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P{SI} = i!p{So} = t9::::::0.31579

P{S2} = i~p{So} = i8 ::::::0.23684

P{S3} = {6P{So} = i6 ::::::0.11842

~ 9
PC} = L: P{S,} = 16P{So} ::::::0.11842

1~4

1. Empty state

POOO = P{So} = n = 0.2105

2. Full state (no queue)

3. First hyperplane from the origin

4. Second hyperplane from the origin

PilO + PI01 + POli = P{S2} = -h = 0.23684

5. Balance of flow about state 001

P001{ 1:
1

total
upward
flow
rate

+ 1 } = Pooo(0.75) + 1·(Plol + POli)
1 1 ---------

total flow rate total
downward from 000 downward
flow to 001 flow into
rate state 00 I .------.....,,-----'".•

total flow out
of state 001

total fíow into state 001

6. Balance of flow about state 100
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(5.21b) 7. Balance of flow about state 011

(5.21c)
POII( 1:

1
total
upward
flow
rate
!

1
overflow
from
part of
unit l's
primary
response
area

+ 2 ) = I·PIII + POOI( 0.35 + 0.50) + POIO( 0.75 + 0.35)
1

total
downward
.lOW rate

1
flow rate
downward
from
state 111

1
upward
flow
from
unit 2's
primary
response
arca
1

(5.21d)

(5.21e)

t
total upward flow
from state 001

Using these results, we can now write the hypercube equilibrium equa-
ions for nonsaturated system states:

1
upward
f10w
from
unit l's

. primary
response
area
!

1
overflow
from
unit 2's
primary
response
area

~
total upward flow
from state 010

~
total flow out of state 011

L
total flow into state O li

(5.22)

8. Balance of flow about state 101

(5.23)

(5.28)

(5.29)

We solve this set of equations by eliminating the following variables, in
order, by use of the designated equations:

(5.24)
Variable E/iminated Using Equation Number

(5.25)

POOO
PIII
POOI
PIOO
Pala
PilO
POli
PIOI

(5.22)
(5.23)
(5.26)
(5.27)
(5.24)
(5.25)
(5.28)
(5.29)(5.26)

After about 15 or 20 minutes with an electronic hand calculator, we arrive at
the following values for the state probabilities:

(5.27)

POOO = 0.21053

POOI == 0.13669

POIO = 0.08863

PIOO = 0.09047
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Ps,« = 0.05301

PIOI = 0.08894

POli = 0.09489

PIII = 0.11842

5.4.4 System Performance Measures
(Infinite Line Capacity)

Now that we know how to obtain the steady-state probabilities of the
hypercube model, it is natural to inquire how to use these probabilities to
obtain values of useful system performance measures.

Workloads, We can immediately obtain the workloads of the individual
servers. The workload p, of server n, which is the fraction of time that server
n is busy, is equal to the sum of all steady-state probabilities having the
state of serve r n equal to 1 (rather than O) plus the fraction of time that a
queue exists (during which time all servers are working). Thus, for our three-
server example,

PI = POOI + PIOI + POli + PIII + P(J = 0.5574

P2 = POIO + Pi,« + POli + PIII + P(J = 0.4734

P3 = PIOO + Ps,« + PIO! + PIII + P(J = 0.4693

(5.30a)

(5.30b)

(5.30c)

These results check (to four significant figures) with the requirement that the
average workload P = ).j3J1. = 0.5. Note that the workload sharing among
response units caused the workloads of the units to be more evenly dis-
tributed than the workloads of the primary response areas; if each unit served
only the customers of its own response area, the workloads would have been
PI = 0.75, P2 = 0.35, P3 = 0.40. In fact, it is possible for a particular pri-
mary response area to generate more work than one unit could handle, and
workload sharing would facilitate the overftow (assuming, of course, that the
total system is not saturated, which in this case would require that the sum
of the À/s be less than 3).

Interatom dispatch frequencies, For virtually all non-workload-oriented per-
formance measures it is necessary to compute

Inl = fraction of all dispatches that send unit n to
geographical atomj C'EJn' = 1)

n, I
Let

Enl = set of states in which unit n is to be assigned any service
request from atom j (assigning any ties arbitrarily)
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For instance, in our three-server example, E21 = {OOJ, 101} and EII = {OOO,
010, 100, 1l0}. lf the system is in any state in the set Enl' then the fraction of
service requests that result in the dispatch of unit n to atom j is ÀI/À. So,
exc/uding delays in queue, the fraction of all dispatches that send unit n to
atomj i~ (ÀI/À), multiplie.d by the sum of probabilities of states in Enl' How-
ever, urut n çan also be dispatched to atom j from a queue of waiting service
requests. Thus, it is convenient to v.rite

(5.31)

where I~~I= fraction of alI dispatches that send unit n to atom j and
incur no queue delay

j~}1= fraction of all dispatches that send unit n to atom j and
incur a positive queue delay

As argued above, for nonsaturated states we have

(5.32)

The term I~}Iis equal to the product of three terms: (J) the probability
that a randomly arriving service request incurs a queue delay; (2) the condi-
tional probability that the request originated from atom j, given it incurs a
queue delay ; and (3) the conditional probabiJity that the request results in
the dispatch of unit n, given that it originates from atom j and incurs a queue
delay. Clearly, a queue delay will be incurred by any request arriving while
alI N response units are busy, and thus the first term is

P'o = P(J + r,
2N-I (5.33)

The second term is equal to the fraction of calls (À,/À) that are generated
from atomj, and is not dependent 011 the fact that a queue exists. To obtain
the third term we use the fact the queued calls are handled in a FCFS manner
or in some other manner that ignores the location of the service request and
the location of the responding unit (at the scene of the previous service
requ.est); thus, any of the N busy units is equally likely to be assigned to any
particular queued request, yielding a conditional probability of I/N. Surn-
marizing, we have

I~}I= Ài~Q (5.34)

and thus

(5.35)
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Given that we now know how to calculate the f./s from the state prob-
abilities, we can immediately obtain several related performance measures
of interest:

1. Fraction of total dispatches that are interresponse area

N

fI = L; L; r:
n= 1 Jf/. r espouae

area n

(5.36)

2. Fraction of díspatches of unit n that are interresponse area

(5.37)

3. Fraction of response area i requests that require other than unit i

L; L; r:
nyt:.{ j e respon se

fI - arca I
I, - N .

L; L; r:
n= 1 J E responae

aroa I

(5.38)

We ilIustrate each of these computations with our three-server example.
First computing the additive term associated with queued requests, we note
that P~ = 0.23684 and thus f~]l = 1/0.052631). Using this fact, we obtain
for fI I , for instance,

t., = 11(Pooo + POIO + PIOO + PIlO) + 11(0.052631)

= 0.25[0.6667(0.4426) + 0.052631]

= 0.08692

ln other words, about 8.7 percent of ali service requests are the type that
result in unit 1 being sent to atom 1. The fulI set of f./s is displayed in
Table 5-5.

Employing (5.36), the fraction of responses that are interresponse area
is 0.43529. This figure checks with our intuition which might argue, roughly,
that the fraction of intraresponse area responses would be equal to the average
availability (50 percent) plus one-third the probability of incurring a queue
delay (P~ = 0.23684), yielding a fraction of intraresponse area responses
equal to 0.57895, or a fraction of interresponse area responses equal to
0.42105. The actual figure of 0.435 is larger than that conjectured due to
workload imbalances, as we wilI argue in Section 5.6.
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TABlE 5-5 Matrix of interatom dispatch frequencias.t. 2

UNIT NUMBER (n)

Atom Number (j) 1 2 3 Total

0.07376 0.03760 0.01581 0.1272
0.08692 ) 0.05076 0.02897 0.1667

2 0.07376 0.03760 0.01581 0.1272
0.08692 0.05076 0.02897 0.1667

3 0.00944 0.03511 0.00633 0.0509
0.01470 0.04037 0.01159 0.0667

4 0.07376 0.01482 0.03860 0.1272
0.08692 0.02798 0.05176 0.1667

5 0.01416 0.05266 0.00949 0.0763
0.02205 0.06056 0.01738 0.1000

6 0.00944 0.03511 0.00633 0.0509
0.01470 0.04037 0.01159 0.0667

7 0.00957 0.00593 0.03538 0.0509
0.01483 0.01119 0.04064 0.0667

8 0.00957 0.00593 0.03538 0.0509
0.01483 0.01119 0.04064 0.0667

9 0.00957 0.00593 0.03538 0.0509
0.01483 0.01119 0.04064 0.0667

10 0.00957 0.00593 0.03538 0.0509
0.01483 0.01119 0.04064 0.0667

Total 0.2926 0.2366 0.2339 0.7632
0.3715 0.3157 0.3128 1.000

I Upper figure isf~~); lower figure isf.) = f~~) + f~~).
2 Column and row sums may not check exactly because of rounding.

Employing (5.37), the fraction of dispatches of unit I that are inter-
response area is 0.11077/0.3715 = 0.2982.

Employing (5.38), the fraction of responses into response area 1 that are
interresponse area responses is 0.23919/0.500 = 0.4784.

Thus, we see that the unit-specific frequency of interresponse area
responses can be significantly different from the response-area-specific fre-
quency. ln this case, fuIly (1.0 - 0.4784) X 100 percent = 52.16 percent of
response area l's workload is handled by unit 1, and thus 47.84 percent is
handled by units 2 and 3. But (1.0 - 0.2982) X 100 percent = 70.18 percent
of unit l's workload is within response area 1.

Travei times. Travei time is a central performance measure computed by the
hypercube model. Ali travei times are computed from a travei-time matrix
whose generic element is 'rIJ, the mean travei time from atom i to atom j.
The numerical values of the 'rlj's may reflect complications to travei such as

)
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one-way streets, barriers, traffic conditions, and so on. Thus, the time
required to travei from i to) may not be the same as the time to travei from
.to iand thus we allow 'rI) =F 'r)1' If no matrix of 'rl/s is obtainable ernpirically
or the period of time under study, then by specifying the centroid (XI' YI) of

each atom, one can approximate 'rli to be (I XI - x) 1+ IYI - Y) D/v, where v
is the effective response speed. One might wish to selectively override this
equation, particularly for the case i =I. in which case a simple area square-
root Iaw (see Chapter 3) might be used to estimate mean intraatom travei
ime. For our 3-unit example, for simplicity we have set v = 1 unit of distance
er minute and have used the right-angle distance metric (without overrides)
o obtain the travei-time matrix shown in Table 5-6.

TABLE 5-6 Interatom travei-time matrix for 3-unit example.

ATOM OF DESTINATION

Atom of 1
Origin 1 2 3 4 5 6 7 8 9 10

1 O 3 5 2 5 7 5 5 7 7
-- -- -- -- -- -- -- -- --

2 3 O 2 5 2 4 8 6 10 8
-- -- i---- -- -- -- -- I- --

3 5 2 O 7 4 2 10 8 12 10
-- -- -- i---- -- -- -- -- --

4 2 5 7 O 3 5 3 3 5 5
-- i---- -- -- -- I- -- -- --

5 5 2 4 3 O 2 6 4 8 6
-- i---- -- -- -- -- -- --

6 7 4 2 5 2 O 8 6 10 8
-- -- -- -- -- -- -- -- --

7 5 8 10 3 6 8 O 2 2 4
-- -- -- -- -- -- --

8 5 6 8 3 4 6 2 O 4 2
-- -- -- -- -- -- -- -- --

9 7 10 12 5 8 10 2 4 O 2
-- -- I- -- -- -- -- -- I-

10 7 8 10 5 6 8 4 2 2 O

To compute system mean travei times, we also require knowledge of the
location of a unit when dispatched to a request. In the hypercube framework,
the geographical depiction of the "location" of a response unit is general
enough to model the fixed locations of ambulances and emergency repair
vehicles and the mobile locations of poJice patrol units. This is accomplished
by specifying a location matrix L = (I.i)' where I.i is the probability that
response unit 11 is located in atom j while availablefor dispatch (o r, equivalently,
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the fraction of available or idle time that response unit n spends in atom).
We require that L be a stochastic matrix (i.e., for all n, 2:7:1 I.i = I). A fixed-
location unit would have I.i = I for some (small) atom) and 'nk = O for
k =F). In faet, if one wished to be precise about the fixed location, the atom
) having I.i = 1 could be defined to be a point in the city (having zero area
and zero workloa.>l). A mobile location unit would most Jikely have several
I./s nonzero. Note that within this strucn, e it is very natural to allow mobile
units to ha ve overlapping patrol areas; for instanee, atom k would belong to
overlapping patrol areas if In,k =F O and 'n.k =F O for some n1 and n2 =F n1• A
unit n's patrol area contains ali atoms) for which Ini > 0, whereas unit n's
prirnary response are a contains alI atoms for which unit n is thefirst preferred
unit to dispatch. In certain applieations a unit's patrol area and response
area are identical, but in many they are noto

To obtain traveI-time performance measures, it is necessary to compute

t.i = mean time required for unit n, when available, to travei
to atom); n = 1,2, ... ,N; ) = 1,2, ... ,NA

Since unit n will be located in atom k with probability Ink, we can write

(5.39)

To incJude the case of assignments from queues, we define the mean
"queued request travei time,"

(5.40)

To interpret this expression, consider any particular service request which
incurs a queue delay. The request is generated from atom) with probability
l)/À.. Eaeh one of the N busy response units (due to equal serviee rates) is
equally likely to be dispatehed to the request. The probability that the dis-
patched unit must traveI from atom i is lt!À, the fraction of region-wide
workload generated from atom i, and the dispatch assignment is made inde-
pendently of the particular values assumed by i andj. Thus, with conditional
probability ÀIÀ)À2, the traveI time to a queued request will be the traveI
time 'rli from atom i to atom). Hence, (5.40) is the mean traveI time to a
request that incurs a queue delay.

The expression for the region-wide unconditional mean travei time can
now be written

_ N NJ!, _

T = 2: L: fWt.i + P~T(}
n= 1 i= 1

(5.41 )
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If we define

TJ = average traveI time to atom j

following reasoning analogous to that above, we write

(5.42)

If we are interested in the mean travei time to requests in a particular primary
response area, we define

TRA. = average travei time to requests in primary response area n

Assuming response area n includes at Ieast one atom j with ÀJ =;t= O,. we have
(following the reasoning above)

(5.43)

UnfortunateIy, there is no known (exact) expression for the average
travei time of unit n (assuming infinite queue capacity). The problem in
deriving such an expression arises from the fact that the unit's position when
dispatched for the first time back-to-back (with no idle time) during a system
busy period is not selected from the probability distribution of request loca-
tions ÀJ/À; such a unit was most probably assigned to its current service
request when severa! units were available, and thus its location tends to be
near its home location (or patrol area). As an approximation, we estimate the
mean travei time for unit n as follows:

_ I: f~~lt.J+ (T QP'o/ N)
TU. = ,-J-=-l~N~A-------

:E f~~1 + (P'o/ N)
J~l

(5.44)

We must recognize that the term reflecting travei time to queued requests is
an overestimate which becomes asymptotically exact as the system utilization
facto r p = À/N -> 1.

Returning to our 3-unit example, substitution into (5.40) yields a mean
queued request travei time T Q = 4.34 minutes. To compute the remainder of
the (conditional) mean travei times, we must specify the location matrix L =
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(I'J)' For simplicity in this example, suppose that 114 = 12~ = 1 and 137 =
138 = :l:

[
O O O 1 O O O O O 0J

L = (I'J) = O O O O 1 O O O O O
O O O O O O :l :l O O

~rom this informat.io~ we can compute that the overalI system mean traveI
time, from (5:41), IS T ~ 3.26 minutes .. The area-specific and unit-specific
mean trav.el times are displayed in Table 5-7.9 Note the wide variation in
atorn-specifíc mean travei times, ranging from 1.75 minutes to 526 . t

hil h h' h . -- . rmnu es,w I e t e ig er aggregatlOn averages (TRA and TU) exhibit h I. b T . I I m uc ess
van~ I I:Y. This type of behavior is consistent with the analytical models we
studied 111 Chapters 2 and 3.

TABlE 6-7 Mean travei times for 3-unit exampta.t

Average Travei
Ti'!}e to Atam I,

j TJ (millutes)

Average Travei Time
to Response Area 11

TRA. (milllltes) ,

Average Travei
Time of Unit li,
TU. (minutes)

(Estima ted from
(5.44)J

1 3.37
2 4.29
3 5.26
4 1.75
5 1.77
6 3.64
7 2.64
8 2.31
9 4.55

10 4.19

3.13
3.30
3.42

3.14
3.18
3.45

'Overall system mean traveI time 't = 3.258 minutes.

5.4.5 Extensions to the Basic Hypercube
Model

We have now completed our description of one basic form of the hyper-
cube queueing model, using the 3-unit example as a means for developing the

9)f the computed mean traveI times in Table 5-7 are found to be inconsistent with the
assumption that the mean total service time of each unit is the same known constant
then one must ~nter these traveI times into a new computation for (unit-specific)
~ean s~rvl~ times and execute the model again to accomplish mean service
time calibration (see Seco5.3.1). Several such executions may be necessary to achieve
convergence.
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general model structure. Briefly reviewing the restrictions placed on this
form of the model, they were as follows:

I. Mean service times, including travei time, on-scene time, and related
off-scene time, were identical for ali servers.

2. A queue of unserviced requests was allowed to form; this queue, of
potentially infinite capacity, was depleted in a FCFS manner (or
other manner that ignored the location of the request, the identity
of the unit, and the anticipated service time).

3. Dispatching was based on fixed preferences with no "ties."

4. Response areas were not optimized in any sense, such as was done
for N = 2 in Section 5.3.4.

The removal of the equal-service-times assumption poses few problems.
Jnstead of the downward transition rates on the hypercube ali being equal,
they would in general be different, with a downward rate for server n being
u; (where u; I would be the mean service time of server n). Minor complica-
tions arise in computing system performance measures, particularly for the
case of queued requests, and these are discussed in Problem 5.13.

The queue capacity of the hypercube model can, in general, assume any
value from O to infinity. In fact, Problem 5.7 asks you to develop results
analogous to (5.31)-(5.44) for the zero-capacity situation. The restriction on
the options available for queue depletion remains an obstacle to obtaining
more realistic geographically-based queue disciplines.

The upward transition rates on the hypercube model need not represent
simple fixed preference dispatching with no ties. Allowing ties is relatively
straightforward, as demonstrated in the publicly available version of the
hypercube model [LARS 75b). Of greater interest is the generalization to
non-fixed-preference dispatching. The major problem .mcountered with
state-dependent policies occurs with large N in the computation ofthe system
performance measures and even in the initial determination of the upward
transition rates [JARV 75). Recently, the mathematics have been worked out
(for efficient computer solution) for a dispatch poticy that always dispatches
the real-time closest unit, even if some or ali of the units are non-fixed-posi-
tion units [LARS 78). This poticy models a dispatcher utilizing an A VL
(automatic vehicle locator) system. We ask you to develop such a model in
an analytically tractable N = 3 setting in Problem 5.8.

The generalization of the Carter-Chaiken-Ignall optimization procedure
(for optirnal design of response are as) has been worked out for arbitrary N
by Jarvis. The procedure is algorithmic; that is, the end result is a. set of
optirnal response areas for a particular set of model parameters. Jarvis fi~ds
the same insensitivity of mean traveI time to shifts from equal traveI time

Sec.5.5 Hypercube Approximation Procedure 325

boundaries to optimal state-dependent boundaries. However, the utility of
the method for balancing server workloads is still high [JARV 75).

In implementing the basic model of this section (or any of its generaliza-
tions) on a computer, one immediately confronts substantial problern :Jf
computer storage and execution time. For an N = 10 problem, there are
210 = 1,024 sta.es, and thus 1,024 simultaneous linear equations must be
solved to obtain the hypercube state probabilities. The addition of one serve r
doubles the size ofthe problem to 211 = 2,048 equations. For N = 15,21' =

32,768 and the problem quickly gets out of hand, even for today's very large
computers. For instance, just to store the state-transition matrix (if we did
not take advantage of its special properties such as sparcity) would require
215 X 215 = 230 = 1,073,741,824 elements ofstorage. Thus, as discussed in
[LARS 74a), much time has been invested in using the special structure of
the hypercube model to derive computer-efficient means for developing and
solving its equations. We expect to see more work in this direction in the
future, that is, the use of queueing theory to develop large sets of simulta-
neous equations which have a special structure that can be exploited for
efficient computer solution. Much work in queueing networks has already
had this /lavor [KLEf 75, 76; FRAN 71].

5.5 HYPERCUBE APPROXIMATION PROCEDURE
(INFINITE UNE CAPACITY)

As just discussed, the storage and execution time required to solve the hyper-
cube model equations roughly doubles with each additional server. Thus, one
is motivated to find an efficient approximation procedure that computes to
reasonable accuracy ali the hypercube performance measures. Such a proce-
dure has been developed that requires solution to only N sirnultuneous equa-
tions rather than 2N, as in the exact rnodel [LARS 75a].

The approximation has been found to compute results to within 1 or 2
percent of the exact results. In most practicat situations such approximate
solutions should suffice. For instance, data inaccuracies may not justify use
of a highly precise mode!. ar the system planner may not have access to a
sophisticated computer systern necessary to perform calculations with the
exact rnodel. ar certain nonquantifiable concerns, perhaps invotving political,
legal, spatial, or administrative constraints, may play an important role in
system design, thereby making precise estimares of quantifiablc performance
measures unnecessary. Finally, the approximation procedure can be carried
out on a computer for any reasonable number of servers N, whereas the exact
model is irnpractical for N greater than 15.

In this section we will simply sketch out the key ideas of the approxirna-
tion procedure, as applied to the basic infinite queue capacity hypercube
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model of the previous section. Full details are found in [LARS 75a]. In com-
plex urban service systems, we expect such approximations to play an
increasingly important role in bringing computationally practical models to
the aid of the urban decision maker.

The following are the main features of the approximation procedure:

1. As with the exact model, one assumes that the dispatcher has a rank-
ordered list of preferred units to dispatch to service requests from
each geographical atom and that he always dispatches the most
preferred available (free) unit (i.e., fixed-preference dispatching).

2. In addition, if p, is the fraction of time that unit n is busy, we use
(1 - Pn) as the probability that unit n wilI be available to be dis-
patched to a service request when all units more preferred than unit
n are busy. A correction factor is used as a multiplier to make this
approximation as exact as possible. For instance, if unit 5 is the third
preferred for a particular request, and units 7 and 2 are preferred to
unit 5, the probability that unit 5 wilI be dispatched is equal to
P7·PZ·(1 --:- ps)·(correction factor).

3. The correction facto r, which can deviate significantly from I, is
derived to account for the fact that the statuses of servers are not
independent (as wouId be assumed if the correction factor were
aIways 1).

4. Given features 2 and 3, we can write N simultaneous equations
relating the N unknowns (the workloads) to the dispatch policy and
the arrival rates from the various geographical atoms.

5. The N simuItaneous equations are solved iteratively, thereby yielding
estimates of the workloads of the units.

6. If we desire other performance measures of the system (e.g., the
mean traveI time to each geographicaI atom 01' the fraction of dis-
patches that are interresponse area), then the values of the utilization
factors found in feature 5 may be used to estimate the fraction of
dispatches that send unit n to atom j, for alI n and j. These fractions
are then entered into simple equations to obtain estimates of the
values of the desired performance measures.

Thé derivation of the approximation procedure is carried out assuming
the MjMjN infinite-capacity model with indistinguishable (homogeneous)
servers. As usual, the arrival rate is À, the mean service time (for each server)
is J1.-I, and p= ),jNJ1. < 1. The approximation arises from the fact that in
the context of .an urban service system, the servers are distinguishable and
thus have differing performance characteristics.

5.5.~ Correction Factor

In an M/M/N queueing system with infinite queueing capacity, suppose
that we star.t randomly sampling servers in the system until we find the first
server who IS available or free (if there is one). Let

I

B, = event that jth' selected serve r is busy (not
available)

F, = BCj = event thatjth server selected is free (or available)

P(BIB2 ... B,F,+d = probability th~t the first free serve r is the
(j + 1)st server selected

The serve r selection process here .is a strictly random sampling without
replacement. In effect, we are selecting servers in a "blindfolded"

N th b b'l' [ manner.ow e pro a 1 ity P B B B F } d .
• t 2··· ,,+ I correspon s, in an urban services

c~ntext, to a dispatch. probability, that is, the probability of assigning the
(./+ 1)st ~referred serve r to a service request. If the nth server selected
server s rs busy f ti f ti , say

n' a rac lon? time P,., then a naive approach would be to
assume that servers opera te mdependently. In that case, we would have

P[BIB2 ... B,F,+d l ».», ... p,,(1 - P'I.,) j < N

[ ? N
P BIB2 ... BN} = IT p"

I~"'t

We can see by inspection that this is mathematically incorrect since
P[BIB2 : .. BN} corresponds. to the probability of saturation of the M/M/N
systern (i.e., all servers are slmultaneously busy) and, as shown by (4.44), this
IS not equal to the product of utilization factors.
" We c.an still uti~~ze the mu~tiplicative concept if we incorporate asuitable
correction factor. To do this, we write

P[BIB2 ... B,F,+ d = P[F,+ ti BIB2 ... B }P[B IB B B}
, 1 I 2", l-I

... P[Bd (5.45)

Multiplying both numerator and denominator f h .
p'(1 - p), we have o t e ríght-hand side by

P{B .s, ... B,F,+ I}

= {[P[F1+IIBIB2'" BJ][P[B,IBIB2'" B1-d] [P[B1}]}
I _ P p'" P p'(1 - p)

(5.46)
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If we define Q(N, p,j) to be the term preceding pJ(l - p), we have

(5.47)

The factor Q(N, p,j) indicates the extent to which the result of the serve r-
independence argument must be "corrected" to obtain the exact result. Each
ofthej + 1 terms in theproduct comprising Q(N, p,j) can be considered to
be a separate correction facto r indicating the reIative amount by which p or
1 - P overestimates (or underestimates) the respective conditional prob-
abilities of being busy or free. As shown in Problem 5.9, the exact expression
for Q(N, p,j) can be derived by conditioning on each possible number of
servers busy in an MjMjN system, and then combining results by laws of
conditional probability. The result is

N~\ {(N - j - I)! (N - k)} Nk k-J
~ (k - .), N' P

Q(N, p,j) = k~J [N \ ~I' ] NN p~
(I - p) L; ""Tpl + --I

I~O I. N.

j = 0, 1, ... , N - I (5.48)

In checking the result for a limiting case, we find that Q(N, p, O) = 1, indicat-
ing that the probability that the first se!ected server is free is exactly I - P
(a result in agreement with intuition, since p = Àj N j.J. is the average fraction
of time a serve r is busy). Additional work shows that Q(N, p, 1) < 1, which
implies that p(l - p) is an overestimate of P(B1F2}' This is true since, given
that the first selected server is busy, the probability P(F21 B\} that the second
selected serve r is free is less than (I - p), the value predicted by the inde-
pendence argument. Here, discovering that the first selected serve r is busy
shifts the system state probabilities in the direction of busier states. One can
show that if

2p > 1--
N

(N) 2) (5.49)

then Q(N, p,j) is a monotonically decreasing function of j; otherwise, it is a
unimodal function of i. reaching a minimum for some value of i. say r, and
then increasing for alI j greater than jO. For illustrative purposes, plots of
Q(8, p,j) are given in Figure 5.18.

Even though the correction facto r Q(N, p,j) was derived assuming homo-
geneity of servers, one could conjecture that the same factor could be used as
an approximation in an M/MjN system with distinguishable servers. This
would seem especially appropriate for systems in which the workloads of
servers do not differ toa greatly and in which many different dispatch prefer-
ence vectors (motivated by different customer locations) effectively simulate
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FIGURE 5.18 Graphs of 0(8, p,j).

!n the aggre~ate "blindfolded" selection of servers. Implementing this con-
jecture has yielded numerical results that are typically within 1 or 2 percent
of the exact "hypercube" results.

5.5.2 Workload Estimation

The last conjecture brings us to feature 4 of the entire approximation
procedure, in which we obtain a set of N simultaneous equations relating the
N unknown Pn's to the dispatch policy and the arrival rates from the various
geographical atoms. Suppose that we again equate the mean service time to
unity (i.e., j.J.-\ = I), thus making the unit of time equal to one mean service
time unit. Then, the net rate R; at which server n is assigned to customers,
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measured over a very long time period, is equal to the workload P. of server
n, Thus, if we can determine a value for R., we have determined a value for
P •. We describe mathematically the dispatch preference policy by defining
the following:

Gf. = set of geographical atoms for which server n is the jth
preferred dispatch alternative, n,j = 1,2, ... , N

m., = identification number of the jth preferred serve r for atom a

For instance, if G~ = {7, 8, 10, 12}, server 2 is the third preferred dispatch
alternative for atoms 7, 8, 10, 12 and, for instance, m73 = 2. Now an exact
expression for R. can be written as follows:

R. = L: À.(l - Pn) + L: À.P[Bm ••F.}
aEG~ . QEO~

+ L: À.P[Bm ••Bm••F.} + ...
aEO~

(5.50)

where the term ÀD accounts for delayed dispatches from a queue, which are
apportioned equally among all N servers; thus,

(assuming an infinite-capacity queue)

In words, (5.50) states that the net rate at which server n is assigned to cus-
tomers is equal to (1) the rate at which customers arrive from server n's
primary response area, multiplied by the fraction of time server n is available
to start servicing such customers immediately; p/us (2) the rate at which
customers arrive from serve r n's second-preferred areas, multiplied by the
fraction of time that both the first preferred server is busy and server n is
available to start servicing such customers immediately; plus (3) similar terms
for the remainingj-preferréd areas ; plus (4) a term that apportions equally to
ali servers a fraction (l/N) of customers delayed in queue.

Given our approximation conjecture, we can simplify (5.50) by estimating
the dispatch probabilities as products of utilization or availability factors and
the appropriate correction termo For instance, we approximate P[B3B6F~}
:::::Q(N, p, 2). P3 •P6· (1 - Ps). Given this approximation and substituting R.
= P., we can rewrite (5.50) as

P. = L: À.(1 - P.) + L: À.Q(N, p, l)Pm••(1 - p.)
QEG~ QEG~

+ L: À.Q(N, p, 2)Pm••Pm.,(I - P.) + ...
aEO!

(5.51)
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We n~tice that each ofthe summation terms on the right-hand side of(5.51)
contains (1 - P.) as a facto r. If we remove this factor, then the sum of these
N terms is not a function of P., a desirable property in an iterative procedure
whose purpose is to compute an estimate for Pn-

R: = L:EG•À. f- L:
GI

À.Q(N, p, I)Pm., + L: À.Q(N, p, 2)Pm.,Pm•• + ...
11,. aE • aEOA

+.~t:' À.Q(N, p, N - I)Pm.,Pm., ... Pm.'N_1I (5.52)

has an intuitive interpretation. It is the (approximate) customer assignment
rate for server n during periods when server n is free. Simple manipulation of
(5.51) yields

n = ],2, ... , N (5.53)

Here we assume that ÀD < I, implying that P. < l ; otherwise, the system
would be overloaded. Equation (5.53) [together with (5.52)] represent a set
of N simultaneous nonlinear equations relating the N unknowns P., n =
1,2, ... ,N. They can be solved iteratively to obtain values for each of the
p;s. A specific iterative algorithm is displayed in Figure 5.19. As you will
discover in Problem 5. ]2, (5.53) yields a very reasonable approximation for
the workload even on the first iteration (in which ali workloads on the right-
hand side of the equation are set equal). Rarely are more than three or four
iterations required for even very stringent convergence cri teria.

5.5.3 Return to the Three-Server Example

We apply the workload approximation procedure to the three-server,
!O-atom example of' the previous section. Recall that À = 1.5, J.l = I, irnply-
mg t?at P = À/(3 X I) = 0.5. To initiate the procedure we need to specify
the dispatch preference sets G~,and these are shown in Table 5-8. From (5.48)

TABLE 6-8 Matrix of G~' sets.

UNIT NUMBER (n)

Preferellce
Number (j) J 2 3

1
2
3

1,2,4
3,5,6,7,8,9, 10

3,5,6
1,2

4,7,8,9, 10

7,8,9,10
4

1,2,3,5,6

IG~ == ser of geographical atorns for which server n is lhe jth
preferred dispatch alternative, n,} = 1,2,3.
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Step o; Initialization

(I) (a) Compute from the M/M/N queueing
model the exact value for
p = average utilization factor

N N=n:' L Pn = N-I L kPkn=1 k=1

= À/N

(J.L assurned to be unity)

(b) Seti = I

(c) Define Pn (i) = estima te of Pn at the Ith iteration

Set Pn (O) = p , n = 1,2, ... ,N

t
Step I: Itcration

Compute Pn(1) from (5.53) and (5.52)
using Pm (I - I) for Pm in the computation of R:;
do for ali n = I, 2, ... ,N

t
Step 2: Normalization

N
Pn(i) = p][50 thatN-1 L

I I+-I + 1 I n=1
N

(a) Computer= [N-I L pn(i)/p]-I
n=1

(b) Pn (I) +- rpn (i)

t
Step 3; Convergence test

NOYES

max \Pn(l)-p,,(i-I)\>e?
STOP

FIGURE 5.19 Algorithm for Estimating the N workloads.

we compute the numerical values for the three required correction factors:

Q(3, h O) = 1

Q(3, t, 1) = 0.73684

Q(3, t, 2) = 0.63158

We are now ready to proceed through the steps of the algorithm. One com-
plete iteration of the algorithm is shown in each of Figures 5.20-5.22. As can
) I ) ) ) ) ) )) ) ) ) )))
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i
f
f
f

Step o; Initialization

(a) r=1 (ÀD =0.1184)

(b) i = 1

(c) .ôn(O)=~ n=I,2,3
)

Step 1; Itera tion

0.75 + i (0.75) (0.73684) + 0= 1.0263

1.0263 + 0.1184 = O 5649
1 + 1.0263 .

0.35 + i (0.5) (0.73684) + t (0.65) (0.63158) = 0.6368

= 06368+0.1184 =04614
1 + 0.6368 .

Rf = 0.4 + 1(0.25) (0.73684) + i (0.85) (0.63158) = 0.6263

P3(1) = 0.6263+0.1184 =04579
1 + 0.6263 .

Step 2; Normalization

(a) r - [1(0.5649 + 0.4614 + 0.4579)J -I
- I = 1.01065

"2

(b) PI(I)=05709

P2 (1) = 0.4663

P3(1) = 0.4628

Step 3; Convergence test

Test fails for e < 0.01; i = 2, return to Step 1.

FIGURE 5.20 Initralization and first iteration.

~e seen, the procedure has converged for a very stringent convergence crite-
rion (é = 0.0011 or greater) on the third iteration. The resulting workloads
are estimated to be PI = 0.5627, pz = 0.4716, and P3 = 0.4657. The exact
workloads, as computed from the exact hypercube model, are PI = 0.5574,
Pz = 0.4734, and P3 = 0.4693. The maximum error is I PI - PI I ::::::0.0053,
or about 1 percent error. The average error is about 0.7 percent. These error
magnitudes are typical of those achieved with the approximation procedure.

Once we have the p/s, as derived above, it is relativcly straightforward to
obtain an estimate for the t.,». where jnj is the fraction of assignments that
send unit n to atom j. The details of this are worked out in Problem 5.11.
Once we have !t,} for ali n,j, then ali other hypercube performance measures

) ))) )) 1 ) ) )) ))
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Step I': Iteration

RF = 0.75 + 0.73684 (0.35 (0.4663 + 0.40 (0.4628))] + 0= 1.0067
\

p\ (2) = \.0067 + 0.1184 = 0.5607
1 + 1.0067

Rf = 0.35 + 0.73684 (0.5709) (0.5) + 0.63158 (0.65) (0.5709) (0.4628)

= 0.6688·

P2(2) = 0.6688+0.1184 =0.4717
1+0.6688

Rf = 0.4 + 0.73684 (0.5709) (0.25) + 0.63158 (0.85) (0.5709) (0.4663)

= 0.6481

P3 (2) = 0.6481 + 0.1184 = 0.4651
1+0.6481

Step 2': Normalization

(a) r=[~(0.5607+0.4717+0.4651)]-\ = \.0017

(b) p\ (2) = 0.5616

P2 (2) = 0.4725

P3 (2) '" 0.4659

~tep 3': Convergence test

Test fails for any e < 0.L.J93; i = 3, retum to Step I.

FIGURE 5.21 Second iteration.

(including traveI times) can be computed simply by substituting into the
sim pie algebraic equations derived earlier for the exact hypercube mode\.
Approximation errors for these measures, too, rarely exceed 2 percent and
often are near 1 percent.

There are extensions to the basic approximation procedure described
above, paralleling (but not as extensive as) those of the basic hypercube
mode\. In particular, one can derive an approximation procedure for the
zero-line-capacity queue and for the case of unequaI service times. However,
there is no known extension to dispatch policies other than fixed preference.
Details can be found in [LARS 75a] and [JAR V 75].

We have now completed our tour of N-server spatial queueing models for
finite N. We conclude the chapter with two applications of many-server
queues to derive analytically several important (rule-of-thumb) performance
characteristics of server-to-customer queueing systems.
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Step I": Iteration

Rf = 0.75 + 0.73684 [0.35 (0.4725 + 0.40 (0.4659»] + 0=1.0092

PI(3) = r0092+0.1184 =05612
I + \.0092 .

Rf = 0.35 + 0.73684 (0.5616) (0.5) + 0.63158 (0.65) (0.5616) (0.4659)

= 0.6643

P2 (3) = 0.6643 + 0.1184 = 0.4703
1+0.6643

Rf = 0.4 + 0.73684 (0.25) (0.5616) + (0.63158) (0.85) (0.5616) (0.4 725)

= 0.6459

P3 (3) = 0.6459 + 0.1184 = 0.4644
I + 0.6459

Step 2": Normalizatlon

(a) r = [~ (0.5612 + 0.4703 + 0.4644)1 I = 1.00274

(b) PI (3) = 0.5627

P2(3) = 0.4716

P3 (3) = 0.4657

Step 3": Convergence test

Convergence test succeeds for any e < 0.00 I\. STOP.

FIGURE 5.22 Third and final iteration.

5.6 FRACTION OF DISPATCHES THAT
ARE INTERRESPONSE AREA DISPATCHES

Often an agency administrator will want to know the number of dispatches
that take units outside of their primary response areas. Such responses
increase travei time and they may result in degraded service due to unfarnil-
iarity with the neighborhood (its geography, people, anel traditions), While
we could compute this quantity exactly with the hypercube rncdel, it is
instructive to obtain some approximate "back-of-the-cnvelopc" results for
situations with many scrvers N. J n particular, we wish to see how thc number
of interresponse area dispatches varies with average system-wide workload,
workload imbalances, and time-varying demands for service.
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For a given region with many response units N, define

À.(t) = average rate (requests/hour) at which requests for
service are generated in a Poisson manner from
response area 11 at time t, n = I, 2, ... , N;
0< i «: T

P.(t) = probability that response unit n is unavailable for
dispatch at time t, n = 1,2, ... ,N;
0< t<T

1 IT NÀ = "average service request rate" = -T L: À.(t) dt
o n= 1

J.1.-1 = average total time required for a response unit to
service a request

(5.54)

Given a request that arrives from primary response are a n, we assume
that the dispatching strategy is as follows:

I. Dispatch unit n, if available.

2. Otherwise, dispatch some unit m, m -=1= n, where the particular choice
depends on the state of the system (and, perhaps, other factors).

Invoking a large-N (or low-workload) assumption, we assume that the prob-
ability that aI! units are simultaneously busy is negligibly small.

Suppose that a service request arrives from response are a n at time t. The
probability that it wil! result in an interservice area dispatch is equal to the
probability that unit n is busy [i.e., P.(t»). Given a random request that arrives
in the interval [O, T), the likelihood that it arrives in the interval t to t + dt
and is from response area n is

Thus, the Iikelihood that a random request arrives in t to t + dt, is from
response area n, and results in an interresponse area dispatch is

(t) À/r) dt
P. ÀT

Summing over ali N response areas and integrating over [O, T] we obtain the
probability that a random dispatch that occurs in [O, T] will be an inter-
response area dispatch,

fI = J-. r t P.(t) À.(t) dt
T Jo n= 1 À

(5.55)
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If the system is non-time-varying, with À.(t) = À., P.(t) = P., (5.55) reduces
to

(5.56)

In Problem,5.14 we explore somespecial cases of (5.56). We wil! find in
general, that fI increases as worklcad imbalances increase. Ir workloads 'are
fairly well balanced, one can often approximate fI to equal (or slightly
exce~d) the average fraction of time units are busy, averaged over ali units,
provided that the system is non-time-varying.

. What ifth,7 syste~ is time-~arying? We can show that this usually "makes
things worse, assuming that mterresponse area dispatches are undesirable.
~hat is, ~iven one furt~er assumption, we can obtain a bound for fI in a
tlme-:ary~ng system which states that the amount of interresponse area dis-
patch.lI1g IS at .least as great as that which would occur in the "equivalent"
non-tirne-varying system. To describe this equivalent system, we simply
replace À.(t) and P.(t) with their time averages,

I ITÀ. = T o À.(t) dt

1 ITp; = T o P.(t) dt

The additional assumption we require is that P.(t) > P. whenever Â.(t) ::2: À.
and that P.(t) < P. whenever À.(t) ::;:À•. This says that a unit's workload
~houl? be above (or below) average whenever the service request rate from
rts pnrnary response area is above (or below) average. Is this reasonable?
Can you think of counterexamples ?

",!e wish to prove, given the foregoing assumptions, that fI for the time-
varying system as computed from (5.55) satisfies the following inequality:

N Â
fI ::2: .~ P'-r (5.57)

Proof: Let

Pn(t) = Pn + p~(t)

Â.(t) = Â. + À~(t)

Clearly, the perturbation terms on the right-hand side integrate to zero;
that is,
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From (5.55) we have

Since the second and third terms in the integrand integrate to zero,

Now, since

sgn [p~(t)] = sgn [À~(t)]

then

s: p~(t)À~(t) dt > O

and thus (5.57) must be true.

Problem 5.14 asks you to reexamine this analysis for systems that do not
always give first preference to the prirnary response area's unit (e.g., a system
incorporating an automatic vehicIe locator system, which would alIow the
dispatcher to assign the vehicle cIosest to the scene of the service request).

5.7 SPATIAl DISTRIBUTION
OF BUSY SERVERS

ln some situations we would like to know the spatial distribution of servers
busy at the scene of service requests. For instance, we may wish to analyze a
dispatching policy which may interrupt a server busy on low-priority service
in order to send him or her to a nearby higher-priority request; in such a
case we would need to know the distribution of travei time to the nearest
busy serve r. Or, in police applications, since police presence is said to deter
crime, we may wish to know the spatial distribution of busy servers (as welI
as available servers) because a parked patrol car also acts as a visible deter-
rent; we may wish to alter this distribution, if possible, by adjusting our
spatial prepositioning policies (e.g., beat designs).

We examine this question using the theory of M/G/oo queues (cf. Section
4.8). The assumption of an infinite number of servers implies that the actual
number of servers is sufficiently large or that workload is sufficiently smalI so
that queues almost never formo
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Consider, then, a spatialIy distributed service system in which:

I. Service requests are generated in a Poisson manner from a region of
area Ao at a rate ÀAo requests per hour.

2. Servipe requests are distributed uniformly in space.

3. j.J.-. = average time to service a request (general service time pdf).

4. There are infinitely many servers.

Then, according to (4.87), in the steady state the probability that there are k
busy service units in any subregion of area A < A o is

k=O,1,2, ... (5.58)

This result says that, regardless of the method of prepositioning the units,
the busy servers are distributed as a spatial Poisson process with parameter
(Mj.J.) busy servers per unit area. This simple result allows us to use "nearest
neighbor theory" of spatial Poisson processes to develop probability laws of
the traveI times to the kth closest busy serve r (see Example 15 in Chap. 3).

5.8 EXPECTED TRAVEl DISTANCES
AND EXPECTED TRAVEl TIMES. REVISITED

In Chapter 3 we derived several expressions for the expected travei distance
and the expected travei time of urban service units responding to calls. In
this section we shall extend our results to account, under certain conditions,
for the effects of congestion (i.e., for the fact that some response units may
be busy and unavailable at the time when a call for service occurs).

/Consider a large region of a city of area A o and assume that response-
unit stations have been located in this region according to a spatial Poisson
process with intensity of y stations per square mile. Assume that each of
the No stations holds exactly one response unit. In the following, we shall
assume that:

1. CalIs for service are independently and uniformly distributed in the
city region and are generated in a Poisson manner at a rate of À
calIs per hour per unit area.

2. Each call is handled by a single response unit and service times are
independent and approximately identicalIy distributed randorn vari-
ables with rnean u:' (this incIudes travei time to the call, time spent
on the scene, and traveI time back to the response unit's station).
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3. A nearest-response-unit dispatching policy is used [i.e., the response
unit dispatched to a call is always the available (nonbusy) unit which
is closest to the location of that call at the time when the cal! is
received].

Note that assumption 2 implies that

E[time spent on the scene of a call] »E[travel time to a call]

a condition that is true for many urban service systems.
When A o is sufficiently large so that the effects of the boundaries of the

region can be ignored and when ali No response units are available, it was
shown in Chapter 3 [ef. (3.104a) and (3.105)] that, for the system described,
the expected travei distance to a call is given by

(5.59)

Here, c is a constant that depends on the traveI metric in use and possibly
on other geographical characteristics of the region in questiono

In general, the number of available response units, N, will fluctuate with
workload and, over a long period of time, wiIl take values ranging from O to
No. It would c1early be very useful if we could find a simple relationship be-
tween E[D) and the average number E[N) of available response units in the
area. Such a relationship would be helpful for planning purposes since it
would take into account the effects of system workload-as reftected in E[N).

To develop such a relationship, we shaIl assume that rarely, if ever, are
ali No units in the region busy. We have already shown in the previous section
that under these circumstances one can use the M/G/oo system results, and
we proved that the busy response units at any instant in time are distributed
as a spatial Poisson process with parameter Â./ J..l busy units per unit area,
Since the No unit stations are distributed as a spatiaI Poisson process as wel!,
it follows that, at any instant, the available response units are approximately
distributed as a spatial Poisson process." Hence, given any value of N, we
have, as.in (5.59),that

E[DI N = k] ~c,j~o k = 1,2,3, ... , No (5.60)

9This assumption is an approximation, since the dispatch policy that assigns the
closest available server creates "holes in coverage"; these holes are somewhat larger
than those ordinarily found in a spatial Poisson processo The net effect is that assign-
ment of servers to busy status does not constitute "random erasures" of an existing
spatial Poisson process, but rather "correlatcd erasures," yielding a residual (un-
erased) process that is not strictly a Poisson processo
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For the case N = O, which is very unlikely anyway, we can assume that a
response unit from outside the region responds to calls and that the expected
traveI distance is then given by a constant Do. In the steady state, we there-
fore have

(5.61)

where

k = O, 1,2, ... , No (5.62)

are the steady-state probabilities of having k units available, or (No - k)
units busy, as given by an M/G/No queueing mode! with no waiting space
[ef. (4.85)]. This approach was first utilized by Larson in analyzing over-
lapping police beats [LARS na, Eqs. (7.40), (7.42)].

Since Po is very smaIJ by assumption, we can safely ignore the first term
in (5.61) and write

E[D] ~ c-J Ao E[-JN J (5.63)

where the expectation is taken over the state probabilities P k'

It is much more convenient, however, to use a further simplifying approxi-
mation, by writing

. //1
E[D] ~ c'\j E[N] (5.64)

In truth (5.64) provides only a lower bound for (5.63) since E[(JN)-I) <
(E[N])-1/2. This follows from the fact that if h(X) is a convex function of a
nonnegative random variable X [such as h(X) = CJX)-I], then!?

E[g(X)] ~ g(E[X]) (5.65)

However, we show in Problem 5.5 that the substitution of 1/-J E[N] for
E[I/JN] is quite reasonable for E[N] sufficiently large and N "cornpactly
distributed" about its mean.

Then, using the fact that P« is very small and that, consequently, the
M/G/No model is virtually indistinguishable from an M/C/oo model, we
finally have

E[N] = No - E[number of busy response units] ~ No - Nop (5.66)

10 Jnequality (5.65) is also known as Jcnsen's incquality (cf. Problcm 3.5).



The New York City Rand lnstitute accumulated an irnpressive arnounl
of data showing that expressions such as (5.64), (5.67), and (5.68) are valid
in practice under a considerable variety of conditions [KOLE 75a, KOLE
75b], including dispatching policies that do not always send Lhe ncarcst
available response unit to a calI but may instead dispatch the sccond or third
neares,' unit (for reasons such as those discussed in Section 5.3). For several
different urban regions the constant c has been found to falI in the range 0.55
to 0.61 for fire departrnent operations. This is not surprising in view of the
fact that, for right-angle traveI, c ~ 0.63 if stations are located cornpletely
randornly and c ~ 0.47 if stations are at the corners of a pcrfcctly regular
lattice. For most cities the actual pattern of firehouse locations is sorncwhut
between these two extremes.
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frorn which it follows by substitution into (5.64) that

E[D] ~ c~ No(~~ p) (5.67)

These results can now be extended in a straightforward way to travei
times. Using, for instance, the approximate acceleration/cruising speed
model of Chapter 3 [cf. (3.93)],

E[T] = E[D] + ~ (5.68)
Vc a

we have

E[T] ~ ~ / Ao + ~
vc'YNo(l-p) a

(5.69)

Equations (5.64), (5.67), and (5.69) are often referred to as square-root
laws, since they relate E[D] and E[T] to the square root of the density of
available response units in an urban area [KOLE 75a].

References

5.8.1 Extensions and Empirical Evidence
[CART 72]

Square-root laws for E[D] and E[T] can also be derived for cases other
than the one described above. For example, in Chapter 3 it was shown that,
when response units are arranged in a symmetric pattern at the centers of
equal squares rotated by 45° with respect to the directions of (right-angle)
travei, (1)] = 0.47,.j A o/No [cf. (3.107)]. This expression can be used as the
starting point for deriving a square-root law for this situation. The same
applies when other regular patterns for response unit locations are in effect
(and, as we have seen in Chapter 3, the constant c is likely to be quite insensi-
tive to the precise shape of these patterns).

Another extension would involve the case in which more than one
response unit could be placed in some or alI of the No stations in the region,
as in fire department operations. Then (5.67) must be modified to

[CHAI72]

[CHAI71]

[CHEL 80]

E[D] = c,.j A o(No - E[number of empty stationslrv"
[FRAN 71]

(5.67a)

A third extension, also applicable to fire departments, concerns situations
in which some requests may be serviced by more than one response unit. It
has been shown [CHAI 71] that (5.67) can stilI be used if the mean service
time, u:', is adjusted to reflect the total number of "service time units" spent
on requests. For example, if three fire engines spend 20 minutes each at the
site of a particular fire alarrn, then the service time for that alarm must be
set equal to 60 minutes.

[HALP 77]

[JARV 75]
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Problems

5.1 M/G/l modified queue Apply (5.2) for the case of a rectangular (Xo-by- Yo)
service region with directions of travei parallel to the sides of the rectangle and
with a single emergency repair unit garaged at the region's center, (x = Xo/2,
y = Yo/2). The emergency repair unit operates as in the third paragraph of Section
5.2.

a. Suppose that Â = 1 call per hour. Let us examine how several alternative
service region designs having equal area (i.e., Xo Yo = A) can affect system
performance. Let A = 4 square miles and response speed be 10 milesfhr.
Further, suppose that the mean and variance of on-scene service time are
45 minutes and (45)2 mínutes-, respectively. Find the mean time from
calling until arrival of a service unit for Xo = Yo, Xo = 2 Yo, and Xo =
20 Yo (assuming that we constrain Xo Yo = A = 4 square miles). Can the
system be saturated (i.e., p > 1) for some values of Xo,' Yo, and unsaturated
for others?

b. Verify that with the constraint Xo Yo = A, minimurn response time is
always achieved by setting Xo = Yo = ,.jA.

5.2 Infinite array of linear concatenated sectors One infinite server spatially dis-
tributed queueing systern that has provided certain physical insights into alternative
dispatching procedures is a linear concatenated sector sysiern. On lhe x-axis, assume
that sector i covers the interval from x = i/2 to x = U/2) -\- 1 for i even and from
x = -(i -\- 1)/2 to x = -(i - 1)/2 for i odd. Response unit i is assigned to patrol
uniformly sector iwhen it is available for dispatch assignment. Each unit is assumed
to be available with probability (l - p), independently of lhe status of ali other
units. (It should be clear that lhe independence assumption is an approximation.)
The position of each available unit is selected frorn a uniform distribution over the
Iength of the unit's sector. The random variable indicating the position of unit i is
X,; a particular experimental value of the random variable is x..

Assume that an incident is reported from some point x in sector O (O ~ x ~ 1)
and that the dispatcher must select an available unit to assign to the incident. The
incident position x is drawn from a uniform probability density over [O, 1]. The
dispatcher may use any one of the following three selection criteria:

1. Strictcenter of mass Min (E[J X, - -ti])
i E set of

available units

2. Modified center of rnass Min (E[JX,-xi])
i E set of

available units

3. Closest car Min (Ix, - xl)
i E set of

available units
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Let D,(p) = expected traveI distance for strategy i, given a utilization factor of
p(i=1,2,3).

a. Prove the following:

Dt(p) = ~(1 ., p) + 1 !.p2'

D2(p) =~-nP + /~2p'

_ p2
D3(p) = n+ Hp + i 1 _ p'

b. Let (Ij(p) = Dlp) - D/p).
Verify the following:

i.

ii.

iii.

_ 1 - p
(12(P) - p 4(1 + p)

_1+6p-7p2
(t3(P) - 24(1 + p)

1
(dp) = 24(1 - p)

Do these results make intuitive sense for limiting values of p? What practical sig-
nificance do they have?

5.3 Coverage problem Consider a circular roadway in an urban region as shown
in Figure P5.3. The roadway has many shops, entertainment spots, and other poten-
tial targets for crime. The patrol cars of the city's police department are ali unmarked
and thereby provide no visible police coverage (protection) while patrolling. How-
ever, when they are stopped at a scene of a call for service, they flash a beacon that
is visible (in either direction) for exactly a miles (a « 1.0). Thus, each parked patrol
car generates a region of visible police coverage of length 2a miles.

The total number of patrol cars is so great, and the priority of calls on the cir-
cular roadway so urgent, that no call for service from the circular roadway is ever
delayed in queue. And traveI time to the scene for a call for service is insignificant
compared to the service time at the scene, which has a mean 1/ J1..

11I rniles
(11I ;;. I)

~Wo-waY circular roadway
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CalIs for police service along the circular roadway arrive as a Poisson process
with an average rate of À calIs per linear mile. We assume that the system is operating
in the steady state.

Show that, in the steady state, the expected length (in miles) of the circular
roadway that is given visible police coverage is equal to

2nm(1 - e-20)./,,)

•
5.4 Testing your understanding of lhe two-server model Consider the city depicted
in Figure P5.4. In this city emergency repair service is provided by two response
units, prepositioned at (1, O) and (-1, O), respectively. Travcl distance is right-
angle, with distance d between two points (Xl> Yt) and (X2' h) equal to

where

dy=IYt -hl

+1
y (rniles)

N

Unit! +~~:"-_------:+------t-:-::~ x (milcs) S E
-2 +! +2

W

Boundary line between primary rcsponse arcas

Repairs occur according to a spatial and temporal Poisson process with

À(x, y) dx dy dt == P(an emergency occurs in the infinitesimal rectangle (x,
x + dx), (y, y + dy) during the infinitesimal time interval
(t, I + dI))

For points (x, y) within the city we are given that

À(x, y) = 2Ào

À(x, y) = Ào

for x 2: O

for x < O

Unit 1's primary response area consists of ali points east of the north-south
boundary line that partitions the city. Unit 2's prirnary response area consists of alI
points west of that line. Note that the boundary, as drawn, is an equal travei-time
boundary line. Whenever an emergency repair is reported from response area i
(i = J, 2), unit i is assigned, if available; otherwise, the other unit is assigned, ir
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available. If neither unit is available, the cal! is lost (i.e., no queueing is allowed).
Repair units traveI at 100 miles/hr to and from the scene. On-scene service time

is negative exponential with mean J1.-1 = 10 hours. Upon completion of service, a
unit always returns to its home Iocation. Finally, Ào = 2 x 10-' (emergencies per
hour per square mile). Assume the system is operating in steady state. Average
system-wide traveI time to an emergency is T.

iii. (PI + h) will decrease.

iv. The behavior of (PI + P2) cannot be determined.

a. Using suitable approximations, or exact analysis ifyou prefer, find approxi-
mate nonzero values for PI and P2, where Pm == workload of unit m.

b. The random variable D'; is defined to be the systern-wide east-west (or
west-east) traveI distance for a random emergency. Sketch the pdf for Dx,
again making suitable approximations.

c. Approximately, what is the fraction of dispatches that are interresponse
area dispatches?

g. Suppose that a third unit is added as a backup unit and is Iocated at
(x = O, y = O). This unit is assigned to any emergency that occurs whcn
both units 1 and 2 are busy and unit 3 is available. Emergencies that arrive
when aI! three units are busy are lost. Determine the workload of unit 3, P3'

•
5.5 More on the square-root law We wish to explore the reasonableness of the
approximation E[1/V N] = l/V E[N]. We know from Section 5.8 that, in fact,
E[I/V N] > l/V E[N].

a. Suppose that N is uniformly distributed over the integers 1,2, ... , 10.
Verify that E[I/V N] = 0.502, while l/V E[N] = I/V5.5 = 0.426.

b. Now suppose that N's distribution is e1ustered more around its mean:

For parts (d)-(g) only, suppose that Ào = 10-2• This yields new values for p-, P2,
T, and so on. In considering each of these questions [parts (d)-(g)], assume that the
total service-tirne distribution remains the same as that assumed in parts (a)-(c).

d. Suppose the equal-travel-time boundary tine is shifted a distance E (E small)
toward unit 1. Which is the appropriate response?

li30PI = P(N = i} = .
10 - I

30

i=I,2,3,4,5

i=6,7,8,9,10

i. As a result of the shift, T will increase but !PI - P2! wiIl decrease.

ii. As a result of the shift, T will increase and !P I - P2! will increase.

iii. As a result of the shift, Twill decrease and ]p, - P2! wilI decrease.

iv. As a result of the shift, T wilI decrease but !PI - P2! wilI increase.

v. As a result of the shift, we cannot teIl which of the four possibilities
above wilI apply.

Verify in this case that E[l/V N] = 0.466, a result much closer to the
desired approximation.

c. Now suppose that E[N] is large and N's distribution is fairly symmetric
about its mean E[N], which for simplicity we assume to be an integer.
Using the square-root approximation

(y + E)I/2 = yl/2 + !y-I/2E

e. Now suppose that the equal-travel-tirne boundary line is shifted a distance
E (E smal!) toward unit 2. D, is defined to be the systern-wide north-south
(or south-north) traveI distance for a random emergency. As a result of the
shift,

for! E! considerably smaller than y > O, write E[l/VN] as a series of
terms symmetrical!y expanded about the mean

i. E[Dy] will stay the same.

ii. E[Dy] will increase.

iii. E[Dy] will decrease.

iv. The behavior of E[Dy] cannot be determined.

[
11... + (P EINJ-I) VE[N] - 1 + P EINJV E[N]

+ (PEINJ+l) VE[~] + 1 + ... ]
Argue why E[l/V N] = l/V E[N] in this case.

i. (Pl + P2) wilI stay the same.

ii. (p, + P2) will increase.

5.6 Ring city Consider a ring city of circumference 6 miles which is serviced by
three emergency response units. When not servicing an emergency call, a response
unit is stationcd at its "home location," locatcd at the middle of the unit's district.
There are three home locations (and districts) positioned symmctrically around the
city as shown in Figure P5.6.

Calls for service occur as a homogeneous Poisson process (in time) at average
rate two calls per hour. Locations of calls are uniformly, independently distributed
over the cirele's circurnference. The total service time per call is negatively exponen-

f. As in part (e), suppose that the equal-travel-time boundary line is shifted a
distance E (E small) toward unit 2. As a result of the shift :
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Home
location I

Horne location 3

tially distributed with mean 1 hour. Travei time can be ignored when computing
service times, since units respond (traveling along the circle) at 60 miles/hr
(1 mile/rnin).

The dispatching strategy is as foIlows for a call from district i (i = 1, 2, 3):

1. Assign unit i to the caIl for service, assuming that unit i is available.

2. Otherwise, randomly select one of the other two units, assuming that at
least one is available.

3. If no unit is available, enter the caIl in a queue that is to be depleted in a
first-corne, first-served manner. (That is, no calls are "lost"-aIl are even-
tuaIly serviced.)

As soon as a unit has completed servicing a call, we assume that it returns nearly
instantaneously to its home location (even if it is then dispatched to a call waiting
in queue).

Assume that the system is operating in the steady state.

a. Compute the workload p, of unit i (i = 1,2,3), where p, = fraction of
time unit i is busy servicing calls.

b. Determine the mean travei time to calIs for service.
c. Determine the probability density function of the travei time to calls for

service.
d. A point x on the circle is said to be "covered" if at least one response unit

is within t mile of the point. It makes no difference whether or not the
response unit is busy servicing a cal!. Find the average amount of the city
(measured inmiles) that is covered at a random time.

5.7 Hypercube performance measures for the zero-line-capacity case Suppose that
we wish to derive hypercube performance measures for the case in which customers
cannot enter a queue; they are either lost or, more likely, are handled by a backup
system if they arrive when ali N servers are busy.
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a. Argue that in this case, (5.35) is replaced by

~ ÀJ P[Bd
f, D,EE., À

n ] = I - P[B2N_d

b. Arg-je further that the quantities found in (5.36)-(5.38), and (5.41)-(5.44)
can be determined for the zerç-line-capacity case by sett ing PQ = Pó = O
in these equations and by replacing f~jJ with J"J from (").

Note: The resulting equations can be used either with the exact or the approxi-
mate hypercube mode!.

5.8 Three-server queue: evaluating a new technology A certain circular highway is
patrolled by three public safety cars. Each car palrols a 1-mile sector of the 3-mile
highway (see Figure P5.8). CalIs for assistance occur along the highway. A dispatch-
er assigns a car to each calI, if at least one is available. We wish to examine various
operating properties of this system.

Sector 3

The system operates as folIows:

1. Call positions are uniformly, independently distributed over the circular
highway.

2. The calI arrival process is a homogeneous Poisson process with rate param-
eter À calls per hour. .

3. Service time at the scene of the calI has a negative exponential distribution
with mean Ir 1 = t hour.

4. Travei time is negligibly small compared to service time at the scene.

5. Speed of response is always 30 miles/hr.

6. U-turns are permissible everywhere.

For parts (a)-(c), assume that the dispatching strategy is as folIows. Given a
caII from sector i (i = 1, 2, 3):

1. Assign car i, if available,

2. Otherwise, randomly choose some car j (j =1= i), and assign it, if at least one
other car is available.
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d.

Find the steady-state probability that icars are busy (i = O, 1, 2, 3).

Find the steady-state probability that car 1 is busy and car 2 is free.

Find the average travei time to calls for this system. Evaluate for
À. "'" O, À. = 3, À. = 1,000.

It has been proposed that the public safety bureau should purchase a
perfect resolution car locator system. With such a system, the dis-
patching strategy is changed as follows:

Given a call from sector i (i = 1, 2, 3):

5.10 Hypercube approximation procedure for the zero-line-capacity case Suppose
that we wish to derive an approximate procedure for finding the performance
measures of the hypercube model, analogous to that of Section 5.5, but assuming
zero line capacity. To do this, we must develop a new Q f"r.tor and new workloacl
normalization conditions.

3. Otherwise, the call is lost.

a.

b.

c.
a. Verify that the appropriate steady-state probabilities for the corresponding

MjMjN zero line capacity queue are

k = O, 1, ... , N

1. Assign the closest available car, if at least one is available;

2. Otherwise, the call is lost,

(
N Nlnl)-1

r{So} = ~ T
laO I.

where 1'f == À.j N < +ao (Assume that f1, = 1.)

Find the average travei time to a call for this system. Evaluate for
À. "'" O, À. = 3, À. = 1,000. (This part will utilize your knowledge of
geometrical probability concepts.)

5.9 Deriving the Q factor In this problem we derive Q(N, p, j), as given in (5.48).
By laws of conditional probability we can write

b. Confirm that the average utilization factor is

c. Now we would like to develop a correction factor Q'(N, n.n that, when
multiplied by pJ(l - p), gives the exact probability P(Bl B2 ••• B,FJ+ d for
the MjMjN zero line capacity system. Following reasoning analogous to
Problem 5.9, verify that

where Sk = system state in which exactly k servers are busy
P{Sd = steady-state probability that the system is in state Sk

Note also that where

P(B1B2 ••• B,F'+IISd
= P(FJ+l IB1B2 ••• BJSdP(B, IB1Bz ... B,-ISd ... P{Bl ISk}

a. Argue that PfBl ISd = kl N.

b. For tbe general case, argue that

and where Q*(N, n.tv is equal to Q(N, 1'f,j) as computed for the MjMjN
infinite line capacity case, but with P{So} replaced by r(So}.

k-(i-l) k 1
P(BtIB1B2 ... ,Bt-1Sk}=N_U_l) i=1,2, ... , '+

N-k
P(F'+IIB1Bz .... BJSk} = N _ j j = 0,1, ... , k

d. Conc1ude that an appropriate workload approximation procedure for the
zero-line-capacity case would utilize (5.52), (5.53), and the algorithm of
Figure 5.19, with Q( ) replaced by Q'( ) and with lhe following other
modifications:

i. À.o = O.

ii. AI Step O: p,,(O) = P = (~)(\ - P'(SN))'c. Combine the results above with the appropriate results for the M] M j N
infinite capacity queue, to obtain

P(B1Bz ... B,F,+d = Q(N, p,j)p'(l - p)

where Q(N, p,j) is given by (5.48).

5.11 Estimating interatom dispatch frequencies Suppose that we have applied the
workload approximation procedures summarized in Figure 5.19, resulting in
workload estimates Pl' Pz, ... ,PN'
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a. Argue, that for the infinite-line-capacity case, a reasonable approximation
for

f~12 == fraction of assignments that take server n to atom k and incur
no queue delay

can be obtained by ordering on the dispatch preference list, using

ma} = identification number of the jth preferred server for atom a

and writing

J~!Jk = (~) Q(N, p, j - 1)C~Pmkt) (1 - Pm.) (*)

Argue further that the J~~l'Smust satisfy the following normalization
conditions:

k = 1,2, ... , NA (**)

Thus, a suitable approximation procedure would utilize the results of
(*), appropriately normalized (or scaled) to satisfy (**).

b. Show that, for the corresponding zero-line-capacity system, the procedures
above apply with Q(N, p,j - 1) replaced by Q(N, p,j - 1)/(1 - P~)
in (*) and the equation "Zr:~J~~l= Àk/ À replacing (**).

5.12 Fire problem Consider three fire stations, A, B, and C, located on the X-axis
at -1, O, and .+ 1, respectively, The fire trucks at these stations service tires that are
reported in the region X = -2 to X = +2. Fires within this region are indepen-
dently uniformly distributed; they are generated at the rate À per hour. Travei time
to and from the fires is instantaneous. Service time at the scene is negatively expo-
nentially distributed with mean 1/ J1.. There is one truck at each station and the
dispatcher wil! assign the c/osest available truck. lf no truck is available, reports of
fires enter a queue that is depleted in a jirst-come, first-served manner.

a. Write down the equations whose solution would provide the utilization
factor (fraction of time busy) of each of the trucks. You necd not solve the
equations.

b. Write down the equations whose solution would provi de the fraction of
calls generated in the interval X = -t to X = +i that are serviced by
unit C. You need not solve the equations.

c. Find approximate solutions to parts (a) and (b) by employing the hypercube
approximation procedure of Section 5.5 and Problem 5.11.

5.13 Server-dependent mean service times Suppose that in the three-server example
of Section 5.4.3 we were told that the mean service times of the various servers were
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not identical, but were given as follows: 1/-1 =.2 Ir I = 1 O and J1.-1 -- 2 O ( ./"" I j, /""2 . , 3 - . LInus
of time). Here J1.; I includes both travei time and on-scene time.

a. Determine a requirement for À such that the system is not saturated (i.e.,
that the total required service does not exceed the total available capacity).

Assi.ming that À = 1.5, write a set of balance-of-ftow equations analogous
to (5.22)-(5.29) whose solutio.ls yield the system equilibrium state prob-
abilities.

b.

n,int: This system, when unsaturated, does not collapse to an M/M/3
birth-and-death model, so one does not know the sums of probabilities
along certain hyperplanes.

c. Suppose we are given a numerical value for PIII. Find PQ in terms of
P 111 [see (5.21e)].

Hint: The system is a birth-and-death process for saturated system
states.

d. Argue that (5.30) for server workloads and (5.32) for "unsaturated" inter-
atom dispatch frequencies remain unchanged.

e. Argue that (5.34) should be replaced with

(*)

where, as usual,

Conclude that (5.36), (5.37), and (5.38) remain unchanged, assuming that fl21 as
given by (*), is substituted for À}P'o/ÀN in (5.35). n},

f. Mean travei times are more difficult and require approximations. Can you
fil! in the details?

5.14 Interdistrict dispatching ; revisited In Section 5.6 we found that for a non-
~ime-v.ary.ing ~yslem with Àn(!) = À., p,,(t) = p., lhe fraction of dispatches that are
interdistrict dispatches is

a. Examine the special case p, = p, and physical!y interpret your result.

b. Examine the special case Àn = constant, and physically interpret your
result.



356 Spatial/y Distributed Oueues Ch.5

c. In the text we developed (5.55), allowing for a tirne-varying system in which
the sector car is always given first preference. However, for a system in
which the dispatcher has car location information, he may prefer to assign
an out-of-sector car that is eloser to the scene than the sector caro Our
previous analysis can be generalized to allow for this type of behavior. Let

anel) = probability that unit n is assigned to a call that arrives from
sector n at time t, given that unit n is available

Derive the analogous result to (5.55) for this more general mode!. What
are the physical implications of the result?

d. Does the practical significance of the results above change if we allow a
queue to form? As a guide to answering this question, consider a non-
tirne-varying systern in near-saturation conditions (i.e., a queue almost
always exists). A call that arrives when ali N servers are busy is entered in
queue. The queue is depleted in a first-corne, first-served manner. Prove
that

1
1 =T= N

5.15 Spatial distribution o/ busy servers, revisited Generalize (5.58) to show that if
service requests are spatially distributed in some arbitrary way, then busy servers
are distributed as a spatially nonhomogeneous Poisson process; identify the mean
value of this process over any particular region R' c R.

5.16 Linking travel times in finite regions to spatial Poisson processes In this prob-
lem we wish to explore the validity of the spatial Poisson proeess model as we
inerease the number of independently, uniformly loeated response units in our area.

If a unit n is uniformly distributed over a square region of area N and if
the ineident is located at the eenter of the square, find the probability
density function of D•• the traveI disrance for unit n to reach the ineident.
(Assume that we have right-angle response parallel to the sides of the
square.)

b. Assume that there are N such units in the region, indexed from n = 1 to
n = N. The minimum traveI time to an ineident is

a.

But the spatial Poisson assumption implies that as N gets large, the pdf
for RN approaehes a Rayleigh with parameter 2. The eumulative distribu-
tion funetion for a Rayleigh random variable with parameter 2 is

Fu(r) = 1 - e-2rt r~O
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Thus, if the spatial Poisson modcl is correet for large N, we must have

lim [In [I - FRN(r)}] = In [1 - Fu(r)] = -2r2 (*)
N-~

Prove (>t<).

c. Exp.ain briefly how your analysis in part (b) is modified if you do not
condition on the position of tl.e incident being at the center of the square.

d. How might we use this result in developing an approxirnate rnodel for
traveI time in a finite homogeneous region with N response units, demand
rate À. (incidents/hour), average service time u:», and a service discipline
that assigns units eompleting service to the closest waiting call ?

5.17 Coverage problem for urban service systems Consider a collection of response
units in the plane whose positions are distributed according to a spatial Poisson
process with parameter À.A(S), where A(S) denotes the area of the region S. Each
unit is available for dispatch with probability (I - p), independent of the status of
ali other units. Units have different response speeds: the (Euclidean) distance that
a randomly chosen available unit can travei in a time Tis determined by the proba-
bility density functionj~(r, T) (Tfixed). Show that the number of available response
units which ean travei to a random incident in the time T is a Poisson random
variable with parameter

Hint: Define the farnily of random variables C(r, T) == the number of available
response units that can get to an incident in time T and that are loeated at a
distanee less than r from the incident. Show that the farnily C(r, T) determines a
time-varying Poisson proeess where the time variable is taken to be the dis-
tance r. To do this, prove that a "Poisson event" occurring in a ring between r

and r + dr centered at the incident has probability À.2nr dr s,~/R(X, T) dx, and

'events oceurring over disjoint intervals constitute independent random variables,
Then show that C(r, T) is a variable-time (nonhomogeneous) Poisson proeess
with parameter

À.(r) = À.(I - p)2nr r/R(X, T) dx

5.18 How many police cars? (This problem has been adopted frorn a real-world
situation.) The police departrnent of a medium-sized city recently decided to expand
police services and, arnong other things, placed two aelditional patrol cars in the
streets (over and above those they already had) on a 24-hour-a-d;IY basis. Both
before anel aíter the addition of lhe two ears, it was found that each car on the
streets was responcling to about one call every 2 hours (apparently the total number
of ealls also incrcased somewhat) and that the mean service time for a cal! was about
30 minutes. It was also found that in the first 4 months after the add ition of the two
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new cars, the average travei time to a call was 5.28 minutes. Before the addition of
the two cars it was 5.82 minutes. The police dispatcher, throughout this time, was
using an approximate closest-available-car dispatching strategy ("approximate"
because the dispatcher does not know the exact position of every police car at ali
times). .

Based on this information can you guess approximately how many patro! cars
this city's police department was fielding before the addition of the two new patro!
cars?

Hint: One of the coauthors, with essentially the same information as you have
(but not quite as neat!y presented) guessed "]2 or 13," using the techniques of
Section 5.8. The right answer turned out to be 13!


