
6.252 NONLINEAR PROGRAMMING

LECTURE 11

CONSTRAINED OPTIMIZATION;

LAGRANGE MULTIPLIERS

LECTURE OUTLINE

• Equality Constrained Problems

• Basic Lagrange Multiplier Theorem

• Proof 1: Elimination Approach

• Proof 2: Penalty Approach

Equality constrained problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . , m.

where f : �n �→ �, hi : �n �→ �, i = 1, . . . , m, are con-
tinuously differentiable functions. (Theory also
applies to case where f and hi are cont. differ-
entiable in a neighborhood of a local minimum.)



LAGRANGE MULTIPLIER THEOREM

• Let x∗ be a local min and a regular point [∇hi(x
∗):

linearly independent]. Then there exist unique
scalars λ∗

1, . . . , λ∗
m such that

∇f(x∗) +

m∑
i=1

λ∗
i ∇hi(x

∗) = 0.

If in addition f and h are twice cont. differentiable,

y′

(
∇2f(x∗) +

m∑
i=1

λ∗
i ∇2hi(x

∗)

)
y ≥ 0, ∀ y s.t. ∇h(x∗)′y = 0

x1

x2

x* = (-1,-1)

∇h(x*) = (-2,-2)

∇f(x*) = (1,1) 0

2

2

h(x) = 0

minimize x1 + x2

subject to x2
1 + x2

2 = 2.

The Lagrange multiplier is

λ = 1/2.

x1

x2

∇f(x*) = (1,1)
∇h1(x*) = (-2,0)

∇h2(x*) = (-4,0)

h1(x) = 0

h2(x) = 0
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minimize x1 + x2

s. t. (x1 − 1)2 + x2
2 − 1 = 0

(x1 − 2)2 + x2
2 − 4 = 0



PROOF VIA ELIMINATION APPROACH

• Consider the linear constraints case
minimize f(x)

subject to Ax = b

where A is an m × n matrix with linearly indepen-
dent rows and b ∈ �m is a given vector.

• Partition A = ( B R ) , where B is m×m invertible,
and x = ( xB xR )′. Equivalent problem:

minimize F (xR) ≡ f
(
B−1(b − RxR), xR

)
subject to xR ∈ �n−m.

• Unconstrained optimality condition:

0 = ∇F (x∗
R) = −R′(B′)−1∇Bf(x∗) + ∇Rf(x∗) (1)

By defining
λ∗ = −(B′)−1∇Bf(x∗),

we have ∇Bf(x∗)+B′λ∗ = 0, while Eq. (1) is written
∇Rf(x∗) + R′λ∗ = 0. Combining:

∇f(x∗) + A′λ∗ = 0



ELIMINATION APPROACH - CONTINUED

• Second order condition: For all d ∈ �n−m

0 ≤ d′∇2F (x∗
R)d = d′∇2

(
f
(
B−1(b − RxR), xR

))
d. (2)

• After calculation we obtain

∇2F (x∗
R) = R′(B′)−1∇2

BBf(x∗)B−1R

− R′(B′)−1∇2
BRf(x∗) −∇2

RBf(x∗)B−1R + ∇2
RRf(x∗).

• Eq. (2) and the linearity of the constraints [im-
plying that ∇2hi(x

∗) = 0], yields for all d ∈ �n−m

0 ≤ d′∇2F (x∗
R)d = y′∇2f(x∗)y

= y′

(
∇2f(x∗) +

m∑
i=1

λ∗
i ∇2hi(x

∗)

)
y,

where y = ( yB yR )′ = (−B−1Rd d )′ .

• y has this form iff

0 = ByB + RyR = ∇h(x∗)′y.



PROOF VIA PENALTY APPROACH

• Introduce, for k = 1, 2, . . ., the cost function

F k(x) = f(x) +
k

2
||h(x)||2 +

α

2
||x − x∗||2,

where α > 0 and x∗ is a local minimum.

• Let ε > 0 be such that f(x∗) ≤ f(x) for all feasible
x in the closed sphere S =

{
x | ||x − x∗|| ≤ ε

}
, and let

xk = arg minx∈S F k(x). Have

F k(xk) = f(xk)+
k

2
||h(xk)||2+

α

2
||xk−x∗||2 ≤ F k(x∗) = f(x∗)

Hence, limk→∞ ||h(xk)|| = 0, so for every limit point
x of {xk}, h(x) = 0.

• Furthermore, f(xk) + (α/2)||xk − x∗||2 ≤ f(x∗) for
all k, so by taking lim,

f(x) +
α

2
||x − x∗||2 ≤ f(x∗).

Combine with f(x∗) ≤ f(x) [since x ∈ S and h(x) = 0]
to obtain ||x−x∗|| = 0 so that x = x∗. Thus {xk} → x∗.



PENALTY APPROACH - CONTINUED

• Since xk → x∗, for large k, xk is interior to S, and
is an unconstrained local minimum of F k(x).

• From 1st order necessary condition,

0 = ∇F k(xk) = ∇f(xk)+k∇h(xk)h(xk)+α(xk−x∗). (3)

Since ∇h(x∗) has rank m, ∇h(xk) also has rank
m for large k, so ∇h(xk)′∇h(xk): invertible. Thus,
multiplying Eq. (3) w/ ∇h(xk)′

kh(xk) = −
(
∇h(xk)′∇h(xk)

)−1
∇h(xk)′

(
∇f(xk)+α(xk−x∗)

)
.

Taking limit as k → ∞ and xk → x∗,

{
kh(xk)

}
→ −

(
∇h(x∗)′∇h(x∗)

)−1∇h(x∗)′∇f(x∗) ≡ λ∗.

Taking limit as k → ∞ in Eq. (3), we obtain

∇f(x∗) + ∇h(x∗)λ∗ = 0.

• 2nd order L-multiplier condition: Use 2nd order
unconstrained condition for xk, and algebra.



LAGRANGIAN FUNCTION

• Define the Lagrangian function

L(x, λ) = f(x) +

m∑
i=1

λihi(x).

Then, if x∗ is a local minimum which is regular, the
Lagrange multiplier conditions are written

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

System of n + m equations with n + m unknowns.

y′∇2
xxL(x∗, λ∗)y ≥ 0, ∀ y s.t. ∇h(x∗)′y = 0.

• Example
minimize 1

2

(
x2
1 + x2

2 + x2
3

)
subject to x1 + x2 + x3 = 3.

Necessary conditions

x∗
1 + λ∗ = 0, x∗

2 + λ∗ = 0,

x∗
3 + λ∗ = 0, x∗

1 + x∗
2 + x∗

3 = 3.



EXAMPLE - PORTFOLIO SELECTION

• Investment of 1 unit of wealth among n assets
with random rates of return ei, and given means
ei, and covariance matrix Q =

[
E{(ei −ei)(ej −ej)}

]
.

• If xi: amount invested in asset i, we want to

minimize x′Qx

(
= Variance of return

∑
i

eixi

)

subject to
∑

i
xi = 1, and a given mean

∑
i

eixi = m

• Let λ1 and λ2 be the L-multipliers. Have 2Qx∗ +

λ1u+λ2e = 0, where u = (1, . . . , 1)′ and e = (e1, . . . , en)′.
This yields

x∗ = mv+w, Variance of return = σ2 = (αm+β)2+γ,

where v and w are vectors, and α, β, and γ are
some scalars that depend on Q and e.

m

σ

ef
-

Efficient Frontier σ = αm + β

For given m the optimal σ

lies on a line (called “effi-

cient frontier”).


