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Preface

This monograph is the outgrowth of research carried out at the Uni-
versity of Illinois over a three-year period beginning in the latter half of
1974. The objective of the monograph is to provide a unifying and
mathematically rigorous theory for a broad class of dynamic programming
and discrete-time stochastic optimal control problems. It is divided into
two parts, which can be read independently.

Part I provides an analysis of dynamic programming models in a
unified framework applicable to deterministic optimal control, stochastic
optimal control, minimax control, sequential games, and other areas. It
resolves the structural questions associated with such problems, i.e., it
provides results that draw their validity exclusively from the sequential
nature of the problem. Such results hold for models where measurability
of various objects is of no essential concern, for example, in deterministic
problems and stochastic problems defined over a countable probability
space. The starting point for the analysis is the mapping defining the
dynamic programming algorithm. A single abstract problem is formulated
in terms of this mapping and counterparts of nearly all results known for
deterministic optimal control problems are derived. A new stochastic
optimal control model based on outer integration is also introduced in this

xi



xii PREFACE

part. It is a broadly applicable model and requires no topological assump-
tions. We show that all the results of Part I hold for this model.

Part II resolves the measurability questions associated with stochastic
optimal control problems with perfect and imperfect state information.
These questions have been studied over the past fifteen years by several
researchers in statistics and control theory. As we explain in Chapter 1,
the approaches that have been used are either limited by restrictive
assumptions such as compactness and continuity or else they are not
sufficiently powerful to yield results that are as strong as their structural
counterparts. These deficiencies can be traced to the fact that the class of
policies considered is not sufficiently rich to ensure the existence of
everywhere optimal or e-optimal policies except under restrictive assump-
tions. In our work we have appropriately enlarged the space of admissible
policies to include universally measurable policies. This guarantees the
existence of e-optimal policies and allows, for the first time, the develop-
ment of a general and comprehensive theory which is as powerful as its
deterministic counterpart.

We mention, however, that the class of universally measurable policies
is not the smallest class of policies for which these results are valid. The
smallest such class is the class of limit measurable policies discussed in
Section 11.1. The o-algebra of limit measurable sets (or C-sets) is defined in
a constructive manner involving transfinite induction that, from a set
theoretic point of view, is more satisfying than the definition of the univer-
sal o-algebra. We believe, however, that the majority of readers will find
the universal o-algebra and the methods of proof associated with it more
understandable, and so we devote the main body of Part II to models with
universally measurable policies.

Parts I and II are related and complement each other. Part II makes
extensive use of the results of Part I. However, the special forms in which
these results are needed are also available in other sources (e.g., the
textbook by Bertsekas [B4]). Each time we make use of such a result, we
refer to both Part I and the Bertsekas textbook, so that Part II can be read
independently of Part I. The developments in Part II show also that
stochastic optimal control problems with measurability restrictions on the
admissible policies can be embedded within the framework of Part I, thus
demonstrating the broad scope of the formulation given there.

The monograph is intended for applied mathematicians, statisticians,
and mathematically oriented analysts in engineering, operations research,
and related fields. We have assumed throughout that the reader is familiar
with the basic notions of measure theory and topology. In other respects,
the monograph is self-contained. In particular, we have provided all
necessary background related to Borel spaces and analytic sets.
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Chapter 1

Introduction

1.1 Structure of Sequential Decision Models

Sequential decision models are mathematical abstractions of situations
in which decisions must be made in several stages while incurring a certain
cost at each stage. Each decision may influence the circumstances under
which future decisions will be made, so that if total cost is to be minimized,
one must balance his desire to minimize the cost of the present decision
against his desire to avoid future situations where high cost is inevitable.

A classical example of this situation, in which we treat profit as negative
cost, is portfolio management. An investor must balance his desire to achieve
immediate return, possibly in the form of dividends, against a desire to avoid
investments in areas where low long-run yield is probable. Other examples
can be drawn from inventory management, reservoir control, sequential
analysis, hypothesis testing, and, by discretizing a continuous problem,
from control of a large variety of physical systems subject to random dis-
turbances. For an extensive set of sequential decision models, see Bellman
[B1], Bertsekas [ B4], Dynkin and Juskevi¢ [ D8], Howard [H7], Wald [W2],
and the references contained therein.

Dynamic programming (DP for short) has served for many years as the
principal method for analysis of a large and diverse group of sequential
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2 1. INTRODUCTION

decision problems. Examples are deterministic and stochastic optimal con-
trol problems, Markov and semi-Markov decision problems, minimax con-
trol problems, and sequential games. While the nature of these problems
may vary widely, their underlying structures turn out to be very similar. In
all cases, the cost corresponding to a policy and the basic iteration of the
DP algorithm may be described by means of a certain mapping which differs
from one problem to another in details which to a large extent are inessential.
Typically, this mapping summarizes all the data of the problem and deter-
mines all quantities of interest to the analyst. Thus, in problems with a
finite number of stages, this mapping may be used to obtain the optimal
cost function for the problem as well as to compute an optimal or e-optimal
policy through a finite number of steps of the DP algorithm. In problems
with an infinite number of stages, one hopes that the sequence of functions
generated by successive application of the DP iteration converges in some
sense to the optimal cost function for the problem. Furthermore, all basic
results of an analytical and computational nature can be expressed in terms
of the underlying mapping defining the DP algorithm. Thus by taking this
mapping as a starting point one can provide powerful analytical results
which are applicable to a large collection of sequential decision problems.

To illustrate our viewpoint, let us consider formally a deterministic
optimal control problem. We have a discrete-time system described by the
system equation

X+ 1 = f(X, ), (1)

where x, and x,,, represent a state and its succeeding state and will be
assumed to belong to some state space S; u, represents a control variable
chosen by the decisionmaker in some constraint set U(x,), which is in turn
a subset of some control space C. The cost incurred at the kth stage is given
by a function g(x,,u,). We seek a finite sequence of control functions n =
(fostys - - - >un—1) (also referred to as a policy) which minimizes the total
cost over N stages. The functions w;, map S into C and must satisfy u,(x)e U(x)
for all xeS. Each function g, specifies the control u, = p,(x,) that will be
chosen when at the kth stage the state is x;.. Thus the total cost corresponding
to a policy @ = (uo, Uy, - - -, Uy— ;) and initial state x, is given by

N-1
In.w(X0) = Z glxi ()], 2
k=0
where the states x,,x,, ..., xy_, are generated from x, and = via the system
equation
Xk+1 =f[xk,ﬂk(xk)], k=0,,N-2 (3)

Corresponding to each initial state x, and policy 7, there is a sequence of
control variables ug,uy, . .., uy_, where u, = p,(x;) and x, is generated by
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(3). Thus an alternative formulation of the problem would be to select a
sequence of control variables minimizing ' ¥=¢ g(x,, u,) rather than a policy
© minimizing Jy .(x,). The formulation we have given here, however, is
more consistent with the DP framework we wish to adopt.

As is well known, the DP algorithm for the preceding problem is given by

Jo(x) =0, @
Jie1(x) = inf {g(x,u) + J,[f(x,u)]}, k=0,...,N—1, %)

ueU(x)
and the optimal cost J*(x,) for the problem is obtained at the Nth step, i..,
J*(xo) = InfJy, A(x0) = Jn(Xo).

One may also obtain the value Jy_.(x,) corresponding to any 7 = (g, s, - -,
Un—1) at the Nth step of the algorithm

Jo.x(x) =0, (6)
Jir1,2(%) = g[x’.uN—k-l(x)] + Jk.n[f(x,.uzv—k—l(x))]: k=0,...,N—1
(7)

Now it is possible to formulate the previous problem as well as to
describe the DP algorithm (4)-(5) by means of the mapping H given by

H(x,u,J) = g(x,u) + J[f(x,u)]. (8)
Let us define the mapping T by
T(J)x)= inf H(x,u,J) )

ueU(x)
and, for any function u:S — C, define the mapping T, by
T, (J)(x) = H[x, u(x), I ]. (10)

Both T and T, map the set of real-valued (or perhaps extended real-valued)
functions on § into itself. Then in view of (6)—(7), we may write the cost
functional Jy .(x,) of (2) as

JN.n(xo) = (TuoTu‘ e TuN_l)(JO)(x0)7 (11)

where J, is the zero function on S [J,(x) = 0 Vxe S] and (TyoTy - Tun))
denotes the composition of the mappings T, Tyu,-..,T,,_,. Similarly the
DP algorithm (4)—(5) may be described by

Jeo1(0)=TUJ)(x), k=0,...,N—1, (12)
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and we have

infJy, (o) = TN(Jo)(x0),
where T" is the composition of T with itself N times. Thus both the problem
and the major algorithmic procedure relating to it can be expressed in terms
of the mappings T and T ,.
One may also consider an infinite horizon version of the problem whereby
we seek a sequence © = (g, 41, - - -) that minimizes

N-1
Ja(xo) = lim Y g[xp, ()] = lim (T, Ty, Ty )Jo)(x0)  (13)
N-ow k=0 N—-w
subject to the system equation constraint (3). In this case one needs, of course,
to make assumptions which ensure that the limit in (13) is well defined for
each n and x,. Under appropriate assumptions, the optimal cost function
defined by

J*(x) = inf J(x)

can be shown to satisfy Bellman’s functional equation given by
JH) = inf {gCeu)+ T f(x )]}
ueU(x)

Equivalently
J*(x) = T(J*)(x) VxeS,

ie., J* is a fixed point of the mapping T. Most of the infinite horizon results
of analytical interest center around this equation. Other questions relate to
the existence and characterization of optimal policies or nearly optimal
policies and to the validity of the equation

J*(x) = lim T¥(Jo)(x)  VxeS, (14)

which says that the DP algorithm yields in the limit the optimal cost function
for the problem. Again the problem and the basic analytical and computa-
tional results relating to it can be expressed in terms of the mappings T
and T,.

The deterministic optimal control problem just described is representa-
tive of a plethora of sequential optimization problems of practical interest
which may be formulated in terms of mappings similar to the mapping H
of (8). As shall be described in Chapter 2, one can formulate in the same
manner stochastic optimal control problems, minimax control problems,
and others. The objective of Part I is to provide a common analytical frame-
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work for all these problems and derive in a broadly applicable form all the
results which draw their validity exclusively from the basic sequential structure
of the decision-making process. This is accomplished by taking as a starting
point a mapping H such as the one of (8) and deriving all major analytical
and computational results within a generalized setting. The results are sub-
sequently specialized to five particular models described in Section 2.3:
deterministic optimal control problems, three types of stochastic optimal con-
trol problems (countable disturbance space, outer integral formulation, and
multiplicative cost functional), and minimax control problems.

1.2 Discrete-Time Stochastic Optimal Control Problems—
Measurability Questions

The theory of Part I is not adequate by itself to provide a complete
analysis of stochastic optimal control problems, the treatment of which is
the major objective of this book. The reason is that when such problems
are formulated over uncountable probability spaces nontrivial measurability
restrictions must be placed on the admissible policies unless we resort to
an outer integration framework.

A discrete-time stochastic optimal control problem is obtained from the
deterministic problem of the previous section when the system includes a
stochastic disturbance wy in its description. Thus (1) is replaced by

X1 = S (Xpes tyes W) (15)

and the cost per stage becomes g(x,, u;, w,). The disturbance w, is a member
of some probability space (W, %) and has distribution p(dwy|xy, uy). Thus the
control variable u, exercises influence over the transition from x, to x,.,
in two places, once in the system equation (15) and again as a parameter in
the distribution of the disturbance w,. Likewise, the control u, influences the
cost at two points. This is a redundancy in the system equation model given
above which will be eliminated in Chapter 8 when we introduce the transition
kernel and reduced one-stage cost function and thereby convert to a model
frequently adopted in the statistics literature (see, e.g., Blackwell [B9];
Strauch [S14]). The system equation model is more common in engineering
literature and generally more convenient in applications, so we are taking it
as our starting point. The transition kernel and reduced one-stage cost
function are technical devices which eliminate the disturbance space (W, %)
from consideration and make the model more suitable for analysis. We take
pains initially to point out how properties of the original system carry over
into properties of the transition kernel and reduced one-stage cost function
(see the remarks following Definitions 8.1 and 8.7).
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Stochastic optimal control is distinguished from its deterministic counter-
part by the concern with when information becomes available. In deter-
ministic control, to each initial state and policy there corresponds a sequence
of control variables (u,,. . . ,uy—) which can be specified beforehand, and
the resulting states of the system are determined by (1). In contrast, if the
control variables are specified beforehand for a stochastic system, the deci-
sionmaker may realize in the course of the system evolution that unexpected
states have appeared and the specified control variables are no longer
appropriate. Thus it is essential to consider policies = (tg,...,Un—1)
where 4, is a function from history to control. If x, is the initial state, u, =
Uo(xo) is taken to be the first control. If the states and controls (x,ug,. . .,
U — 1, X;) have occurred, the control

Uy = U(Xo,Ugy e+ o5 Ug— 1, Xy) (16)

is chosen. We require that the control constraint

PieXo,Uos - - - > Ui— 1, %) € U(xy)

be satisfied for every (xq,ug,. .., U _1,X;) and k. In this way the decision-
maker utilizes the full information available to him at each stage. Rather
than choosing a sequence of control variables, the decisionmaker attempts
to choose a policy which minimizes the total expected cost of the system
operation. Actually, we will show that for most cases it is sufficient to con-
sider only Markov policies, those for which the corresponding controls u,
depend only on the current state x, rather than the entire history (xo, #g,- - -,
u,_1,x;). This is the type of policy encountered in Section 1.1.

The analysis of the stochastic decision model outlined here can be fairly
well divided into two categories—structural considerations and measurability
considerations. Structural analysis consists of all those results which can be
obtained if measurability of all functions and sets arising in the problem is
of no real concern; for example, if the model is deterministic or, more
generally, if the disturbance space W is countable. In Part I structural results
are derived using mappings H, T,, and T of the kind considered in the
previous section. Measurability analysis consists of showing that the struc-
tural results remain valid even when one places nontrivial measurability
restrictions on the set of admissible policies. The work in Part II consists
primarily of measurability analysis relying heavily on structural results
developed in Part I as well as in other sources (e.g., Bertsekas [B4]).

One can best illustrate this dichotomy of analysis by the finite horizon
DP algorithm considered by Bellman [B1]:

Jo(x) =0, (17)
Jer1(x) = inf E{g(x,u,w) + J.[ f(x,u,w)]}, k=0,...,N—1, (18)

ue U(x)
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where the expectation is with respect to p(dw|x,u). This is the stochastic
counterpart of the deterministic DP algorithm (4)—(5).

It is reasonable to expect that J,(x) is the optimal cost of operating the
system over k stages when the initial state is x, and that if u,(x) achieves the
infimum in (18) for every x and k=0,...,N — 1, then = = (ug,. - . , in—1)
is an optimal policy for every initial state x. If there are no measurability
considerations, this is indeed the case under very mild assumptions, as shall
be shown in Chapter 3. Yet it is a major task to properly formulate the
stochastic control problem and demonstrate that the DP algorithm (17)—(18)
makes sense in a measure-theoretic framework. One of the difficulties lies in
showing that the expression in curly braces in (18) is measurable in some
sense. Thus we must establish measurability properties for the functions J,.
Related to this is the need to balance the measurability of policies (necessary
so the expected cost corresponding to a policy can be defined) against a
desire to be able to select at or near the infimum in (18). We illustrate these
difficulties by means of a simple two-stage example.

Two-StTaGE PrOBLEM  Consider the following sequence of events:

(a) An initial state x, € R is generated (R is the real line).

(b) Knowing x,, the decisionmaker selects a control u,eR.

(c) Astate x; eRis generated according to a known probability measure
p(dx,|xo,uo) on Bg, the Borel subsets of R, depending on xg, uo. [In terms
of our earlier model, this corresponds to a system equation of the form
xy = wo and p(dw0|xo, Up) = P(dxdxo’ Uo)-]

(d) Knowing x,, the decisionmaker selects a control u, € R.

Given p(dx;|x,,uo) for every (xo,u,)€ R* and a function g: R* — R, the
problem is to find a policy 7 = (uo, 14, ) consisting of two functions yy: R — R
and u, : R — R that minimizes

Jo(x0) = [glx1, 11 (x1)]p(dx1 o1 Holixo)): (19)

We temporarily postpone a discussion of restrictions (if any) that must be
placed on g, ug, and u, in order for the integral in (19) to be well defined.
In terms of our earlier model, the function g gives the cost for the second
stage while we assume no cost for the first stage.

The DP algorithm associated with the problem is

J1(x1) = infg(xy,uy), (20)

ur

J2(x0) = inf [7,(x,)p(dx1]xo . o). )

and, assuming that J,(x,) > — oo, J,(x;) > —oo for all xoeR, x; eR, the
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results one expects to be true are:

R.1 There holds
Jz(XO) = infjﬂ(xO) vaER.
R.2 Given ¢ > 0, there is an (everywhere) e-optimal policy, i.e., a policy
7, such that
Jr(xo) < infJ (x0) + € Vx,€R.
R.3 If the infimum in (20) and (21) is attained for all x; €R and x,eR,
then there exists a policy that is optimal for every x,eR.

R.4 If u¥(x,) and ud(x,), respectively, attain the infimum in (20) and
(21)forall x; e Rand x4 € R, then n* = (uf, uF)is optimal for every x, e R, i.e.,

Jn*(XO) == inf'ITL'(XO) VXOER.

A formal derivation of R.1 consists of the following steps:

infJ(xo) = infinffg[xu p1(x1)]p(dx4[Xo, fo(xo)) (22a)
= inff {infg(xla u1)} P(dxxlxm/io(xo)) (22b)

= inf [,0e1)p(dx, o, Ho(xo))

= inf [,(x,)p(dx[xo, o) = J(xo).

Similar formal derivations can be given for R.2, R.3, and R 4.
The following points need to be justified in order to make the preceding
derivation meaningful and mathematically rigorous.

(a) In(22a),gand p,; must be such that g[x;, u; (x,)] can be integrated in
a well-defined manner.

(b) In (22b), the interchange of infimization and integration must be
legitimate. Furthermore g must be such that J,(x;) [ = inf, g(x;,u;)] can be
integrated in a well-defined manner.

We first observe that if, for each (xg,u,), p(dxllxo,uo) has countable
support, 1.e., is concentrated on a countable number of points, then integra-
tion in (22a) and (22b) reduces to infinite summation. Thus there is no need
to impose measurability restrictions on g, iy, and py, and the interchange of
infimization and integration in (22b) is justified in view of the assumption
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inf, g(x;,u;) > — oo for all x; eR. (For ¢ > 0, take y,: R — R such that
glxi, pe(xy)] < infg(xy,ug) + e Vx,;eR. (23)
uy .
Then

inf [gLx,. i (x)]p(dxi o, Ho(xo)) < 91, 0x0)]p(dxs o to(xo))

X0, Ho(Xo)) + &.
(24)

< |infg(x;, u)p(dx,

Since ¢ > 0 is arbitrary, it follows that

inf [gLx., s (xo)]pldxa o polxo)) < [ {iyfg(xl,un}p(dxl X0, Ho(Xo) ).
23! 1

The reverse inequality is clear, and the result follows.) A similar argument
proves R.2, while R.3 and R.4 are trivial in view of the fact that there are
no measurability restrictions on p, and y;.

If p(dx;|xo,us) does not have countable support, there are two main
approaches. The first is to expand the notion of integration, and the second is
to restrict g, po, and py to be appropriately measurable.

Expanding the notion of integration can be achieved by interpreting the
integrals in (22a) and (22b) as outer integrals (see Appendix A). Since the
outer integral can be defined for any function, measurable or not, there
is no need to require that g, u,, and yu; are measurable in any sense. As a
result, (22a) and (22b) make sense and an argument such as the one beginning
with (23) goes through. This approach is discussed in detail in Part I, where
we show that all the basic results for finite and infinite horizon problems of
perfect state information carry through within an outer integration frame-
work. However, there are inherent limitations in this approach centering
around the pathologies of outer integration. Difficulties also occur in the
treatment of imperfect information problems using sufficient statistics.

The major alternative approach was initiated in more general form by
Blackwell [B9] in 1965. Here we assume at the outset that g is Borel- mea-
surable, and furthermore, for each Be %y (% is the Borel g-algebra on R),
the function p(B|x,,u,) is Borel-measurable in (x4, u). In the initial treat-
ment of the problem, the functions p, and u, were restricted to be Borel-
measurable. With these assumptions, g[x;, #;(x;)] is Borel-measurable in
xy when y; is Borel-measurable, and the integral in (22a) is well defined.

A major difficulty occurs in (22b) since it is not necessarily true that
Ji(x;) = inf,, g(x;,u,) is Borel-measurable, even if g is. The reason can be
traced to the fact that the orthogonal projection of a Borel set in R? on one
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of the axes need not be Borel-measurable (see Section 7.6). Since we have
for ceR

{x4]J1(x;) < ¢} = proj{(xy,uy)|g(xs,u;) < ¢},

where proj,, denotes projection on the x;-axis, it can be seen that
{x;|J1(x;) < ¢} need not be Borel, even though {(x;,u;)|g(x,u;) < c} is.
The difficulty can be overcome in part by showing that J; is a lower semi-
analytic and hence also universally measurable function (see Section 7.7).
Thus J, can be integrated with respect to any probability measure on %y.

Another difficulty stems from the fact that one cannot in general find
a Borel-measurable ¢-optimal selector p, satisfying (23), although a weaker
result is available whereby, given a probability measure p on %y, the exis-
tence of a Borel-measurable selector p, satisfying

glxi, ulx1)] <infg(xg,uy) + e

for p almost every x; € R can be ascertained. This result is sufficient to
justify (24) and thus prove result R.1 (J, = inf, J,). However, results R.2
and R.3 cannot be proved when pu, and p, are restricted to be Borel-
measurable except in a weaker form involving the notion of p-optimality
(see [S14]; [H4]).

The objective of Part II is to resolve the measurability questions in
stochastic optimal control in such a way that almost every result can be proved
in a form as strong as its structural counterpart. This is accomplished by
enlarging the set of admissible policies to include all universally measurable
policies. In particular, we show the existence of policies within this class
that are optimal or nearly optimal for every initial state.

A great many authors have dealt with measurability in stochastic optimal
control theory. We describe three approaches taken and how their aims
and results relate to our own. A fourth approach, due to Blackwell et al.
[B12] and based on analytically measurable policies, is discussed in the
next section and in Section 11.2.

1 The General Model

If the state, control, and disturbance spaces are arbitrary measure spaces,
very little can be done. One attempt in this direction is the work of Striebel
[S16] involving p-essential infima. Geared toward giving meaning to the
dynamic programming algorithm, this work replaces (18) by

Jis 1(x) = pe-essential inf E{g[x, u(x),w] + J[ f(x, u(x), W]},  (25)

u
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k=0,...,N — 1, where the p-essential infimum is over all measurable u
from state space S to control space C satisfying any constraints which may
have been imposed. The functions J, are measurable, and if the probability
measures pg,.-.,Py-; are properly chosen and the so-called countable
e-lattice property holds, this modified dynamic programming algorithm
generates the optimal cost function and can be used to obtain policies which
are optimal or nearly optimal for py_, almost all initial states. The selection
of the proper probability measures p,,...,py—1, however, is at least as
difficult as executing the dynamic programming algorithm, and the verifica-
tion of the countable e-lattice property is equivalent to proving the existence
of an e-optimal policy.

11  The Semicontinuous Models

Considerable attention has been directed toward models in which the
state and control spaces are Borel spaces or even R"” and the reduced cost
function

h(x,u) = f g(x, u, w)p(dwlx, u)

has semicontinuity and/or convexity properties. A companion assumption
is that the mapping

x — U(x)

is a measurable closed-valued multifunction [R2]. In the latter case there
exists a Borel-measurable selector u:S — C such that u(x) e U(x) for every
state x (Kuratowski and Ryll-Nardzewski [K5]). This is of course necessary
if any Borel-measurable policy is to exist at all.

The main fact regarding models of this type is that under various com-
binations of semicontinuity and compactness assumptions, the functions J,
defined by (17) and (18) are semicontinuous. In addition, it is often possible
to show that the infimum in (18) is achieved for every x and k, and there
are Borel-measurable selectors pg,. .., uy— such that p(x) achieves this
infimum (see Freedman [F1], Furukawa [F3], Himmelberg, et al. [H3],
Maitra [M2], Schal [S3], and the references contained therein). Such a
policy (io,- - - » y— 1) is optimal, and the existence of this optimal policy is
an additional benefit of imposing topological conditions to ensure that the
problem is well defined. In Section 9.5 we show that lower semicontinuity
and compactness conditions guarantee convergence of the dynamic pro-
gramming algorithm over an infinite horizon to the optimal cost function,
and that this algorithm can be used to generate an optimal stationary policy.

Continuity and compactness assumptions are integral to much of the
work that has been done in stochastic programming. This work differs from
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our own in both its aims and its framework. First, in the usual stochastic
programming model, the controls cannot influence the distribution of future
states (see Olsen [O1-03], Rockafellar and Wets [R3-R4], and the refer-
ences contained therein). As a result, the model does not include as special
cases many important problems such as, for example, the classical linear
quadratic stochastic control problem [B4, Section 3.1]. Second, assumptions
of convexity, lower semicontinuity, or both are made on the cost function,
the model is designed for the Kuratowski-Ryll-Nardzewski selection theo-
rem, and the analysis is carried out in a finite-dimensional Euclidean state
space. All of this is for the purpose of overcoming measurability problems.
Results are not readily generalizable beyond Euclidean spaces (Rockafellar
[R2]). The thrust of the work is toward convex programming type results,
ie., duality and Kuhn-Tucker conditions for optimality, and so a narrow
class of problems is considered and powerful results are obtained.

1II The Borel Models

The Borel space framework was introduced by Blackwell [B9] and
further refined by Strauch, Dynkin, Juskevi¢, Hinderer, and others. The
state and control spaces S and C were assumed to be Borel spaces, and the
functions defining the model were assumed to be Borel-measurable. Initial
efforts were directed toward proving the existence of “nice” optimal or
nearly optimal policies in this framework. Policies were required to be
Borel-measurable. For this model it is possible to prove the universal
measurability of the optimal cost function and the existence for every ¢ > 0
and probability measure p on S of a p—c-optimal policy (Strauch [S14,
Theorems 7.1 and 8.1]). A p—e-optimal policy is one which leads to a cost
differing from the optimal cost by less than ¢ for p almost every initial
state. As discussed earlier, even over a finite horizon the optimal cost function
need not be Borel-measurable and there need not exist an everywhere
e-optimal policy (Blackwell [B9, Example 2]). The difficulty arises from the
inability to choose a Borel-measurable function y;:S — C which nearly
achieves the infimum in (18) uniformly in x. The nonexistence of such a
function interferes with the construction of optimal policies via the dynamic
programming algorithm (17) and (18), since one must first determine at each
stage the measure p with respect to which it is satisfactory to nearly achieve
the infimum in (18) for p almost every x. This is essentially the same problem
encountered with (25). The difficulties in constructing nearly optimal policies
over an infinite horizon are more acute. Furthermore, from an applications
point of view, a p—e-optimal policy, even if it can be constructed, is a much
less appealing object than an everywhere g-optimal policy, since in many
situations the distribution p is unknown or may change when the system is
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operated repetitively, in which case a new p—e-optimal policy must be
computed.

In our formulation, the class of admissible policies in the Borel model is
enlarged to include all universally measurable policies. We show in Part II
that this class is sufficiently rich to ensure that there exist everywhere e-optimal
policies and, if the infimum in the DP algorithm (18) is attained for every x and
k, then an everywhere optimal policy exists. Thus the notion of p-optimality
can be dispensed with. The basic reason why optimal and nearly optimal
policies can be found within the class of universally measurable policies may
be traced to the selection theorem of Section 7.7. Another advantage of
working with the class of universally measurable functions is that this class
is closed under certain basic operations such as integration with respect to
a universally measurable stochastic kernel and composition.

Our method of proof of infinite horizon results is based on an equivalence
of stochastic and deterministic decision models which is worked out in
Sections 9.1-9.3. The conversion is carried through only for the infinite
horizon model, as it is not necessary for the development in Chapter 8. It
is also done only under assumptions (P), (N), or (D) of Definition 9.1, although
the models make sense under conditions similar to the (F*) and (F ~) assump-
tions of Section 8.1. The relationship between the stochastic and the deter-
ministic models is utilized extensively in Sections 9.4-9.6, where structural
results proved in Part I are applied to the deterministic model and then
transferred to the stochastic model. The analysis shows how results for
stochastic models with measurability restrictions on the set of admissible
policies can be obtained from the general results on abstract dynamic
programming models given in Part I and provides the connecting link
between the two parts of this work.

1.3 The Present Work Related to the Literature

This section summarizes briefly the contents of each chapter and points
out relations with existing literature. During the course of our research,
many of our results were reported in various forms (Bertsekas [B3-B5];
Shreve [S7-S8]; Shreve and Bertsekas [S9-S12]). Since the present mono-
graph is the culmination of our joint work, we report particular results as
being new even though they may be contained in one or more of the preceding
references.

Part 1

The objective of Part I is to provide a unifying framework for finite and
infinite horizon dynamic programming models. We restrict our attention to
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three types of infinite horizon models, which are patterned after the dis-
counted and positive models of Blackwell [B8-B9] and the negative model
of Strauch [S14]. It is an open question whether the framework of Part I
can be effectively extended to cover other types of infinite horizon models
such as the average cost model of Howard [H7] or convergent dynamic
programming models of the type considered by Dynkin and Juskevi¢ [ D8]
and Hordijk [H6].

The problem formulation of Part I is new. The work that is most closely
related to our framework is the one by Denardo [D2], who considered an
abstract dynamic programming model under contraction assumptions. Most
of Denardo’s results have been incorporated in slightly modified form in
Chapter 4. Denardo’s problem formulation is predicated on his contraction
assumptions and is thus unsuitable for finite horizon models such as the
one in Chapter 3 and infinite horizon models such as the ones in Chapter 3.
This fact provided the impetus for our different formulation.

Most of the results of Part I constitute generalizations of results known
for specific classes of problems such as, for example, deterministic and
stochastic optimal control problems. We make an effort to identify the
original sources, even though in some cases this is quite difficult. Some of
the results of Part I have not been reported earlier even for a specific class
of problems, and they will be indicated as new.

Chapter 2 Here we formulate the basic abstract sequential optimization
problem which is the subject of Part I. Several classes of problems of practical
interest are described in Section 2.3 and are shown to be special cases of the
abstract problem. All these problems have received a great deal of attention
in the literature with the exception of the stochastic optimal control model
based on outer integration (Section 2.3.3). This model, as well as the results
in subsequent chapters relating to it, is new. A stochastic model based on
outer integration has also been considered by Denardo [D2], who used a
different definition of outer integration. His definition works well under
contraction assumptions such as the one in Chapter 4. However, many of
the results of Chapters 3 and 5 do not hold if Denardo’s definition of outer
integral is adopted. By contrast, all the basic results of Part I are valid when
specialized to the model of Section 2.3.3.

Chapter 3 This chapter deals with the finite horizon version of our
abstract problem. The central results here relate to the validity of the dynamic
programming algorithm, i.e., the equation J§ = T"(J,). The validity of this
equation is often accepted without scrutiny in the engineering literature,
while in mathematical works it is usually proved under assumptions that
are stronger than necessary. While we have been unable to locate an appro-
priate source, we feel certain that the results of Proposition 3.1 are known
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for stochastic optimal control problems. The notion of a sequence of policies
exhibiting {¢,}-dominated convergence to optimality and the corresponding
existence result (Proposition 3.2) are new.

Chapter 4 Here we treat the infinite horizon version of our abstract
problem under a contraction assumption. The developments in this chapter
overlap considerably with Denardo’s work [D2]. Our contraction assump-
tion C is only slightly different from the one of Denardo. Propositions 4.1,
4.2, 4.3 (a), and 4.3 (c) are due to Denardo [D2], while Proposition 4.3 (b)
has been shown by Blackwell [ B9] for stochastic optimal control problems.
Proposition 4.4 is new. Related compactness conditions for existence of a
stationary optimal policy in stochastic optimal control problems were given
by Maitra [M2], Kushner [K6], and Schél [S5]. Propositions 4.6 and 4.7
improve on corresponding results by Denardo [D2] and McQueen [M3].
The modified policy iteration algorithm and the corresponding convergence
result (Proposition 4.9) are new in the form given here. Denardo [D2] gives
a somewhat less general form of policy iteration. The idea of policy iteration
for deterministic and stochastic optimal control problems dates, of course,
to the early days of dynamic programming (Bellman [B1]; Howard [H7]).
The mathematical programming formulation of Section 4.3.3 is due to
Denardo [D2].

Chapter 5 Here we consider infinite horizon versions of our abstract
model patterned after the positive and negative models of Blackwell [ B8, B9]
and Strauch [S14]. When specialized to stochastic optimal control problems,
most of the results of this chapter have either been shown by these authors
or can be trivially deduced from their work. The part of Proposition 5.1
dealing with existence of an e-optimal stationary policy is new, as is the
last part of Proposition 5.2. Forms of Propositions 5.3 and 5.5 specialized
to certain gambling problems have been shown by Dubins and Savage [D6],
whose monograph provided the impetus for much of the subsequent work
on dynamic programming. Propositions 5.9-5.11 are new. Results similar
to those of Proposition 5.10 have been given by Schil [S5] for stochastic op-
timal control problems under semicontinuity and compactness assumptions.

Chapter 6 The analysis in this chapter is new. It is motivated by the
fact that the framework and the results of Chapters 2-5 are primarily
applicable to problems where measurability issues are of no essential concern.
While it is possible to apply the results to problems where policies are sub-
ject to measurability restrictions, this can be done only after a fairly elaborate
reformulation (see Chapter 9). Here we generalize our framework so that
problems in which measurability issues introduce genuine complications can
be dealt with directly. However, only a portion of our earlier results carry
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through within the generalized framework—primarily those associated with
finite horizon models and infinite horizon models under contraction
assumptions.

Part 11

The objective of Part II is to develop in some detail the discrete-time
stochastic optimal control problem (additive cost) in Borel spaces. The
measurability questions are addressed explicitly. This model was selected
from among the specialized models of Part I because it is often encountered
and also because it can serve as a guide in the resolution of measurability
difficulties in a great many other decision models.

In Chapter 7 we present the relevant topological properties of Borel
spaces and their probability measures. In particular, the properties of analytic
sets are developed. Chapter 8 treats the finite horizon stochastic optimal
control problem, and Chapter 9 is devoted to the infinite horizon version.
Chapter 10 deals with the stochastic optimal control problem when only a
“noisy” measurement of the state of the system is possible. Various extensions
of the theory of Chapters 8 and 9 are given in Chapter 11.

Chapter 7 The properties presented for metrizable spaces are well
known. The material on Borel spaces can be found in Chapter 1 of Partha-
sarathy [P1] and is also available in Kuratowski [K2-K3]. A discussion
of the weak topology can be found in Parthasarathy [P1]. Propositions 7.20,
7.21, and 7.23 are due to Prohorov [P2], but their presentation here follows
Varadarajan [ V1]. Part of Proposition 7.21 also appears in Billingsley [B7].
Proposition 7.25 is an extension of a result for compact X found in Dubins
and Freedman [D5]. Versions of Proposition 7.25 have been used in the
literature for noncompact X (Strauch [S14]; Blackwell et al. [B12]), the
authors evidently intending an extension of the compact result by using
Urysohn’s theorem to embed X in a compact metric space. Proposition 7.27
is reported by Rhenius [R1], Juskevi¢ [J3] and Striebel [S16]. We give
Striebel’s proof. Propositions 7.28 and 7.29 appear in some form in several
texts on probability theory. A frequently cited reference is Loéve [L1].
Propositions 7.30 and 7.31 are easily deduced from Maitra [M2] or Schél
[S4], and much of the rest of the discussion of semicontinuous functions is
found in Hausdorff [H2]. Proposition 7.33 is due to Dubins and Savage [ D6].
Proposition 7.34 is taken from Freedman [F1].

The investigation of analytic sets in Borel spaces began several years ago,
but has been given additional impetus recently by the discovery of their
applications to stochastic processes. Suslin schemes and analytic sets first
appear in a paper by M. Suslin (or Souslin) in 1917 [S17], although the idea
is generally attributed to Alexandroff. Suslin pointed out that every Borel
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subset of the real line could be obtained as the nucleus of a Suslin scheme
for the closed intervals, and non-Borel sets could be obtained this way as
well. He also noted that the analytic subsets of R were just the projections
on an axis of the Borel subsets of R%. The universal measurability of analytic
sets (Corollary 7.42.1) was proved by Lusin and Sierpinski [L3] in 1918. (See
also Lusin [L2].) Our proof of this fact is taken from Saks [S1]. We have also
taken material on analytic sets from Kuratowski [K2], Dellacherie [D1],
Meyer [M4], Bourbaki [B13], Parthasarathy [P1], and Bressler and Sion
[B14]. Proposition 7.43 is due to Meyer and Traki [MS5], but our proof is
original. The proofs given here of Propositions 7.47 and 7.49 are very similar
to those found in Blackwell et al. [ B12]. The basic result of Proposition 7.49
is due to Jankov [J1], but was also worked out about the same time and
published later by von Neumann [N1, Lemma 5, p. 448]. The Jankov-von
Neumann result was strengthened by Mackey [M1, Theorem 6.3]. The
history of this theorem is related by Wagner [W1, pp. 900-901]. Proposition
7.50(a) is due to Blackwell et al. [B12]. Proposition 7.50(b) together with
its strengthened version Proposition 11.4 generalize a result by Brown and
Purves [B15], who proved existence of a universally measurable ¢ for the
case where f is Borel measurable.

Chapter 8 The finite horizon stochastic optimal control model of Chap-
ter 8 is essentially a finite horizon version of the models considered by
Blackwell [B8,B9], Strauch [S14], Hinderer [H4], Dynkin and Juskevi¢
[D8], Blackwell et al. [B12], and others. With the exception of [B12], all
these works consider Borel-measurable policies and obtain existence results
of a p—¢-optimal nature (see the discussion of the previous section). We allow
universally measurable policies and thereby obtain everywhere e-optimal
existence results. While in Chapters 8 and 9 we concentrate on proving
results that hold everywhere, the previously available results which allow
only Borel-measurable policies and hold p almost everywhere can be readily
obtained as corollaries. This follows from the following fact, whose proof
we sketch shortly:

(F) If X and Y are Borel spaces, py,py,- - . i a sequence of probability
measures on X, and u is a universally measurable map from X to Y,
then there is a Borel measurable map p' from X to Y such that

B(x) = p(x)
for p, almost every x, k =0,1,. ...

As an example of how this observation can be used to obtain p almost
everywhere existence results from ours, consider Proposition 9.19. It states
in part that if ¢ > 0 and the discount factor o is less than one, then an &-
optimal nonrandomized stationary policy exists, i.e., a policy © = (i, u,. . .),
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where p is a universally measurable mapping from S to C. Given p, on S,
this policy generates a sequence of measures pg, p;,. .. on S, where p, is the
distribution of the kth state when the initial state has distribution p, and
the policy = is used. Let u':S — C be Borel-measurable and equal to u for
pr almost every x, k=0,1,.... Let ' = (¢, 1/,. . .). Then it can be shown
that for p, almost every initial state, the cost corresponding to 7’ equals the
cost corresponding to 7, so 7’ is a py—¢-optimal nonrandomized stationary
Borel-measurable policy. The existence of such a n' is a new result. This
type of argument can be applied to all the existence results of Chapters 8
and 9.

We now sketch a proof of (F). Assume first that Y is a Borel subset
of [0,1]. Then for re[0, 1], r rational, the set

U(r) = {x|u(x) < r}

is universally measurable. For every k, let p#[ U(r)] be the outer measure of
U(r) with respect to p, and let By, B,,,... be a decreasing sequence of
Borel sets containing U(r) such that

piLU()] = Pkl:ol Bkj:I'
Let B(r) = ()¢ ()21 Bi;- Then

p;ckl:U(r)]=pk[B(r)]’ k=0717 s

and the argument of Lemma 7.27 applies. If Y is an arbitrary Borel space, it
is Borel isomorphic to a Borel subset of [0,1] (Corollary 7.16.1), and (F)
follows.

Proposition 8.1 is due to Strauch [S14], and Proposition 8.2 is contained
in Theorem 14.4 of Hinderer [H4]. Example 8.1 is taken from Blackwell
[B9]. Proposition 8.3 is new, the strongest previous result along these lines
being the existence of an analytically measurable e-optimal policy when the
one-stage cost function is nonpositive [B12]. Propositions 8.4 and 8.5 are
new, as are the corollaries to Proposition 8.5. Lower semicontinuous models
have received much attention in the literature (Maitra [M2]; Furukawa
[F3]; Schal [S3-S5]; Freedman [F1]; Himmelberg et al. [H3]). Our lower
semicontinuous mode] differs somewhat from those in the literature, pri-
marily in the form of the control constraint. Proposition 8.6 is closely related
to the analysis in several of the previously mentioned references. Proposition
8.7 is due to Freedman [F1].

Chapter 9 Example 9.1 is a modification of Example 6.1 of Strauch
[S14], and Proposition 9.1 is taken from Strauch [S14]. The conversion of
the stochastic optimal control problem to the deterministic one was suggested
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by Witsenhausen [ W3] in a different context and carried out systematically
for the first time here. This results in a simple proof of the lower semianaly-
ticity of the infinite horizon optimal cost function (cf. Corollary 9.4.1 and
Strauch [S14, Theorem 7.1]). Propositions 9.8 and 9.9 are due to Strauch
[S14], as are the (D) and (N) parts of Proposition 9.10. The (P) part of
Proposition 9.10 is new. Proposition 9.12 appears as Theorem 5.2.2 of Schal
[S5], but Corollary 9.12.1 is new. Proposition 9.14 is a special case of
Theorem 14.5 of Hinderer [H4]. Propositions 9.15-9.17 and the corollaries
to Proposition 9.17 are new, although Corollary 9.17.2 is very close to
Theorem 13.3 of Schil [S5]. Propositions 9.18—9.20 are new. Proposition
9.21 is an infinite horizon version of a finite horizon result due to Freedman
[F1], except that the nonrandomized e-optimal policy Freedman constructs
may not be semi-Markov.

Chapter 10 The use of the conditional distribution of the state given
the available information as a basis for controlling systems with imperfect
state information has been explored by several authors under various as-
sumptions (see, for example, Astrém [A2], Striebel [S15], and Sawaragi and
Yoshikawa [S2]). The treatment of imperfect state information models with
uncountable Borel state and action spaces, however, requires the existence
of a regular conditional distribution with a measurable dependence on a
parameter (Proposition 7.27), and this result is quite recent (Rhenius [R1];
Juskevi¢ [J3]; Striebel [S16]). Chapter 10 is related to Chapter 3 of Striebel
[S16] in that the general concept of a statistic sufficient for control is defined.
We use such a statistic to construct a perfect state information model which
is equivalent in the sense of Propositions 10.2 and 10.3 to the original im-
perfect state information model. From this equivalence the validity of the
dynamic programming algorithm and the existence of ¢-optimal policies
under the mild conditions of Chapters 8 and 9 follow. Striebel justifies use of
a statistic sufficient for control by showing that under a very strong hypothesis
[S16, Theorem 5.5.1] the dynamic programming algorithm is valid and an
e-optimal policy can be based on the sufficient statistic. The strong hypothesis
arises from the need to specify the null sets in the range spaces of the
statistic in such a way that this specification is independent of the policy
employed. This need results from the inability to deal with the pointwise
partial infima of multivariate functions without the machinery of universally
measurable policies and lower semianalytic functions. Like Striebel, we show
that the conditional distributions of the states based on the available in-
formation constitute a statistic sufficient for control (Proposition 10.5), as
do the vectors of available information themselves (Proposition 10.6).

The treatments of Rhenius [R1] and Juskevi¢ [J3] are like our own
in that perfect state information models which are equivalent to the original
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one are defined. In his perfect state information model, Rhenius bases con-
trol on the observations and conditional distributions of the states, i.e., these
objects are the states of his perfect state information model. It is necessary
in Rhenius’ framework for the controller to know the most recent observa-
tion, since this tells him which controls are admissible. We show in Proposi-
tion 10.5 that if there are no control constraints, then there is nothing to be
gained by remembering the observations. In the model of Juskevi¢ [J3],
there are no control constraints and control is based on the past controls
and conditional distributions. In this case, ¢-optimal control is possible
without reference to the past controls (Propositions 10.5, 8.3, 9.19, and 9.20),
so our formulation is somewhat simpler and just as effective.

Chapter 10 differs from all the previously mentioned works in that simple
conditions which guarantee the existence of a statistic sufficient for control
are given, and once this existence is established, all the results of Chapters 8
and 9 can be brought to bear on the imperfect state information model.

Chapter 11 The use in Section 11.1 of limit measurability in dynamic
programming is new. In particular, Proposition 11.3 is new, and as discussed
earlier in regard to Proposition 7.50(b), a result by Brown and Purves [B15]
is generalized in Proposition 11.4. Analytically measurable policies were
introduced by Blackwell et al. [B12], whose work is referenced in Section
11.2. Borel space models with multiplicative cost fall within the framework
of Furukawa and Iwamoto [ F4-F5], and in [F5] the dynamic programming
algorithm and a characterization of uniformly N-stage optimal policies are
given. The remainder of Proposition 11.7 is new.

Appendix A Outer integration has been used by several authors, but
we have been unable to find a systematic development.

Appendix B Proposition B.6 was first reported by Suslin [S17], but the
proof given here is taken from Kuratowski [K2, Section 38VI]. According
to Kuratowski and Mostowski [K4, p. 455], the limit o-algebra ¥y was
introduced by Lusin, who called its members the “C-sets.” A detailed discus-
sion of the g-algebra was given by Selivanovskij [S6] in 1928. Propositions
B.9 and B.10 are fairly well known among set theorists, but we have been
unable to find an accessible treatment. Proposition B.11 is new. Cenzer and
Mauldin [C1] have also shown independently that ¥y is closed under
composition of functions, which is part of the result of Proposition B.11.
Proposition B.12 is new.

It seems plausible that there are an infinity of distinct g-algebras between
the limit g-algebra and the universal g-algebra that are suitable for dynamic
programming. One promising method of constructing such ¢-algebras in-
volves the R-operator of descriptive set theory (see Kantorovitch and
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Livenson [K1]). In a recent paper [B11], Blackwell has employed a different
method to define the “Borel-programmable” g-algebra and has shown it
to have many of the same properties we establish in Appendix B for the
limit g-algebra. It is not known, however, whether the Borel-programmable
c-algebra satisfies a condition like Proposition B.12 and is thereby suitable
for dynamic programming. It is easily seen that the limit s-algebra is con-
tained in Blackwell’s Borel-programmable o-algebra, but whether the two
coincide is also unknown.

Appendix C A detailed discussion of the exponential topology on the
set of closed subsets of a topological space can be found in Kuratowski
[K2-K3]. Properties of semicontinuous (K) functions are also proved there,
primarily in Section 43 of [K3]. The Hausdorff metric is discussed in Section
38 of [H2].
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Chapter 2

Monotone Mappings Underlying Dynamic
Programming Models'

This chapter formulates the basic abstract sequential optimization prob-
lem which is the subject of Part I. It also provides examples of special cases
which include wide classes of problems of practical interest.

2.1 Notation and Assumptions

Our usage of mathematical notation is fairly standard. For the reader’s
convenience we mention here that we use R to denote the real line and R*
to denote the extended real line, ie, R¥ =R U {—o0,0}. The sets
(—00,00] =R v {o0} and [ —o0,0) =R U {—oo} will be written out ex-
plicitly. We will assume throughout that R is equipped with the usual
topology generated by the open intervals (o, §), o, f € R, and with the (Borel)
o-algebra generated by this topology. Similarly R* is equipped with the
topology generated by the open intervals («, f§), o, f€ R, together with the
sets (y, o0 ], [ — 00, ), y € R, and with the g-algebra generated by this topology.
The Cartesian product of sets X, X,,..., X, is denoted X, X, - X,,.

 Parts I and II can be read independently. The reader may proceed directly to Part II if
he so wishes.

25
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The following definitions and conventions will apply throughout Part I.

(1) S and C are two given sets referred to as the state space and control
space, respectively.

(2) For each xe€S8, there is given a nonempty subset U(x) of C referred
to as the control constraint set at x.

(3) Wedenote by M the set ofall functions u: S — C such that u(x)e U(x)
for all xeS. We denote by IT the set of all sequences © = (g, Uy,. - .) such
that y, e M for all k. Elements of I1 are referred to as policies. Elements of
IT of the form n = (u,u,...), where ue M, are referred to as stationary
policies.

(4) We denote:

F the set of all extended real-valued functions J:S — R¥;
B the Banach space of all bounded real-valued functions J:S — R
with the supremum norm ||-|| defined by

|J]| =sup|J(x)] VJeB.
xeS

(5) Forall J,J' eF we write
J=J if Jx)=J(x) VxeS,
J<J if Jx) < J(x) VxeS.

For all JeF and ¢eR, we denote by J + ¢ the function taking the value
J(x) + ¢ ateach xe S8, ie.,

(J+e)(x)=J(x)+ ¢ VxeS.

(6) Throughout Part I the analysis is carried out within the set of
extended real numbers R*. We adopt the usual conventions regarding
ordering, addition, and multiplication in R* except that we take

00 — 00 = —00 + 0 = 0,

and we take the product of zero and infinity to be zero. In this way the
sum and the product of-any two extended real numbers is well defined.
Division by zero or oo does not appear in our analysis. In particular, we
adopt the following rules in calculations involving oo and — co:

o+ 00 =00 +0o= 00 for —o0<a< o0,

6— 00 =—0+0=—0 for —o0<a< o0;

0CO = 000 = 00, o(—o0)=(—ow)a=—w for 0<oa< oo,
000 = 000 = — 00, o(—o0) =(—oo)u = o0 for —o0<a<0;
0o = 000=0=0(—00)=(—00)0, —(—o0) = o0;

inf @ = + o0, sup J = — o0,
where (J is the empty set.
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Under these rules the following laws of arithmetic are still valid:
061+OC2=O€2+a1, (O€1+052)+O(3=0(1+(062+OC3),
Oq0p = Oply, (o0 )3 = oty (0p003).

We also have
ofory + op) = ooy + ooty

if either o > 0 or else (x; + a,) is not of the form + oo — 0.

(7) For any sequence {J,} with J, € F for all k, we denote by lim,_, , J,
the pointwise limit of {J,} (assuming it is well defined as an extended real-
valued function) and by limsup,.. . J, (liminf,_,J,) the pointwise limit
superior (inferior) of {J,}. For any collection {J,|a€ 4} = F parameterized
by the elements of a set A, we denote by inf, . ,J, the function taking the
value inf, . 4 J,(x) at each x€ S.

The Basic Mapping

We are given a function H which maps SCF (Cartesian product of S,
C, and F) into R*, and we define for each pe M the mapping T,: F — F by

T,(J)(x) = H[x, u(x),J] VxeS. 1)
We define also the mapping T:F — F by
T(J)x)= inf H(x,u,J) VxeS. (2)
ueU(x)

We denote by T k=1,2,..., the composition of T with itself k times.
For convenience we also define T°(J) = J for all JeF. For any n = (u,,
U1, . .)€l we denote by (T, T, - - T,,) the composition of the mappings
Tyro s T k=0,1,....

The foilowing assumption will be in effect throughout Part 1.

ﬂl.

Monotonicity Assumption For every xe S, ue U(x), J,J' € F, we have
H(x,u,J) < H(x,u,J') if J<J. 3)
The monotonicity assumption implies the following relations:
J<J=TJ)<TJ) vJ,J' eF,
J<J=>T,J)<T,WJ) vJ,J'eF, ueM.
These relations in turn imply the following facts for all Je F:
J<TU)=THJ) < T 1(J), k=0,1,...,
J>TJ)=THJ)> T (), k=0,1,...,
J<T,J) VueM= (T, T, )J)< (T, Ty )U),
k=0,1,..., 7= (o,HUq,..-)EI],
J=T,J) YueM= (T, - T,)J)= (T, Tu.)J),
k=0,1,..., mw=(uo,HUq,.-.)ell.
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Another fact that we shall be using frequently is that for each JeF and
& > 0, there exists a u, € M such that

T(J)x)+ ¢ if TJ)(x)> —o0,
—1/e if TJ)(x)= —oo0.

In particular, if J is such that T(J)(x) > — oo for Vxe S, then for each ¢ > 0,
there exists a y,€ M such that

T, ()< TWJ)+e

T,.(0)) < {

2.2 Problem Formulation

We are given a function J, € F satisfying
Jo(x) > — o0 VxeS, 4)

and we consider for every policy © = (ug, Uy, - -)€IIl and positive integer
N the functions Jy € F and J, € F defined by

‘]N,n(x) = (TuoT;q e TuN_l)(JO)(x) VXES, (5)
Jo(x) = lim (T, T,, T,y )Jo)x)  VxeS. (©)

For every result to be shown, appropriate assumptions will be in effect
which guarantee that the function J, is well defined (ie., the limit in (6)
exists for all xeS). We refer to Jy , as the N-stage cost function for n and
to J, as the cost function for n. Note that Jy , depends only on the first N
functions in n while the remaining functions are superfluous. Thus we could
have considered policies consisting of finite sequences of functions in connec-
tion with the N-stage problem, and this is in fact done in Chapter 8. However,
there are notational advantages in using a common type of policy in finite
and infinite horizon problems, and for this reason we have adopted such a
notation for Part .
Throughout Part I we will be concerned with the N-stage optimization
problem
minimize Jy .(x)

(F)

subject to mell,
and its infinite horizon version
minimize J_(x
(%) 0

subject to mell.

We refer to problem (F) as the N-stage finite horizon problem and to problem
(I) as the infinite horizon problem.
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For arfixed xe S, we denote by JF(x) and J*(x) the optimal costs for
these problems, i.e.,

JE(x) = inf Jy .(x) VxeSs, 7
nell

J*(x) = inf J,(x) Vxes. )
nell

We refer to the function J§ as the N-stage optimal cost function and to the
function J* as the optimal cost function.

We say that a policy n* eIl is N-stage optimal at x€ S if Jy (x) = JF(x)
and optimal at xe S if J .(x) = J*(x). We say that n* eIl is N-stage optimal
(respectively optimal) if Jy . = J% (respectively J,. = J*). A policy n* =
(ud, pt,. . .)will be called uniformly N-stage optimal if the policy (u¥, u¥. 1,. . .)
is (N — i)-stage optimal for all i=0,1,...,N — 1. Thus if a policy is uni-
formly N-stage optimal, it is also N-stage optimal, but not conversely. For
a stationary policy n = (u, ,...)eIl, we write J, = J,. Thus a stationary
policy n* = (u*, u*,. . .) is optimal if J* = J ..

Given ¢ > 0, we say that a policy =, € Il is N-stage e-optimal if

X(x)+ e if JF(x)> — oo,
J <N
wolX) < {—1/3 it JE(x) = —oo.
We say that =, eIl is e-optimal if
J¥(x) + ¢ if J¥x)> —oo,
—1/e if J¥*(x)= —o0.

If {¢,} is a sequence of positive numbers with ¢, | 0, we say that a sequence of
policies {=,} exhibits {¢,}-dominated convergence to optimality if

Jo(x) < {

limJN’,rn=J1>\k],
and, forn=2,3,..., noo
JE(x) + e, if J{(x) > —oo,
T (X) + & i TF(X) = —o0.

JN. TCn(x) < {

2.3 Application to Specific Models

A large number of sequential optimization problems of practical interest
may be viewed as special cases of the abstract problems (F) and (I). In this
section we shall describe several such problems that will be of continuing
interest to us throughout Part I. Detailed treatments of some of these
problems can be found in DPSC."

" We denote by DPSC the textbook by Bertsekas, “Dynamic Programming and Stochastic
Control.” Academic Press, New York, 1976.
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2.3.1 Deterministic Optimal Control
Consider the mapping H:SCF — R* defined by
H(x,u,J) = g(x,u) + aJ[ f(x,u)] VxeS, ueC, JeF. )
Our standing assumptions throughout Part I relating to this mapping are:

(1) The functions g and f map SC into [ — oo, 00 ] and S, respectively.
(2) The scalar o is positive.

The mapping H clearly satisfies the monotonicity assumption. Let J,
be identically zero, i.e.,

Jo(x)=0 Vxes.

Then the corresponding N-stage optimization problem (F) can be written as

N—1
minimize Jy .(xo) = Y. o*g[xe, w(xi)]
K=o (10)

Subject to Xk+1 = f[xk,/lk(xk)], #kEM, k = 0, ey N - 1.

This is a finite horizon deterministic optimal control problem. The scalar
o is known as the discount factor. The infinite horizon problem (I) can be
written as
N-1
minimize J,(xo) = lim Y o*g[x,, w(x,)]
N—-o© k=0 (1 1)

subject to x4y = f[ X, th(xi)], weM, k=0,1,....

This limit exists if any one of the following three conditions is satisfied:

g(x,u) =0 VxeS, ueU(x), (12)
glx,u) <0 VxeS, ueU(x), (13)
a<l, 0<glx,uy<b for some be(0,0)and all xe S, uec U(x). (14)

Every result to be shown for problem (11) will explicitly assume one of these
three conditions. Note that the requirement 0 < g(x,u) <b in (14) is no
more strict than the usual requirement |g(x, u)l < b/2. This is true because
adding the constant b/2 to g increases the cost corresponding to every
policy by b/2(1 — o) and the problem remains essentially unaffected.
Deterministic optimal control problems such as (10) and (11) and their
stochastic counterparts under the countability assumption of the next sub-
section have been studied extensively in DPSC (Chapters 2, 6, and 7). They
are given here in their stationary form in the sense that the state and control
spaces S and C, the control constraint U(-), the system function f, and the



2.3 APPLICATION TO SPECIFIC MODELS 31

cost per stage g do not change from one stage to the next. When this is not
the case, we are faced with a nonstationary problem. Such a problem, however,
may be converted to a stationary problem by using a procedure described
in Section 10.1 and in DPSC (Section 6.7). For this reason, we will not con-
sider further nonstationary problems in Part I. Notice that within our
formulation it is possible to handle state constraints of the form x,e X,
k=0,1,..., by defining g(x, u) = co whenever x & X. This is our reason for
allowing g to take the value co. Generalized versions of problems (10) and
(11) are obtained if the scalar « is replaced by a function : SC — R* with
0 < a(x,u) for all xe S, ue U(x), so that the discount factor depends on the
current state and control. It will become evident to the reader that our general
results for problems (F) and (I) are applicable to these more general deter-
ministic problems.

2.3.2  Stochastic Optimal Control—Countable Disturbance Space
Consider the mapping H: SCF — R* defined by
H(x,u,J) = E{g(x,u,w) + aJ [ f(x,u,w)]

where the following are assumed:

X, u}, (15)

(1) The parameter w takes values in a countable set W with given
probability distribution p(dw|x,u) depending on x and u, and E{|x,u}
denotes expected value with respect to this distribution. (See a detailed
definition below.)

(2) The functions g and f map SCW into [ — o0, 0 ] and S, respectively.

(3) The scalar « is positive.

Our usage of expected value in (15) is consistent with the definition of
the usual integral (Section 7.4.4) and the outer integral (Appendix A), where
the g-algebra on W is taken to be the set of all subsets of W. Thus if w',
i=1,2,..., are the elements of W, (p*, p%,...) any probability distribution
on W, and z: W — R* a function, we define

E{zw)} =) p'z*(w)— Y p'z”(w),
i=1 i=1
where
z " (w;) = max {0, z(w;)}, i=12,...,
z~(w;) = max {0, —z(w;)}, i=12,....

In view of our convention co — co = oo, the expected value E{z(w)} is well
defined for every function z: W — R* and every probability distribution
(p',p% ...) on W. In particular, if we denote by (p*(x,u), p*(x,u),...) the
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probability distribution p(dw|x,u) on W = {w',w?,...}, then (15) can be
written as

H(x,u,J) = i P'(x, u)max {0, g(x, u, w') + aJ[ f(x, u, w')]}
i=1 '

— 2 P u)ymax {0, —[g(x, u, w') + o[ f(x, u,w)]]}.
i=1
A point where caution is necessary in the use of expected value defined
this way is that for two functions z,: W — R* and z,: W — R*, the equality
E{z;(w) + z,(W)} = E{z;(w)} + E{z,(w)} (16)

need not always hold. It is guaranteed to hold if (a) E{z{(w)} < co and
E{z; (W)} < o0, or (b) E{z7 (W)} < o0 and E{z; (W)} < o0, or (c) E{z{ (W)} <
oo and E{z{ (w)} < oo (see Lemma 7.11). We always have, however,

E{z,(w) + z,(w)} < E{z;(W)} + E{z,(w)}.

It is clear that the mapping H of (15) satisfies the monotonicity assump-
tion. Let J, be identically zero, i.e.,

Jo(x)=0 VxeS.

Then if g(x,u,w) > —oco for all x,u,w, the N-stage cost function can be
written as

In,z(X0) = E{g[Xo, o(Xo), Wo] + E{otg[xl,,ul(xl),wl] + E{ e
wo wi wo
+ E {aN_lg[xN—luuN—l(xN—l)sWN—l:”xN—la

WN -1

,UN—I(xN—l)}’ e '}lxo»ﬂo(xo)}

N-1
= E{E{ -+ E { Y g, ), wil| Xy -1,

wo (W1 WN-1 (k=0

where the states x;,X,,...,Xxy_; satisfy

X+ 1 = S [ ), wicls k=0,....,N -2 (18)

ﬂN—l(xN—l)} xo,ﬂo(xo)}, (17)

The interchange of expectation and summation in (17) is valid, since
g(x,u,w) > — oo for all x, u,w, and we have for any measure space (Q, Z, ),
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measurable 1:Q — R* and ie(— oo, + 0],
i+ [hav =f(,1 + h)dv.

When Eq. (18) is used successively to express the states x;,x,, ... S XN—1
exclusively in terms of wy, wy,...,wy_; and x,, one can see from (17)
that Jy .(xo) is given in terms of successive iterated integration over
WN-1,...,Wo. For each x,€S and nell the probability distributions p(x,,
Ho(Xo))s- - > P'(Xn— 1, iy~ 1(xn=1)), i = 1,2,. .., over W specify, by the prod-
uct measure theorem [Al, Theorem 2.6.2], a unique product measure on
the cross product W" of N copies of W. If Fubini’s theorem [A1, Theorem
2.6.4] is applicable, then from (17) the N-stage cost function J ~.=(X0) can
be alternatively expressed as

N-1
Iy, n(x0) = E{ Z akg[xkauk(xk)a Wk]}: (19)

k=0
where this expectation is taken with respect to the product measure on WV
and the states x,X,,...,Xy_; are expressed in terms of w,, w,,. .. ,Wh_1
and x, via (18). Fubini’s theorem can be applied if the expected value in
(19) is not of the form oo — oo, i.e., if either

E{max{o, NZ—:I ofg[xe, (i), wk]}} < ®
<

k=0
or

E{max{O, - i O‘kg[xknuk(xk)s Wk]}}

In particular, this is true if either
E{max{0,g[x;, m(xy), w,]}} < o0, k=0,...,N—1,
or
E{max{0, —g[x;, m(x1), W]} } < o0, k=0,...,N—-1

or if g is uniformly bounded above or below by a real number. If J ~.x(X0)
can be expressed as in (19) for each x, € S and n € I, then the N-stage problem
can be written as

N-1
minimize Jy .(xo) = E{ Z g [ X, ulxi)s Wk]}

subject to  xy41 = X, (i), Wi, weM, k=0, .. N—1,

which is the traditional form of an N-stage stochastic optimal control prob-
lem and is also the starting point for the N-stage model of Part II (Definition
8.3).
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The corresponding infinite horizon problem is (cf. Definition 9.3)

N-1
minimize J (x,) = lim E{ Y ofg[xe, alxi)s wk]}
N

-0 (k=0 (20)
subject to X+ g = S X tadXi)s Wil weM, k=0,1,....
This limit exists under any one of the conditions:
g(x,u,w) =0 VxeS, uelU(x), weW, (21)
gx,u,w) <0 VxeS, ueU(x), weW, (22)

o<1, 0<gx,uw<=<bh for some be (0, )
and all xe S, ue U(x), we W.  (23)

Every result to be shown for problem (20) will explicitly assume one of
these three conditions.

Similarly as for the deterministic problem, a generalized version of the
stochastic problem is obtained if the scalar o is replaced by a function
a:SCW — R* satisfying 0 < a(x, u, w) for all (x,u, w). The mapping H takes
the form

H(x,u,J) = E{g(x,u, w) + o(x,u, w)J[ f(x,u,w)]

This case covers certain semi-Markov decision problems (see [J2]). We
will not be further concerned with this mapping and will leave it to the
interested reader to obtain specific results relating to the corresponding
problems (F) and (I) by specializing abstract results obtained subsequently
in Part I. Also, nonstationary versions of the problem may be treated by
reduction to the stationary case (see Section 10.1 or DPSC, Section 6.7).

The countability assumption on W is satisfied for many problems of
interest. For example, it is satisfied in stochastic control problems involving
Markov chains with a finite or countable number of states (see, e.g., [D3],
[K6]). When the set W is not countable, then matters are complicated by
the need to define the expected value

E{g[x, p(x), w] + aJ [ f(x, u(x), w)]
for every ue M. There are two approaches that one can employ to overcome
this difficulty. One possibility is to define the expected value as an outer
integral, as we do in the next subsection. The other approach is the subject
of Part II where we impose an appropriate measurable space structure
on S, C, and W and require that the functions pe M be measurable. Under
these circumstances a reformulation of the stochastic optimal control prob-
lem into the form of the abstract problems (F) or (I) is not straightforward.
Nonetheless, such a reformulation is possible as well as useful as we will
demonstrate in Chapter 9.

X, u}.

X, u}
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2.3.3  Stochastic Optimal Control—Outer Integral Formulation
Consider the mapping H:SCF — R* defined by
H(x,u,J) = E*{g(x,u,w) + oJ[ f(x,u, w)]|x, u}, (24)
where the following are assumed:

(1) The parameter w takes values in a measurable space (W, #). For
each fixed (x, u) € SC, a probability measure p(dwlx, u) on (W, ) is given and
E*{-|x,u} in (24) denotes the outer integral (see Appendix A) with respect
to that measure. Thus we may write, in the notation of Appendix A,

H(x,u,J) = f* {g(x,u, w) + oJ[ f(x, u, w)]}p(dw

(2) The functions g and f map SCW into [ — 0, 0] and S, respectively.
(3) The scalar « is positive.

X, u).

We note that mappings (9) and (15) of the previous two subsections are
special cases of the mapping H of (24). The mapping (9) (deterministic
problem) is obtained from (24) when the set W consists of a single element.
- The mapping (15) (stochastic problem with countable disturbance space) is
the special case of (24) where W is a countable set and .Z is the o-algebra
consisting of all subsets of W. For this reason, in our subsequent analysis
we will not further consider the mappings (9) and (15), but will focus attention
on the mapping (24).

Clearly H as defined by (24) satisfies the monotonicity assumption. Just
as for the models of the previous two sections, we take

Jo(x)=0  VxeS

and consider the corresponding N-stage and infinite horizon problems (F)
and (I).

If appropriate measurability assumptions are placed on S, C, f, g, and
p, then the N-stage cost

InaX) =Ty Ty JJo)(X)

can be rewritten in terms of ordinary integration for every policy © = (Ko,
My, ..) for which y,, k = 0,1,.. ., is appropriately measurable. To see this,
suppose that S has a g-algebra &, C has a ¢-algebra %, and # is the Borel
c-algebra on R*. Suppose f is (%%, %)-measurable and g is (YECF, B)-
measurable, where #%.# denotes the product g-algebra on SCW. Assume
that for each fixed B e &, p(B|x, u) is #%-measurable in (x, u) and consider
a policy m = (ug, iy, ..), where p, is (&, %)-measurable for all k. These
conditions guarantee that T, (J) given by

T = [l 0, w] + aILf (. (). )]}l

X, U)
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is %-measurable for all k and Je F that are &-measurable. Just as in the
previous section, for a fixed x, € S and © = (yg, i1, . - ) € I1, the probability
measures p(-|Xo, Uo(Xo))s- - -, P(*|Xn—1, n—1(xy—1)) together with the system
equation

Xer 1 = f [ i), wies k=0,...,N-=2, (25)

define a unique product measure p(d(wo, . . . , Wy—1)|Xo,7) on the cross prod-
uct WV of N copies of W. [Note that x,, k=0,1,...,N — 1, can be ex-
pressed as a measurable function of (wy,...,wy-;) via (25)]. Using the
calculation of the previous section, we have that if g(x,u, w) > — oo for all
x,u,w, and Fubini’s theorem is applicable, then

I, (X0) = E{ i akg[xkaﬂk(xk)a Wk]}

k=0
N-1
= wa{ Z OCkg[Xk, :uk(xk)a Wk]}p(d(WOw .. aWN—1)|x077r)?
k=0
where x,,X,,...,Xy_; are expressed in terms of wy, wy,...,wy_; and

X, via (25). Also, as in the previous section, Fubini’s theorem applies if either

E {max{o, NZ_:I g [xp, tal(Xe), Wi ] }} < o
k=0

or
N-1
E{max{o, - Z ofg [ X X1, Wk]}} < 0.
k=0

Thus if appropriate measurability conditions are placed on S, C, W, f, g,
and p(dw|x,u) and Fubini’s theorem applies, then the N-stage cost Jy .
corresponding to measurable 7 reduces to the traditional form

N-1

Iy (x0) = E{ Z g [k s i) Wk]}-
k=0

This observation is significant in view of the fact that

inf Jy .(x) < inf Jy_(x) VxeS,

nell nell

where
= {nelln = (to.ts. - - ). € M is (&, %)-measurable, k = 0,1,.. .}

Thus, if an optimal (s-optimal) policy 7* can be found for problem (F) and
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n*ell (ie., is measurable), then 7* is optimal (e-optimal) for the problem
minimize Jy_ .(x)
subject to mell,

which is a traditional stochastic optimal control problem.

These remarks illustrate how one can utilize the outer integration frame-
work in an initial formulation of a particular problem and subsequently
show via further (and hopefully simple) analysis that attention can be
restricted to the class of measurable policies II for which the cost function
admits a traditional interpretation. The main advantage that the outer
integral formulation offers is simplicity. One does not need to introduce an
elaborate topological and measure-theoretic structure such as the one of
Part II in an initial formulation of the problem. In addition the policy
iteration algorithm of Chapter 4 is applicable to the problem of this section
but cannot be justified for the corresponding model of Part II. The outer
integral formulation has, however, important limitations which become
apparent in the treatment of problems with imperfect state information by
means of sufficient statistics (Chapter 10).

2.3.4  Stochastic Optimal Control—Multiplicative Cost Functional
Consider the mapping H:SCF — R* defined by
H(x,u,J) = E{g(x,u, w)J[ f(x,u, w)]|x, u}. (26)

We make the same assumptions on w, g, and f as in Section 2.3.2, i.e., w
takes values in a countable set W with a given probability distribution
depending on x and u. We assume further that

glx,u,w) >0 VxeS, ueU(x), weW. (27)

In view of (27), the mapping H of (26) satisfies the monotonicity assumption.
We take

Jox)=1 VxeS

and consider the problems (F) and (I). Problem (F) corresponds to the
stochastic optimal control problem

minimize In, =(X0) = E{g[xm#o(xo)a Wwo] - - ‘g[xlv—hllzv—l(xzv—l), WN—I]}
(28)
subject to  xg 41 = f[xy, p(x0), Wi, weM, k=0,1,...,

and problem (I) corresponds to the infinite horizon version of (28). The limit
as N — oo in (28) exists if g(x,u, w) > 1 for every x,u,w or 0 < g(x, u, w)< 1
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for every x,u,w. A special case of (28) is the exponential cost functional
problem

minimize E{exp[Nil g'[ X i(xi), Wk]]}

k=0
SubjeCt to xk+1 = f[xk,ﬂk(xk), Wk]v I.lkeM, k = 0, 1,. ey

where ¢’ is some function mapping SCW into (— 00, o ].

2.3.5 Minimax Control
Consider the mapping H:SCF — R* defined by
H(X7 u’ J) = Sup {g(xa u’ W) + O(J[f(x, ua W)]} (29)

weW(x,u)
where the following are assumed:

(1) The parameter w takes values in a set W and W(x, u) is a nonempty
subset of W for each xeS, ue U(x).

(2) The functions g and f map SCW into [ — c0, 0] and S respectively.

(3) The scalar « is positive.

Clearly the monotonicity assumption is satisfied.
We take

Jolx)=0 VxeS.

If g(x,u,w) > —oo for all x,u,w, the corresponding N-stage problem (F)
can also be written as

N-1
minimize Jy .(xo) = sup { Y g, (i), Wk]}
wic € Wixic, me(xx)] (k=0
. (30)
subject to X1y = f [xi, i), Wi, wmeM, k=0,1,...,

and this is an N-stage minimax control problem. The infinite horizon
version is

N-1
minimize J,(xo) = lim sup { Y ofgxg, wlx), wk]}
N— o0 wie Wxk. pe(xx)] (k=0 (31)
subject to Xy = f [xi, tl(xi), Wi, weM, k=0,1,....
The limit in (31) exists under any one of the conditions (21), (22), or (23).
This problem contains as a special case the problem of infinite time reach-
ability examined in Bertsekas [B2]. Problems (30) and (31) arise also in the
analysis of sequential zero-sum games.



Chapter 3

Finite Horizon Models

3.1 General Remarks and Assumptions

Consider the N-stage optimization problem
minimize Jy (x) = (T, - T,y JJo)(xX)
subject to 7w = (U, ty,...)eIl,
where for every ue M, J € F, and x € S we have

T ,(J)(x) = H[x, u(x),J ], TJ)(x) = iIlljf )H(x, u,J).
ueU(x

Experience with a large variety of sequential optimization problems suggests
that the N-stage optimal cost function J¥ satisfies

F=inf Jy .= T(J,),
nell
and hence is obtained after N steps of the DP algorithm. In our more general

setting, however, we shall need to place additional conditions on H in order
to guarantee this equality. Consider the following two assumptions.

Assumption F.1 If {J,} = F is a sequence satisfying J, ., < J, for all k
and H(x,u,J,) < co for all xe S, ue U(x), then

lim H(x,u,J,) = H(x, u, lim Jk> VxeS, ueU(x)

k= o0 k— o0

39
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Assumption F.2 There exists a scalar «€(0, c0) such that for all scalars
re(0, oo) and functions J € F, we have

H(x,u,J) < H(x,u,J + r) < H(x,u,J) + ar VxeS, ueU(x).

We will also consider the following assumption, which is admittedly
somewhat complicated. It will enable us to obtain a stronger result on the
existence of nearly optimal policies (Proposition 3.2) than can be obtained
under F.2. The assumption is satisfied for the stochastic optimal control
problem of Section 2.3.3, as we show in the last section of this chapter.

Assumption F.3 There is a scalar f€(0, o0) such that if Je F, {J,} = F,
and {g,} < R satisfy

Y &, < o0, >0, n=12...,
n=1
J=lim J,, J<J,, n=12,...,
J(x)< J(x) + &, n=12,... and xeS with J(x)> — o0,
T T 1(X) + &y, n=273,... and xeS with J(x)= —oc0,
H(x,u,J;) < o0, VxeS, ueU(x),

then there exists a sequence {y,} = M such that
lim T, (J,) = T(J),

n— oo

T, ()X < {T(J)(x)+ﬂen, n=1,2,..., xeS with T(J)(x)>— oo,

T, (oo )(X)+Be,, n=2,3,..., xS with T(J)(x)=—co.

Each of our results will require at most one of the preceding assumptions.
As we show in Section 3.3, at least one of these assumptions is satisfied by
every specific model considered in Section 2.3.

3.2 Main Results

The central question regarding the finite horizon problem is whether

* = TN(J,), in which case the N-stage optimal cost function J¥ can be

obtained via the DP algorithm that successively computes T(J,), T*(J,),- - - -

A related question is whether optimal or nearly optimal policies exist. The

results of this section provide conditions under which the answer to these
questions is affirmative.

Proposition 3.1 (a) Let F.1 hold and assume that J,_,(x) < oo for all
xeS,nell,and k = 1,2,..., N. Then

§=T"Uo).
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(b) Let F.2 hold and assume that J§(x) > —oo for all xe S and k =
1,2,...,N.Then

J% = T"(Jo),
and for every ¢ > 0, there exists an N-stage ¢-optimal policy, ie., a 7, eIl
such that
J;s < JN,n,;S J;S + &

Proof (a) Foreachk=0,1,...,N — 1, consider a sequence {u;} = M

such that

lim T, [TV %" 1(Jo)] = T "*(Jo), k=0,...,N—1,

T”;([TN"‘”(JO)] > T,‘LH[TN""I(JO)], k=0,...,N—1, i=0,1,....
By using F.1 and the assumption that J, ,(x) < oo, we have

Ji < inf-- - inf(To- - Tyin-1)(Jo)

io iN-1

= lnf .. lnf (Tﬂgo N Tu;‘év_-zz)[ lnf T“Z’v_-lx(.]o)]

io iN—Z iN—l

inf- - inf (T - - Tiv-2) [ T(Jo)]
io iN-2 ° N-z

(o),

where the last equality is obtained by repeating the process used to obtain
the previous equalities. On the other hand, it is clear from the definitions of
Chapter 2 that T"(J,) < J%, and hence J% = TN(J,).

(b) We use induction. The result clearly holds for N = 1. Assume that
it holds for N =k, ie., J§ = TXJ,) and for a given & > 0, there is a n,eIT
with J, . < J¥ + e Using F.2 we have for all pe M,

Jlf-i- 1 < Tu(Jk, 1:,;) < Tu(']l)f) + oe.

Hence J§,, < T(J¥), and by using the induction hypothesis we obtain
J¥+1 < T 1(J,). On the other hand, we have clearly T**(J,) < J¥, ,, and
hence T**'(J,) =J¥,,. For any >0, let T = (fy,H;,...) be such that
Jix < JE + (2/20), and let @ e M be such that T(J¥) < T(J¥) + (£/2). Con-
sider the policy 7; = (I, Ko, H;, - - .). Then

Jirrm =Tz S TaUH) + E2) < TUH + e =i, + 5
The induction is complete. Q.E.D.

Proposition 3.1(a) may be strengthened by using the following assump-
tion in place of F.1.
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Assumption F.1” The function J, satisfies
Jo(x) = H(x,u,Jg) VxeS, ueU(x),

and if {J,} = F is a sequence satisfying J, ., < J, < J, for all k, then

lim H(x,u,Jk)=H<x,u, lim Jk> VxeS, ueU(x).
k— k=0 ,

The following corollary is obtained by verbatim repetition of the proof
of Proposition 3.1(a).

Corollary 3.1.1 Let F.1" hold. Then
¥ =TYJo).

Proposition 3.1 and Corollary 3.1.1 may fail to hold if their assumptions
are slightly relaxed.

COUNTEREXAMPLE 1 Take S={0}, C=U()=(-1,0], Jo0)=0,
HO,u,J)=uif —1 < J(0), HO,u,J) = J(0) + u if J(0O) < —1. Then (T, - - -
T,y )(J0)0) = uo(0) and JF(0) = —1, while T¥(Jo)(0) = —N for every N.
Here the assumptions J, .(0) < oo and J§(0) > — oo are satisfied, but F.1,
F.1’, and F.2 are violated.

COUNTEREXAMPLE 2 Take S={0,1}, C=U(0)=U(1)=(—00,0], Jo(0)=
Jo(1) =0, HO,u,J)=u if J(1)= —o0, H(O,u,J) =0 if J(1)> — o0, and
H(Lu,J) = . Then (T, Tpy_ J(J0)0) = 0. (T -~ Ty )(Jo)(1) = (1)
for all N > 1. Hence, J$(0) = 0, J%(1) = — co. On the other hand, we have
TY(J,)(0) = TV(Jy)(1) = — o for all N > 2. Here F.2 is satisfied, but F.1,
F.1’, and the assumptions J, .(x) < co and Jf(x) > — oo for Vx e § are all
violated.

The following counterexample is a stochastic optimal control problem
with countable disturbance space as discussed in Section 2.3.2. We use the
notation introduced there.

COUNTEREXAMPLE 3 Let N=2,8S={0,1},C=U(0)=U(l)=R, W =
(2,3,...}, pw=klx,u)=k™ > 2,n"?)~" for k=2,3,..., xeS8, ueC,
fO,u,w) = f(1,u,w) =1 for YueC, weW, g(0,u,w)=w, g(1,u,w) =u for
VueC, weW. Then a straightforward calculation shows that J%(0) = oo,
J%(1) = — o0, while T*(J,)(0) = — o0, T*Jy)(1) = —co. Here F.1 and F.2
are satisfied, but F.1’ and the assumptions J, .(x) < oo for all x, =, k, and
J#(x) > — oo for all x and k are all violated.

The next counterexample is a deterministic optimal control problem as
discussed in Section 2.3.1. We use the notation introduced there.
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COUNTEREXAMPLE 4 Let N=2, S={0,1,...}, C= U(x) = (0, c0) for
VxeS, f(x,u) =0 for VxeS, ueC, g(0,u) = —u for Yue U(0), g(x,u) = x for
Vue U(x) if x # 0. Then for eIl and x # 0, we have J, .(x) = x — p;(0), so
that J3(x) = — oo for all xe S. On the other hand clearly there is no two-stage
g-optimal policy for any ¢ > 0. Here F.1, F.2, and the assumption J;_,(x) < o0
for all x, m, k are satisfied, and indeed we have J%(x) = T?(J,)(x) = — oo for
VxeS. However, the assumption Jf(x) > — oo for all x and k is violated.

As Counterexample 4 shows there may not exist an N-stage -optimal
policy if we have Jf(x) = — oo for some k and x € S. The following proposition
establishes, under appropriate assumptions, the existence of a sequence of
nearly optimal policies whose cost functions converge to the optimal cost
function.

Propositioh 3.2 Let F.3 hold and assume J, ,(x) < oo for all xe S, n eI,
and k= 1,2,...,N. Then
§=T(Jo)

Furthermore, if {¢,} is a sequence of positive numbers with &, | 0, then there
exists a sequence of policies {r,} exhibiting {¢, }-dominated convergence to
optimality. In particular, if in addition J¥(x) > — oo for all xe S, then for
every ¢ > 0 there exists an ¢-optimal policy.

Proof We will prove by induction that for K < N we have J§ = TX(J,),
and furthermore, given K and {¢,} with €, 10, &, > 0 for Vn, there exists a
sequence {r,} < II such that for all n,

lim Jg . = JE, 1)
JEX) + ¢, VxeS with J¥(x)> — oo, (2)

Jg o (X) < .
s Ik 2, (X) + &, VxeS with Ji(x)= —oo. (3)

We show that this holds for K = 1. We have
J¥(x) = inf Jy (x)= inf H[x, u(x),Jo] = T(Jo)(x) VxeS.
nell neM

It is also clear that, given {g,}, there exists a sequence {x,} < II satisfying
(1)-(3) for K = 1.

Assume that the result is true for K = N — 1. Let f§ be the scalar specified
in F.3. Consider a sequence {¢,} < R with ¢, > 0 for Vn and lim,_, , &, = 0,
and let {#,} = I, &, = (4, 45, . . .), be such that
lim Jy_ 12, =J%-1 )
JE_1(x)+ B e, VxeS with Ji_,(x)> —

In_1s <
N 1‘""(x)_{JN_L,En_1(x)+ﬂ"18,, VxeS with Ji_,(x)= —
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The assumption J, (x) < oo for all xe S, nell, k=1,2,..., N, guarantees
that we have

H(x,u,Jy_1 ;) < © VxeS, ueU(x). (7)

Without loss of generality we assume that Y ;2 ; ¢, < co. Then Assumption
F.3 together with (4) implies that there exists a sequence {up} = M such
that, for all n,

lim Tyy(In-1.5,) = T(IR-1), @
TR -1)(X) + & if TUF-1)(x)> -, )

T,‘S(JN—L:‘:,,)(X) < {Tﬂg-‘(JN—l,n;._ )xX) +e, if TUF-)x) = —o0. (10)

We have by the induction hypothesis J%_; = T ~(J,), and it is clear that
TN(J,) < J%. Hence,

T(J%-1)=T(Jo) < J%. (11)
We also have

JE<lim Ty y.2) (12)

Combining (8), (11), and (12), we obtain
f=T%-1)=T(Jo) (13)
Let 7, = (b, 13, 1%,. . .). Then from (8)—(10) and (13), we obtain, for all n,

lim Jy ., = J%,

JE(x) + &, VxeS with J§(x)> — oo,
In o (X) < .
o INm (X)) + &, VxeS with J¥(x)= — oo,
and the induction argument is complete. Q.E.D.

Despite the need for various assumptions in order to guarantee J% =
T(J,), the following result, which establishes the validity of the DP algo-
rithm as a means for constructing optimal policies, requires no assumption
other than monotonicity of H.

Proposition 3.3 A policy n* = (u§, u¥,. . .)is uniformly N-stage optimal
if and only if

(T TN ¥ 1(Jo) = TV ¥(Jo), k=0,...,N-1L (14)
Proof Let (14) hold. Then we have, for k=0,1,...,N — 1,

(Tye T JJo) = TV *(Jo).
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On the other hand, we have J{_, < (T Ty )(Jo), while TN MJ,) <
J% -k Hence,J§_, = (T,; - Ty, )(Jo)and n*isuniformly N-stage optimal.
Conversely, let 7* be uniformly N-stage optimal. Then

T =JT= MN ,(Jo)

by definition. We also have for every ueM, (T, T)(Jo) =(T,Tu_)(J,),
which implies that

T*(J,) = inf (T, T)(Jo) = mf(T,t wi /o)

= J2 - (TuN 2 uN_l)(JO) = Tz(JO)
Therefore
T*Jo)=J% = (Tw,_,Tur, )Jo) = (T _,T)(Jo)

Proceeding similarly, we show all the equations in (14). Q.E.D.
As a corollary of Proposition 3.3, we have the following.

Corollary 3.3.1 (a) There exists a uniformly N-stage optimal policy

if and only if the infimum in the relation
T**1(Jo)(x) = inf H[x,u, T*(Jo)] (15)

ueU(x)

is attained for each xeS and k=0,1,...,N — L.
(b) If there exists a uniformly N- stage optimal policy, then

JE = TNU,).

We now turn to establishing conditions for existence of a uniformly
N-stage optimal policy. For this we need compactness assumptions. If C is a
Hausdorff topological space, we say that a subset U of C is compact if every
collection of open sets that covers U has a finite subcollection that covers U.
The empty set in particular is considered to be compact. Any sequence {u,}
belonging to a compact set U < C has at least one accumulation point
ueU, ie., a point e U every (open) neighborhood of which contains an
infinite number of elements of {u,}. Furthermore, all accumulation points
of {u,} belong to U. If {U,} is a sequence of nonempty compact subsets of
Cand U, o U,,, for all n, then the intersection ﬂ ~, U, is nonempty and
compact. This yields the following lemma, which will be useful in what
follows.

Lemma 3.1 Let C be a Hausdorff space, f:C — R* a function, and
U a subset of C. Assume that the set U(4) defined by

UA) = {ueU|f(u) < A}

is compact for each A€ R. Then f attains a minimum over U.
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Proof If f(u) = oo for all ue U, then every ue U attains the minimum.
If f* = inf{ f(u)lue U} < oo, let {4,} be a scalar sequence such that A, > 4,
for all n and A, — f* Then the sets U(4,) are nonempty, compact, and
satisfy U(/,)  U(2,+,) for all n. Hence, the intersection (), U(4,) is
nonempty and compact. Let u* be any point in the intersection. Then
u* e U and f(u*) < 4, for all n, and it follows that f(u*) < f*. Hence, [
attains its minimum over U at u*. QED. -

Direct application of Corollary 3.3.1 and Lemma 3.1 yields the following
proposition.

Proposition 3.4 Let the control space C be a Hausdorff space and
assume that for each xe S, AeR, and k=0,1,...,N — 1, the set

Uix, 2) = {ue U(x)|H[x,u, TXJ,)] < A} (16)
is compact. Then
Ik = TJo),
and there exists a uniformly N-stage optimal policy.

The compactness of the sets Uy (x, 1) of (16) may be verified in a number
of important special cases. As an illustration, we state two sets of assumptions
which guarantee compactness of U,(x, A) in the case of the mapping

H(x,u,J) = g(x,u) + o(x, u)J[ f(x,u)]

corresponding to a deterministic optimal control problem (Section 2.3.1).
Assume that 0 < a(x,u), b < g(x,u) < co for some be R and all xe S,
u e U(x), and take J, = 0. Then compactness of U(x, 4) is guaranteed if:

(a) S = R"(n-dimensional Euclidean space), C=R", U(x) =C, f, g,
and « are continuous in (x,u), and g satisfies lim,, , g(x;, u,) = oo for every
bounded sequence {x,} and every sequence {u} for which |u| — oo (|-| is a
norm on R™);

(b) S=R", C=R" f, g, and o are continuous, U(x) is compact and
nonempty for each x € R", and U(-) is a continuous point-to-set mapping
from R" to the space of all nonempty compact subsets of R™. The metric on
this space is given by (3) of Appendix C.

The proof consists of verifying that the functions T*J,), k=0,1,...,
N — 1, are continuous, which in turn implies compactness of the sets U,(x, 4)
of (16). Additional results along the lines of Proposition 3.4 will be given
in Part II (cf. Corollary 8.5.2 and Proposition 8.6).
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3.3 Application to Specific Models

We will now apply the results of the previous section to the models
described in Section 2.3.

Stochastic Optimal Control—Outer Integral Formulation
Proposition 3.5 The mapping
H(x,u,J) = E*{g(x,u,w) + aJ[ f(x, u, w)]|x, u} (17)
of Section 2.3.3 satisfies Assumptions F.2 and F.3.
Proof We have
H(x,u,J) = f*{g(x, u,w) + aJ[ f(x, u, w)]}p(dwlx, u),

where [* denotes the outer integral as in Appendix A. From Lemma A.3(b)
we obtain for all xe S, ueC,JeF, r > 0,

H(x,u,J) < H(x,u,J + r) < H(x,u,J) + 2or.

Hence, F.2 is satisfied.
We now show F.3. Let JeF, {J,} = F, {¢,} = R satisfy Y% ¢, < o0,
&, > 0, and for all n,

J=limJ,, J<J, (18)

T (x) < J(x) + &, ?f J(x) > — o0, (19)
Jo1(x)+e, if J(x)= —oo, (20)

H(x,u,J;) < oo, VxeS, ueU(x). (21)

Let {&,} = M be such that for all n,

T(J)(x) + &, if TJ)(x)> — o0, (22)
TalJ)x) < {— /e, it TU)x) = — oo, 23)
To(J)< Ty (J). (24)

Consider the set
A(J) = {x € S|there exists u € U(x) with p*({w|J[ f(x,u,w)] = — o }|x,u) > 0},
where p* denotes p-outer measure (see Appendix A). Let i € M be such that

PHAWILS (6 i(x), w)] = — o0}

x,f(x)) >0 VxeA(J). (25)
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Define for all n

C(E) i xed(),
”"(X)_{zzn(x) it x¢AW). (26)

We will show that {u,} thus defined satisfies the requirement of F.3 with
=1+ 2a.

For xe A(J), we have, from Corollary A.1.1 and (18)—(21),

limsup T, (J,)(x) = limsup Tz(J,)(X)

n— oo n— oo

= limsup f *{glx ), W] + o [, ), w)]}

n—oo

x, ()
= " {gLx 700, w] + I [ £ BCo, )] }p(dw

x p(dw

X, {(x)).

It follows from Lemma A.3(g) and the fact that T;(J)(x) < oo [cf. (18) and
(21)] that

lim sub T,.(J)(x) = —o0 < T(J)(x). 27

For x ¢ A(J), we have, for all n,
P({WI LS (%, palx), W)] = — 00}|x, (X)) = 0.
Take B,e Z to contain {w|J[ f(x, u,(x),w)] = — oo} and satisfy
P(By|X, ua(x)) =0 Vn.
Using Lemma A.3(e) and (b) and (19), we have

T, (0000 = [ 2w -, 0G0 100 w] + 2 u[FGe (). )] (i, ()

< " w50 0% a0 w] + LS pa(x), W]}

x p(dw

X, Un(X)) + 208,
=T, (J)x)+ 2ae,. (28)

Hence, for x ¢ A(J) we have from (28), (22), and (23) that
limsup T, (J,)(x) < limsup T, (J)(x) = T(J)(x).

n— oo n= oo

Combining (27) and this relation we obtain

limsup T, (J,)(x) < T(J)(x) VxeS,

n— oo
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and since T, (J,) = T(J) for all n, it follows that
lim T, (J,) = T(J). (29)
If x is such that T(J)(x) > — oo, it follows from (27) and (29) that we
must have x¢ A(J). Hence, from (28), (22), and Lemma A.3(b),

T, J)x)<T, (J)x)4+ 20, < T(J)(x)+ (1 + 20)¢, if T(J)(x)> —oo.
(30)
If x is such that T(J)(x) = — oo, there are two possibilities:

(a) x¢A(J)and
(b) xeA(J).

If x ¢ A(J), it follows from (28), (24), and (18) that

T, (J)x)< T, (J)x)+ 20, < T, _ (J)x)+ 2ae,
< T, (Juo1)(X) + 208,. (31)

If xe A(J), then by (18)—(20) and Lemma A.3(b),

T, U0 = [ gl B0x), w] + o[£, ), w)]}plaw

X, A(x))

< " gl B0, W] + o[ Bx) )]l BX) + 2,
=T, Uae 1)) + 206, (32)

It follows now from (29)—(32) that {u,} satisfies the requirement of F.3
withf=1+420.  Q.E.D.

As mentioned earlier, mapping (17) contains as special cases the mappings
of Sections 2.3.1 and 2.3.2. In fact, for those mappings F.1 is satisfied as
well, as the reader may easily verify by using the monotone covergence
theorem for ordinary integration.

Direct application of the results of the previous section and Proposition
3.5 yields the following.

Corollary 3.5.1 Let H be mapping (17) and let Jy(x) = 0 for VxeS.

(@) If Jp .(x) < oo for all xeS§, nell, and k=1,2,...,N, then J% =
T™(J,) and for each sequence {¢,} with ¢, 10, &, > 0 for Vn, there exists a
sequence of policies {m,} exhibiting {e,}-dominated convergence to
optimality. In particular, if in addition J§(x) > — oo for all xe S, then for
every ¢ > 0 there exists an e-optimal policy.

(b) IfJ¥(x)> —oo forall xeS, k=1,2,...,N, then J§ = T"(J,) and
for each ¢ > 0 there exists an N-stage e-optimal policy.

(c) Propositions 3.3 and 3.4 and Corollary 3.3.1 apply.
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As Counterexample 3 in the previous section shows, it is possible to have
J% # TN(J,) in the stochastic optimal control problem if the assumptions
of parts (a) and (b) of Corollary 3.5.1 are not satisfied. Naturally for special
classes of problems it may be possible to guarantee the equality J§ = T"(J,)
in other ways. For example, if the problem is such that existence of a uni-
formly N-stage optimal policy is assured, then we obtain J§ = T"(J,) via
Corollary 3.3.1(b). An important special case where we have J§ = T"(J,)
without any further assumptions is the deterministic optimal control problem
of Section 2.3.1. This fact can be easily verified by the reader by using essen-
tially the same argument as the one used to prove Proposition 3.1(a).
However, if J%(x) = — co for some x€ S, even in the deterministic problem
there may not exist an N-stage e-optimal policy for a given ¢ (see Counter-
example 4).

Stochastic Optimal Control—Multiplicative Cost Functional
Proposition 3.6 The mapping
H(x,u,J) = E{g(x,u, w)J[ f(x,u,w)]|x,u} (33)

of Section 2.3.4 satisfies F.1. If there exists a be R such that 0 < g(x,u,w) < b
for all xe S, ue U(x), we W, then H satisfies F.2.

Proof Assumption F.1 is satisfied by virtue of the monotone con-
vergence theorem for ordinary integration (recall that W is countable). Also,
if 0 < g(x,u,w) < b, we have for every Je F and r > 0,

H(x,u,J + r) = E{g(x,u,w)(J[f(x,u,w)] + 1)
= E{g(x,u, W)J[ f(x,u, w)]|x,u} + rE{g(x,u, w)|x, u}.
Thus F.2 is satisfied with o = b. Q.E.D.

X, u}

By combining Propositions 3.6 and 3.1, we obtain the following.

Corollary 3.6.1 Let H be the mapping (33) and Jy(x) =1 for VxeS.

(@) IfJ, .(x)< oo forall xeS, nell,k=1,2,...,N, then J§ = T"(J,).

(b) Ifthereexistsabe Rsuchthat0 < g(x,u,w) < bforall xe S, ue U(x),
we W, then J% = TN(J,) and there exists an N-stage ¢-optimal policy.

(c) Propositions 3.3 and 3.4 and Corollary 3.3.1 apply.

We now provide two counterexamples showing that the conclusions of
parts (a) and (b) of Corollary 3.6.1 may fail to hold if the corresponding
assumptions are relaxed.

COUNTEREXAMPLE 5 Let everything be as in Counterexample 3 except
that C = (0, o0) instead of C = R (and, of course, J,(0) = Jo(1) = 1 instead
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of J5(0) = Jo(1) = 0). Then a straightforward calculation shows that J%(0) =
o, J3(1) =0, while T*(J,)(0) = T*(J,)(1) = 0. Here the assumption that
Ji 2(x) < oo for all x, 7, k is violated, and g is unbounded above.

COUNTEREXAMPLE 6 Let everything be as in Counterexample 4 except
for the definition of g. Take g(0,u) = u for Yue U(0) and g(x,u) = x for
Yue U(x) if x # 0. Then for every neIl we have J, .(x) = xu,(0) for every
x # 0, and J}(x) = 0 for Vx € S. On the other hand, there is no two-stage
¢-optimal policy for any ¢ > 0. Here the assumption J,  (x) < oo for all
x,m k is satisfied, and indeed we have J%(x) = T*(J,)(x) =0 for VxeS.
However, g is unbounded above.

Minimax Control
Proposition 3.7 The mapping
Hx,u,J)= sup {g(x,u,w)+aJ[f(x,u,w)]} (34)

weW(x, u)
of Section 2.3.5 satisfies F.2.
Proof We have forr > 0and JeF,

H(x,u,J +r)=sup {g(x,u,w)+ aJ[ f(x,u,w)] + ar}

we W(x,u)
=H(x,u,J) + ar. Q.E.D.
Corollary 3.7.1 Let H be mapping (34) and J,(x) = O for VxeS.

(@) IfJ¥(x)> —ooforall xeS, k=1,2,...,N, then J§ = TV(J,), and
for each & > 0 there exists an N-stage e-optimal policy.
~ (b) Propositions 3.3 and 3.4 and Corollary 3.3.1 apply.

If we have Jif(x) = — oo for some xeS, then it is clearly possible that
there exists no N-stage e-optimal policy for a given ¢ > 0, since this is true
even for deterministic optimal control problems (Counterexample 4). It is
also possible to construct examples very similar to Counterexample 3 which
show that it is possible to have J% # TN(J,) if J¥(x) = — oo for some x
and k.



Chapter 4

Infinite Horizon Models under a
Contraction Assumption

4.1 General Remarks and Assumptions

Consider the infinite horizon problem

minimize J,(x) = im (T, Ty, Ty )(J0)(X)

N— o
subject to © = (ug, uy,- - .)€ Il

The following assumption is motivated by the contraction property of the
mapping associated with discounted stochastic optimal control problems
with bounded cost per stage (cf. DPSC, Chapter 6).

Assumption C (Contraction Assumption) There is a closed subset B
of the space B (Banach space of all bounded real-valued functions on S with
the supremum norm) such that J, e B, and for all J € B, ue M, the functions
T(J) and T ,(J) belong to B. Furthermore, for every m = (o, iy, - . .)€ I, the
limit

im (T, T, Tuy_ JJo)x) (1)

N—-w

52
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exists and is a real number for each x € S. In addition, there exists a positive
integer m and scalars p, o, with 0 < p < 1, 0 < o, such that

ITfJ) = T )| <allJ = ||  VYueM, J,JeB, 2)
(T o T T ) = (Tuo Ty T Y| < pI = 7
Vios- - fim_ €M, J,J'€B. (3)

Condition (3) implies that the mapping (T, T, - - T, _)is a contraction
mapping in B for all y,eM, k =0,1,...,m — 1. When m = 1, the mapping
T, is a contraction mapping for each ue M. Note that (2) is required to hold
on a possibly larger set of functions than (3). It is often convenient to take
B = B. This is the case for the problems of Sections 2.3.1, 2.3.2, and 2.3.5
assuming that « < 1 and g is uniformly bounded above and below. We will
demonstrate this fact in Section 4.4. In other problems such as, for example,
the one of Section 2.3.3, the contraction property (3) can be verified only on
a strict subset B of B.

4.2 Convergence and Existence Results

We first provide some preliminary results in the following proposition.

Proposition 4.1 Let Assumption C hold. Then:
(a) Forevery Je B and nell, we have

Jo=1Im(T,, Ty, )Jo)= im (T, - T,, )J)
N-w N-

(b) For each positive integer N and each J € B, we have
inf(T,, Ty )J)=TVJ)
nell

and, in particular,
¥=1nf (T, Tyup )Jo) = TVJo).

nell
(c) The mappings 1™ and T}, ue M, are contraction mappings in B
with modulus p, ie.,
|Tm(J) — ()| < pl|J = T vJ,J eB,
| Tm(J) — o) < pl|J = I VvJ,J'eB, ueM.

Proof (a) For any integer k > 0, write k = nm + g, where ¢, n are
nonnegative integers and 0 < g < m. Then for any J, J'e B, using (2) and (3),
we obtain

Ty T I = (T

0

T | < ] =

l

Ko
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from which, by taking the limit as k (and hence also n) tends to infinity, we
have
Im(T,, Ty )Jo) = Im(T - - Ty, )J) vJeB.
k— k=0
(b) Since TXJ)e B for all k by assumption, we have TJ)(x) > — o0
for all xe S and k. For any ¢ > 0, let e M, k = 0,1,...,N — 1, be such that

Ta ()< TU) +5,
(Tay-» )(J)<T2(J)+8

(Tz, TN 1Y) s VW) + e
Using (2) we obtain
TJ) 2 (T3, TV HJ) — ¢
> Tp,[(TR, TV ?)J) —e] — ¢
>(T TN ")(J)—oe—¢

ot A1

= (TﬁoTﬁl ’ #N 1(") <

g

P
> inf(T,, " Ty JJ) — < Y oc"s).
nell k=0
Since ¢ > 0 is arbitrary, it follows that
TVJ) = inf(T,, Ty JU)-
nell
The reverse inequality clearly holds and the result follows.

(c) The fact that T is a contraction mappmg is immediate from (3).
We also have from (3) for all yeM, k=0,. —1,and J,J' €B,

(Tro T I < (T T 0 + ol 1.

Taking the infimum of both sides over y, e M, k=0, 1,...,m— 1, and
using part (b) we obtain

™(J) < T™J') + p||J — J'|I.

o

A symmetric argument yields
™(J") < T™(J) + p||J — J||.

Combining the two inequalities, we obtain ||T™(J)
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In what follows we shall make use of the following fixed point theorem.
(See [OS, p. 383]—the proof found there can be generalized to Banach
spaces.)

Fixed Point Theorem If Bis a closed subset of a Banach space with norm
denoted by ||-||and L: B — Bis a mapping such that for some positive integer
mand scalar pe(0,1), ||[L™(z) — L™(z)|| < p||z — 2| for all z, z’ € B, then L has
a unique fixed point in B, i.e., there exists a unique vector z*e B such that
L(z*) = z*. Furthermore, for every ze B, we have

lim [|L¥(z) — 2%|| = 0.
N-w

The following proposition characterizes the optimal cost function J* and
the cost function J, corresponding to any stationary policy (u, p, . . .)eIL It
also shows that these functions can be obtained in the limit via successive
application of T and T, on any Je B.

Proposition 4.2 Let Assumption C hold. Then:

(a) The optimal cost function J* belongs to B and is the unique fixed
point of T within B, ie., J* = T(J*), andif J'e Band J' = T(J'),thenJ’ = J*,
Furthermore, if J'€ Bis such that T(J') < J', then J* < J', whileif J' < T(J",
then J' < J*.

(b) Forevery ue M, the function J, belongs to B and is the unique fixed
point of T, within B.

(c) There holds

lim ||[TV(J)~ J*|=0 VJeB,

N—-oo .

lim ||[TY(J)~J,|=0 VJeB, ueM.
N-w

Proof From part (c) of Proposition 4.1 and the fixed point theorem, we
have that T and T, have unique fixed points in B. The fixed point of T, is
c]earlz J,.» and hence part (b) is proved. Let J* be the fixed point of T. We
have J* = T(J*). For any > 0, take fie M such that

Tﬁ(j*) < J* +3.
From (2) it follows that T2(J*) < T + 08 < T* + (1 + o). Continuing
in the same manner, we obtain
T,'—I'(f*)sf* A4+ +oam Ve
Using (3) we have
T2(J%) < T2 + p(l + o+ + o™ 1)
Sj*-l—(l+P)(1+ot+"-+o(’”_1)§'
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Proceeding similarly, we obtain, for all k > 1,
TEM(J*)SJ* +(1 +p+"'+p"‘1)(1 +0€+"'+a’"")§,

Taking the limit as k — oo and using the fact that J, = lim,_ T’;,”‘(f *), we
have

~ 1
JﬁsJ*+m(1+a+---+a”“)§. )
Takingz= (1 — p)(1 + o + - + «™ )" !¢, we obtain
Ja<T* +e.

Since J* < J; and ¢ > 0 is arbitrary, we see that J* < J*. We also have
J* = inf lim (T, T,y )% = lim TVJ*) = J*.

nellN->w© N-©
Hence J* = J* and J* is the unique fixed point of T. Part (c) follows imme-
diately from the fixed point theorem. The remaining part of (a) follows easily
from part (c) and the monotonicity of the mapping T. Q.ED.

The next proposition relates to the existence and characterization of
stationary optimal policies.
Proposition 4.3 Let Assumption C hold. Then:
(a) A stationary policy n* = (u*,u*,...)eIl is optimal if and only if
T (J*) = T(J*).
Equivalently, n* is optimal if and only if
T”*(J#*) = T(Jﬂ*).
(b) Iffor each xS there exists a policy which is optimal at x, then there
exists a stationary optimal policy.

(c) For any &> 0, there exists a stationary e-optimal policy, ie., a
7, = (Ue, U, - - -) € I1 such that

”J* - JusH <é

Proof (a) If n* is optimal, then J,. = J* and the result follows from
parts (a) and (b) of Proposition 4.2. If T .(J*) = T(J*), then T ,(J*)=J%,
and hence J,. = J* by part (b) of Proposition 4.2. If T .(J,.) = T(J »), then
Js»=T(,) and J,. = J* by part (a) of Proposition 4.2.

(b) Let ¥ = (4§, U¥.»- - -) be a policy which is optimal at xe S. Then
using part (a) of Proposition 4.1 and part (a) of Proposition 4.2, we have

J*(x) = J"i(x) = :Lm (T - Tu;‘x)(Jo)(X)

=1lim(T, - T, )J*)(X)

k—

> lim (T TYUH)(x) = Ty (J*)(x) 2 TI*)(x) = J*(x).

k=0
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Hence T jx (J*)(x) = T(J*)(x)for each x. Define p* € M by means of pu*(x) =
18 (x). Then T «(J*) = T(J*) and the stationary policy (u*, u*,. . .)is optimal
by part (a).

(c) This part was proved earlier in the proof of part (a) of Proposition
4.2 [cf. (4)]. Q.E.D.

Part (a) of Proposition 4.3 shows that there exists a stationary optimal
policy if and only if the infimum is attained for every x €S in the optimality
equation

JE*x)=TJ*)(x)= inf H(x,u,J*).
ueU(x)
Thus if the set U(x) is a finite set for each x € S, then there exists a stationary
optimal policy. The following proposition strengthens this result and also
shows that stationary optimal policies may be obtained in the limit from
finite horizon optimal policies via the DP algorithm, which for any given
J e B successively computes T(J), T2(J),. . ..

Proposition 4.4 Let Assumption C hold and assume that the control
space C is a Hausdorff space. Assume further that for some J € B and some
positive integer k, the sets

Uix,2) = {ue U(x)|H[x,u, THJ)] < 2} (5)

are compact for all xe S, Ae R, and k > k. Then:

(a) There exists a policy n* = (u§, uf,. . .)e Il attaining the infimum for
all xe S and k > k in the DP algorithm with initial function J, i.e.,

(TuTHI) = T () vk>E (6)

(b) There exists a stationary optimal policy.

(c) For every policy n* satisfying (6), the sequence {uf(x)} has at least
one accumulation point for each xeS.

(d) Ifp*:S — Cissuch that u*(x)is an accumulation point of { u(x)} for
each xe S, then the stationary policy (u*, u*,. . .) is optimal.

Proof (a) We have
T '(J)(x) = inf H[x,u, THJ)],

ueU(x)

and the result follows from compactness of sets (5) and Lemma 3.1.
(b) This part will follow immediately once we prove (c) and (d).
(c) Let 7* = (ug,uf,...) satisfy (6) and define

ee=sup{||T(J) = J*||i=k}, k=0,1,....
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We have from (2), (6), and the fact that T(J*) = J*,

[T T = 4 = [T 10) = TO)]
<do|TJ)-J*| Vn=k,
(T T = (T THW) < 2 TH0) — THO)|
< | T°(J) = J*|| + of|THJ) — T
va>k k=01,....
From these two relations we obtain

H[x, p(x), TX)] < Hx, (), T(J)] + 2,
< J*x)+30g, Vn=k k=>k
It follows that p*(x)e U,[x, J*(x) + 3ag,] forall n > kand k > k, and {p¥(x)}
has an accumulation point by the compactness of U,[x, J*(x) + 30¢;].

(d) If p*(x) is an accumulation point of {u¥(x)}, then p*(x)e
Ui[x, J*(x) + 3ag,] for all k >k, or equivalently,

(T THI)(x) < J*(x) + 308, VxeS, k=k
By using (2), we have, for all k,
(T THI) = T W(J¥)|| < of| THY) — JH| < gy
Combining the preceding two inequalities, we obtain
T (T *)(x) < J*(x) + 4oy, VxeS, k>k.

Since ¢, — 0 [cf. Proposition 4.2(c)], we obtain T ,(J*) < J*. Using the fact
that J* = T(J*) < T,.(J*), we obtain T,(J*)=J* which implies by
Proposition 4.3 that the stationary policy (u*, u*,. . .) is optimal. Q.E.D.

Examples where compactness of sets (5) can be verified were given at the
end of Section 3.2. Another example is the lower semicontinuous stochastic
optimal control model of Section 8.3.

4.3 Computational Methods

There are a number of computational methods which can be used to
obtain the optimal cost function J* and optimal or nearly optimal stationary
policies. Naturally, these methods will be useful in practice only if they
require a finite number of arithmetic operations. Thus, while “theoretical”
algorithms which require an infinite number of arithmetic operations are of
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some interest, in practice we must modify these algorithms so that they
become computationally implementable. In the algorithms we provide, we
assume that for any J€ B and ¢ > 0 there is available a computational
method which determines in a finite number of arithmetic operations func-
tions J,e B and p, e M such that

J.<TWJ) +e¢, T,J)<T{J)+e.

For many problems of interest, S is a compact subset of a Euclidean space,
and such procedures may be based on discretization of the state space or the
control space (or both) and piecewise constant approximations of various
functions (see e.g., DPSC, Section 5.2). Based on this assumption (the limita-
tions of which we fully realize), we shall provide computationally implement-
able versions of all “theoretical” algorithms we consider.

4.3.1 Successive Approximation

The successive approximation method consists of choosing a starting
function Je B and computing successively T(J), T*(J),.. ., T4J),... . By
part (c) of Proposition 4.2, we have lim,_, ,, || T%(J) — J*|| = 0, and hence we
obtain in the limit the optimal cost function J*. Subsequently, stationary
optimal policies (if any exist) may be obtained by minimization for each
x € S in the optimality equation

J¥(x) = inf H(x,u,J*).

xeU(x)

If this minimization cannot be carried out exactly or if only an approximation
to J*is available, then nearly optimal stationary policies can still be obtained,
as the following proposition shows.

Proposition 4.5 Let Assumption C hold and assume that J*e B and
neM are such that

|T* = J*| <&,  TJ%<TUT* +e,,
where ¢; > 0, &, > 0 are scalars. Then
J*< T, <T* 4 [(Quey + &)1 +a+ -+ o™ H/(1 — p)].
Proof Using (2) we obtain
T (J*) — oy < T,(J*) < T(T*) + &, < TU*) + (08, + &),

and it follows that
T,(J*) < J* + (2ue; + &)



60 4. INFINITE HORIZON MODELS UNDER A CONTRACTION ASSUMPTION

Using this inequality and an argument identical to the one used to prove (4)
in Proposition 4.2, we obtain our result. Q.E.D.

An interesting corollary of this proposition is the following.

Corollary 4.5.1 Let Assumption C hold and assume that S is a finite
set and U(x) is a finite set for each x e S. Then the successive approximation
method yields an optimal stationary policy after a finite number of iterations
in the sense that, for a given J e B, if n* = (u§, u¥,. . .)e Il is such that

(TyTHJ)=TJ),  k=01,...,

then there exists an integer k such that the stationary policy (uf, uf,. . .) is
optimal for every k > k.

Proof Under our finiteness assumptions, the set M is a finite set. Hence
there exists a scalar ¢* > 0 such that J, < J* + ¢* implies that (u,4,...) is
optimal. Take k sufficiently large so that ||T%(J) — J*|| <% for all k >k,
where 7 satisfies 202(1 + o 4+ - - - + o™ " 1)(1 — p)~! < &* and use Proposition
45. Q.E.D.

The successive approximation scheme can be sharpened considerably by
making use of the monotonic error bounds of the following proposition.

Proposition 4.6 Let Assumption C hold and assume that for all scalars
r#0, JeB, and xeS, we have

o2y < [T"(J + 1)(x) — T"I)X)]/r < oz, ()

where o, o, are two scalars satisfying 0 < o; < a, < 1. Then for all J€B,
xeS,and k=1,2,..., we have '

T*(J)(x) + by < T*FD™(J)(x) + b+ 1
< JHx) < TEI™(J)(x) + by < T(U)(x) + by, (8)
where

bk = mln|: al dk,‘(xz——dkjl, Ek = max[i‘ak, 0‘2 Hki|,

1—0(1 1—0(2 1—0(1 1—052

di = inf[T*"(J)(x) — T* " D"U)(x)], dy= sup[ T*"(J)(x) — T*~D"(J)(x)].
xeS xeS

Note If B = B we can always take o, = p, ; = 0, but sharper bounds
are obtained if scalars o; and «, with 0 < o; and/or o, < p are available.

Proof It is sufficient to prove (8) for k = 1, since the result for k > 1
then follows by replacing J by T®~Y™(J). In order to simplify the notation,
we assume m = 1. In order to prove the result for the general case simply
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replace T by T™ in the following arguments. We also use the notation
d, =d, d, =4d, d,=4d, d,=d.
Relation (7) may also be written (for m = 1) as
T(J) + min[a;r,0,r] < T(J + 1) < T(J) + max[a,r, o,r]. ©)
We have for all xe S,
J(x) + d < T(J)(x). (10)
Applying T on both sides of (10) and using (9) and (10), we obtain
J(x) + min[d + oyd,d + a,d] < T(J)(x) + min[a,d, 0,d]
< T(J + d)(x) < T*J)(x). (11)
By adding min[a$d, a3d] to each side of these inequalities, using (9) (with J
replaced by T(J) and r = min[«,d, «,d ]), and then again (11), we obtain
J(x)+min[d+o;d+oid, d+o,d+a3d] < T(J)(x)+min[o,d+old, ayd+o3d]
< T*(J)(x)+min[e}d, a3d]
<T[T(J)+min[a,d, 0,d]](x)
< T3J)(x).
Proceeding similarly, we have for every k=1,2,.. .,
k k k k
J(x) + min[i;0 oid, i;O ocizd] < T(J)(x) + min [ ; Z aiZdJ
<+ < THJ)(x) + min[okd, d5d]
T 1(J )()-

Taking the limit as k — oo, we have

J(x) + min[ d, —I——d] < TU)(x) + min[ S N d]
1—o; "1 —0,

l—o; 1 —oay

o? o2
< T*J)(x) + min| ——d, —2—4d
l—ay 1—oa,

< J*(x). (12)
Also, we have from (11) that

min[o;d,o,d] < T*(J)(x) — T(J)(x),
and by taking the infinum over x e S, we see that

min[o;d,a,d] < d.
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It is easy to see that this relation implies

2 2
min| =4 —*2 4| < min| 24, 22 q'|. (13)
1l—oy 1—oy 1—0o; 1—a,

Combining (12) and (13) and using the definition of b, and b,, we obtain
TJ)(x) + by < T*(J)(x) + b,.

Also from (12) we have T(J)(x) + b; < J*(x), and an identical argument
shows that T*(J)(x) + b, < J*(x). Hence the left part of (8) is proved for
k=1, m=1. The right part follows by an entirely similar argument. =~ Q.E.D.

Notice that the scalars b, and b, in (8) are readily available as a byproduct
‘of the computation. Computational examples and further discussion of the
error bounds of Proposition 4.6 may be found in DPSC, Section 6.2.

By using the error bounds of Proposition 4.6, we can obtain J* to an
arbitrary prespecified degree of accuracy in a finite number of iterations of
the successive approximation method. However, we still do not have an
implementable algorithm, since Proposition 4.6 requires the exact values
of the functions T*(J). Approximations to T*(J) may, however, be obtained
in a computationally implementable manner as shown in the following
proposition, which also yields error bounds similar to those of Proposition
4.6.

Proposition 4.7 Let Assumption C hold. For a given J eBand ¢>0,
consider a sequence {J,} = B satisfying

TU)<J, <TUJ)+e,
TU) < Jesr < TU) +6  k=12....
Then
|| T(J) = Tl <8 k=0,1,..., (14)
where
t=ce¢(l+a+ - +a" /1A -p)

Furthermore, if the assumptions of Proposition 4.6 hold, then for all xeS§
andk=1,2,...

Jim(%) + P < J*(x) < Jjem(X) + Ek,

where

k= min Lék, _az_(sk _E, Bk = max il Sk, %2 Sk +§,
1-0(1 1—0(2 1—0(1 1—0(2

O = ing[ka(x) — Jg- ymX)] — 25, O = Su?[‘]km(x) — - pm¥)] + 22
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Proof We have
In S Tp-1) + e < T[T(Jp-y) + €] +¢
ST Jpz)+ (1 + )
ST TUn-3)+e] + (1 + )
ST po3) + (1 + o+ a?)e

é T M)+ 0 +a+-+oa" 2
ST +A+a+-+om Ve
An identical argument yields
Jom S T™(Jp) +(L+ o+ + o™ Ve,
and we also have
| T"(J) — T*™(J)|| < ol Jm — T™J)||.
Using the preceding three inequalities we obtain
[Tam = T < Vom — Tl + [ T"(J) = T2m(J)]|
<A +pel+a+---+am 1),
Proceeding similarly we obtain, for k = 1,2,. . .,
[Jim = T (D[ <A+ p+ -+ pF De(l 4o+ + oLy,
and (14) follows. The remaining part of the proposition follows by using (14)
and the error bounds of Proposition 4.6. QE.D.

Proposition 4.7 provides the basis for a computationally feasible algo-
rithm to determine J* to an arbitrary degree of accuracy, and nearly optimal
stationary policies can be obtained using the result of Proposition 4.5.

4.3.2  Policy Iteration

The policy iteration algorithm in its theoretical form proceeds as follows.
An initial function pu, € M is chosen, the corresponding cost function J o 18
computed, and a new function u, e M satisfying T,(J,)=T(,,) is ob-
tained. More generally, given w, € M, one computes J . and a function y; . €
M satisfying T, , (J,,) = T(J,,), and the process is repeated. When S is a
finite set and U(x) is a finite set for each xS, one can often compute J,,
in a finite number of arithmetic operations, and the algorithm can be carried
out in a computationally implementable manner. Under these circumstances,
one obtains an optimal stationary policy in a finite number of iterations,
as the following proposition shows.
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Proposition 4.8 Let Assumption C hold and assume that § is a finite
set and U(x) is a finite set for each xeS. Then for any starting function
Uo €M, the policy iteration algorithm yields a stationary optimal policy
after a finite number of iterations, i.e., if - ,uk} is the generated sequence, there
exists an integer k such that (uy, g, . . .) is optimal for all k > k.

Proof We have, for all k,
V) =TU,)<T,J,)=J

#k+1

Applying T, ., repeatedly on both sides, we obtain
Thee V) < T2\ ) < ST V) = TU)
<Ju = 1,2,... (15)
By Proposition 4.2,
hm T ) = s s (16)
so J <J

Hi+1 — ¥ Uk

If (g, g . -) is an optimal policy, then J,, . =J, =J* and (41,
Ui+ 1,- - -)is also optimal. Otherwise, we must have J, , ,(x) < J,, (x) for some
xeS, forifJ,, . =J,., then from (15) and (16) we have T(J,,) = J,,. which
implies the optimality of (t, f, - - .). Hence, either (i, i, - . .) is optimal or
else (Ux+ 1> Uit 1-- - -) 1S @ strictly better policy. Since the set M is finite under

our assumptions, the result follows. Q.ED.

When S and U(x) are not finite sets, the policy iteration algorithm must
be modified for a number of reasons. First, given y,, there may not exist a
s such that T, . (J,,) = T(J,,). Second, even if such a g, ., exists, it may
not be possible to obtaln T,..,J,) and J, in a computationally imple-
mentable manner. For these reasons we consider the following modified
policy iteration algorithm.

Step I Choose a function uoe M and positive scalars y, ¢, and e.
Step 2 Given ye M, find J, e B such that ||J,, — J, || < 70"
Step 3 Find gy, €M such that || T, ,(J) — T(J,)|| < 0% If
1T T = Tl < 2
stop. Otherwise, replace p, by g+ and return to Step 2.

Notice that Steps 2 and 3 of the algorithm are computationally im-
plementable. The next proposition establishes the validity of the algorithm.

Proposition 4.9 Let Assumption C hold. Then the modified policy
iteration algorithm terminates in a finite, say k, number of iterations, and
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the final function gz satisfies
€+ 6p)(l+ o+ +am Y
1—-p '

Proof We first show that if the algorithm terminates at the kth iteration,
then (17) holds. Indeed we have

[z = I < 90" + (17)

1Tz = el < 705, (18)
T e T ) — T )| < 30, (19)
1Tz i) = Tl < & (20)

For any positive integer n, we have
Wie = 7 < Viw = Tl + IT") = T"Ti)l| + -
B PR A R
From this relation we obtain, for all n > 1,
Vo= <0+ p 4o+ 7T = T0 0] + [T0) = 7] D)
We also have
e = T < Ve = TTI + |1 T ) = T + -+
+ T T — T,
from which we obtain, by using (2),
[T = T"TD| <+ o+ + 0™ [T, — T(J ). (22)
Combining (21) and (22), we obtain, for all n > 1,
[Tue = J*| <L+ p+--+p" N0+ o+ + " YT, — T,
+ || T™(T ) = I
Taking the limit as n — oo, we obtain
Ve = J*[ <A+ o+ + 0" Y| T = TT /L = p).  (23)
Using (18), we also have
e = 41 < Wy = Toall + = 750 < 965+ 1T = ] 24
From (19) and (20) we obtain
1T = TU | < &+ 3p". (25)

By combining (23)—(25), we obtain (17).
To show that the algorithm will terminate in a finite number of iterations,
assume the contrary, ie., assume we have ||T,, . (J,) — J,|| > ¢ for all k,
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and the algorithm generates an infinite sequence {4} = M. We have, for all
k,

||Tllk+1(Jﬂk) - T(J#k)” = ”Tuk+1(‘]uk) - Tﬂk+1£jﬂk)|| _
+ ”Tuk+ 1(Jm<) - T(Juk)” + ”T(Jﬂk) - T(‘]uk)”
< (6 + 2ay)p*.
This relation yields, for all k,
T,. ) < T(J,)+ 6+ 209)0* < T, (J,,) + (8 + 2ap)p*

=J,. + (6 + 2up)p*. (26)
Applying T to both sides of (26) and using (26) again, we obtain
T2

Mk + 1

Hic+1
(Vi) < Ty, (J) + (6 + 209)p* < T(J ) + (1 + o)(S + 20p)p"
< Jp + (14 a)(S + 2ap)p~.

Proceeding similarly, we obtain, for all k,

T ) S TU ) + (L + o+ + o™ )8 + 20y)p"
ST+ @ +a++ o0 )G + 20p)pk.

Applying T7. . repeatedly to both sides, we obtain, for all n and k,
TV S TU) + T+ p+ 4 p" DL+ ot oo+ a0 + 2ap)p*.

27)
Denote

A= +o+- -+ "6+ 209)/(1 — p).
Then by taking the limit in (27) as n — co, we obtain
Jierr < TWU ) + 295 k=0,1,....
By repeatedly applying T to both sides, we obtain

T S Ty + A" 0 2p 004 p" 77 (28)
Let 7= (""'+ o™ 2p +---+ p™~1). Then (28) can be written as
T S T )+ 700" p=1,2, . (29)

Using (29) repeatedly, we have, for all n,
irm < T - ) + Zpnbm
< T'"[Tm(J#(n_z)m) + Zpn=Im] 4 Tl bm
=< sz(']#(,._z)m) + ‘/T[p("_ Dm pp(n—z)m]

tn

S Tnm(Ju0)+Z|:p(n—1)m+pp(n—Z)m+p2p(n—3)m_|_ +pn—1].
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Since p*p k"M < p"~1 for all k =0,1,...,n — 1, this inequality yields
J* S Jﬂnm S Tnm(‘]llo

Since lim,-,(np""!) =0 and lim,. ||T™(J,,) — J*|| = 0, the right side
tends to J* as n — oo, and it follows that

lim|J,, — J*|=0.

)+ np" 17, n=12,....

Since by construction

”Tﬂnm+ 1(jﬂnm) - jﬂnm” S HTﬂnm +’i(‘7/~lnm) - T(jﬂnm)”
+TU,,,,) = TU, I + (| T,,,) = T
+ [|J*I_ J“nm“ + “Jllnm - Jﬂnm”

<@ +oy+ )™+ (1 + o)

Knm

=

Hnm

we conclude that

lim ”T.unm+ l(jllnm) - :f = O'

Hnm

This contradicts our assumption that
”Tﬂk+1(jl-‘k) - jﬂk” > ¢
for every k. Q.E.D.

4.3.3 Mathematical Programming
Let the state space S be a finite set denoted by
S= {xlaxla' . 7xn}9

and assume B = B. From part (a) of Proposition 4.2, we have that whenever
JeB and J < T(J), then J < J*. Hence the values J*(x,),...,J*(x,) solve
the mathematical programming problem

n
maximize Y 4
i=1

subject to  /; < H(x;,u,J;), i=1....,n uelU(x),

where J, is the function taking values J,(x;) = 4;,i=1,...,n If U(x;) is a
finite set for each i, then this problem is a finite-dimensional (possibly non-
linear) programming problem having a finite number of inequality con-
straints. In fact, for the stochastic optimal control problem of Section 2.3.2,
this problem is a linear programming problem, as the reader can easily verify
(see also DPSC, Section 6.2). This linear program can be solved in a finite
number of arithmetic operations.
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4.4 Application to Specific Models

The results of the preceding sections apply in their entirety to the prob-
lems of Sections 2.3.3 and 2.3.5 if « < 1 and g is a nonnegative bounded
function. Under these circumstances Assumption C is satisfied, as we now
show.

Stochastic Optimal Control—Outer Integral Formulation
Proposition 4.10  Consider the mapping
H(x,u,J) = E*{g(x,u,w) + aJ[ f(x,u, w)]|x,u} (30)

of Section 2.3.3 and let Jo(x) = 0 for Vx e S. Assume that « < 1 and for some
beR there holds

0<gx,uw)<b VxeS, ueU(x), weW.

Then Assumption C is satisfied with B equal to the set of all nonnegative
functions J € B, the scalars in (2) and (3) equal to 2o and o, respectively, and
m=1.

Note If the special cases of the mappings of Sections 2.3.1 and 2.3.2 are
considered, then B can be taken equal to B, and the scalars in (2) and (3)
can both be taken equal to o.

Proof Clearly Joe Band T(J), T (J)e B forall J€ Band pe M. We also
have, for any 7 = (o, i1, - -) €11,

Jo< T, (Jo) < < (Tyy " Tp)Jo) S (Tyy - Ty o) <+

)

and hence limy_, (T, - T\ ,)(Jo)(x) exists for all x € S. It is also easy to
verify inductively using Lemma A.2 that

N-1
(T Tuy_ )X < Y db<b/(1 —a) VYxeS, N=12,....

k=0
Hence limy_ (T, - Ty~ )(Jo)(x) is a real number for every x.
We have for all xe 8§, J, J'e B, ue M, and we W,
glx, u(x), w] + aJ [ f(x, p(x), w)] < g[x, p(x), w]
+ aJ [ f(x, u(x), w)] + of|J = T (31)

Hence, using Lemma A.3(b),

E*{g[x, u(x), w] + aJ [ f(x, p(x), w)]|x, u}
< E*{g[x, u(x),w] + oJ [ f(x, u(x), w)]

xou} + 200 =T (32)



4.4 APPLICATION TO SPECIFIC MODELS 69

Hence
T (J)(x) — T (J)(x) < 24|J — J||.
A symmetric argument yields T ,(J')(x) — T (J)(x) < 2«||J — J'||. Therefore,
T (J)(x) = T, (J)x)| < 24|J — J Vxes, UeEM.
Taking the supremum of the left side over xe S, we have
T (J) = T I < 2] — T YueM, J,J'e€B, (33)

which shows that (2) holds.
If J,J eB, then from (31), Lemma A.2, and Lemma A.3(a), we obtain
in place of (32)

E*{g[x, u(x),w] + aJ [ f(x, u(x), w)]|x, u}
< E*{g[x, u(x), w] + oJ [ f(x, p(x), w)]|x, u} + of|J = T,

and proceeding as before, we obtain in place of (33)
IT(J)— T )| < o] =T YueM, J,J'eB.
This shows that (3) holds with p = a. Q.ED.

Minimax Control
Proposition 4.11  Consider the mapping
H(x,u,J) = sup {g(x,u,w)+ aJ[ flx,u,w)]} (34)
)

weW(x,u
of Section 2.3.5 and let Jo(x) = O for Vxe S. Assume that o < 1 and for some
beR, there holds

0<g(x,u,w)<bh VxeS, ueU(x), weW.

Then Assumption C is satisfied with B equal to B, m = 1, and the scalars in
(2) and (3) both equal to «.

Proof The proof is entirely similar to the one of Proposition 4.10.
Q.E.D.

For additional problems where the theory of this chapter is applicable,
we refer the reader to DPSC. An example of an interesting problem where
Assumption C is satisfied with m > 1 is the first passage problem described
in Section 7.4 of DPSC.



