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In these notes, we give a quick introduction to the main classical results in the theory of “Géométrie
Algébrique et Géométrie Analytique” (GAGA). GAGA was first introduced by Jean-Pierre Serre in the
1950s, as a comparison between the category of projective integral C-schemes of finite type (projective
algebraic varieties) and the category of projective C-manifolds (possibly with singularities). In [SGA
I, Exposé XII], Grothendieck extended the theory to proper C-schemes locally of finite types, and an
extension of the concept of manifolds, called analytic spaces. He proved a series of comparison results
(for example, between all the common properties of the two objects) which show that they can be, in
almost all cases, regarded as the same objects. He also showed that the category of finite étale coverings
of a C-scheme locally of finite type is equivalent to that of finite étale coverings of the corresponding
analytic space (Riemann’s existence theorem), thus establishing a covering space theory for C-schemes
and justifying the definition of the étale fundamental group. In later talks, we will extend this justification
to a more general class of schemes.

These notes give a brief summary of these topics and are not meant to be complete in any way. Inter-
ested readers can find more detailed proofs and references in the original papers by Serre [GAGA] and
Grothendieck [SGA I, Exposé XII].

1 Analytic spaces

1.1 Definitions and some basic facts

Consider the space Cn. Let U ⊂ Cn be an open subspace and H be the sheaf of holomorphic functions on
U .

Definition 1.1. Let f1, . . . , fk be holomorphic functions on U and I be the coherent sheaf of ideals
generated by these functions. An affine analytic space (X,HX) is a locally ringed space whose underlying
space is

X = {y ∈ U |f1(y) = · · · = fk(y) = 0} ⊂ U

and whose sheaf of rings is defined by i−1H/I where i : X → U is the inclusion map. The stalk at each
point x ∈ X is given by HX,x = Hx/(f1, . . . , fk).

An analytic space (X,HX) is a locally ringed space satisfying

(i) there is an open cover {Vi} of X such that each (Vi,HX |Vi) is an affine analytic space; and

(ii) X is a separated (Hausdorff) topological space.

A morphism of analytic spaces is a morphism of locally ringed spaces.

Exercise 1.2. Check that the gluing of the open affine subspaces is well-defined.

Remark 1.3. This definition is based on that given in [Car62], which is different from that of [GAGA].
The definition by Serre corresponds to the reduced analytic spaces under this definition.
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Remark 1.4. If X is smooth, then it is simply a complex manifold. Let f : X → Y be a morphism of
locally ringed space. If x ∈ X and f(x) ∈ Y are smooth points, then f is locally a holomorphic map in a
neighbourhood of x. This is because if we take the germs of the projection maps (U,pri) ∈ HY,f(x), we get

that f ](U,pri) = (V,pri ◦ f) ∈ HX,x are holomorphic. Hence, we can view the theory of analytic spaces
as a generalisation of the theory of complex manifolds.

We note that if X = Cn, then for any x ∈ X, HX,x ∼= C{x1, . . . , xn} is a noetherian local ring. In general,
HX,x ∼= C{x1, . . . , xn}/I where I is the ideal generated by a finite set of holomorphic functions f1, . . . , fk.
Hence, HX is a locally noetherian sheaf of rings over C.

Remark 1.5. Indeed, it is possible to show that HX,x is isomorphic to either C{x1, . . . , xm} for some m
or C{x1, . . . , xm}/I where I ⊂ m2. We say that the point x is smooth in the former case and that the
point x is an analytic singularity in the latter.

We conclude with some commutative algebra results central to the GAGA theorems.

Let OX ⊂ HX be the subsheaf of regular functions on X.

We present the following propositions by Serre [GAGA] without proof.

Proposition 1.6. Let x ∈ X, then ÔX,x ∼= ĤX,x.

Sketch of proof. The proposition is clear in the case where X = Cn. In general, locally around x,
there exists an open subset W ⊂ X such that W is analytic in an open set U ⊂ Cn. We can then define
an ideal sheaf I(X) ⊂ OU with support W . Let I = I(X)x. Then it is clear that OX,x = OU,x/I and
HX,x = HU,x/I · HU,x.

Definition 1.7. Let A be a subring of B. The pair (A,B) is flat if B/A is a flat A-module.

Proposition 1.8. Let A be a subring of B. The following are equivalent:

(i) (A,B) is a flat pair.

(ii) B is flat over A and for all A-modules (of finite type) E, the homomorphism E → E⊗AB is injective.

(iii) B is flat over A and for all ideals a ⊂ A, aB ∩A = a.

Proposition 1.9. Let x ∈ X, then (OX,x,HX,x) is a flat pair.

1.2 Analytic space associated to a C-scheme locally of finite type

Now, we describe how we can associate to each C-scheme locally of finite type an analytic space. We start
with an explicit construction.

Let X be a C-scheme and X(C) be the set of C-rational points on X. Then (X(C),OX |X(C)) is a locally
ringed space. First suppose X = Spec (C[x1, . . . , xn]/I) is affine, then we can endow X(C) with a finer
topology induced as a subspace topology of Cn for some n. Call this space Xan ⊂ Cn. Define HXan to be
the sheaf generated on each stalk by Hx/I · Hx.

In general, by taking an open affine cover of X, we can glue together the affine analytifications to obtain
an analytic space (Xan,HXan).

There is a natural morphism of locally ringed spaces

φ : (Xan,HXan)→ (X,OX)

whose topological image is the set X(C) ⊂ X and whose underlying map of sheaves φ∗OX → HXan sends
a regular function f on U ⊂ X to a regular function f ◦ φ on Uan ⊂ Xan. φ induces a bijection between
the sets Xan and X(C).
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Proposition 1.10. For any x ∈ Xan, the morphism of local rings

φx : OX,φ(x) → HXan,x

induces an isomorphism
φ̂x : ÔX,φ(x) → ĤXan,x.

Proof. This is an immediate consequence of the definition of Xan and Prop. 1.6.

Remark 1.11. This definition of the analytification of a C-scheme is once again slightly different from
the more geometric definition given by Serre. However, [GAGA, Prop. 4] shows that the two definitions
are equivalent.

It is easy to show that this construction of Φ is universal in the following sense. Let X be a C-scheme.
Consider the functor

ΦX : AnSp→ Sets : X 7→ HomC(X , X)

which sends an analytic space X to the set of morphisms of locally ringed spaces HomC(X , X).

Theorem 1.12. The functor ΦX is representable by the analytic space Xan and the equivalence Hom(−, Xan) ∼=
ΦX is induced by pre-composition with φ.

Sketch of proof. We carry out a series of reductions.

1. It suffices to prove the theorem for X affine since in general, the analytification is defined to be the
glueing of the analytifications over an affine covering.

2a. Let Y ↪→ X be an open immersion. Then, the theorem is true for Y if it is true for X since
Y an ∼= Xan ×X Y as Xan and Y an are locally isomorphic.

2b. Let Y ↪→ X be a closed immersion. Then, the theorem is true for Y if it is true for X. This is
because locally if OY,x = OX,x/I, then HY an,x = HXan,x/I · HXan,x.

Hence, it suffices to prove the theorem for X = AnC.

3. It is easy to show that (X × Y )an = Xan × Y an, so it suffices to prove the theorem for the affine line
X = A1

C.

We can prove the following natural isomorphisms for all analytical spaces X

HomC(X ,A1
C) ∼= HomC(C[x],Γ(X ,HX )) ∼= HomC(C{x},Γ(X ,HX )) ∼= HomC(X , (A1

C)an),

and hence the theorem is proven.

An immediate consequence of the theorem is that any morphism of schemes f : X → Y lifts to a unique
morphism of locally ringed spaces fan : Xan → Y an such that the following diagram commutes:

Xan φX //

fan

��

X

f

��
Y an φY // Y

We also obtain that (X ×Z Y )an ∼= Xan ×Zan Y an.

2 Comparison of properties of C-schemes and analytic spaces

Definition 2.1. Let R be a local ring. The depth of R is the maximal length of a regular sequence in R.
It is clear that dimR ≥ depthR. We say that R is Cohen-Macaulay if dimR = depthR. We say that
R is (Sn) if depthR ≥ min{dimR,n}.

Let (X,OX) be a locally ringed space. We say that (X,OX) is Cohen-Macaulay ((Sn), respectively) if
for each x ∈ X, OX,x is Cohen-Macaulay or ((Sn),respectively). We say that (X,OX) is (Rn) if all x ∈ X
of codimension ≤ n are regular.
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For simplicity, from now on, we will denote the C-scheme (X,OX) by X and the analytic space (Xan,HXan)
by Xan.

Proposition 2.2. Let X be a C-scheme locally of finite type. Let P be one of the following properties:

(i) non-empty;

(ii) Cohen-Macaulay;

(iii) (Sn);

(iv) regular;

(v) (Rn);

(vi) normal;

(vii) reduced;

(viii) of dimension n;

(ix) discrete.

Then, X has property P if and only if Xan has property P .

Sketch of proof. Property (i) follows from the fact that there is a bijection between the underlying sets
Xan and X(C).

Properties (ii)-(vii) are defined locally on each point of X and Xan. X is an excellent scheme (since it
is a scheme locally of finite type over a field), so it will satisfy each property P ((ii)-(vii)) on an open
subset of X [EGA IV, Prop. 7.8.6(iii)]. Hence, it suffices to check that property P holds for each point
x ∈ X(C). For any x ∈ Xan, HXan,x and OX,φ(x) are excellent local rings, and so are their completions.
Property P is preserved under completion of excellent local rings, and since φx induces an isomorphism of
the completions (Prop. 1.6), we have that X satisfies property P if and only if Xan satisfies property P .

Similarly, for property (viii), we have that the dimension of a local ring is equal to the dimension of its
completion, so

dimX = sup
x∈X

dimOX,x = sup
x∈X(C)

dimOX,x = sup
x∈Xan

dimHXan,x = dimXan.

Property (ix) is equivalent to property (viii) for n = 0.

The morphism φ : Xan → X is also well-behaved on subsets of X.

Proposition 2.3. Let X be a C-scheme locally of finite type and T ⊂ X a constructible subset. Then,
φ−1(T ) = φ−1(T ). In particular, T is closed (open, dense, respectively) iff and only if φ−1(T ) is closed
(open, dense, respectively).

Proof. It is clear that φ−1(T ) ⊂ φ−1(T ). Now we may assume X = T , so φ−1(X) = Xan and T is open and
dense in X since T is constructible. Let Z be the reduced closed subscheme with underlying topological
space X − T and so Zan has underlying topological space Xan − φ−1(T ). Let x ∈ Zan, so φ(x) ∈ Z ⊂ T .
Hence, if OZ,φ(x)

∼= C[x1, . . . , xn]/I and OX,φ(x)
∼= C[x1, . . . , xn]/J , then

√
J (

√
I. However, x is not

in the closure of φ−1(T ) if and only if there exists an open set U ⊂ Xan containing x if and only if√
I · C{x1, . . . , xn} =

√
J · C{x1, . . . , xn} which is clearly false.

Now, if φ−1(T ) is closed, then φ−1(T ) = φ−1(T ), that is, T and T have the same C-rational points. Since
T is constructible, we can write T =

⋃n
i=1(Ui ∩ Zi) for some open sets Ui and closed sets Zi. If T 6= T ,

then there exists some i such that Ui ∩ Zi 6= U i ∩ Zi. If x ∈ (U i − Ui) ∩ Zi, then so does any C-rational
point z ∈ {x}. Hence, we get a contradiction and we must have T = T .

φ−1(T ) is open iff φ−1(X − T ) is closed iff X − T is closed iff T is open.
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If T is dense in X, then φ−1(T ) = φ−1(T ) = Xan. Conversely, if φ−1(T ) is dense in Xan, then Xan =
φ−1(T ) so T contains all the C-rational points of X. Since T is constructible, so φ−1(T ) is dense and
constructible, hence open, and so is T . Suppose x 6∈ T , hence there is an open neighbourhood V of x
such that V ∩ T = ∅. Let U = Spec (C[x1, . . . , xn]/I) ⊂ X be an open affine subscheme containing x.
Then V ∩ U is open in U , and hence contains some C-rational points. Thus, φ−1(V ) is open in Xan and
is disjoint from φ−1(T ), contradicting the hypothesis that φ−1(T ) is dense in Xan.

Definition 2.4. Let X be an analytic space. X is irreducible if and only if it cannot be decomposed
into a finite number of closed sub-analytic spaces Xi 6= X .

Proposition 2.5. Let X be a C-scheme locally of finite type. Then X is connected (irreducible, respec-
tively) if and only if Xan is connected (irreducible, respectively).

Sketch of proof. If Xan is connected or irreducible, then so is X(C) and hence X.

To prove the converse, we can carry out some reduction steps: suppose X is connected/irreducible,

1. We may assume X is irreducible. If X is connected but not irreducible, then for any two points
x, y ∈ Xan, we can find a sequence X1, . . . , Xn of irreducible components of X such that x ∈ X1,
y ∈ Xn and Xi ∩Xi+1 6= ∅ for all i < n. Suppose each Xan

i is irreducible, and hence connected, then
(Xi ∩Xi+1)an is non-empty for each i < n, so there exists a path in Xan from x to y. Therefore Xan

is connected.

2. We may assume that X = Spec A is affine. Indeed, if X is irreducible, it has a cover by dense open
affine schemes Ui. If each Uan

i is irreducible, then so is Xan since each Uan
i is also open and dense.

3. Since we are only concerned about the topology of X, we may assume X is a reduced scheme, hence
integral.

4. It suffices to show that Xan is connected. Then, since all the local rings of Xan are integral, Xan is
irreducible.

To complete the proof, we let i : X → P be a compactification of X, for example by taking the closure
of X in the embedding X ↪→ AnC ↪→ PnC. P is a integral projective scheme so P an is connected iff P is by
Cor. 4.4.

It remains to show that Xan is connected given that P an is connected. By the previous proposition,
Xan is dense in P an so Y an = P an − Xan is an analytic space with complex codimension ≥ 1. The set
of singularities Z of Y an has complex codimension 2, so by [Ser66, Prop. 4], H0(P an) = H0(P an − Z)
and H0(Y an) = H0(Y an − Z). For each x ∈ Y an − Z, by the implicit function theorem, there exists a
neighbourhood U of Xan where U ∼= Cn−Cm for some m < n. Hence U is connected and so H0(P an−Z) =
H0(Xan).

Corollary 2.6. Let X be a C-scheme locally of finite type. Then X is integral if and only if Xan is
integral.

Proof. A scheme or analytic space is integral iff it is reduced and each component is irreducible.

3 Comparison of properties of morphisms

Definition 3.1. Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed spaces. f is smooth
(normal, reduced, respectively) if f is flat and for all x ∈ X and y = f(x) ∈ Y , the geometric fibres
OX,x ⊗OY,y

k(y) of f are regular (normal, reduced, respectively).

Proposition 3.2. Let f : X → Y be a morphism of C-schemes locally of finite type and fan : Xan → Y an

the induced map of analytic spaces. Let P be one of the following properties:

(i) flat;

(ii) unramified;
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(iii) étale;

(iv) smooth;

(v) normal;

(vi) reduced;

(vii) injective;

(viii) an open immersion;

(ix) an isomorphism;

(x) a monomorphism;

Then, f satisfies property P if and only if fan satisfies property P .

If we further assume that f is of finite type, let P be one of the following properties:

(xi) surjective;

(xii) dominant;

(xiii) a closed immersion;

(xiv) an immersion;

(xv) projective.

(xvi) proper;

(xvii) finite.

Then, f satisfies property P if and only if fan satisfies property P .

Sketch of proof Note that (i)-(vi) are defined locally, and by [EGA IV], if f verifies these properties on
a dense open subset of X, it verifies them on all of X. Hence it suffices to check them on points in X(C).

Let x ∈ Xan and y = f(x) ∈ Y an. We have a cartesian diagram

OY,y
fx //

��

OX,x

��
HY an,y

fan
x // HXan,x

Hence, for x ∈ Xan, fx satisfies (i) or (ii) iff fan
x satisfies (i) or (ii) respectively. (i) and (ii) imply (iii).

(iv)-(vi) follow from (i) and (iv), (vi) and (vii) respectively of Prop. 2.2 applied to the locally ringed spaces
X ×Y Spec k(y) and Xan ×Y an (Spec k(y))an ∼= (X ×Y Spec k(y))an.

(vii). It is clear that fan is injective iff f |X(C) is injective. It remains to show that f is injective if f |X(C)

is. Suppose there exist distinct x, x′ ∈ X such that y = f(x) = f(x′), then f maps {x} and {x′} to dense
open subsets of {y} (since the image of a constructible set is constructible and any dense constructible
subset of an irreducible closed set is open in that set). We have

dim(f({x}) ∩ f({x′})) = dim {y} and dim f({x} ∩ {x′}) < dim {y}.

Hence, there exists some dense open subset U ⊂ {y} disjoint from f({x} ∩ {x′}) but have non-empty
intersection with f({x}) and f({x′}). Thus, there exist points t ∈ {x} ∩X(C) and t′ ∈ {x′} ∩X(C) such
that f(t) = f(t′).

(viii) An open immersion is an injective étale morphism, so (viii) follows from (iii) and (vii). An isomor-
phism is a surjective open immersion, so (ix) follows from (viii) and (xi) (since an open immersion is of
finite type). f is a monomorphism iff ∆ : X → X ×Y X is an isomorphism, so (x) follows from (ix).

6



(xi) and (xii) follows from Prop. 2.3. f (or fan) is dominant iff f(X) (or fan(Xan) = f(X)an) is dense in
Y (or Y an). It is surjective iff it is dense and closed.

(xiii) follows from (x) and (xvi) since a closed immersion is a proper monomorphism.

(xiv) Suppose f is an immersion, then it factors as the composition of an open immersion followed by a
closed immersion. Hence, fan is also an immersion.

Conversely, suppse fan is an immersion. Let T = f(X) be the image of X and f factorises as the
composition

X
i−→ T

j−→ Y

where j is a closed immersion. Since f(X) is constructible, T is open in T , so we can again factor i as

X → i(X) = T → T ,

where the second map is an open immersion. Taking the analytification, we get

Xan → i(X)an ∼= ian(Xan)→ T
an
,

where the second map is an open immersion by (ix), while the first is an isomorphism since the composition
is an open immersion (as it is a factor of fan). By (x), we thus have X ∼= i(X) and so i is an open immersion.

(xv) A projective map is a composition of a closed immersion with a standard projection PrY → Y , hence
the result follows from (xiii).

(xvi) By assumption, f is of finite type and separated, hence so is fan. Hence, it suffices to show that f is
universally closed iff fan is. Indeed, it suffices to show that f is closed iff fan is. Suppose f is proper, then
for any extension under base change h : X ×Y Y ′ → Y ′, h is proper and hence closed, so han is closed, and
hence f is universally closed. The converse argument is similar.

Now, suppose fan is closed and let T ⊂ X be a closed subset. f(T )an = fan(T an) is closed by hypothesis,
so f(T ) is closed by Prop. 2.3.

Conversely, suppose f is proper. Then, by Chow’s lemma, there exists a scheme X ′ projective over Y with
a surjective projective morphism g : X ′ → X such that the following diagram commutes:

X ′
g //

  

X

f

��
Y

By (xi) and (xv), X ′an is projective over Y an and gan is projective and surjective. Hence, fan is closed.

(xvii) A finite morphism is a proper morphism with finite fibres. If f has finite fibres, then clearly so does
fan. Conversely, if fan has finite fibres, then for all y ∈ Y (C), f−1(y) has finite fibres. The set of y ∈ Y
with finite fibre is constructible and includes all of Y (C), hence it is equal to Y . Thus, f has finite fibre.
The result then follows from (xvi).

Remark 3.3. Note that the condition that f is of finite type is necessary for (xi)-(xvii). For example, the
inclusion

f :
∐
i∈Z

Spec C→ A1
C

send one copy of Spec C to each integer is not a closed immersion since the image is not closed in A1
C but

fan is a closed immersion since the image is the zeros of the holomorphic function sin z.

4 The GAGA theorems

The main result of GAGA proven by Serre [GAGA] is the following statement: Let X be a projective
C-scheme locally of finite type; there is an equivalence between the category CohX of coherent sheaves
on (X,OX) and the category CohXan of coherent sheaves on (Xan,HXan). Grothendieck [SGA I, Éxpose
XII] generalised this result to proper morphisms of C-schemes locally of finite type.
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First, we define the functor CohX → CohXan . Let φ : Xan → X be the canonical morphism. Given a
coherent sheaf F ∈ CohX , consider the sheaf φ∗F = φ−1F ⊗OXan HXan . Since φ is a flat morphism of
locally ringed spaces, φ∗ sends coherent sheaves to coherent sheaves. We thus have a well-defined functor

φ∗ : CohX → CohXan

F 7→ F an = φ∗F

Note that if F = OX , then φ∗F = HXan .

Proposition 4.1. The functor F 7→ F an is exact, faithful and conservative (isomorphism-reflecting).

Sketch of proof. Exactness follows from the fact that φ−1 is exact (since it has both left and right
adjoints) and HXan is flat over OXan (Prop. 1.9).

Since OXan → HXan is faithfully flat, for each x ∈ Xan, Fx ⊗OXan,x
HXan,x = 0 iff Fx = 0. Since X(C) is

dense in X, we conclude that F = 0 iff Fx = 0 for all x ∈ X(C).

Conservativeness follows from faithfulness and flatness.

φ∗ has a left adjoint φ∗, and hence there is a canonical natural morphism F 7→ φ∗φ
∗F = φ∗F

an for any
F ∈Mod(OX).

Let f : X → Y be a morphism of C-schemes locally of finite type, φ : Xan → X and ψ : Y an → Y be
the canonical morphisms. The pushforward f∗ : Mod(OX) →Mod(OY ) is left exact, since it has a left
adjoint. so we can consider the right derived functors R•f∗. For any F ∈Mod(OX), there are functorial
maps

R•f∗F → R•f∗(φ∗F
an)→ R•(f ◦ φ)∗F

an = R•(ψ ◦ fan)∗F
an → ψ∗(R

•fan
∗ F

an)

where the last morphism is induced as follows: since (ψ∗, ψ∗) is an adjoint pair, there is a canonical natural
transformation ψ∗ψ∗ → idMod(HY an ). This induces a morphism of complexes

ψ∗ψ∗f
an
∗ I
• → fan

∗ I
•

where I• is an injective resolution of F an. This induces a natural morphism of right derived functors

ψ∗R•ψ∗f∗F
an ∼= R•ψ∗ψ∗f∗F

an → R•f∗F
an

where the first isomorphism is true because ψ∗ is exact. The required morphism then follows by taking
the adjoint morphism.

The sequence of morphisms of OY -modules induces a morphism

θ• : (R•f∗F )an → R•fan
∗ (F an)

of HY an-modules.

It is not difficult to give an explicit description of the morphisms in terms of sections of sheaves in an
injective resolution of F , but it is not very instructive. Instead we consider the Čech cohomology.

Now assume that f : X → Y is a proper morphism, so f∗ sends coherent OX -modules to coherent OY
modules [EGA III, Thm. 3.2.1]. If F is a quasi-coherent sheaf over a C-scheme X locally of finite type,
there is an isomorphism OY -modules, for each p,

Rpf∗F ∼= Ȟp(X,F, f∗)) = lim−→
U
Hp(C•(U , F, f∗))

where U = {Ui}i∈I is some open cover of X and the colimit is taken over refinement of covers, and
C•(U , F, f∗) is the Čech complex with terms

Cq(U , F, f∗) =
⊕

|J|=q,J⊂I

(f |UJ
)∗F |UJ

where UJ =
⋂
j∈J Uj and the differentials are the standard Čech differentials.
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A fundamental result in Čech cohomology is that if there exists an open covering U of X (e.g. open Y -affine
covering of X, i.e. each element of the cover is an algebraic subset of ArY ) such that Hp(C•(U , I, f∗)) = 0
for all p > 0 and all injective OX -modules I, then

Rpf∗F ∼= Hp(C•(U , F, f∗)) ∼= Ȟp(X,F, f∗))

For morphisms of analytic spaces, we have a similar relationship between Čech cohomology and sheaf
cohomology. In fact, as the topology is finer (it is paracompact and Hausdorff), all sheaves, and not just
coherent sheaves, can be “resolved” using Čech cohomology. Hence, if f̃ : X → Y is a proper morphism of
analytic spaces and F ∈Mod(HX ), then

Rpf̃∗F ∼= Ȟp(X ,F , f̃∗)) = lim−→
U
Hp(C•(U ,F , f̃∗)).

Indeed, for any open Y-affine covering U of X , we have

Rpf̃∗F ∼= Hp(C•(U ,F , f̃∗)).

Hence, the morphism θ• embeds the set of sections of F on UJ (|J | = p+ 1) into the set of sections of F an

on Uan
J and the constructions above show that the embedding commutes with the derived functors R•f∗

and R•fan
∗ . The next theorem shows that the map is indeed an isomorphism.

Theorem 4.2. Let f : X → Y be a proper morphism of C-schemes locally of finite type, and F ∈ CohX .
Then, for any p ≥ 0, the morphism

θp : (Rpf∗F )an → Rpfan
∗ (F an)

is an isomorphism.

Remark 4.3. The case where Y = Spec C and f is projective was proven by Serre. Grothendieck
generalised it to proper morphisms.

Sketch of proof of theorem. Case 1: f is projective.

1. First we assume f : X = PrY → Y is the standard projection and F = OX . Then using the standard
open covering U = {Ui}i=0,...,r of X, we can show that R0f∗F = H0(Y,OY ) and Rpf∗F = 0 for all
p > 0. Similarly, we can show that R0fan

∗ F
an = H0(Y an,HY an) and Rpfan

∗ F
an = 0 for all p > 0.

2. Next, by inducting on the dimension of X as a Y -projective space and considering the exact sequences
of sheaves

0→ O(n− 1)→ O(n)→ OE(n)→ 0

where E is some hyperplane in X, we can verify the theorem for all standard projections f : X =
PrY → Y and twisted sheaves F = OX(n).

3. In general, let i : X → PrY be a closed immersion, then for any F ∈ CohX , we can show that
(i∗F )an ∼= ian

∗ F
an by checking on stalks. Furthermore, any coherent sheaf R on PrY can be written

as the cokernel of the direct sum of some O(n). Hence, we get an exact sequence

0→ L→
⊕
O(ni)→ R→ 0.

By inducting on the rank of R and using the long exact sequence associated to this short exact
sequence, we obtain the necessary results.

Case 2: f is proper. The “lemme de dévissage” [EGA III, Thm. 3.1.2] shows that it suffices to verify the
theorem for a set of sheaves F ⊂ CohX such that for each x ∈ X, there exists F ∈ F such that Fx 6= 0.
Chow’s lemma states that given any proper morphism f : X → Y , there exists a surjective projective
morphism g : X ′ → X such that g ◦ f is projective as well. It then suffices to choose F = g∗(OX′(n)) for
some suitable n. The verification of the theorem is an exercise in sheaf cohomology.

Corollary 4.4. Let X be a proper C-scheme and F ∈ CohX . Then, for all p > 0, there is an isomorphism

Hp(X,F )→ Hp(Xan, F an).
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Proof. Take Y = Spec C and f : X → Y to be the canonical map and apply Thm. 4.2.

Remark 4.5. It is clear that the GAGA theorems do not hold without the assumption of properness. For
example, on the affine line, A1

C, there are many analytic functions (eg. sin z) that are not regular. Hence,
H0(A1,OA1) 6∼= H0(C1,HC1). The theorem is a statement that all holomorphic functions on compact
spaces are regular.

The main theorem in GAGA is the following:

Theorem 4.6. Let X be a proper C-scheme and φ : Xan → X be the canonical morphism. Then the
functor φ∗ : CohX → CohXan sending F to F an is an equivalence of categories.

Sketch of proof. We will only show that the functor is fully faithful. The proof of essential surjectivity
is a rather involved construction which is beyond the scope of these notes.

Let F,G ∈ CohX and consider the coherent sheaf HomOX
(F,G). By Cor. 4.4, there is an isomorphism

HomOX
(F,G) ∼= H0(X,HomOX

(F,G))
∼−→ H0(Xan,HomOX

(F,G)an).

The latter sheaf HomOX
(F,G)an is isomorphic to HomHXan (F an, Gan) since F is coherent and HXan is

flat over OXan . Hence, we have an isomorphism

HomOX
(F,G)

∼−→ HomHXan (F an, Gan).

5 An application of the GAGA theorems: Chow’s theorem

Proposition 5.1 (Chow’s theorem). Let X be a proper C-scheme. Then any closed analytic subspace Y
of Xan is the analytification of some closed subscheme Y ⊂ X, that is to say, Y is algebraic.

Proof. Let i : Y → Xan be the inclusion map. Then there exists a coherent sheaf AY ∈ CohXan such that
i∗HY ∼= HXan/AY . By Thm. 4.6, there exists AY ∈ CohX such that AY ∼= (AY )an. The support of AY
is closed. If we let Y = Supp(AY ), we can define an inclusion of spaces j : Y → X and define the locally
ringed subspace Y = (Y, j−1(OX/AY )). Then, it is clear that Y is a closed subscheme of X and easy to
check that Y an = Y.

Proposition 5.2. Let X be a C-scheme locally of finite type. Then, all proper analytic subspaces of Xan

are algebraic.

Proof. There is an open covering of X by C-schemes of finite type Ui. Let Z be a proper analytic subspace
of Xan, then Z can be covered by finitely many Uan

i . Hence, without loss of generality, we may assume X
is of finite type.

By the Nagata compactification theorem, there is an open immersion i : X → Y of X into a proper
C-scheme Y . Z is closed in Y an, hence by Chow’s theorem, there exists a closed subscheme Z ⊂ Y such
that Zan = Z. Then,

(Z ×Y X)an ∼= Zan ×Y an Xan ∼= Zan ∼= Z

since Z is proper in Xan. Hence, Z is algebraic.

To prove the next result, we require a lemma.

Lemma 5.3. Let S be a C-scheme locally of finite type. Let X be a proper S-scheme and Y an S-scheme
locally of finite type. Then there is a bijection of sets

HomS(X,Y ) ∼= {Z ⊂
closed

X ×S Y |Z
∼−−→

pr1
X}.
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Furthermore, if we suppose X → S is étale, and let HomS,ét(X,Y ) be the set of étale morphisms from X
to Y , then there is a bijection of sets

HomS,ét(X,Y ) ∼= {Z ⊂
open and closed

X ×S Y |Z
∼−−→

pr1
X}.

The same results hold for analytic spaces and closed analytic subspaces.

Proof. We define a map HomS(X,Y ) → {Z ⊂ X ×S Y } as follows. For any S-morphism f : X → Y ,
the universal property of the fibred product gives a unique morphism i : X → X ×S Y in the following
diagram

X
f

))
id

��

∃!i

##
X ×S Y //

��

Y

��
X // S

i is a monomorphism since id : X → X is. Since X → S is proper and Y → S is separated, f : X → Y
is proper [Har77, Chapter II, Cor. 4.8]. X ×S Y → Y is proper since proper morphisms are stable under
base change, so i is proper as well and hence i is a closed immersion. The image Z = i(X) is the graph of
f in X ×S Y , and is hence isomorphic to X.

Conversely, given a closed subscheme Z ⊂ X ×S Y such that Z
pr1−−→ X is an isomorphism, The inverse of

the restricted projection map i : X → X ×S Y gives a S-morphism X
i−→ X ×S Y → Y . It is easy to check

the two maps are inverse to each other.

Now, if we suppose X → S and f : X → Y are étale, then so is X ×S Y → Y since being étale is stable
under base change and hence so is i : X → X ×S Y . An étale monomorphism is an open immersion, so
i(X) is an open and closed subscheme of X ×S Y .

Conversely, we see from the construction of the inverse map that if Z ⊂ X ×S Y is an open subscheme,

then the inclusion map is étale and so is the composition X
i−→ X ×S Y → Y .

Proposition 5.4. Let S be a C-scheme locally of finite type. Let X be a proper S-scheme and Y be a
S-scheme locally of finite type. Then the canonical morphism

HomS(X,Y )→ HomSan(Xan, Y an)

is an isomorphism.

Proof. By Lemma 5.3, it suffices to show that the functor

{Z ⊂
closed

X ×S Y |Z
∼−−→

pr1
X} −→ {Z ⊂

closed
Xan ×San Y an | Z ∼−−→

pr1
Xan}

Z 7→ Zan

induces an equivalence of categories.

Essential surjectivity follows from Prop. 5.2 and Prop. 3.2. HomX×SY (Z,Z ′) 6= ∅ iff Z ⊂ Z ′ iff Zan ⊂ Z ′an

iff HomXan×SanY an(Zan, Z ′an) 6= ∅.

Next, we present another consequence of the GAGA theorems. First, we require a lemma.

Lemma 5.5. Let X be a C-scheme locally of finite type. Then, the functors

{X ′ → X finite} −→ Coh-AlgX

(X ′
f−→ X) 7→ f∗OX′

and

{X ′ → Xan finite} −→ Coh-AlgXan

(X ′ f−→ Xan) 7→ f∗HX ′

give rise to equivalences of categories.
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Proof. The proof is left as an easy exercise for the reader.

Proposition 5.6 (Riemann’s existence theorem for proper schemes). Let X be a proper C-scheme. Then,
the functor

{X ′ → X finite (étale)} −→ {X ′ → Xan finite (étale)}
X ′ 7→ X ′an

induces an equivalence of categories.

Proof. The case for finite morphisms follow from Lemma 5.5 and Thm. 4.6. The case for finite étale
morphisms then follow from Prop. 3.2(iii).

6 Riemann’s existence theorem

Informally, Riemann’s existence theorem states that the category FEtX of finte étale coverings of a C-
scheme X locally of finite type is equivalent to the category FEtXan of finite étale coverings of Xan.

First, we give the formal definition of a covering.

Definition 6.1. Let X be a C-scheme locally of finite type. A morphism f : X ′ → X is a finite covering
of X if it is finite and the image of any irreducible component (i.e. maximal irreducible subset) of X ′ is
an irreducible component of X. We similarly define finite coverings of analytic spaces.

Remark 6.2. Any flat finite morphism of schemes f : X ′ → X is a flat finite covering. Similarly, any
flat finite morphism of analytic spaces f : X ′ → X is a flat finite covering. In particular, the finite étale
coverings are precisely the finite étale morphisms.

Remark 6.3. The finite étale coverings of an integral analytic space corresponds precisely with the
topological finite coverings of the space.

For simplicity, if X ′ → X is a finite covering of X and Y ⊂ X is a subscheme, we will often write X ′|Y
for the fibred product X ′ ×X Y .

We can now formally state Riemann’s existence theorem.

Theorem 6.4. Let X be a C-scheme locally of finite type. The functor

Φ : FEtX −→ FEtXan

(X ′
f−→ X) 7→ (X ′an fan

−−→ Xan)

induces an equivalence between the categories of finite étale coverings of X and Xan.

Proof. By Prop. 5.4, the maps

HomX(X ′, X ′′)→ HomXan(X ′an, X ′′an)

are isomorphisms for all X ′, X ′′ finite over X, hence the functor Φ is fully faithful.

To prove that it is essentially surjective, we first show that it suffices to assume X is a regular affine
scheme.

Let X ′ → Xan be a finite étale covering. The reduction steps are as follows:

1. We may assume that X is affine connected.

In general, take an affine open cover {Ui = Spec Ai} of X. By hypothesis, for each i, there exists
an étale finite cover U ′i → Ui such that U ′i

an ∼= X ′|Uan
i

. By Prop. 3.2(x) and the glueing of U ′i
an over

Xan, we get, for any i, j,
U ′i |Ui∩Uj

∼= U ′j |Ui∩Uj
.

Hence, we may glue {U ′i} over X to obtain a finite étale cover X ′ → X, and it is clear that X ′an ∼= X ′.
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2. We may assume X is reduced.

The canonical closed immersion Xred → X induces functors

FEtX → FEtXred
and FEtXan → FEtXan

red
.

Using the universal property of Xred → X, it is easy to show that the functors above induce equiva-
lences of categories (an exercise for the readers). Hence, the commutative square

FEtX //

∼
��

FEtXan

∼
��

FEtXred

∼ // FEtXan
red

gives the required equivalence of categories.

3. We may assume X is normal.

Any reduced scheme admits a normalisation p : X̃ → X where X̃ is a normal scheme. By [SGA I,
Exposé IX], p is a morphism of effective descent for the category FEtX , that is to say, the induced
functor

FEtX → FEtX̃

is an equivalence of categories. Adapting the proof in [SGA I, Exposé IX] for analytic spaces, we get
that pan is also a morphisms of effective descent.

Let X̃ ′ = X ′ ×Xan X̃an ∈ FEtX̃an . By hypothesis, there exists X̃ ′ ∈ FEtX̃ such that X̃ ′an ∼= X̃ ′.
Hence, there exists X ′ ∈ FEtX such that X ′ ×X X̃ ∼= X̃ ′. It then follows that

X ′an×Xan X̃an ∼= X̃ ′an ∼= X̃ ′ = X ′ ×Xan X̃an

and the effective descent of pan implies that X ′ ∼= X ′an.

4. We may assume that X is regular.

Since X is assumed to be normal, it is (R1), hence the closed set of singular points of X has
codimension codim(X,Sing(X)) > 1. Let U = X − Sing(X) be an open subscheme. Hence, U is
a regular scheme and by Prop. 2.2(iv), Uan is a regular analytic space. By hypothesis, there exists
U ′ ∈ FEtU such that U ′an ∼= X ′|Uan .

Claim 6.5. If there exists a finite étale covering X ′ → X such that X ′|U = U ′, then X ′an ∼= X ′.

Proof. By Lemma 5.5, there exist coherent algebras F and G over Xan corresponding to X ′an and
X ′ respectively. Let ian : Uan → Xan be the open immersion. Since codim(Xan, Xan − Uan) ≥ 2, by
[Ser66, Prop. 4], the canonical maps F → ian

∗ i
an∗F and G → ian

∗ i
an∗G are isomorphisms. Hence, we

get the required isomorphism from the following commutative square

F ∼ //

��

ian
∗ F|Uan

∼
��

G ∼ // ian
∗ G|Uan

It remains to construct such an X ′. By hypothesis, X is integral affine, so let X = Spec A for some
integral C-algebra of finite type. U can be covered by a finite number of open affines Ui = Spec Afi
for some fi ∈ A. By Lemma 5.5, U ′ corresponds to a coherent OU -algebra, so on each Ui, U

′|Ui

corresponds to some Afi-algebra Ci of finite type such that (Ci)fj
∼= (Cj)fi for all i, j. Fixing an i

and applying appropriate homomorphisms to Cj for all j 6= i, we can choose Cj = Afj [x1, . . . , xn]/Ij
such that (Ij)fk = (Ik)fj ⊂ K[x1, . . . , xn] for all j, k where K = FracA.

Let I = A[x1, . . . , xn] ∩ (∩jIj). Then, we have

Ifi = Afi [x1, . . . , xn] ∩ (∩j(Ij)fi) = Afi [x1, . . . , xn] ∩ (∩j(Ii)fj ) = Ii,

so the finite cover X ′ of X corresponding to A[x1, . . . , xn]/I extends U ′.
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Now, we may assume that X = Spec A is connected, affine and regular. We complete the proof in this case.
We note that exists a compactification j : X → P of X such that P is proper and j is a dominant open
immersion. P may not be regular, but we can resolve the singularities in P by taking blow ups of points
in P −X to obtain a proper regular scheme R over P . Results from the resolution of singularities over C
shows that we have a dominant open immersion k : X → R such that the following diagram commutes:

R

r

��
X

k

>>

j // P

Suppose the finite étale covering X ′ → Xan can be extended to a finite (but not necessarily étale) covering
R′ → Ran, then by Riemann’s existence theorem for proper schemes (Prop. 5.6), there exists a finite
covering R′ → R such that R′an ∼= R′. Let X ′ = R′|X , then

X ′an = R′|an
X
∼= R′an|Xan ∼= R′|Xan = X ′.

It thus remains to show that X ′ can be extended to Ran. This problem is local on each point x ∈ Ran−Xan.
Fix x. Since Xan and Ran are regular, by the implicit function theorem, there exists an open neighbourhood
V ⊂ Ran of x with a biholomorphic map

φ : V
∼−→ Cn : x 7→ 0 and φ(V ∩ (Ran −Xan)) = Z(x1, . . . , xp) ⊂ Cn

where p = codim(Ran, Ran −Xan). Let U = Cn and U0 = Cn − Z(x1, . . . , xp) = (C− {0})p × Cn−p.

There is an equivalence between the category FEtU (FEtU0
, respectively) of finite étale covers of U (U0)

and the category FTopCovU (FTopCovU0
) of finite topological covers of U (U0). The universal cover of

U0 is given by

Cn (exp,...,exp,id,...,id)−−−−−−−−−−−−→ (C− {0})p × Cn−p

and has kernel isomorphic to Zp. Indeed, each isomorphism class of finite topological cover of U0 can be
parametrized by the projection map

Z(z1 − tr11 , . . . , zp − trpp ) ⊂ ((C− {0})× C)p × Cn−p −→ (C− {0})p × Cn−p

(z1, t1, . . . , zp, tp, u1, . . . , un−p) 7→ (z1, . . . , zp, u1, . . . , un−p)

Indeed such maps also parametrize all isomorphism classes of finite étale covers of U0. We can then see
that these maps extend to a finite cover of U , ramified on U − U0, given by

Z(z1 − tr11 , . . . , zp − trpp ) ⊂ (C× C)p × Cn−p −→ Cp × Cn−p

(z1, t1, . . . , zp, tp, u1, . . . , un−p) 7→ (z1, . . . , zp, u1, . . . , un−p)

This completes the proof of the theorem.

Recall that the étale fundamental group π(X,x) of a scheme X at a point x ∈ X is defined to be the
automorphism group Fx where Fx : FEtX → FSets is the functor sending each finite étale covering

X ′
f−→ X to the fibre f−1(x). We can similarly define the étale fundamental group of an analytic space.

Riemann’s existence theorem gives us the following:

Corollary 6.6. Let X be a C-scheme locally of finite type and x ∈ Xan. Then, the étale fundamental

group π(X,x) of X at x is isomorphic to the profinite completion ̂π1(Xan, x) of the topological fundamental
group of Xan at x.

Proof. We have a commutative diagram

FEtX
Fx //

Φ

��

FSets

id

��
FEtXan

F an
x // FSets

14



Since Φ is an equivalence of categories by Thm. 6.4, it induces a natural isomorphism between the functors
Fx and F an

x . Hence, π(X,x) = Aut(Fx) ∼= Aut(F an
x ) = π(Xan, x).

Since FEtXan ∼= FTopCovXan , we get that

Aut(X ′ → Xan) ∼= π1(Xan, x)/π1(X ′, x).

Hence,

π(X,x) ∼= Aut(F an
x ) ∼= lim←−

(X ′→Xan)∈FEtXan

π1(Xan, x)/π1(X ′, x) = ̂π1(Xan, x).
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cohérents. Bures-sur-Yvette: Publications Mathématiques de l’I.H.É.S., 1961.
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