6.252 NONLINEAR PROGRAMMING

LECTURE 11

CONSTRAINED OPTIMIZATION;

LAGRANGE MULTIPLIERS

LECTURE OUTLINE

- Equality Constrained Problems
- Basic Lagrange Multiplier Theorem
- Proof 1: Elimination Approach
- Proof 2: Penalty Approach

Equality constrained problem

minimize $f(x)$
subject to $h_{i}(x)=0, \quad i=1, \ldots, m$.
where $f: \Re^{n} \mapsto \Re, h_{i}: \Re^{n} \mapsto \Re, i=1, \ldots, m$, are continuously differentiable functions. (Theory also applies to case where f and h_{i} are cont. differentiable in a neighborhood of a local minimum.)

LAGRANGE MULTIPLIER THEOREM

- Let x^{*} be a local min and a regular point [$\nabla h_{i}\left(x^{*}\right)$: linearly independent]. Then there exist unique scalars $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}$ such that

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0 .
$$

If in addition f and h are twice cont. differentiable,

PROOF VIA ELIMINATION APPROACH

- Consider the linear constraints case minimize $f(x)$ subject to $A x=b$
where A is an $m \times n$ matrix with linearly independent rows and $b \in \Re^{m}$ is a given vector.
- Partition $A=\left(\begin{array}{ll}B & R\end{array}\right)$, where B is $m \times m$ invertible, and $x=\left(\begin{array}{ll}x_{B} & x_{R}\end{array}\right)^{\prime}$. Equivalent problem:

$$
\text { minimize } F\left(x_{R}\right) \equiv f\left(B^{-1}\left(b-R x_{R}\right), x_{R}\right)
$$

subject to $x_{R} \in \Re^{n-m}$.

- Unconstrained optimality condition:

$$
\begin{equation*}
0=\nabla F\left(x_{R}^{*}\right)=-R^{\prime}\left(B^{\prime}\right)^{-1} \nabla_{B} f\left(x^{*}\right)+\nabla_{R} f\left(x^{*}\right) \tag{1}
\end{equation*}
$$

By defining

$$
\lambda^{*}=-\left(B^{\prime}\right)^{-1} \nabla_{B} f\left(x^{*}\right),
$$

we have $\nabla_{B} f\left(x^{*}\right)+B^{\prime} \lambda^{*}=0$, while Eq. (1) is written $\nabla_{R} f\left(x^{*}\right)+R^{\prime} \lambda^{*}=0$. Combining:

$$
\nabla f\left(x^{*}\right)+A^{\prime} \lambda^{*}=0
$$

ELIMINATION APPROACH - CONTINUED

- Second order condition: For all $d \in \Re^{n-m}$

$$
\begin{equation*}
0 \leq d^{\prime} \nabla^{2} F\left(x_{R}^{*}\right) d=d^{\prime} \nabla^{2}\left(f\left(B^{-1}\left(b-R x_{R}\right), x_{R}\right)\right) d . \tag{2}
\end{equation*}
$$

- After calculation we obtain

$$
\begin{aligned}
& \nabla^{2} F\left(x_{R}^{*}\right)=R^{\prime}\left(B^{\prime}\right)^{-1} \nabla_{B B}^{2} f\left(x^{*}\right) B^{-1} R \\
& -R^{\prime}\left(B^{\prime}\right)^{-1} \nabla_{B R}^{2} f\left(x^{*}\right)-\nabla_{R B}^{2} f\left(x^{*}\right) B^{-1} R+\nabla_{R R}^{2} f\left(x^{*}\right)
\end{aligned}
$$

- Eq. (2) and the linearity of the constraints [implying that $\nabla^{2} h_{i}\left(x^{*}\right)=0$], yields for all $d \in \Re^{n-m}$

$$
\begin{aligned}
0 & \leq d^{\prime} \nabla^{2} F\left(x_{R}^{*}\right) d=y^{\prime} \nabla^{2} f\left(x^{*}\right) y \\
& =y^{\prime}\left(\nabla^{2} f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(x^{*}\right)\right) y,
\end{aligned}
$$

where $y=\left(\begin{array}{ll}y_{B} & y_{R}\end{array}\right)^{\prime}=\left(\begin{array}{ll}-B^{-1} R d & d\end{array}\right)^{\prime}$.

- y has this form iff

$$
0=B y_{B}+R y_{R}=\nabla h\left(x^{*}\right)^{\prime} y .
$$

PROOF VIA PENALTY APPROACH

- Introduce, for $k=1,2, \ldots$, the cost function

$$
F^{k}(x)=f(x)+\frac{k}{2}\|h(x)\|^{2}+\frac{\alpha}{2}\left\|x-x^{*}\right\|^{2},
$$

where $\alpha>0$ and x^{*} is a local minimum.

- Let $\epsilon>0$ be such that $f\left(x^{*}\right) \leq f(x)$ for all feasible x in the closed sphere $S=\left\{x| |\left|x-x^{*}\right| \mid \leq \epsilon\right\}$, and let $x^{k}=\arg \min _{x \in S} F^{k}(x)$. Have
$F^{k}\left(x^{k}\right)=f\left(x^{k}\right)+\frac{k}{2}\left\|h\left(x^{k}\right)\right\|^{2}+\frac{\alpha}{2}\left\|x^{k}-x^{*}\right\|^{2} \leq F^{k}\left(x^{*}\right)=f\left(x^{*}\right)$
Hence, $\lim _{k \rightarrow \infty}\left\|h\left(x^{k}\right)\right\|=0$, so for every limit point \bar{x} of $\left\{x^{k}\right\}, h(\bar{x})=0$.
- Furthermore, $f\left(x^{k}\right)+(\alpha / 2)\left\|x^{k}-x^{*}\right\|^{2} \leq f\left(x^{*}\right)$ for all k, so by taking lim,

$$
f(\bar{x})+\frac{\alpha}{2}\left\|\bar{x}-x^{*}\right\|^{2} \leq f\left(x^{*}\right) .
$$

Combine with $f\left(x^{*}\right) \leq f(\bar{x})$ [since $\bar{x} \in S$ and $h(\bar{x})=0$] to obtain $\left\|\bar{x}-x^{*}\right\|=0$ So that $\bar{x}=x^{*}$. Thus $\left\{x^{k}\right\} \rightarrow x^{*}$.

PENALTY APPROACH - CONTINUED

- Since $x^{k} \rightarrow x^{*}$, for large k, x^{k} is interior to S, and is an unconstrained local minimum of $F^{k}(x)$.
- From 1st order necessary condition,

$$
\begin{equation*}
0=\nabla F^{k}\left(x^{k}\right)=\nabla f\left(x^{k}\right)+k \nabla h\left(x^{k}\right) h\left(x^{k}\right)+\alpha\left(x^{k}-x^{*}\right) . \tag{3}
\end{equation*}
$$

Since $\nabla h\left(x^{*}\right)$ has rank $m, \nabla h\left(x^{k}\right)$ also has rank m for large k, so $\nabla h\left(x^{k}\right)^{\prime} \nabla h\left(x^{k}\right)$: invertible. Thus, multiplying Eq. (3) w/ $\nabla h\left(x^{k}\right)^{\prime}$
$k h\left(x^{k}\right)=-\left(\nabla h\left(x^{k}\right)^{\prime} \nabla h\left(x^{k}\right)\right)^{-1} \nabla h\left(x^{k}\right)^{\prime}\left(\nabla f\left(x^{k}\right)+\alpha\left(x^{k}-x^{*}\right)\right)$.
Taking limit as $k \rightarrow \infty$ and $x^{k} \rightarrow x^{*}$,
$\left\{k h\left(x^{k}\right)\right\} \rightarrow-\left(\nabla h\left(x^{*}\right)^{\prime} \nabla h\left(x^{*}\right)\right)^{-1} \nabla h\left(x^{*}\right)^{\prime} \nabla f\left(x^{*}\right) \equiv \lambda^{*}$.
Taking limit as $k \rightarrow \infty$ in Eq. (3), we obtain

$$
\nabla f\left(x^{*}\right)+\nabla h\left(x^{*}\right) \lambda^{*}=0 .
$$

- 2nd order L-multiplier condition: Use 2nd order unconstrained condition for x^{k}, and algebra.

LAGRANGIAN FUNCTION

- Define the Lagrangian function

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x) .
$$

Then, if x^{*} is a local minimum which is regular, the Lagrange multiplier conditions are written

$$
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, \quad \nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0,
$$

System of $n+m$ equations with $n+m$ unknowns.

$$
y^{\prime} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) y \geq 0, \quad \forall y \text { s.t. } \nabla h\left(x^{*}\right)^{\prime} y=0 .
$$

- Example
minimize $\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$
subject to $x_{1}+x_{2}+x_{3}=3$.
Necessary conditions

$$
\begin{gathered}
x_{1}^{*}+\lambda^{*}=0, \quad x_{2}^{*}+\lambda^{*}=0, \\
x_{3}^{*}+\lambda^{*}=0, \quad x_{1}^{*}+x_{2}^{*}+x_{3}^{*}=3 .
\end{gathered}
$$

EXAMPLE - PORTFOLIO SELECTION

- Investment of 1 unit of wealth among n assets with random rates of return e_{i}, and given means \bar{e}_{i}, and covariance matrix $Q=\left[E\left\{\left(e_{i}-\bar{e}_{i}\right)\left(e_{j}-\bar{e}_{j}\right)\right\}\right]$.
- If x_{i} : amount invested in asset i, we want to
$\operatorname{minimize} x^{\prime} Q x\left(=\right.$ Variance of return $\left.\sum_{i} e_{i} x_{i}\right)$ subject to $\sum_{i} x_{i}=1$, and a given mean $\sum_{i} \bar{e}_{i} x_{i}=m$ - Let λ_{1} and λ_{2} be the L-multipliers. Have $2 Q x^{*}+$ $\lambda_{1} u+\lambda_{2} \bar{e}=0$, where $u=(1, \ldots, 1)^{\prime}$ and $\bar{e}=\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)^{\prime}$. This yields
$x^{*}=m v+w, \quad$ Variance of return $=\sigma^{2}=(\alpha m+\beta)^{2}+\gamma$,
where v and w are vectors, and α, β, and γ are some scalars that depend on Q and \bar{e}.

For given m the optimal σ lies on a line (called "efficient frontier").

