty X c P, 
g ( X )  is the set of all <-minimal elements of f ( X ) ;  g ( X )  is a nonempty 

133 



134 NONTRANSFERABLE STATEMENTS rCH.9, $2 

finite antichain. Using g, we construct a maximal antichain in P by trans- 
finite recursion: We let A ,  = g(P), and for each a, A,  = g ( X ) ,  where X 
is the set of all x E P which are incomparable with all a E u {A,: p < cc]. 
The union of all A,’s is a maximal antichain in P. 

A --f L: Let (Q,  <) be linearly ordered. To show that Q can be well- 
ordered, it suffices to obtain a choice function on the power set of Q. Let 
P be the set of all pairs ( X ,  x), where X is a subset of Q and x E X, define 
a partial ordering < on P by: 

( X ,  x )  < (Y, y )  if and only if X = Y and x < y .  

By A, (P, <) has a maximal antichain in A .  It is easy to see that A defines 
a choice function on P(Q). 

L P: If X is a well-ordered set, then the power set of X can be linearly 
ordered (lexicographically). By L, P ( X )  can be well-ordered. 

(b) Assume that the power set of every well-ordered set is well-orderable. 
To show that A C  holds, it suffices to show that for every limit ordinal a, 
the set V, of all sets of rank less than cc can be well-ordered. Let cc be a 
fixed limit ordinal; we will show that there exists a sequence < W,: p < a> 
such that for each p < a, W, is a well-ordering of V,. This will clearly be 
sufficient. Let IC be the least ordinal (actually a cardinal) such that there is 
no one-to-one mapping of IC into V,. By P, P(Ic) can be well-ordered; 
let us fix a well-ordering W of P(Ic). We define W, by recursion on p < a: 
W,, = 0, and if p is a limit ordinal, then we define W, on V, = U y < , V u  
in the obvious way from Wy’s, y < p. If /3 = y + l ,  then V, = S(V,). 
The set V, is well-ordered by W, and is therefore in a one-to-one corre- 
spondence with some ordinal L < K .  Then we use this one-to-one corre- 
spondence and the well-ordering W of 9 ( ~ )  to get a well-ordering W, of 
Y‘(V,>. 

9.2. Independence results in ZFA 

In this section we show that none of the implications in Theorem 9.l(a) 
can be reversed. For each of the implications we present a permutation 
model in which the implication fails. 

THEOREM 9.2. There are permutation models Vl , V2,  V3,  V4 such that: 
(i) in V l ,  MC holds and AC,faiZs; 
(ii) in V 2 ,  A holds and MC fails; 

(iii) in V 3 ,  L hoZds and Afai ls;  
(iv) in V4, P holds and L fails. 
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PROOF. First notice that P holds in every permutation model. By (4.2), 
a set Xcan be well-ordered in V if and only if f i x ( X )  E 9. Thus if Xcan be 
well-ordered in V ,  then f i x (X)  E 9, and since f i x ( B ( X ) )  = fix(X), 
it follows that P ( X )  can be well-ordered in 9'". Now we present the four 
models. 

(i). Let V1 be the second Fraenkel model of Section 4.4, where 
A = u:=oP,, P, = {u,, b,}, 9 consists of all permutations which preserve 
each P, and 2F is given by the ideal of finite subsets of A.  

The Axiom of Choice fails in V l .  To show that MC holds, we exhibit 
a function F which to each nonempty X E V1 assigns a nonempty finite 
subset, and F is symmetric; i.e., F ( n X )  = n(F(X) )  for every n E 9. For 
each nonempty X E  V1, consider the set o ( X )  = {nX: n E 9}. Choose one 
X in o ( X ) ,  choose some x E X ,  and let 

( 9 4  F ( X )  = {nx:  'II E sym ( X ) } .  

It is rather easy to see that if nX = X ,  then n ( F ( X ) )  = F ( X ) .  Thus we can 
define unambiguously 

F(PX)  = P(F(X) )  

for each ~ X E  o ( X ) .  If we do this for every o ( X ) ,  we get a symmetric function 
F such that F f X )  is a nonempty subset of X for each nonempty X ,  and 
always there is an x E X such that (9.1) holds. 

It suffices to show that F ( X )  is finite. There is an n such that nx = x 
for every x E fix (Po v . . . u P,). Consequently, if n and p are two permuta- 
tions in 9 and if n and p agree on Po u ... u P,, then TX = x. Thus the 
size of F ( X )  is at most the number of equivalence classes under the equiv- 
alence n - p if and only if nuo = pa,, ..., xu, = pa,. Since this is 2"+l, 
F ( X )  is finite. 

(ii). Let 9'", be the basic Fraenkel model of Section 4.3, where A is 
countable, 9 is the group of all permutations of A and 9 is given by the 
ideal of finite subsets of A.  

To show that MC fails in Y2,  we show that the power set of A in Y 2  
does not have a multiple choice function. Iff is a function on Bv(A)  and 
E is a support o f f ,  then 2 = f ( A  - E )  is not a nonempty finite subset of 
A - E .  This is because for every nonempty finite X E A - E  there exists 
n E 9 such that n E fix ( E ) ,  nf = fand  xX # X .  

To show that A holds in V2,  it suffices to show that in V2 every non- 
empty family P of sets has a maximal E -antichain, i.e., a maximal subfamily 
Z such that for any x, y E Z ,  x c y implies x = y .  This is sufficient because 
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every partially ordered set (P, <) can be represented by (P’, c), where P’ 
consists of all sets { y :  y < x} for x E P. The key property of V 2  used in 
the proof is the following lemma: 

LEMMA 9.3. If x E V 2  and n E 9 is such that x E nx, then x = nx. 

PROOF. Let X E  V, and X E  9, and assume that x E nx. We shall find 
k > 1 and p E 3 such that p = p-’ and px = nkx. Since x 5 nx, we will 
have x E px = 7tkx and px = p-’x c x, so that nkx = x; consequently, 
nx = x. 

Let E be a support of x.  For every a E A, let 

c(a) = { d a :  i = ..., -2, - I ,O,  I,  2, ...} 

and let D be the union of all c(a), a E E, which are finite. D is a finite set 
and nD = D, so that n is a permutation on D. Hence if n is a multiple of 
the size of each c(a), a E D, then n” E fix (D). If a E E- D, then eventually 
n” is outside E. Thus there exists k > 1 such that nka = a for each a E D 
and nka $ E whenever a E E-  D. We define p by pa  = nka and p(7tka) = a 
for each a E E, and pa = a otherwise. Obviously, p = p-’, and since p 
and nk agree on E, we have px = nkx. 

Let P E V2 be a nonempty family of sets. We will construct a maximal 
c -antichain Z E V, in P. Consider the collection of all antichains Z in P 
such that sym ( Z )  2 sym (P). It is easy to check that this collection satisfies 
the assumptions of Zorn’s Lemma and so there is a maximal Z in this 
collection. Since sym (2) 2 sym (P), we have Z E  V2.  Now it suffices 
to prove that 2 is a maximal antichain 2 E V2 in P. This will clearly follow 
from the following lemma: 

LEMMA 9.4. I f  Z is an antichain in P such that syin ( Z )  3 sym (P)andi f  
z E P is incomparable with each x E 2, then there exists an antichain 
Z’ 2 Z u {z} such that sym (Z’ )  2 sym (P).  

PROOF. Let Z’ = Z u (nz: n E sym (P)}. Obviously, sym (Z’)  2 sym (P).  
To show that Z’ is an antichain, note first that each 7tz (n E sym (P)) is 
incomparable with each x E 2: If, e.g., nz c x, then z = TC-’TCZ c n-lx, 
a contradiction since n-lx E Z. The nz’s are mutually incomparable, 
n,z  c n,z implies z 5 n;ln,z, which implies n1z = n2z by Lemma 9.3. 
Thus Z’ is an antichain. 

(iii) Let Y3 be the following permutation model. Let A be countable 
and let < be a universal homogeneous partial ordering of A (see Section 7.2 
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for the details). Let 9 be the group of all automorphisms of (A ,  <) and let 
2F be the normal filter given by the ideal of finite subsets of A .  Every X E V3 
has a finite support E c A .  In the proof we will use the following properties 
of ( A ,  <), established in Section 7.2. 

LEMMA 9.5 
(a). If (E, <) is a finite partially ordered set, E, E E and if e, is an 

embedding of (E,,  <) into ( A ,  <), then there is an embedding e of (E, <) 
into ( A ,  <) which extends e ,  . 

(b). If E,  and E,  arefinite subsets of A and i is an isomorphism of ( E l ,  < ) 
and (E ,  , < ), then i can be extended to an automorphism of (A ,  <). 

(c). If both E ,  and E, are supports of X ,  then E ,  n E, is also a support of X.  

To show that A fails in V 3 ,  we show that ( A ,  <) does not have a maximal 
antichain in V3. By Lemma 9.5(a), every finite antichain in A can be 
extended, and so a maximal antichain would have to be infinite. On the 
other hand, if Z is an antichain and E is a support of Z, then Z c E. 
This is because if a # E then by Lemma 9.5(a), (b), there exist n E 9 and 
b E A  such that a < b, nx = y and n ~ f i x  ( E ) ;  thus a E Z  would imply 
b E Z .  

To show that L holds in V3,  note first that by virtue of Lemma 9.5(c), 
every X E  V3 has a least support and that the function assigning to each 
X E  V 3  its least support is in the model. Secondly, we recall that for each 
finite E E A ,  the class A ( E )  of all X E  V3 supported by E is well-orderable 
in the model since fix (A(E) )  2 fix (E) .  

Let (Q,  <) be a linearly ordered set in V3.  We will show that Q E d ( E )  
for some finite E and thus is well-orderable in V 3 .  Let S be the set of all 
least supports of elements of Q. We will show first that S can be linearly 
ordered in V3 and then that S is finite. Thus we will have Q E A ( E )  where 
E = u S and we will be done. 

For each E E S, let QE be the set of all those x E Q whose least support is 
E; {QE:  E E S }  is a partition of Q. Divide S into equivalence classes such 
that E ,  - E, if and only if ( E l ,  <) and (E2,  <) are isomorphic. For each 
equivalence class C, E S, choose (in the universe) an E E  C and a well- 
ordering WE of QE; then let W = {n WE: n E 9, one E in each equivalence 
class}. The set W is symmetric and thus in the model. For each E E S,  the set 

W E  = { W G  W :  W is a well-ordering of Q,} 

is finite. Thus we can assign (in V 3 )  to each E E S the finite set 

TE = { z  E QE: z is the W-least element of QE for some W E  W E }  
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and then we let z, be the <-least element of T,. The function which to each 
E E S assigns z, E Q is one-to-one and this yields a linear ordering of S. 

Let < be a linear ordering of S and let E, be a support of ( S ,  <). We 
show that each E E S is a subset of E,. If E is not a subset of E, , then by 
Lemma 9.5(a), (b), there exist n E 9 and E’ # E such that nE = E‘, 
nE‘ = E and n E fix (Eo).  Hence E cannot be in S because that would imply 
E ’ E S ,  and either E < E‘ or E‘ .i E would contradict the fact that 
n( <) = <. Thus S is finite. 

(iv). Let V4 be the ordered Mostowski model of Section 4.5. By the 
remark at the beginning of this proof, P holds in V4. On the other hand, 
L fails in V4 because AC fails and “Cr, satisfies the ordering principle. 

9.3. Problems 

All the statements considered in Chapter 9 are stronger than the statement 
P. Compare with the following result. 

1. Let $ ( X )  be a formula which allows only quantifiers of the type Vx E y, 
3x E y ,  Vx E 9 ( y )  and 3x E P ( y ) .  If AC is provable from (VX)$(X) in 
ZF, then in ZFA (VX)$(X) implies P. 

[Hint: If (VX)$(X) ,  then the kernel A satisfies (VX)$(X). Since d is 
a model of ZF, A satisfies AC. If X is a well-orderable set, then there is a 
one-to-one mapping of X into Jl and consequently, a one-to-one mapping 
of 9 ( X )  into A. Since AC holds in d, 9(X) can be well-ordered.] 

Consider the following two statements: 
INJECTION PRINCIPLE: For every set S and every proper class C there is a 
one-to-one mapping of S into C.  
PROJECTION PRINCIPLE: For every set S and every proper class C there is  a 
mapping of C onto S. 

2. In ZFA, the Injection Principle implies the Projection Principle, which 
in turn implies the Axiom of Choice. In ZF, the Axiom of Choice implies 
the Injection Principle. 

[Hint: If the Projection Principle holds, then for every set S there is a 
mapping of On onto S,  and AC follows. In ZF+AC, prove the Injection 
Principle using V = UaEOn V, .] 

There is an alternate axiomatization of set theory, which considers 
classes as objects of the theory. A transitive model of the class-set theory 
is given by a transitive class (the universe of the model), and a collection of 



CH.9, $31 PROBLEMS 139 

subclasses of that transitive class which serve as the classes of the model. 
In  particular, if V- is a permutation model then the classes of the model 
are those subclasses of 9'- which are symmetric, i.e., C c_ V and 
sym ( C )  = {n E '3: n"C} E S. 

The permutation models can be generalized to the case of a proper class 
of atoms. Assume that A is a proper class. In that case, every x belongs 
to some P ( D )  where a E On and D is a subset of the class A .  Apermutation 
n of A is a permutation of some subset D of A (it is understood that nu = u 
for atoms outside D).' Consider a class '3 of permutations of A which is 
a group, and a cluss Z which is an ideal of subsets of A (e.g., the ideal of all 
finite subsets). We can call x symmetric if there is E E Z such that nx = x 
whenever A leaves E pointwise fixed. Then the class V of all hereditarily 
symmetric elements is a transitive model, and its classes are the symmetric 

3. There is a model with atoms in which the Axiom of Choice holds and 
the Projection Principle fails. 

[Hint: Let A be a proper class, let 9 be the group of all permutations of 
A,  and let Z be the ideal of finite sets; let V be the model. Every set of atoms 
in 9'- is finite, so that every X E  V- has only finitely many atoms in its 
transitive closure and thus is well-orderable. On the other hand, the class 
of all atoms cannot be mapped onto o by a function in V (i.e., symmetric).] 

*4. There is a model with atoms in which the Projection Principle holds 
and the Injection Principle fails. 

[Hint: Let A be a proper class and enumerate the atoms by o-sequences 
of ordinals. Consider the permutations n of A which satisfy: 

(9.2) if a, b E OOn, n E o, and aln = bln, then (na)ln = (nb)ln. 

(Let n be a permutation of a subset D of A satisfying (9.2) and then define n 
outside D by (9.2) if necessary, and by (na)(n) = a(.) otherwise. Let 9 be 
the class of all such n.) For each n, let H,, consist of all those n E 9 such that 
( ~ a ) l n  = aln for all a E A .  Call X symmetric iff there exist a finite E E A 
and n E w such that nX = X whenever n E fix ( E )  n H,,. Let V be the 
model. In V, every set of atoms is finite and every set has only finitely 

More generally, 7c may be a class but definable from a set (that will be the case in 
Problem 4). 

Notice that the notion of symmetric and hereditarily symmetric sets can be precisely 
expressed in the language of ZFtatoms, and the key factor is that each set has only a 
set of atoms in its transitive closure. 
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many atoms in its transitive closure. There is no one-to-one mapping in V 
of o into A .  To show that every class in V can be mapped onto every set, 
argue as follows: The Axiom of Choice holds in '%'". It suffices to show that 
every proper class in V can be mapped onto On, for On can be mapped 
onto any (well-ordered) set. The class A can be mapped onto On by an 
HI-symmetric map: F(a) = a(0). Similarly, every class A,  = {u E A :  a 2 s}, 
where s is a finite sequence of ordinals, can be mapped onto On. If C is a 
proper class in V ,  consider the class B of all A n TC(X) for X E C (TC(X) 
is the transitive closure). Elements of B are finite sets of atoms and u B is 
either finite, in which case C is well-orderable, or contains A ,  for some s. 
Then C is mapped onto finite sets of ordinals, thus onto On.] 

9.4. Historical remarks 

The material in this chapter appears in the article of Felgner and Jech 
[1973]. The fact that P implies AC in ZF was observed by Rubin and 
Rubin [1963]. The antichain principle A was formulated by Kurepa [1953] 
and the independence of AC from A appears in Halpern [1962,1972]. The 
independence of AC from MC is due to Levy [1962]. The observation in 
Problem 1 is due to Pincus 119691. Problems 3 and 4 answer a question from 
the book of Rubin and Rubin [1963]; the first model is due to Felgner, 
the other to Jech. 



CHAPTER 10 

MATHEMATICS WITHOUT CHOICE 

10.1. Properties of the real line 

In Chapter 2, we gave several examples where the Axiom of Choice is 
used in mathematical proofs. In the present chapter, we will show that the 
Axiom of Choice is indispensable in those proofs. We will provide examples 
of models of set theory where the Axiom of Choice fails and so do the 
theorems which otherwise can be proved with the help of the Axiom of 
Choice. 

Chapter 2 itself gives several examples of mathematical statements which 
are equivalent either to the Axiom of Choice or the Prime Ideal Theorem. 
Since neither is provable in ZF, the statements in question are not provable 
in ZF either. Here we give some additional examples, mostly related to the 
properties considered in Chapter 2. 

THEOREM 10.1. There is  a model of ZF which has an infinite set of real 
numbers without a countable subset. 

This was of course proved in Chapter 5; the basic Cohen model is the one. 
Here we are rather interested in the consequences. Thus consider the 
following statement: 

(10.1) 

COROLLARY 10.2. There is a set S of real numbers and a real number a # S 
such that a is in the closure of S but there is no sequence {x,}:=~ of elements 
of S such that a = lim,,+mxn. 

There is an infinite set of reals without a countable subset. 

(Compare with Example 2.4.3(a).) 

PROOF. Let D be a D-finite infinite set of reals. The set D must have 
an accumulation point; for if all d E D are isolated, then let (I": n = 0, 1, . ..} 
be a fixed enumeration of open intervals with rational endpoints and assign 

141 
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to each d E D the least n such that I,  n D = { d } ;  this makes D countable. 
Let a be an accumulation point of D and let S = D - {a}. Since S is D-finite, 
every convergent sequence in S is eventually constant. 

COROLLARY 10.3. There is a function f from the reals into the reals and a 
real number a such that f is not continuous at a, but whenever {x,]~',, is a 
sequence with lim,-,mx, = a, then limn+ao f(x,) = f(a). 

PROOF. Let S and a respectively be the set and the real number from 
Corollary 10.2. Let f be defined by f (x) = 1 if x E S and f ( x )  = 0 if x $ S.  
Then f ( a )  = 0, f is not continuous at a and every sequence {x,},"=,, con- 
verging to a is eventually outside S.  

COROLLARY 10.4. There is a set T of real numbers which is neither closed 
nor bounded but every sequence of points in T has a convergent subsequence. 

(Compare with Example 2.4.3(b).) 

(Compare with Example 2.4.3(c).) 

PROOF. Take the set S from Corollary 10.2, and let T be its image under 
a homeomorphism which transforms the interval ( i d  S, sup S )  into 
(- 03, + a). Every sequence in T has only finitely many distinct terms. 

COROLLARY 10.5. There is a subspace of the real line which is not separable. 
(Compare with Example 2.4.4.) 

(Notice that the subspace still has a countable open base.) 
PROOF. Any D-finite infinite set of reals (with the natural metric) will do. 

THEOREM 10.6. There is a model of ZF in which the set of all real numbers 
is a union of countably many countable sets. 

PROOF. We will construct a symmetric model of ZF with the required 
property. Assume that the ground model dl satisfies the Generalized 
Continuum Hypothesis. Let P be the set of all finite sets p of triples (n, i, a), 
such that: 

(10.2) (i) n E w, i e  o, a E 0,; 

(ii) (n, i, a )  EP and (n,  i, p )  ep  implies a = p. 
Let p be stronger than q just in case p 2 q. (There is the following way to 
look at P:  eachp is a union of finitely manyp,'s, wherep, is a function from 
a finite subset of w into on.) Let B = RO(P) and let dB be the Boolean- 
valued model. Let G be a generic subset of P and let A [ G ]  be the corre- 
sponding generic extension of A. 
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Let '9 be the group of all permutations of o x o  with the following 
property: 
(10.3) if n(n, i) = (m,j), then n = m. 

Thus for each n E g there exist permutations n, of w (n E o) such that 

(10.4) n(n, i) = (n, n,i). 

Every n E '3 induces an automorphism of (P, <) as follows: 

(10.5) np = { ( n ,  n,i, a) : (n, i, cx) EP}. 

Consequently, n may be considered an automorphism of B. For every 
n ~ o ,  let H, be the group of all I ~ E  3 such that nk is the identity for all 
k < n. Let 9 be the filter on '3 generated by {H,: n E o}. It is easy to verify 
that 9 is a normal filter. 

Let JV be the symmetric submodel of d [ G ]  determined by 9. We are 
going to show that the set of all reals in JV is a countable union of countable 
sets. Let x be a real (a subset of co) in N. Then there is a name 5 of x such 
that dom (x) c {m: m E o} and sym (x) 2 H, for some n E o. For each 
n E o, let B,, be the set of all u E B such that nu = u whenever n E H,,. 
B, is a complete subalgebra of B. 

LEMMA 10.7. Zfu E B,,, then 

where 
u = C { ( p :  n): p E P  and p < u} ,  

p : n = { (k ,  i, a) EP: k < n } .  

PROOF. It suffices to show that if p < u, then p :  n < u. If it is not so, and 
if there is some q 2 p : n such that q < - u, then one can easily find n E H, 
such that nq and p are compatible, which is a contradiction because nu = u, 
p < uandnq < -u. 

It follows that for every n and every n E '3, if u E B,, then nu E B,, since 
by Lemma 10.7, B, consists exactly of all possible sums 

(10.6) C { p : p  E S } ,  S E P, p = p : n for all p E S. 

Every real x E JV has a name x such that 

(10.7) dom (z) E {&: m E o}, 

For each n, let S, be the set of all x: which satisfy (10.7) and let &,, E AB be 
as follows: 

dom (R,) = S,, -n R ( x )  - = 1 for all X E  S,,. 

rng ( E )  c B,, for some n E o. 
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By (10.6), if x - E S, and n E 99, then T C ~  E S, and so n& = I?, for each n. 
Consequently, the function 

(10.8) n w  Rn, 

where R, is the interpretation of R,, - is in the model N. Also, the set u {R,: n E o} contains all reals in N, so that if we prove that each R, is 
countable in N, we will have a decomposition of the reals into countably 
many countable sets in N. 

LEMMA 10.8. lRnl = X,+l for  every n. 

PROOF. This follows from (10.6) and the fact that 2'" = X,, 

LEMMA 10.9. Every X, (in d) is countable in J'". 

PROOF. Let n E w .  Let f E A [ G ]  be a function with the following name 
" 

f ( ( i ,  t;)") = unia = C { p  E P:  (n, i, a )  EP} (i E w, a E m,). 

Obviously, if n E H,, 
By the genericity of G, f is a mapping of w onto w,. 

then nuni, = uniU for all i E w, a E on, and s o f ~  N. 

Now it follows by (10.7) that each S, is countable in JI/' and so each R, is 
countable in N. This proves that in Jtr, the set of all real numbers is a 
countable union of countable sets. 

It follows from Theorem 10.6 that without the Countable Axiom of 
Choice it is impossible to define satisfactorily Lebesgue measure, or even 
Borel sets. 

Also, in the above model, X is a limit of a countable sequence of countable 
ordinals, see Problem 3. (As a matter of fact, the singularity of K, follows 
directly from the decomposition of the reals into countably many countable 
sets, cf. Problem 2.) 

THEOREM 10.10. There is a model of ZF which satisJies the Principle of 
Dependent Choices and in which every set of real numbers is Lebesgue 
measurable. 

We will not give the proof of this theorem, which involves a rather com- 
plicated forcing construction. Let us only mention that the model is con- 
structed under the assumption of an inaccessible cardinal. 

As outlined in Chapter 2, the Principle of Dependent Choices enables 
to prove all the 'positive' properties of Lebesgue measure. In the model, 
every set of reals differs from a Borel set by a set of measure zero. Also, 
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every set of reals differs from a Bore1 set by a meager set, and consequently, 
every set has the Baire property. For details, we refer the reader to the 
literature. 

10.2. Algebra without choice 

Here we present three counterexamples to algebraic theorems discussed 
in Examples 2.2.2, 2.2.3 and 2.2.5. 

THEOREM 10. I I. There is a model in which a vector space exists which has 
no basis. 

PROOF. We construct a permutation model with the required properties. 
Then the First Embedding Theorem can be used to get a model of ZF. 

Assume that the set of all atoms is countable, and endow A with operations 
+ and . in such a way that A becomes an infinite-dimensional vector space 
over the field of rational numbers. Let g be the group of all automorphisms 
of A and let 9 be the filter given by finite subsets of A .  Thus x is symmetric 
just in case sym ( x )  2 fix ( E )  for some finite E c A .  

Let V be the permutation model. In V-, A is an infinite dimensional 
vector space over the field of rational numbers. However, A does not have 
a basis in V. 

Let B E V be a linearly independent subset of A ;  we show that B is finite. 
Let E be a finite subset of A such that sym (B)  2 fix ( E ) .  Let [El  be the 
subspace of A generated by E. Assume that B is infinite; since [El is finite- 
dimensional, there exist distinct x ,  y E B outside [ E l .  Let 7c be an auto- 
morphism of A which leaves [El pointwise fixed and n(x)  = x + y  (show that 
there is such n). We have n E fix ( E )  E sym ( B )  but nx 4 B. Thus B is 
finite and A has no basis in V.  

THEOREM 10.12. There is a model in which a free group F exists such that not 
every subgroup of F is free. In particular, there is a free group whose com- 
mutator subgroup is not freely generated. 

PROOF. Again, we present a permutation model with the understanding 
that the result can be transferred to ZF by means of the First Embedding 
Theorem. 

Let V be the basic Fraenkel model; that is, 9 is the group of all permuta- 
tions of the countable set A of atoms and 9 is given by the ideal of finite 
sets. Let F be the free group whose free generators are the elements of A .  
We recall that every element of F can be uniquely written in the form 



146 MATHEMATICS WITHOUT CHOICE [CH. 10, $2 

af'a," ... a:', 

where the ai are in A and no a appears adjacent to an a-l. Let C be the 
commutator subgroup of F; C is the subgroup generated by the elements 
of the form 

xyx - l y  - 1, 

where x, y E F. We will show that C is not a free group in V-. 
Contrariwise, assume that there exists a set Q c C of free generators of 

C such that Q E V .  There is a finite set E 5 A such that xQ = Q whenever 
rc E fix ( E ) .  Let u and v be two distinct elements of A ,  both outside E and 
let rc be the permutation of A defined by nu = v, xu = u, and xu = a other- 
wise. 

Note that every permutation of A ,  in particular K, acts as an automorphism 
on the free group F. Let us consider the following element of C: 

and let 
c = uvu- lv - l ,  

c = 4;' ... g; 

be the unique expression of c in terms of the free generators from Q. Since 
xc = c- ' ,  we have 

c-l  = n(qE') ... n(gf) = gnen ... g1 - e l  a 

We have rcQ = Q,  which means that ng E Q for every q E Q, and by the 
uniqueness of expression in terms of free generators it follows that 

and 

which implies that y1 = 2k and that 

(10.9) c = b . z(b-'),  

where 

(10.10) b = 91' ... g?. 

Let 

(10.11) b = a;' ... aim 

be the unique expression in terms of generators from A .  By (lO.lO), b 
belongs to C and since C is generated by commutators xyx-ly-', it follows 
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that for every a E A,  in particular for u or u, the sum of its exponents in 
(10.11) is 0. We will derive a contradiction. By (10.9), we have 

U U U - ~ U - ~  = a? ... aLm,-.(aivm) ... ,-.(a;") 

which necessarily leads to 

and 
a ,  = u, a2 = u, v 1  = v2 = 1 

na3 = a3 ,  ..., nam = a m .  

But then none of a3,  ..., am is equal to u and the sum of exponents of u 
in (10.11) is not 0, a contradiction. 

THEOREM 10.13. There is a model in which a field exists which has no 
algebraic closure. 

PROOF. We shall present a permutation model V. As for the transfer into 
ZF, we note that the First Embedding Theorem is not directly applicable, 
but the following argument will do the trick. First we observe that if F E C 
are fields and C is algebraic over F, then if A is a cardinal and C can be 
mapped onto A then F [XI can be mapped onto 1. [To see this, let cp map C 
onto A and for every p E F [ x ] ,  let $ ( p )  = (cp(r): r is a root of p } .  The 
range of $ is a family S of finite subsets of A, and since C is algebraic over 
F, the union of S is A. Hence IS1 = 2.1 

Now let V and F E  V be as constructed below. Let K be regular, 
K > IB"(F[x])l. We construct a model N using the First Embedding 
Theorem. P [ x ]  cannot be mapped onto IC, either in V or in M.  If C E M 
is an algebraic closure of F then (in N) C cannot be mapped onto JC. How- 
ever, by Problem 7, C would have to be isomorphic to some C' E V.  

Let Y be the basic Fraenkel model; that is, '3 is the group of all permuta- 
tions of the countable set A of atoms and 9 is given by the ideal of finite 
sets. Let F E  V be any field of characteristic # 2 which contains A as a 
subset. (E.g., let F be the field of fractions of the polynomial ring R [ A ] ,  
where R is the field of real numbers.) We will show that in V, no 
algebraically closed field of characteristic # 2 contains A as a subset, and 
hence F does not have an algebraic closure. Let C E f be an algebraically 
closed field of characteristic # 2. Let i and -i be the two quadratic roots 
of - 1 in C. There is a finite E c A such that every ,-. E fix ( E )  preserves C 
(not only as a set, but it preserves the operations + and * on C as well) 
and also z(i) = i, n(-i) = -i; notice that each ,-. E fix ( E )  acts as an 
automorphism on C.  



148 MATHEMATICS WITHOUT CHOICE [CH. 10, $ 3  

Let u and v be two distinct elements of A outside E and let n be the 
permutation of A defined by xu = v, x u  = u, nu = a otherwise. We will 
show that the assumption u E C leads to a contradiction. Assume that 
u E C;  x is an automorphism of C and so if we let z = (u-v)* (that is, 
z is a quadratic root of u - v in C), then we have xz = (nu - nu)* = (v  - u)) = 
+i  . z. Both nz = i 1 z and xz = - i . z leads to a contradiction; e.g., if 
nz = i z ,  then 

z nz xz i 

and so - 1 = i2 = 1, a contradiction since C does not have characteristic 2. 

10.3. Problems 

1. If there is a D-finite infinite set of reals, then there exists a countable 
family of sets of reals without a choice function. 

[Hint: Let D be D-finite and consider the family {(r ,  s) n D: r, s rational 
numbers).] 

2. If the set of all reals is a countable union of countable sets, then w1 is a 
limit of a countable sequence of countable ordinals. 

[Hint: Prove, without using the Axiom of Choice, that there is a mapping 
f of 2N0 onto X, .  E.g., f can be defined on s ( Q )  ( Q  = the rationals) as 
follows: f ( X )  = the order type of X if X is well-ordered, f ( X )  = 0 
otherwise.] 

3. In the model Jlr of Theorem 10.6, (XI)” = (K,)&. 
by Lemma 10.9. To show that X, is a cardinal 

in M ,  prove that there is no fe  HS which is a name for a function from w 
onto X,: If , f ~  HS, then for some n, sym (f) 2 H,.  Using Lemma 10.7, 
we would get X, mutually incompatible conditions of the form p : n, a 
contradiction since there are only X, such conditions.] 

4. In ZF, the following statement implies the Axiom of Choice: 

(10.12) For every real vector space V, if S is a subspace of V then there is 
a subspace S‘ of V such that S n S’ = (0)  and [ S  u S’ ]  = V. 

[Hint: (XI)” 3 

[Hint: Prove that (10.12) implies the Axiom of Multiple Choice (see 
Chapter 9), which implies the Axiom of Choice in ZF. Let Y be a family 
of nonempty sets; use (10.12) to find a multiple choice function on 9. 
For every X E  9, let L ( X )  be the vector space of all linear forms 
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a,x,+ ... +a,x, with indeterminates from X and real coefficients; let 
L , ( X )  be the subspace of L ( X )  of all a,x,+ ... +a,xn, such that 
a,  + ... +an = 0. Let V be the weak direct product of all L ( X ) ,  X E  9 
(i.e., all sums v1 + ... + v ,  with u i  E Xi E 9’) and let Vo be the weak direct 
product of all L,(X),  X E  9’. By (10.12) there exists VA c V such that 
Vo n VG = (0) and [V, u V;] = V. For any X E X E  9, let x = u+v’ be 
the unique decomposition of x E V into ZI E V ,  and u’ E VA. Claim: if 
x, y E X ,  x = v + d ,  y = w+ w’, then u‘ = w’. (This is because d-  w‘ E 

V,  n V;.) Thus we have a function which for each XE 9 chooses w E VA 
such that x- w E Vo for every x E X .  It follows that the linear form w 
contains at least one x E X with a nonzero coefficient. Thus letf(X) be the 
nonempty finite set of all x E X which have a nonzero coefficient in w . ]  

*5 .  There is a model in which a vector space exists which has two bases of 
different cardinalities. 

[Hint: First some algebra: Let V , ,  V2 be two 6-dimensional real vector 
spaces and let a,, p,, y1 and u2 B 2 ,  y 2  be automorphisms of V ,  and V 2 ,  
respectively, such that both { 1, a,, P I ,  y , }  and { 1, u 2 ,  p 2 ,  y 2 }  is the four- 
group. Then there is an isomorphism p between V ,  and V,  which is invariant 
under the automorphisms u, 8, y (i.e., p(ol,x) = u2(px), etc.). Let the set 
Aofatomsbecountable,letA = B ,  u B,,  B ,  = U ~ = o A j , 7  B, = U ~ = , A j 2 ,  
where the A j i  are 6-element sets. Consider the following permutations of 
6 elements: 

a, = (12)(34)(5)(6), 
81 = (13)(24)(5)(6), 
Yl = (14)(23)(5)(6), 

a2 = (12)(34)(5)(6)? 
82 = (12)(3)(4)(56)7 
Y 2  = (1)(2)(34)(56). 

For each j ,  a is the permutation of A j ,  u A,, which acts as a, on A,, and 
as a2 on A j 2 ;  similarly for and y. Let ’3 be the group of all permutations n 
of A such that for each j ,  n preserves both A,, and A j ,  and acts on A,, u A,, 
as either of 1, a, 8 or y. Let 9 be the filter given by finite supports. Let ‘Y 
be the permutation model. Let V ,  and V2 be the vector spaces over the 
field of real numbers with respective bases B ,  and B, . For eachj, if V j ,  and 
Vj2 are the subspaces generated by A,, and A,,,  there exists an isomorphism 
p j  of V j ,  and V j ,  invariant under each a, p and y; thus pi E V. Hence V ,  
and V, are isomorphic in the model. However, B ,  contains a countable 
subset in V whereas B2 does not.] 

“6. There is a model in which Urysohn’s Lemma fails (see Problem 2.26). 
[Hint: Let the set A of atoms be countable and linearly ordered as the 
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rational numbers. Consider the order topology on A .  Let $9 be the set of all 
order-preserving permutations of A .  Let Z be the ideal of all subsets E of A 
satisfying (a) E has only finitely many accumulation points, and (b) every 
infinite subset of E has an accumulation point. Let 9 be the filter generated 
by {fix ( E ) :  E E Z}. Let V be the permutation model. Show that in Y,  
A is a T,-space and every continuous real-valued function on A is constant.] 

*7. Let 9'- be the basic Fraenkel model, let K be a regular cardinal and let 
A'. be the symmetric model obtained by the First Embedding Theorem 
(atoms = subsets of P(K)).  If X E M ,  then (in M )  either there exists 
Y E  V such that [XI = I Y J  or X can be mapped onto K .  

[Hint: Follow the proof of Theorem 8.6. Case (i) is handled precisely as 
there. In Case (ii), use the Support Theorem. E.g., in the simplest case 
when e ,  = 0, let x E X have nonempty support with the least element z (in 
the natural ordering of ."P(K)); let a" E A" be such that z E a". Let q ( y )  be the 
least element of the support of y in a" for each y E X ;  cp maps X onto a". (In 
general, get a mapping of X onto a"-e, .) The set a" can be mapped onto K ,  

e.g., I)(.) = min z maps a" cofinally into K (use genericity).] 

10.4. Historical remarks 

The consequences of a D-finite infinite set of reals appear in Sierpinski 
[1918], Jaegermann [1965] and Jech [1968a]. Theorem 10.6 was proved by 
Feferman and Levy [1963]. The model in which every set of reals is Lebesgue 
measurable was constructed by Solovay [ 1965, 19701. The permutation 
models in Theorems 10.1 1-10.13 and Problems 5 and 6 are due to Lauchli 
[ 19631. For the transfer of Theorems 10.1 1 and 10.12 and of Problems 5 and 
6 into ZF see Jech and Sochor [1966b]. Problem 7 and the transfer of 
Theorem 10.13 is due to Pincus [1972a].' The result in Problem 4 is from 
Bleicher [ 19641. 

Pincus also pointed out that the transfer of Theorem 10.13 is not immediate from the 
Embedding Theorem, as claimed in Jech and Sochor [1966h]. 



CHAPTER 11 

CARDINAL NUMBERS IN 
SET THEORY WITHOUT CHOICE 

11.1. Ordering of cardinal numbers 

In set theory with the Axiom of Choice, every infinite set is equivalent 
to an aleph and the alephs are well-ordered. Without the Axiom of Choice, 
however, one cannot prove that the ordering 1x1 Q I YI is a linear ordering; 
one can only prove that it is a partial ordering. In Section 2.5, we established 
the following properties of 1x1 Q /YI: 

(i) 1x1 Q 1x1; 
(ii) if 1x1 6 lYl and ( Y (  6 l Z ( ,  then 1x1 6 (ZI;  
(iii) if 1x1 Q IYI and IYI Q 1x1, then 1x1 = IYI. 

Thus (XI 6 IYI is a partial ordering. We will show that every partial 
ordering can be represented, in a model of ZF, by the ordering 1x1 Q IYl 
of cardinals. 

THEOREM 11.1. Let df be a model of ZF+AC. Let ( I ,  <) be a partiaffy 
ordered set in A. Then there is a symmetric extension A" of which satisfies 
the following: 

There exists a family of sets {Si: i E I ]  such that for all i, j E I ,  
(11.1) i Q j c t  lSil Q lSjl. 
PROOF. By the First Embedding Theorem, it suffices to construct a permuta- 
tion model of ZFA which satisfies (1 1.1) (and assume that ( I ,  < ) is in the 
kernel). The Embedding Theorem is then applied to embed the permutation 
model in a symmetric model of ZF which will also satisfy (1 1.1). 

Thus consider set theory with atoms, and let ( I ,  <) be a partially ordered 
set in the kernel. Notice that if we assign to each i E I the set { j  E I :  j Q i}, 
then we have an embedding of ( I ,  Q )  in ( B ( I ) ,  G) .  Hence it suffices to 
represent the partially ordered set (g(Z), G )  in the permutation model. 

Assume that the set A of atoms has cardinality IAl = 111 No. Let 
151 
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{ain: i E I ,  n E w> be an enumeration of A .  For eachp G I ,  let 

s, = {ain: i E p, n E 0). 

We shall construct a permutation model V such that: 
(i) {S,:p c I }  E V ;  

(ii) the function h defined by h ( p )  = S, for p c I is in V ;  
(iii) p E q if and only if V k lS,l < IS,!. 

Let 9 be the group of all permutations ~r of A such that n(S{,)) = S!,, for 
each i E I ;  i.e., if nuin = aim, then i = j .  Let 9- be the filter on given by 
the ideal of finite subsets of A .  Each x E V has a finite support E c A 
such that sym (x) 2 fix ( E ) .  

It is easy to see that sym (S,) = 9 for each p c Z and that sym (h )  = 3; 
hence (i) and (ii) hold. I f p  G q, then S, E S, and so iS,l < IS,l in V ,  
and it remains to show that i f p  $ q, then ISPI S IS,l in V .  

Let p Q q, and assume that there is a one-to-one mapping g E V of S, 
into S,. Let E c A be a finite support of g. Let i EP-q and let n, m be two 
distinct numbers such that neither ai,  nor aim is in E. Let n be the permutation 
of A defined by mi, = aim,  nuim = a,,,, and nu = a otherwise. Since rc E fix ( E ) ,  
we have ng = g. Let a = g(ai,,); since i 4 q and a E S,, it follows that 
nu = a. And we have 

g(aim) = g(nq,,) = (ng)(na,,) = Ira = a, 

contrary to the assumption that g is one-to-one. 

11.2. Definability of cardinal numbers 

One can compare sets by their cardinality, i.e., define the relations 
1x1 6 IYI and 1x1 = (YI without defining the symbol 1x1. In the presence 
of the Axiom of Choice, every infinite set is equivalent to an aleph, and so 
one can let 1x1 be the appropriate aleph. Without the Axiom of Choice, 
one can still define 1x1, namely by 

(11.2) 1x1 = { Y  IYI = 1x1 and Y is of least rank}. 

This definition also works in ZFA; that is, if the collection of all atoms is a 
set, for then (11.2) is a set. However, if one admits in the theory ZFA 
a proper class of atoms, as we did in Chapter 9 (see the remarks preceding 
Problem 3), then one cannot use (11.2) to define the cardinal number 1x1 
of X .  As a matter of fact, there is no way to define 1x1 as an operation on 
sets if one admits the existence of a proper class of atoms: 
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THEOREM 11.2. There is a permutation model with a proper class of atoms 
in which there is no function C,  defined for all X ,  with the property: 

(11.3) C ( X )  = C ( Y )  ifand only if 1x1 = IYI. 

We recall the convention that classes of a permutation model V are the 
symmetric subclasses of V. It is easy to see that if V is a definable (from a 
parameter p )  operation in V then the class 

c = { ( X ,  %(X)) :  XE 9,-} 
= { (X,  Y )  E V :  ,#f- != 4(X, y,  P ) >  

v- k +(n) ++ 9’” k +(..’), 

(where C#J is the defining formula) is a symmetric subclass of V because 

for every x E 9‘“ and every n E 59 (3 is the group used in the construction 
of V) .  Thus Theorem 11.2 shows the impossibility of defining the operation 
1x1 in ZFA with a class of atoms. 

PROOF. We deal with a proper class of atoms and so we have to be a little 
careful when talking about permutations of atoms, extending the permuta- 
tions to the entire universe, a group of permutations etc. As in Problems 
9.3 and 9.4, one can manage if one considers only permutations which are 
the identity outside a set of atoms. 

Let us divide the atoms into a class of pairs, 

A = u pa,  pa = {a, ,  b,>, 
a e o n  

and let us consider all permutations z with the properties 

(1 1.4) (i) n moves only a set of atoms; 
(ii) if na, E Ps, then nb, E Pp; in other words, zP, = Pp. 

We define symmetric sets as follows: Xis symmetric if there is a finite set E 
of atoms and a set S of ordinals such that .nX = X whenever 

(1 1.5) (i) nu = a for every a E E; 
(ii) .Pa = P, for every CL E S. 

The model V consists of all hereditarily symmetric elements (cf. Footnote 2 
in Chapter 9). 

The conditions (11.4) and (1 1.5) guarantee that all atoms are in ,#f- and 
so are the pairs Pa and any sets of those pairs. A simple argument in the 
spirit of permutation models shows that if T is an infinite set of ordinals, 
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then the set u {Pa: ~ E T }  cannot be well-ordered in V,  and moreover, 
if T , ,  T ,  are disjoint infinite sets of ordinals, then {Pa: C I E T , }  and u {Pa: a~ T,} are not equivalent in V. This will be used to show the 
nonexistence in 9‘- of a function C which would satisfy (1 1.3). 

Let us assume that C is a function from V to V ,  that C is a symmetric 
class and that C satisfies (1 1.3) in V .  There exists a finite set E of atoms and 
a set S of ordinals such that if n satisfies (11.5), then C(nX) = n(C(X)) 
for every X .  Let T, be a countable set of ordinals disjoint from S and such 
that X ,  = u {Pa: a E T , }  is disjoint from E. Look at the set Z of all atoms 
in the transitive closure of the set C(X,). If 2 n X ,  = 0, let T,  be a countable 
set of ordinals disjoint from both S and T, and such that X ,  = u (Pa: a E T,} 
is disjoint from both E and 2. Let n be a permutation which maps XI 
onto X, and vice versa, and which is the identity otherwise. We have 
C(X,) = C(nX,) = n(C(X,)) = C(X,) ,  contrary to the fact that X ,  and 
X ,  are not equivalent in Y ,  If 2 n X, # 0, let u E 2 n X, , e.g., u = a,. 
Let B # a be such that Pa n Z = 0, and p $ S and Ps n E = 0. Let n 
be a permutation which exchanges Pa and Ps , and is the identity otherwise. 
Clearly, X ,  and nX, have the same cardinality in V ,  whereas n(C(X,)) # 
C ( X , )  because na, is not in the transitive closure of n(C(Xl)). In any case 
we have a contradiction and so such a function C does not exist. 

One of the reasons why one uses the alephs to define cardinality of sets 
if the Axiom of Choice holds is that for every a, X, = w, = (l: 5 < w,} 
and so the cardinality of X, is 8,. In other words, the cardinal numbers are 
representatives of the equivalence classes consisting of sets of the same 
cardinality . 

Without the Axiom of Choice, nothing of that kind is possible. Precisely, 
we have the following theorem: 

THEOREM 11.3. There is a model of ZF in which there is no function C with 
the following properties: for all X and Y, 

(11.6) 

PROOF. We use the symmetric model obtained from the ordered Mostowski 
model by applying the First Embedding Theorem. Thus let V be the 
Mostowski model of Section 4.5, let A be the set of all atoms in V ,  and 
let A be the kernel of V. Let JV be a symmetric extension of .A in which 
V can be embedded so that ( P ( A ) ) ”  = (LP”(A))v. The set A is identified 
with a set of disjoint sets of subsets of some regular cardinal rc; let 

(i) C ( X )  = C(Y)  ifand only $[XI = IYI, 
(ii) IC(X)l = 1x1. 
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U = u {a: a E A}. By the results of Section 6.2, JI’ is a support model 
and JV has a one-to-one function F from JV into I x  J x  On, where Z is 
the set of all finite subsets of A and J is the set of all finite subsets of U. 

LEMMA 11.4. The set A has the following properties in ‘Y (and consequently, 
in JV): 

(a). A does not have a countable subset. 
(b). Every subset of A is a union of finitely many intervals and points. 
(c). Every partition of A has only finitely many members with more than 

one element. 
(d). If X and Y are subsets of A of the same cardinality, then X = Y up 

to a finite set (i.e., ( X - Y )  v ( Y - X )  is Jinite); more generally, if 
X ,  Y , ,  ..., Yk G A and 1x1 = IyII+ ... +IYkl, then x = U : = l ~ i  up to a 
finite set. 

(e). There is no function f defined on natural numbers such that for every 
n, f ( n )  E A and I f(n)l 2 n. 

PROOF. This is an exercise in permuting. 

LEMMA 11.5. Zf X and Y are infinite sets in Jtr and if X G U and Y E A,  
then there is no one-to-one function f E Jtr of X onto Y.  

PROOF. Let p II- f be a one-to-one function of X onto _Y; let (E, e )  be a 
support of f, e E g. There are _x E E-e, a E A and q 6 p such that 
q I I- {(x) = a. It is easy to find a permutation x E fix (e )  such that 7ca = a, 
nx # _x and such that xq and q are compatible. Then q u xq Itf(7cs) = g, 
a contradiction because [ x x  = 51 = 0. 

Now assume that JV has a function C which satisfies (11.6). We will 
derive a contradiction. As a matter of fact, to get the contradiction, it 
suffices to assume that a function C with properties (1 1.6) is defined on the 
set of all subsets of A .  We will define a function f on o such thatf(n) c A 
and 1 f(n)l 2 n for every n; that will contradict part (e) of Lemma 11.4. 

Let n be fixed, Let X be a subset of A such that ] A  - X i  = n, and consider 
the set C ( X )  (which does not depend on the choice of X ) .  Using the one-to- 
one function F of JV into I x  J x  On, let W = F”C(X) .  For every z E J x On, 
let W, = { E E Z : ( E , Z ) E  W>. Since 1x1 = IWI = ~ { I W z I : z ~ J x O n } ,  
it follows by Lemma 11.4(c) that all but finitely many Wz7s are singletons. 

First we show that there are only finitely many singletons among the W,’s. 
Otherwise, an infinite subset of A is equivalent to an infinite subset 2 of 
J x  On. Then [Zl = {IZJ: a E On}, where Z ,  = (e  E J (e, a) E Z>,  and 
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by the same argument as above, only finitely many Za)s are not singletons. 
Also only finitely many Za’s are singletons because otherwise we would get 
a countable subset of A .  Hence at least one 2, is infinite (and equivalent 
to an infinite subset of A ) .  Now we have lZ,l = c {lZail: i E  o}, where 
Zai = { e  E Z,: [el = i}, and again it follows that at least one Zai is infinite. 
The set U is linearly ordered and so [Z,,l 6 lU’[.  Hence U’ has an infinite 
subset S equivalent to an infinite subset of A .  Now IS1 = c {ISx]: x E V } ,  
where S, = (y’ E U i - ’ :  (x ,  y’) E S } .  Using Lemma 11.4(c) again, we get 
an infinite subset of either U of Ui-’, equivalent to an infinite subset of A.  
In any case, we finally get an infinite subset of U equivalent to an infinite 
subset of A ,  contrary to Lemma 11.5. 

Thus 1x1 = I W,,l+ ... + I W,, I +m, where I and m are natural numbers, 
W,,, ..., W,, are subsets of I and z1 < ... < zL in the ordering of J x  On. 
By the same argument as in the preceding paragraph, it follows that we can 
identify each Wz, with a subset of some A’. Every subset S of A’ can be 
represented by a finite sequence T, ,  ..., T, of subsets of A and Ai-’ as 
follows: let IS1 = C {ITa!: a E A }  where T,, = {6: (a, 6) E S }  anduse Lemma 
11.4(c). When wedo this i times with every Wzj ,  we get a finite sequence 
Y1, ..., Y, of subsets of A such that 

(11.7) 1x1 = [Y,l+ ... +IY,l+m. 

By Lemma 11.4 (d), the set Y = u:= Y j  is equal to X up to a finite set and 
so E = A - Y is finite. On the other hand, we get from (1 1.7) that I YI < 1x1 
and so IEl 2 n. Thus given n, we have constructed a finite subset E of A 
with at least n elements (note that this construction is independent of 
the choice of X and is uniform for every n E o). When we let f ( n )  = E, 
then we get a function which by Lemma 11.4(e) does not exist. 

11.3. Arithmetic of cardinal numbers 

If the Axiom of Choice is not used, the cardinal arithmetic lacks the 
simplicity of the cardinal arithmetic with the Axiom of Choice. Many 
formulas are no longer true, and those that remain true become very often 
hard to prove. We present in this section several examples to illustrate some 
typical results in this area. 

Throughout this section, we will use the German letters $I, q, . . . to denote 
infinite cardinal numbers, and we will deal with the arithmetic operations 

$I+% .p * q, $Iq, 2O, 
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which are defined in the standard way (i.e., 1x1 + IYI = IX u YI for disjoint 
X ,  Y, 1x1 * IYI = IXx YI, lXllYl = lyXl and 2lX1 = 19(X) I ) .  We will use 
without saying such elementary properties as 

(pq)>" = pq'm or (p+q)' = p2+2pq+qz  or .p+q B .p * q, 
as well as the properties of alephs like N: = N,, etc. For every infinite 
cardinal number p ,  let K ( p )  be the Hartogs number of p ,  i.e., the least ordinal 
which cannot be embedded by a one-to-one mapping in a set of cardinality #. 
For every p ,  K(#) is an aleph, viz. the least aleph N such that N 5 p .  
LEMMA 11.6. Zf p is an infinite cardinal and K is an aleph, and if 

(11.8) @+N = p . q  

(11.9) 
then either .p >/ N or $I < N. Zn particular, if 

. p + N ( P >  = .P * # ( P I ,  
then $I is an aleph. 

PROOF. Let $J = IP/ and let A be a well-ordered set such that X = IAl. 
By (11.8), there exist two disjoint sets PI and A ,  such that P x A = P, u A ,  
and lPll = #, IA,J = 8.  Either there exists p E P  such that ( p ,  a )  E P I  
for every a E A and then p 2 K because PI 2 { ( p ,  a ) :  a E A } .  Or, for every 
p E P let ap be the least a E A such that ( p ,  a )  E A , ,  and then p < N because 
{ ( p ,  a , ) : p  E P }  c A , .  In the particular case (1 1.9), p > K ( p )  is impossible, 
and $I < N ( p )  implies that p is an aleph. 

We use the above lemma to establish the first result of this section: 

THEOREM 11.7. If p 2  = p for  every infinite cardinal number p ,  then the 
Axiom of Choice holds. 

PROOF. We will show that under the assumption of the theorem, every 
infinite cardinal is an aleph. To do so, it suffices to show that 

. P + N ( P >  = P - %). 
Since p + N ( p )  6 p - N ( p ) ,  we have only to show that p + N ( p )  3 $I * N($J). 
This is proved as follows: 

.p+N(.p> = ( P + w ) z  = P2+2P . W + ( N ( P ) ) '  2 .p w.9. 
The next result is of a similar nature: 

THEOREM 11.8. Assume that p 2  = q2 implies .# = q for  all infinite cardinal 
numbers $ and 9. Then the Axiom of Choice holds. 
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PROOF. Again, we show that every infinite cardinal number is an aleph. 
Let p be an infinite cardinal and let q = p x o .  It is enough to show that q 
is an aleph. First notice that q2 = q because 

q2 = (p"0)' = p'No = 4 x 0  = q. 
Thus we have 

Next we show that 

In contrast to the previous theorem, the following cancellation law is 
provable without the Axiom of Choice. 

THEOREM 11.9. If +I and q are infinite cardinals and i f  213 = 2q, then @ = 9. 

PROOF. Let P, Q, M ,  N be mutually disjoint sets such that ]PI = IMI = .P 
and I Q l  = IN1 = q. We have IP v MI = lQ u MI,  and wish to show that 
IPI = 1 Q l .  There is a one-to-one mapping between P and Mand a one-to-one 
mapping between Q and N .  We may as well assume that p is a one-to-one 
function with domain P v Q v M v N such that p"P = M ,  p"M = P, 
p"Q = N and p"N = Q. Similarly, let r~ be a one-to-one function such that 
d ' ( P  v M )  = Q v N and a"(Q v N) = M v P. We define a sequence xi 
of one-to-one functions on P, for all integers i ,  positive and negative: 
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and for every p E P, consider the sequence 

(11.12) s, = {..., 7cn-Z(P)Y =l(P),PY %(P)Y nz(P) ,  ... I. 
I f p ,  and p 2  are in P, then S,, and S,, are either disjoint or have the same 
elements, in which case either the sequences are identical or one is the inverse 
of the other. If we look at the subsequence of S, formed by elements of P 
and Q only, we can see that the elements of P and the elements of Q alternate. 
Our intention is to pair up the elements of P with the elements of Q in each 
S, and do it uniformly for every S. This will give us a one-to-one function 
of P onto Q. 

For a given S, pair up first all the pairs ( p ,  q )  such that p ,  q E S and 
q = 7c,(p). Remove these pairs, and in the remaining set, pair up all the 
pairs p ,  q such that q = R - ~ ( P )  (actually there are no such p ,  q) .  Then 
pair up the pairs such that q = 7c2(p) and remove them, then take 
q = 7cd2(p), etc. After infinitely many steps, either we have managed to 
pair up allp's with all q's in S, or some elements are still left. Using common 
sense, one should be able to see that at worst only one p or one q is left 
unmatched. Then we have to start all over again, but this time, we have a 
fixed element of S to start with. Assume that this element is a p (if it is a q, 
then the argument is similar). Then S = S,, and p determines the order 
of s: 

S = {..., 7cn-ZPY ~ - , P , P ,  X l P ,  ZZP, ...>. 
In the subsequence of S consisting of elements of P u Q, we match p with 
its nearest neighbour on the right which is in Q ,  and similarly for the rest of 
(P u Q )  n S. 

Thus we have constructed a one-to-one mapping of P onto Q and hence 
8 = 9. 

We will conclude this section with the proof that the Generalized 
Continuum Hypothesis implies the Axiom of Choice. To start with, we 
expect the reader to know the diagonal procedure of Cantor showing that 
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for any cardinal number p (viz., iff is a mapping of X into LP(X), then the 
set {x E X :  x 4 f (x)} is not in the range off). This can be improved somewhat 
as follows: 

LEMMA 11.10. I f p  B 5, then 2p S p 2 .  
PROOF. Let $ be an infinite cardinal, 1x1 = p and let N = X ( p )  be the 
Hartogs number of p .  We shall assume that 2p 6 p 2 ,  and construct a one-to- 
one sequence of elements of X ,  of length K ,  contrary to the definition of N. 

Let f be a one-to-one mapping of P ( X )  into X x X ,  and for every infinite 
ordinal a, let f a  be a one-to-one mapping of a onto a x  a (a refinement of 
the theorem N: = X, in Section 2.5 gives a canonical one-to-one corre- 
spondence between a and ci x a for every infinite ordinal a). We construct 
the sequence {xa: a < N} as follows: First choose xo, ..., x, arbitrarily. 
If n 3 5, let c,, = {xo, ..., x, ,-~}.  Since ILP'(C,,)I = 2" =- n2 = IC,,XC,,~, 
there is a subset U of C,, such thatf(U) 4 C,, x C,,. Let U be the first such set 
(i.e., U = (x,,,, ..., x,,,}, where {nl , ..., nk} is first in a given well-ordering 
of finite sets of numbers) and iff(U) = (x, y ) ,  then let x,, = x if x 6 C,, or 
x,  = y if x E C,,; in any case, x,, 6 C,,. If a is an infinite ordinal, a < K, let 
C, = {xc: t < a>. From f andf,, we get a one-to-one mapping g of a into 

and let (x, y )  = f( U ) .  It follows that (x, y )  6 C, x C, , and thus we can let 
x, be either x or y .  

qx): g ( 5 )  = f  -l(xs, XJ, where (% r )  =f,(i). Let u = {.e E ca: xg 4 g( t ) } ,  

The Continuum Hypothesis is the hypothesis that every infinite set of reals 
is either countable or else has the power of the continuum. In other words, 
if q is a cardinal such that 

No 6 q 6 2n0, 

then q = No or q = 2'O. The Generalized Continuum Hypothesis says that 
for all infinite cardinals p and q, 

(11.13) if &I 6 q 6 2Q then 9 = $ or q = 2p. 

THEOREM 1 1.1 1. The Generalized Continuum Hypothesis implies the Axiom 
of Choice. 

PROOF. Let p be an infinite cardinal number. We assume that (11.13) 
holds for every q, and show that p 2  = $. The result will then follow from 
Theorem 11.7. First, we claim that (without any assumption) 

(1 1.14) $ 6 2p < 2 p .  
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This is because p < 2p and 213 < 2p, and since 213 6 p 2 ,  we have 2p # 2p 
by Lemma 11.10. Now it follows from (11.13) that 
(11.15) 2p = p .  
From (1 1.15), it follows that p2 < 2p. This is because 

p 2  < (292 = 22p = 2 p ,  

p 6 .p2 2p,  

p 2  = .p. 

and by Lemma 11.10, p 2  # 2p. Thus we have 

and using (1 I. 13) once more, we get 

11.4. Problems 

A cardinal number is a Dedekind cardinal if it is the cardinal number of 
an infinite D-finite set. 

1. If p and q are Dedekind cardinals, then .p+q and p * q are Dedekind 
cardinals. 

2.(a). A subset of a D-finite set is D-finite. 
(b). An image of a D-finite set need not be D-finite. 
[Hint: In the second Fraenkel model, 2 is D-finite but is a union of 

countably many pairs, thus it can be mapped onto 0.1 
3. The union of a D-finite family of finite sets need not be D-finite. 

[Hint: In the second Fraenkel model, A = u~=,P, , .  For each a E A ,  
let S, = {a, n} ,  where n is such that aEP, .  Then u {S,: a E A )  3 w.] 

4. The union of a D-finite family of mutually disjoint D-finite sets is D-finite. 

5(a). The set of all finite one-to-one sequences in a D-finite set is D-finite. 
(b). The set of all finite subsets of a D-finite set need not be D-finite. 
[Hint: The second Fraenkel model.] 

6 .  If there is a Dedekind cardinal, then there is a set C of Dedekind cardinals 
such that iCl = 2'O, any p ,  q E C are comparable, and C is isomorphic 
(in the ordering of the cardinals) to the real line R. 

[Hint: There is a family {A,: x E R) of subsets of w such that A ,  s A,  
if and only if x < y. Let D be an infinite D-finite set, and let S be the set of 
all finite one-to-one sequences in D. For x E R, let S, = {s E S:  Is1 E A x } ;  
let C = {ISXI: x E R}.] 
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***7. Assuming that there is a Dedekind cardinal, are there two incompar- 
able Dedekind cardinals? 

Let 1x1 Q * IYl mean that Y can be mapped onto X (or X = 0). With 
the Axiom of Choice, 6 * is the same as F . Without the Axiom of Choice, 
6 * is transitive, but p < * q and q F * p does not imply p = q: 

8. If there is a Dedekind cardinal, then there exist cardinals p and q such 
that p < q and .p >*  q. 
[Hint: Let D be an infinite D-finite set, let S be the set of all finite one-to- 

one sequences in D and let T be obtained from S by removing the empty 
sequence. Then IT1 < IS1 (because S is D-finite) and IT1 * IS1 as can be 
easily seen. ] 

9. If there is a Dedekind cardinal, then there are two cardinals p and q 
such that .+.I # q and 2’ = 2q. 
[Hint: Let S and T be as in Problem 8, let p = ISl, q = JTJ.  Show that 

IS1 < *  IT1 implies I9(S)l 6 [9 (T) l ;  hence 2’ F 2q. On the other hand, 
q 6 p implies 2q F 2’ and so 2’ = 2q.] 

10. If there is a Dedekind cardinal, then there is a cardinal p such that 

[Hint: Let D be an infinite D-finite set, let q = IDI; let p = q+No. 
Claim: 2p > p .  Otherwise, 2q+N0 = q + K o .  Let ICl = JDJ, IAl = No, A ,  
C, D disjoint, f a one-to-one mapping of A u C u D onto A v D. The image 
f “D of D is included in D, except for a finite set, and the complement of 
f ” D  ir: D is infinite. That gives a one-to-one mapping of D onto a proper 
subset of D, a contradiction.] 

**11. There is a model in which 2p = $I for every infinite cardinal 
number $I whde the Axiom of Choice fails. 

213 ’ @. 

(Compare with Theorem 1 1.7.) 

12. Assume the Axiom of Choice for Finite Sets (ACF). If p and q are 
Dedekind cardinals and p 2  = q2 then $I = q. 

(Compare with Theorem 11.8.) 
[Hint: Let IPI = 9, lQl = 4, letfbe a one-to-one mapping of P x P onto 

Q x Q. Let I be the set of all finite subsets E c P such thatf”(E x E )  = F x F 
for some F E Q. If E l ,  E, E I then El n E2 E I .  Claim: For every x E P 
there is E E I  such that X E E .  Otherwise, one can get an w-sequence 
El c E, c E ,  c ... and by ACF a one-to-one sequence x l ,  x2, x3, ... 
in P, a contradiction. For every x E P, let Ex be the least E E Z such that 
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x E E.  This constitutes a partition of P into finite sets, and Q has a similar 
partition. For each Ex there are finitely many one-to-one mappings of E, 
onto its counterpart in Q; by ACF, we can choose one for each Ex and 
combine them to get a one-to-one mapping of P onto Q.] 

Let p and q be cardinal numbers, and let p < q. The cardinal q is a 

< m < q implies m = p or m = q. 

l-successor of p if for every my 

The cardinal q is a 2-successor of p if for every my 

p < m implies q < m. 

The cardinal q is a 3-successor of p if for every my 

m < q implies m < 8. 
13. Every cardinal p has a l-successor. 

[Hint: Let q = p+N(p). Let m be such that .p < m < q. There is p1 
such that m = p + p l ,  and there are r and K, such that m = r+X, and 

Case (i): N, = X ( # ) .  Then X(p) = N, 6 m = # + p i  , and since N(@) S p ,  
we have X(p) < p l y  and so m = p+X(# )  = q. 

Case (ii): X, c N(p). Then N, < p ,  and so p + H ,  = p ;  thus we have 
m = r+N, < p+N, = p . ]  
14. If every cardinal has a 2-successor, then the Axiom of Choice holds. 

[Hint: Let @ be an infinite cardinal, and show that +I is an aleph. Let 
N, = N(p). Since N,+l > K,, it follows that K,+l 2 any 2-successor of N,, 
and hence N,+l is the 2-successor of N,. If p + X ,  > N,, then p + X ,  2 N,+l, 
a contradiction. Thus p+N, = X,, and so p is an aleph.] 

**15. It is not provable in set theory without the Axiom of Choice that 
every cardinal has a 3-successor. 

**16. If every cardinal has a 3-successor, then for every infinite p ,  2p = p .  

17. In the basic Fraenkel model, p 2  % 2”, where p = IAl. 

t: < p ,  8, < q p ) .  

(Compare with Lemma 11.10.) 

18. In the basic Fraenkel model, p c p 2  < p 3  < .... 

**19. In the ordered Mostowski model, for every n E o there is a cardinal 
number $I such that @ < p 2  < ... < $” = $I”+’. 
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The following three problems do not deal with the arithmetic of cardinals, 
and are stated here for lack of a better place. 

20. The following version of Ramsey’s Theorem is not provable without 
the Axiom of Choice: 

r f  A is an infnite set and [AI2 = W, v W, is a partition of [AI2 = 
( ( a ,  b} :  a, b E A ,  a # b} then there is an infnite homogeneous subset H c A .  

[Hint: The second Fraenkel (or Cohen) model. Let A = u:’oPn, and 
let {a,  b} E W ,  just in case a,  b are in the same pair P, . A homogeneous set 
would be an infinite choice function.] 

21. There is a model of set theory in which there exists a linearly ordered 
set (P,  <) such that JPI > N, and every initial segment of P is countable. 

[Hint: It suffices to construct a permutation model. Let A be a disjoint 
union of X I  countable sets A, ,  a < al, and let each A, be ordered as 
rational numbers. Let 93 be the group of all 7c such that for each a < ol, 
nA, = A,, and n is order-preserving on A, .  Let 2F be generated by 
{ H y :  y < a,}, where Hy = fix (u { A a :  a < y } ) .  In  the model, let P = A u o1 
and order P such that A ,  precedes A,  if ci < /?, and each CI precedes A, and 
follows all A,, /? < a.] 

A Boolean algebra B is atomic if for every u E B, u # 0, there is an atom 
a such that a ;i u. An atom is an a E B such that a # 0 and there is no x 
with 0 < x < a. An atomic Boolean algebra can be identified with a 
subalgebra of ( g ( A ) ,  E), where A is the set of atoms of B. 

22. For every atomic Boolean algebra B, there is a symmetric model N 
of ZF such that B is isomorphic i n N  to the power set P p ” ( A )  of some set A .  

[Hint: It suffices to construct a permutation model. Identify A with the 
atoms of B.  Let 93 be the group of all 7c which move only finitely many 
atoms. Let F be generated by the groups fix ( E ) ,  E E- A finite, and sym ( U ) ,  
where U E A and U E B. To see that 9 is normal, note that TC . sym ( U )  . 
7c-I 2 sym ( U )  n fix (a: nu # a>. A subset of A is in the model if and 
only if it is in B. ]  

For every infinite countable ordinal a, let W, be the set of all one-to-one 
mappings of o onto ci. There are three mutually exclusive alternatives for 
0 1  : 

(A). There is a choice function on the family W = { W,: o < a < q}. 
(B). There is no choice function on ‘ Y f  but o1 is regular. 
(C). w1 is singular. 
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The alternative (C) holds in the model of Theorem 10.6 (cf. Problem 10.3). 
The alternative (B) holds, e.g., in the model of Theorem 10.10. 

An uncountable aleph N, is inaccessible if it is regular and if 2'8 < N, 
for every p < a. 
23. If the alternative (B) holds, then o1 is an inaccessible aleph in the 
constructible universe L. 

[Hint: Show that o1 is a regular limit cardinal in L; since L satisfies the 
Generalized Continuum Hypothesis, o1 is inaccessible in L. Since w1 is 
regular, it is regular in L. If it were a successor of some K in L, then in L, 
which satisfies the Axiom of Choice, we could choose for each a, K < a < ol, 
a one-to-one mapping of K onto a; combining those with a fixed mapping 
of o onto K, we would be able to get a choice function on W ,  a contra- 
diction.] 

"24. Let K be an inaccessible cardinal. Let Jlr be a symmetric model which 
is constructed in the same fashion as the model of Theorem 10.6, except 
that one takes K in place of 8,. We have (K1)" = K, and JV satisfies the 
alternative (B). 

[Hint: Go through the proof of Theorem 10.6 to find the relevant proper- 
ties of the model.] 

"25. The model constructed in Problem 24 has a linearly ordered set 
(P, <) with the property described in Problem 21, i.e., [PI > K, and every 
initial segment of P is countable. 

[Hint: In (10.8), we defined countable sets R, of reals of the model. In 
the present model, we can similarly define countable sets of reals R,, CI < N , , 
such that R = u {R,: a < Nl]. Then let P = R u ol, and order P in 
the same fashion as was the P of Problem 21.1 

***26. Construct a model of ZF in which every uncountable aleph is 
singular. S o I o ~ t  ; G;Kk ; i 3 i ~ q m j  

11.5. Historical remarks 

The representation of partial orderings by cardinal numbers (Theorem 
11.1) is a result of Jech [1966a] (independently obtained by Takahashi 
[1967]). The undefinability of cardinal numbers in set theory with a class 
of atoms is due to Gauntt [1967] and Levy [1969]. Theorem 11.3 is in 
Pincus [1969]. Theorems 11.7 and 11.8 were proved by Tarski [1924a]. For 
Theorem 11.9, see Bernstein [1905] and Sierpinski [1922]. Theorem 11.11 
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was announced by Lindenbaum and Tarski [1926]; the first to publish a 
proof was Sierpinski [1947]. The proof presented here (and Lemma 11.10) 
is due to Specker [1954]. 

The result in Problem 6 is due to Tarski [1965]; the open Problem 7 is 
also due to Tarski, and so are the observations in Problems 8 and 9. For 
Problems 8 and 9, see also Levy [1960] and Lauchli [1963], respectively; 
for Problem 10, cf. e.g. Halpern and Howard [1970]. The model in Problem 
1 1 was announced by Sageev [ 19731. Problem 12 is a special case of a general 
result of Ellentuck about the cancellation laws for Dedekind cardinals; for 
more details, consult Ellentuck [1965, 1968a-19701. The three kinds of suc- 
cessors were defined and the theorems about 1- and 2-successors (Problems 
13 and 14) proved by Tarski [1954b]. The independence result about 3- 
successors (Problem 15) is due to Jech [1966b]. Problem 16 is a recent 
unpublished result of Truss [1973]. Problems 17 and 23 are due to Specker 
[1957]; the result of Problem 18 is in Ellentuck [1966]. Problem 20 is due 
to Kleinberg [1969]; the model in Problem 21 was constructed by Morris. 
For Problem 22, see Weglorz [1969]. The alternatives (A), (B), (C)  were 
formulated by Church [1927]. The model in Problem 24 was constructed 
by Hfijek [1966]. 

Added inproof (April 1973): In a letter to the author, D. Halpern states that he and 
P. Howard have constructed, independently of Sageev, a permutation model for 2p = $I. 



CHAPTER 12 

SOME PROPERTIES CONTRADICTING 
THE AXIOM OF CHOICE 

12.1. Measurability of K, 

In this last chapter, we give a brief introduction to a subject which has 
in recent years attracted the attention of set theorists. We will consider 
several properties, among them in particular the Axiom of Determinateness, 
which contradict the Axiom of Choice. These properties turn out to be 
related to so-called large cardinal axioms. The most popular large cardinal 
is a measurable cardinal. 

An uncountable aleph K is called a measurable cardinal if there exists a 
nontrivial ultrafilter U over K which is K-complete, i.e. if u < K and Xs E U 
for each 5 < a, then n {xs: 5 < U. 

We say that X E K has measure 1 if X E U and X has measure 0 if X $ U. 
If the Axiom of Choice holds, then a measurable cardinal is inaccessible; 
this follows immediately from the following lemma: 

LEMMA 12.1. Let K be a measurable cardinal. Then: 
(a) K is regular; 
(b) for every cardinal 1 < K, we have K S 2'. 

PROOF. (a). By the rc-completeness, a union of less than K sets of measure 0 
has measure 0. Since U is nontrivial, singletons have measure 0, and so 
every subset of IC of smaller cardinality has measure 0. Since K has measure 1, 
it cannot be a union of less than K smaller sets; thus IC is regular. 

(b). Assume that 1 < K and K < 2A. We show that K cannot be measur- 
able. If it is, then there is a subset S E g(1) of cardinality K and a non- 
trivial Ic-complete ultrafilter U over S.  We construct a transfinite sequence 
S,, a < 1, of sets of measure 1 as follows: S, = S, S, = {Ss: 5 < a) 

167 
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if a is a limit ordinal, and S,, ,  = either {XE S,: a E X }  or { X E  S,: a # X }  
whichever has measure 1. By the rc-completeness, the intersection 

should have measure 1, but obviously, this intersection has at most one 
element, a contradiction. 

As a matter of fact, measurable cardinals are much larger than inaccessible 

If the Axiom of Choice is not assumed, then a measurable cardinal need 
cardinals: if K is measurable, then IC is the rcth inaccessible (in ZF+AC). 

not be inaccessible: 

THEOREM 12.2. There is a model of ZF in which N, is a measurable cardinal. 

PROOF. We will construct a symmetric model in which N, is measurable, 
under the assumption that the ground model has a measurable cardinal. 
(This assumption is necessary; cf. Problem 1). 

be the ground model (of ZF+AC) and let K be a measurable 
cardinal. We will construct a complete Boolean algebra B, a group of 
automorphisms %, and a normal filter 9 such that in the model JV given 
by B, 9 and 9 (and a generic ultrafilter G), K is the least uncountable cardinal 
and is measurable. To begin with, let us say that a subset A E B is symmetric 
if fix ( A )  E 9, where fix ( A )  = {n E 3’: nu = u for all u E A}. 

Let 

LEMMA 12.3. Assume that every symmetric subset A c B has cardinality 
less than K .  Then rc is a measurable cardinal in N. 

PROOF. Let U be a nontrivial rc-complete ultrafilter over K in A. It suffices 
to show that JV satisfies the following: 

(i). If X E K then either X or IC-X has a subset Y such that Y E  U. 
(ii). If a < K and (X<:  ( < ct} is a partition of K ,  then for some to < a 

(Actually, (ii) implies (i).) We will prove (i) and leave the slightly more 
general case (ii) to the reader. 

Let X E N ,  X s rc; let _X be a symmetric name of X .  It is easy to see that 
the set A = (I*. E XI: a < IC} is a symmetric subset of B. By the assumption, 
we have IAl < K. For every u E A, let Xu = ( a  < K :  [[& E X ]  - = u} .  Clearly, 
( X u :  u E A }  is a partition of IC (in d) into less than rc parts; hence for some 
uo E A ,  we have Xu, E U. Now, if uo E G, then Xu, _C X, and if uo # G, then 

there is a Y E  U such that Y c X,, . 

Xu, s rc - X .  



CH. 12, $21 CLOSED UNBOUNDED SETS AND PARTITION PROPERTIES 169 

We will now construct the model Jlr. Let (P, <) be the set of all finite 
sequences of ordinals less than K ,  and p < q just in case p extends q. Let 
B = RO(P).  Let '3 be the group of all automorphisms of B induced by the 
automorphisms of (P ,  <). We define the filter F as follows: For every 
Z E P, IZI < K ,  let fix (2) = {n E 3: np = p for all p E Z } .  We let F be 
the filter on 9 generated by {fix (2): Z E P and IZI < K } .  9 is a normal 
filter. Let G be a generic ultrafilter on B and let JV be the symmetric sub- 
model of A [ C ]  determined by 9. 

If 1 < K ,  then 1 is countable in JV. To see this, letfbe the name such that 
[[I(;) = ;] = C { p  E P:p(n)  = a}, 

for every n E o, a < 1. Clearly, f is symmetric, and its interpretation is a 
mapping of o onto 1. 

Thus if we can show that every symmetric A E B has cardinality less than 
K ,  then by Lemma 12.3, K is measurable in Jlr and we are done. Let A be a 
symmetric subset of B. There exists Z E P,  IZI < K such that fix ( A )  2 
fix (2). For every U E A ,  let S,, = { p ~ P : p  < u } ;  if n ~ f i x  (2) then 
n"SU = S,,. Let 1 < K be a cardinal such that p E w x 1 for all p E 2. 
We claim that if for some p E S,, p(n)  2 1 for some n, then there is q E S,, 
such that q(n) = 1 and q(m) = p ( m )  for m # n. To see this, let 7c be the 
permutation of w x K which interchanges (n, p(n))  and (n, A) and is the 
identity otherwise; n induces an automorphism of P, and if we let q = np, 
then q E S,, because n E fix ( Z ) .  Thus each of the sets S, is uniquely deter- 
mined by its restriction to o x (A u {A}), and consequently, A has cardinality 
at most 2A, which is less than K .  

12.2. Closed unbounded sets and partition properties 

and unbounded in IC if 
Let K be a regular uncountable aleph. We say that a set C E K is closed 

(i) sup (C n CI) E C for every a < K ;  
(ii) for each p < K ,  there is CI E C such that a > p. 

LEMMA 12.4. (a). The intersection of less than K closed unbounded subsets 
of IC is closed unbounded. 

(b). The diagonal intersection of a family {Cr: 5 < K }  of closed unbounded 
subsets of IC is closed unbounded: 

A{c~:  a < = iCI < K :  a E n c,}. 
,<a  

PROOF. (a). We prove, by induction on y < K ,  that the intersection 
C = {Ct: 5 < y }  of closed unbounded sets is closed unbounded. First we 
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note that the intersection of two closed unbounded sets is closed un- 
bounded: to show that Co n C ,  is unbounded, we construct a sequence 
a. < Po < a, < < . . . < a, c /3, < . . . such that a, E Co and Pn E C1 ; 
then lim a, = lim /3, E Co n C , .  Hence we may assume, by the induction 
hypothesis, that C, 2 C ,  z ... 2 C,  2 .... Obviously, C is closed. To 
see that C is unbounded, let /3 < K .  There exists a, E C,,, a. > /3; similarly, 
there exists a, E C 1 ,  u1 > ao. In general, there exists a5 E C, ,  exceeding 
all a,,, q < t. If we let a = Iim,,,a,, then a E C,  for every 5 because each 
C ,  is closed. Hence a E C .  

(b). Let C,,  5 < K, be closed unbounded. By (a), we may assume that 
C ,  2 C ,  3 ... 2 C,  2 .... To show that C = A{Cb: a < K} is closed, 
let a be a limit of an increasing sequence {a,,: q < y}, with a,, E C for each 
q < y. We have to show that a E C,  for each 5 < a. If 5 < a, then a = 
lim {aq: q < y and a,, > t} is a limit of a sequence in C,,  and so a E C,. 
To show that C is unbounded, let /3 < K .  We construct a sequence 
a, < a, < ... < a, < ... such that a. > /3 and E Can. If a is the limit 
of the an’s, then a E C ,  for all 5 < a and so a E C.  

Since any two closed unbounded sets intersect in a closed unbounded set, 
the collection of closed unbounded sets seems to be a good candidate to 
generate a nontrivial K-complete ultrafilter over K. However, if the Axiom of 
Choice holds, then it is not so because we can construct a set which neither 
includes nor is disjoint from a closed unbounded set. 

Let S be a subset of K .  We say that S is stationary, if S has a nonempty 
intersection with every closed unbounded subset of K. The nonstationary 
sets are complements of sets containing a closed unbounded subset. If there 
is a stationary set which has a stationary complement, then the filter 
generated by the closed unbounded sets is not an ultrafilter. 

THEOREM 12.5. Let lc be a regular uncountable aleph. 
(a). The set 

S = { a  < K :  cf (a) = o} 
is stationary. 

sets. 
(b). Ifthe Axiom of Choice holds, then S is a disjoint union of K stationary 

Tt is easy to see that S is stationary. If C is closed unbounded, then the 
dh element of C has cofinality w. Before we prove the rest of Theorem 12.5, 
we introduce one more notion. Let X E K .  A functionf: K + IC is regressive 
o n X i f f ( a ) <  a f o r a l l a E X , a  # 0. 
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LEMMA 12.6. Assume the Axiom of Choice. I f f  is a regressive function 
on a stationary set So E K ,  then there exists a stationary set S c So and some 
y <  ~ s u c h t h u t f ( a ) = y f o r a i i a ~ S .  

PROOF. Contrariwise, assume that for each y -= IC, the set { a  E So: f ( a )  = y }  
is nonstationary and choose a closed unbounded set C, such that for each 
a E So n C,  f ( a )  # y. Let C be the diagonal intersection of the Cy’s. It 
follows that a E So n C implies f ( a )  2 a, a contradiction since So is 
stationary, C is closed unbounded and f is regressive. 

PROOF OF THEOREM 12.5(b). For each a E S, let f a :  o + a be an increasing 
function with limn-rm fa(n)  = a. First we claim that there is n such that for 
all y ,  the set 

(12.1) 

is stationary. If not, then for every n there exists some y,, and a closed 
unbounded C,, such that fa(n)  < y,, for all a E C,, n S. Then let y = 
sup {yn: n E w }  and C = n {C,,: n E o}; the set C n S is stationary, hence 
unbounded, but for every a E C n S,fa(n) < y for all n, which is impossible 
since a = lim,,,,f,(n). 

Thus, let n be such that for every y < K ,  the set (12.1) is stationary. We 
let g be a regressive function on S defined as follows: 

(12.2) =fW. 
For each y, the set {a E S: g(a)  2 y }  is stationary, and so by Lemma 12.6, 
for each y < K there exists 6 2 y such that the set 

(12.3) s, = {a E s: g ( a )  = a> 
is stationary. Different 6’s give disjoint Sis and by the regularity of K 

we get IC disjoint stationary subsets of S. 

Let us look again at the measurable cardinals. Let IC be a measurable 
cardinal and let U be a nontrivial K-complete ultrafilter over IC. We say that 
U is normal if whenever X , ,  5 < K ,  are sets of measure 1, then the diagonal 
intersection 

(12.4) A{x<: 5 < K >  = { a  < IC : a E n xs> 
< < a  

has measure 1. 

LEMMA 12.7. U is normal if and only if for every regressive function f: K + IC 
there exists a set X of measure 1 such that f is constant on X.  
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PROOF. (a). First assume that U is normal and let f be regressive. I f f  
is not constant on a set of measure 1, then for every y < K ,  the set 
X, = ( a  < K :  f ( a )  # y >  has measure 1, and the diagonal intersection 
X = A{X?: y < K }  has measure 1. However, f ( a )  3 a for every CI E X .  

(b). On the other hand, assume that U is not normal and let 
X ,  2 X ,  2 ... 3 X ,  2 ... be sets of measure 1 whose diagonal intersection 
is empty. For every a, let f (a )  be the least 5: such that a # X s .  One can verify 
thatfis regressive but not constant on a set of measure 1. 

If D is a normal nontrivial Ic-complete ultrafilter over K ,  let us call D 
simply a normal measure on K .  One can show that if K is measurable then 
K has a normal measure, but the proof requires a small amount of the 
Axiom of Choice (see Problem 2). Now we show that closed unbounded 
sets have normal measure 1. 

LEMMA 12.8. If D is a normal measure on K and i f  C is a closed unbounded 
subset of K ,  then C E D .  

PROOF. Assuming K -  C E D, let us define a regressive function f on 
K - C as follows: if a E K - C, let f ( a )  be the largest y E C such that y < a. 
Since Cis closed and c1# C, f ( a )  is defined. The functionfshould be constant 
on a set of measure 1, which is absurd since C is unbounded. 

Now we will consider some partition properties. If A is a set of ordinals, 
let 
(12.5) 
(Compare with the definition of [A]’ on p. 99.) 

[A]’ = ((a, /I): a, /I E A and a < B}.  

Let K and A be alephs. The symbol 
K -+ (q2, 

means that whenever [ K ] ’  = W, u W ,  is a partition of [ K ] ’  into two parts, 
then there exists a subset H c K such that ]HI = I and H is homogeneous, 
i.e., 

[HI’ c Wo or [ H I ’  c W,.  
The property K O  + (KO)’  is called Ramsey’s Theorem and can be proved 
without the Axiom of Choice. (The proof suggested in Problem 7.1 does 
use the Axiom of Choice but that can be eliminated.) 

An uncountable aleph K is weakly compact if 
K + ( K ) ‘ .  

If the Axiom of Choice holds, then a weakly compact cardinal is inaccessible; 
actually, there is an analogue of Lemma 12.1: 
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LEMMA 12.9. Let k- be a weakly compact cardinal. Then: 
(a) IC is regular; 
(b) for every cardinal 1 < IC, we have IC % 2a. 

PROOF. (a). Assume that IC is a disjoint union u { A y :  y < A} such that 
1 < IC and (A,I < IC for each y < 1. We define a partition as follows: 
(a, f i )  E W, just in case a and p are in the same A, .  Obviously, this partition 
does not have a homogeneous set H E IC of cardinality IC. 

(b) Assume that IC < 2A for some A < IC and let A be the least such 1. 
Let P be the set of all 0-1 functions on 1, and let < be the lexicographical 
ordering of P. Let 5' be a subset of P of cardinality IC; let S = { f a :  a < K } .  

We define a partition of [icI2 as follows: if a < p, then (a, p)  E W, just in 
case f a  <fs. A homogeneous set H yields an <-increasing (or decreasing) 
ic-sequence {ha: a < ic} of elements of P. For every a < IC, let g, be the 
common initial segment of ha and ha+ For each a < ic, g, is a 0-1 function 
on some y < A and since the sequence {ha: a < ic} is <-monotone, the g,'s 
are pairwise distinct. Thus we have a subset of u {,2: y < A} of car- 
dinality IC. This is impossible since K is regular and Iy21 2 K ,  for any y < 1. 

Without the Axiom of Choice. however, even X I  can be weakly compact 
(see Problem 3). 

The measurable cardinals are weakly compact. And let us mention that 
it has been proved (in the presence of the Axiom of Choice) that a weakly 
compact cardinal ic is the 12'' inaccessible cardinal and a measurable 
cardinal IC is the icth weakly compact cardinal. 

THEOREM 12.10. If IC is a measurable cardinal, then K is weakly compact. 

PROOF. Let U be a nontrivial rc-complete ultrafilter over IC. Let 
[ . I2  = W, u W,  be a partition of [ i c I 2 .  Let 

where 
A = ( a  < ic: Xa E U } ,  

X ,  = { p  < IC: a < p and (a, p )  E W,]. 
Assuming that A E U, we construct H E IC of cardinality ic such that 
[HIz  E W,. (Similarly, if ic-A E U, one gets H such that [HI2 c W,  .) 
Let h, be the least element of A ,  let h, be the least element h > h, such that 
h E A n X,,, and in general, let h be the least h > all h,, p < a, such that 

Since U is k--complete and k- is regular, ha is defined for every a < IC and it is 
easy to verify that [HI2 c W,.  
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Now we introduce a generalization of the partition properties considered 
above. Let A be a set of ordinals and let a be an ordinal. The set [A]" 
consists of increasing a-sequences {a,, a,, ..., at, ...}t..a of elements of A .  
If K ,  2 are alephs and a an ordinal, then the symbol 

(12.6) IC + (A>., 
means that whenever [ K I Q  = W, u W,  is a partition of [K]"  into two parts, 
then there exists a subset H E K such that IHI = A and H i s  homogeneous, 
i.e., 

[H]" c W, or [HIQ E W,. 
If a 3 o, then the partition property (12.6) contradicts the Axiom of 
Choice: 

LEMMA 12.1 1. For any K ,  K + (KO)" contradicts the Axiom of Choice. 

PROOF. If s, t are two increasing a-sequences of ordinals less than IC, 

we let s - t just in case s and t differ in a finite number of terms. The 
relation s - t is an equivalence relation, and using the Axiom of Choice, 
we choose a representative ~ ( s )  in each equivalence class. Then we define 
a partition of [K]" as follows: we let s E W, just in case s differs from b(s) 
in an even number of terms. We leave it to the reader to verify that this 
partition has no infinite homogeneous set. 

Without the Axiom of Choice, the situation is somewhat different. On 
the one hand, it is known that K O  + (KO)" is consistent (relative to an 
inaccessible cardinal, see Problem 5). On the other hand, the stronger 
infinitary partition properties are known to be very strong and their con- 
sistency is an open problem. In particular, there is a relation between these 
properties and measurable cardinals. As an example, we present the 
following theorem: 

THEOREM 12.12. (a). If K ,  3 (XI)", then every subset of o1 either contains 
or is disjoint from a closed unbounded subset of 0,. 

(b). If K ,  4 (K1)"+", then the jilter generated by  closed unbounded 
subsets of w1 is a normal measure on ol. 
PROOF. (a). Let A be a subset of 0,. We define a partition of [o,]" as 
follows: p E [o,]" belongs to W, just in case limp E A .  Let H E w1 be an 
uncountable homogeneous set. We let C be the set of all limit points of H, 
i.e., the set of all a such that a = sup ( H  n a) (a  need not be in H ) .  The set 
C is obviously closed and unbounded. Now it is clear that if [HI" s W,, 
then C E A ,  and if [HI" E W1, then C E o1 - A .  
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(b). Let D be the family of all subsets of w1 that contain a closed un- 
bounded subset. By (a), D is an ultrafilter. To show that D is a normal 
measure, we have to show that: 

(12.7) 

(12.8) D is normal. 
The property (12.7) presents some difficulties and we postpone it for a 
while. Assuming (12.7), it suffices to prove (12.9) to get (12.8): 
(12.9) iff: w1 -, w1 is regressive, then there is a closed unbounded set 

C and S < o, such thatf(a) < 6 for all a E C.  
(Once we have (12.7), one of the sets { a : f ( a )  = y } ,  y < 6 ,  must have 
measure 1.) 

To show (12.9), assume K, + (XI)", and let f be regressive. For every 
p E [o,]", let po be the first term of p = (Po, p1 , ...}. We define a partition 
of [o,]" as follows: p E Wo just in casef(1imp) < po. Let H be a homo- 
geneous set. First we claim that [HI" E Wo. For if [HI" E W ,  , then let 
p = {po,pl,  ...} E H. Sincefis regressive, we havef(1imp) < p, for some 
n, and if we let q = (p,,,pn+, , ...}, we have q E [HI" andf(1im q)  6 qo. 
Thus [HI" E W,, so that f(1imp) < po for every p E [HI". Let 6 be the 
least element of H and let C be the set of all limit points of H. C is closed 
unbounded andf(a) < 8 for every a E C. 

To show (12.7), we consider the following partition property: The symbol 

m 

if X,, E D for each n, then n X,, E D, 
n = O  

K l  + ( 4 ) $ N o ,  

means that whenever F [o,]" + "2 is a partition of [wl]" into 2'O pieces, 
then there exists a set H E w1 such that IHI = K, and F(p) = P ( q )  for 

LEMMA 12.13. If K, + (K,)"+", then 8 ,  + (Nl);xo. 

PROOF Let F: [w,]" + "2 be a partition of [o,]" into 2'O pieces; we will 
use the property N, --f [Xl]"+" to find a homogeneous set for F. We define 
a partition of [o,]"+" into two pieces Wo and W,  as follows: If p-q is an 
(o +o)-sequence, we let p-q E Wo just in case F(p) = F(q).  Let H be a 
homogeneous set for this partition. We claim that [H]"+" G Wo. Other- 
wise, F ( p )  # F(q)  whenever p c q  E H ;  then break H into K, w-sequences 
pa, a < wl, such thatp,^paE [HI"'" whenever a < p. We have F(p,)  # F(pa) 
whenever a # p and consequently, N, 6 2'O.  This is impossible by Lemma 
12.9 since N, is weakly compact. 

any P, 4 E [HI". 
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Thus P(p) = F ( q )  whenever p-q E [HI"'". Now, if p and p' are both in 
[HI", then we easily find q such that both p-q and p'-q are in [HIm+" and 
we have F(p) = F ( q )  = F(p'). Hence H is homogeneous for F. 

To finish the proof of Theorem 12.12, we use the partition property 
N, --f (N,)";'X, to prove (12.7). Let X,, n E w ,  be subsets of w l ,  each con- 
taining a closed unbounded subset. Let X = () {X,: n E w}.  We define a 
partition F: [w,]" --f O2 as follows: We let F ( p )  = t ,  t = { t , } ~ = ,  E "2, 
where t,, = 0 just in case limp E A, .  Let H E  w1 be homogeneous, ]HI = N, . 
We claim that if p E [HI", then F(p) = (0, 0, ...}. This is because for each 
n E w, there exists p E [HI" such that limp E A, .  (To see this, let C, be a 
closed unbounded subset of A and take any p E [HI whose limit is in C,,.) 
Now let C be the set of all limit points of H. It follows that C E A ,  for each 
n and so A has a closed unbounded subset. 

12.3. The Axiom of Determinateness 

With each subset A of Ow we associate the following game G,: Players 
I and I1 successively choose natural numbers: 

I: a, a,  a2 ... , 
11: b, b,  b, ..., 

and if the resulting sequence {u,, b,, a , ,  bl , ...} is in A ,  then I wins; 
otherwise I1 wins. A strategy c for the player I is a function defined on finite 
sequences of numbers with values in w. A strategy c is a winning strategy 
for I in GA, if whenever I plays according to 6, i.e. a, = a(b,,  ..., b, . - l ) ,  
then I wins, regardless of what I1 plays. Similarly, we can define a winning 
strategy for the player II. The game G, is determined if one of the players 
has a winning strategy. 
AXIOM OF DETERMINATENESS. For every A E Ow, the game GA is determined. 

In this section, we are going to give a brief outline of some recent results 
concerning the Axiom of Determinateness. To start with, we show that the 
Axiom of Determinateness contradicts the Axiom of Choice. 
THEOREM 12.14. If the set of all real numbers can be well-ordered, then 
there exists A E "w such that GA is not determined. 
PROOF. Let N, be an aleph such that 2'O = N,. By transfinite recursion, 
we construct sets Xa,Ya E "w, a < N,, such that: 

(i) X ,  E X ,  c ... c X, G ..., Yo E Yl -c ... c Y, s ...; 
(ii) Ixal G IaI, IYaI Q IaI; 
(iii) Xa n Ya = 0; 
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with the intention that A = U,<X, X ,  is undetermined. Since the number of 
strategies is 2'O, let Q,, a < X,, be an enumeration of all strategies. Let 
a < N,, and assume that we have defined X,, Y, for all p < a. If tl is a limit 
ordinal, then we let X ,  = u S < , X s ,  Y,  = U,<,Y,. If tl = B+1, we con- 
struct X,, ,  and y, , ,  as follows: The set of all sequences o,[b]  = 
{a , ,  b,, a , ,  b , ,  ...} which result from a game where the player I uses the 
strategy Q, and the player 11 plays b,,  b , ,  ... arbitrarily, has cardinality 
2'O (the number of all possible sequences {b, ,  b , ,  ...} of the moves of the 
player 11). Thus there exists b E "'0 such that a,[b] # X,; we pick the least such 
b (in the well-ordering of "0) and let Y,+ , = Y, u {a , [b ] } .  Similarly, there 
exists a E "'0 such that [alas 4 Y,+ , , where [alas is the game resulting 
from I playing a and I1 playing by Q,. We pick the least such a and let 

Finally, when we let A = U a < N , X a ,  we get an undetermined game GA: 
each strategy Q is one of the 0,'s and it follows from the construction that 
a, is not a winning strategy for either of the players in the game G A .  

X,,, = X ,  u {[aIQpl. 

Some choice is possible even with the Axiom of Determinateness. Actually, 
the axiom implies a weak version of the Axiom of Choice: 

LEMMA 12.15. The Axiom of Determinateness implies that every countable 
family of nonempty sets of real numbers has a choice function. 

PROOF. We prove that if 3 = { X ,  , X ,  , . . .} is a countable family of non- 
empty subsets of "'0, then X has a choice function. I f1  plays a = {a , ,  a , ,  ...} 
and II plays b = {b, ,  b , ,  ...}, then we let I1 win just in case b E Xa0. The 
player I does not have a winning strategy in this game because once I plays 
a,,  the player I1 can easily play b such that b E X,, . Hence I1 has a winning 
strategy Q, and we define a choice function f on 9" by letting f ( X , )  be the 
play b of I1 using cr against I playing {n, 0, 0, 0, ...}. 

This weak version of the Axiom of Choice has two consequences, which 
are of some interest now. One is that w,  is a regular cardinal, and the other 
is that Lebesgue measure is countably additive. We mentioned both these 
consequences in Section 2.4. 

One of the remarkable consequences of the Axiom of Determinateness 
is the following theorem: 

THEOREM 12.16. The Axiom of Determinateness implies that every set of 
real numbers is Lebesgue measurable. 
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PROOF. A nonmeasurable set has different inner and outer measures. In 
fact, given a nonmeasurable set, one can construct a subset of the interval 
[0, 11 with inner measure 0 and outer measure 1. Thus to show that every 
set is measurable, it suffices to show that for every X E [0, I] ,  either X 
contains a subset U of positive measure, or Xis disjoint from a set U c [0, I ]  
of positive measure. 

Let X c [0, 11. We describe a game which can be coded as a game of 
the type considered above and thus is determined. Let ro ,  r , ,  r2 ... be a 
sequence of positive real numbers such that 

m 

(12.10) 3 > ro > r l  > r2 > ..., C r j  c 00. 
j = O  

Players I and I1 successively choose closed subsets So, S,, S 2 ,  ..., of 
[0, I ]  such that: 

(i) So 2 S, 3 S2 2 ...; 
(ii) S, is a union of finitely many closed intervals with rational endpoints; 
(iii) the diameter of S, is < (4)”; 
(iv) the measure of S, is exactly ro . r ,  * ... * r,. 

The result of this game is a sequence {So, S,, ...} converging to a single 
point p .  The player I wins if p E X, otherwise, I1 wins. 

The game is determined. We show that if I has a winning strategy, then X 
contains a subset of positive measure; similarly, if 11 has a winning strategy, 
[0, 1 ] - X has a subset of positive measure. 

Let 0 be a winning strategy for the player I. Let n be an odd number, 
and let S be some move of the player I at the stage n - 1. We claim that there 
is a finite family (T, , . . ., Tk} of subsets of S (and satisfying (ii)-(iv)) such 
that if S,, . . ., S, are such that each Si is the (n+ I)’h move of I after Ti 
being the nth move of 11, then S, , . . ., sk are pairwise disjoint and the measure 
of S, u ... u S, is at least 1 -2rn+ I times the measure of S (which is 
ro * ... r , - , ) .  The sets T,, ..., Tk can easily be constructed by recursion. 
Let S ,  , . . ., S, be the corresponding (n+ moves of I and we denote 

Now we construct for each n a disjoint family @zn of closed sets as 
follows: Let a0 = {S}, where S is the initial move of I by the strategy Q. 

If 4?12, is defined, let %2,+2 = u {@s: S E GV2,}. Let 

{S,, ..., Sk} = as. 

(12.11) 

(12.12) u = () u,. 

u2, = u { S :  s E @2,), 

and let 
W 

n = 0  
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If S E '4!lZn, then S is the 2dh move of the player I in some game in which I 
plays according to 0. Thus if p E U, p is a result of such a game, and so 
p EX. Hence U c X .  We will show that U has a positive measure. It is 
easy to verify that because of the way @,,, was constructed, the measure of 
each U,, is at least 

(12.13) ro * ( 1  -2r2)  * ... - ( 1  -2r2,,). 

By (12.1), the sequence (12.13) converges to a positive number, the measure 
of u. 

We conclude this chapter by presenting the following theorems which 
suggest a relationship between the Axiom of Determinateness and large- 
cardinal axioms. 

THEOREM 12.17. The Axiom of Determinateness implies that E 3 ,  is a measur- 
able cardinal. 

PROOF. The present proof is based on the theory of Turing degrees of func- 
tions from w to w, a subject belonging to recursion theory, and we will not 
attempt to go deeply into it but rather state some facts about degrees 
which we will use. 

The basic notion is a relation ' x  is computable from y ' ,  for any x, y E Ow. 
This relation is reflexive and transitive, and so one can define an equivalence 
by letting x and y have the same degree if x is computable from y and y is 
computable from x.  The degrees are the equivalence classes. If d, e are 
degrees, then we let d < e just in case any x E d is computable from any 
y E e. The basic facts about degrees which we will use are the following: 

(i). For every x E '"w, there are at most countably many y E '"w comput- 
able from x. 

(ii). If {x,, , xl, . .., x, , ...> is a countable subset of Ow, then there exists 
x E '"0 such that every x,, is computable from x. 

(iii). For every X E ~ W ,  there exists Y E O O  such that x is computable 
from y but y is not computable from x.  The property (i) holds because 
there are only countably many algorithms to use in the computation. The 
property (ii) holds because there exists a one-to-one correspondence 
between w and w x w, and so one can construct a single sequence x E Ow 
which codes the countable sequence of sequences {xo, x1 , ...> c '"w. The 
property (iii) is proved by a diagonal argument similar to Cantor's proof 
of the uncountability of the reals. 
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LEMMA 12.18. The Axiom of Determinateness implies that if A is a set of 
degrees, then there exists a degree d such that either every e k d is in A or 
every e 2 d is in the complement of A .  

PROOF. Let A’ be the set of all x E whose degree is in A .  Let G, be the 
corresponding game. We claim that if I has a winning strategy, then there 
exists a degree d such that every e 2 d is in A ;  similarly if I1 has a winning 
strategy. 

Let rs be a winning strategy for I. Since rs is a function from sequences of 
numbers into numbers, we may consider rs an element of (under a 
one-to-one correspondence of finite sequences of numbers with 0). Let d 
be the degree of a. Let e k d; to show that e E A ,  it is sufficient to produce 
a game { a o ,  b, , a , ,  b, , . . .}, whose degree is in A and which is won by the 
player I. Let b E be such that the degree of b is e. The game a[b] in 
which I1 plays b and I plays by 6, is a win for I, and has degree e. This is 
because b is computable from o[b] and a[b]  is computable from b and a, 
but since e 2 d,  rs is computable from b and so a[b] is computable from b. 

Using Lemma 12.18, we can define a countably complete ultrafilter U ,  
over the set D of all degrees. If A E D ,  we let A E U ,  just in case there is 
some d E A such that every e 2 d is in A .  For every A E D ,  either A or 
D - A is in U ,  . If {A,: n E o} is a countable family of subsets of D, and if 
A,  E U ,  for each n, then A = n:=oA, is in U ,  . This is because by Lemma 
12.15, we can choose for each n some x,  such that the degree of x,  is in A, .  
Then by property (ii), there exists x such that each x,  is computable from x .  
If we let d be the degree of x ,  it follows that every e k d is in each A,  and 
so A E U,. 

Now we use the fact that there exists a mapping G of Ow onto w, and 
we define a mapping of D into o, as follows: 
(12.14) 

By property (i), F ( d )  is a supremum of a countable set of countable ordinals, 
and since N, is regular (by Lemma 12.15), F(d)  is a countable ordinal. The 
range of F is an unbounded subset of 0,. 

(12.15) X E U if and only if F - , ( X )  E U ,  

for every X E 0,. It is easy to verify that U is a countably complete ultra- 
filter. To show that U is nontrivial, it suffices to show that for each a, 

( I  2.16) { d  E D :  F ( d )  2 LX} E U ,  . 

F(d)  = sup {G(x) :  the degree of x 6 d } .  

Finally, we define an ultrafilter on w1 as follows: 
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To prove (12.16), let x E Ow be such that G ( x )  = a. By the definition of 
U ,  , the set of all d such that d 2 the degree of x is in UI  . By the definition 
of F, F(d) 2 a whenever d 2 the degree of x. This proves (12.16). 

The last two theorems are stated here without proof. The methods used 
in the proof are somewhat outside the scope of this book. Notice that 
Theorem 12.20 implies both Theorems 12.17 and 12.19 by the results of 
Section 12.2. 

THEOREM 12.19. The Axiom of Determinateness implies that every subset 
of w1 either contains or is disjoint from a closed unbounded subset of wl. 

THEOREM 12.20. The Axiom of Determinateness implies K, + 

12.4. Problems 

*l. If there is a measurable cardinal, then there is a transitive model of 
ZF + AC which has a measurable cardinal. 

[Hint: See Problem 3.13. For any set A,  L [ A ]  is a model of ZF+AC, 
and L [ A ]  = L[Z], where A = A n L [ A ]  and A E L [ A ] .  If U is a nontrivial 
rc-complete ultrafilter over JC, then D is a nontrivial rc-complete ultrafilter 
over IC in L [ U ] . ]  

2. Assume the Principle of Dependent Choices. If IC is a measurable cardinal, 
then K has a normal measure. 

[Hint: Let U be a nontrivial Ic-complete ultrafilter over JC. For f, g E lClc 

let f - g if {a :  f ( a )  = f(a)} E U and f < g if {a:f(a) < g(a)} E U. The 
relation - is an equivalence, and < is a linear ordering of the equivalence 
classes. Since U is closed under countable intersections, there is no des- 
cending o-sequence f o  > f, > f i  > .... By the Principle of Dependent 
Choices, < is a well-ordering. Let f be the least function such that f > cy 
for each y ,  where c,(a) = y for all a. Let X E D  just in case f-l(X) E U. 
Verify that D is a normal measure.] 

**3. If there is a weakly compact cardinal in the ground model, then there 
is a symmetric extension in which N, is weakly compact. 

**4. If JC is weakly compact, then JC is weakly compact in the constructible 
universe L. 

* *5 .  If there is an inaccessible cardinal in the ground model, then there is 
a symmetric extension which satisfies No +. (No)". (In fact, this is true in 
the model of Theorem 10.10.) 
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***6. Show that the Axiom of Determinateness implies No + (No)". 

Prove the consistency relative to some large cardinal axioms: 

***7. For every A E ol, either A or o1 - A  has a closed unbounded subset. 

***s. N, + (K,)". 

***9. K, -+ (N1)0'. 

***lo. The Axiom of Determinateness. 

12.5. Historical remarks 

Measurable cardinals were introduced by Ulam [1930], who proved 
that a measurable cardinal is inaccessible. The notion of a normal measure 
and its construction (Problem 2) is due to Scott [1961]. The construction 
in Problem 1 is due to Levy. Theorem 12.1 and the result in Problem 3 are 
in Jech [1968b]. For the results on closed unbounded sets see Fodor [I9661 
and Solovay [1967a]. Concerning the partition properties, see Erdos and 
Hajnal [I9621 (Theorem 12.10), and Erdos and Rado [1956]. The result in 
Problem 4 is due to Scott. Theorem 12.12 was proved by Kleinberg [1970]. 
The result in Problem 5 is due to Mathias [1968]. The formulation and 
basic consequences of the Axiom of Determinateness can be found in 
Mycielski [1964b]. Theorem 12.16 was proved by Mycielski and Swiercz- 
kowski [1964]. Theorems 12.17 and 12.19 are due to Solovay [1967b]; 
the present proof of Theorem 12.17 is due to Martin [1968]. Theorem 12.20 
was proved by Martin. 
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A.l. Equivalents of the Axiom of Choice 

Well-ordering Principle 
Zorn’s Lemma 
Tu key’s Lemma 
Tychonoffs Theorem 

Weak Tychonoffs Theorem 
Prime Ideal Theorem for Lattices 
P 2  = P  
p L q 2 + p =  9 

A.2. Equivalents of the Prime ldeal Theorem 

Ultrafilter Theorem 
Consistency Principle 
Compactness Theorem 
Stone Representation Theorem 
Tychonoffs Theorem for H-spaces 
Compactness of the generalized Cantor space 
p3 

A.3. Various independence results 

Independence of the Axiom of Choice 
Independence of C2 
Prime Ideal Theorem f ,  Axiom of Choice 

Selection Principle -++ Axiom of Choice 
183 

Section 2.1 
Section 2.1 
Section 2.1 
Section 2.2, 

Problem 2.8 
Problem 2.9 
Problem 2.10 
Section 11.3 
Section 11.3 

Section 2.3 
Section 2.3 
Section 2.3 
Problem 2.12 
Problem 2.14 
Problem 2.17 
Problem 2.24 

Sections 4.3, 5.3 
Sections 4.4, 5.4 
Section 7.1, 

Problem 7.6 
Problem 5.21 
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Ordering Principle f ,  Axiom of Choice 
Ordering Principle f ,  Prime Ideal Theorem 

Ordering Principle f ,  Selection Principle 

Selection Principle f ,  Prime Ideal Theorem 
Prime Ideal Theorem f ,  Selection Principle 
AC for well-ordered sets (ACW) f ,  Axiom of Choice 

ACW f ,  Ordering Principle 
Ordering Principle f ,  Order Extension Principle 

Order Extension Principle f ,  Prime Ideal Theorem 
Ordering Principle f ,  ACW 
C, + AC for Finite Sets 

Sections 4.5, 5.5 
Section 7.2, 

Problem 7.8 
Problem 4.13, 

Problem 6.11 
Problem 7.8 
Problem 7.6 
Problem 4.14, 

Section 7.3 
Section 7.2, 

Problem 5.27 
Problem 7.12 
Section 7.4 

Problem 5.22 

Problem 7.8 

ACW 
ir Prime Ideal Theorem., .1 

AC Ordering Principle + AC for Finite Sets -+ C2 
Selection Principle ir 

L 

Independence of W,, Problem 4.4, 

Principle of Dependent Choices (DC) f ,  Axiom 

DC,, f ,  (Vlc)AC, Section 8.2 
(VK)AC, f ,  DC,, Section 8.2 
AC,,+ DC Section 8.2 
w,,+ AC,, Section 8.2 

Problem 5. I8 

of Choice Problem 5.26 

,(V4ACK 
AC DC -+ Countable Axiom of Choice (AC,,) + W,, 

L ir DC,, 

Hahn-Banach Theorem f ,  Prime Ideal Theorem 
Weak Ultrafilter Theorem f ,  Prime Ideal Theorem 

Problem 7.25 
Problem 8.5 
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A.4. Miscellaneous examples 

Dedekind-finite set 

Amorphous set 

o-tree with no infinite chains and antichains 
Vector space without a basis 

Free group with a subgroup that is not free 
Field without an algebraic closure 
No nontrivial ultrafilter over w 
w1 is singular 
The reals as a union of No countable sets 
o 1  is measurable 

Problem 4.4, 

Problem 4.7, 

Problem 7. I5 
Section 10.2, 

Problem 5.18 

Problem 6.5 

Problem 6.10, 
Problem 6.16 

Section 10.2 
Section 10.2 
Problem 5.24 
Section 10.1 
Section 10.1 
Section 12.1 
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