6.252 NONLINEAR PROGRAMMING

LECTURE 11

CONSTRAINED OPTIMIZATION;

LAGRANGE MULTIPLIERS

LECTURE OUTLINE

- Equality Constrained Problems
- Basic Lagrange Multiplier Theorem
- Proof 1: Elimination Approach
- Proof 2: Penalty Approach

Equality constrained problem

minimize f(x)subject to $h_i(x) = 0, \quad i = 1, ..., m.$

where $f: \Re^n \mapsto \Re$, $h_i: \Re^n \mapsto \Re$, i = 1, ..., m, are continuously differentiable functions. (Theory also applies to case where f and h_i are cont. differentiable in a neighborhood of a local minimum.)

LAGRANGE MULTIPLIER THEOREM

• Let x^* be a local min and a regular point [$\nabla h_i(x^*)$: linearly independent]. Then there exist unique scalars $\lambda_1^*, \ldots, \lambda_m^*$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

If in addition f and h are twice cont. differentiable,

PROOF VIA ELIMINATION APPROACH

Consider the linear constraints case

minimize f(x)

subject to Ax = b

where A is an $m \times n$ matrix with linearly independent rows and $b \in \Re^m$ is a given vector.

• Partition $A = \begin{pmatrix} B & R \end{pmatrix}$, where B is $m \times m$ invertible, and $x = \begin{pmatrix} x_B & x_R \end{pmatrix}'$. Equivalent problem:

minimize $F(x_R) \equiv f(B^{-1}(b - Rx_R), x_R)$ subject to $x_R \in \Re^{n-m}$.

• Unconstrained optimality condition:

$$0 = \nabla F(x_R^*) = -R'(B')^{-1} \nabla_B f(x^*) + \nabla_R f(x^*) \quad (1)$$

By defining

$$\lambda^* = -(B')^{-1} \nabla_B f(x^*),$$

we have $\nabla_B f(x^*) + B'\lambda^* = 0$, while Eq. (1) is written $\nabla_R f(x^*) + R'\lambda^* = 0$. Combining:

$$\nabla f(x^*) + A'\lambda^* = 0$$

ELIMINATION APPROACH - CONTINUED

• Second order condition: For all $d \in \Re^{n-m}$

$$0 \le d' \nabla^2 F(x_R^*) d = d' \nabla^2 \left(f \left(B^{-1}(b - Rx_R), x_R \right) \right) d. \quad (2)$$

• After calculation we obtain

$$\nabla^2 F(x_R^*) = R'(B')^{-1} \nabla^2_{BB} f(x^*) B^{-1} R$$

- R'(B')^{-1} \nabla^2_{BR} f(x^*) - \nabla^2_{RB} f(x^*) B^{-1} R + \nabla^2_{RR} f(x^*).

• Eq. (2) and the linearity of the constraints [implying that $\nabla^2 h_i(x^*) = 0$], yields for all $d \in \Re^{n-m}$

$$0 \le d' \nabla^2 F(x_R^*) d = y' \nabla^2 f(x^*) y$$
$$= y' \left(\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*) \right) y,$$

where $y = (y_B \ y_R)' = (-B^{-1}Rd \ d)'$.

• y has this form iff

$$0 = By_B + Ry_R = \nabla h(x^*)'y.$$

PROOF VIA PENALTY APPROACH

• Introduce, for k = 1, 2, ..., the cost function

$$F^{k}(x) = f(x) + \frac{k}{2} ||h(x)||^{2} + \frac{\alpha}{2} ||x - x^{*}||^{2},$$

where $\alpha > 0$ and x^* is a local minimum.

• Let $\epsilon > 0$ be such that $f(x^*) \le f(x)$ for all feasible x in the *closed* sphere $S = \{x \mid ||x - x^*|| \le \epsilon\}$, and let $x^k = \arg \min_{x \in S} F^k(x)$. Have

$$F^{k}(x^{k}) = f(x^{k}) + \frac{k}{2} ||h(x^{k})||^{2} + \frac{\alpha}{2} ||x^{k} - x^{*}||^{2} \le F^{k}(x^{*}) = f(x^{*})$$

Hence, $\lim_{k\to\infty} ||h(x^k)|| = 0$, so for every limit point \overline{x} of $\{x^k\}$, $h(\overline{x}) = 0$.

• Furthermore, $f(x^k) + (\alpha/2)||x^k - x^*||^2 \le f(x^*)$ for all k, so by taking lim,

$$f(\overline{x}) + \frac{\alpha}{2} ||\overline{x} - x^*||^2 \le f(x^*).$$

Combine with $f(x^*) \leq f(\overline{x})$ [since $\overline{x} \in S$ and $h(\overline{x}) = 0$] to obtain $||\overline{x}-x^*|| = 0$ so that $\overline{x} = x^*$. Thus $\{x^k\} \to x^*$.

PENALTY APPROACH - CONTINUED

- Since $x^k \to x^*$, for large k, x^k is interior to S, and is an *unconstrained* local minimum of $F^k(x)$.
- From 1st order necessary condition,

$$0 = \nabla F^{k}(x^{k}) = \nabla f(x^{k}) + k \nabla h(x^{k}) h(x^{k}) + \alpha(x^{k} - x^{*}).$$
(3)

Since $\nabla h(x^*)$ has rank m, $\nabla h(x^k)$ also has rank m for large k, so $\nabla h(x^k)' \nabla h(x^k)$: invertible. Thus, multiplying Eq. (3) w/ $\nabla h(x^k)'$

$$kh(x^k) = -\left(\nabla h(x^k)' \nabla h(x^k)\right)^{-1} \nabla h(x^k)' \left(\nabla f(x^k) + \alpha(x^k - x^*)\right).$$

Taking limit as $k \to \infty$ and $x^k \to x^*$,

$$\left\{kh(x^k)\right\} \to -\left(\nabla h(x^*)'\nabla h(x^*)\right)^{-1}\nabla h(x^*)'\nabla f(x^*) \equiv \lambda^*.$$

Taking limit as $k \to \infty$ in Eq. (3), we obtain

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0.$$

• 2nd order L-multiplier condition: Use 2nd order unconstrained condition for x^k , and algebra.

LAGRANGIAN FUNCTION

• Define the Lagrangian function

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x).$$

Then, if x^* is a local minimum which is regular, the Lagrange multiplier conditions are written

$$\nabla_x L(x^*, \lambda^*) = 0, \qquad \nabla_\lambda L(x^*, \lambda^*) = 0,$$

System of n + m equations with n + m unknowns.

$$y' \nabla_{xx}^2 L(x^*, \lambda^*) y \ge 0, \qquad \forall \ y \text{ s.t. } \nabla h(x^*)' y = 0.$$

- Example
 - minimize $\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$ subject to $x_1 + x_2 + x_3 = 3$.

Necessary conditions

$$x_1^* + \lambda^* = 0, \quad x_2^* + \lambda^* = 0,$$

 $x_3^* + \lambda^* = 0, \quad x_1^* + x_2^* + x_3^* = 3.$

EXAMPLE - PORTFOLIO SELECTION

• Investment of 1 unit of wealth among *n* assets with random rates of return e_i , and given means \overline{e}_i , and covariance matrix $Q = \left[E\{(e_i - \overline{e}_i)(e_j - \overline{e}_j)\} \right]$.

• If x_i : amount invested in asset *i*, we want to

minimize
$$x'Qx \left(= \text{Variance of return } \sum_{i} e_{i}x_{i} \right)$$

subject to $\sum_{i} x_{i} = 1$, and a given mean $\sum_{i} \overline{e}_{i}x_{i} = m$
• Let λ_{1} and λ_{2} be the L-multipliers. Have $2Qx^{*} + \lambda_{1}u + \lambda_{2}\overline{e} = 0$, where $u = (1, ..., 1)'$ and $\overline{e} = (\overline{e}_{1}, ..., \overline{e}_{n})'$.
This yields

 $x^* = mv + w$, Variance of return $= \sigma^2 = (\alpha m + \beta)^2 + \gamma$,

where v and w are vectors, and α , β , and γ are some scalars that depend on Q and \overline{e} .

For given m the optimal σ lies on a line (called "efficient frontier").