Universidade Federal do Pará

Instituto de Ciências Exatas e Naturais

Programa de Pos-graduação em Matemática e Estatística - PPGME

Curso de Análise Funcional

Lista de Exercícios 6

Professor: Giovany Figueiredo

As Topologias fraca e fraca * (1a parte)

1. Sejam E um espaço normado e $\{\varphi_f\}_{f\in E'}$ a família das aplicações $\varphi_f:E\to \mathbb{R}$, definidas por $\varphi_f(x)=f(x)$. Mostre que a coleção

$$\sigma(E, E') = \left\{ \bigcup_{q.q.} \left(\bigcap_{finita} \varphi_f^{-1}(W_i) \right) : W_i \subset \mathbb{R} \right\},\,$$

define uma topologia em E e que essa é a menor topologia que torna contínuas todos os funcionais lineares de E'. Tal topologia é conhecida como topologia fraca sobre E, induzida pelos elementos de E'.

2. Sejam E um espaço normado e $x_0 \in E$. Mostre que a família formada pelos conjuntos

$$V(x_0, f_1, \dots, f_n, \epsilon) = \{x \in E : | f_i(x - x_0) | < \epsilon, i \in \{1, \dots, n\}, f_i \in E' \text{ e } \epsilon > 0\},$$

define um sistema de vizinhanças local para x_0 , na topologia fraca.

3. Sejam E um espaço normado munido da topologia fraca, Z um espaço topológico e $\psi: Z \to E$ uma aplicação. Mostre que ψ é contínua se, e somente se, para cada $f \in E'$, a aplicação $\varphi_f \circ \psi: Z \to \mathbb{R}$ é contínua, onde $\{\varphi_f\}_{f \in E'}$ é a família de funcionais lineares contínuos da definição de topologia fraca.

- 4. Dê exemplo de um espaço normado no qual existe uma sequência que converge fraco, mas não converge forte.
- 5. Seja E um espaço normado com dim $E < \infty$. Mostre que as topologias forte, fraca e fraca * sobre E', coincidem.
- 6. Seja E um espaço normado e $C \subset E$ um conjunto convexo. Mostre que C é fortemente fechado se, e somente se, C é fracamente fechado.
- 7. Sejam E um espaço normado e $\varphi: E \to \mathbb{R}$ uma função convexa e fortemente semicontínua inferiormente. Mostre que φ é fracamente semicontínua inferiormente.
- 8. Sejam E um espaço normado e $\{\varphi_x\}_{x\in E}$ a família das aplicações $\varphi_x: E' \to \mathbb{R}$, definidas por $\varphi_x(f) = f(x)$. Mostre que a coleção

$$\sigma(E', E) = \left\{ \bigcup_{q.q.} \left(\bigcap_{finita} \varphi_x^{-1}(W_i) \right) : W_i \subset \mathbb{R} \right\},\,$$

define uma topologia em E', que essa é a menor topologia que torna contínuas todos os funcionais φ_x e que $\sigma(E', E)$ é menos fina que $\sigma(E', E'')$. Tal topologia é conhecida como topologia fraca * sobre E', induzida pelos elementos de E.

9. Sejam E um espaço normado e $f_0 \in E'$. Mostre que a família formada pelos conjuntos

$$V(f_0, x_1, \dots, x_n, \epsilon) = \{ f \in E' : | (f - f_0)(x_i) | < \epsilon, i \in \{1, \dots, n\}, x_i \in E \text{ e } \epsilon > 0 \},$$

define um sistema de vizinhanças local para f_0 , na topologia fraca *.

- 10. Seja E um espaço de Banach com dim $E = \infty$. Mostre que todo aberto fraco em E contém a translação de um subespaço vetorial de dimensão 1. Conclua que não existem abertos fracos limitados em um espaço normado de dimensão infinita.
- 11. Seja $(E, \|.\|)$ um espaço normado com dim $E = \infty$. Mostre que

- a) \parallel . \parallel : $E \to \mathbb{R}$ é fortemente contínua, mas não é fracamente contínua.
- b) $\parallel . \parallel : E \rightarrow {\rm I\!R}$ é fracamente semi-contínua inferiormente.
- c) $\parallel . \parallel : E \rightarrow {\rm I\!R}$ é fraco*semi-contínua inferiormente.
- 12. Sejam E e F espaços de Banach e $T \in \mathcal{L}(E,F)$ sobrejetiva. Mostre que

$$T: (E, \sigma(E, E')) \to (F, \|.\|)$$

não é contínua.

- 13. Mostre que o conjunto $\{x \in E : ||x|| > 1\}$ é fracamente aberto, sem usar o fato de que seu complementar é fracamente fechado.
- 14. Seja E um espaço normado. Mostre as aplicações

$$x \mapsto \lambda x \ e \ x \mapsto x + a$$

são homeomorfismos fracos de E em \mathbb{R} e de E em E, respectivamente. Onde $\lambda \in \mathbb{R}$ com $\lambda \neq 0$ e $a \in E$.

15. (Teorema de Mazur)

Sejam E um espaço de Banach e $(x_n)_{n\in\mathbb{N}}$ uma sequência que converge fracamente para $x\in E$. Seja C o conjunto das combinações convexas de termos de (x_n) , isto é,

$$C = \left\{ \sum_{j \in J} \lambda_j x_j : J \text{ \'e finito}, \quad 0 \le \lambda_j \le 1 \text{ e } \sum_{j \in J} \lambda_j = 1 \right\}.$$

Mostre que existe uma sequência $(y_n)_{n\in\mathbb{N}}$ em C tal que $(y_n)_{n\in\mathbb{N}}$ converge forte para x.

- 16. Mostre que se $u_n \rightharpoonup u$ em C[a,b], então $u_n(t) \rightarrow u(t)$, para todo t em [a,b].
- 17. Sejam E e F espaços normados. Mostre que $T\in\mathcal{L}(E,F)$ se, e somente se, T: $(E,\sigma(E,E'))\to(F,\sigma(F,F')) \text{ \'e contínuo}.$

- 18. Mostre que uma sequência $(x_n) \subset l_1$ converge fraco se, e somente se, converge forte. Observe que isso não nos permite concluir que as topologias forte e fraca coincidem em l_1 , visto que dim $l_1 = \infty$.
- 19. Sejam E e F espaços normados. Mostre que $T:E\to F$ linear. Mostre que se

$$T: (E, \|.\|) \to (F, \sigma(F, F')).$$

é contínuo, então $T \in \mathcal{L}(E, F)$.

- 20. Seja E um espaço normado reflexivo. Mostre que $\sigma(E', E'') = \sigma(E', E)$.
- 21. Sejam E um espaço normado e N um subespaço de E'. Definimos

$$N^{\perp} = \{ x \in E : f(x) = 0, \quad \forall f \in N \}.$$

Mostre que, se E é reflexivo então $\overline{N} = (N^{\perp})^{\perp}$.

22. Sejam E um espaço normado e $(x_n) \subset E$. Mostre que $x_n \to x$ se, somente se, (x_n) é limitada e o conjunto

$$\{f \in E' : f(x_n) \to f(x)\}$$

é denso em E. Enuncie e prove um resultado análogo para sequências de funcionais convergindo na topologia fraca *.

- 23. Sejam E um espaço normado e $(x_n) \subset E$ uma sequência de Cauchy. Mostre que se $x_n \rightharpoonup 0$, então $x_n \to 0$ em E.
- 24. Mostre que todo espaço normado de dimensão finita é reflexivo.
- 25. Sejam E e F espaço normados. Mostre que se

$$T: (E, \sigma(E, E')) \rightarrow (F', \sigma(F', F''))$$

é contínua, então

$$T:(E,\sigma(E,E'))\to (F',\sigma(F',F))$$

é contínua.

- 26. Sejam Eum espaço normado e $(f_n)\subset E'.$ Mostre que
 - a) $f_n \rightharpoonup^* f \Leftrightarrow f_n(x) \to f(x), \ \forall x \in E;$
 - b) $f_n \to f \Rightarrow f_n \rightharpoonup f \Rightarrow f_n \rightharpoonup^* f;$
 - c) se $f_n \rightharpoonup^* f$ então (|| f_n ||) é limitado e || f|| \leq lim inf || f_n ||;
 - d) se $f_n \rightharpoonup^* f$ e $x_n \to x$, então $f_n(x_n) \to f(x)$.