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PREFACE 

Fast transforms are playing an increasingly important role in applied engi
neering pract ices . N o t only do they provide spectral analysis in speech, 
sonar, radar, and vibration detection, but also they provide bandwidth re
duction in video transmission and signal filtering. Fas t transforms are used 
directly to filter signals in the frequency domain and indirectly to design 
digital filters for t ime domain processing. They are also used for convolution 
evaluation and signal decomposit ion. Perhaps the reader can anticipate 
other applications, and as t ime passes the list of applications will doubtlessly 
grow. 
. At the present t ime to the au thors ' knowledge there is no single book that 

discusses the many fast transforms and their uses . The purpose of this book 
is to provide a single source that covers fast transform algorithms, analyses , 
and applications. It is the result of collaboration by an author in the aero
space industry with another in the university communi ty . The authors hope 
that the collaboration has resulted in a suitable mix of theoretical develop
ment and practical uses of fast t ransforms. 

This book has grown from notes used by the authors to instruct fast 
transform classes. One class was sponsored by the Training Depar tment of 
Rockwell International , and another was sponsored by the Depar tment of 
Electrical Engineering of The Universi ty of Texas at Arlington. Some of the 
material was also used in a short course sponsored by the Universi ty of 
Southern California. The authors are indebted to their s tudents for motivat
ing the writing of this book and for suggestions to improve it. 

The development in this book is at a level suitable for advanced under
graduate or beginning graduate students and for practicing engineers and 
scientists. It is assumed that the reader has a knowledge of linear system 
theory and the applied mathematics that is part of a s tandard undergraduate 
engineering curriculum. The emphasis in this book is on material not directly 
covered in other books at the t ime it was writ ten. Thus readers will find 
practical approaches not covered elsewhere for the design and development 
of spectral analysis sys tems. 



xiv PREFACE 

The long list of references at the end of the book attests to the volume of 
literature on fast transforms and related digital signal processing. Since it is 
impractical to cover all of the information available, the authors have tried to 
list as many relevant references as possible under some of the topics dis
cussed only briefly. The authors hope this will serve as a guide to those 
seeking additional material . 

Digital computer programs for evaluation of the transforms are not listed, 
as these are readily available in the l i terature. Problems have been used to 
convey information by means of the format: If A is t rue , use B to show C. 
This format gives useful information both in the premise and in the conclu
sion. The format also gives an approach to the solution of the problem. 
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N O T A T I O N 

Symbol 

A, B,... 

A® B 

AT 

A'1 

D(f) 

D(f) 

D'(f) 

D'(f) 

D F T [ j c ( w ) ] 

\Pr{L)-\ 
E 

Ft 

iHmh{Ly] 

Meaning 

Matrices are designated by 
capital letters 

The Kronecker product of A 
and B (see Appendix) 

The transpose of matrix A 
The inverse of matrix A 
D C T matr ix of size ( 2 L x 2 L ) 
Periodic D F T filter frequency 

response, which for P = 1 s 
is given by 

sin(7t/) 
N/JNsm(nf/N) 

Periodic frequency response 
of D F T with weighted 
input (windowed output) 

Nonperiodic D F T filter fre
quency response which for 
P = 1 s is given by 

exp[-77i/(l - 1/AO] [sin(7r/)]/(7c/) 

Nonper iodic frequency re
sponse of D F T with 
weighted input (windowed 
output) 

The discrete Fourier t rans
form of the sequence 
MO), x ( l ) , ...,x(N- 1)} 

7'th matrix factor of [G>(L)] 
Expectation operator 
7'th matrix factor of \_Mr(L)~\ 
rth Fermat number , Ft = 

( 2 2 t + 1), t = 0, 1 , 2 , . . . 
(GT) r matr ix of size ( 2 L x 2 L ) 
M W H T matrix of size 

( 2 L x 2 L ) 

Symbol Meaning 

[ # S ( L ) ] W a l s h - H a d a m a r d matr ix of 
size ( 2 L x 2 L ) . The sub
script s can be w, h, p , or cs, 
denoting Walsh, 
Hadamard , Paley or cal-sal 
ordering, respectively. 

[Ha(L)] Haar matr ix of size ( 2 L x 2 L ) 
[Hh r (L) ] r th order ( H H T ) r matr ix of 

size ( 2 L x 2 L ) 
Im Opposite diagonal matrix, 

e.g., 

~ 0 0 0 f 

0 0 1 0 
0 1 0 0 
1 0 0 0 

7^m Columns of IN are shifted cir
cularly to the right by m 
places 

7^w Columns of IN are shifted cir
cularly to the left by m 
places 

1% Columns of IN are shifted 
dyadically by / places 

IR Identity matr ix of size (R x R) 
I m [ ] The imaginary par t of the 

quant i ty in the square 
brackets 

IDFT[X(/c)] The inverse discrete Fourier 
t ransform of the sequence 
{X(0),X(l),...,X(N-l)} 

[K(L)] K L T matr ix of size ( 2 L x 2 L ) 
L Integer such that N = ccL 

MP Mersenne number , 
MP = 2P — 1, where P i s a 
prime number 

xix 
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Symbol Meaning 

(MGT),. matr ix of size 
( 2 L x 2 L ) 

TV Transform dimension 
N'1 Multiplicative inverse of the 

integer TV such that 
TV x TV"1 = 1 (modulo M) 

P 1. Period of periodic time 
function in seconds 

2. In Chapter 11, prime 
number 

Diagonal matrix whose 
diagonal elements are neg
ative integer powers of 2 

( W H T ) h circular shift-
invariant power spectral 
point 

^ ( / ) /th power spectral point of 
(GT) , 

rath sequency power spectrum 
Q 1. Rat io of the filter center 

frequency and the filter 
bandwidth (Chapter 6) 

2. Least significant bit value 
(Chapter 7) 

Re [ ] The real par t of the quantity in 
the square brackets 

* ( D ) Rate distortion 
[Rh(L)] R H T matr ix of size ( 2 L x 2 L ) 

ST matrix of size ( 2 L x 2 L ) 
[S<°">(L)] Shift matr ix relating X(c"° and 

v 
[S ( c m ) (L)] 

A. 

Shift matr ix relating X( c m ) and 
V 

OTL)] 
A 

Shift matr ix relating X ( d Z ) and 
Y 

[Sh,.(L)] 
A. 

r th order (SHT),. matrix of size 
( 2 L x 2 L ) 

r Sampling interval 
1. exp(-y'27r/TV) for F F T 
2. e x p ( - 7 2 7 i / a r + 1 ) for F G T 
The element • in a matrix 

means — 700 so that 

Shor thand notat ion for 
matr ix product WA WB, 
where A and B are TV x TV 
matrices 

WE Matr ix with entry WE{k,n) in 
row k and column n, where 
i?is a matr ix of size (TV x TV), 
E(k, n) is the entry in row k 
and column n for k, 
n = 0 , 1 , . . . , T V - 1 

Symbol Meaning 

X(f) or XJif) Spectrum defined by the 
Fourier (or generalized) 
transform of the (analog) 
function x(t) 

\X(f)\2 Power spectral density with 
units of watts per hertz 

X(k) Coefficient number k, k = 0, 
+ 1 , ±2, . . . , in series 
expansion of periodic 
function x(t) 

\X(k)\2 Power spectrum for a function 
with a series representation 

X c D C T of x 
C F N T of x 

£ ( c m ) Transform of xcm 

Transform of xcm 

Y 
A c r a 

C M N T of x 
X c p f C P F N T of x 
Y 
^ c p m 

C P M N T of x 
x ( d / ) Transform of xdl 

x f F N T of x 
^ h a H T of x 
^ h h r ( H H T ) r of x 
x k 

K L T of x 
x m M N T of x 
^ m h M W H T of x 

( M G T ) r of x 
Xpf P F N T of x 
Y P M N T of x 
x r (GT),. of x 
^(cra) (GT) r of x c m 

R H T of x 
x s ST of x 

kth W H T coefficient. The 
subscript s is defined in 

(SHT), of x 
ZM Ring of integers modulo M 

represented by the set 
{0 ,1 ,2 , . ..,M- 1} 

7C 

M 
Ring of complex integers. If 

c = a + p, where a, = 
Re[>] and S- — I m [ Y ] , then 

c is represented in ZC

M by 
a, + j3, where a, = a 
m o d M and 6- = I m o d M 

a^b Give variable a the value of 
expression b (or replace a 
by b) 

aeB a is an element of the set B 
a e [c, J ) c ^ a < d 
combj^ The infinite series of impulse 

functions defined by 
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Symbol Meaning Symbol Meaning 

f 
fk 

I 8{t-kT) 
k= — oo 

cube[7//?] Cubic-shaped function 
defined by 

c u b e - = tri , — * tri 

LpA I_P/2J LP/2J 

deg[ ] The degree of the polynomial 
in the square brackets 

Frequency in hertz 
Digit in expansion of 

m 

where / is the least 
significant digit (lsd) and 
m is the most significant 
digit (msd) 

fs = \IT is the sampling 
frequency 

Element of [ / / S (L)] in row k 
and column n. The 
subscript s is defined in 

Transform coefficient number 
The decimal number obtained 

by the bit reversal of the L 
bit binary representation of 
k 

The integer defined by 

hs(k,n) 

J 
k 

k-s 

In 

log 
log 2 

n 

I K+i-i2s~l, 
1 = 0 

where s = r + 2, r + 3, . . . , L, 
k = 2r, 2 r + 1 , . . . , ( 2 r + 1 - l ) , 
and fc/s/ = 0, 1 , . . . , r + 1, 
is a bit in the binary 
representation of k 

Logari thm to the base e 
(natural logarithm) 

Logari thm to the base 10 
Logari thm to the base 2 
D a t a sequence number 
Integerization of frequency 

given by 

rad(m, t) 
rect [ r /P] 

rep/sD*l/)] 

sincC/(2) 
t 
t r [ ] 
t r i[f /P] 

«(^-^o) 

wal s(/c, r) 

x{n) 

x{n)^X(k) 
x(t) 

x(0 

x ( O ^ W ) 

x o y 

Integer in the set 
( 0 , 1 , 2 , . . . , L - 1) 

mth Rademacher function 
Rectangular-shaped function 

defined by 

1, W^P/2 
0, otherwise 

The repetition of X(f) every fs 

units as defined by the 
convolution X{f) * comb^s 

Seconds 
[sin(7c/fi)]/(7c/0 
Time in seconds 
Trace of a matr ix 
Triangular-shaped function 

defined by 

tri — = r e c t * r e c t 

LPJ LP/2J LP/2J 

Unit step function defined by 

u(t-t0) = 
0, otherwise 

kih Walsh function. The sub
script s is defined in 
LHs(Lj] 

Complex conjugate of x 
x shifted circularly to the left 

by m places 
x shifted circularly to the right 

by m places 
x is shifted dyadically by / 

places 
Sampled-data value of x for 

sample number n 
Both x{n) and X(k) exist 
Time domain scalar-valued 

function at time t 
Time domain vector-valued 

function at time t 
Both x(t) and X(f) exist 
Sampled function 
The convolut ion of x and y 
Element by element multi

plication of the elements in 
x and y, e.g., if a = xoy , 
then a(k) = x(k)y(k) 

Expression for x in number 
system with radix a, e.g., 
(10.1) 2 = ( 2 . 5 ) 1 0 
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Symbol Meaning Symbol 

inn 

. mod & 

l\N 

^ld(t-T)l=exp(-j2nfT) 
Fourier transform operator 
The remainder when a is 

divided by ^ 
Generalized transform 

operator 
Fourier transform of u>(t) 

6,... Script lower case letters a, 
. . . and the italic letters /, 

k, I, m, n, p, q, r (Chapter 5 
only), K, L, M, and N de
note integers 

= 6 (modulo n) 0t{ajri) = M(#/ri), where a 
and S- are either integers or 
polynomials 

0t{a,j&\ where a and 6 are 
either integers or poly
nomials 

/ divides TV, i.e., the ratio N/l is 
an integer and the set of 
such integers includes 1 and 
TV 

Steps per second taken by the 
generalized transform basis 
functions 

Weighting function applied to 
modify D F T filter fre
quency response 

Covariance matrix of x 
Number system radix or a 

primitive root of order TV 
Number of equal sectors on 

the unit circle in the com
plex plane with first sector 
starting on the positive real 
axis 

a>(t) 

a 

BAD 

Xj 
V-
p 
a 2 

<M") 

KOI 

IKOII 

r(-)i 

L(-)J 

Meaning 

Kronecker delta function with 
the property that 

hi = 0, k±l 
1, k = l 

Dirac delta function with the 
property that 

*(*o) = 5{t - t0)x(t) dt 

/th phase spectral point of 
(GT) r 

7'th eigenvalue of [ZX(LJ] 
£[x] 
Correlation coefficient 
E[_(x - ^)2] 
The number of integers less 

than TV and relatively prime 
to TV 

kth basis function 4>k(t) eval
uated at t = nT 

Magnitude of (•) 
Integerize by truncation (or 

rounding) 
Smallest integer ^ (•), e.g., 

[3.51 = 4, r— 2.51 = - 2 
Largest integer ^ (•), e.g., 

L3.5J = 3 , L - 2 . 5 J = - 3 
Signed digit addition per

formed digit by digit 
modulo a 
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I N T R O D U C T I O N 

1.0 Transform Domain Representations 

Many signals can be expressed as a series that is a linear combination of 
orthogonal basis functions. The basis functions are precisely defined (mathe
matically) waveforms, such as sinusoids. The constant coefficients in the series 
expansion are computed using integral equations. Let the basis functions be 
specified in terms of an independent variable t and be represented as cj)k(t) for 
k = . . . , — 1, 0, 1, 2 , . . . . Let x(t) be the signal and X(k) be the kth coefficient. 
Then the signal x(t) can be decomposed in terms of the basis functions (j>k{t) as 

x{t)= X XiftMt) (1.1) 

If (1.1) describes x(f) for all values of t, it also describes x(t) for specific values of 
t. Suppose these values are nT where T is fixed and « = . . . ,— 1, 0, 1, 2 , . . . . 
Define x(n) and cf)k(n) as x(t) and (f)k(t), respectively, evaluated at t = nT. Then 
(1.1) becomes 

(1.2) 

Now suppose that only N of the coefficients in (1.1) are nonzero, and let those 
nonzero coefficients be X(0), X(l), X{2),X(N- 1). Then (1.2) reduces to 

x(n) = N^X{k)Un) (1-3) 

Let <P be the matrix defined by 

<P = 

4>o(0) 

0o(l) 
</>i(0) 

<Mi) 
4>N-i(0) 

\_<j>o(N-l) h(N-l) ••• 0 N _ t ( i V - l ) J 

(1.4) 

1 
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and let X be the vector defined by 

X = [X(0), X( l ) 3 X(2), , . . , X(7V - 1 ) ] T (1.5) 

where the superscript T denotes the transpose. Then (1.3) can be written as a 
matrix-vector equation that specifies N variables x(0), x ( l ) , . . , , x(N - 1): 

x = <f>X (1.6) 

x = [x(0), x(l), x(2), ...,x(N- 1 ) ] T (1.7) 

The TV coefficients in (1.5) scale the values of <P in (1.6) and result in a complete 
description of x . Since the basis function values in <P are well defined and since 
(1.6) is a matrix-vector equation (or transformation), the components of X 
constitute a transform domain representation of x . 

The transform domain representation of x is especially useful in signal 
processing using digital computers. If x(0), x ( l ) , x ( 2 ) , . . . ,x(N — 1) is a data 
sequence, then this sequence is represented by the transform sequence X(0), 
X ( l ) , X ( 2 ) , . . . , X(N - 1). If x(t) is a voice, sonar, or TV signal, the transform 
sequence aids in such tasks as identifying the speaker or sonar emitter and 
reducing the data required to transmit the TV picture. It is therefore highly 
desirable to evaluate the transform sequence as efficiently as possible. This 
evaluation is implemented with a fast transform algorithm. 

1.1 Fast Transform Algorithms 

Fast transform algorithms reduce the number of computations required to 
determine the transform coefficients. Matrix-vector equations can be defined 
for the inverse of (1.6) as 

X = ^ _ 1 x (1.8) 

where <p~1 is the matrix inverse of <P. Since $ is an N x N m a t r i x , <P~1is also an 
N x TV matrix. Assuming that $ ~ 1 is well defined, brute force evaluation of (1.8) 
requires roughly N2 multiplications and T V 2 additions. Fast transform algo
rithms reduce these arithmetic operations significantly as measured by digital 
computer costs. 

The first fast transforms to achieve prominence in digital signal processing 
were fast Fourier transform (FFT) algorithms. A large part of this book is 
devoted to the F F T . Not only are such old favorites as power-of-2 FFTs 
described, but also newer FFTs are carefully developed. The first F F T algorithm 
was described by Good [G-12], but FFTs were brought into prominence by the 
publication of a paper by Cooley and Tukey [C-31]. The newer FFTs are the 
result of the works of Winograd [W-6] and of Nussbaumer and Quandalle 
[N-23]. 

The generalized transforms in this book resulted from contributions by 
several researchers, including the authors. The continuous generalized trans
form has attributes which include a frequency interpretation and a fast 
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generalized transform (FGT) version. The generalized transforms dependent on 
a parameter r are designated (GT),.. They preceded the FGTs , and while they do 
not have a frequency interpretation, they are otherwise similar for many data 
processing purposes. 

The Walsh-Hadamard transform (WHT) is particularly suited to digital 
computation because the basis functions take only the values + 1 and — 1. The 
Haar transform takes the values + 1 , — 1, and 0 plus scaling of transform 
coefficients and is similarly suited to digital computation. Other discrete 
transforms, such as the slant (ST), discrete cosine (DCT), Hadamard -Haa r 
(HHT), and rapid (RT) transforms, also have fast algorithms. These algorithms 
result from sparse matrix factoring or matrix partitioning. 

In a statistical sense, the Karhunen-Loeve transform (KLT) is optimal under 
a variety of criteria. In general, generation and implementation of the K L T are 
both difficult because the statistics of the data have to be known or developed to 
obtain the K L T matrix and because there are no fast algorithms except for 
certain classes of statistics. 

1.2 Fast Transform Analyses 

Under appropriate conditions the function x(t) can be decomposed into the 
sum of basis functions <fik(t), each scaled by X(k), where k is an integer. One 
condition required for a Fourier series expansion to be valid, for example, is that 
x(t) be periodic with a known period P. 

If x(t) is sampled to obtain the finite discrete-time sequence (x(0), x ( l ) , . . . , 
x(N — 1)}, then this sequence can always be expressed in terms of sampled 
orthogonal basis functions. This is because <P and (p'1 both exist if the basis 
functions are orthogonal so that (1.8) defines the coefficient vector X and (1.6) 
defines the data vector x. 

Suppose that another N samples of x(t) were taken to obtain the sequence 
{x(N), x(N + 1 ) , . . . , x(2N — 1)}. Let the coefficient vector determined for this 
sequence be X . In some instances we wish to make X = X. One instance is the 
analysis of an accelerometer signal that has been integrated to give the vertical 
motion of an automobile subjected to periodic vertical forces. If the analysis 
information is F F T coefficients, then these coefficients describe the amplitudes 
of sinusoidal basis functions. Large coefficients identify the resonant frequencies 
of the suspension system. We would like to obtain the same information about 
the automobile's suspension system from two sets of data. 

In general, two sets of data do not give the same coefficients. This is because 
assumptions such as periodicity of the input and knowledge of the period P are 
not met. This does not negate the value of the analyzed data. We might change 
the sampling interval T, average a number of coefficient vectors, or use a 
different integer TV to investigate the data further. Which procedure to use is best 
evaluated if we examine fast transform analyses that specify the responses of the 
transform to various inputs. 
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Examination of the automobile suspension system is facilitated by regarding 
the F F T coefficient magnitudes as detected filter outputs. We can then use our 
filtering knowledge to evaluate the data. Specification of the F F T frequency 
response is one of the fast transform analyses presented in this book. 

Often a continuous transform is very helpful in design and analysis. F F T 
analysis is expedited by the Fourier transform that is developed heuristically and 
applied extensively. F G T analysis is likewise aided by the generalized con
tinuous transform. 

1.3 Fast Transform Applications 

The development of the efficient algorithms for fast implementation of the 
discrete transforms has led to a number of applications in such diverse 
disciplines as spectral analysis, medicine, thermograms, radar, sonar, acoustics, 
filtering, image processing, convolution and correlation studies, structural 
vibrations, system design and analysis, and pattern recognition. Fast algorithms 
lead to reduced digital computer processing time, reduced round-off error, 
savings in storage requirements, and simplified digital hardware. 

Digital processors based on the fast transform algorithms have been 
developed. Decreasing cost and size of the semiconductor devices have further 
added the impetus for designing and developing the digital hardware. Many 
application aspects of these transforms are illustrated in the problems, so that 
the readers' efforts can be directed toward discovering additional applications. 
Chapters on filter shapes and spectral analysis are oriented solely toward 
applications of F F T algorithms. 

1.4 Organization of the Book 

The book consists of 11 chapters. Signal analysis in the Fourier domain is 
described in Chapter 2. This chapter defines Fourier series with both real and 
complex coefficients and develops the Fourier transform heuristically. This is 
followed by a development of the Fourier transform pairs of some standard 
functions. Fourier decomposition lays the foundation for the development of 
the discrete Fourier transform (DFT), which is described in Chapter 3. It is 
shown that the same D F T results whether it is developed from the Fourier series 
for a periodic function or from an approximation to the Fourier transform 
integral. Various properties of the D F T are outlined both in the text and in the 
problems. A unique feature of this chapter is the shorthand notation for the 
matrix factored representation for the DFT . This notation shows at a glance 
what operations are required for the fast Fourier transform (FFT), which 
follows in Chapter 4. 

The initial development of F F T is based on power-of-2 algorithms and is then 
extended to mixed radix cases. It is shown that an F F T can be developed as long 
as the sequence length is composed of a number of factors. The inverse F F T 
operation is similar to that of the forward FFT . 
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Chapter 5 introduces the results from number theory required for the reduced 
multiplications F F T (RMFFT) . From number theory,, circular convolution, 
and Kronecker product procedures, various F F T algorithms minimizing 
multiplications are developed. Beginning with the definition and development of 
polynomial transforms, their application to multidimensional convolutions and 
implementing the D F T is discussed. D F T filter shapes and shaping are discussed 
in Chapter 6. Applications of the D F T receive attention in this chapter. Both 
time domain weighting and frequency domain windowing can be used to modify 
the D F T filter shapes, the latter in F F T spectral analyses. Various weightings 
and windows as well as shaped filters are described in this chapter. 

Further applications of the F F T are considered in Chapter 7, which discusses 
some basic systems for spectral analysis. Both finite and infinite impulse 
response (FIR and IIR) digital filters are presented. Complex modulations are 
combined with digital filters to increase system efficiency. The description of an 
efficient digital spectrum analyzer and hardware considerations concludes this 
chapter. 

Nonsinusoidal functions first appear in Chapter 8, where Walsh functions are 
introduced, generated from Rademacher functions. Discrete transforms based 
on Walsh functions for such orderings as Walsh, Hadamard, Paley, and cal-sal 
are then developed. Power spectra invariant with respect to circular shift of a 
sequence and the extension of the Walsh-Hadamard transform to multiple 
dimensions are developed. In summary, this chapter develops the sequency 
decomposition of a signal, in contrast to the frequency analysis outlined in 
Chapters 2-7. 

A generalized transform, in both continuous and discrete versions, is the 
subject of Chapter 9. Various advantages are stressed, such as frequency 
interpretation, generalized system design and analysis, and fast algorithms. As 
before, various properties of the generalized transform are listed. A strong point 
of this chapter is the frequency interpretation that provides a common ground 
for comparison of generalized and other transforms. 

A family of discrete orthogonal transforms varying from W H T to D F T is the 
major highlight of Chapter 10. Their properties and those of fast algorithms are 
developed, and other widely used transforms, such as slant, Haar, discrete 
cosine, and rapid transforms, are presented. These have found application in a 
wide variety of disciplines. 

Drawing upon the results of number theory presented in Chapter 5, number 
theoretic transforms (NTT) are developed in Chapter 11. These have become 
prominent because of their applications to convolution, correlation, and digital 
filtering. Both the advantages and limitations of NTT are pointed out. 

Problems at the end of each chapter reflect the concepts, principles, and 
theorems developed in the book. They also treat applications of the fast 
transforms and extend these to additional research topics. The extensive 
references, listed at the end of the book, are only as exhaustive as the rapidly 
changing subject permits. Care was taken to make this list as up-to-date as 
possible. 



C H A P T E R 2 

FOURIER SERIES AMD THE FOURIER T R A N S F O R M 

2.0 Introduction 

Fourier series are used to decompose periodic signals into the sum of sinusoids 
of appropriate amplitudes. If the periodic signal has a period of P s, then the 
sinusoidal frequencies in the Fourier series are l/P, 2/P, 3/P,... Hz. The 
representation of periodic signals as the sum of sinusoids of known frequencies is 
a very useful technique for system analysis. 

For example, let a periodic signal be the input, or driving function, of a linear 
time invariant system. Then the sinusoidal representation relates the signal input 
and the steady state output. This is because the system has a definite response to 
each sinusoid at the input. The system's steady state response manifests itself as a 
change in the amplitude and as a shift in the phase of the sinusoid at the output. 
The system gain change and phase shift can be applied to each sinusoid in the 
Fourier series to evaluate the system's steady state output. 

This chapter develops the Fourier series representation of periodic signals. In 
later chapters we shall extend the representation to include the discrete Fourier 
transform (DFT), the fast Fourier transform (FFT), and other fast transforms. 
This chapter also gives a heuristic development of the Fourier transform. We 
shall use the Fourier transform for the performance analysis of systems 
incorporating F F T algorithms. The Fourier transform provides a frequency 
domain analysis of signals that can be represented by Fourier series, as well as of 
signals having a continuous spectrum, and is therefore a very general system 
analysis tool. 

2.1 Fourier Series with Real Coefficients 

Let x(f) be a periodic time function whose magnitude is integrable over its 
period. Then the Fourier series with real coefficients is given by [C-58, H-18, 
H-40] 

* 0 = ^ + I 
2%lt 2nlt 

ax cos h b, sin 
P 1 P 

(2.1) 

6 
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where P is the period in seconds, / = 0 , 1 , 2 , . . . is the integer number of cycles in 
P s, l/P is frequency in units of Hz, and a0i au a2,... and bu b2,.. • are the 
Fourier series coefficients. 

The value of the Fourier series coefficient ak is found by multiplying both sides 
of (2.1) by cos(2nkt/P) and integrating from — P/2 to P/2, giving 

P/2 P/2 

2%kt 
x(t) cos dt 

w P 
a0 2nkt 
— cos dt 
2 P 

- P / 2 -P/2 

P/2 

+ Z 

+ 2 > 

27i/^ 2nkt 
cos cos dt 

P P 
-P/2 

P/2 

2nlt 2%kt 
sin cos dt 

P P 
(2.2) 

- P / 2 

Evaluation of (2.2) is expedited by the orthogonality of the sine and cosine 
functions on the interval - P/2 < t < P/2: 

P/2 
2 

P 

2 

P 

2nkt 2%lt 
cos sin dt = 0 

P P 
- P / 2 

P/2 
27t/^ 27l/f 

cos cos dt = 5ki 

-P/2 

P/2 

2 

P 
2nkt 2%lt 

sin sin dt = 5ki 

P P 

(2.3) 

(2.4) 

(2.5) 

-P /2 

Ski = 

where 6kl is the Kronecker delta function, given by 

| 1 , k = l 
[0 otherwise 

Applying (2.3) and (2.4) to (2.2) gives 

P/2 

ak 

2%kt 
x(t) cos p dt, k = 0 ,1 ,2 , . 

(2.6) 

(2.7) 

- P / 2 

The Fourier series coefficient bk is found by multiplying both sides of (2.1) by 
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sm(2nkt/P), integrating from - P/2 to P/2, and applying (2.3) and (2.5): 
P/2 

6* = -
2nkt 

x(t) sin dt, 
w P 

A: = 0 , 1 , 2 , . . (2.8) 

-P/2 

Equations (2.7) and (2.8) define the real coefficients ak and bk. These 
coefficients are evaluated for a particular function x(t). Substituting ak and bk 

into (2.1) gives thq Fourier series for x(t). 

2.2 Fourier Series with Complex Coefficients 

Equation (2.1) represents a periodic function x{t) by a series with real 
coefficients. This series may be converted to a Fourier series with complex 
coefficients by using the identities 

cosfl = -(ejd + e~je) 
2 

(2.9) 

and 

sinfl = — (ejd - e~jd) 

Letting 6 = 2nkt/P and substituting (2.9) and (2.10) into (2.1) gives 

(2.10) 

Z Z / c = l 

2 ^ 

1 

J 

l-(ak-jbkyd + ^(ak+j\)e-ie 

= £ ~[a\k\-jsign(k)blkl]ejd 

k= - o o ^ 

where 

sign(fc) = 
+ 1, ^ 0 
- 1, /< < 0 

(2.11) 

(2.12) 

and | | denotes the magnitude of the quantity enclosed by the vertical lines. If we 
define 

X(k) = j[a{k{ -jsign(k)b{kl] (2.13) 

then (2.11) reduces to 

x(t)= Z W e 
k = — oo 

jlnktlP (2.14) 
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The right side of (2.14) is the Fourier series with complex coefficients X(k), 
k = 0, + 1, ± 2 , . . . . 

Equations (2.3)-(2.5) display the orthogonality conditions of the sinusoids 
over the interval — P/2 ^ t ^ P/2. The exponential functions are likewise 
orthogonal as follows: 

1 
P 

P/2 

-P/2 

(2.15) 

We can change the summation index in (2.14) to /, multiply both sides by 
exp( — j2nkt/P), integrate from — P/2 to P/2, and apply (2.15) to get the 
evaluation formula for X(k): 

P/2 

X{k) = • 
1 

x(t)e-j2nktlPdt (2.16) 

-P/2 

Plots of X(k) versus k show that a periodic function has a discrete spectrum. In 
general, values of X(k) are complex and require a three-dimensional plot, such as 
that shown in Fig. 2.1. As (2.13) and Fig. 2.1 show, for k > 0, X(k) = 
ak/2 — jbk/2 is the complex conjugate of X{ — k). 

Fig. 2.1 Complex Fourier series coefficients. 

2.3 Existence of Fourier Series 

Typical engineering problems require information about the spectral content 
of signals. For example, a sonar signal from a ship contains sinusoids due to 
motion of its propeller through the water, vibration of its hull, and oscillations 
transmitted through the hull by vibrating auxiliary equipment. The water 
pressure variations sensed by a sonar receiver contain the sum of a finite number 
of sinusoids due to the ship (plus other background signals and noise). We show 
in this section that a Fourier series always exists for such a band-limited function 
which is the sum of a finite number of sinusoids with rational frequencies. This 
result is applicable to the development of the D F T in the next chapter because 
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the D F T must be applied to a band-limited function if it is to give accurate values 
for the Fourier series coefficients. Since these coefficients define both the 
amplitude and phase of the input spectrum, the D F T output is often referred to 
as a spectral analysis. 

We consider first the simple case of a Fourier series representation for the sum 
of two cosine waves of frequencies 2 and 3 Hz: 

x{t) = COS(2TT20 + COS(2TI30 (2.17) 

The two cosine waves have frequencies fx = 2 Hz and f2 = 3 Hz and periods 

^ i = V / i = i s and p 2 = l / / 2 = £ s (2.18) 

At the end of Is the 2 Hz wave has gone through two cycles, the 3 Hz waveform 
has gone through three cycles, and they are in the same phase relation as atOs. In 
this example, PXP2 = i and the period of the combined waveforms is 

P = 6P1P2 = l s (2.19) 

Generalizing this result, let M waveforms be present with rational periods 

Pi=Pilqi (2.20) 

where pi and qi are integers and / = 1 ,2 , . . . , M. Let ph qh ph and ql be relatively 
prime: that is, let 

gcd^-,/?,) = 1 , z # / 

gcdfe ,^ z ) = l ? i±l (2.21) 

gcd(/?;,^) = 1, for all /',/ 

where if a and 6 are integers then gcd(^, S) is the greatest common integer divisor 
of a and Then the period P is given by 

P = q1q2 • • • qM PVP2 PM = P 1 P 2 ' ' 'Pu (2.22) 

The waveform with period Pi goes through 

f,P = P/P± =q1p2---pM cycles (2.23) 

in P s. The waveform with period P2 goes through 

f2P = P/P2=p1q2p3---pM cycles (2.24) 

in P s, and so on. If (2.21) is not satisfied, other modifications to the period are 
required (see Problems 10-12). 

2.4 The Fourier Transform 

The Fourier series with complex coefficients for the function x(t) is given by 
(2.14), where the complex coefficients X(k), k = 0, + 1, + 2 , . . . , are given by the 
integral with finite limits in (2.16). We shall give a heuristic derivation of the 
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Fourier transform by converting the right side of (2.16) into an integral with 
infinite limits. The new integral equation will define a function X(f) that is a 
continuous function of frequency / . 

The derivation of the Fourier transform begins by multiplying both sides of 
(2.16) by P giving 

P/2 

PX(k) = x(t)e-j2nkt/pdt (2.25) 

-P/2 

Note that the frequency of the sinusoids with argument 2nkt/P is k/P. As P 
becomes arbitrarily large, the spacing between the frequencies k/P and (k + l)/P 
becomes arbitrarily small, and the frequency approaches a continuous variable. 
This leads us to define frequency by 

/ = lim k/P (2.26) 
P - + 0 0 

We must consider what happens to the left side of (2.25) as P approaches infinity. 
We shall assume that the left side of (2.25) is meaningful for all P and define 

X(f) = lim PX(k) (2.27) 

We next combine (2.25)-(2.27), getting 

Af) = x(t)e-j2nftdt (2.28) 

Equation (2.28) is the Fourier transform of x(t). The function X(f) can be either 
real or complex valued and will be called the spectrum of the signal x(t). 

Specifying conditions under which (2.27) defines a meaningful function would 
require a lengthy mathematical digression [T-3]. From a practical viewpoint, we 
can derive Fourier transforms simply by using (2.28) and seeing if a well-defined 
answer results for X(f). Transforms required for F F T analysis are derived in the 
following sections, and the derivations of many other transforms are outlined in 
the problems. 

The signal x(i) can be recovered from its spectrum X(f) using the inverse 
Fourier transform. We shall derive the inverse transform from the Fourier series 
with complex coefficients given by (2.14). Multiplying numerator and de
nominator of (2.14) by P gives 

0 0 

x(t)= £ PX(k)eJ2*ktlp(l/P) (2.29) 
k= — oo 

As P approaches infinity, let the separation between adjacent frequencies k/P 
and (k + \)/P be defined as df: 

df= lim [{k + l)/P - k/P] = lim [l/P] (2.30) 
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The summation in (2.29) becomes an integration as the spectral line separation 
df becomes arbitrarily small. Using this fact, (2.26) and (2.30) give 

40 = X(f)e^df (2.31) 

Equation (2.31) is the inverse Fourier transform of X(f). The signal x(t) 
recovered from its spectrum X(f) can be either a real or complex valued 
function. 

When the Fourier transform exists, we shall use the simplified notation 3Fx(i) 
to denote the integral in (2.28). When the inverse transform exists, we shall use 
!F~1X(f) to mean the integral in (2.31). The Fourier transform and its inverse 
are summarized by 

X(f) = &x{t) x(t)e-j2nft dt (2.32) 

and 

x(t) = ^-1X(f) X(f)ej2^ldf (2.33) 

If the transforms of (2.32) and (2.33) exist, they can be combined to get 

x(t) = ^-l^x{t) (2.34) 

X(f) = ^^~1X(f) (2.35) 

When both the integrals on the right of (2.32) and (2.33) exist, we say that x(t) 
and X{f) constitute a Fourier transform pair. We indicate this pair by 

x(t)~X{f) 

where means that both the transform and its inverse exist. 

(2.36) 

2.5 Some Fourier Transforms and Transform Pairs 

In this section we derive Fourier transform pairs for some functions. The pairs 
in this section are essential for analysis of the D F T and will be used extensively in 
several later chapters. 

T R A N S F O R M O F R E C T ( £ / 0 [B-3, W-27] The function r ec t^ /g ) , shown in Fig. 
2.2, is defined by 

U l W 1 * - « 2 < ' « 2 A ( 2 . 3 7 ) 

\QJ (0 otherwise 
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" 1 " 
' _Q_ 

- Q / 2 0 • Q/2 t 

Fig. 2.2 The rect function. 

Substituting (2.37) in (2.32) gives 

Q/2 
(t V f . w g-jnfQ _ eJ«fQ sin(nfQ) 

JF rec t — = e~j2*ftdt = = 6 
VG/ J • -J2nf * nfQ 

-Q/2 

In like manner we obtain 

9* • w ^ V fi
v e / 

^ 0 

T R A N S F O R M O F s i N C ( r g ) [B-3, W-27] This function is defined by 

sinc<>© = sm(ntQ)/(ntQ) 

(2.38) 

(2.39) 

(2.40) 

The function sinc(f) is plotted in Fig. 2.3. The similarity of the right sides of 
(2.38) and (2.40) leads us to guess that 

&[Q s inc (r0] = r e c t ( / / S ) (2.41) 

' s i n e ( t ) 
T 

\—*<-3 - 2 ~ \ . / - \ 'o / l 3 ^ - - " 4 t 

Fig. 2.3 The sine function. 

Taking the inverse transform of both sides of (2.41) gives (2.39), which verifies 
our guess. In like manner we obtain 

2F~\Q s inc ( /g ) ] = r e c t ( f / 0 (2.42) 

R E C T A N D S I N C F U N C T I O N P A I R S Combining the rect and sine function trans
forms gives the following pairs: 

r e c t ( r / e ) ^ e s i n c ( / 0 

g s i n c ( / 0 ^ r e c t ( / / 0 

(2.43) 

(2.44) 
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TRANSFORM OF ej2nfot Taking the Fourier transform of cxp(j2nf0t) gives 

(ej2nf0te-j2«ft) d t = H m L s i n K / - / Q ) P ] | 
P-oo I <f~fo)P J 

P/2 

# V 2 7 r / o f = lim 
P^oo 

-P/2 

The function in the braces in (2.45) is P s i nc [ ( / — f0)P], which is shown in Fig. 
2.3. If the abscissa is changed to (f- f0)P in Fig. 2.3, the peak of the sine 
function occurs at f0 and the first nulls occur at f0 ± l/P. As P oo the function 
P s i n c [ ( / —/ 0 )P} approaches infinite amplitude at the point f = f0- As P oo 
the number of sidelobes of s inc [ ( / — f0)P] becomes infinite for small but 
nonzero distances \f — f0\ between / and f0. The amplitude of the sidelobes 
approaches zero. These conditions correspond to the Dirac delta function, 
which has infinite height, infinitesimal width, and zero amplitude at all but one 
point. (For additional development of the delta function concepts, see distri
bution function discussions in [B-2, P- l ] . ) We conclude that we can represent 
the Fourier transform of cxp(j2nf0t) by a delta function, 

^eJ2nfot = d ( f _ f o ) = h ' f=Jo ( 2 4 6 ) 

10 otherwise 

An equivalent definition of the Dirac delta function is that its width is zero, its 
height is infinite, and its area is unity. We can combine the concepts of 
infinitesimal width and unit area to show that the integral of the product of a 
delta function and another function yields the sampled value of the second 
function at the instant the delta function occurs. Applying this to the product of 
a frequency domain function X(f) and a delta function at f0 gives 

X{f)d{f-f0)df=X{f0) (2.47) 

Using (2.47) to find the inverse Fourier transform of S(f — f0) gives 

^~1S(f-fo) = S(f ~ fo)ej2nft df = ej2nf0t (2.48) 

We can establish in like manner that 3Fb{t — t0) = exp( — j2nft0). The new pairs 
are: 

ej2nf0t^d(f-f0) (2.49) 

5(t - t 0 ) ^ e - j 2 n f t o (2.50) 

TRANSFORM OF cos(27i/00 Since cos 9 = \{ejd + e~jd), the transform of ej9, 
9 = 2nf0t, determines the transform of cos 9. The transform of eje is stated in 
(2.46); it yields 

^ C O S ( 2 T C / O O = ^i(ej2«f0t + e ' ^ ) = \8{f + f0) + \8{f-fQ) (2.51) 
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The inverse transform also follows from (2.49), leading to the Fourier transform 
pair 

c o s ( 2 7 c / o 0 « i 5 ( / + / 0 ) + i 3 ( / - / o ) (2.52) 

TRANSFORM OF SIN(27E/00 Since sin 6 = (ejd — e~je)/2j, the transform of sin 6, 
0 = 2nf0t, follows in the same manner as cos 6: 

^ s i n ( 2 7 c / o 0 = n e j 2 K f o t - e~^)/2j = ( l / 2 / ) 5 ( / - / o ) - O A / W + Zo) 

(2.53) 

which leads to the Fourier transform pair 

s i n ( 2 7 i / o 0 ^ i / 5 ' ( / + / o ) - i / 5 ( / - / o ) (2-54) 

TRANSFORM OF A PERIODIC FUNCTION A periodic function with known period 
P is represented by a Fourier series. Equation (2.1) is the Fourier series with real 
coefficients. Transforming the right side of (2.1) gives 

z fc=l 

0 0 

2nkt 2nkt 
akcos (- bk sin 

CO • 

Using the unit area of a delta function gives 
(k/P) + e 

fa* + A ) <s ( / - - ) # = flk + A 

(2.55) 

(2.56) 

(Jc/i>)-£ 

where e is an arbitrarily small interval. The Fourier transform ofthe periodic 
function is thus an infinite series of delta functions spaced 1 /P Hz apart 
whose strengths are the Fourier series coefficients. 

Transforming (2.14) yields 

£ X(k)ei2nk,lf 

= X X(k)d(f-k/P) (2.57) 

Since X(k) = ak — jsign(k)bk, we again see that the Fourier transform of the 
Fourier series gives spectral lines at / = 0, + l/P, ± 2/P,..± k/P,.... 
Figure 2.1 represents the Fourier transform coefficients if the vectors represent
ing X(k) are considered to be delta functions whose strengths are ak/2 and bk/2. 

TRANSFORM OF A SINGLE SIDEBAND MODULATED FUNCTION Single sideband 
modulation of a time signal is used extensively in spectral analysis and 
communications. It accomplishes a frequency shift which preserves a signal's 
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spectrum without duplicating the spectrum. This makes single sideband 
modulation more efficient than double sideband modulation which duplicates 
the spectrum. 

Single sideband modulation is accomplished by multiplying a signal x(t) by 
the modulation factor exp( ±7*271/00- The Fourier transform of a modulated 
function is 

^[x(t)e-j2nfot] = x(t)e-j2nfote-j2n^dt 

x(t)exp[-j2n(f + f0)t] dt = X(f + f0) (2.58) 

The inverse transform of X(f + f0) is found by a change of variables. Iff0 is fixed 
and z =f + / 0 , then dz = df and 

X(f + fo)ej2*ftdf = X(z)ej2nzte-j2nfot dz (2.59) 

The factor exp(— j2nf0t) does not vary with z and may be factored out of the 
integral, giving the Fourier transform pair 

x ( t ) e - J 2 n f o t ^ X ( f + f o ) ( 2 6 Q ) 

Equation (2.60) specifies a frequency shifted spectrum and the single sideband 
modulation property is frequently called the frequency shift property. The shift 
for positive f0 is to the left. For example, consider the spectral value X(f0) 
occurring at f0 in the original spectrum. The value X(f0) is found at / = 0 in the 
shifted function X(f + /0). 

TRANSFORM OF A TIME SHIFTED FUNCTION Suppose we have the Fourier 
transform pair x(t) X(f) and want the Fourier transform of the time shifted 
function x(t — T). We find this transform by the change of variables z = t — T, 
which gives 

# x ( £ - T ) = x(t - T)e~j27lftdt x(z)e-j2nfxe~j2nfz dz (2.61) 

The factor e j 2 n f x does not vary with z and can be taken out of the integral, 
resulting in 

&x{t - T ) = e-j2nfTX(f) (2.62) 

The factor e~j2llfx is a phase shift that couples power between the real and 
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imaginary parts of the Fourier transform spectrum. The result is the transform 
pair 

x{t ± T ) ++e±j2nfvX(f) (2.63) 

TRANSFORM OF A CONVOLUTION Convolution is one of the most useful proper
ties of the Fourier transform in the analysis of systems incorporating an F F T . If 
x(t) and y(t) are two time functions, their time domain convolution is 
represented symbolically as x{t) * y(t) and is defined as 

x(t)*y(t) = 

The Fourier transform of (2.64) gives 

&[x(t)*y(t)] = 

x(u)y(t — u) du (2.64) 

J2nft x(u)y(t — u) du dt (2.65) 

For most time functions the order of integration in (2.65) may be interchanged, 
giving 

Letting z = t — u gives 

#-[x(0*X01 = 

x(u) 

x(u) 

y{t - u)e-j2nftdtdu 

y(z)e-j2nf{z + u)dz du 

(2.66) 

(2-67) 

Note that u does not vary in the integration in brackets and may be factored out 
to give 

&[x(t)*y(t)] = x(u) y{z)e-j2nfzdz -j2nfu (2.68) 

The term in square brackets is the Fourier transform of y(t), which we denote 
Y(f) = &Y(t). We now have 

x(u)e-j2nfuY(f)du 

= Y(f) x(u)e-J2nfudu= Y(f)X(f) (2.69) 
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The inverse transform also exists for most applications. Furthermore, we can 
interchange x(t) and y(t) in (2.69) and get the same answer. This establishes the 
Fourier transform time domain convolution pair 

x(t)*y(t)~X(f)Y(f) (2.70) 

If X(f) and Y(f) are two frequency domain functions, then frequency domain 
convolution is represented by X(f) * Y(f) and is defined as 

X(f)*Y(f) = X(u)Y(f- u)du (2.71) 

The inverse Fourier transform of X(f) * Y(f) is similar to the Fourier transform 
of x(t)*y(t) outlined in (2.64)-(2.70). 

The transform pairs for time domain and frequency domain convolution are 
summarized as follows: 

x(t)*y(t)~X(f)Y(f) (2.72) 

x(t)y(t)^X(f)*Y(f) (2.73) 

2.6 Applications of Convolution 

The Fourier transform of a time domain convolution and the inverse 
transform of a frequency domain convolution are particularly useful for system 
analysis. The transfer function property illustrates the application of time 
domain convolution, and analysis of a function with unknown period illustrates 
the application of frequency domain convolution. 

TRANSFER FUNCTIONS Determining transfer functions is an important appli
cation of the convolution property. Let a linear time invariant system have an 
input time function x(t) with transform X(f), as shown in Fig. 2.4. Let the 
system response to a delta function be the output y{t). Let the transform of y(t) 
be Y(J). 

I n p u t S y s t e m O u t p u t 

X ( f ) Y ( f ) 0 ( f ) 

Fig. 2.4 Relationships between system transfer functions. 

Y(f) is called a transfer function when used to describe a time invariant linear 
system. We shall demonstrate that the output time function o(t) has Fourier 
transform 0(f) given by 

0(f) = X(f)Y(f) (2.74) 
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as shown in Fig. 2 A Equation (2.74) gives the output time function o(t) as 

o(t) = <F~i6{f) = ^-'XifiYif) 

= x(t)*y(t) = x(u)y(t — u) du (2.75) 

Most systems do not have an input until some specific time, which we can pick as 
zero so that 

x(t) = 0, t<0 (2.76) 

Furthermore, many systems do no t have an output without an input (causal 
systems), so it is reasonable to set 

y(t - u) = 0, t-u<0 (2.77) 

Then 

o(t) = x(u)y(t — u)du (2.78) 

The integral in (2.78) may be approximated by a summation giving 
K-l 

o(K) « T £ x(n)y(K - 1 - n) (2.79) 
n = 0 

where o(n), x(n), andy(n) are the values of o(t), x(t), andy(t) at time t = n J 7 and T 
is an arbitrarily small time interval. Sampled functions x(n), y(ri), y{ — n), and 
y(K— n) are shown in Fig. 2.5 for K= 12. 

The function y(t) is called the impulse response of the system because an input 
x(t) = S(t) produces the output y(t). We can approximate S(t) by a pulse Ts wide 
and 1 /Th igh since both the delta function and pulse have unit area. A pulse with 
amplitude x(0)/T and duration T would give the output x(0)y(t — T) which, if 
sampled at times nT, would give the sampled sequence {x(0)y(n — 1)}. A pulse 
with amplitude x(0) and duration T will approximate the sequence 
{Tx(0)y(n — 1)} if T is sufficiently small. Thus at sample K the output is 
Tx(0)y(K — 1) due to an input x(0) at time 0. Likewise, at sample A" the output is 
Tx(\)y(K - 2) due to an input x(l) at time T; it is Tx(2)y(K - 3) due to an input 
x(2) at time 2T; and in general, it is Tx(n)y(K — 1 — n) due to an input x(n) at 
time nT,n < K. A linear time invariant system has the property that the output 
at time KT is the sum of the outputs caused by all the inputs, so 

K-l 

o(K) = T £ x(n)y(K- 1 - n) (2.80) 

which agrees with (2.79). Equation (2.80) is an approximation to (2.78), and 
within the accuracy of this approximation we have demonstrated that a time 



20 

. S a m p l e d I n p u t 

A c t u a l I n p u t 

2 FOURIER SERIES AND THE FOURIER TRANSFORM 

12 16 n 0 4 

y ( - n ) f y ( 1 2 - n ) 

A c t u a l I m p u l s e 
R e s p o n s e 

M i l l 

6 ( t ) 

- 4 0 - 4 0 4 8 12 

' y ( t ) 

S y s t e m 

Y ( f ) 

x ( t ) 

S y s t e m 

Y ( f ) 

o(t) 

Fig. 2.5 Sampled functions and system response. 

invariant linear system with input x(t) and impulse response y(t) has output o(t). 
The transform pair describing the transfer function property also holds under 
very general conditions. The transform pair follows: 

o(t) = x(t) * y(t) ~ 0(f) = X(f) Y(f) (2.81) 

ANALYSIS OF A FUNCTION WITH UNKNOWN PERIOD The convolution property 

is extremely useful for analyzing system outputs. We shall illustrate this by 
analyzing the Fourier series of a function that actually has period P but for 
which a period Q was assumed because of lack of this knowledge. Knowledge of 
the periodicity of the input function is usually lacking when a system is 
mechanized, so the problem of transforming a function with period P under the 
assumption that the period is Q is a very real one. 

Consider the system shown in Fig. 2.6 with the input cos(27i4f) + cos(27c5£). 
The Fourier transform of the input is delta functions with area \ a t / = — 5, — 4, 
4, and 5 Hz. The 4 and 5 Hz terms together give a signal with the period P = 1 s, 
and using this to determine the complex Fourier series gives 

X(k) = 
if k = + 4 or + 5 

otherwise 
(2.82) 

y ( n ) Sampled I m p u l s e 
R e s p o n s e 
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-J277U 11 • 1/2 

-5 -4 -2 0 2 4 5 f 

COS (27T4t) + COS (27T5t) 
X 

fP/Z , 
J • dt 
J-P/2 

X 
fP/Z , 

J • dt 
J-P/2 

Fig. 2.6 System to evaluate the effect of using an erroneous period to determine the Fourier series 
coefficients. 

These values are shown in Fig. 2.6. The integrator runs from — \ to \ s. Now 
assume we do not know that the cosine waves at the input have frequencies of 4 
and 5 Hz and suppose we guess that P = \ s. For P = \ s we get an estimate X(k) 
that approximates the actual complex Fourier series coefficient. The estimate is 
given by 

1/4 

X(k) 
1 

1/2 

1 

[cos(2tc40 + cos(27i5t)]e-j27lkt/{1/2)dt 

- 1 / 4 

sin[27r(4 + 2k)/4] sin[27c(4 - 2k)/4] 

4 + 2k 4 -2k 

sin[27i(5 + 2k)/4] sin[27r(5 - 2k)/4] 1 
+ _ _ _ _ + _ _ _ _ j (2.83) 

S i n c e / = k/P is the sinusoidal frequency, we note that X{2) approximates X(4). 
For k = ± 2 we get 

1 1 
* (*) = - + -

2 7t 

sin(27t9/4) 2tt' 
h sin — 

9 4 
0.85 (2.84) 

For values other than k = ±2 the estimates given by (2.83) are not zero owing to 
the erroneous guess of the period. Figure 2.7 shows the complex Fourier series 
coefficients X(k) for — 4 ^ k ^ 4 computed under the erroneous assumption 
that P — \ s. In this case the coefficients are all real. 

This analysis has demonstrated two things. (1) If we pick P incorrectly, the 
Fourier series are not accurate. (2) If we mistakenly use P = \ s, it is laborious to 
compute the Fourier series coefficients given by (2.83) and (2.84). An easier 
approach is to note that under the assumption that the period is Q (2.16) gives 

(2/2 

X{k) = 
1 

Q 
x(t)e-j2nkt/Qdt (2.85) 

-QI2 

We note further that we may extend the limits of integration from + Q/2 to + o o 
if we multiply the integrand by rect(£/0, since this function is unity in the 
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X(k) 

0.85 

0.28 

1.0 

0.8 

0.6' 

0.4 

0.2' 

0.85 

0.28 

— 
-0 .04 - 3 

-0.15 -0.15 

~1— 
-0.04 

Fig. 2.7 Complex Fourier series coefficients computed with the erroneous period ? = | s . 

interval + Q/2 to — Q/2 and zero elsewhere. This gives 

X(k) = x(t)TQct(t/Q)e-j2nkt/Qdt (2.86) 

Using the frequency domain convolution property yields 

X{k) = X(f) * Q s inc( /g) (evaluated a t / = k/Q) (2.87) 

For the system of Fig. 2.6 the input x(t) is the four delta functions with amplitude 
i a t / = + 4 and + 5 Hz. The convolution integral of four delta functions and 
the Q s i n c ( / 0 function is just a sum of the four values due to the delta functions: 

Ak)=\ X 2sinc[(£-/)e] (2.88) 
^ 1= ± 4 , ± 5 

The convolution integral (2.87) is illustrated in Fig. 2.8 for k = 3 (f= 6). This 
figure shows that the convolution results in the sum of four values, two of which 
are zero. The sum is given by 

1 

2 X(3) 
"sin(7r/2) + s in( l l7 i /2)" 

n/2 HTC/2 
0.28 (2.89) 

s i n c [ ( f - 6 ) / 2 ] 

Fig. 2.8 Functions for computa t ion of the convolution. 
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Other Fourier series coefficients are computed for k = 0, ± 1, ± 2 , . . . and 
Q = 2- Analysis of the effect of the erroneous period used to determine the 
coefficients has been expedited using (2.87). The analysis is an example of the 
utility of the frequency domain convolution property. 

2.7 Table of Fourier Transform Properties 

Table 2.1 summarizes some useful Fourier transform pairs. We have already 
derived the pairs on which we shall rely heavily in subsequent chapters. Most 
derivations not already presented are in the problems at the end of this chapter. 
Difficult derivations in the problems are outlined in detail. The transform pairs 
will be referenced by the property associated with the transform pair. For 
example, time domain convolution is associated with the pair x(t)*y(i)<-+ 
X(f)Y(f). When fs and T appear in a pair, t h e n / s = l/T. 

Simplification of the representation of some Fourier transforms results from 
the definition of the comb function and rep operator [B-3, W-27] . The c o m b T 

function is an infinite series of impulse functions T s apar t : 

0 0 

c o m b r = X W-nT) (2.90) 
n — oo 

Likewise, comby- is an infinite series of impulse functions with fs Hz between 
successive impulses. The r e p P operator is one that causes a function to repeat 
with period P. If x(i) is a well-defined signal, then its periodic repetition defines 
x(t): 

x(t) = r e p P [*(*)] (2.91) 

Note that whereas c o m b r is a function by itself, the rep operator requires a 
function in the square brackets in (2.91). Since c o m b P has the period P s, (2.91) is 
equivalent to 

rep P [x( / ) ] = c o m b P * x ( / ) (2.92) 

Likewise, if X(f) is a well-defined spectrum, then 

*(f) = r e p / s [ X ( / ) ] = c o m b / s * X ( / ) 

is a function which has the period fs Hz. 
Table 2.1 contains the unit step function, defined by 

( f f l , t - t o ^ 0 
u(t — t0) = < 

[0 otherwise 

The table also uses the notation R e [ Z ( / ) ] and lm[X(f)] to denote the real and 
imaginary parts of X(f), respectively. The multidimensional Fourier transform 
is a direct extension of (2.28). For example, the L-dimensional transform is 

(2.93) 

(2.94) 
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Table 2.1 

Summary of Fourier Transform Properties 

Property 
Time domain 
representation 

Frequency domain 
representation 

Fourier transform x{t) X(f) 
Linearity ax(f) + by(t) aX(f) + bY(f) 
Scaling x(at) (l/a)X(f/a) 
Decomposi t ion of a real time domain xe(t) + x0(t), where Xc(f) + X0(f), where 

function into even and odd parts * e ( 0 = i M 0 + * ( - •0] X.(f) = Re[X(/)] 
X0(t)=$[x(t)-X(- 0] X0(f) =jlm[X(f)] 

Horizontal axis sign change x(-t) X(-f) 
Complex conjugation x*(t) x*(-f) 
Time shift x(t ± t) e±J2nf*X(f) 
Single sideband modulat ion e±j2ntf0x(t) X(f + f 0 ) 
Double sideband modula t ion cos(2nf0t)x(t)' iiw+fo) + x(f-fo)} Time domain differentiation (d/dt)x(t) j2nfX(f) 
Frequency domain differentiation -j2ntx(t) (d/df)X(f) 
Time domain integration X(f)l{nnf) + \X{0)5{f) 
Frequency domain integration x(t)/(-j2nt) + $x(P)8(t) Y-„X(f)df Time domain convolution x(t)*y(f) X(W(f) 
Frequency domain convolution x(t)y(t) X(f)*Y(f) 
Time domain cross-correlation limri^00[AV,(/)IV,(/)/(2r1)] 

(see Problem 30) 
Time domain autocorrelat ion limT^m[\XTl(f)\2/(2TM 

(see Problem 32) 
Symmetry X{t) *(-/) 
Time domain sine function Qsinc(tQ) rect(//g) 
Time domain rect function rect(f/e) esinc(/0 
Time domain cosine waveform cos(27c/o0 W + / o ) + W - / o ) 

ij5(f + f0)-yS(f-f0) Time domain sine waveform sin(27i/o0 
W + / o ) + W - / o ) 
ij5(f + f0)-yS(f-f0) 

Time domain delta function 3(t - t0) e~j2nft0 

Frequency domain delta function eJ2%fot S(f-fo) 
Time domain unit step function u(t) f<5(/) + \l{j2nf) 
Frequency domain unit step function i5(t)-l/(j2nt) "(f) 
Sampling functions c o m b T _£comb/s 

Time domain sampling c o m b r x(t) / s rep / s [ i - ( / ) ] 
Frequency domain sampling repp[x(0] (l/i>)comb1 / PX(/) 
Time domain sampling theorem combTx(t) * sinc(tfs) X(f) (band-limited) 

(see Problem 27) 
Frequency domain sampling theorem x(t) (time-limited) comb1 / P X(f) * sinc(/P) 

(see Problem 28) 
Transform of a periodic sampled repp [combTx(t)] (/s/P)comb1 / f ,repA 

function 
L-dimensional Fourier transform x(t1,t2,...,tL) X(fuf2,---,fL) 
Parseval 's (Rayleigh's, Plancherel 's) f°° fee 

theorem \x(t)\2dt 
*l — OO 

= J \X(f)\2df 
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defined by 

x(tut2,...,tL)e -j2nfiti 

x e-J2nf2t2 . . . e - J 2 n f L t L d t i ^ . . . ^ £.95) 

Other properties listed in Table 2.1 can be extended to the multidimensional case 
using (2.95). 

2.8 Summary 

This chapter has presented Fourier series with both real and complex 
coefficients. The Fourier series with complex coefficients will be used in the next 
chapter to develop the D F T . 

A considerable portion of this chapter was devoted to the Fourier transform. 
A heuristic development of the Fourier transform followed from reducing the 
Fourier series with complex coefficients to an integral form. The D F T may be 
regarded as an approximation to the Fourier transform, so that the latter is 
helpful in understanding the discrete transform. Furthermore, the Fourier 
transform is a powerful tool for the analysis of the D F T . Intuitive or heuristic 
developments led to many of the Fourier transform pairs described in Table 2.1. 
Nevertheless, the results are valid for functions with which we shall deal. 
Readers who wish to persue Fourier transforms further will find that a standard 
text for a rigorous development is [T-3], while [A-52, B-3, B-36, P- l , H-40, 
W-27] present engineering oriented developments. 

P R O B L E M S 

1 Show that the Fourier series coefficients for the function of Fig. 2.9 are given by bk = 0, a0 = 0, 
and 

JO, k even 

' flft~i(- l ) ( f c " 1 ) / 2 ( 4 /ybr ) , £ o d d 

Sketch cosine waveforms for k = 1 and 3, scale the waveforms by ay and a3, add the waveforms, and 
compare with Fig. 2.9. 

L x ( t ) 

1 

- 1 - 1 / 2 -1/4 0 
1 / 4 1 / 2 1 

- 1 . - 1 . 

t 

Fig. 2.9 Periodic even function. 
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2 Determine the Fourier series with real coefficients for the function x(t) in Fig. 2.10. Sketch sine 
waveforms for k = 1 and 3, scale the waveforms by bx and b3, add the waveforms, and compare with 
Fig. 2.10. 

1. 

' x ( t ) 

1. 

- 1 - 1 / 2 0 1 / 2 1 

- 1 

t 

Fig. 2.10 Periodic odd function. 

3 The function in Fig. 2.9 is even because x{i) = x(— t). The function in Fig. 2.10 is odd because 
x(t) = — x{ — t). Generalize the results of Problems 1 and 2 to show that Fourier series for even and 
odd functions are accurately represented by cosine and sine waveforms, respectively. 

4 Show that the complex Fourier coefficients of Problems 1 and 2 are unchanged if the integration 
time is changed from between - P/2 and P/2 to between - P /2 + a and P/2 + a. Conclude that if a 
function is periodic and that if a time interval spans the period, then that interval may be used to 
evaluate the Fourier series coefficients. 

5 Show tha t Fig. 2.11 results from summing the periodic functions of Figs. 2.9 and 2.10. Use the 
sum of Fourier series for Problems 1 and 2 to represent x(t) in Fig. 2.11. Change the series to complex 
form and group the terms for k = . . . , — 2, — 1 , 0 , 1 , 2 , . . . . Use the new Fourier series with complex 
coefficients to draw a three-dimensional plot of the complex Fourier series coefficients. 

A * ( t ) 

- 1 / 2 - 1 / 4 1 / 2 3 / 4 

- 1 - 3 / 4 
1 / 4 

Fig. 2.11 The sum of the functions shown in Figs. 2.9 and 2.10. 

6 Use the definite integral 

smx n 
dx = -

x 2 

to show that the delta function definition in (2.45) when integrated gives 

oo P/2 
f f s in[7c( / - / 0 ) i ° ] 

hf-fo)df= lim P — df= 1 

- o o - P / 2 
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7 Use (2.87) to show for Q = 1 and the input shown in Fig. 2.6 that X(0) = X(± k) = 0 for 
£ = 1 , 2 , 3 , 6 , 7 , 8 . 

8 Use (2.87) t o show that for Q = § and the input shown in Fig. 2.6 

-0 .2 
sin(277r/2) sin(37r/2) 

27tc/2 3tt/2 

9 Note that for Q = \ s and the input shown in Fig. 2.6 that (2.87) gives \X(± 6)| « 0.3. Likewise 
note for Q = § s that (2.87) gives \X(± 6)| « 0.2. This indicates that the longer we take to establish 
the coefficients, tha t is, the larger Q is, the more accurate the answer. Use (2.45) and (2.88) to show 
that as Q - » o o 

X(k) ^iS(f- k/Q) for k/Q = ± 4 and ± 5 

10 Let a periodic function be defined by the sum of a finite number of sinusoids: 
K 

X(t): 
a0 + £ [akcos(2nfkt) + bksm(2nfkt)] (P2.10-1) 

where fk = qk/pk is a rat ional frequency (in Hz) such that pk and qk are relatively prime for 
k = 1 ,2 , . . . , M. Show that the period of the function x(t) is 

n 
Pk 

gcd(q1,q2,...,qk) (P2.10-2) 
fc=i &d(pl,p2,...,pk)l 

11 Let M = 2, Pt = 1/23, and P2 = 2 2 / 3 . Determine the period P of the combined waveform using 
(P2.10-2). Why is this answer the same as that for x(t) given by (2.17)? 

12 Congruence Relations The congruence relationship = is defined by 

a = J (modulo £) (P2.12-1) 

where ^ , ^, and c are integers such that when ^ and 6 are divided by c, the remainders are equal: 

remainder(^/V) = remainder (^/V) (P2.12-2) 

For example, 5 = 9 (modulo 4). Let (P2.10-1) hold and show that fkP =fiP (modulo 1) where fk and 
fx are the frequencies of any two cosine waveforms in the summation and P is the period of x{t). 

13 Show that defining the congruence relation of Problem 12 by (P2.12-2) is equivalent to requiring 
that \a — b\ = kc, where k is an integer. 

14 Show that the &th Fourier series complex coefficient can be written 

X(k) = \X(k)\ej6k 

Im 

X(k) 
• — J 7 1 ^ ^ 

X(k) e " j 2 l T f T 

/ 2 T T f T 1 S 

\/2 

Fig. 2.12 The phase shift of a complex Fourier series coefficient due to delay of the time function 
by t . 
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where 6k = tan 1 [ — sign(k)bk/ak]. Let X'(k) be the fcth Fourier series coefficient for the function 
x(t — t ) . Use the single sideband modulat ion (i.e., frequency shift) property to show that 

X'(k) = e-j{2nfx-6h)\X(k)\ 

Show that X{k) and X'(k) may be represented by vectors as shown in Fig. 2.12. 

Establish the properties given by the following Fourier transform pairs. 

15 Linearity Property x(t) + y(t)*^X(f) + Y{f). 

16 Scaling Property x(at)^(l/a)X(f/a). 

1 7 Double Sideband Modulation Property cos(2nf0t)x(t) ^\[X(f + f0) + X(f -/0)]. 

1 8 Decomposition Property Note that 

x(t) x(-t) x(t) x(-t) 
x(t) = + + 

2 2 2 2 (P2.18-1) 

xe(t) + x0(t) 

Show xe(0 and x0(t) are even and odd functions, respectively (see Problem 3). Let 
X(f) = Xe(f) + X0(f) be the Fourier transform of (P2.18-1) and establish the decomposition 
property 

Xe(f) = Re [ * ( / ) ] = real par t of X(f) 

X0(f) =j!m[X(f)] =jimaginary par t of X(f) 

19 Unit Step Function Fo r a > 0 let 

C\ime'at, t^O 
u(t) = I «-o 

[ 0 , t < 0 

Show that 

Fu(t) = l i m { a / [ a

2 + (2nf)2] + 2nf/[j*2 + j(2nf)2]} 
a->0 

Next show that if a ^ 0 

oo 

f a 1 a f o o for / ' = 0 
1 -df=- and l im- J J 

J a 2 + (2nf)2 2 """ a T 0 a 2 + (2TI/ ) 2 (.0 for 0 

— oo 

Thus establish 

u(t)^S(f) + l/U2nf) (P2.19-1) 

Likewise establish 

$5(t)-l/(j2nt)~u(f) (P2.19-2) 

20 Differentiation dx{t)/dt^2njfX{f) and -j2ntx(t)^dX(f)/df 

21 Integration Use time domain convolution and (P2.19-1) to show that 

*V) + 

J j2nf 2 
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Use (2.73) and (P2.19-2) to show that 

x(t) x(0)d(t) f 

—j2nt 2 

22 Horizontal Axis Sign Change Prove x( — t)<-+X( — f). 

23 Complex Conjugation Use the Fourier transform definition to derive the pair 
* * ( * ) < - * * ( - / ) • 

24 Sampling Functions Using the definition given by (2.90) for an infinite series of impulses, show 
that c o m b T is a periodic function with period T. Show that the Fourier series for this periodic 
function is 

c o m b T 

1 

Use the Fourier t ransform pair (2.49) to show that 

^ c o m b r = i £ dW-k/T) 

Recall that the sampling frequency is defined by fs = l/T and verify the Fourier t ransform pair 

c o m b T <-+fs comby-

25 Time Domain Sampling An analog-to-digital converter (ADC) provides an output that 
represents the value of a cont inuous signal x(t) at intervals of J seconds. The A D C outpu t at a given 
time « T c a n be represented as 

nT + s 

x(n)- x(t)S(t -nT)dt (P2.25-1) 

Let xs{t) be the sampled output shown pictorially in Fig. 2.13, which uses dots to represent the delta 
functions in c o m b r . Keeping in mind that this output must be integrated as shown by (P2.25-1) to 

combT = J S ( t - kT) 
k = - o d 

x(t) J (-)dt 
X s ( t ) 

x(t) 
(a) 

combT xB(t) 

(b) 

Fig. 2.13 (a) System for obtaining discrete time da ta ; (b) a pictorial representation of the system. 
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define a sampled-data value, let 

xs(t) = c o m b r x(t) 

Use the convolution and sampling function properties to show that 

j F [ c o m b T x(t)] = fs c o m b / s * X(f) (P2.25-2) 

Define 

rep / s [XC0] =combfs*X(f): *X(f) (P2.25-3) 

Show that the inverse Fourier transform of (P2.25-3) exists. Show that the two preceding equations 
give the Fourier t ransform pair 

c o m b r x(t) <->/s r e p / s [ Z ( / ) ] 

26 Frequency Domain Sampling Start with the frequency domain sampled spectrum 
c o m b 1 / P X ( / ) , and following the ideas of Problem 25 show tha t 

repP[jc(0] (MP) c o m b 1 / P X{f) (P2.26-1) 

No te that r e p P [*(*)] can be used to describe a function that repeats with period P. Show that 
(P2.26-1) is equivalent to (2.55) and (2.56). 

27 Time Domain Sampling Theorem Let X(f) have a magni tude that is band-limited between 
-fjl a n d / s / 2 as shown in Fig. 2.14. Show that 

X(f) = r e p / s [ Z ( / ) ] rec t ( / / / s ) (P2.27-1) 

X ( f ) 

- f s / 2 0 f s / 2 

Fig. 2.14 Band-limited spectrum. 

Use the time domain convolution property to show that the inverse Fourier transform of (P2.27-1) is 

x(t) = c o m b r x{t) * sinc(r/ s) (P2.27-2) 

Use the definition of c o m b r and the sine function to show that (P2.27-2) is equivalent to 

x(t)= jc(/i)sinc[(r-«r)/ a] (P2.27-3) 

No te that (P2.27-3) says that a function may be accurately reconstructed from samples of itself if it 
has a band-limited spectrum. This is known as the time domain sampling theorem. 

28 Frequency Domain Sampling Theorem Let x(i) be a function that is zero outside of the interval 
- P / 2 to P /2 as shown in Fig. 2.15. Mimic the steps in Problem 27 to show that 

X(f) = comb1/PX(f)*smc(fP)= £ X ^ s i n c (f~^P 
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i ' x ( t ) 

- p / 2 \^y^y 0 w 

Fig. 2.15 Time-limited function. 

Explain why the preceding equation is called the frequency domain sampling theorem. 

29 Transform of a Periodic Sampled Function Let x(t) be nonzero only in the interval \t\ < P/2. 
Show that repp [x(t)] has period P and that the Fourier transform of the periodic sampled function is 
given by 

r e p P [ c o m b r x(t)] ^ (JJP) c o m b 1 / P r ep / s [X(f)] 

Show that the rep operator and comb function can be interchanged on either the right, the left, or 
both sides of this equation. 

30 Cross-Correlation The cross-correlation of two jointly wide-sense stat ionary r andom pro
cesses x(t) and y{t) is the function <%xy{%) defined by 0txy{%) = E[x(t)y*(t - t ) ] where E is the 
expectation operator. Under suitable conditions this is equivalent to (see [P-24] , Section 9.8, for a 
discussion) 

%xy{%) = lim - L x(t)y*(t-x)dt (P2.30-1) 

Let 

*Tt(0 : 

and define yTi(0 similarly. Show that 

x(t) for \t\^T, 

0 otherwise 
(P2.30-2) 

^Mxy(x) = lim XTl{f)YUf) 
2Tl 

where XTi(f) and YTl(f) are the Fourier transforms of xTl(t) and yTl(t), respectively. 

31 ParsevaVs Theorem Show that 

\x{t)\2dt= &-l[X{f)]&-l[X*(-f)} dt 

Use (2.45) to show that 

)X^(-f2)e^+^dfldf2dt (P2.31-1) 

- o o — oo — oo 

J e ^ + f ^ d t = S(fl+f2) 

- oo 

Use this relation to prove Parseval 's theorem (see Table 2.1). 
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32 Autocorrelation Mxx(T), the autocorrelation of a wide-sense stationary r andom process x(t), is 
obtained by replacing y*(t - t ) by x*(t - t ) in (P2.30-1). Show that 

x(0)= lim 
Ti-+oo J 

l*r,W|2 . ,. f HV,(/)| 2 „ 
at = lim df 

IT, T l ^ m J 2TX 

where xTl(t) is given by (P2.30-2). 

33 Power Spectral Density (PSD) The PSD (or power spectrum) of xTl(t) is defined by 

P S D [ * r i ( 0 ] = £ | ^ ^ j 

where (P2.30-2) defines xTl(t). Let Sx(f) = l i m T l ^ { P S D [ x T l ( t ) ] } . Show that 

Sx(f) = ^mxx{x) 

where Mxx(T) is as defined in the preceding problem. 



C H A P T E R 3 

DISCRETE FOURIER T R A N S F O R M S 

3.0 Introduction 

The previous chapter developed the Fourier series representation for a 
periodic function. Fourier series with both real and complex coefficients were 
given. The complex Fourier series representation is an infinite sum of products 
of Fourier coefficients and exponentials. In this chapter we shall develop the 
discrete Fourier transform representation for a periodic function. The D F T 
series is usually evaluated in practical applications using an F F T algorithm that 
is simply an efficient computational scheme for D F T evaluation. 

We shall develop the D F T from the integral used to determine the Fourier 
series complex coefficients. This integral was developed in Chapter 2 with lower 
and upper limits of — P / 2 and P / 2 , respectively. Derivation of the D F T is more 
convenient if we shift the limits from — P / 2 and P / 2 to 0 and P . This shift has no 
effect on the value of the integral because we are integrating the product of a 
periodic function and sinusoids. Each sinusoid completes an integral number of 
cycles during the period of the periodic function. Integration of the product of 
the periodic function and one of the sinusoids gives the same answer even if the 
integration limits are shifted, provided the period is known and the limits of 
integration span the period (see Problems 2.4 and 3.10). Applying the change in 
limits of integration to the integral for the Fourier series complex coefficient 
X{k) gives 

x(t)e~j2nktlPdt (3.1) 

where x(i) is a periodic function, P is the period, and k is an integer. 
The input to the D F T is a sequence of numbers rather than a continuous 

function of time x(t). The sequence of numbers usually results from periodically 
sampling the continuous signal x{t) at intervals of Ts. We refer to the sequence 
of numbers as a discrete-time signal. A system with both continuous and 

33 
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discrete-time signals is called a sampled-data system. A system with only 
discrete-time signals is called a discrete-time system. This book deals primarily 
with discrete-time signal processing. However, the signals invariably originate in 
sampled-data systems, and we shall make extensive use of the relations between 
continuous-data and sampled-data spectra. 

The next section develops the D F T from (3.1). Other sections define the 
periodic and folding properties of sampled-data spectra, matrix representation 
of the D F T , the inverse discrete Fourier transform (IDFT) using the unit circle 
in the complex plane to generate sampled values of exp( — 2njkt/N), a shorthand 
notation for matrix representation, and factored matrices. 

3.1 DFT Derivation 

The D F T is derived from a time function x(t) using N samples taken at times 
t = 0, T, 2T,..., (N - \)T, where T is the sampling interval [A-l , A-5, A-10, 
A-22, A-43, A-54, B-3, B-16, B-20, C-14, C-29-C-31, D - l , F-9, G-12, H-18, 
H-40, 0 - 1 , R-16, T-12, W -13 ] . As an example, a function with a period of P = 1 
s is shown in Fig. 3.1. The function, constructed from a constant and sinusoids of 
frequencies 1, 2, and 3 Hz, is sampled eight times per second, giving a sampling 
interval of T = | s. The sampling interval Tis implicit in a sampled-data system 
and the ordering of the data defines the sample time. Therefore, we use the 
simplified notation x(0), x( l ) , x ( 2 ) , . . . , x(n),..., x(N — 1) to mean samples of 
x(t) taken at times of 0, T, 2T,..., nT,..., (N — l)T, respectively. These N 
samples of x(t) form the data sequence {x(0), x(l),..., x(n),..., x(N — 1)}, 
which we shall refer to as x(n). 

x ( 6 ) 

x ( t ) _ 

, x ( 0 ) 

x ( 4 ) _ 
x ( 5 ) V x ( 7 ) 

/ - 4 - 2 0 \ 

x ( l V 

2 / 4 

^ x ( 2 ) x ( 3 ) 

6 8 

Fig. 3.1 Periodic band-limited function x(t) and sampled values (dots). 

The D F T may be regarded as a discrete-time system for the evaluation of 
Fourier series coefficients. Therefore, continuous functions in (3.1) must be 
replaced by discrete time values. First, let the integration be replaced with a 
summation. Next, let T be the time sampling interval and let the periodic 
function x(t) be sampled N times. The N samples represent P s, so P = NT. 
Adjacent samples are separated by T s, which corresponds to the arbitrarily 
small interval dt in (3.1). Let a+-b mean either that variable a is given the value 
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of expression b or that a is approximated by b. We can then express the 
relationships between the continuous and discrete-time values as 

t <- nT, dt <- T, x(t) = x(n) at t = nT (3.2) 

where n = 0 , 1 , 2 , . . . , TV — 1. Replacing the quantities in (3.1) according to (3.2) 
gives 

1 

P 

1 N - l 

NT n = 0 

The derivation of the Fourier series in Chapter 2 allows k to be any integer. The 
derivation of the D F T uses the N data points x(0), x( l ) , x(2),..., x(N — 1), 
which allows us to solve for only TV unknown coefficients. We therefore restrict k 
to be one of the finite integers 0 , 1 , 2 , . . . , N — 1. Using this restriction gives the 
D F T equation for evaluation of X(k), 

2 N - l 

X(k) = — £ x(n)e~j2Kkn/N, k = 0 , 1 , 2 , . . . , N - 1 (3.4) 
N n = 0 

Figure 3.2 gives an example of the relation between the function x(t) of time in 
seconds and x{ri) of time sample number for x(t) = cos(2nt/P). The horizontal 
axis is labeled with both time in seconds and data sequence number. Since the 
sampling interval in Fig. 3.2 is T = P/S s, the data sequence number is equivalent 
to a sample time of nP/8 s. Generalizing, the data sequence number is equivalent 
to a sample time of nT where T = P/Ns. For a normalized period of P = 1 s the 
sample number expresses the sampling time in TVths of seconds. The integer 
values of n will be referred to as data sequence number or time sample number. 

Fig. 3.2 The function x(t) = cos(2nt/P) and its discrete time values. 

Figure 3.3 gives an example of the D F T coefficients for X(0) = 1, X{\) = \, 
X(2) = \, and X(3) = | . Transform coefficient number k determines the number 
of cycles in P s and identifies the frequency / as 

f=k/P Hz (3.5) 
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k X ( 0 ) 

1 / 2 
X ( l ) 

X ( 2 ) 

X ( 3 ) 

0 1 2 3 k ( t r a n s f o r m s e q u e n c e 
• • • • number) 

o 1 I r f (hj) 

Fig. 3.3 D F T coefficients versus transform sequence number and frequency. 

The integer values of k will be referred to as transform sequence number or 
frequency bin number. The sequence {X(0), X(l),..., X(N — 1)} is a transform 
sequence, which we shall refer to as X(k). 

This section has developed the D F T , defined by (3.4). The D F T evaluates the 
Fourier series coefficient X(k) using the data sequence {x(0), x( l ) , x(2),..., 
x(N — 1)}. The inverse discrete Fourier transform is a series representation that 
yields the sequence x(n). The ID F T is developed in Section 3.5 using the periodic 
property of the D F T . 

3.2 Periodic Property of the DFT 

Let a signal be sampled with a sampling frequency offs Hz where fs = 1 / T a n d 
Tis the sampling interval. Then this signal has a periodic spectrum that repeats 
at intervals of the sampling frequency fs [H-18, L-13, O-l , R-16, T-12, T-13, 
W-12, E-14]. The D F T produces a periodic spectra as a consequence of a 
computation on discrete data. The reason for the periodic property is that a 
sinusoid with frequency f0 Hz sampled at fs Hz has the same sampled waveform 
as a sinusoid of frequency f0 + lfs Hz sampled at fs Hz, where / is any integer. 

We illustrate the periodic property with a simple example. Let x(n) = 
cos(27m/8). Let T = j so t h a t / s = 8 Hz and let N = 8. Then X(k) can be written 

1 ^ 2%Yl 

X(k) =-j] cos — e-j27tkn/8 (3.6) 
8 n = 0 8 

which gives X(0) = 0, X{\) = ^ X(2) = X(3) = X(4) = X(5) = X(6) = 0, 
X(9) = 2 = X(l). This implies that the coefficients determined from cos(2nkt) 
are the same for k = 1 and 9 Hz if the sampling interval is T = f s. The reason for 
this is not difficult to discover if we examine discrete values of cos(27i0 and 
cos(27i9r)- As Fig. 3.4 shows, the two waveforms have exactly the same values at 
t = 0, | , | , . . . s. If we continue to derive coefficients we find that not only does 
X(\) = X(9), but also that all coefficients separated by integer multiples of eight 
frequency bins are equal, giving X(\) = X(9) = X(17) = • • • = X(- 7) = 
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X{~ 15) = • • • = \ . Furthermore, letting x(ri) = sin(2ra/8) gives X{\) = X(9) 
= X(17) = • • • = X(-l) = X(- 15) = • • • = - y / 2 . In general for x(n) = 
acos(lnkn/N) + b sm(lnkn/N), X(k) = X(k ± IN) = a/2 -jb/2 for all integer 
values of /. Figure 3.5 illustrates the periodic property for TV = 8. 

C O s ( 2 7 T t ) ^ cos(27r9t) 

\ / \ / 1 \ / \\\ \ / \ / \ / 1 1 
\ / \ / 4 \ / \ W W \Jr \ / 4 \ / \ / 1 1 

Fig. 3.4 Waveforms that have the same values when sampled at ^ s intervals. 

•|x(k)| 
W/z 

2 5 

Fig. 3.5 Periodic property of D F T coefficients for x{n) = acos(2nn/8) + b sin(27i«/8) and N = 8. 

The repetition of coefficients at intervals of TV is the periodic property of the 
D F T . The reason for the periodic property is also apparent if we look at the 
exponential factor in the D F T definition. We note that 

exp [ - /27 r (& + lN)n/N] = e x p ( - j2nkn/N)exip(- jlnlri) = exp( - j2nkn/N) 

since exp( — jlnlri) = 1 for integral values of / and n. Therefore, (3.4) can also be 
expressed 

Y N-l 

X(k + /TV) = — £ x(n)e-j27lik + lN)n/N = X(k) (3.7) 

for integer values of /. The D F T coefficients separated by TV frequency bins are 
equal because the sampled sinusoids for frequency bin number k + IN complete / 
cycles between sampling times and take the same value as the sinusoid for 
frequency bin number k. The periodic property is a consequence of sampling and 
is true for all discrete time systems. 

3.3 Folding Property for Discrete Time Systems with Real Inputs 

The folding property for discrete time systems with real inputs states that the 
spectrum for frequency fs — f is the complex conjugate of the spectrum for 
f requency/ [H-18 , L-13, O-l , R-16, T-12, T-13, W-12, E-14]. This gives the 
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coefficients a symmetry aboutfJ2 Hz. The symmetry about f j l appears to be a 
folding, which results in the name folding property. When applied to the D F T , 
the folding property says that coefficient X(N — k) is the complex conjugate of 
coefficient X(k). 

The folding property is illustrated by continuing the example of the previous 
section. We did not compute X(l) for (3.6) because it is not zero. In fact, using 
(3.6) gives X(l) = \ = X{\). More generally, if we let x(n) = acos(2nkn/N) 
+ bsm(2nkn/N), then we get X(k) = a/2 - jb/2 and X(N - k) = a/2 + jb/2 
= X*(k). This result is known as the folding property of the D F T for a real data 
sequence. The cause of the folding property is apparent if we substitute the factor 
N — k for k in the D F T definition, i.e., 

J J V - l 

X(N -k)=— £ x(n)e-j2niN-k)n/N = N ^ 

| N - 1 
— V x(n)e-j2Kkn/N = X*(k) 

(3.8) 

We conclude that we get an output in D F T frequency bin N — k even though the 
only input is in bin k, k = 1,2, . . . , TV — 1. 

On a more intuitive basis, to find X(k) we multiply x(n) times the phasor 
exp( — j2nkn/N), whereas to find X(N — k) we multiply x{n) times the phasor 
e x p [ - j 2 n ( N — k)n/N] = exp(j2nkn/N). The phasors exp( — j2nft/N) and 
Qxp(j2nft/N) rotate with the same angular velocity; but one rotates clockwise, 
whereas the other rotates counterclockwise. The projections of the phasors on 
the real axis are equal, whereas the projections on the imaginary axis have equal 
magnitude and opposite sign. Consequently, D F T inputs in either bin k or 
N — k have outputs in both bins k and N — k, and there is a complex conjugate 
symmetry in the D F T output about frequency bin N/2 (i.e., about fs/2). 

The folding property is closely related to the time domain sampling theorem: 
If a real signal is sampled at a rate at least twice the frequency of the highest 
frequency sinusoid in the signal, then the signal can be completely reconstructed 
from these samples (see Problem 2.27). The minimum sampling frequency fs for 
which the time domain sampling theorem is satisfied is called the Nyquist 
sampling rate. In this case the frequency fs/2, about which the spectrum of the 
real signal folds, is called the Nyquist frequency. 

We have considered only sampled real inputs in this section. If we use sampled 
complex inputs, then spectral lines between fJ2 and fs are not derivable from 
lines between 0 and fJ2. This will be demonstrated in Chapter 7 by applying the 
F F T to a single sideband modulated signal. 

3.4 Aliased Signals 

An aliased signal is a sampled sinusoid that can be interpreted as having a 
different frequency than the sinusoid from which it was derived. Aliased signals 
are composed of such sinusoids and can result in erroneous conclusions as to the 
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frequency content of the signal. Therefore, filters are used to remove sinusoids 
which would give ambiguous results. 

Let | / | < fs be the frequency of a signal sampled at fs Hz. As a consequence of 
the periodic property, this signal cannot be distinguished from one whose 
frequency is f + Ifs where / is any integer. If a signal whose frequency i s / + lfs, 
I ^ 0, is sampled, then it appears as an aliased signal with a frequency of / H z . 

Now let | / | < f/2 be the frequency of a real signal sampled at / Hz. As a 
consequence of the folding property, this signal cannot be distinguished from 
one at fs — / . The folding property also shows that if a real signal of frequency 
lfs — / / / 0, is present, then it appears as an aliased signal with a frequency of / 
Hz. 

In sampled-data systems filtering must be used to suppress signals outside of a 
band of width | / | < fs/2. Analog filtering is used prior to sampling and digital 
filtering can be used to further attenuate signals aliased by a change in sampling 
rate (see Chapter 7). The filtering must reduce the unwanted signal levels so that 
they have negligible effect on evaluation by the D F T or other signal processing. 

3.5 Generating kn Tables for the DFT 

Computation of the D F T requires the exponentials in the D F T series. Values 
of the exponents can be found by generating kn tables. We defined the D F T 
coefficient X(k) as 

X(k)= — £ x(n)e~j2nkn/N (3.9) 
^ n = 0 

A mechanism to determine D F T coefficient X(k) is shown in Fig. 3.6. This 
mechanism is less efficient than an F F T , but it illustrates the principles of 
determining X(k). The factor exp( — j2n/N) is common to all coefficients and is 
described in the literature as 

W = e - J 2 n / N ( 3 > 1 0 ) 

Particular values of k, n = 0 , 1 , . . . , N — 1 define Wkn in the multiplier in 
Fig. 3.6. 

x ( n ) 

l / T Hz 
„r-J2TTkn 
p l N J 

Sample Number 
G e n e r a t o r 

R e s e t t o z e r o 
e v e r y N s a m p l e s 

£ [ x ( n ) e x p ( - j 2 T r k n / N ) ] 

n=0 ,l , , N - 1 | One Sample 
D e l a y 

T/NT Hz 

Fig. 3.6 Mechanism to determine the D F T coefficient X{k). 
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Table 3.1 

Values of kn. Computed (a) mo&N and (b) m o d 8 

(a) (b) 

n 
k K, 

0 1 2 3 4 5 6 7 7 V - 1 0 1 2 3 4 5 6 7 

0 0 0 0 ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 1 0 1 2 3 4 5 6 7 
2 0 2 4 6 8 10 12 14 N - 2 2 0 2 4 6 0 2 4 6 
3 0 3 6 9 12 15 18 21 N-3 3 0 3 6 1 4 7 2 5 
4 0 4 8 12 16 20 24 28 N - 4 4 0 4 0 4 0 4 0 4 
5 0 5 10 15 20 25 30 35 N-5 5 0 5 2 7 4 1 6 3 
6 0 6 12 18 24 30 36 42 N-6 6 0 6 4 2 0 6 4 2 
7 0 7 14 21 28 35 42 49 N-1 7 0 7 6 5 4 3 2 1 

N-2 0 N-2 N-4 4 2 
N-l 0 N-l N-2 2 1 

Table 3.1 gives values of kn computed mod N and mod 8. The mod TV values 
are defined by 

kn mod N = remainder of kn/N (3.11) 

That is (see Problem 2.12), kn = I (modulo N) where = means congruent and 
kn mod N, called the residue of kn modulo N, is the integer remainder of kn/N. 
For example, 14 = 6 (modulo 8), and 1 4 m o d 8 = 6. The unit circle in the 
complex plane is helpful in generating these values. Figure 3.7 shows the phasor 
exp( — jlnSt) rotating around the unit circle in the complex plane. This phasor 
has a projection cos(27c80 on the real axis. This projection versus time is shown 
below the unit circle. Likewise, the vector has a projection — sin(27c8f) on the 
imaginary axis, which is shown to the right of the unit circle. Sampled-data 
values of exp( — jlnit) are indicated in Fig. 3.7 by dots. 

For k = 1 the sampled sequence Sx of unit phasor values for the 8-point D F T 
is 

S1 = {£-J2rc(0/8)5 e-j2na/8)^ e-j2n(2/8)^ ^ -̂j2tt(7/8)j (3.12) 

The first value in Sx is § of a rotation around the unit circle, the second value is | 
of a clockwise rotation around the unit circle starting from the positive real axis, 
etc. The sampled values of exp( —j2nkn/$) are labeled on the unit circle (Fig. 3.7) 
as step numbers 0 , 1 , 2 , . . . , 7. The sequence Sx takes a distinct complex value for 
each step number. 

For k = 2 the sampled sequence is 
S 2 = 1̂-72712(0/8)̂  e-j2n2(l/8)^ e ~ j2n2(2/8)^ ^ e~j27t2(7/8)| (3 |3) 

Step numbers are 0,2, 4, 6, 0,2, 4, 6. Likewise, S3 has the step numbers 0, 3, 6 , 1 , 
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4 ,7 ,2 ,5 . Table 3.1b has the same step numbers for k = 1 , 2 , 3 , . . . as 
Si, $2, S3,..., respectively. 

j Imaq ina ry P a r t of 
j Im exp (- j2ir8t) 

8 t ( s ) 

Fig. 3.7 Waveforms derived from the phasor rotat ing with angular velocity — 2nSt rad/s . 
Sampled waveform values (dots) correspond to step numbers (in parentheses) on the unit circle. 

We can generalize this result to generate tables of kn values for the TV-point 
DFT . We divide the unit circle in the complex plane into TV equal sectors with the 
first sector having the real axis as one side. Each sector determines a step number 
with step 0 at + 1 , step 1 at exp( — j2n/N), and in general, step n at 
exp( — jinn j N). We then go around the unit circle in increments of one step for 
k = 1, and so forth. After each increment we write down the step number. Tables 
of kn values result. 

3.6 DFT Matrix Representation 

In this section we represent the D F T by a matrix, and rearranging the matrix 
we shall end up with a matrix factorization leading to the F F T [A-5, A-22, A-33, 
M-31]. The input to the D F T is the data sequence contained in the vector x given 
by 

x = [ x ( 0 ) , x ( l ) , x ( 2 ) , . . . , x ( 7 V - l ) ] T (3.14) 
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where the superscript T denotes the transpose. The output of the D F T is the 
transform sequence contained in the vector X given by 

X = [X(0), X(l) , X ( 2 ) , . . . , X(N - 1 ) ] T (3.15) 

The outputs are computed using the D F T definition (3.4). For example, if 
N = 8, (3.4) gives 

X(0) = w° w° w° w° w° w° W°)x 

X{\) = w1 w2 w3 w4 w5 w6 Wn)x 

X(2) = w2 W4 w6 w° w2 W4 W6)x (3.16) 

X(7) = w1 w6 w5 W4 w3 w2 Wl)\ 

All of the operations in (3.16) can be combined into a matrix form given by 

X = (l/N)WE* (3.17) 

where WE is the D F T matrix with row numbers k = 0 , 1 , 2 , . . . , N — 1 and 
column numbers n = 0 , 1 , 2 , . . . , N — 1 and where the entry W m , n ) is in row k 
and column n. For example, if N = 8, then E and WE are given by 

WE = 

*\ n 0 1 2 3 4 5 6 1 
0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 

E = 3 0 3 6 1 4 7 2 5 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 
7 _ 0 7 6 5 4 3 2 1 _ 

W° W° W° W° ^ ° W° w° 
W° W1 IV2 w3 K' 4 W5 W6 w1 

w° w2 w4 w6 W° W2 w4 w6 

w° w3 w6 wl W4 w w2 ws 

w° w4 w° w4 W° w4 w° w4 

w° w5 w2 w1 w4 w1 w6 w3 

w° w6 w4 w2 w° w6 w4 w2 

w° w1 w6 w5 w4 w3 w2 w1 

(3.18) 

(3.19) 

In the future, we shall often tag rows and columns of an E matrix with k and n 
values, as shown in (3.18), to illustrate rearrangements of the matrix. More 
generally, the E matrix of dimension N has the entries of Table 3.1a and is 
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given by 

k \ n 0 1 2 • T V - 2 T V - 1 
0 0 0 0 0 0 
1 0 1 2 • T V - 2 TV — 1 
2 0 2 4 • TV — 4 T V - 2 

— 2 0 T V - 2 T V - 4 • 4 2 
1 _ 0 N- 1 T V - 2 • 2 1 

(3.20) 

In conclusion, (3.17) is the vector-matrix equation for the D F T . The matrix of 
exponents is given by (3.20). Each entry in (3.20) is the product of the k value for 
the row and the n value for the column (computed mod TV). The D F T matrix is a 
square matrix with Arrows and TV columns. Since the D F T has an TV-point input 
and an TV-point output, it is called an TV-point DFT . 

3.7 DFT Inversion - the IDFT 

The D F T resulted from approximating an integral equation with a sum
mation. The inverse discrete Fourier transform (IDFT) is also a summation. It is 
similar to the Fourier series representation of x(t) given by (2.14) with only the 
first TV coefficients. Only TV coefficients are allowed, because the TV points in the 
data sequence {x(0), x( l ) , x(2),..., X(N — 1)} allow us to solve for only TV 
unknown transform sequence values. We can rewrite (2.14) with TV coefficients 
using the restriction —TV/2 < k < TV/2, which gives 

N/2-1 

x(n) = X X(k)ej2nkn/N (3.21) 
k=-N/2 

The periodic property of X(k) [see (3.7)] can be applied to the coefficients in 
(3.21), giving 

X(-N/2) = X(N/2l 

X(-N/2+ l ) = X ( T V / 2 + 1) 

X(- l) = X(N- 1) (3.22) 

The nonnegative values of k in (3.21) go from 0 to TV/2 — 1 and the negative 
values can be shifted to between TV/2 and TV — 1 using (3.22), that is, 

N/2-1 N-l 

x(n)= ^ X(k)ej2nkn/N + X X(k)ej2n{k-N)n/N (3.23) 
k = 0 k = N/2 

The phasor Qxp(—j2nNn/N) in the second summation in (3.23) is unity for 
n = 0, 1,2,... ,TV — 1, so the two terms in (3.23) can be combined, resulting in 
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the I D F T : 
TV - 1 N - l 

x(n)= X X(k)ej2nkn/N = X X(k)W~kn (3.24) 
k=0 k=0 

where n = 0 , 1 , 2 , . . . , TV - 1 and 1 = exp(j2n/N). As an example, for TV = 8 
(3.24) gives 

x ( 0 ) = W°X(0) + ^ ° Z ( 1 ) + ^°JT(2) + • • • + W°X(1) 

x( l ) = W°X(0) + ^ _ 1 X ( 1 ) + W~2X{2) + • • • + P r - 7 Z ( 7 ) 

x(2) = WK°X(0) + W-2X{\) + W~4X(2) + • • • + ^ - 6 Z ( 7 ) (3.25) 

x(7) = J^°X(0) + W-7X(l) + W~6X(2) + • • • + W-'XCl) 

The TV equations defined by (3.24) can be written in vector-matrix notation 

x - W~EX (3.26) 

where x and X are vectors of data samples and D F T coefficients given by (3.14) 
and (3.15), respectively, W~E is the I D F T matrix with row numbers 
n = 0 , 1 , 2 , . . . ,TV — 1, column numbers k = 0 , 1 , 2 , . . . , TV — 1, and entry 
jy-E(n,k) m r o w n a n ( j column For example, for TV = 8, i: is given by (3.18) and 
W~E is given by 

1 w° w° W° w° w° w° 
1 w~ 1 w~ 2 W~A w~ 5 w~ 6 w~ 1 

1 w~ 2 w~ 4 w~6 w~° w~ 2 w~ 4 w~ 6 

1 w~ 3 w~ 6 w~4 w~ 7 w~ 2 w~ 5 

1 w~ 4 w~ 0 w~° w~ 4 w~ 0 w~ 4 

1 w~ 5 w~ 2 w~4 w~ 1 w~ 6 w~ 3 

1 w~ 6 w~ 4 w~2 w~° w~ 6 w~ 4 w~ 2 

1 w~ 7 w~ 6 W~5 w~4 w~ 3 w~ 2 w~ 1 

(3.27) 

Note from (3.27) that the entries in the matrix of exponents E are given in Table 
3.1(b). Note also that the roles of k and n interchanged in (3.27) with respect to 
(3.19). 

3.8 The DFT and IDFT - Unitary Matrices 

The TV x TV matrix U is called a unitary matrix if its inverse is the complex 
conjugate of U transposed, that is, 

U ' 1 = (C/*)T = (£/ T )* (3.28) 

We shall show that if time and frequency tags are in natural order, then the 
scaled D F T matrix WEljN and the scaled I D F T matrix {W^'^/Jn satisfy 
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the unitary matrix conditions [B-34, P-41] 

(WE/y/Ny1 •= [(WE)*] T/^/N = W~E/^/N and WEW~E/N = IN (3.29) 

where IN is the identity matrix of size (TV x TV). To prove (3.29) consider first the 
8 x 8 D F T and I D F T matrices given by (3.19) and (3.27), respectively. Any 
entry in the symmetric I D F T matrix is exp(j2nkn/N) = [exp( — j2nnk/N)]*, 
which proves that 

W - E = (W*f = (wE)*J (3.30) 

To prove that WEW~E/N = IN select any row of WE and any column of W~E. 
For example, if TV = 8 the scalar product of the row in WE for k = 2 and the 
column in W~E for n = 2 gives 

(1 W2 W4 W6 1 W2 W4 W6){\ W~2 W~4 W~6 1 W~2 W~4 W~6Y 

= 8 

All values of k = n = 0 , 1 , 2 , 3 , . . . , 7 give the same result. However, the scalar 
product of row 2 of WE and column 3 of W~E gives 

(i w2 w6 i w2 w4 w6)(i w~3 w~6 w~x w~4 w~n w~2 w~5y 

= 1 + W'1 + W~2 + W~3 + W~A + W~5 + W~6 + W'1 

The sum of the phasors 1 + W~l + W~2 + • • • + W~7 is shown in Fig. 3.8 to 
be zero, and in general we conclude that 

1 + W'1 + w~2 + • • • + W~N+1 = 1 + w+ w2 + • • • + WN~1 = 0 

(3.31) 

To generalize for other rows and columns, let rk be a row vector determined by 
row k of WE and let cn be a column vector determined by column noiW~E. Then 
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the scalar product of rk and cn gives 

Ikcn = (1 + Wk + • • • + W{N~1)k)(l + W~n + • • • + W-(N~1)n)T 

= 1 _|_ _j_ • • • 4. jy(N-i)(k-n) 

Applying the series relationship = 0 ~ / O / G - y) to the latter 
summation yields 

1 - Wm~n) QV, k = n 
1 - Wk~n [0 otherwise 

(3.32) 

This means that J ^ £ J ^ ~ £ / / V = 7^, which completes the proof of (3.30). F rom an 
alternative point of view we can substitute the I D F T output into the D F T 
definition : 

X = — WEx = - WE(W-EX) = — WEW~EX 
N N N 

(3.33) 

Since X = INX, (3.33) implies that WEW'E/N = IN. Likewise, substituting the 
D F T definition in the I D F T gives 

x = W~EX = W~E [(l/N)WEx] (3.34) 

Since W~EWE/N = IN, the I D F T matrix is again shown to be unitary. 

3.9 Factorization of WE 

A quick and easy way to derive F F T algorithms is to manipulate WE into the 
product of matrices. In Chapter 4 we shall find that FFTs are represented by 
factored matrices. As an example of matrix factorization let 

WE = WE2WEl (3.35) 

and let N = 4, W= exp( - j2n/4) = - y , 

E2 = 

0 0 -jco - 7 0 0 

0 2 - 7 0 0 - 7 0 0 

yoo - 7 0 0 0 0 
7 0 0 - 7 0 0 0 2 

and (3.36) 

E1 = 

0 - 7 0 0 0 - 7 0 0 

7 0 0 0 - 7 0 0 0 
0 - 7 0 0 2 - 7 0 0 

7 0 0 1 - 7 0 0 3 
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Then 

W' •E2 — 

1 1 0 0 
1 - 1 0 0 
0 0 1 1 
0 0 1 - 1 
J'a> _ g - j 2 j i / 4 ( -jco) 

and WEl = 

1 0 1 0 
0 1 0 1 
1 0 - 1 0 
0 - j 0 j _ 

(3.37) 

since W~JCO = e~j2nl^-JCO) = = 0. Matrices like (3.37) are called sparse 
matrices because of the zero entries that become more numerous as TV increases. 
Substituting (3.37) in (3.35) yields 

wE = WElWEl = 
1 1 1 1 

1 - 1 1 - 1 

1 - j - 1 J 

1 j - 1 -J_ 

(3.38) 

where 
n 0 1 2 3 

0 0 0 0 0 
2 0 2 0 2 
1 0 1 2 3 
3 0 3 2 1 

(3.39) 

which is the E matrix of a 4-point D F T with a different k tagging on the rows. 
Equation (3.38) is an F F T matrix, which will be discussed in detail in Chapter 4. 

3.10 Shorthand Notation 

The matrices in (3.36) have many — 7 0 0 entries. In the future, instead of 
making these entries we shall use the shorthand notation that a dot (no entry) in 
row k and column n of E means — 7 0 0 . In the matrix WE the corresponding entry 

-j2n/!s in row k and column n is W j c o = (e 
shorthand notation (3.36) is written 

"0 0 - " 
0 2 • • 
• • 0 0 

_• • 0 2__ 

Taking the matrix product WE = WEl WEi gives 

~" W° W° 

yjco = e-co __ 0 F o r example, in 

and (3.40) 

WE = w° w2 

0 
0 

0 0 w° 
0 0 w° 

w0+0 

w0+0 w0+2 

w0+0 w0+1 

w0+0 w1+2 

0 
0 

w° 
w2 

li'O + 0 
yyo + 0 

~W° 
0 

w° 
_ 0 

W0 + 2 

0 / 0 + 3 

0 / 2 + 3 

0 0 " 
w° 0 w° 
0 w2 0 

wx 0 w3 

(3.41) 
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The factorization of WEl is such that only the nonzero entry per row of WEl is 
multiplied by a nonzero entry of any column of WEl using the row-times-column 
rule of matrix multiplication. The matrix multiplication becomes addition when 
applied to the exponents; since eaeb = ea+b, each entry in E is the sum of two 
exponents, so that 

E = 

0 + 0 0 + 0 0 + 0 0 + 0" 
0 + 0 0 + 2 0 + 0 0 + 2 
0 + 0 0 + 1 0 + 2 0 + 3 
0 + 0 1 + 2 0 + 2 2 + 3 

(3.42) 

The preceding result is true of all F F T matrices in their factored form. Let E be 
an N x N matrix, let WE = WElWE\ and let at most one nonzero entry result 
from the row-times-column rule in evaluating WE for every row of WEl and 
every column of WEl. Then 

E(k,n)= Y [ £ 2 ( M ) + £ i 
1 = 0 

(3.43) 

where, for any two entries in the square brackets, no entry + entry = entry + no 
entry = no entry + no entry = no entry and where Wnoemry means W~ix = 0. 
As a simple example, let E2 and Ex be given by (3.40). Then using (3.43) gives 

£•(0,0) = (0 + 0) + (0 + no entry) + (no entry + 0) 

+ (no entry + no entry) 

= 0 

which agrees with (3.42). Furthermore, 

E(l, 1) = (0 + no entry) + (2 + 0) 4- (no entry + no entry) + (no entry + 1) 

= 2 

etc. If WE = WElWEl, we let the shorthand notation 

E = E2tE1 (3.44) 

mean the matrix derived by using (3.43). For example, WE = WElWEl is 
equivalent to 

E -

0 0 
0 2 

0 0 
0 0 

0 • 0 • 
• 0 0 
0 • 2 • 
• 1 - 3 

(3.45) 

In general, when dealing with N x N matrices we shall use the notation 

WE = W^W^-1 WEl (3.46) 

£ = £ L t £ L - i t • • • t ^ i (3-47) 
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The entries in £ can be obtained by working out the matrix product in (3.46), but 
it is usually much simpler just to work with the matrices of exponents in (3.47). 

3.11 Table of DFT Properties 

When both x(n) and X(k) are defined, we say that they constitute a D F T pair, 
indicated by 

x(n)^X(k) (3.48) 

Table 3.2 

Summary of D F T Properties 

Property D a t a sequence Transform sequence Property 
representation representat ion 

Discrete Fourier transform x{n) X(k) 
Linearity ax{ri) + by(n) aX(k) + bY(k) 
Decomposit ion of a real da ta sequence xe(n) + x0(n) where Xe(k) + X0(k) where 

into even and odd parts *E(«) = 2 M " ) + X ( N - W ) ] Xe(k) = Re[X(k)] 
x0(n)=±[x(n)-x(N-n)] X0(k) = j!m[X(k)] 

Periodicity of da ta and transform x(n + IN) X{k + mN) 
sequences l,m = ..., - 1 , 0 , 1 , . . . 

Transform sequence folding with real x(n) X{k) = X*(N - k) 
data 

Horizontal axis sign change x(-n) X(-k) 
Complex conjugation x*(n) X*( - k) 
D a t a sequence sample shift x(n + n0) e±j2nkn0IN X(k) 

Single sideband modulat ion e±j2nkon/Nx(n) X(k + k0) 
Double sideband modula t ion [cos(2nk0n)]x(n) i[X(k + k0) + X(k - k0)] 

X(k)Y(k) Data sequence circular convolution x(n) * y{n) 
i[X(k + k0) + X(k - k0)] 
X(k)Y(k) 

Transform sequence circular x{n)y(n) X(k) * Y(k) 
convolution 

Arithmetic correlation x{ri) *y*(— n) X(k)Y*(k) 
\X(k)\2 Arithmetic autocorrelat ion x(n) *x*(— n) 
X(k)Y*(k) 
\X(k)\2 

D a t a sequence convolution x(n) * y(n) 
(augmented sequences) 

X(k)Y(k) 

Transform sequence convolution x(n)y(n) X(k) * Y{k) 
(augmented sequences) 

D a t a sequence cross-correlation 5c{n) * y*(— n) 
(augmented sequences) 

X(k)Y*(k) 

D a t a sequence autocorrelat ion x(n) * x*( — n) 
(augmented sequences) 

\X{k)\2 

D a t a sequence exponential function eJ2nfn/N e-Mk-f)(i-l/N) 

s i n [ 7 C ( / - k)] 

Nsm[n(f-k)/N] 
Symmetry (l/N)X(n) x(-k) 
I D F T by means of D F T N{DFT[X*(k)]}* X(k) 
D F T by means of I D F T x(n) (\/N){IDFT[x*(n)]}* 
L-dimensional D F T x(nun2,...,nL) 

I N-l 

- E w « ) P 

X(k1,k2,..., kL) 

Parseval 's theorem 

x(nun2,...,nL) 
I N-l 

- E w « ) P = iW)i2 

k = 0 
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The notation 

X(k) = DFT[JC(?I)] and x(n) = IDFT[X(&)] ( 3 . 4 9 ) 

means that the D F T and its inverse are defined by the TV-point sequences x(n) 
and X(k), respectively. 

The utility of the D F T lies in its ability to estimate a spectrum using numerical 
methods. The D F T coefficients correspond to the spectrum determined using 
the Fourier transform. As a consequence, it is useful to state D F T pairs and to 
identify them with the corresponding Fourier transform property. Let x(n) and 
y(n) be two periodic sequences with period TV. Then Table 3 . 2 summarizes some 
D F T pairs that may be compared with the Fourier transform pairs in Table 2 . 1 . 

C O N V O L U T I O N Convolution and circular convolution are important topics in 
the discussion of F F T algorithms for reducing multiplications (see Chapter 5 ) . 
Circular convolution is defined for periodic sequences whereas convolution is 
defined for aperiodic sequences (see Table 3 . 2 ) . The circular convolution of these 
two TV-point periodic sequences x(n) and y(n) is the TV-point sequence 
a(m) = x(n) * y{ri) defined by 

j N-l 

a(m) = x(n)*y(n) = — X x(n)y(m ~ n)> m = 0 , 1 , 2 , . . . , TV — 1 ( 3 . 5 0 ) 

Since a(m + TV) = a(m), the sequence a(m) is periodic with period TV. Therefore 
A(k) = DFT[<z(m)] has period TV and is determined by A(k) = X(k) Y(k) (see 
Problem 12) . 

The convolution x(n)*y*( — n) is called arithmetic correlation. The terms in 
the summation in ( 3 . 5 0 ) become x(n)y*(n — m), which corresponds to right 
shifting of y*{ri) (see Problem 13) . Equivalently, x(n) can be left shifted. 
Arithmetic autocorrelation is similar and is discussed in the Appendix. 

The noncircular (i.e., aperiodic) convolution of two sequences x(n) and y(n) of 
lengths L and M, respectively, yields another sequence a(n) of length 
TV = L + M - 1: 

j N-l 

aim) =— £ x(n)y(m - n\ m = 0 , 1 , . . . , L + M - 2 ( 3 . 5 1 ) 

Note that the convolution property of D F T (see ( 3 . 5 0 ) ) implies circular 
convolution. Noncircular convolution, as implied in ( 3 . 5 1 ) , requires that the 
sequences x(n) and y(n) be extended to length T V ^ L + M — l b y appending 
zeros to yield the augmented sequences 

{x(n)} = W O ) , x(l),..., x(L - 1) , 0 , 0 , . . . , 0 } ( 3 . 5 2 ) 

{y(n)} = W 0 ) , X I ) , • • • ,y(M - 1) , 0 , 0 , . . . , 0 } ( 3 . 5 3 ) 

Then the circular convolution of x(n) and y(n) yields a periodic sequence a{ri) 
with period TV. However, a(m) = a(m) for m = 0 , 1 , . . . , L + M — 2 . Hence 

D F T [a(n)] = D F T [x(n) * y(n)] = X(k) Y(k) ( 3 . 5 4 ) 
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where X(k) = DFT[x(n)] and Y(k) = DFT[y(rc)] are the D F T s of (3.52) and 
(3.53), respectively, and 

3(TI) = lDFT[X(k)Y(k)] (3.55) 

These operations are illustrated in block diagram form in Fig. 3.9. Of course, an 
F F T is applied to implement the D F T . 

Sequence x(n) 
Sequence x(n) 
of length L 

Add at least 
M-1 zeros 

of length 
N > L + M-1 N-point X (k ) 

at the end of the 
sequence 

DFT 1 
Sequence y(n) 
of length M 

Sequence y(n) $ Sequence y(n) 
of length M Add at least 

L-1 zeros 
of length 
N > L + M-1 N-point T 

at the end of the 
sequence 

DFT Y ( k ) 

Sequence a(n) 
of length N N-point 

A(k) = 
X(k)Y(k) 

IDFT 

Fig. 3.9 The application of D F T to obtain the noncircular convolution of two sequences x(n) and 

y(n). 

O T H E R D F T P R O P E R T I E S Other pairs in Table 3.2 are a direct consequence of 
the D F T definition and its periodic property. For example, the horizontal axis 
sign change results from using the sequence x(— n) in (3.4). This yields 

D F T [ X ( - / I ) ] = i y * ( - w ) ^ k " = i X + 1 * ( 0 ^ - w ( 3 - 5 6 ) 
™ n = 0 ™ 1 = 0 

where we let / = — n. The periodicity of W~kl and the sequence x(l) allow us to 
shift the indices to between N and 1. Since x(N) = X (0 ) and kN = 0 (modulo N) 
we have 

j N-l 
— X x(l)W~kl = X(-k) and X ( - n)++X(-k) (3.57) 
N i = o 

Derivation of some other D F T pairs is indicated in the problems at the end of the 
Chapters 3-5. 

The multidimensional D F T is a direct extension of (3.4). The L-dimensional 
D F T is defined for N = N±N2 • • • NL by 

J Ni-l N2-l N L - 1 

X(kuk2,...,kI)=—— — X E ••• I x(nl9n2,...,nL) 
7 V i 7 V 2 ' " ' ML n i = o ,12 = 0 n^ = o 

x yf/kimN/Ni ff/k2n2N/N2 . . . jykLnLN/NL (3.58) 

where W N / N i = [e-j2nmYINi = e~j2n/Ni for i— 1 ,2, . . . , L . Other properties in 
Table 3.2 can be extended to the multidimensional cases using (3.58). 
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3.12 S u m m a r y 

This chapter has introduced the D F T and has showed that it corresponds 
closely to the integral that determines the Fourier series coefficients. The 
correspondence is so close that we can change interpretation of symbols from the 
Fourier series to the D F T representation, as is shown in Table 3.3. A function 
represented by a Fourier series can have an infinite number of coefficients, each 
of which is determined by an integral. A real function must be band-limited to a 
constant term aad N/2 or fewer sinusoids if the Fourier series coefficients are to 
be determined with the D F T . For this case the D F T has unique coefficients only 
from coefficient number zero to N/2. Coefficients for coefficient numbers 
LW2)J + i a r e complex conjugates of those for f(iV/2)"| - i, i = 1,2, 
..., \(N/2)~\ — 1, by the folding property where [( )J and f ( )~j denote the largest 
integer contained in ( ) and the smallest integer containing ( ), respectively (e.g., 
[4.5J = 4 and [4.5~| = 5). In this chapter we developed a matrix representation 
for the D F T . Matrices are a very powerful tool for developing F F T algorithms, 
as we shall see in the next chapter, where we shall reorder rows and/or columns 
of WE to get factored F F T matrices. We have already introduced a shorthand 
notation for the factored matrices, and we shall find in the next chapter that this 
notation shows at a glance what operations are required for the F F T . 

Table 3.3 

Correspondence of D F T and Fourier Series Nomencla ture 

D F T Fourier series 

Symbol Units or meaning Symbol Units or meaning 

) summation J S o * integration 
N samples p seconds 
k transform coefficient number (frequency bin f hertz 

number) 
n integer da ta sequence number (time sample t seconds 

number) 
x{n) sampled value of x(t) at t = nT x(t) instantaneous value 

of x at time t 

An alternative development of the D F T is to approximate the Fourier 
transform integrals 

X(f)= x(t)e-J2nftdt (3.59) 

x(t) = X{f)e^'df (3.60) 
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with the finite summat ions (based on P = 1 s) 

I N / 2 - 1 N/2-1 

X(k)= — £ x(n)Wkn and = £ X(k)W~kn (3.61) 
N n = - N/2 k=-N/2 

Both equations in (3.61) can have the summation shifted to between 0 and 
JV — 1, giving the D F T pair. Since (3.61) describes a periodic function that is the 
sum of N sinusoids, the development used in this chapter was to start with the 
Fourier series with complex coefficients. Such series always describe periodic 
functions. Regardless of whether the D F T is developed from the Fourier series 
for a periodic function or from an approximation to the Fourier transform 
integral, the pair X(k) and x(n) results. 

P R O B L E M S 

1 Let x(n) = cos(2nkn/N). Show that X(k) = \ for N = 8 and k = ± 2. Compare X(k) with the 
Fourier transform of cos(2nkt/P) for k = ± 2. 

2 Let x(t) = cos(2nt) + sin(27r/)- Find the Fourier series coefficients X(k). Let N = 8 and P = 1 s. 
Find the D F T series representation for the sampled-data function x(n). Show that the Fourier series 
coefficients X(- 1) and X(l) are the same as the D F T coefficients X{1) and X(l), respectively. 

3 Let x(n) = 1 + cos2(2nn/N). Find the D F T coefficients for x(n) for N = 8. Use these coefficients 
to determine a series representation for x(ri) and verify that the series accurately represents x{ri). 

4 ParsevaVs Theorem Write IDFT representations for X(k) and X*(k) and multiply them. Show 
that Y,k=o e~j2nk(n~l)IN = dlnN. Use this retationship to prove Parseval's theorem, which states that 

N - l j N-l 

fc=0 ™ n=0 

5 Shift Invariance of the DFT Power Spectrum Let the sequence x{ri) have period N. The D F T 
power spectrum of x{n) is defined as |AXA:)|2, k = 0 , 1 , . . . , N — 1. Use the shifting property (Table 
3.2) to show that the power spectrum of the sequence x{n + n0) is also lA^A:)!2, where n0 is an integer. 

6 Derive the matrix of exponents for a 4-point DFT. Using the matrix of exponents show that the 
D F T matrix is 

w t 

1 

-J 1 
1 - 1 

-1 j 

1 1 
- 1 j 

1 - 1 

- 1 -J-

(P3.6-1) 

How many real multiplications and additions are required to evaluate X = WE x/N, where (P3.6-1) 
gives WE and x is a dimension 4 vector of real data? How many complex additions? 

7 Define 

0 0 -jco - y ' o o 0 -jco 0 -jco 

E2 = 
0 1 -jco - y o o 

Ex = 
- 7 0 0 0 -jco 0 

-jco -jco 0 0 0 - y ' o o 1 -jco 

- - j c o -jco 0 1 _ — -jco 1 - 7 0 0 0 _ 
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Recall that ( - 1 ) _ •• 0 and write Et and E2 in shor thand form. Show that 

E=~E2^EX : 

0 0 0 0 
0 1 0 1 
0 1 1 0 

. 0 0 1 l_l 

(-l)E = 

1 1 1 1 
1 - 1 1 - 1 
1 - 1 - 1 1 

L l l - 1 - l_ 

8 Write the D F T and I D F T matrices of dimension 4. Show WEW~E/4 = I4 and W~E = [(WE)]*. 

9 Show that for \k\ < N/2 the Fourier series, D F T , and Fourier t ransform all give 
X(k) = (ak - j sign(k)bk)/2 (times 5(f ± k) for the Fourier transform) if x(t) has period P = 1 s and is 
band-limited to frequencies \k\ < N/2. 

10 Integration Intervals for Determining Fourier Series Coefficients Let (2.16) define X(k) and let 

oo 

X(t)= £ X{l)eW/p 

Z= - oo 

Show that 

x(k)= £ !(/) 
sin[7R(/; — k)] 

<fi - k) 

and that X(k) = X(k) if f is always an integer for any /. 
Next define 

X(k) = - | x(t)e-J2nktlPdt 

Show that 

X(k)= £ X(l)[eMfl~k)] 
smjnif - k)] 

n(f - k) 

and that X{k) = X(k) = X(k) i f i s an integer for all /. Conclude that the Fourier series coefficients 
for a periodic function with period P may be determined by either (2.16) or (3.1). 

11 Convolution of Nonperiodic Functions Let x(t) and y{i) be nonzero real functions in the 
interval 0 ^ t < 1 and let them be zero elsewhere. Show that a(i) = x(f)*y(i) is nonzero for 
0 ^ t < 2. Use Table 2.1 to show that A(f) = X(f) Y(f). Let x(t) and y(t) be sampled N times per 
second and let X(f) and Y(f) be approximated by X(k) and Y(k), respectively. Let A(f) be 
approximated by A (k) = X(k) Y(k). Show that N samples of x(t) and y(t) in the interval 0 ^ / < 1 
must be followed by at least N - 1 zeros and that at least a (2N - l )-point D F T must be used to 
determine X(k) and Y(k). 

12 DFT of a Convolution Let x(n) and y(n) be sequences of length N determined by augmenting 
length L and M sequences as shown in Fig. 3.9. Let a(n) = x(n)*y(n). Show that 

j N-l N-l 

D F T O ( m ) ] = — I I x(n)y(m - n)Wkm = X{k)Y(k) = A(k) 
N m=0 n=0 

13 DFT of a Correlation Let X(k) and Y*(k) be the TV-point D F T s of x(n) and y*(-n), 
respectively, where x(n) and y(n) are the augmented sequences in Problem 12. Let W = 
exp( — j2n/N) and let M(m) = x(m) *y*(— m) be the correlation of the sequences x(n) and y(n). 
Show that 

J N-l N-l 

D F T [ ^ ( m ) ] - — J £ x(n)y*(n - m)Wkm = X(k)Y*(k) 
N „ _ n „ _ n 



PROBLEMS 55 

14 DFT of an Exponential Let the input to the D F T be exp(j2nfn/N). Apply the series 
relationship £ * r 0 V = (1 - yN)/(l ~ y) to show that 

J J _ e-j2n(k-f) 

DFT[ej2nfnlN] = (P3.14-1) 
TV 1 - e~J2n(k~f)IN 

Show that (P3.14-1) can be reduced to yield 

DFJ[eJ2nfnlN] = c-Mk-.f)(i-i/N)
 s * n ^ ( Z ~ ^ /p3 j4_2) 

Nsm[n(f-k)/N] 

Interpret (P3.14-2) as the D F T frequency response. 

15 DFT of a Sinusoid Let the input to the D F T be cos(j2nfn/N). Use (P3.14-2) to show that the 
magnitude of the D F T coefficients k and N - k are the same. Show that the phase of these 
coefficients has the same magni tude, but opposite sign, so that the coefficients are complex 
conjugates. Show that this may be interpreted as the D F T folding property. 

16 DFT of a Two-Dimensional Image A high altitude photograph shows the earth 's surface 
viewed vertically from a spacecraft. The photograph gives gray level (variation from black, 0, to 
white, 1) versus x and y coordinates. The photograph is sampled to give the image x(m,n), 
m = 0,1,..., M — 1, w = 0 , 1 , . . . , TV — 1. The power spectrum of the image is desired for texture 
analysis. Let this power spectrum be \X(k,l)\2 where X(k, I) = D F T [ x ( r a , « ) ] . Let X(k, I) be 
obtained by first transforming the rows of the image to yield X(m, I) = D F T of row m of x(m, n). Use 
the folding property to show that X(m, I) = X*(m, N - / ) . Then use the horizontal axis sign change, 
complex conjugation (Table 3.2), and the periodic properties of the D F T to show that the D F T of the 
columns of X(m, /) yields X(k, /) = X*( — k,N — I) = X*(M — k,N — I). Let M and N be even and 
show that the number of D F T coefficients that contain all the power spectrum information in the 
high altitude photograph is (M/2 + l)(TV/2 + 1) + (M/2 - l)(TV/2 - 1). 

17 Three-Dimensional Plot of a Two-Dimensional Spectrum A three-dimensional plot of \X(k, l)\2 

versus k and / is desired where X(k, I) = D F T [ x ( m , n)] and x(m, n) is the sampled value of a real 
image. Let M and TV be even and let 0 ^ m < M/2 and 0 ^ n < N/2 or N/2 < n < TV define quadrants 
(0,0) or (0,1), respectively. Let M/2 < m < M and 0 ^ n < N/2 or N/2 ^ « < TV define quadrants 
(1,0) or (1,1), respectively. Show that if the plot has the dc term (i.e., the term X(0,0)) at k = M/2 
and / = N/2, then the quadrants must be interchanged as follows: (0,0) with (1,1) , and (1,0) with 
(0,1). 

Show that a single sideband modulat ion (see Table 3.2) can be applied before taking the two-
dimensional D F T to place the dc term at (M/2, N/2). Show that this gives X(k, I) = 
DFT[(— l)m + nx(m,n)]. 

18 DFT of Two Real N-Point Sequences by Means of One Complex N-Point DFT Let x(n) and y(n) 
be two real iV-point sequences and let a(n) = x(n) + jy(n). Decompose x(n) and y(n) into even and 
odd parts. Let X(k) = DFT[>(«) ] = Xe(k) + jX0(k) where jX0(k) = X0(k) and similarly represent 
Y(k). Show that 

A(k) = Xe(k) +jX0(k) +JYe(k) - Y0(k) 

Use the folding property to show that 

Xe(k) = \Re[A(k) + A(N - k)] 

Y0(k) = \ Re [ - A(k) + A(N - k)] 

X0(k) = \lm[A(k) - A(N - k)] 

Ye(k) = ±\m[A(k) + A(N - k)] 

Conclude that the D F T of two real TV-point sequences is determined by the output of just one TV-
point complex D F T , that is, a D F T with a complex input (use an F F T , of course, to do the 
evaluation). 



56 3 DISCRETE FOURIER TRANSFORMS 

19 DFT of an N-Point Real Sequence by Means of an (N/2)-Point Complex FFT [C-60, R-78] Let 
x(n) = xe(n) + x0(n) be a real Appoint sequence, where the subscripts e and o stand for even and odd 
parts , respectively. Let TV be even. Define 

yi(n) = xe(2n) + xe(2n + 1) - xe(2n - 1) = a(n) + c(n), N = 0 , 1 , . . . , TV/2 - 1 

where a(n) = jce(2«) and c(n) = xe(2/7 + 1) - x e (2« - 1). Let W = e~J2nlN. Show that 

J N / 2 - 1 
Y l ( k ) = l ^ £ h ( " ) ^ 2 b = # ) + W . fc = 0 , l , . . . , J V / 2 - l 

TV/2 „ = 0 

where 

j N - i 

C(fc) = ( l ^ " * - Wk)B(k) = 2jsm(2nk/N)B(k) 

j N - l 

= Y j c e ( i w ) ^ f c m 

m odd 

Show tha t the (TV/2)-point sequences <?(«) and c(n) are even and odd, respectively, so that 

A(k) = Re[Y(k)], k = 0 , 1 , . . . ,N/2 - 1 

lm[Y(k)] 

B(k)= , k= 1 , 2 , . . . , T V / 2 - 1 
2sm(2nk/N) 

Let 

1 N - l 

S ( 0 ) = - B ( i V / 2 ) = - I *.(»). 
n odd 

Show that Z e (0 ) = ^ [^ (0 ) + B(0)], Xe(N/2) = ±[A(0) - B(0)], and 

)2lA(k) + B(k)], k= 1 , 2 , . . . , TV/4 

'|[>*(TV/2 - fc) - £(TV/2 - £ ) ] , k = N/4 + 1 , . . . ,N/2 - 1 

Conclude that Xe(fc), A: = 0 , 1 , . . . , N - 1, can be computed with an ( A p p o i n t D F T with a real 
input. 

Show that analogous formulas hold for XQ{k) by considering the (TV/2)-point sequence 
y2(n) = x0(n) + x0(n + 1) - xQ(n - 1). Use the results of Problem 18 to show that an (TV/2)-point 
D F T with the complex input y(n) = yx(n) + jy2(n) specifies the D F T of the Appoint real sequence 
x(n). Conclude that an TV-point real sequence can be transformed by an (TV/2)-point complex F F T . 

20 DFT of an N-Point Even (Odd) Sequence by Means of an (N/4)-Point Complex FFT [C-60] 
No te in Problem 19 that a(n) and c(n) are even and odd (TV/2)-point sequences, respectively, derived 
from the TV-point sequence xe(n). Use the logic of Problem 19 to show that a(n) and c(n) can be 
computed with one (TV/4)-point F F T with a complex input. Conclude that the D F T of the TV-point 
even or odd sequence xe(n) or x0(n), respectively, can be computed with one (TV/4)-point complex 
F F T . 

21 DFT of a Sequence Padded with Zeros Let the TV-point sequence x(n) result from sampling x(t) 
at an fs Hz sampling rate. Let i — 1 zeros be inserted between consecutive samples (i.e., the sequence 
is " p a d d e d " with zeros) yielding an (TW)-point sequence xp(n) at an if Hz sampling rate. Show that 
xp(n) is unchanged if multiplied by \ [ 1 + cos(27n/s0]{rect|> - \{P - T)]/P} where P = NT and 
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fs = l/T. Use Table 2.1 to show that 

D F T ( N i ) [ * p ( , i ) ] = ^ ( - i - [ l + COS(2TH/ S 0 ] 
\2N 

rect 
t-(P - T)/2' 

[ c o m b T x(t)] 

HS(0) + i[d(f- ifs) + <5(/+ ifs)]}*TepL[X(f)] 

+ e-jnf(i-i/N) S i n c ( / P ) (P3.21-1) 

where D F T ( N l ) is an (M)-po in t transform. Show that the right side of (P3.21-1) yields the same 
spectrum as D F T N [ x ( « ) ] , but with respect to the sampling rate ifs (Fig. 3.10). A s a consequence of the 
higher sampling frequency, show that a digital bandpass filter (BPF) can be used to extract one of the 
translated replicas of X(f) for further processing (e.g., transmission). 

\ x(n) Pad 
—®^®_—». with 

f s Hz zeros i f s Hz 

BPF 

Translated 
spectrum 

Fig. 3.10 The use of a sequence padded with zeros. 
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FAST FOURIER T R A N S F O R M A L G O R I T H M S 

4.0 Introduction 

The fast Fourier transform uses a greatly reduced number of arithmetic 
operations as compared to the brute force computation of the D F T . The first 
practical applications of FFTs using digital computers resulted from manipu
lations of the D F T series. For example, if N = 2L, L > 2, then the TV-point D F T 
can be evaluated from two (7V/2)-point DFTs , and so on a total of L times. 
Putting the summations together in proper order gives a power-of-2 F F T 
algorithm, which is fully developed in Section 4.1. 

An easy way to visualize the procedure for generating F F T algorithms results 
from matrix factorization. In Sections 4.2-4.8 we shall discuss F F T algorithms, 
which can be derived by reordering rows and/or columns of the D F T matrix WE 

such that it factors into a product of matrices: 

WE = WEL WEL ~ 1 • • • WElWEl = H^ t£ iL- i t - - - t£2 t£ i (4 1) 

where E = EL ^EL-11 • • * "\E2 t ^ i is the shorthand notation developed in 
Chapter 3 and L is the number of integral factors of N. The easiest case is when 
N = 2L. This case is discussed in Sections 4.2-4.4. The more general case is for N 
having L integral factors, so that N = NLNL-X • • • Nx. FFTs for this case are 
called mixed radix transforms. Their derivation is given in Section 4.5. 

Sections 4.6-4.8 develop additional F F T and inverse F F T (IFFT) algorithms 
using matrix manipulation methods. These methods include matrix transpose, 
using the I F F T to deduce an F F T and inserting a factored identity matrix into an 
already factored F F T [A-5, A-22, A-32, A-33, A-34, B-2, C-29, G-9, K-30, M - 3 1 , 
S-9, Y-5] . These additional FFTs are developed for several purposes. First, they 
provide software and hardware engineers with flexibility in a particular 
application. Second, they illustrate techniques that apply to the derivation of 
other fast transforms, such as the generalized transforms of Chapters 9 and 10. 

Matrix factorization is a simple technique for deriving fast transforms. It does 
not necessarily give the most economical transform in terms of minimizing 
arithmetic operations. In fact, the algorithms in Chapter 5 significantly reduce 

58 
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the number of multiplications as compared to the FFTs of this chapter. 
However, depending on the number of points in the transform, use of the FFTs 
of this chapter may result in less computer time, due to simplicity of indexing, 
loading, and storing data, as compared to the algorithms in Chapter 5. 

4.1 Power-of-2 FFT Algorithms 

Let the number of points in the data sequence be a power of 2 ; that is, N = 2 L , 
where L is an integer. Then a simple manipulation of the series expression for the 
D F T converts it into an F F T algorithm [C-29, C-30, C-31, S-16]. Recall that 
D F T coefficient X(k) is defined by 

Y N-l j N - l 

X(k) = — X x(n)(e-J2nlN)kn = — X x(n)Wkn (4.2) 

where k = 0 , 1 , 2 , . . . , N — 1. Since TV is a power of 2, N/2 is an integer, and 
samples separated by N/2 in the data sequence can be combined to yield 

I N/2-1 

X(k) = — £ [x{n)Wkn + x(n + N/2)Wk{n + N/2)] 
N n = o 
I N/2-1 

= — X M " ) + x(n + N/2)WkN/2] Wkn (4.3) 
N n = 0 

Equation (4.3) can be simplified because WkN/2 takes only two values for integral 
values of k, as is seen from 

= e x p p ^ 
\ N 2 

First let k be even, so that W m 2 = 1. Also let 

k = 21, 1= 0 , 1 , 2 , . . . , N / 2 - 1, 

g(n) = x(n) + x{n + N/2) (4.5) 

Then the series for even-numbered D F T coefficients is given by 
I J V / 2 - 1 J J J V / 2 - 1 

X(2l)=- £ g{n)W2i»=-— £ g(n)(W2y (4.6) 
^ n = 0 ^ n=0 

The right side of (4.6) is one-half times an (7VT/2)-point D F T because 
W2 = exp[ — j2n/(N/2)] and because the input sequence is {#(0), g( l) , 
g(2),..., g(N/2 — 1)}. We conclude that for even values of k we can reduce D F T 
inputs by a factor of 2 if we let the input be g(n) = x(n) + x(n + N/2). We can 
then use an (7V/2)-point D F T to transform the sequence defined by g(n). 

Now let k be odd, so that WkN/2 = - 1. Also let 
k = 2l+ 1, / = 0 , l , 2 , . . . , 7 V / 2 - 1 

y{n) = x(n) - x(n + N/2) (4.7) 

j = e~jnk = (-\f (4.4) 
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Then the series for odd-numbered D F T coefficients is given by 

j N/2-1 Y 1 N/2-1 

X(2l+l) = - £ X»)^ ( 2 ' + 1 ) " = x ^ I Kn)(W2r (4.8) 
Jy n = 0 z iv/z n = 0 

where h(n) = y{n)Wn. The right side of (4.8) is one-half times an (7V/2)-point 
D F T for the input sequence {A(0), h{\),h(2),h(N/2 - l)}.We conclude that 
for odd values of k we also can reduce D F T inputs by a factor of 2 by letting 
h{n) = Wn[x(n) - x(n + N/2)]. We can then use an (7V/2)-point D F T to 
transform the sequence defined by h{n). The parameter Wn in the preceding 
equation for h(n) is sometimes called a twiddle factor. 

Let us apply what we have learned so far to the D F T for N = 8. To do this we 
start with the inputs x(n) for n = 0 , 1 , . . . , 7, as is shown in Fig. 4.1. Adding 
inputs x(0) and x(4), x ( l ) and x{5), x(2) and x(6), and x(3) and x(7) reduces terms 
by a factor of 2, so we can use a 4-point D F T to determine X(k) for k = 0 ,2 ,4 , 
and 6. Likewise, subtracting these inputs and multiplying by the twiddle factors 
W°, W1, W2 and W3, as shown in Fig. 4.1, makes it possible to use a 4-point 
D F T to determine X(k) for k = 1,3,5, and 7. The parameter W2 for N = 8 is 
] ^ 2 = exp( — j2n/4), which is the ^ value required for the 4-point D F T . 

The procedure for the 8-point D F T may be mimicked for the 4-point D F T . 
The vertical structure of Fig. 4.1 is reduced by one-half in going from the 8-point 
D F T to the 4-point D F T . The structures for the 4-point and 2-point D F T s are 
shown in Fig. 4.2. The only multiplier other than unity for the 2-point D F T is 
WA = [exp(-y '27r/8)] 4 = - 1. When the structures of Figs. 4.1 and 4.2 are put 
together, we have an 8-point FFT. 

Note that we have decomposed the DFTs from TV-points to (7V/2)-points, then 
to (7V/4)-points, and so on, until we obtained a 2-point output. The transform 
sequence numbers for the TV-point D F T are separated by 1 Hz for a normalized 
analysis period of P = 1 s. The outputs of the (N/2)- and (JV/4)-point DFTs are 
separated by 2 and 4 Hz, respectively, if we continue to let P = I s for the TV-point 
input (Figs. 4.1 and 4.2). Therefore, when a D F T is divided into two DFTs of 
half the original size, the frequency separation of the output of either of the 
smaller D F T s is increased by 2. This corresponds to dropping (decimating) 
alternate outputs of the original D F T and is called a decimation in frequency 
(DIF) F F T . Decimation factors of 3 , 4 , . . . , K, K ^ N/2, arise in D I F FFTs of 
Section 4.5 due to decimation of frequencies by 3 , 4 , . . . , K at the outputs of the 
D F T s of sequences of shorter lengths. 

The coefficients for the 8-point F F T can be found by letting X(m), m = 0 , 1 , be 
the 2-point D F T output, as shown in Table 4.1. If X(l) is the 4-point F F T output, 
then l = 2m or / = 2m + 1, and the coefficients are ordered X(0), X(2), X(l), 
X(3). If X(k) is the 8-point F F T output, then k = 21 or k = 21 + 1. Table 4.1 
shows that the 8-point F F T coefficients are ordered X(0), X(4), X{2), X(6), X(l), 
X(5), Z(3), X(l). This 8-point F F T resulted from converting an 8-point D F T 
into two 4-point DFTs . Each 4-point D F T was in turn converted into two 2-
point DFTs . 
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Fig. 4.1 Reduct ion of an 8-point D F T to two 4-point D F T s using D I F . 
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Fig. 4.2 (a) Reduct ion of a 4-point D F T to two 2-point D F T s ; (b) a 2-point D F T . 

Figure 4.3 shows the D I F F F T in the form of a flow diagram. The symbols 
used in the flow diagram are shown in Table 4.2. F F T flow diagrams use several 
notational conventions that do not necessarily agree with their digital computer 
implementation. One convention is to move the multipliers back through the 
summing junctions. For example, W3 in the bot tom flow line of Fig. 4.1 is 
moved left through the summation to become a multiplier W3 following the x(3) 
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Table 4.1 

Generat ion of Output Coefficients Going from 
Lower to Higher Point D I F F F T 

A' = 8 N = 4 N = 2 

X(k) X{1) X(m) 

k = 2l I = 2m 
X(0) X(0) X(0) 
X(4) X(2) X(l) 

l=2m + \ 
X(2) X(\) X(0) 
X(6) X(3) X(\) 

k = 2l+l I = 2m 
X(\) X(0) X(0) 
X(5) X(2) X(l) 

I = 2m + 1 
X(i) X(\) X(0) 
X(l) X(i) X(l) 

Table 4.2 

Symbols for the 8-Point F F T 

Expression Meaning Value Symbol 

W° exp[-(727c/8)0] 1 

W4 exp[ - (727r /8)4] - 1 

w2 exp[ - (727r /8)2] -J ~w~2 

w1 e x p [ - ( 7 2 7 i / 8 ) l ] (1 ~j)/y/2 

input and a multiplier - W3 = W1 following the x(7) input. Inputs to the 
summation in Fig. 4.3 are W1x(l) and W3x(3). Another convention is to show 
all scaling at the output of the FFT. For example, Fig. 4.3 shows scaling of | 
preceding each output coefficient. 

When a D I F F F T digital computer program is written, the procedure to 
minimize multiplications is that of Fig. 4.1. For example, in the bot tom part of 
Fig. 4.1 x(7) would be subtracted from x(3) and the result multiplied b y \ W 3 . 
Scaling the output of each summing junction by \ has the added advantage of 
reducing word length requirements in a fixed point digital computation. If only 
the output is scaled, additional bits are needed to keep from degrading the 
signal-to-noise ratio (SNR) (see the discussion of dynamic range in Section 
7.8). 
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A repetitive structure called a butterfly can be seen in the F F T of Fig. 4.3. 
Examples of butterflies are shown by the darker lines in the figure. The first stage 
of butterflies on the left determines a matrix WE\ the second stage a matrix WEl, 
and the right stage a matrix WE3. These matrices are developed in the next 

Data sequence Transform sequence 

* ( ) Stage 1 Stage 2 Stage 3 

W 

Fig. 4.3 Flow diagram for an 8-point D I F F F T . 

section. The operations given so far can be extended to give a 16-point F F T , a 
32-point FFT , and so forth. The first FFTs used extensively were developed 
from the type of manipulation of series that has been presented in this section. 
However, the matrix representation of the F F T is very simple and easy to extend 
for N = 6 4 , 1 2 8 , . . . . Therefore, throughout the remainder of this book we shall 
emphasize the matrix representation developed in the following section. 

4.2 Matrix Representation of a Power-of-2 FFT 

This section develops the series representation of the previous section into a 
matrix representation for a power-of-2 F F T algorithm [K-30, M-31] . We shall 
generalize the matrix representations to factors other than 2 in a later section. 

The matrix representation of the D I F F F T follows from Figs. 4.1 and 4.3. 
Consider the output of the first set of butterflies in Fig. 4.1. The input-output 
relationship of the butterflies is given by 
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" 0 ( 0 ) - " R° .v (0) + W°x(4) ~ 

0 ( 1 ) W°x(l) + W°x(5) 

g(2) W°x(2) + W°x(6) 

0 ( 3 ) W°x(3) + W°x{l) 

A(0) W°x(0) + W*x(4) 

Wlx{\) + W\x(5) 

A(2) W2x(2) + W6x(6) 

L A(3) _ _ W3x(3) + Wnx(l) _ 

W° 
w° 0 w° 

w° 0 

0 
w° 

w° 0 w° 

0 w5 
0 

0 
w2 

w3 0 
w6 

w1 

- x(0) ~ 

x(l) 

x(2) 

4 3 ) 

x(4) 

x(5) 

x ( 6 ) 

J - *(7) -

(4.9) 

where 0 means that all entries not shown are zero. 
Let a = [a(0), a(l), a(2),..., a ( 7 ) ] T be the output of the second set of 

butterflies (Fig. 4.3). Then the output of these butterflies is given by 

- a ( O ) - - ^ ° 3 ( 0 ) + W°g(2)-

a(l) W°g(l) + W°g(3) 

a(2) W°g(0) + W*g{2) 

a(3) W2g{\) + W6g{3) 
a{4) W°h(0) + W°h{2) 

a(5) W°h(l) + W°h(3) 

a(6) W°h(0) + WAh(2) 

- <1) _ _ W2h(l) + W6h{3) _ 

- W o 0 W° 0 

0 W° 0 

w° 0 w4 0 

0 W2 0 w6 

w° 

0 
0 w° 

0 

0 

w° 

0 
H/2 

W° 

0 

0 

0 

w° 
0 

" 0 ( 0 ) -

0 ( 1 ) 

0 ( 2 ) 

0 ( 3 ) 

h(0) 

A(l) 

A(2) 

J _ A(3) _ 

(4.10) 
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The output of the third set of butterflies gives the D F T coefficients in scrambled 
order. Figure 4.3 gives the output of these butterflies as 

X(0) 

X(4) 

X(2) 

X(6) 

X(l) 

X(5) 

X(3) 

L X(l) J 

r w° 
w° 

a(0) + a(l) 

a(0) - a ( l ) 

a(2) + a(3) 

a(2) - a(3) 

a(4) + a(5) 

a(4) - a(5) 

a(6) + a(7) 

L a(6) - a(l) J 

W° 

w° 
w° 

w4 

w° 

- fl(0) -

fl(l) 
a(2) 

a(3) 
a(4) 

a(5) 

a(6) 

J - a{l) _ 

(4.11) 

Combining (4.9)-(4.11) gives the matrix-vector representation for the D I F F F T : 

x(oy 
X(4) 

X{2) 

X(6) 

X(l) 

X(5) 

X(3) 

L X{1) J 

= -WE*WE2 

r w o 

(4.12) 

W° 

W° 

w° 
w° 

w1 

w2 

w 

w° 
IV0 

w° 
w° 

w4 

w5 

w6 

w1
 J 

- *(0) -
x(l) 

x(2) 

x(3) 

x(4) 

x(5) 

x(6) 

_ x ( 7 ) J 
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WE diag < 

where WEi and WEj are diagonal matrices of size 8 x 8 given by 

_w° w4_ 

'w° 0 W° 0 " 
0 W° 0 w° 

W° 0 W4 0 
0 0 PT3 

F F £ 2 = diag< 

, [same], [same], [same] 

[same] 

where " same" means the matrix shown in the square brackets repeats down the 
diagonal. 

Equation (4.12) is the D I F F F T in factored matrix form. All information in 
the factored matrices is in the matrices of exponents E3, E2, and Ex. Let 

WE = WE3WE2WEl = WE^E2^El (4.13) 

where E = E31E21 £ 1 is the shorthand notation described in Chapter 3. 
Writing out the matrices of exponents and affixing data and transform sequence 
numbers to them gives 

k\n 0 1 2 3 4 5 6 7 k \ n 0 1 
0 
4 
0 
4 
0 
4 
0 
4 

0 0 
0 4 

0 0 
0 4 

0 0 
0 4 

0 0 
0 4 

0 
0 
2 

n 
0 
0 
2 
2 

4 5 6 7 

k\n 0 1 2 3 4 5 6 7 
0 
0 
0 

t o 
1 
1 
1 
1 

(4.14) 

where • is the shorthand notation for —jco and W Jcc = e 0 0 = 0. Carrying out 
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the matrix multiplication WE = WEs WE: WEl gives WE = A, where 

A = 

fO + 0 + 0 j /̂0 + 0 + 0 j /̂0 + 0 + 0 j /̂0 + 0 + 0 j /̂0 + 0 + 0 jpjT/O + 0 + 0 ĵ r/O + 0 + 0 ĵr/O + 0 + 0 

/ 0 + 0 + 0 j ^ / 4 + 0 + 0 j j / O + 0 + 0 p j / 4 + 0 + 0 + 0 + 0 ^ 4 + 0 + 0 j ^ / 0 + 0 + 0 p j / 4 + 0 + 0 

/ 0 + 0 + 0 j ^ / 0 + 2 + 0 pjr/0 + 4 + 0 j j / 0 + 6 + 0 ^ j / O + O + O p j / 0 + 2 + 0 ^ 0 + 4 + 0 j r ^ O + 6 + 0 

^ 0 + 0 + 0 j^/4 + 2 + 0 jpj/0 + 4 + 0 p j / 4 + 6 + 0- p j / 0 + 0 + 0 p^r/4 + 2 + 0 p ^ / 0 + 4 + 0 j j / 4 + 6 + 0 

(4.15) 

Each entry in has the form We = ^ / e 3 + e 2 + ei w j i e r e ^ comes from Eu e2 

from E2, and e 3 from £ 3 . This indicates that a cyclic pattern in el9 e2, and e3 like 
that in (4.15) leads to a factorization into three matrices like that in (4.14). 
Adding the exponents in (4.15) mod 8 gives 

k\n 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 " 
4 0 4 0 4 0 4 0 4 
2 0 2 4 6 0 2 4 6 
6 0 6 4 2 0 6 4 2 
1 0 1 2 3 4 5 6 7 
5 0 5 2 7 4 1 6 3 
3 0 3 6 1 4 7 2 5 
7 0 7 6 5 4 3 2 1 _ 

(4.16) 

This F F T matrix of exponents is the same as the D F T matrix of exponents 
except for a reordering of the rows from the natural order of k = 0,1,2,..., 7 to 
k = 0 , 4 , 2 , 6 , 1 , 5 , 3 , 7 . F rom this we conclude that the D I F F F T matrix is just a 
D F T matrix with reordered rows. Note that the k indices for E1,E2, and E3 in 
(4.14) correspond to the D I F . That is, based on a normalized period of P = 1 s, 
E3 has frequencies separated by 4 Hz (they are 0 and 4 Hz) ; E2 has frequencies 
separated by 2 Hz (they are 0 and 2 Hz); and Ex has frequencies separated by 1 
Hz (they are 0 and 1 Hz). 

The matrices in (4.12) are called sparse matrices because of the numerous zero 
entries in any row or column. The sparse matrices cut down the number of 
arithmetic operations required to compute the D F T , as will be discussed in 
Section 4.4. Furthermore, when a row of WE3 is multiplied by a column of WEl, 
the row-times-column rule of matrix multiplication gives only one nonzero 
entry. That is, every entry in WE3 WEl has the form W63 + 62. We can regard taking 
the product WE3 WEl as accomplishing a frequency mixing operation in which 
the frequency indices in the matrices of exponents add. The matrices E3 and E2 

have only frequencies 0 and 4 or 0 and 2 Hz, respectively (based on an analysis 
period of P = 1 s). These frequencies mix so that E3 f E2 has frequencies 0 ,4,2, 
and 6 Hz. Likewise, in taking WE^E2WE\ the row-times-column rule of matrix 
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multiplication gives only one nonzero entry, which has the form we3 + e 2 + e i . The 
frequencies 0 and 1 Hz in Ex sum with those in E3 f E2 to give frequencies of 
0 , 4 , 2 , 6 , 1 , 5 , 3 , and 7 Hz. 

The dimension of the F F T algorithm represented by the flow diagram of Fig. 
4.3 is doubled from 8 inputs to 16 by the following procedure: (1) Repeat the 
flow diagram shown, (2) place it directly under the one shown, and (3) add eight 
butterflies on the left with wing tips at inputs x(0) and x(8), x( l ) and x(9), . . . , 
x(7) and x(15). Figure 4.4 shows the flow diagram for the 16-point FFT . This 
procedure may be repeated for TV = 3 2 , 6 4 , . . . by adding 1 6 , 3 2 , . . . , respectively, 
butterflies in step 3. The factorization of an TV x TV D F T matrix, TV = 2 L , into L 
sparse matrix factors is accomplished by reordering the k and n entries in the 
matrix. A generalization of the procedures in this section is shown in Table 4.3. 

Data sequence Transform sequence 

W15 W14
 W 1 2 - 1 

Fig. 4.4 Flow diagram for a 16-point D I F F F T . 
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Note that the data sequence numbers on each factored matrix are in the natural 
order { 0 , 1 , 2 , . . . , N — 1}. Note that the transform sequence numbers are 
different on each of the factored matrices. When the frequency tags of a given 
row of EL, EL-1?..., E1 are added, the transform sequence number (frequency 
bin number) of the F F T coefficient is obtained. The — 7 0 0 entries are not shown 
in Table 4.3. 

Table 4.3 shows that frequencies 0 and N/2 Hz (based on an analysis period of 
P = 1 s) in EL mix with frequencies 0 and N/4 in EL-X to form frequencies 
0, N/2, N/4, and 37V/4 mEL

J\EL-l. These frequencies mix with frequencies 0 and 
7V/8 in EL_ 3 to form frequencies 0, N/2, N/4, 3N/4, N/S, 57V/8, 37V/8, and IN/8 in 

EL-\EL_1f • • • -\EL-k has frequencies 0, N/2h+1, 2N/2k + 1 , 
(2k+1 - l)N/2k+1. The matrix E = EL | £ L _ x | • • • t E1 has frequencies of 

0 , 1 , 2 , . . . , 7 V - 1 (still based on P = 1 s). 
The D F T matrix for a power-of-2 F F T has sampled sinusoids of N = 2L 

different frequencies. These sinusoids are formed from sampled sinusoids having 
frequencies 2°/P, 2X/P, 22/P,..., 2L~X/P. Thus, L sampled sinusoids in the 
sparse matrices WE]L, WE]L~1,..., WEi mix to form 2L sampled sinusoids in WE. 

Table 4.3 

Factorization of the Matr ix of Exponents for a 2 L -Point D I F F F T 

k\n0 N-l 
0 

N/2\ 
0 

N/2\ 

0 
TV/2 

0 0 
0 yV/2 

0 0 
0 N/2 

0 0 
0 N/2 

This submatrix repeats N/2 
times going down the diagonal. 

k\n 0 
£ 1 

k\n 0 
0 
0 

N/4 
N/4 

0 
0 

AT/4 

N/2 
0 

N/2 

0 

EL-I 
2 
0 

0 

0 2N/4 
N/4 3N/4 

This submatrix repeats N/4 
times going down the diagonal. 

N-l 

N/2-2 
N/2-l 

This matrix repeats N/N= 1 time. 

N-2 
N-l 

N-l 
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4.3 Bit Reversal to Obtain Frequency Ordered Outputs 

For the 8-point F F T we found that the transform sequence was given by 
X = [X(0), X(4), X{2), X{6), X(l), X(5), X(3), X(7) ] T . The entries in X 
correspond to the Fourier series coefficients (for a periodic function, with a 
known period and with a band-limited input) in scrambled order. The reason for 
the scrambled order of the D F T coefficients can be found by observing how the 
subscripts k, /, and m are generated in Table 4.1. These subscripts were generated 
for an 8-point D I F F F T and are shown in binary form in Table 4.4. Also shown 
are the bit-reversed k and its decimal equivalent. 

Table 44 

Generat ion of Binary Subscripts for D I F F F T 

Decimal Binary Bit-reversed 
k k k / m 

0 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 0 0 1 0 1 
2 0 1 0 0 1 0 0 1 0 
3 0 1 1 1 1 0 1 1 1 
4 1 0 0 0 0 1 0 0 0 
5 1 0 1 1 0 1 1 0 1 
6 1 1 0 0 1 1 0 1 0 
7 1 1 1 1 1 1 1 1 1 

The 8-point D I F F F T was obtained by starting with an 8-point D F T . The first 
set of butterflies feeds into two 4-point DFTs , and the first set of butterflies in 
each of these feeds into two 2-point DFTs . The 2-point D F T has outputs X{m) 
for m = 0 , 1 . The subscripts generated at the 4-point D F T output are determined 
by / = 2m, 2m + 1 and are in the order I = 0,2,1, 3. The / subscripts are in bit-
reversed order. That is, if the binary numbers / = 00,10,01,11 are bit reversed to 
give binary numbers 00 ,01 ,10 ,11 , then the ordering is the natural order 0 ,1 ,2 , 3. 

The k subscripts generated at the 8-point D F T output determined by k = 21, 
21 + 1 are in the order 0, 4, 2, 6, 1, 5, 3, 7. These k subscripts are also in bit-
reversed order. Bit reversal of the k subscripts gives the natural ordering, as 
shown by the decimal k in Table 4.4. 

We can extend this bit reversal process to higher order D I F FFTs. For any 
power-of-2 F F T the output coefficients are in bit reversed order. The bit-reversal 
procedure is a special case of digital reversal, which is discussed in Section 4.5. 
Algorithms have been developed for efficient unscrambling of the F F T outputs 
[P-23]. 

As we shall see, there are other ways of generating an F F T . One of these is to 
insert a factored identity matrix between matrix factors of the D I F F F T 
algorithm. Another F F T algorithm is called a decimation in time (DIT) F F T 
(see Section 4.6). 
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4.4 Arithmetic Operations for a Power-of-2 FFT 

The arithmetic operations to mechanize the power-of-2 F F T can be de
termined from Table 4.3. Each row of each matrix requires either one real or one 
complex addition. We shall make the pessimistic assumption that all additions 
are complex. There are N rows and L matrices, so the number of complex 
additions to transform a 2 L -point input is given by 

(number of complex additions) = NL = N\og2N (4.17) 

Note from Table 4.3 that matrix EL has only the entries 0 and N/2. 
Consequently, WEJL has only + 1 entries, and no multiplications are required to 
compute outputs of the last set of butterflies, as, for example, Fig. 4.4 shows. To 
estimate the multiplications required by matrices WEL~\ WEL~2, . . . , WE\ we 
make the pessimistic assumption that multiplications by j are complex 
multiplications. The number of matrices WEL~ \ WEL~2, ..., WEL is 

L - 1 = log2(7V/2) (4.18) 

Half the rows in each factored matrix contain the factor k = 0, which yields 
W° = 1 so that no multiplications are required. The other half are for k ^ 0 and 
require one complex multiplication per row. Only one complex multiplication is 
required, because in each row the entries are for points directly opposite each 
other on the unit circle in the complex plane. For example, the fourth row of WEL 

in the 8-point F F T given by (4.12) has entries 

W2 = e x p ( — ^ 2 J = -j, W* = exp ( — ^ 6 J =j (4.19) 

Therefore, we may subtract the terms in that row and then perform the complex 
multiplication. Since half the rows ofEL-1,EL-2, • • • ,EX are for k # 0, a total of 
N/2 complex multiplications are required for each of the matrices WEL~\ 
WEL~2, ..., WEI. The total number of complex multiplications is given by 

/number of \ N multiplications 
x L — 1 matrices \complex multiplications/ 2 matrix 

N N 
= - l o g 2 y (4.20) 

Actually, the number of multiplications specified by (4.20) is a pessimistic 
answer, because there are rows in the factored F F T matrices that require only a 
subtraction. For example, in Table 4.3 the first row for k = N/4 in E2 requires 
only a subtraction. 

If we used an N x N D F T matrix, each row of the D F T would require about N 
complex additions to transform an TV-point input and the N rows of the D F T 
would require about N2 complex additions. Likewise, about N2 complex 
multiplications would be required for a complex valued input. Table 4.5 

file:///complex


72 4 FAST FOURIER TRANSFORM ALGORITHMS 

Table 4.5 

Approximate Number of Complex Arithmetic Operat ions 
Required for 2 L -Point D F T and F F T Computa t ions 

Operat ion 

2 L Complex additions Complex multiplications 

D F T F F T D F T F F T 

8 64 24 64 8 
16 256 64 256 24 
32 1024 160 1024 64 
64 4096 384 4096 160 

128 16384 896 16384 384 

indicates the savings resulting from using the F F T instead of the D F T . (See also 
Problem 2.) 

4.5 Digit Reversal for Mixed Radix Transforms 

Digit reversal is a technique by which an F F T may be derived for an TV-point 
transform, where N is the product of two or more integers. The technique is 
equally applicable to integer powers and to the products of integers that may be 
relatively prime [S-8, A-22, A-34]. For example, N = 3 0 = 2 - 3 - 5 and 
N = 9 = 3 • 3 are factorizations that lead to FFTs using digit reversal. Bit 
reversal, described in Section 4.3, is a special case of digit reversal leading to 
power-of-2 FFTs . 

The mixed radix transforms can be derived by breaking the D F T series for 
X(k) into the sum of several series, as was done in Section 4.1. (See also Problems 
5.17-5.21.) Instead of using this approach, we shall use digit reversal to specify 
the factored matrices of exponents. When these factored matrices are multiplied 
to form a single D F T matrix, the exponentials combine in a sort of frequency 
mixing operation that combines a small number of exponent values to give the 
values of k = 0 , 1 , 2 , . . . , N- 1. 

Let N be factored into the product of L integers as given by 

N = NLNL-1'-N2N1 (4.21) 

where N1,N2,...,NL are not necessarily distinct integers nor are they nec
essarily prime numbers. (See Chapter 5 for the definition of a prime number.) We 
shall show that an F F T matrix in factored form is given by 

WE = WELWEL~1 • • • WEL = WELTEL~I'T'"I[EL (4.22) 

where the matrices of exponents EL, EL-U... ,E1 are specified by NL, 
NL-X,..., iVV Let the rows of WE be numbered a, = 0 , 1 , 2 , . . . , N — 1. Any 
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integer a , 0 ^ a < TV, has the mixed radix integer representation (MIR) given by 
(see Problem 5.16) 

a, = aLNL-1NL„2 • • • N 2 N 1 + • • • N2N1 + • • • + a 2 N t + ^ 

(4.23) 

where 0 ^ a { < Nt and Nt is a radix of the M I R for / = 1,2 , . . . ,L . In Section 4.3 
we showed that bit reversal of the row number gives the data sequence number k 
for an F F T whose dimension is a power of 2. In like manner, digit reversal of the 
row number gives the transform sequence number k of the row for the mixed 
radix FFT. Digit reversal of (4.23) gives 

k = axN2 NL + a2N3N4 ' • • NL + • • • + XNL + a L (4.24) 

A table of a = 0 , 1 , 2 , . . . , N — 1 and k = & digit reversed determines the 
transform sequence numbers for the matrices of exponents EL,EL-X,..., Ex. 
Matrix EL is for k = 0, N/Nu 2N/NU ... ,(NX - l)N/N1; matrix EL-1 is for 
k = 0, N/N.N2, 2NINXN2,..., (N2 - ^ N / N ^ ; and matrix Ex is for 
k = 0 , 1 , 2 , . . . , iVL — 1. Transform sequences numbers are shown in Table 4.6. 

Table 4.6 

Transform Sequence Numbers in Matrices of Exponents in a Mixed Radix Factor izat ion 

Matr ix El El-! El-iti+1 

0 0 0 0 
transform N/N, N/(N1N2 ••• Nm) 1 
sequence 2N/NX 2N/(N1N2) 2N/(NlN2 • • • NJ 2 
numbers 

(Nt - W/N, (N2 - W/iNM) (Nm - W/iNiN, •••NJ N L - \ 

Each matrix of exponents in (4.22) has dimension N. Matrix EL is displayed in 
Table 4 . 7 . EL is made up of N1 x Nx submatrices. The entries in EL-x, however, 
are diagonals of length Nx, so that in EL | EL _ x there is either no entry or else the 
sum of one entry each from EL and EL-X. Table 4.8 shows the NXN2 x NXN2 

submatrix that repeats N/N1N2 times down the diagonal of EL- x. Matrix EL-2 

has diagonal entries of length NXN2, so in the matrix ^ 1 ^ - 1 1 ^ - 2 there is 
either no entry or else the sum of the entry from EL\EL-X and one entry from 
EL-2. Any entry from EL-f EL_1 is the sum of an entry from EL and one from 
EL-1? so EL t EL-1 f EL- 2 is either no entry or the sum of three entries, one each 
from EL, EL-i, and EL-2. In general, matrix EL f EL-1 f • • • -\EL~m + 1 has either 
no entry or the sum of m entries, one each from EL,EL-±,..., and £ L _ m + 1 . 

The final matrix in (4.22) is Et. The diagonal submatrices are of dimension 
N1N2 • • • 7 V L _ ! = N/NL, so there are NL of these diagonal submatrices. Table 
4.9 shows the matrix of exponents Ex. 

Most of the — 7 0 0 entries (i.e., dotted entries) in Tables 4 . 7 -4 .9 are not shown 
to simplify the display of the kn entries. Da ta sequence numbers on all matrices 
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go in the natural order of 0 , 1 , 2 , . . . , N — 1. Frequency bin numbers are different 
in the matrix factors. When the frequency tags of a given row are added for each 
of the L matrix factors, the frequency bin number of the F F T coefficient is 
obtained. The matrix factorization guarantees that each frequency of a given 
matrix adds with all the frequencies of each other matrix so that E = 
EL t E L - I t ' ' " t ^ i n a s a total of N frequencies, which, based on a normalized 
period of P = 1 s, are given by k = 0 , 1 , 2 , . . . , N — 1 Hz. The f operation in 
computing E = EL | EL-11 • • * t ^ i accomplishes a frequency addition that is 
analogous to single sideband frequency mixing. 

Digit reversal will be illustrated with several examples. For the first example 
let N — 6, L = 2, N2 — 2, and N1 = 3. Then the row number is a, = ^2NX + ^ i 
= 3^2 + ^ i and the frequency bin is k = ^iN2 + a2 = 2 ^ + Values of k 
and ^ are in Table 4.10, and Fig. 4.5 shows the factored matrix of exponents. The 
matrix of exponents E2 has block submatrices S 2 of dimension N± = 3. S2 

repeats N/Nx = 2 down the diagonal. The matrix E± is composed of four 3 x 3 
diagonal submatrices. Let 9 be a 3 x 3 matrix of — joo entries. Then S2,E2, and 
E1 are given by 

"0 0 0" 
0 2 4 

.0 4 2_ 9 S2 

0 • • 0 • • 
• 0 • 0 • 
• • 0 • 0 
0 . . 3 . . 

• 1 • • 4 • 
• • 2 • • 5 

(4.25) 

As a second example, let TV = 6 = 3 • 2 = iV2iVi. The row and column 
numbers are ^ = 2 ^ 2 + ^ and = 3 ^ + ^ 2 . The data are displayed in Table 
4.10 and Fig. 4.5. 

Table 4.10 

Row and Frequency Bin Numbers for 
6-Point F F T 

N 
a 

2 - 3 3 - 2 
•Cb2 -a i a2 k 

0 0 0 0 0 0 0 
1 0 1 2 0 1 3 
2 0 2 4 1 0 1 
3 1 0 1 1 1 4 
4 1 1 3 2 0 2 
5 1 2 5 2 1 5 
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E Ei E1 

n 0 1 2 3 4 5 n 0 1 2 3 4 5 n 0 1 2 3 4 5 
\ 

0 " 0 0 0 0 0 0 " 0 " o 0 0 0 " 0 0 

2 0 2 4 0 2 4 2 0 2 4 0 0 0 

4 0 4 2 0 4 2 = 4 0 4 2 to 0 0 

1 0 1 2 3 4 5 0 0 0 0 1 0 3 

3 0 3 0 3 0 3 2 0 2 4 1 1 4 

5 _ 0 5 4 3 2 1 _ 4 0 4 2 _ 1 2 5 _ 

(a) 

77 0 1 2 3 4 5 k\ n 0 1 2 3 4 5 n 0 1 2 3 4 5 
\ 

0 " 0 0 0 0 0 o " 0 " 0 0 0 " o 0 0 

3 0 3 0 3 0 3 3 0 3 0 0 0 0 

1 0 1 2 3 4 5 = 0 0 0 t l 0 2 4 

4 0 4 2 0 4 2 3 0 3 1 1 3 5 

2 0 2 4 0 2 4 0 0 0 2 0 4 2 

5 _ 0 5 4 3 2 1 _ 3 0 3 _ 2 2 0 4 

(b) 

Fig. 4.5 6-point F F T for (a) N = 2 • 3 and (b) TV = 3 • 2. 

As a third example, let N = 12 = N3N2N1 = 2 - 3 - 2 . The row number is 
^ = 6 ^ 3 + 2 ^ 2 + ^ ! and the frequency bin is A: = axN2N3 + ^ 2 ^ 3 + ^ 3 = 

+ 2 . ^ 2 + ,^ 3 , as shown in Table 4.11. The factored matrices of exponents in 
Fig. 4.6a define the matrix of exponents given by 

k\ n 0 1 2 3 4 5 6 7 8 9 10 11 
0 " 0 0 0 0 0 0 0 0 0 0 0 0 " 
6 0 6 0 6 0 6 0 6 0 6 0 6 
2 0 2 4 6 8 10 0 2 4 6 8 10 
8 0 8 4 0 8 4 0 8 4 0 8 4 
4 0 4 8 0 4 8 0 4 8 0 4 8 

10 0 10 8 6 4 2 0 10 8 6 4 2 
1 0 1 2 3 4 5 6 7 8 9 10 11 
7 0 7 2 9 4 11 6 1 8 3 10 5 
3 0 3 6 9 0 3 6 9 0 3 6 9 
9 0 9 6 3 0 9 6 3 0 9 6 3 
5 0 5 10 3 8 1 6 11 4 9 2 7 

11 _ 0 11 10 9 8 7 6 5 4 3 2 1 _ 
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77 0 1 2 3 4 5 6 7 8 9 • 10 11 
0 ~ 0 0 
6 0 6 
0 
6 

0 
0 

0 
6 

— 700 

0 0 0 
6 0 6 
0 0 0 
6 0 6 
0 

•6 - j 00 
0 0 
0 6 

0 0 0 
6 0 6 _ 

0 
2 
2 
4 

E2 = 4 
0 
0 
2 
2 
4 
4 

n 0 1 2 3 4 
' 0 0 0 

0 

0 

-700 

6 7 8 9 10 11 

- 7 0 0 

0 • 0 • 0 • 

• o - o • 0 

0 • 4 • 8 • 
• 2 - 6 - 1 0 

0 • 8 • 4 • 

• 4 - 0 • 8 , 

\ « 0 1 2 3 4 5 6 7 8 9 10 11 
"0 0 

10 

1 1 J 

Fig. 4.6a Factored matrix of exponents for 12-point F F T for N = 2 • 3 • 2. 



n 0 1 2 3 4 5 6 7 8 9 10 11 

0 " 0 0 
0 0 0 
3 
3 

0 
3 

6 
9 

- yco 

0 0 0 
0 0 0 
3 0 6 
3 3 9 
0 
0 - jco 

0 
0 

0 
0 

3 0 6 

3 3 9 

0 
0 
0 
0 
1 

1 
1 
2 
2 
2 
2 

\ w 0 1 2 3 4 5 6 7 9 10 11 

10 

10 
11 

10 J 

Fig. 4.6b Factored matr ix of exponents for 12-point F F T for N = 3 • 2 • 2. E3 is the same as in 
Fig. 4.6a and is not shown here. 

Table 4.11 

D a t a and Transform Sequence Numbers 
for 12-Point F F T 

N 

2 - 3 - 2 3 - 2 - 2 

3̂ &2 k 3̂ 2̂ 1̂ k 

0 0 0 0 0 0 0 0 0 
1 0 0 1 6 0 0 1 6 
2 0 1 0 2 0 1 0 3 
3 0 1 1 8 0 1 1 9 
4 0 2 0 4 1 0 0 1 
5 0 2 1 10 1 0 1 7 
6 1 0 0 1 1 1 0 4 
7 1 0 1 7 1 1 1 10 
8 1 1 0 3 2 0 0 2 
9 1 1 1 9 2 0 1 8 

10 1 2 0 5 2 1 0 5 
11 1 2 1 11 2 1 1 11 
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As a fourth example let TV = 12 = 3 • 2 • 2. Then a = 4a3 + 2 ^ 2 + ^ and 
& = + 3 ^ 2 + « 3 . The factored matrices of exponents (Fig. 4.6b) define the 
matrix E, which is given by 

k\ n 0 1 2 3 4 5 6 7 8 9 1 0 11 

0 " 0 0 0 0 0 0 0 0 0 0 0 0 " 

6 0 6 0 6 0 6 0 6 0 6 0 6 

3 0 3 6 9 0 3 6 9 0 3 6 9 

9 0 9 6 3 0 9 6 3 0 9 6 3 

1 0 1 2 3 4 5 6 7 8 9 1 0 11 

7 0 7 . 2 9 4 11 6 1 8 3 1 0 5 

4 0 4 8 0 4 8 0 4 8 0 4 8 

1 0 0 1 0 8 6 4 2 0 1 0 8 6 4 2 

2 0 2 4 6 8 1 0 0 2 4 6 8 1 0 

8 0 8 4 0 8 4 0 8 4 0 8 4 

5 0 5 1 0 3 8 1 6 11 4 9 2 7 

11 - 0 11 1 0 9 8 7 6 5 4 3 2 1 _ 

As a final example, let TV = 2 3 . The row number is a = 4 ^ 3 + 2 ^ 2 + ^ and 
the frequency bin number is k = + 2a2 + ^ 3 , where ^ 3 = 0 , 1 . Digit 
reversal in this case is bit reversal and the factored matrix of exponents is in 
(4.14). Since the radix in this case is 2, a power-of-2 F F T is usually called a radix-
2 FFT. Radix-3, r a d i x - 4 , . . . , FFTs can be found in a manner analogous to the 
radix-2 FFT. 

4.6 More FFTs by Means of Matrix Transpose 

Each of the factored F F T matrices developed so far may be turned into 
another algorithm by using matrix transpose. To see what matrix transpose 
does, consider the matrix product A = ALAL-1 • • • Au where AL, A L - 1 3 . . . , A1 

are matrices of compatible dimension so that the product is defined. The 
transpose of a product of matrices is the product of the transposed matrices in 
reverse order. Therefore, the transpose of A is given by 

AT = A\A\ A\ (4.26) 

The factored F F T matrices we have developed so far have had N x N matrix 
factors defining an TV-point F F T . Let the F F T have L matrix factors and be 
given by WE = WELWEL~1 • • • WEL. The transpose of matrix WE is given by 

(WE)T = (WE{k-n))T = (WEIN>K)) = WET (4.27) 

where (WE(n,k)) is a matrix whose entry in row n and column k is 
exp[ — (j2n/N)E(n, k)]. Equation (4.27) shows that transposing the matrix WE 

is accomplished by transposing its matrix of exponents E. The same is true of 
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WE\i= 1 , 2 , . . . , L . Therefore, 

w£T = wExlwEiT • • • wEl1 (4.28) 

The transform obtained via transpose is defined by (4.28) and has the matrices in 
reverse order with respect to the original FFT . The matrices are also transposed. 

As an example consider the 8-point D I F F F T matrix given by (4.12) as 
WE = WE*WE2WE\ The transpose is W£l = WE^WE^WE3\ or 

WE = 

w° 0 0 0 w° 0 0 0 " 
0 w° 0 0 0 w1 0 0 
0 0 w° 0 0 0 w2 0 
0 0 0 w° 0 0 0 w3 

w° 0 0 0 w4 0 0 0 
0 w° 0 0 0 w5 0 0 
0 0 w° 0 0 0 w6 0 
0 0 0 w° 0 0 0 w 

H":'' 
(4.29) 

where 

WElT = diag 

WE'T = diag 

0 w° o -
w° 0 w2 

0 w4 0 
0 w6_ 

w° w°~ 
w° w4 

[same] 

, [same], [same], [same] 

The row and column tags must be transposed with the matrices of exponents. 
This yields Eq. (4.30), shown at the top of p. 83. The matrix ET has the transform 
sequence numbers in natural order and the data sequence numbers in scrambled 
order. The transform vector is X = [X(0), X ( l ) , X ( 2 ) , X ( 7 ) ] T and the input 
vector is x = [x(0), x(4), x(2), x(6), x( l ) , x(5), x(3), x (7 ) ] T . Figure 4.7 shows the 
flow diagram for TV = 16. Note that the 16-point output is constructed from the 
outputs of two 8-point DFTs . Each 8-point D F T is constructed from the outputs 
of two 4-point D F T s and each 4-point D F T from two 2-point DFTs . Because 
the D F T inputs are separated by larger increments of time when going from the 
8- to the 4- to the 2-point D F T , the transform is called decimation in time (DIT) 
FFT . (See also Problems 3 and 4.) Note that the n indices for Eu E2, and E3 in 
(4.30) correspond to the D I T ; that is, the data sequence numbers tagging these 
matrices are 1, 2, and 4, respectively. 

The derivation of more F F T algorithms has been illustrated by converting 
D I F algorithms to D I T algorithms. Given any factored matrix representation 
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k\n 0 4 2 6 1 5 3 7 *\ »o 0 0 0 1 1 1 1 
" 0 0 0 0 0 0 0 o - 0 " 0 0 — 

1 0 4 2 6 1 5 3 7 1 0 1 
2 0 0 4 4 2 2 6 6 2 0 2 
3 0 4 6 2 3 7 1 5 = 3 0 3 
4 0 0 0 0 4 4 4 4 4 0 4 
5 0 4 2 6. 5 1 7 3 5 0 5 
6 0 0 4 4 6 6 2 2 - , 6 0 6 
7 - 0 4 6 2 7 3 5 1 - 7 0 7 -

^2 

k\ n 0 0 2 2 0 0 2 2 
0 " 0 • 0 
1 
2 0 

0 • 
• 4 

2 
- 7 0 0 

13 0 • 6 
4 0 • 0 
5 
6 -jco 0 

0 • 
• 4 

2 

7 0 • 6 -

El 

0 4 0 4 0 4 0 4 
0 " 0 0 

1 0 4 
2 0 0 

t 3 0 4 
4 
5 
6 - 7 0 0 

7 

-JCO 

0 0 
0 4 

0 0 
0 4-1 

(4.30) 
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Transform sequence 

X( ) 

o 0 

o 10 

o 12 

o 13 

o 14 

o 15 

Fig. 4.7 Flow diagram for a 16-point D I T F F T . 

for an FFT , a new F F T algorithm can be obtained by matrix transpose. The 
procedure is general. 

4.7 More FFTs by Means of Matrix Inversion - the IFFT 

I D F T S Y M M E T R Y The D F T and I D F T pairs are X = (l/N)WEx and x = 
W~EX, respectively, where E is the symmetric matrix of exponents with time 
sample and frequency bin numbers in natural order. WE/^JN is a unitary matrix 
whose inverse (W E ) ~ 1/-S/N is given by its complex conjugate transpose. Since E 
is symmetric, the I D F T is given by 

(W*)-1 = [(WE)*]T = [(W*)E]T = W~E (4.31) 
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F F T matrices are not, in general, symmetric. Hence new procedures which 
follow are required to find the inverse fast Fourier transform (IFFT). 

DIRECT I F F T COMPUTATION An analysis like that in Section 3 . 8 shows that 
1 /^/N times the F F T matrix is a unitary matrix. Let WE = WELWELI • • • WEi 

be an F F T matrix where, in general, E is not symmetric. As a result of the 
nonsymmetry of E and the unitary property, the I F F T matrix is given by 

(WE)-X = W~ET = W-E^W~E^ • • • W~E? • • • W'E^ ( 4 . 3 2 ) 

where E](k, n) = Et{n, k) and W~Ei^k) = exp[U2n/N)Ei(n, k)]. The I F F T flow 
diagram follows from ( 4 . 3 2 ) . 

CONVERSION OF F F T TO I F F T BY CHANGING MULTIPLIER COEFFICIENT SIGNS 
An F F T flow diagram converts directly to an I F F T flow diagram by changing 
the signs of the multiplier coefficients. To show this, let WE be a matrix having an 
F F T factorization defined by E = EL | EL _ ± | • • • f E1. The sign of each entry in 
E and its factored representation can be changed so that 

-E = {-EL)U-EL.^ •••!(-Ex) ( 4 . 3 3 ) 

For example, the D I F F F T in Fig. 4 .3 gives the I F F T of Fig. 4 . 8 . Note that 
the inputs of both Figs. 4 .3 and 4.5 are in natural order. The outputs are bit 
reversed. 
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The following general procedure derives an I F F T in which the exponents of W 
are negative: (1) Use the F F T factorization but with the sign changed on each 
entry in the factored matrix of exponents; (2) use the same flow diagram as for 
the F F T but with the exponents of W negative in the I F F T flow diagram, in 
contrast to positive in the F F T flow diagram. The components of X at the I F F T 
input are in the same order as those of x at the F F T input. In the same manner 
the output I F F T ordering is determined by the F F T output ordering. 

C O N V E R S I O N O F F F T T O I F F T B Y C H A N G I N G T A G S An F F T converts to an 
I F F T directly by changing the data or transform sequence numbers that tag a 
factored F F T matrix of exponents. Conversely, a given I F F T converts directly 
to an F F T by changing the input or output numbers tagging the columns or 
rows, respectively. We demonstrate conversion of an F F T to an IFFT . (See also 
Problems 13 and 14.) Let transform and data sequence numbers be affixed to 
every row and column of a matrix of exponents E that is derived from an FFT . 
The entry E(k, n) is kn mod TV if k and n are ordered according to the input and 
output order of the F F T . Note that 

nkmodN= - (TV - k)n mod TV = —(TV — n)k mod N (4.34) 

Let the column and row tags of the F F T be converted to I F F T tags as follows: 

k^-N-n and n^k (4.35a) 

or 

n^-N-k and k+-n (4.35b) 

Then the matrix E is an I F F T matrix and the factored matrices given by 
E = EL f EL-! f • • • f E{ | • • • t ^ i hold for both the F F T and IFFT. Tags on 
rows and columns of Ehi = 1 ,2 , . . . , L, must be converted using whichever of 
(4.35a) or (4.35b) was applied to E. 

As an example, let TV = 8. Then (4.35a) converts the D I T F F T to an I F F T as 
follows: 

n 0 1 2 3 4 5 6 7 n\k0 7 6 5 4 3 2 1 
" 0 0 0 0 0 0 0 0 " 0 " 0 0 0 0 0 0 0 0 " 

4 0 4 0 4 0 4 0 4 4 0 4 0 4 0 4 0 4 
2 0 2 4 6 0 2 4 6 2 0 2 4 6 0 2 4 6 
6 0 6 4 2 0 6 4 2 ^ 6 0 6 4 2 0 6 4 2 (4.36) 
1 0 1 2 3 4 5 6 7 1 0 1 2 3 4 5 6 7 
5 0 5 2 7 4 1 6 3 5 0 5 2 7 4 1 6 3 
3 0 3 6 1 4 7 2 5 3 0 3 6 1 4 7 2 5 
7 _ 0 7 6 5 4 3 2 1 _ 7 _ 0 7 6 5 4 3 2 1 _ 

where we note that the right matrix in (4.36) obeys the following congruence 
relationship: 
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»\ 
0 
4 
2 
6 
1 
5 
3 
7 

£ 0 7 6 5 4 3 2 1 
0 0 0 0 0 0 0 0 

0 4 0 4 0 4 4 
2 
6 

0 1 

0 
0 
4 
4 

1 4 7 
5 4 3 

k 0 
0 
0 
0 
0 
0 
0 
0 
0 

7 
0 

-4 
-6 
-2 
-7 
-3 
-5 
-1 

6 
0 
0 

-4 
-4 
-6 
-6 
-2 
-2 

5 
0 

-4 
-2 
-6 
-5 
-1 
-7 
-3 

4 
0 
0 
0 
0 

-4 
-4 
-4 
-4 

3 
0 

- 4 
- 6 
- 2 
- 3 
- 7 
- 1 
- 5 

2 
0 
0 

-4 
-4 
-2 
-2 
-6 
-6 

(modulo 8) 

The F F T on the left of (4.36) has the factored matrix of exponents 
E = E31E21 Eu as given by (4.14). The same factorization describes an I F F T 
with input vector X = [X(0), X(l), X(6),..., Z(2), Z ( 1 ) ] T and output vector 
x = [x(0), x(4), x(2), x(6), x ( l ) , x(5), x(3), x ( 7 ) ] T . The flow diagram is shown in 
Fig. 4.9. 

Transform sequence 

X( ) 

Data sequence 

x( ) 

Fig. 4.9 Flow diagram for an 8-point I F F T with transform sequence in reverse order. 
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4.8 Still More FFTs by Means of FACTORED Identity Matrix 

Multiplication of any square matrix or vector by the identity matrix leaves the 
matrix or vector unchanged. Therefore, we may insert the identity matrix 
between two factors of a matrix product and the result is unchanged [M-31, 
S-9]. For example, WELWEL = WELIWEL. Suppose that we can find a per
mutation matrix R such that R is not an identity matrix and RTR = I . Then the 
two preceding equations give 

WE2WEL = WE2RTRWEL (4.37) 

Let R have only one entry of unity per row and per column so that RWEY is a 
reordering of the rows of WEI and WELRT is a reordering of the columns of WE2. 
Let 

WE'2 = W E 2 R 1 and WE>1 = RWEL (4.38) 

Then 
]yE2 yyEi _ jyE'2 yyE\ (4.39) 

If WEl JVEi is a component of a fast transform factorization, WE'2 WE>1 will also be 
a fast transform factorization. 

Equation (4.37) can be put in shorthand notation by letting R = WE. Then 

WE2RTRWEL = wE2fETf~EfEl (4.40) 

Generalizing (4.40) gives 

WELRIRLWEL~1 • • • RjR2 WEL = ^ t ^ T t ^ t ^ - I t - - - t ^ 2
T t ^ t £ , t £ 1 ^ 4 4 ^ 

As an example, consider the matrix for the 8-point F F T in (4.30). The input 
vector x = [x(0), x(4), x(2), x(6), x( l ) , x(5), x(3), x ( 7 ) ] T can be transformed into 
a vector x whose components are in natural order by the permutation matrix 
R = WE where x, R , and E are given by 

R ^ 

x = [x(0), x( l ) , x(2), x(3), x(4), x(5), x(6), x ( 7 ) ] T 

0 • " 1 0 0 0 0 0 0 0 -

0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 

E = 

(4.42) 

0 

• • 0 

(4.43) 

The matrix R is real, symmetric, and orthogonal, so RTR = RR = I, which gives 

X = ±WE*WE2WExRRx = i ^ t ^ t ^ x (4.44) 
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With (4.30) identifying the matrices of exponents, (4.44) defines an F F T with a 
naturally ordered input and a naturally ordered output. If the factored identity is 
inserted between all matrix factors in (4.30), we get 

X _ ±ty(E3^ E)t(E-f E2t E)f (Et Er-f E)^ ^ 45) 

The exponents grouped as indicated by parentheses in (4.45) give the F F T 
matrices of exponents shown in Fig. 4.10. We conclude that we can insert 
factored identity matrices RTR = I into an F F T factorization to obtain a new 
F F T if R has but one nonzero entry of unity per row and per column. 

4.9 Summary 

In this chapter we first developed the F F T for sequences of length TV = 2 L 

where L is an integer by evaluating an TV-point D F T in terms of two (TV/2)-point 
DFTs . Each of the two (TV/2)-point D F T s were then separated into two (TV/4)-
point DFTs . This process was repeated until 2-point D F T s were obtained. The 
result was an FFT . 

We showed that this decomposition for developing an F F T is equivalent to 
factoring a matrix. The matrix is a D F T matrix, but with its rows rearranged in 
bit-reversed order. More generally, the rows are digit reversed for naturally 
ordered input and scrambled order output algorithms. We also found scrambled 
order input and naturally ordered output F F T algorithms. 

We developed the IFFT , from which we deduced more FFTs . Other FFTs 
resulted from inserting factored identity matrices between matrix factors of an 
FFT . The F F T is a subset of the fast generalized transform of Chapter 9, and we 
shall find that fast generalized transform matrices follow directly from the F F T 
format. All these algorithms are presented to give flexibility to an analyst in 
developing different computer programs and to an engineer in designing 
hardware for implementing the F F T [D-12]. 

P R O B L E M S 

1 In-Place Computation In-place computa t ion results from combining a pair of values to form 
another pair of values. Fo r example, each butterfly in Fig. 4.3 has two inputs and two outputs . Show 
that a 2 L -poin t F F T can be mechanized as an in-place computa t ion with 2 L + 1 + 4 real words of 
memory. 

2 Minimum Multiplications for Power-of-2 FFT [A-34, W-7] Show that the complex multipli
cation (a + jb)(c + jd) = r + js, where a, b, c, d, r, and s are real numbers , can be accomplished with 
three real multiplications and five real additions using y = a{c + d), z = d(a + b), w = c( — a + b), 
r = y — z, and s = y + w. Show that the number of multiplications by each of W° and j in a power-
of-2 D I F F F T are as follows: 1 in the first set of butterflies, 2 in the second set, 4 in the third s e t , . . . , 
and 2L ~~1 in set L — 1. If the input to the F F T consists of N complex numbers , show that according to 
an accurate count of the total number of multiplications to compute the F F T the number of complex 
multiplications is ±N l og 2 ^7V-27V+2, so tha t the total may be minimized at 3 (yNlog 2 N-^N+2) 
real multiplications. Show that two of the additions can be precomputed. If the input data is 
complex, show that the total number of real additions using this scheme is 2N\og2N + the number of 
real multiplications. 
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3 Decimation in Time FFT [C-31, C-29] The series expression for the D F T coefficient X(k) may 
be separated into two series such that the first contains even sample numbers and the other odd 
sample numbers. Let N = 2 L , where L > 0 is an integer. Then 

J V - l 
X(k) = £ x(n)Wkn 

n = 0 

1 I Nil-1 pj/fc | N / 2 - 1 

V x(2l)W2lk + V x(2l+\)Wlkl 

2 N/2 £ 0 2 N/2 £ 0 

(yV/2)-point (JV/2)-point 
D F T for even sample numbers D F T for odd sample numbers 

Let 

N / 2 - 1 N / 2 - 1 

g(k) = £ x(2l)W2kl and h{k) = £ x(2l + l)W2kl 

1=0 1 = 0 

Show that g(k) and h(k) obey the periodic property of the D F T with period N/2, that is, 

g(k + N/2) = g(k) and h(k + N/2) = h{k) (P4.3-1) 

Use (P4.3-1) to show that for N = 8 

X(0) = ^ ( 0 ) + $W°h(0), X(l) = ^ ( 1 ) - \W'h{\\ ..., 

X(6) = \g{2) + ±W6h(2), X(l) = ^ ( 3 ) + i ^ 7 / z ( 3 ) (P4.3-2) 

Show that (P4.3-1) and (P4.3-2) are represented by the flow diagram in Fig. 4.11. Then show that 
repetition of these steps for N = 4 and then N = 2 gives the flow diagram in Fig. 4.12. Finally, show 
that (4.30) is the matrix representation. This F F T is called a decimation in time (DIT) F F T . 

Fig. 4.11 Reduction of an 8-point D F T to two 4-point D F T s . 
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Data sequence Transform sequence 

x( ) X( ) 

W 6 W 

Fig. 4.12 8-point D I T F F T . 

4 Time Separation for DIT Inputs In Problem 3 note that the D F T input is reduced from Appoints 
to (JV/2)-points, then to (A^/4)-points, and so on until a 2-point input is obtained. Show that the data 
sequence numbers for the TV-point input are separated by \/N s for a normalized analysis period of 
P = 1 s. Show that the (N/2)- and (#/4)-point D F T s have inputs separated by 2/N and 4/N s, 
respectively, if we continue to let P = 1 s for the Appoint input. Show that when the D F T is divided 
into two D F T s of half the original size, the time separation of the input to either of the smaller D F T s 
is increased by 2. Show that this corresponds to dropping (decimating) alternate inputs to the 
original D F T . Explain why a D F T of this type is called a D I T F F T . 

5 Pruning a DIT FFT Let an N-point D I T F F T be used to transform a function sequence 
" p a d d e d " with zeros, i.e., x(n) = 0 for n ^ M, where M < N. Show that the computat ional 
efficiency of the D I T F F T can be increased by altering the algori thm to eliminate operations on zero-
valued inputs. Elimination of these butterflies is called pruning [M-32, S-33]. 

6 DIT FFTs for N = 6 Take ET where E is given in Fig. 4.5a. Show that this determines a D I T 
F F T and that the decimation factor is 2 in the smaller D F T . Determine ET for Fig. 4.5b and show 
that this time the decimation factor is 3 for the smaller D F T . 

7 DIT FFT with Real Multipliers [C-57, R-76, T-9] Let {X(0), X(l),..., X(N - 1)} be the D F T 
of the sequence {x(0), x(l),..., x(N - 1)}. Show that Problem 3 can be written 

X(k) = ±[G(k) + WkH(k)], G(k) = DFTN/2 [x(2n)], H(k) = D F T N / 2 [x(2n + 1)] 

where n = 0 , 1 , 2 , . . . , N/2 - 1, W = e~j2ltlN, and D F T ^ is an (tf/2)-point D F T . Define q(n) = 
(— \)nq. Define new variables d(n) and y(n): 

d(n) = x(2n + 1), d(n) + q(n) = y(n) + y(n + 1) 

and let 

Q(k) = DVT[q(n)], Y(k) = DFT[y(n)] 
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Show that 

WkH(k) = W\\ + W-2k)Y(k) - WkQ(k) 

= 2 cos(2nk/N) Y(k) - WkQ(k) 

= 0 
at k = N/4 

Show that 

N / 2 - 1 

X (-md(n) + q(n)] = 0 and 
n = 0 

a*) = <?-

= o 

e-Mk-NH) s i n f ^ _ j v / 4 ) ] faiV/2, 

-Mk-Ni4)w s i n f ^ _ tv/4)2/7V] _ lo 

thus must be 
defined at £ = TY/4 

2 J V / 2 - 1 

4 = ^ S ( - 1 ) " * ( 2 I I + 1) 

k = N/4 

otherwise 

Let M0 = qN/2 and show that 

X(N/4) = Q(N/4) -jH(N/4) = Q(N/4) +jM0 

X(2>N/4) = Q(N/4) + jH{N/4) = Q(N/4) -JM0 

Input sequence 

x( ) 

-1 M 0 1 / 4 - 1 

4 - p o i n t 

DFT 

4 - point 
DFT 

Transform sequence 

X( ) 

\\ XX^ 1/2 _ XXX/^ 1 / 2 q 2KXX/*C 1/2 

&u° X/\ Y V 1 / 2 ^ 

1/2 
MoV - j 

u 3 -1 

(a) 

1 M 0 1/4-1 -1 -1 /4 -1 - j u 3 -1 

(b) 

Fig. 4 . 1 3 (a) Reduction of an 8-point D F T to two 4-point D F T s ; (b) flow diagram for 8-point F F T . 
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Show there are sufficient degrees of freedom to define ;;(0) = 0. Show for TV = 8 that 

y(0) = 0, y(l) = x ( l ) + q, J>(2) = *(3) - y(l) - q 

y(3) = x(5) - y(2) + q, M0 = 4q 

Define uk = 2 cos(2nk/N) and show that the flow diagram of Fig. 4.13a holds. Show that this flow 
diagram may be expanded as shown in Fig. 4.13b. Observe that only real multiplications are required 
for the implementat ion of this D I T algorithm. If trivial multiplications by + 1 or ±j are not 
counted, show that the rat io of the number of real multiplications for this algorithm to that for the 
algorithm in Problem 3 is about one-half. 

8 Let N = 12 = 2 - 2 - 3 . Use digit reversal to find the F F T matrix of exponents. Draw the flow 
diagram. 

9 Find a mixed radix F F T for N — 15. Show matrices of exponents and flow diagram. 

10 Radix-4 FFTs are defined by an F F T whose number of input (output) points is a power of 4. 
They offer an economy in multiplications with respect to radix-2 (power-of-2) transforms [B-21]. 
Let L be even, so that N = 2L = 4 L / 2 . First let L = 4 and determine the radix-4 F F T . Let the real and 
imaginary par ts of Wkn be r and i, respectively, so that Wkn = r + ji. Show that in general the 
dimension N flow diagram for the radix-4 F F T has summing junct ion inputs as shown in Fig. 4.14. 
Determine the output c from the summing junct ion and show that it can be computed with six real 
additions and four real multiplications. Verify the L = 4 entry in Table 4.12 for the 16-point F F T 

Table 4.12 

Real Arithmetic Operat ions 

Radix 4 L» 1 

Add Multiply A d d Multiply 

2 176 48 3LN 2LN 
4 144 36 fLTV 

with the radix-2 factorization. Using Fig. 4.14 verify the radix-4 entry for L = 4. Finally, verify 
entries for L » 1 and show that in this case 

number of real multiplications for radix-4 F F T 3 

number of real multiplications for radix-2 F F T 4 

Fig. 4.14 Radix-4 F F T arithmetic operations. 
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11 Derive a 4-point I F F T matrix of negative exponents and the flow diagram for (a) a naturally 
ordered output , and (b) a scrambled order, output . Convert the I F F T matrices to positive exponents 
and draw the flow diagrams. Determine the data and transform sequence ordering. 

12 Derive a 6-point I F F T flow diagram from Fig. 4.5a and a 12-point I F F T from Fig. 4.6a. 

13 IFFT Calculation by Means of an FFT Show that the I F F T formula in (3.24) is the same as 

x(n) = X X*(k)JVk' (P4.13-1) 

Show that (P4.13-1) is equivalent to using an F F T to calculate an I D F T provided that (1) the 
complex conjugate of the transform sequence is applied to the F F T input, (2) the F F T outputs are 
multiplied by N, and (3) the complex conjugate of the F F T output is taken if the outputs are complex. 

14 Create an I F F T by giving all nonzero exponents in (4.14) a minus sign. Use modulo 8 arithmetic 
to convert exponents to positive values and show that the new matrices define an F F T with the rows 
in the transform sequence ordered k = 0,4, 6, 2, 7, 3, 5, 1 and the da ta sequence numbers naturally 
ordered. Show that the flow diagrams for the I F F T and F F T are given by Figs. 4.8 and 4.15, 
respectively. 

Transform sequence 

X( ) 

o 0 

•o 6 

Fig. 4.15 8-point F F T . 

15 The gray code (see Appendix) of a binary number is found by writing down the most significant 
bit (msb), the modulo 2 sum of the msb and the next to msb, etc., ending with the sum of the two least 
significant bits. For example, a binary sequence and its gray code sequence are (111, 110, 101) and 
(100, 101, 111), respectively. Show tha t the frequencies 0, 4, 6, 2, 3, 7, 5, 1 can be obta ined by 
bit reversing the gray code of the row n u m b e r for rows n u m b e r e d 0, 1, 2, 3, . . . , 7, 
respectively. 

16 Create an I F F T by giving all nonzero exponents in (4.29) a minus sign. Use modulo 8 arithmetic 
to convert exponents to positive values and show that the new transform is an F F T that has da ta 
sequence numbers in the order n = 0, 4, 6, 2, 7, 3, 5, 1. Show that the I F F T converts into the F F T in 
Fig. 4.16. 



96 4 FAST F O U R I E R T R A N S F O R M A L G O R I T H M S 

Data sequence 

x( ) 

6 o. 

Transform sequence 

X( ) 
1/8 

o 0 

o 2 

o 3 

o 5 

o 6 

o 7 

Fig. 4.16 8-point F F T that interchanges input and output ordering in Fig. 4.15. 

17 Let (4.43) define R and let the matrix of exponents given in Fig. 4.1 Oa define an F F T . Show that 
multiplying (4.45) on the left by R gives the factorization 

0 0 
0 4 

0 2 
0 6 

- 7 0 0 

- 7 0 0 

0 1 
0 5 

0 3 
0 7 

0 • 0 
0 • 0 

0 • 4 - 7 0 0 

0 • 4 
0 • 2 

0 • 2 
- 7 0 0 0 • 6 

0 • 6 

0 
0 

. . . 0 • • • 4 

18 Let the permutat ion matrix i?i be defined by 

1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
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Show that RjRi = land determine Esuch that Rv = WE. Let E3, E2, and Ex be defined by the D I T 
F F T in Fig. 4.10, let R = WE be defined, by (4.43), and let 

• WE = WE>RJR1WE2RTRWE>R= ^ t m c ^ t ^ t m ^ t ^ t £ ) (P4.18-1) 

Show that the right side of (P4.18-1) is as shown in Fig. 4.17 and that bo th transform and data 
sequence numbers of E are in natural order. 

E^E ET-\E2tE E^E^E 

0 0 
0 1 

0 2 
0 3 

0 4 
0 5 

0 6 
0 7 

Fig. 4.17 Reordering of matrix of exponents using a factored identity matrix. 

19 Transforms by Means of Transpose along the Way The basic idea of t ranspose along the way is 
illustrated by referring to Fig. 4 .1. An 8-point input feeds two 4-point D F T s . Either or bo th of these 
4-point D F T s may be reformatted to accomplish internal computat ions . Likewise, Fig. 4.2a shows 
two 4-point D F T s that may be reformatted internally if the proper order is maintained on output 
coefficients fed into the last set of butterflies. The reformatting may be accomplished by a 
permutat ion matrix which matches the input (output) of transposed submatrices to the output 
(input) of the adjacent matrix. Determine the permutat ion matrix R that must be used so that 

WE = (WE2WE2)TRWEi 

where WEl corresponds to the first set of butterflies in Fig. 4.1 ( D I F F F T ) , and WEi and WEl 

correspond to the first two sets of butterflies shown in Fig. 4.12 (DIT F F T ) . Show that , if the 
permutat ion matrix is multiplied by WE\ then 

0 

- 7 0 0 

- 7 0 0 

0 0 
0 4 

- 7 0 0 
0 0 
0 4 

- 7 0 0 

— 700 

0 0 
0 4 

— 700 
0 0 
0 4 

2 6 
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20 Transpose the two high frequency matrices in (4.29) to obtain a new F F T given by 
WE = WEi f ̂  f £ 2 where 

• • • 0 
0 • • 2 • • 
• 0 • • 1 • 
• • 0 
• 4 

• • 3 

0 • • 6 • • 
• 0 • • 5 • 

' • • 0 • • 7 

0 • 0 • 
• 0 - 0 
0 • 4 • 

— y'oo 

• 2 - 6 
0 • 0 • 

-7"oo 
0 

0 • 0 
• 4 • 
2 • 6 

Show tha t t ransform and da ta sequence numbers are k = 0 ,2 , 1, 3 ,4, 6, 5, 7 and n = 0,2,4, 6 , 1 , 3, 5, 
7, respectively. Draw the flow diagram for the transform. Interpret this as a hybrid ( D I T - D I F ) 
algorithm. 
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F F T A L G O R I T H M S T H A T R E D U C E M U L T I P L I C A T I O N S 

5.0 Introduction 

The F F T algorithms of Chapter 4 are derived using matrix factorization and 
matrix analysis, or equivalent series manipulations. F F T algorithms that reduce 
multiplications are derived using number theory, circular convolution, 
Kronecker products, and polynomial transforms. Whereas the algorithms 
described in Chapter 4 appeared mainly in the latter 1960s, the reduced 
multiplications F F T ( R M F F T ) algorithms were not popularized until 1977 
[A-26, K- l , S-5, S-6], although Good published some basic concepts in 1958 
[G-12, G-13]. Winograd developed additional R M F F T concepts in the early 
1970 decade [W-6-W-11] and is also credited with the nested version of the 
R M F F T , which has been called the Winograd Fourier transform algorithm 
(WFTA) [S-5]. The W F T A requires about one-third the multiplications of a 
power-of-2 F F T for inputs of over 1000 points; it requires about the same 
number of additions. While not minimizing the multiplications, the Good 
algorithm usually requires fewer additions than the W F T A . 

Other R M F F T s presented in this chapter are based on polynomial transforms 
defined in rings of polynomials. Polynomial transforms have been shown by 
Nussbaumer and Quandalle to give efficient algorithms for the computation of 
two-dimensional convolutions [N-22]. They are also well adapted to the 
computation of multidimensional DFTs , as well as some one-dimensional 
DFTs , and they yield algorithms that in many instances are more efficient than 
the W F T A [N-23]. 

At the time this chapter is written, no theorems have been published to 
determine the minimum number of arithmetic operations (additions plus 
multiplications) or minimum computational cost (computer time). Since the cost 
of summing several multiplications can be minimized using read only memories 
(Princeton multiplier, vector multiplier) [ B - 3 8 , P-45, W-34], the minimum cost 
problem has several aspects. 

The impact of multiplications on computational time can be estimated by 
noting that multiplying two TV-bit numbers requires N additions. For example, 

99 
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the product of two eight-bit words is the result of adding eight binary numbers. 
Multiplication computation can consume the majority of computer time if 
calculations involving many multiplications are accomplished with digital words 
having many bits. 

A reduction in the number of multiplications required to compute an F F T is 
the main advantage of the FFTs described in the following sections. These 
algorithms do not have the in-place feature of the FFTs of Chapter 4 and 
therefore require more load, store, and copy operations. These operations and 
the associated bookkeeping result in a disadvantage to the R M F F T algorithms. 
The final decision as to the "best" F F T may be decided by parallel processors 
performing input-output , arithmetic, and addressing functions. 

The next several sections develop the results of number theory that are 
required for the R M F F T algorithms. Other sections present computational 
complexity theory, which leads to results derived by Winograd for determining 
the minimum number of multiplications required for circular convolution 
[W-6-W-11, H - l l ] . Winograd's theorems give the minimum number of 
multiplications to compute the product of two polynomials modulo a third 
polynomial and describe the general form of any algorithm for computing the 
coefficients of the resultant polynomial in the minimum number of multipli
cations. The Winograd formulation is then applied to a small N D F T by 
restructuring the D F T to look like a circular convolution [A-26, K - l ] . 

Circular convolution is the foundation for applying Winograd's theory to the 
D F T . In Section 5.4 we shall show that the D F T of a circular convolution results 
in the product of two polynomials modulo a third polynomial. Computationally 
efficient methods are used to compute the coefficients of the resultant 
polynomial. These computationally efficient methods require that the resultant 
polynomial be expressed using a polynomial version of the Chinese remainder 
theorem. 

The D F T can always be converted to a circular convolution if the small TV is a 
prime number. Conversion of the D F T to circular convolution can also be 
accomplished for the case in which some numbers in the set {1,2, 3 , . . . , N — 1} 
contain a common factor p, where /?isa prime number. The results of the circular 
convolution development are applied to evaluating small N DFTs . Sections 
5.4-5.6 contain the circular convolution development. Section 5.7 shows how 
the small TV DFTs are represented as matrices for analysis purposes. Section 5.8 
discusses Kronecker expansions of small N D F T s to obtain a large N D F T . 
Sections 5.9 and 5.10 develop the Good and W F T A algorithms, and Section 5.11 
shows how they may be regarded as multidimensional processing. Sections 5.12 
and 5.13 present work of Nussbaumer and Quandalle that extends circular 
convolution evaluation to multidimensional space and evaluates multidimen
sional DFTs . Algorithms are compared in Section 5.14. 

5.1 Results from Number Theory 
This section presents some results from number theory, which is concerned 

with the properties of integers. If we note that the kn tables in Chapter 4 are 
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based on integer arithmetic, it is not surprising that the properties of integers 
should be important in the newer transforms, which are based on circular 
convolution rather than matrix factorization. The study of integers is one of the 
oldest branches of mathematics (see [D-l 1]), as is evidenced by the names given 
to some of the theorems that follow. Some of these theorems are proven if they 
are particularly relevant to the development or if they give the flavor of number 
theory. Missing details are in [B-37, M-6, N - l , K-2] . 

We shall use the italic letters a, b, c,... ,h, s,... for arbitrary numbers. We 
shall use the script letters a, 6, c,..., and the italic letters /, k, /, m, n,p, q, r, K, L, 
M, and TV for integers. Some important relations for integer arithmetic are stated 
as the following four axioms. 

Addition and Multiplication Axiom If a = 6 and c = d (modulo n), then 
a + c = 6 + d and ac = &d (modulo n). 

Division Axiom If ac = 3d (modulo n), gcd(^, n) = 1, and a = £• (modulo n), 
then c = d (modulo n). 

Scaling Axiom If k # 0, then a = S- (modulo n) if and only if ak = 6k (modulo 
nk). 

Axiom for Congruence Modulo a Product If gcd(ra, n) = 1 then a = & (modulo 
mn) if and only if a, = 6 (modulo m) and a, = S- (modulo n). 

Rings and fields are sets whose elements obey certain properties. Fields of 
integers are important, for example, in determining the inverse of a number 
modulo another number, whereas rings of numbers are important in describing 
coefficients of polynomials. Less stringent requirements are necessary for a set to 
be a ring than for the set to be a field. 

Ring A ring is a nonempty set, denoted R, together with two operations + and 
• satisfying the following properties for each a, b, ceR: 

1. (a + b) + c = a + (b + c) (addition associative property). 
2. There is an element 0 in R such that aJ

r0 = 0 + a = a (additive identity). 
3. There is an element — a in R such that a + ( — a) = 0 = ( — a) + a 

(additive inverse). 
4. a + b = b + a (addition commutative property). 
5. (a • b) • c = a • (b • c) (multiplication associative property). 
6. {a + b)'C = a- c + b- c\ 

> (distributive properties). 
7. a-(b + c) = a- b + a- c) 
A commutative ring with a multiplicative identity has the preceding properties 

plus the following: 

1. There is an element in R, denoted 1, such that a • 1 = 1 • a = a 
(multiplicative identity). 

2. a • b = b • a (multiplication commutative property). 
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The set Jt of N x N matrices whose entries are complex numbers together 
with the usual matrix addition and matrix multiplication operations form a ring. 
Matrices do not form a commutative ring, however, since in general 
A B ^ B A where A,B9eJt. 

An example of a commutative ring is the set of integers together with the usual 
+ (addition) and • (multiplication) operations computed modulo M. This ring 
is denoted Z M . Every integer in the ring is congruent modulo M to an integer in 
the set { 0 , 1 , 2 , . . . ,M — 1} and is therefore represented by that integer. For 
example, 19 and 2 are congruent modulo 17, which can be denoted 19 = 2 
(modulo 17). 

The basic arithmetic operations that can be performed in a commutative ring 
can be illustrated with examples: 

Addit ion: 8 + 13 - 21 = 4 (modulo 17). 
Negation: - 8 = - 8 + 1 7 = 1 1 (modulo 17). 
Subtraction: 8 - 13 = 8 + ( - 13) = 8 + 4 = 12 = 12 (modulo 17). 
Multiplication: 8 - 1 3 = 1 3 - 8 = 104 = 2 (modulo 17). 

Field If a set is a commutative ring with a multiplicative identity and its 
nonzero elements have multiplicative inverses, then it is a field. An example of a 
field is the set of all rational numbers. Other examples include the sets of real 
numbers, complex numbers, and integers modulo a prime number. 

Multiplicative inverse: The multiplicative inverse modulo M of an integer 6-
is denoted and exists if and only if 6 and M are relatively prime. Then 
I • <T 1 = 1 (modulo M). For example 8 " 1 = 15 (modulo 17) since 8 15 = 120 
EE 1 (modulo 17) and we say that the multiplicative inverse of 8 is congruent to 15 
(modulo 17). 

Division: Division modulo M of two integers is permissible only if the 
divisor has a multiplicative inverse. The division is denoted a/£ = a • S-~l 

(modulo M). For example 12/8 = 12 • 8 " 1 = 12 • 15 = 180 EE 10 (modulo 17). 

Prime and relatively prime numbers are of major importance in the 
development of R M F F T algorithms. Their definition is followed by an 
exposition of Euler's phi function and Gauss's theorem, which give useful 
integer properties. 

Prime Number The positive number p is prime if gcd(k,p) = 1 for any k, 
1 < k <p. 

Relatively Prime Numbers The positive numbers k and n are relatively prime if 
gcd(/c, n) = 1. 

Euler's Phi Function Define <j)(n) to be the number of positive integers less than 
n and relatively prime to n; that is, 

# 0 = X 1, gcd(/,«) = l (5.1) 
KN 
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(f)(1) = 1 by definition; 0(2) = 1 (the integer less than 2 and relatively prime to 2 
is 1); 0(3) = 2 (the integers are 1 and 2); 0(4) = 2, 0(5) = 4, 0(6) = 2, 0(7) = 6, 
0(8) = 4, and 0(9) = 6 (the integers are 1, 2, 4, 5, 7, and 8); and if p is a prime 
number (p(p) = p — I. The function 0 is usually called the Euler phi function 
(sometimes the indicator or totient) after its originator; the functional notation 
0(77), however, is credited to Gauss [B-37]. 

GAUSS'S THEOREM The divisors of 6 are 1, 2, 3, and 6 and we note that 
0(1) + 0(2) + 0(3) + 0(6) = 1 + 1 + 2 + 2 = 6. This generalizes to Gauss's 
theorem: 

# = I > ( 0 (5-2) 
i\N 

where i | TV means i divides N and the summation is over all positive integers i that 
divide TV, including 1 and N. 

To prove Gauss's theorem, let the class £f{ be the set of integers k between 1 
and N such that gcd(/c/7, N/l) = 1 for 1 ^ / ^ N; that is, 

Sfx = {k\gcd(k/l,N/l) = l,l^k^N,l\k} where l\N (5.3) 

Since gcd(/c//, TV//) = 1, the integers /c// and N/l are relatively prime and there are 
<p(N/l) of them in <fx. Furthermore, each integer in the set { 1 , 2 , . . . , N} falls into 
exactly one class £fx. Since there are N integers altogether, we must have 

N=Y$(N/l) (5.4) 
l\N 

If we define i = N/l, then for each / that divides TV, i also divides N, giving (5.2). 
For example, if N = 6, Sf ± = {1,5}, ^ 2 = {2,4}, ^ 3 = {3}, and ^ 6 = {6} 

then 6 = 0(6/1) + 0(6/2) + 0(6/3) + 0(6/6) = 2 + 2 + 1 + 1. 

FERMAT'S THEOREM If p is a prime and a is not a multiple of p, then 

a? = a (modulo p) (5.5) 

To prove Fermat 's theorem consider the numbers in the set 

amodp, 2amod/?, . . . , (p — \)^modp 

These numbers are distinct for if we assume they are not, then = da (modulo 
p), where c and d are distinct coefficients of a and c, d = 1,2, ...,p — 1. The 
division axiom gives c = d (modulop), and since c,d <pwQ have t = d, which 
contradicts the fact that the coefficients of a are distinct. Therefore, the numbers 
in the set are distinct, and since they are less than p we can reorder the set to 1, 
2,... ,p — I. The multiplication axiom gives 

a(2a) • • • [ ( / ? - l)a] = 1(2) • • • (p - 1) (modulo p) (5.6) 

Applying the division axiom to divide (1)(2) • • • (p — I) from both sides of (5.6) 
and then multiplying by a gives (5.5). 
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E U L E R ' S T H E O R E M If gcd(^, TV) = 1, then 

^(N) = 1 ( m o d u l o TV) (5.7) 

The proof of Euler's theorem is similar to that of Fermat 's theorem. For 
example, let TV = 6 so that ^ = 5. Then 0(TV) = 2 and 5 2 = 25 == 1 (modulo 6). 

Order Let gcd(^, TV) = 1 where TV > 1. Then the order of a modulo TV is the 
smallest positive integer k such that 

and we say that ^ is a root of order k modulo TV. For example, if ^ = 2 and 
TV = 9, then 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 E E 7, 2 5 E E 5, 2 6 E E 1 (modulo 9), and the 
order of 2 modulo 9 is 6. As another example, 4 1 E E 4, 4 2 = 7, and 4 3 E E 1 
(modulo 9) and 4 is a root of order 3 modulo 9. Since ak + l = a} (modulo T V ) , { ^ " } 
defines a cyclic sequence. For example, {4"} E E { 4 , 7 , 1 , 4 , 7 , 1 , . . . } (modulo 9). 

The Order k of a Root Divides 0(TV) The preceding examples gave 4 3 E E 1 and 
2 6 E E 1 (modulo 9), where TV = 9, 0(TV) = 6, and 4 is a root of order 3 modulo 9. 
In this case 316, and in general k \ 0(TV). This fact is important in the 
development of number theoretic transforms. 

Primitive Root of an Integer Let k be the order of a modulo TV. Then a is a 
primitive root of TV if 

Let TV = 9 and note that 6 = 0(9) and that 6 is the order of 2 modulo 9. This 
means that 2 is a primitive root of 9. 

Number of Primitive Roots A rather curious fact is that if TV has a primitive 
root, it has </>[0(TV)] of them. For example, 0[0(9)] = 0(6) = 2 and 9 has two 
primitive roots, which are readily verified to be 2 and 5: 2 6 E E 1 and 5 6 = 1 
(modulo 9). 

Reordering Powers of a Primitive Root [B-37] This property states that if the 
first 4>(N) powers of a primitive root of TV are computed modulo TV, then all 
numbers relatively prime to TV and less than TV are generated. Stated mathemati
cally, let a be a primitive root of TV. Then ^ ^ 2 , . . . , ^ ( i V ) are congruent modulo 
TV to 4z2,..., where gcd (^ , N) = 1 and at < TV, i = 1 ,2 , . . . , 0(TV). For 
example, if TV = 9, then 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 = 2, 4, 8, 7, 5, 1 (modulo 9), 
respectively. 

Existence of Primitive Roots [ B - 3 7 ] Development of small TV D F T s uses the 
reordering property of primitive roots to put the D F T in a circular convolution 
format. For this reason it is important to know which numbers have primitive 
roots. It is rather surprising that TV has a primitive root if and only if TV = 2 , 4 , p k 

or 2pk where p is a prime number other than 2 and k ^ 1. For example, 
TV = 3 2 = 9 has the primitive roots 2 and 5. 

1 (modulo TV) (5.8) 

k = 0(TV) (5.9) 
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Index of a Relative to % (ind. a) [B -37, N - l ] The circular convolution format of 
a small TV D F T is easily expressed by writing the exponents of W in terms of 
indices. Let be a primitive root of TV and gcd(^, TV) = 1. Then k is the index of a 
relative to *. (written k = ind, a) if it is the smallest positive integer such that 
.a = ik (modulo TV). The utility of indices is due to the following logarithmlike 
relationships they obey: 

i n d , ^ = i n d ^ + i n d / (modulo c/>(TV)) (5.10) 

ind ,* ' = / [ i n d ^ ] (modulo 0(TV)) (5.11) 

ind, 1 = 0 (modulo 0(TV)) (5.12) 

ind/, = 1 (modulo </>(TV)) (5.13) 

For example, Table 5.1 shows the indices of numbers relatively prime to TV = 9. 
Using the table we get, for example, 

(i) ind 2 8 • 7 = ind 2 8 + ind 2 7 = 1 (modulo 6) and 2 i n < M ' 7 = 2 1 = 8 • 7 
(modulo 9); 

(ii) ind 2 8 = ind 2 2 3 = 3(ind 2 2) = 3 ; 
(iii) ind 2 1 = 6 = 0 (modulo 6); and 
(iv) ind 2 2 = 1 . 

Table 5.1 

Illustration of Indices 

k = i nd 2 a 1 2 3 4 5 6 

a = 2k (mod 9) 2 4 8 7 5 1 

CHINESE REMAINDER THEOREM (CRT) FOR INTEGERS [B -37 , K-2] A special case 
of this theorem is credited to the Chinese mathematician Sun-Tsu, who wrote 
sometime between 200 B.C. and 200 A.D. (uncertain). A general proof appeared in 
Chiu-Shao's "Shu Shu Chiu Chang" around 1247 A.D. Nicomachus (Greek) and 
Euler (Swiss) gave proofs similar to those of Sun-Tsu and Chiu-Shao in about 
100 A.D. and in 1734 A.D., respectively. The general theorem follows. 

Let N=N1N2 • • • TVL where gcd(TVf,Nk) = 1 if i / k, for i,k = 1 ,2 , . . . , L . 
Then, given ah 0 ^ ^ < Nh there is a unique a such that 0 < a < TV and 

at = a mod TV; for all i (5.14) 

where & is determined by 

'TV y(ivi) / N \ </>(iV2) / N Y { N L R 

Y ^ o / N \4>(N2) / N Y (modulo N) 

(5.15) 

We shall prove the C R T for integers by first showing that there is at most one 
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number satisfying the conditions of the theorem. Suppose that a and 6- are two 
distinct solutions. Then (5.14) implies that a = 6 (modulo Nt) for 1 ̂  i ^ L. 
This is equivalent to \a — fi\ = ktNi for some kt and 

^ - fi\ = kxN, = k2N2 = = kLNL . (5.16) 

Since gcd(7Vl5N2) = 1, /tx must contain 7V2 and likewise 7V3, 7V4,...,7VL. 
Similarly, /t2 contains Nl9 7V3, iV4, . . . ,iVL, so for some KQ 

\ja,-t\ = k0N1N2 • • • NL = k0N ' (5.17) 

But (5.17) implies that either a or 6 is not in the interval [0, TV). This contradicts 
the assumption that the solution is in [0, N). Therefore, a and 6- cannot be 
distinct solutions, and there is at most one solution. 

We next show that there is a solution given by (5.15) that meets all the 
conditions of the theorem. Note that gcd(7V/7Vl3 Nt) = 1, so by Euler's theorem 
(N/N±)*iNl) = 1 (modulo Nx). Since N/N, = N2N3 • • • 7VL, (N/N±)+iNl) = 0 
(modulo TV;), i > 1. Combining the last two modulo relationships based on N, 
and generalizing to Nk yields 

/NViNk) _ fl (modulo Nk) 
\Nk) = jo (modulo Nd, i / k 

Computing (5.15) mod Nt and using (5.18) yields (5.14), so (5.15) meets all 
conditions of the CRT and uniquely specifies the integer a. 

As an example let Nx=2 and N2 = 3, so that 

a, = |>!(6/2)*( 2 ) + ^2(6/3)^( 3 ) ] (modulo 6) 

= (3^ ! + 4^ 2 ) (modulo 6) (5.19) 

Table 5.2 illustrates (5.19). 

Table 5.2 
Illustration of the CRT 

•CO 0 1 2 3 4 5 
a. 0 1 0 1 0 1 
a2 0 1 2 0 1 2 

In DFTs evaluated using Kronecker products the CRT determines either the 
input or output index. The other index is determined by the following expansion. 

A SECOND INTEGER REPRESENTATION (SIR) Again let N = N,N2 • • • NL where 
gcd(7Vb Nk) = 1 if z # & for /, k = 1,2,..., L. Given &i9 0 ^ a{ < Nh there is a 
unique a such that 0 ^ a < N and 

a i = [(N/Ni)-1^] mod Nt (5.20) 
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where a is determined by 

' £ N 

.i = i 
mod TV (5.21) 

and (N/Ni) 1 is the symbolic solution for the smallest positive integer such that 

'NY1 N 

N N 
= 1 (modulo Nt) (5.22) 

The proof that there is at most one such integer a is similar to that for the CRT. 
The proof that there is at least one such integer follows by multiplying both sides 
of (5.21) by (N/Nd'1, giving 

• X / N \ i ; / y y \ - 1 7 Y " 

+ L ^ 
fc=i N N Nk 

modN (5.23) 

Since gcd(/Vj, Nj) = 1 for all i / j , N/Nt and Nt are relatively prime. It follows 
that there is a smallest positive integer £t such that (^tN)/Ni = 1 (modulo Nt) (see 
Problem 7). We define this integer as &{ = (N/NY1 so that 

'NY1 N~ 

Nj NL 

mod Nt = 1 (5.24) 

Since N/Nk contains Nt for i / /c, (^tN)/Nk also contains 7VY Therefore, 
^ (N/Nk) mod TV; = 0 and 

' i W 1 N~ 
NJ Nh kj 

modN = 0 (5.25) 

Noting that &6modNt = [(amodNt)(£modNt)] modNt and using (5.24) and 
(5.25) in (5.23) yields (5.20). 

When Nt has a primitive root it is easy to find &t using (5.10). For example, let 
N = NXN2, Nx = 9, N2 = 5 and Table 5.1 gives 

N N 

NJ Nx 

= ( 5 ) - 1 5 = 2 / c 2 5 (modulo 9) 

where ( 5 ) " 1 = 2k (modulo 9). Then the smallest k that gives 2k25 = 1 (modulo 9) 
is k = 1 since 2 6 m o d 9 = 1. Therefore, ^ = (N/N^1 = 2. Similarly, &2 = 4 
since 4 • 9 mod 5 = 1 . 

RESIDUE NUMBER SYSTEM ARITHMETIC Let a and d be determined by the C R T 

from the sequences of integers {at} and {dt}, i = 1,2, . . . , L , respectively (i.e., 
= a mod TV; and &{ = ^ mod iVf). Let • denote either • or + . Then it is easy to 

show that 

(a • 6) mod N = { ( « ! D ^ ^ m o d . . . , ( ^ L • SL) mod NL} 

where N = N1N2 • • • vYL. Thus multiplication, addition, and subtraction involv
ing a and 6 can be accomplished solely by operations on the residue digits w{ and 
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6h i = 1,2,... ,L. Such arithmetic is called residue number system (RNS) 
arithmetic. High speed digital systems can be mechanized by parallel processors 
operating on the residue digits. As in any digital system, there are overflow 
constraints. 

If we represent a and 6 by the SIR, then the preceding comments are valid for 
addition, but are not necessarily valid for multiplication. 

5.2 Properties of Polynomials 

Polynomials with coefficients in a field (ring) are referred to as polynomials 
over a field (ring) and are important in the development of efficient circular 
convolution evaluation. In particular, polynomials with complex coefficients are 
used in the development of DFTs using polynomial transforms. 

This section discusses properties of polynomials. Many properties are 
analogous to the properties of integers discussed in the previous section. For 
example, the CRT for polynomials is similar to that for integers and results in an 
expansion that reduces multiplications in FFT implementations. Several 
definitions and properties of polynomials follow. Further details are in [N-l, 
M-1, M-6]. 

Axioms for Polynomials Four axioms for polynomials are directly analogous 
to the four axioms for integers stated in Section 5.1. Let A(z\ B(z), C(z), D(z), 
M(z), and N{z) be polynomials over a field. Then these polynomials may be 
substituted for ^, c, d, m, and n in the integer axioms. 

Ring of Polynomials Polynomials whose coefficients are elements of a ring (or a 
field) together with the usual polynomial addition and multiplication form a ring 
of polynomials. The ring of polynomials modulo M(z) is defined by letting P(z) 
and M(z) be polynomials with coefficients in the ring R. Let rM\P(z)jM{z)\ 
denote the remainder of the division of P(z) by M(z). Congruence of 
polynomials is defined by 

The set of all polynomials with coefficients in R together with the polynomial 
operations + and • defined modulo M(z) forms a ring of polynomials modulo 
M(z). 

For example, if M(z) = (z + l ) 2 and P(z) = (z + l ) 3 , we get 0?[P(z)/M(z)] 
= z + 1 and (z + l ) 3 = z + 1 (modulo (z + l) 2 ) . 

Let Px{z) be the set of all polynomials with coefficients in R and such that 
deg[P,(z)] < deg [M(z)] where the value of deg is degree of the polynomial 
enclosed within the square brackets. Then, analogous to integers in the ring Z M , 
all polynomials with coefficients that are elements of R are congruent modulo 
M(z) to some polynomial in the set Pi(z). The basic operations that can be 

P(z)modM(z) = M[P(z)/M(z)] (5.26a) 

P(z) = &[P(z)/M(z)] (modulo M(z)) (5.26b) 



5.2 PROPERTIES OF P O L Y N O M I A L S 109 

performed in the ring are illustrated with the following examples, in which R is 
the set of complex numbers, W = exp( —j2n/3), and M(z) = z + 1: 

Addition: (z + W) + (z + W2) = 2z - 1 = - 3 (modulo (z + 1)). 
Negation: — (z + W) = I — W (modulo (z + 1)). 
Subtraction: z 2 + W - (z + W) = z(z - 1) = 2 (modulo (z + 1)). 
Multiplication: (z + 2)(z - l ) = z 2 + z - 2 = - 2 (modulo (z + 1)). 

Roots of Unity The equation zN = 1 has the solution 

Wm = Qxp(-j2nm/N), m = 0 , 1 , . . . , T V - 1 

where is the rath root of unity. Furthermore, 
N— 1 

zN - 1 = Y[(z- Wm) (5.27) 
m = 0 

For example, z 2 - 1 = (z + l)(z - 1), z 3 - 1 = (z - l)(z + \ + j v / 3 / 2 ) ( z +1 
- 7 ^ / 3 / 2 ) , and z 4 - 1 = (z + l)(z - l)(z +j%z -j). 

Primitive Roots of Unity Wm is a primitive root of unity if the set {(Wm)°, 
(Wm)\...,(Wm)N~1} can be reordered as {W°, W1,... 9WrN~1} where 
W = exp( — j2n/N). For example, if TV = 4, W1 and P^ 3 are the only primitive 
roots. Drawing the unit circle in the complex plane and showing the points W°, 
W1,..., WN~1 verifies that Wm is a primitive root if and only if gcd(ra, TV) = 1. 

FACTORIZATION OF ZN — 1 The polynomial zN — 1 factors into products of 
polynomials with integer coefficients, called cyclotomic polynomials, as follows: 

zN-\=\\Cl(z) (5.28) 
l\N 

where Ct(z) is a cyclotomic polynomial of index / and the values of / used for /1 TV 
include 1 and TV. For example, z 2 — 1 = (z — l)(z + 1) = C1(z)C2(z) and 
z 4 _ ! = ( z _ 1 ) ( z + 1 ) ( z 2 + 1 } = Cl(z)C2(z)C^z). 

Cyclotomic Polynomial of Index I The polynomial Ct(z) is determined by 

C,(z) = (z - Wk-) (5.29) 
kieEi 

where Et is given by 

E1 = {0} 

^ = {kt: ^ = Nr/l where 0 < r < / and gcd(r, /) = 1} where l\N (5.30) 

including / = TV 

By reasoning similar to that in the proof of Gauss's theorem, it follows that all 
integers less than TV are in the set {E1,..., EN} exactly once, so that (5.27) is 
satisfied by (5.28). It also follows that 

deg[Cz(z)] = </>(/) (5.31) 
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Examples of cyclotomic polynomials are 

C 1 ( Z ) = 2 - 1 , C2(z) = z + 1 

C3(z) = (z + \ + A/3/2X* + 2- A / 3 / 2 ) = z2 + z+l 

(5.32) C4(z) = (z + j)(z -j) = z2 + 1, C5(z) = z 4 + z 3 + z 2 + z + 1 
C6(z) = z 2 - z + 1, C8(z) = z 4 + 1 , C9(z) = z 6 + z 3 + 1 

C1 0(z) = z 4 - z 3 + z 2 - z + 1, C1 2(z) = z 4 - z 2 + 1 

C1 5(z) = z 8 - z 7 + z 5 - z 4 + z 3 - z + 1 

The preceding polynomials verify the following, which are true in general [N-l] 
for p a prime number and gcd(/>,/) = 1: 

Cp(z) = ^ 1 , Cp m(z) = C p (z^" 1 ) 5 C p = r i [* " (*~J 2 7 r / P)f e] 
Z 1 fe=1 (5.33) 

Clp(z) = , C2p(z) = Cp( - z), p > 2 
Ci{z) 

Coefficients of Cyclotomic Polynomials The coefficients of cyclotomic poly
nomials have small values for cases that are of interest in the development of 
small N DFT algorithms. This results in the assumption later on that if coef
ficients of Ct(z) are required, then they can be computed by addition of num
bers such as + 1 and ± 2 rather than by multiplication of arbitrary numbers. 

As (5.32) shows, coefficients of Cx(z) are all + 1 or — 1 for / ^ 15. In fact, if / 
has at most two distinct odd prime factors, the coefficients cannot have values 
other than 0, + 1 and - 1 [N-l, Problem 116, p. 185]. The integer / = 105 
= 3 • 5 • 7 is the first with three odd prime factors. Of the nonzero coefficients of 
C 1 0 5 (z) , 31 are equal to + 1 or — 1 and 2 are equal to - 2 [A-26]. 

Irreducibility of the Cyclotomic Polynomials A polynomial P(z) is reducible if 
P(z) = P1(z)P2(z) where P(z), Pi(z), and P2(z) have rational coefficients and are 
polynomials in z other than constants. (A number is rational if it can be 
expressed as the ratio of two integers.) All cyclotomic polynomials are 
irreducible. For example, C4(z) = z 2 + 1 cannot be factored into polynomials 
with rational coefficients (±j is a complex coefficient). 

Greatest Common Divisor for Polynomials In the following development of the 
polynomial version of the CRT, relatively prime polynomials are required. Such 
polynomials have only constants as greatest common divisors. We state this 
formally by letting D(z), P(z), and Q(z) be polynomials over a field. Then 

D(z) = gcd[P(zlQ(z)] if D(z)\P(z) and D(z)\Q(z) (5.34) 

and if C(z) is a polynomial such that 

if C(z)\P(z) and C(z)\Q{z) 
then deg[C(z)] < deg[D(z)] (5.35) 
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For example, if P(z) = 2(z - 1) and Q(z) = 4 ( z 2 - 1), then D ( z ) = k(z - 1), 
where k is any rational number; D ( z ) is specified to within an arbitrary constant. 

Relatively Prime Polynomials Let P(z) and Q(z) be polynomials over a field. 
They are relatively prime if a 

gcd[P(z), Q(z)] = 1 (5.36) 

In particular we observe that 

gcd[ l , Q(z)] = 1 for d e g g ( z ) > 1 (5.37) 

EUCLID'S ALGORITHM This algorithm determines the gcd of two polynomials 
over a field including those of degree zero, the constants. The algorithm starts 
with 

gcd[P ( z ) , Q(z)] = gcd{g(z), ^[P(z)/2(z)]} (5.38) 

where deg[g( z ) ] < deg[P ( z ) ] , Q(z)\P(z), and 

&[P(z)/Q(z)] = remainder of [P(z)/Q(z)] (5.39) 

Equation (5.38) is applied repetitively; the second application substitutes Q(z) 
and <%[P(z)/Q(z)] on the left side of (5.38), and so forth. The procedure 
terminates with a zero remainder. For example, gcd( z 3 — l , z 2 — 1) = 
gcd(z 2 - l , z - 1) and z 3 - 1 = z ( z 2 - 1) + z - 1; gcd( z 2 - l , z - 1) = z - 1 
and z 2 - 1 = (z - l)(z + 1) so z 3 - 1 = z(z - l)(z + 1) + z - 1 and (z - 1) 
= gcd(z 3 — l , z 2 — 1). Note that Euclid's algorithm applies to integers. For 
example, gcd(39, 27) = gcd[27,^(39/27)] , and 39 = 27 + 12; gcd(27,12) = 
gcd(12,3) and 27 = 2(12) + 3 ; gcd(12,3) = 3, 12= 4(3), 27 = 2(4)(3) + 3 and 
39 = 2(4)(3) + 3 + 4(3) and 3 = gcd(39,27). 

COMPUTATION OF P(Z) mod Q(z) If P(z) and Q(z) are polynomials over a field 
and Q{z) / 0, then 

P(z) mod Q(z) = Pi ( z ) (5.40) 

where P i ( z ) is defined over the field and 

deg[i\ ( z ) ] < deg[g( z ) ] or P±(z) = 0 (5.41) 

P1(z) = ®[P(z)/Q(z)]. (5.42) 

For example, 3 mod 2 = 1, (z — l)k mod (z — 1) = 0 for k a positive integer, and 
( z 2 - 1) mod (z - 1) = 0. 

A RELATION FOR RELATIVELY PRIME POLYNOMIALS The proof of the C R T for 
polynomials uses the following result. Let P(z) and Q(z) be nonzero polynomials 
over a field F and let them be relatively prime. Then there exist polynomials N(z) 
and M(z) over F such that 

M(z)P(z) + N(z)Q(z) = 1 (5.43) 

We shall prove (5.43) in three steps. First, let <f be the set of all polynomials over 
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F as defined by M(z)P(z) + N(z)Q(z): 

Se = {S{z): S(z) = M{z)P{z) + N(z)Q(z)} (5.44) 

Let D(z) be a member of 6f having the least degree and such that D(z) # 0 (by 
definition 0 has no degree). Let 

D(z) = M0(z)P(z) + N0(z)Q(z) (5.45) 

Let St(z) be any other member of £f and let 

St(z) = Mt(z)P(z) + Nt(z)Q(z) (5.46) 

Then there exists an A(z) such that 

S£z) = A{z)D(z) + P(z) (5.47) 

where R(z) = ^[St(z)/D(z)] and deg[P(z)] <deg[Z)(z)]. The previous three 
equations yield 

R(z) = Mt(z)P(z) + Nt(z)Q(z) - A(z)[M0(z)P(z) + N0(z)Q(z)] 

= [M£z) - A(z)M0(z)]P(z) + [Nt(z) - A(z)N0(z)]Q(z) (5.48) 

But the right side of (5.48) is a member of which contradicts the assumption 
that D(z) has the least degree. Therefore, R(z) = 0 and D(z) divides St(z). 

Second, we shall show that D{z) is a gcd of P(z) and Q(z). Suppose that C(z) is 
a gcd. Since C(z) | P(z) and C(z) | Q(z), C(z) | [M0(z)P(z) + N0(z)Q(z)] and by 
(5.45) C(z)|Z)(z). If C(z)\D(z), either deg[C(z)] < deg[Z>(z)] or they differ at 
most by a rational constant and D(z) is a gcd of P(z) and Q(z). 

Third, we shall show that there is an M(z) and an N(z) such that (5.43) is 
satisfied. Since P(z) and Q(z) are relatively prime, gcd[P(z), Q(z)] = 1. D(z) is 
also a gcd, so it is a constant and there is another constant d0 such that 
d0D(z) = 1. Rescaling (5.45) by J 0 and letting d0M0(z) = M(z) and d0N0(z) = 
N(z) gives (5.43). 

In practice, the polynomials M(z) and 7V(z) are found by using Euclid's 
algorithm. Since gcd[P(z), Q(z)] = 1, application of Euclid's algorithm results 
in a remainder c, which is a constant. Reconstruction of P(z), as was done in the 
example following (5.39), results in M1(z)P(z) = Nl(z)Q(z) + c, which may be 
rewritten as (5.43) with M(z) = M±(z)jc and N(z) = — N^/c. For example, a 
gcd(z2 + z + 1, z - 1) = 1, and z 2 + z + 1 = (z + 2)(z - 1) + 3 so that 
%)(z2 + 2 + 1) - [(z + 2)/3](z - 1) = 1, M(z) = f and 7V(z) = - (z + 2)/3. 

CRT FOR POLYNOMIALS [K-2] Let C(z) be a polynomial of degree N over a field 
and with factors Ct(z), i = l,2,...,K, that are relatively prime; 

C(z) = C1(z)C2(z)---CK(z) (5.49) 

Let dQg[Ci(z)] = Nt and let N=N1N2---NK. Then given At(z), 0 ^ 
deg[v4£(z)] < TVj, there is a unique ^4(z) such that deg[^4(z)] < N, 

At(z) = A(z) mod Q(z) (5.50) 
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where A(z) is determined by 

A(z) = mod C(z) 

and Bi(z) satisfies the following 

{[C(z)/Q(z)] mod Clz)}Bt{z) = C(z)/Ct(z) 

(5.51) 

(5.52) 

The proof is parallel to that of the C R T for integers; we first show that at most 
one solution exists. Suppose a second solution A0{z) exists. Then A{(z) = A0(z) 
mod Ci(z) so that Ct(z) | [A(z) — A0(z)]. Since this is true for i = 1 ,2 , . . . ,Kand 
since the Cf(z) are relatively prime, we get C(z) | [A{z) — A0(z)]. This implies 
A(z) = A0(z) mod C(z) and deg[^40(z)] > d e g [ C ( z ) ] , which contradicts the 
assumption that the solution has degree less than N. There can be at most one 
solution. 

We now show that a solution exists. Define 

Pt(z) = C{z)ICiz) = Ck(z) (5.53) 

Since the Ct(z) are relatively prime, gcd[Pf(z), Q(z)] = 1 and the conditions are 
met for using the relation for relatively prime polynomials stated in (5.43). This 
relation in the present situation says there are polynomials Mt{z) and Nt(z) such 
that 

Miz)Piz) + Niz)Ciz) = 1 (5.54) 

so that 

[Mt.(z)Pf(z) + iV£(z)Q(z)] mod Q(z) = [M^P^z)] mod Ct(z) (5.55) 

Since 1 m o d Q ( z ) = 1, (5.53)-(5.55) yield 

{[Mt(z) mod Q(z)] [Pf(z) mod Q(z)]} mod Q(z) = 1 (5.56) 

If we select Mt(z), so that deg[M,-(z)] < deg[Q(z)] , then (5.56) is equivalent to 

{ M ^ t Q z V Q z ) ] mod Q(z)} mod Q(z) = 1 (5.57) 

Since Mt{z) is a polynomial in z of degree ^ 0, the following is a symbolic 
solution of (5.57): 

1 
Mt(z) = 

[C(z)/Q(z)] mod Q(z) 

If we define Bt(z) as 

5£(z) = M&Piz) 

(5.58) 

(5.59) 

then Bi(z) mod C,-(z) = 1 and 5 I (z )modC f c (z ) = 0 for i / so that using the 
axiom for polynomials for congruence modulo a product gives 

I Aiz)Blz) mod Ct(z) = 
Aiz\ 

0, 

z = k 

i ^ k 
(5.60) 
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which satisfies (5.50). Equations (5.53) and (5.58)-(5.60) are equivalent to 
(5.50)-(5.52), and (5.51) is a solution satisfying the polynomial version of the 
CRT. 

As an example of using the CRT, let 

C(z) = zN - \ = l\Cl(z) (5.61) 
l\N 

where the Ct(z) are cyclotomic polynomials. From the irreducible property of 
cyclotomic polynomials it follows that gcd[Ct(z)Ck(z)] = 1, k / /. These 
polynomials are defined over the field of rational numbers and have integer 
coefficients. Given A(z), we can compute At(z) = A(z) mod C{(z) and Pt(z) = 
Yli^i Q(z), where / |7V. Then the expansion (5.51) is valid. 

More specifically, let N = 2 and A(z) = a(X)z + a(0). Then C(z) = z 2 - 1, 
Ci(z) = z - 1, C2(z) = z + 1, and 

Px(z) = C(z)/d(z) = z + 1 

P2(z) = C(z)/C2(z) = z - l 

B^z) = I\(z) | r / _ 2 = 

(5.62) 

(5.63) 

(5.64) 

^[(z2 - l ) / ( z - 1)] mod (z - 1)J 

1 
^[(z2 - l)/(z +1)] mod ( z + l ) J 

^ ( z ) = «[( f l ( l )z + fl(0))/(z - 1)] = a(0) + 

A2(z) = #[(a(l)z + *(0))/(z + 1)] = a(0) - a{\) 

Using this in the CRT for polynomials of degree N < 2 gives 

A(z) = [a(0) + a(l)H(z + 1) + [a(0) - a(l)](- \)(z - 1) (5.65) 

which is a(\)z + a(0), the polynomial assumed for A(z). 
The polynomials At(z) and Bt(z) define the polynomial CRT expansion of 

A(z). Evaluation of Bt(z) requires Mt(z), i = 1,2,...,K, and evaluation of these 
latter polynomials may be accomplished using Euclid's algorithm. For example, 
when C(z) = zN - 1 and Nis prime, then Bx(z) = (zN~1 + zN~2 + • • • + l)/N 
and B2(z) = 1 - Px(z) (see Problem 32). 

LAGRANGE INTERPOLATION FORMULA Let L data points be given. Then these 
points uniquely determine a polynomial A(z) of degree L — 1 that passes 
through the points. The polynomial is specified by the Lagrange interpolation 
formula 

A(z)= X m . n ^ ^ (5-66) 
i = 0 k ± i ai afc 

where m{ = Afjxi) is the data point at z = at. The validity of (5.66) is easily shown 
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by substituting any data point, say och in the product on the right side, that is, 

a, — (xk fO, / / / 

k * i t t i - 0 t k 11, l=i 

Using (5.67) in (5.66) gives m{ = A(oCi). The Lagrange interpolation formula is 
used in the Cook-Toom algorithm in the following section. 

5.3 Convolution Evaluation 

In this section we describe the convolution of nonperiodic sequences and show 
how convolution is evaluated using a minimum number of multiplications 
[ H - l l , M - l , N - l , W-6-W-11]. 

Convolution of nonperiodic sequences is defined by letting g(n) and h(n), 
n = 0, 1, 2, . . . , N — I, be nonperiodic sequences of length N. Let the linear 
convolution of these sequences be defined by a(i), z = 0 , 1 , 2 , . . . , 2N — 2, where 
a(i) is given by (3.51) rescaled, or 

min( iV- 1, i) 

a(i) = X g(k)h(i-k), i = 0 , 1 , 2 , . . . ,27V - 2 (5.68) 
fc = max (0 , i-N+ 1) 

A sketch will quickly convince the reader that the max and min functions in 
(5.68) define points at which the two length N sequences h(n) and g(n) overlap. 
These two sequences define a length IN — 1 sequence {a(0), a(\),..., 
a(2N-2)}. 

The convolution operation defined by (5.68) is used to compute auto
correlation and crosscorrelation functions. Evaluation of (5.68) is often 
accomplished by using a D F T of dimension 2N — 1 to determine H and G, the 
vectors determined by the D F T s of [/z(0), h(\), ...,h(N - 1), 0 , 0 , . . . , 0 ] T and 
[#(0), # ( 1 ) , . . . , g(N — 1), 0 , 0 , . . . , 0 ] T , respectively, where the last TV — 1 entries 
of the latter two vectors are zeros. Let A = DFT[a(n)] — DFT[a(0) , a(l), 
..., a(2N — 1)]. Then A is given by (see Section 3.10 and Problem 3.11) 

A = H o G (5.69) 

where o means element by element multiplication, A(k) = H(k)G(k) for 
k = 0,1,2,..., 2N — 2. The inverse D F T of A then gives a. 

The Cook-Toom algorithm also gives an efficient technique for evaluation of 
(5.68). To begin the development of this evaluation technique we consider the 
time domain convolution, which resembles (5.68) and which is defined by 

N-l N-l 

a(t)= X g(t)8(t-nT)* ^ h(t)3(t-nT) (5.70) 

n = 0 n=0 
where Tis the sampling interval. When t = IT, (5.70) gives a(i), the value of the 
discrete time convolution in (5.68). The Fourier transform of either summation 
in (5.70) is obtained from the definition of a delta function. For example, 

/N-l \ N-l N-l 

&[ X h(t)8(t -nT))= X Kn)e-j2nfnT= X Kn)? = H(z) (5.71) 
V n = 0 / „ = Q n = o 
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where 

z = e-j2nfT (5.72) 

and h(n) is the discrete time sequence determined by h{t) at t = nT, 
n = 0,1,..., TV — 1. The Fourier transform of the convolution on the right side 
of (5.70) is the product of transforms, which gives (see Problem 10) 

where 

m<t)])\, = e-»fr = A{z) = H(z)G(z) (5.73) 

H(z) = h(0) + h(l)z + h{2)z2 + • • • + h(N - l)zN-x (5.74) 

G(z) = g(0) + #(l)z + g(2)z2 + • • • + g(N - l ) * " " 1 (5.75) 

A(z) = a(0) + fl(l)z + a(2)z2 + • • • + a(2N - 2)z2N~2 (5.76) 

Direct evaluation of (5.73) confirms that the coefficient of z[ in (5.76) is the value 
a(i) of the convolution in (5.68). Alternatively, we can view (5.73) as an 
embodiment of the convolution property in Table 2.1. 

In what follows no knowledge is required beyond the standard Fourier 
transform pairs from Chapter 2. However, readers familiar with the z transform 
will recognize that (5.73) is the z transform of (5.70) and that (5.72) evaluates 
(5.73) on the unit circle in the z plane. Also, the usual definition of the complex 
variable z on the unit circle in the z plane is z = exp(j2nfT) [L-13, T-12, T-13]. 
We are using the complex variable z = exp( — j2nfT) to avoid negative powers 
of z and to simplify representation of the polynomials that follow. 

Sequences that are periodic have a convolution output that is also periodic 
and that is called circular because of its periodicity. By contrast, the convolution 
of nonperiodic sequences is often called noncircular. 

The technique for evaluating a(z) in (5.73) carries over to the evaluation of 
small TV DFTs. It is important that this evaluation use a minimum number of 
multiplications. This number is 2TV — 1 and a method for obtaining it follows. 

MINIMUM NUMBER OF MULTIPLICATIONS FOR NONCIRCULAR CONVOLUTION The 
noncircular convolution (5.68) can be computed with only 2TV — 1 multipli
cations. Rather than prove this (for a proof see [W-7]), we shall prove a method 
for obtaining the minimum number of multiplications [A-26]. The sequences 
g(n) and h(n), n = 0 , 1 , . . . , TV - 1, specify G{z) and H(z) through (5.74) and 
(5.75), and these in turn specify A(z) by means of (5.73). From the Lagrange 
interpolation formula we also know that 2TV — 1 data points uniquely determine 
the 2TV — 2 degree polynomial A(z) in (5.76) which in turn gives a(i) in (5.68). We 
can obtain the 2TV — 1 data points by arbitrarily picking 2TV - 1 distinct 
numbers oth i = 0 ,1 ,2 , . . . , 2N - 2, and evaluating (5.73) for the 2TV - 1 
products given by 

m{ = Afa) = H(ai)G(ai) (5.77) 
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Substituting (5.77) into the Lagrange interpolation formula gives 

2N-1 z — a 
A^)= I mtll—r1- (5-78) 

i=0 k^iai ak 
which uniquely determines A(z) at the cost of 2N — 1 multiplications in (5.77). 
This proves the method for obtaining the minimum number of multiplications. 

Evaluation of (5.78) in 2N — 1 multiplications is predicated on having H(at) 
and G(oti) and on being able to compute the product over k ^ i in (5.78) without 
multiplications. This in fact can be done if simple numbers are used for the oct 

values. For example, let G(z) = g(l)z + g(0), h(z) = h(l)z + h(0) and A{z) = 
a(2)z2 + a(l)z + a(0). Then 

a(2)z2 + a(l)z + a(0) = [g(l)z + 0(0)] [h(l)z + /z(0)] (5.79) 

and direct computation yields 

a(2) = g(l)h(l), a(\) = g(l)h(0) + ^(0)A(1), a(0) = 0(O)A(O) (5.80) 

In this case N = 2, and 2N — 1 = 3 is the minimum number of multiplications. 
Evaluating (5.80) requires four multiplications. To evaluate a(2), a(l), and a(0) 
in three multiplications we arbitrarily let a 0 = — 1, ax = 0, and a 2 = 1. Then 
(5.77) and (5.79) give 

mo = [0(0) - g(l)] [h(0) - A(l)], m, = g(0)h(0), 

m2 = [g(0) + g(l)][h(0) + h(l)] (5.81) 

Using these values in (5.78) yields 

^ + 1 ) , ( z + l ) ( z - l ) z ( z - l ) 
A(z) = m2 h W i h m 0 (5.82) 

+ 1 ( - 1 ) ° ( - l ) ( - l - l ) ^ 
and combining coefficients in (5.82) gives 

a(2) = f (m 2 + m 0 ) — m 1 ? ^(1) = | ( m 2 — m0), a(0) = mj (5.83) 

which agrees with (5.80) but requires only three multiplications, as specified in 
(5.81), if we are willing to treat the factors of \ in (5.83) as being accomplished by 
a right shift of one bit. In applications in which one sequence is fixed, the factor 
of \ can be combined with the fixed sequence. For example, if the h(n) values are 
fixed and the g(n) values are variable, we can store precomputed constants 

c0 = i[A(0) - A(l)], C l = A(0), c2 = ±[h(0) + A(l)] (5.84) 

so 

and 
mo = co[g(0) - g(l)], m, = Clg(0), m2 = c2[g(0) + g(l)] (5.85) 

a(2) = m2 + m0 — m1, a{\) = m2 — m 0 , a(0) — m1 (5.86) 

Equations (5.85) and (5.86) require three multiplications and five additions, as 
compared to four multiplications and one addition in (5.80). 
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The value of at selected for evaluation of (5.77) affects the computational 
efficiency of the method. For example, using oc0 = 0, at = 1, and a2 = 2 in (5.79) 
gives 

m 0 = fif(0)A(0), m1 = [g(0) + g(l)] [A(0) + A(l)], 

m 2 = to(0) + 2^(l)][A(0) + 2/i(l)] 

and 

a(2) = \{mQ + m2) - mu a(l) = \{- 3ra0 - m2) + 2m1 ? 

(5.87) 

fl(0) = m0 

(5.88) 

Owing to the simpler coefficients, (5.81) and (5.83) may be preferable to (5.87) 
and (5.88) for the evaluation of (5.79). In any case the polynomial version of the 
CRT permits us to bypass use of the Lagrange interpolation formula for small TV 
DFT evaluation. The Lagrange interpolation formula shows that only 27V — 1 
multiplications are required to evaluate the convolution in (5.68). 

Note that if g and h are the complex numbers g = g(0) + jg(l) and 
h = h(0) + y/z(l), then (5.79)-(5.88) give several ways of computing the complex 
product gh in three instead of four real multiplications. 

COOK-TOOM ALGORITHM [A-26, K-2, T-l] The Lagrange interpolation for
mula can be put into a compact vector-matrix notation. Let g = [g(0), g(l), 
. . . , ^ ( iV- l ) ] T , h=[ /z (0 ) , / z ( l ) , . . . 
define 

9h(N- l)V,m=[m0 mi 

a 0 N-l 1 a 

— 1 &2N- aN~1 _ i 
\r _ n 1 

>^2N-2] ami 

(5.89) 

Then the 2N — 1 element vectors j / g and srf\v contain G(a,) and H{a^ 
i = 0 , 1 , . . . , 27V — 2. All the mt needed for the Lagrange interpolation formula 
are in 

m = (ja/g) o (j/h) (5.90) 

The coefficients of A(z) that determine a(0), a(l),..., a(2N — 1) are linear 
combinations of the elements of m as, for example, (5.83) shows. If a = 
O(0), 0(1), . . . , a(2N - 1)]T, then there is a 27V - 1 x 27V - 1 matrix % such that 

a = (5.91) 

Equations (5.89)—(5.91) formulate the Cook-Toom algorithm. The entries in & 
are rational numbers if rational numbers are used for at in (5.89). 

When the vector h is fixed, ja/h can be precomputed. Furthermore, a common 
factor from column i of can be moved into element i of sfh since this element is 
also in m, so that is unchanged. In practice, and s/h are redefined so that 
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has the simplest possible entries and a new matrix 3 absorbs any constants 
transferred from to s$. Then 

m = (j^g) o (J>li) (5.92) 

is the more general form of the Cook-Toom algorithm. 

5.4 Circular Convolution 

As discussed in Chapter 3, circular convolution is the convolution of periodic 
sequences. It is defined by letting g(n) and h(n), n = 0 , 1 , 2 , . . . , TV — 1, be 
sequences with period TV. Circular -convolution of these sequences defines a 
periodic convolution sequence a(i), i = 0 , 1 , 2 , . . . , TV — 1, where 

N- 1 

n=0 

(5.93) 

Since h(ri) is periodic, (5.93) can always be evaluated for a positive index 

h(i -n) = h(i -n + N) (5.94) 

Equation (5.93) can be expressed in matrix-vector form as 

a = tfg (5.95) 

where a = [a(0), a ( l ) , . . . , a(N - 1 ) ] T , g = [0(0), g(\\ ...,g(N- 1 ) ] T , and 

h(0) h(N- 1) h(N - 2) 
h(l) h(0) h(N - 1) 
h(2) h(l) h(0) 

\_h(N-l) h(N-2) h(N-3) 

h(l) 
h(2) 
h(3) 

h(0) 

(5.96) 

We shall show that, whereas brute force evaluation of (5.93) for 
z = 0 , 1 , 2 , . . . ,7V — 1 requires T V 2 multiplications, efficient evaluation over all N 
values of i requires only 2N — K multiplications, where K is the number of 
integer factors of N including 1 and TV. 

Since the sequences h(n) and g(n) have period TV and are represented by TV 
samples, their spectra take discrete values at k = 0 , 1 , 2 , . . . , TV — 1, where k is 
the transform sequence number. The circular convolution given by (5.93) is 
equivalent to the time domain convolution in (5.70) at sample numbers 0, 
1,..., TV — 1, and again (5.73)-(5.76) are valid. However, as a consequence of the 
periodicity of g(n) and h(n), (5.76) can be further reduced. It is reduced by setting 
T = l/fs where fs is the sampling frequency in hertz. Using this substitution gives 

z = e - j 2 n f T = e - j 2 n f l f s (5.97) 

Evaluation of (5.97) a t / = kfJN yields z = e~j2nk/N, and this in turn yields 

zN = 1 and zN + n = zn (5.98) 
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Combining (5.98) and (5.76) as applied to periodic sequences yields 

A(z) = a(0) + a(N) + [a(l) + a(N + l)]z + • • • 

+ [a(N - 2) + a(2N - 2)]zN~2 + a(N - l)zN~1 (5.99) 

which shows the sequence a{ri) has the period TV. Direct evaluation of (5.76) mod 
(zN — 1) is shown in Fig. 5.1. The remainder of the division in Fig. 5.1 is the same 
as (5.99), so we conclude that if g(n) and h(n) are periodic sequences with Fourier 
transforms G(z) and H(z), then 

A(z) = G(z)H(z) mod (zN - 1) (5.100) 

The next section shows that the right side of (5.100) can be further expanded 
into a summation using the polynomial version of the CRT. This summation can 
be used to compute the circular convolution (5.93) in the minimum number of 
multiplications. 

5.5 Evaluation of Circular Convolution through the CRT 

The coefficients of A(z) given by (5.100) determine the a(i) values that specify 
the circular convolution given by (5.93). Therefore, evaluation of A(z) results in 
evaluation of circular convolution. We shall show that A(z) can be evaluated 
with the minimum number of multiplications possible by expressing it in terms 
of the polynomial version of the CRT. 

From (5.99) we have deg[^4(z)] < TV. From (5.61) we have a factorization of 
zN — 1 into polynomials with rational coefficients. All conditions of the C R T are 
met and 

A(z) E Alz)Bx{z) 
• l\N 

mod (zN - 1) (5.101) 

where 

At(z) = [G(z)H(z)] mod Q(z) (5.102) 

z N - 1 1 
Bi(z) = (5.103) 

Q(z) {(zN - l)/[Q(z)]} mod Q(z) 

Let K be the number of integral factors of N including 1 and N. Let 
di = deg[Cj(z)] and note that (see Problem 9) 

Y,dt = N (5.104) 
l\N 

These facts lead to the following result. 

EVALUATING A(Z) IN 2N — K MULTIPLICATIONS The convolution on the right 
side of (5.102) has degree < dx and the minimum number of multiplications in 
which its noncyclic convolution can be computed is 2dx — 1. There are K such 
convolutions to be computed for a total number of multiplications, which 
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(5.104) gives as 

£ ( 2 4 - l) = 2N-K (5.105) 
l\N 

We have shown that the convolution evaluation can be accomplished in IN — k 
multiplications. Winograd has proved that this is the minimum number of 
multiplications [W-7]. 

EVALUATING A CIRCULAR CONVOLUTION A S an example, let G(z) and H(z) be 
the transforms of two periodic sequences of length 2 given by 

G(z) = g(l)z + g(0) (5.106) 

H{z) = h(l)z + h(0) (5.107) 

Then A(z) = a(l)z + a(0) is also a length-2 sequence, C(z) = z2 — 1 and Eqs. 
(5.63) give Bx(z) and B2{z). In the present case 

A,(z) = [G(z)H(z)] mod (z - 1) = [ 0 ( 0 ) + # ( ! ) ] [h(0) + /z(l)] (5.108) 

A2{z) = [G(z)H(z)] mod (z + 1) = [g(0) - 0(1)] [h(0) - A(l)] (5.109) 

Combining the equations for Bt(z) and Ax{z), I = 1,2, gives 

^ ( z ) = ^ 1 ( z ) ^ 1 ( z ) + ^ 2 ( z ) ^ 2 ( z ) 

- *{[0(O) + 0(1)] [A(0) + A(l)] - [0(0) - ^(l)] [A(0) - A(l)]}z 

a( l ) 

+ i ( f e ( 0 ) + 0(1)] [A(0) + A(l)] + [0(0) - 0(1)] [h(0) - A(l)]} 

fl(0) (5.110) 

The minimum number of multiplications is determined by N = 2 and K = 2, and 
so 27V — K = 2. One option is to let 

multiplication No. 1 = [0(0) + 0(1)] [h(0) + /z(l)] 

multiplication No. 2 - [0(0) - 0(1)] [/z(0) - /z(l)] (5.111) 

and to use two shifts to account for the two factors of \ in (5.110). Another 
option is to include these factors in one of the sequences. This minimizes 
operations if one sequence is fixed and the other variable. 

5.6 Computation of Small N DFT Algorithms 

A D F T of dimension N is defined by 

X = (l/N)WEx (5.112) 

where X is the TV-dimensional output vector of D F T coefficients and x is the 
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TV-dimensional input vector. In this section we show that certain DFTs can be 
put in the form of circular convolution. First, we- shall give an example to 
demonstrate what is meant by circular convolution in the context of a DFT 
matrix. Next, we shall show a method for converting a DFT matrix into a 
circular convolution. Then we shall apply the circular convolution theory to the 
evaluation of a DFT. 

Consider the evaluation of (5.112) for the 5-point DFT [K-l]. In this case 

E = 

0 0 0 0 0 
0 1 2 3 4 
0 2 4 1 3 
0 - 3 1 4 2 
0 4 3 2 1 

(5.113) 

To change (5.113) to circular convolution, the first row and column must be 
removed so the remaining DFT is 

(5.114) 

Interchanging the last two rows and last two columns of the square matrix in 
(5.114) gives 

1(1) w2 w3 w4~ x(l) 
1(2) 1 w2 w4 w1 w3 42) 
1(3) ~ 5 w3 wl w4 w2 x(3) I 
1 (4 )_ _w4 w3 w2 wY_ x(4) 

L 

i ( i ) -
1(2) 
1(4) 
1(3) 

W1 

w2 

w4 

w3 

w2 

w4 

w3 

w1 

w4 

w3 

w1 

w2 

w3~ 

w2 

w4 

x(l) 
x(2) 
x(4) 
x(3) 

(5.115) 

Equation (5.115) is similar to circular convolution, but the multipliers in the 
matrix shift left one place if we drop down one row in the matrix. Circular 
convolution requires that the multipliers be shifted to the right. This can be 
accomplished by reversing the order of x(2), x(4), and x(3) to give 

x(l) 
x(3) 
x(4) 
x(2) 

(5.116) 

Note that the output indices in (5.116) are k = 1,2,4.3. The inputs result from 
keeping x(l) in the first row of the DFT and reversing the other inputs top to 
bottom, giving the input indices n = 1,3,4,2. Making the changes 

a ^ [ ! ( l ) , ! ( 2 ) , ! ( 4 ) , ! ( 3 ) ] T 

h^(W\W3,W4,W2f (5.117) 

g^[x(l) ,x(3),x(4),x(2)] T 
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in (5.96) and comparing with (5.93) shows that (5.116) is the matrix form of 
circular convolution of two sequences of length 4. Note that each entry in the 
matrix in (5.116) shifts one place to the right in moving from one row to the next 
one down. This is characteristic of the shift in the data in (5.93). The original 
D F T is evaluated from 

*(<>W I (5-118) 
X(k) = i-x(O) + X(k), k= 1,2,3,4. (5.119) 

A little luck is required to achieve circular convolution by shifting D F T matrix 
entries, input data, and output coefficients as we have done. Fortunately, the 
primitive roots of TV and indices in Section 5.1 provide a mapping that 
systematically formats the D F T as a circular convolution. The mapping is 
specified by (5.10) and converts multiplication of numbers modulo TV to addition 
of their indices modulo 0(TV). 

The mapping requires that TV have a primitive root a, which it does if and only 
if T V = 2, 4, ph or 2pk where p is a prime number other than 2 and k ^ 1. 
Furthermore, only </>(/?) numbers less than TV are generated by a\ 
n = 0 , 1 , . . . ,TV — 1. If TV is a prime, then 4>(N) = TV — 1 and the integers 
1,2, . . . , TV — 1 are all generated by an for n = 0 , 1 , . . . , TV — 1. If TV = pk where 
k > 1, then powers of the primitive root do not generate all of the integers 
1,2,. . . ,TV — 1 and a subset of the exponents kn in (5.112) must be generated 
in a separate D F T . In any case the number 0 is not generated by a primitive 
root to any power and x(0) and X(0) must be handled separately. The two 
cases of TV equal to a prime number and TV equal to a power of a prime number 
follow. 

D F T s WHOSE DIMENSION IS PRIME [R-64] The D F T coefficient X(k) is 

computed using 
J J V - 2 

X(alk) = — X W'^xfa-1*) (5.120) 
^ ln=0 

where a is a primitive root of TV, am is computed modulo TV, m is computed 
modulo (j)(N), and x(a~ln) is the discrete time value of x(t) at t = (a~ln mod TV)T. 
The negative sign on ln causes the entries in the rows of WE to move one place to 
the right in moving from any row to the next lower row, as exemplified by 
(5.116). A positive sign moves the entries to the left as exemplified by (5.115). 
Table 5.3 illustrates computation of indices for a 5-point D F T that uses a = 3. 
Note that the exponents evaluate the 4 x 4 matrix in (5.116). 

Equation (5.120) is equivalent to 

X = (l/N)W*x (5.121) 

where X = [Z( l ) , X(a), X(a2),... ,X(aN~2)]T, x = [x(l) , x(aN~2), x(aN~3), 
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. . . , x ( ^ 1 ) ] T , all numbers in parentheses are computed modulo TV, and 

WE = 

w1 w'-1 • 
w1 • w2 

w2 w1 • w°? 

w^2 w"* • • wl 

(5.122) 

Table 5.3 

Computa t ion of Indices and Exponents for a 5-Point D F T 

k 4 In / f c - / „ (mod 4) 3 ( i k - w ( m o d 5) 

1 0 0 0 1 
1 3 3 
2 2 4 
3 1 2 

2 1 0 1 2 
1 0 1 
2 3 3 
3 2 4 

4 2 0 2 4 
1 1 2 
2 0 1 
3 3 3 

3 3 0 3 3 
1 2 4 
2 1 2 
3 0 1 

A one-to-one correspondence exists between these equations and the equations 
for circular convolution: 

a + - X , g + - x , ^ ±-W~E (5.123) 

The entries in both and in Pf^move one place to the right going from one row 
to the next row down. Paralleling the development of (5.118) and (5.119), 

*(°)=^Y*(«) (5-124) 
™ n = 0 

X(k) = X{k) + (l/N)x(0), & = 1,2, . . . , TV - 1 (5.125) 

This completes circular convolution evaluation of a D F T whose dimension is 
prime. 

D F T s WHOSE DIMENSION IS A PRIME POWER [A-26, K - l , S-5, W -35] Let 

TV = pL, where p is a prime number and L is an integer, and let a, be a primitive 
root of TV. Then -CO , -CO , . . . , £0 does not include the numbers 0, p, 



126 5 FFT ALGORITHMS THAT REDUCE MULTIPLICATIONS 

2/?,..., N — p. Let £f be the set with the p factors removed, 

Se = {0,1,2, . . . ,pL - 1} - {Q,;?, 2/7,..., 0 ? L - 1 - l)p} 

pL integers 
(5.126) 

pL 1 integers 

Let M be the number of integers in the set y . Then (5.126) gives M = 
/?L~ — 1). A circular convolution evaluation of a DFT is computed based on 
these M numbers. An auxiliary computation is required for the remaining 
pL — M rows and columns. The computation is illustrated for N = 3 2 and is 
easily generalized. 

For N = 9 we have Sf = {1,2,4,5,7,8], which defines a 6-point DFT that we 
evaluate with the aid of Table 5.1: 

X = ±w% 

2 
2 
4 
8 
7 
5 
1 

(5.127) 

where X = [1(1), 1(2), 1(4), X(S), X(l), X(5)]T and x = [x(l), x(5), x(7), x(8), 
x(4), x(2)]T. Columns deleted to form E define a 3-point transform, 

k\n 0 3 6 

X = ±WBx, E = 0 0 0 
0 3 6 
0 6 3 

(5.128) 

where X = [1(0), 1(1), 1 (2 ) ] T and x = [x(0),x(3),x(6)]T. Six of the 9-point 
DFT outputs are given by 

X(l) 
X(2) 
X(4) 
X(S) 
X(l) 
X{5) 

•1(1) 
1(2) 
1(4) 
1(8) 
1(7) 
1(5) 

X(\) 
1(2) 
1(1) 
1(2) 
1(1) 
1(2) 

(5.129) 

Rows deleted to form E define another 3-point transform. 

r ^ ( o n -x(0) + x(3) + x(6) 
X(3) = $w* x(l) + x(4) + x(7) 
X(6) x(2) + x(5) + x(8) 

(5.130) 

where the x(0) + x(3) + x(6) entry in (5.130) is given by 1(0). 
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EVALUATING A D F T BY CIRCULAR CONVOLUTION For TV = 3, the D F T is defined 
b y 

E = 
' 0 0 0" 
0 1 2 
0 2 1 

Equation (5.121) gives 

"1 (1 )" 1 ~WX w2' "x( l )" 
X(2)_ ~ 3 w2 _x(2)_ 

(5.131) 

(5.132) 

which is equivalent to circular convolution of two sequences of length 2. Let 

g ( 0 ) < - x ( l ) , h(0)*-W1, a ( 0 ) * - l ( l ) 

g{\) <-x(2), h{\)^W2, a ( l ) < - l ( 2 ) (5.133) 

If the input data is scaled by y, (5.110) and (5.111) give the following optimum 
ilgorithm for computing an N = 3 D F T : 

tl=±[x(l) + X(2)], h = i W l ) - x(2)] 

mi = ~\h, m2 = 

si = HO), s2 = mx + Si 

X(0) = s1 + t1, Z ( l ) = s2 + m2, 

(5.134) 

X (2) = s 2 - m 2 

Evaluation of (5.134) requires six additions, one multiplication, and one shift 
(assuming the input data is scaled by ^). 

We observe that the small N algorithm for TV = 3 is rather easy to derive 
without the C R T polynomial expansion. For larger values of TV, the algorithm is 
not obvious and requires considerable guessing, if indeed it can be determined at 
all without the systematic approach provided by the C R T polynomial expansion 
(see discussion in [A-26]). Another advantage of the systematic approach is that 
it always results in multiplier values that are either purely real or imaginary, and 
not complex. For example, W1 and W2 are complex conjugates, and (5.111) 
shows that W1 and W2 appear together as a sum or difference. The sum is real; 
the difference is imaginary. 

Equations (5.131)—(5.134) illustrate the derivation of a 3-point D F T . The 
CRT expansion used in the derivation is defined by (5.101)—(5.103) and contains 
just two terms. There will be just two terms in (5.101) for any value of TV that is a 
prime number, as discussed in greater detail in Section 5.12. When TV is a power 
of a prime number, the approach for the 9-point D F T in (5.127)—(5.130) is used. 
We have illustrated the derivation of the small TV D F T algorithms and shall 
summarize those commonly used. 

SUMMARY OF SMALL TV ALGORITHMS Table 5.4 summarizes the small TV algo
rithms [N-23, S-5, S-31, S-32, T-22]. The following statements describe the 
algorithms. 
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Table 5.4 

Summary of Small N Algorithms 

N=2: 
m0 = 1 x [x(0) + JC(I)], m1 = 1 x O(0) - x(l)] 

X(0) = m0, X(l) = m1 

2 multiplications (2), 2 additions. 
AT =3: W = §TT. 

t1 = x(l) + x(2) 
m0 = 1 x O(0) + t{\, fn1 = (cost/ - 1) x /1 ? m2 = 0'sinw) x 0(2) - x(l)] 

s1=m0 + m1 

X(0) = m0, X(l) = sx+ m2, X(2) = Sl - m2 

3 multiplications (1), 6 additions. 
N=4: 

h = x(0) + x(2), t2 = x(l) + x(3) 
ra0 = 1 x + t2), mt = 1 x (t± - t2) 

m2 = 1 x 0(0) - x(2)], m3=jx 0(3) - x(l)] 
Z(0) = m0, X(l) = m2 + m3, X{2) = mu X{3) = m2 - m3 

4 multiplications (4), 8 additions. 
N=5: u = \%. 

tx = x(l) + x(4), t2 = x{2) + x(3) 
t3 = x(l) - x(4), t4 = x(3) - x(2) 

t5 = t1 + t2 

m0 = 1 x Oo + t5) 
m1 = [§(cosw + cos2w) — 1] x t5 

m2 = -̂(cosw — cos2w) x (tx — t2), m3 = — y'(sinw) x (t3 + t4) 
m4= — j(sin u + sin 2w) x t4, m5 = j'(sin u — sin 2w) x t3 

Sl = m0 + ml> S2 = Sl + m2> 3̂ = ^3 — ^4 
j 4 = Ji — m2, £5 = W3 + ra5 

Z(0) = mQ, X{\) = s2+ s3, X(2) = s4 + s5 

X(3) = s4- s5, X(4) = s2-s3 

6 multiplications (1), 17 additions. 
N =1: u = ±n. 

h = x{\) + x(6), t2 = x{2) + x{5), t3 = x(3) + x(4) 
f4 = + f2 + t3, t5 = x{\) - x(6), t6 = x{2) - x(5) 

tn = x(4) - x(3) 
m0 = 1 x [x(0) + t4] 

m i = ^(cos u + cos 2u + cos 3u) — 1] x t4 

m2 = j(2cosw — cos2w — cos3w) x (tx — t3) 
m3 = |-(cos u — 2 cos 2u + cos 3u) x (t3 — t2) 
m4 = ̂ (cosw + cos2w — 2cos3w) x (t2 — t±) 

(continues) 
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Table 5.4 (continued) 

m5 = — j^(sinu + sin2w — sin3w) x (t5 + t6 + tn) 

m6 = 7j(2 sin u — sin 2u + sin 3u) x (?7 — t5) 
m i — 7 i ( s m w — 2sin2w — sin3w) x (t6 — t7) 

m8 = j ^ ( s in u + sin 2u + 2 sin 3M) x ( r 5 — t6) 

s1=mQ + mu s2 = Si + m2 + m3 

s3 = st — m2 — m4, s4 = sx — m3 + m4 

s5 = m5 + m6 + m 7 , s6 = m5 — m6 — ra8, s 7 = ra5 — ra7 + ra8 

X(0) = m 0 , JT(1) = s2 + s5, X(2) = s3 + s6, X(3) = s4 - s7 

X(4) = s4 + sl9 X(5) = s 3 - s6, X(6) = s 2 - s 5 

9 multiplications (1), 36 additions. 

N = 8: u = f 7i. 

r x = x(0) + x(4), t2 = x(2) + x(6), f 3 = JC(1) + x(5) 

tA = x ( l ) - x(5), r 5 = JC(3) + x(7), r 6 = JC(3) - x{l) 

h = h + t2, t8 = t3 + t5 

m0 = 1 x (t7 + f 8) , mt = \ x (t7 - t8) 

m2 = 1 x ( r j - f 2 ) , m 3 = 1 x O(0) - x(4)] 

ra4 = (cosw) x (? 4 - r 6 ) , m5=j x (t5 - t3) 

m 6 = j x [x(6) — x(2)] , ra7 = ( —ysinw) x (t4 + f6) 
si = m3 + M 4 > s2 = m3 — m4, s3= m6 + m1, s 4 = ra6 — ra7 

X ( 0 ) = m o , Z ( l ) = + j 3 , Z(2) = m 2 + m 5 , Z ( 3 ) = s 2 - s 4 

Z(4) = m 1 ? X(5) = s2 + s4, X(6) = m2-m5, X(7) = sx - s3 

8 multiplications (6), 26 additions 

N =9: u= $n. 
tx = x ( l ) + x(8), t2 = x(2) + x(7), t3 = x(3) + JC(6) 

f4 = x(4) + x(5), f5 = *i + ' 2 + t4, t6 = x(l) - x(8) 

tn = x(l) - x(2), t8 = x(3) - x(6), t9 = x(4) - x(5) 
ho = t6 + t1 + t9 

m0 = 1 x [x(0) + t3 + t5], wii = | x f3, ra2 = — f x r 5 

m3 = ^(2cosw — cos2w — cos4w) x ( ^ — t2) 
m4 = ^-(cos w + cos 2u — 2 cos 4u) x (t2 — t4) 
m5 = ^(cosu — 2cos2w + cos4w) x (t4 — r : ) 

m6 = (-7'sin3w) x £ 1 0 , m 7 = (-7*sin3w) x r 8 , m 8 = (7'sinw) x (t7 — t6) 
m9 = (_/sin4w) x ( r 7 - t9), m10 = (Jsinlu) x (t6 — t9) 
Si = m0 + m2 + m2, s2 = s± — mu j 3 = ^ + m 2 

^ 4 = m 3 + m4 + j 2 j ^5 = — m4 + m 5 + s 2 , 5 6 = — m 3 — m5 + 5 2 

5 7 = m 8 + m 9 + m1, s8 = — m9 + m 1 0 + m 7 , 5 9 = — m8 — m10 + m1 

X(0) = m0, X{\) = s4 + slt X(2) = s 5 - s 8 

X(3) = s3+ m6, X{4) = s6+ s9, X(5) = s6 - s9 

X(6) = s 3 - m6, X(7) = s5 + s8, Z(8) = s4 - s, 
11 multiplications (1), 44 additions. 

(continues) 
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Table 5.4 (continued) 

+ tie, tis = h + tn 
+ t13, tn = t9 tl3 
+ t14, tl4 — t8 . ~ tl4 
tie = til ~ tio 
m1 = 1 x (t17 - I '22) 

AT =16: u = -faz. 
t l = x(0) + x(8), t2 = x(4) + x(12), t3 = x(2) + x(10) 
t4 = x(2) - x(10), t5 = x(6) + x(14), t6 = x(6) - x(14) 
t7 = x(l) + x{9), t8 = x(\)- x(9), t9 = x(3) + x(\l) 

t10 = x(3) - x(ll), tlx = x(5) + x(13), hi = x(5) - x(l3) 
h* = *(7) + x(15), t14 = x{l) - x(15), / 1 5 = h + h 

tie — ts + t5, t17 = t15 

ti9 = h — ?n, 2̂0 = *9 
2̂2 — ti% + t2o, t23 = t8 

tl5 = 1̂0 + 1̂2> 
m0 = 1 x (t17 + t22), 
m2 = 1 x (f15 - r16), ra3 = 1 x (?! - r2) 

m4 = I x [x(0) - x(8)], m5 = (cos2w) x (t19 - t21) 
m6 = (cos2w) x (t4 — t6), m7 = (cos3w) x (t24 + t26) 

m8 = (cos u + cos 3u) x f24, m9 = (cos 3u — cos u) x ?26 

™io =7 x (t20 - tl8), miy =j x (t5 - t3) 
m12 =j x (x(12) - x(4)), m13 = (-jsin2w) x (t19 + t21) 

m14 = (-jsin2w) x (t4 + ?6), m15 = (-y'sin3w) x (r23 + f25) 
m1 6 = ;(sin3w — sinw) x t23, m17 = -j(sinw + sin3w) x t25 

s1 = m3 + m5, s2 = m3 — m5, s3 = + m13 

s4 = m13 — ml l 5 s5 = m4 + m6, s6 = m4 — m6 

s7 — m8 — m7, s8 = m9 — m7, s9 = s5 + s7 

s10 = s5 ~ Sl, Sll = Se + 8̂5 Sl2

 = 6̂ "~ 8̂ 
s13 = m12 + m14, s14 = m12 - m14, s15 = m15 + m16 

Sie = m15 ~ mll, Sll = S13 + S15, 1̂8 = 1̂3 ~~ 1̂5 
Si9 = Si4 + !̂6, 2̂0 = 1̂4 ~ 1̂6 

X(0) = m0, X(l) = s9 + s17, X{2) = sx+s3 

X{3) = s12 - s20, X(4) = m2+ m10, X(5) = slx + s19 

X(6) = s2 + s4, X(l) = s10 - s18, Z(8) = m1 

^(9) = s10 + s18, X(10) = s2- s4, X{\\) = S l l - s19 

X(12) = m2- m10, X(13) = s12 + s20, X(14) = Sl - s3 

X(15) = s9-s17 

18 multiplications (8), 74 additions. 

(1) The algorithms are structured to compute X(k) = Y,n = o x(n)Whn and 
therefore do not contain the factor l/N. 

(2) Input data to the small N algorithm are x(0), x ( l ) , . . . ,x(N — 1) in 
natural order. This input data may be a complex sequence. 

(3) Output data are X(0), X( l ) , . . . , X(N - 1) in natural order. 
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(4) % % , . . . , % _ ! are the results of the M multiplications. 
(5) t u t2,.. • are temporary storage areas for input data. 
(6) Si, sr,... are temporary storage areas for output data. 
(7) The lists of input and output additions are sequenced and must be 

executed in the specified order. When there are several equations to a line, read 
left to right before proceeding to next line. 

( 8 ) Multiplications stated for each factor include multiplications by + 1 or 
±j. These trivial multiplications are stated in parentheses. Shifts due to factors 
of \ are counted as a multiplication. 

The I D F T can be computed from the preceding algorithms by one of the 
following methods: 

(1) Substitute — u for u. 
(2) Use any of the methods in Chapter 4 that compute the I D F T with a 

DFT . 

5.7 Matr ix Representation of Small N DFTs 

For analysis purposes, it is useful to put the small N DFTs into a factored 
matrix representation. The matrix representation can then be handled with 
powerful matrix analysis tools to arrive at the W F T A and the Good algorithm 
described in the next few sections. 

Formatting the small N algorithms as matrices is analogous to matrix 
factorization to derive FFTs . If N = 2 L , then L factored matrices represent the 
power-of-2 F F T , but the actual program stored in memory typically does an 
in-place computation of butterflies. The matrices are not stored since they 
are sparse and since storing the zero values would incur a large waste of 
memory. 

Likewise, the factored matrices representing small N D F T s have many zero 
entries and are not used to implement FFTs. Rather, the equations which 
minimize arithmetic operations are stored in memory. These equations do not in 
general have the symmetrical form of power-of-2 FFTs and therefore require 
more program storage. 

Let D be a small TV D F T . The C R T expression of the D F T makes it possible to 
combine input data using only additions. All multiplications can then be 
performed. Finally, more additions determine the transform coefficients. These 
operations are represented by 

D = S C T (5.135) 

where T accomplishes input additions, C accomplishes all multiplications, and S 
accomplishes output additions. 
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As an example, let N = 3. Then (5.134) is the optimum algorithm and has the 
following matrix representation: 

D = 
"1 1 0 
0 0 1 
0 0 1 

"1 0 0 0" 
0 1 0 0 
1 0 1 0 
0 0 0 1 

"1 0 0" 
0 1 0 
0 1 0 
0 0 1 

"1 0 
0 1 
0 1 

1 0 
0 1 
0 0 

0 0 

c 

7-73/2 _ 

(5.136) 

Note the following characteristics of the C matrix: 
(1) It is a diagonal matrix implementing all the small N algorithm 

multiplications. 
(2) The numbers along the diagonal are either real or imaginary, but not 

complex. 
(3) The real numbers along the diagonal may be grouped on one side of the 

C matrix; the imaginary ones may be grouped on the other side. 

5.8 Kronecker Product Expansions 

Development of RMFFT algorithms from the small N DFTs can be 
accomplished using Kronecker product expansions [C-30, E-17, E-19, E-20, 
G-12, W-35, Y-6]. Let 

A = (akl) (5.137) 

be a K x L matrix, where k = 0 ,1 ,2 , . . . , K — 1 and / = 0 ,1 ,2 , . . . , L — 1. Let 
B = (bmn) be an M x N matrix. Then their Kronecker product is A ® B, where 

A®B = 

a0,0B 
aulB, 

*0,L 
2l,L 

iB 
iB (5.138) 

__aK-if0B aK-1AB ••• « K - I , L - I ^ _ 

The Kronecker product causes B to be repeated KL times, each time scaled by an 
entry from A. Since B is M x N, A (g) B is KM x LN. Further discussion of 
Kronecker products is in the Appendix. 

LARGE N ALGORITHMS FROM SMALL ONES Small N algorithms can be com
bined into large TV algorithms using their Kronecker product. Let DL,..., D2, Dx 
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be small TV D F T algorithms with naturally ordered indices. Their dimensions are 
NL x NL,...,N2 x 7V2, and N1 x Nx, respectively. Let their Kronecker product 
be the TV x TV matrix D, where N = NL • • • A^A^ and 

D = DL® ••• ®D2®D1 (5.139) 

For example, let L = 2 , N2 = 2 and Nx = 3. Then, neglecting the T/TV scaling, 

D=WE = D2®D1 = WiN/N2)E2 ® W(N/Nl)El = W3E2 ® W2El (5.140) 

where Dt=WEi, i=l,2, W2 = e-j2n/2 = W3, W1=e~j2lll3=W2, W=e~j2nl6 

*i\«i0 1 2 
^ \ « 2 0 

£ 2 = 0 
1 

(5.141) 

and the matrix E, with possible k and n values that are consistent with the 
Kronecker product on the right side of (5.140), is given by 

n 0 2 4 3 5 1 
0 ~ 0 0 0 0 0 0 
4 0 2 4 0 2 4 
2 0 4 2 0 4 2 

3 0 0 0 3 3 3 
1 0 2 4 3 5 1 
5 0 4 2 3 1 5 

( 5 . 1 4 2 ) 

We wish to show that D is in fact a large N algorithm for computing the D F T 
when the TV-point input and output data are ordered by the C R T and the SIR (or 
vice versa). We consider first the two-factor case and then the L-factor case. 

TWO-FACTOR CASE Let L = 2 , and let gcd(7V l 5 7V 2 ) = 1. Then 

k2\n2 

N2 

No 1 
0 

0 7 V 2 - 1 

fciVh o 

Nx - 1 L 0 Nx - 1 

D = D2®D1 

N 2 - l 

1 

Nx - 1 
0 

7VX - 1 

1 

(5.143) 

ff/(N/N2)E2 jy(N/NL)EI 

(5.144) 
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where the indices on the matrices of exponents E2 and E1 are shown explicitly in 
(5.143) and are in natural order, (tf/(N/Nl)ki'n) is an Nt x TV : matrix, and 
(tffiN/N^ni + iN/Nok^ i s a n NlN2 x N1N2 matrix defined by the Kronecker 
product, i.e., for each value of k2 and n2, k1 and nl must progress through values 
defined by Ex in (5.143). 

We need a general solution for the values of k and n in (5.144). We note that 
the SIR defines the n index for E in (5.142), so we try the SIR as a general 
solution for n and verify that it is indeed correct. For the two-factor case under 
consideration the SIR index for n is given by 

n = [(N/N2)n2 + (N/N^n,] mod TV (5.145) 

Using the SIR for n we arbitrarily define k by the general formula 

k = a2k2 + a1k1 (5.146) 

where ax and a2 are to be determined. From (5.145) and (5.146) we get 

kn = 
TV TV 7 /TV 7 TV 

-—a2k2n2 + -—a1k1n1 + — « i M 2 + — a2k2n1 

LN2 N1 \N2 N± 

mod TV 

(5.147) 

If we can eliminate terms containing k{rij for i / y, then (5.147) will determine kn 
strictly on the basis of entries k1n1 and k2n2 which come from Ex and E2, 
respectively. The advantage of this is that DFTs D1 and D2 can be applied to the 
data to compute the transform sequence without exponentials, called twiddle 
factors, being required between the application of Dx and the application of 
D 2 [ B - 1 , E-17, G-5, W-35] (see also Problems 17-19). The twiddle factors 
involve exponents kxn2 or k2n1 and require additional multiplications for the 
D F T computation. 

The value of kn will be a linear combination of only k2n2 and kxnx if the term 
in parenthesis is always zero. This will be true for all / q , nx = l,2,...,N1 — 1 
and all k2, n2 = 1 ,2 , . . . , N2 - 1 if 

N N 
— ax = 0 (moduloTV) and —a2 = 0(moduloT V ) (5.148) 

Furthermore, (5.144) shows that we get all the integers kn = 0 , 1 , . . . , TV — 1 
when kx, k2, nx, and n2 go through their possible values if 

TV TV TV TV 
— a2=—(modulo TV) and — a 1 =—(modulo TV) (5.149) 
TV 2 TV2 Nt Ni 

Applying the scaling axiom to (5.148) and (5.149) yields 

ax = 0 and a2 = 1 (modulo TV 2 ), a2 = 0 and ax = 1 (modulo TV : ) 

(5.150) 

If we identify aY = (N/N^^ and a2 = (TV/TV 2 )^ ( i V 2 ) , then a solution to (5.150) is 
given by (5.18). Making these substitutions for a1 and a2 in (5.146) shows that 
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the CRT determines the index k. If the SIR determines n, then we have shown 
that the C R T determines k. Both the SIR and C R T are valid integer 
representations. We conclude that if L = 2, then a sufficient condition for the 
Kronecker product of small TV D F T s to determine a large TV D F T is that the SIR 
and CRT determine the input and output indices, respectively. 

As an example, let N± = 3 and TV2 = 2. If the SIR determines n and the C R T 
determines k, then (5.140) yields 

n = [(6/2)n2 +(6/3)n±] mod 6 (5.151) 
k = [ ( 6 / 2 ) ^ 2 + (6/3) 2 /q] mod 6 (5.152) 

The k and n indices for (5.151) and (5.152) are in Table 5.5. The matrix of 
exponents (5.142) is unchanged if the k and n indices are interchanged. This is 
true in general and the derivation of k and n indices may be interchanged with no 
change in the D F T matrix (see Problem 30). In our derivation the SIR and C R T 
determined the n and k indices, respectively, so if the indices are interchanged the 
roles of the C R T and SIR are interchanged. Then the C R T and SIR determine 
the n and k indices, respectively. Note also that reversing the Kronecker product 
in (5.140) gives another Ematrix; the index determined by the SIR is ordered as 
0 , 3 , 2 , 5 , 4 , 1 ; the C R T ordering is 0 ,3 ,4 ,1 ,2 , 5. 

Table 5.5 

Indices for Dimension-6 D F T with n Determined by the SIR and k by 
the C R T 

n2 « i n (mod 6) k2 * 1 k (mod 6) 

0 0 0 0 0 0 
0 1 2 0 1 4 
0 2 4 0 2 2 
1 0 3 1 0 3 
1 1 5 1 1 1 
1 2 1 1 2 5 

L-FACTOR CASE It is easy to generalize the preceding arguments to the L-factor 
case (see Problem 15). The SIR determines n, and the C R T determines k (or vice 
versa). CRT and SIR representations require that TV1 ?TV2,... ,TVL be mutually 
relatively prime. Let TV = TVXTV2 • - • Nt • • • NL, and let D be an TV x TV matrix 
derived from (5.139). Then sufficient conditions for D to be a D F T matrix are 
that the input and output indices are determined by the SIR and CRT. 

At this point we have taken the Kronecker product of small TV D F T s for input 
vectors whose dimensions are relatively prime. We have obtained a valid large TV 
D F T with the input index determined by the SIR and the output index 
determined by the C R T (or vice versa). 

EQUIVALENCE OF 1-D AND L-D D F T S A S a result of the D F T indexing, k and n 
are represented by the L-tuples 

k = (fc L , . . . , fc 2 , fci) , n = (nL, . . . , 7 7 2 , 7 2 ! ) (5.153) 
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where the DFT is given by the Kronecker product of L matrices in (5.134). 
Substituting the CRT and SIR indices for k and n into X = (l/TV)Dx, where D is 
given by (5.139), yields 

j NL-1 JV2-I JVI-1 
X(kL,...,k2,k1)=- E ••• E E [DL(kL,nL) • • • 

™ nL = 0 n2 = 0 MI = 0 

x D2(k2,n2)D1(k1,n1)x(nL,. . . ,« 2 ,« i ) ] (5.154) 

where 

Di(ki9 nt) = WkiniN/Ni, W = e~j2nlN (5.155) 

Comparison of (5.154) and (5.155) with Table 3.2 shows that (5.154) defines an 
L-dimensional (L-D) DFT. The Kronecker product formulation transformed a 
one-dimensional (1-D) DFT into an L-dimensional DFT, and we conclude that 
1-D and L-D DFTs are equivalent if we properly order the input and output 
data. In our derivation we converted a 1-D DFT into an L-D DFT, but we can 
just as easily go the other way and convert an L-D DFT into a 1-D DFT. Thus 
we can evaluate a 2-D, 3-D,. . . , or L-D DFT with a 1-D FFT (or vice versa) 
simply by properly ordering the input and output data. 

From the alternative viewpoint of vector-matrix processing, the input to the 
1-D DFT is determined by the TV-dimensional vector x. Equation (5.154) shows 
that processing this input vector in TV-dimensional space can be reduced to 
processing vectors in TVrdimensional subspaces, z = l , 2 , . . . , L . As a con
sequence of the indexing, the processing is done in subspaces whose dimensions 
are relatively prime. 

From still another viewpoint, readers familiar with tensors will note that the 
data sequence may be defined as a tensor of the Lth rank having TV components 
and that (5.154) transforms the input data into a transform sequence that is 
another tensor of the Lth rank having TV components. 

As a final comment, using the SIR for both k and n also results in the 
equivalence of 1-D and L-D DFTs. In this case the equivalence is shown simply 
by substituting the SIR expressions for k and n into the DFT definitions (see 
Problem 42). 

5.9 The Good FFT Algorithm 

The Good algorithm in general minimizes the number of additions, but not 
the number of multiplications required to evaluate the RMFFT. The 
algorithm's structure was described in a 1958 paper by Good [G-12], but went 
largely unnoticed until after Cooley and Tukey published their 1965 paper 
[C-31]. However, the Good algorithm was not generally competitive with 
power-of-2 FFTs prior to the advent of the efficient small TV DFT algorithms. 
We shall assume that the small TV DFTs are used to evaluate the Good algorithm 
when stating algorithm comparisons in Section 5.14. 
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Good's algorithm evaluated with small N DFTs , where the N values are 
relatively prime, has also been called the prime factor algorithm [A-26, K- l , 
N-27] . The W F T A also requires relatively prime small N values, so we shall use 
the terminology "Good ' s algorithm" rather than prime factor algorithm. 

The algorithm will be illustrated by continuing the two index example of the 
previous section. Let N2 = 2 and Nx = 3. Then (5.154) gives the Good algorithm 
for L = 2: 

X{kM = \ £ W 3 k ^ \ £ W2k^x(n2,ni) 

3-point D F T for fixed n2 

I 

(5.156) 
n2 = 0 

where x(n2,k1) is defined by the 3-point D F T for fixed n2. A block diagram 
implementing the Good algorithm for N1 = 3, N2 = 2, and the C R T and SIR 
determining the data and transform sequence numbers, respectively, is shown in 
Fig. 5.2. If the SIR and CRT determine the input and output sequences, 
respectively, then the input and output indices in Fig. 5.2 are reversed. 

Data 
sequence 

number 

0 • 

3 - point DFTs 2-point DFTs 
Transform 
sequence 
number 

• 0 

Fig. 5.2 D F T for N, = 3 and N2 = 2. 

A block diagram implementing the Good algorithm for N1=2 and N2 = 3 is 
shown in Fig. 5.3. The SIR and C R T determine the data and transform sequence 
numbers, respectively (see Table 5.5). If the SIR and C R T roles are reversed in 
Fig. 5.3, then the input and output indices are interchanged. 

Generalizing the example for L = 2, let D = DL ® • • • ® D2® Dx. Then the 
input is expressed x(nL,..., nh ..., n2, nx) where 0 < nt < Nt. The summations 
over n1,n2,... ,nL are equivalent to processing an L-dimensional D F T since the 
summations result first in applying D l 5 then D 2 , then D3,..., and finally DL 

sequentially to the data. 
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Data 
sequence 
number 
0 • 

2-point DFTs 3-point DFTs 
Transform 
sequence 
number 

Fig. 5.3 DFT for Nx = 2 and N2 = 3. 

5.10 The Winograd Fourier Transform Algorithm 

This algorithm, in general, minimizes the number of multiplications, but not 
the number of additions, required to evaluate the RMFFT. Winograd not only 
was instrumental in developing the small N DFTs but also is credited with the 
nested structure, which has been termed the Winograd Fourier transform 
algorithm (WFTA) [S-5]. The WFTA results from a Kronecker product 
manipulation to group input additions so that all transform multiplications 
follow. The multiplications are then followed by output additions which give the 
transform coefficients. 

The Kronecker product manipulation used to generate the nested DFT uses 
the relationship 

(AB) ® (CD) = (A®C)(B® D) (5.157) 

where A, B, C, and D are matrices with dimensions M1 x Nu Nx x N2, 
M3 x N3, and N3 x N4, respectively. According to (5.135) a small N DFT of 
dimension Nt can be put into the form 

Di = SiCiTi (5.158) 

A DFT of dimension N = NL • • • N2N1 is given by (5.139). Using (5.158) in 
(5.139) gives 

D = (SLCLTL) <g> • • • ® (S2C2T2) <g> ( S i d r j (5.159) 

Using (5.157) repeatedly in (5.159) gives 

D = (SL (x) • • • ® S2 ® S.XCL ® • • <g> C 2 <g> C±)(TL ® • • • ® T2 ® 7\) 

output additions multiplications input additions 

(5.160) 
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Equation (5.160) is the WFTA. The Tk matrices are sparse, usually with 
nonzero entries of + 1, and therefore, TL® • • • ® T2® Tx specifies addition 
operations on input data. Each of the Sk matrices accomplishes output 
additions; their Kronecker product does likewise. D F T multiplications are 
specified by the Kronecker product of the Ck matrices, k = 1 ,2 , . . . ,L . 

Each of the Ck matrices is diagonal and is made up of entries that are either 
purely real or purely imaginary. The Kronecker product Q ® C2 ® • • • ® CL is 
a multidimensional array, described in the next section, that nests all the 
multiplications inside of the additions. 

5.11 Multidimensional Processing 

We have seen that 1-D and L-D DFTs are equivalent if either the C R T or the 
SIR determines the one-dimensional D F T data sequence index and the other (of 
the C R T or SIR) determines the transform sequence index. We have commented 
that using the SIR for both k and n also results in the equivalence of 1 -D and L-D 

In this section we shall further discuss DFTs defined by Kronecker products. 
We shall show that the two-dimensional D F T can be reformatted in terms of 
equivalent matrix operations to define a two-index F F T . The L-index F F T for 
L > 2 can also be defined in terms of matrix operations on an L-D array. In the 
L-D D F T the meaning of transpose and inverse transpose generalizes to a 
circular shift of indices with subscripts in reverse and natural orders, re
spectively. In the following let N1,N2,..., NL be mutually relatively prime, and 
let N = NXN2 ••• NL. Dt is an Appoint D F T for i= 1 ,2 , . . . ,L . 

TWO-INDEX F F T S Consider the convolution equation 

where the dimensions of the matrices Ax and A2 are M1 x Nx and M2 x N2, 
respectively; h is a vector with the N1N2 components h(0), h(l),..., 
h(N1N2 — 1); and y is a vector with the M1M2 components y(0),y(l),..., 
y(M1M2 — 1). Direct computation shows that all components of y are in the 
(M2 x M 1 )-dimensional matrix Y [E-17, S-5, S-6]. 

DFTs . 

Y = A2®A1h (5.161) 

Y=A1(A2H)T (5.162) 
where 

Y = 

X0) 
X I ) y(M1 + 1) 

y[(M2 - \)M{\ 
y(M1M2 - M X + 1) 

(5.163) 

y{Mx - 1) 

A(0) 
h(Nt) 

y(2M± -1) 

h(\) 
1) 

y{MxM2 - 1) 

h(N± - 1) 
£(27^ - 1) 

(5.164) 

h[(N2 - l)N±] h[(N2 - l)Nt + 1] h(N1N2 - I) 
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Applying the previous three equations to the Good and WFTA algorithms, 
respectively, yields 

Z = D2HD\ (5.165) 

Z=S2[S1CoT1( T2H)T]T (5.166) 

where SrCzT/ is the factorization of the small N DFT, Dh 

• d = diagfoCO), Ci(l) , . . . , C l (Mx - 1)] 
(5.167) 

C 2 = diag[c2(0), c2(l),c2(M2 - 1)] 

c2(0)Cl(0) c 2 ( l) C l (0) ••• ^ 2 - 1 ) ^ ( 0 ) 
c = c 2 (0) C l ( l ) ^(1)^(1) • • • c2(M2 - l ) C l ( l ) 

^ ( O ^ M i - l ) c 2 ( l ) C l ( M - l ) ••• c 2 (M 2 - l)Cl(M± - 1) 

(5.168) 

and Z and if are 7V2 x matrices. Let H(n2,n1) be the entry in row n2 and 
column for nt = 0,1,2,... ,Nt — 1, / = 1,2. Let the SIR specify the input 
index. Then H(n2, = x(n), where 

n = n2N1 +n1N2 (5.169) 

Let the entries in Z be Z(k2,k1) = z(k), where k1 = 0 , 1 , . . . , Nx — 1 and 
&2 = 0 , 1 , . . . , N2 — 1 are the row and column numbers, respectively, in natural 
order. Then since the SIR entered the data sequence into the H matrix, the CRT 
determines the output index k as (see Problems 25 and 26) 

k = k^Ni)*™ + ^i( iV 2 ^ ( i V l ) (5.170) 

As mentioned in Section 5.8, the roles of k and n can be reversed so that data is 
entered into the //matrix using the CRT and the coefficients in the Zmatrix are 
ordered according to the SIR. 

Figure 5.4 illustrates the 2-D processing. The evaluation of X = (l/N)D2 

(x) D{x shown pictorially in Fig. 5.4a corresponds to the operations in (5.112), 
where X and x are the DFT output and input vectors with entries ordered 
according to the CRT and SIR (or vice versa), respectively. Entries in x, D, Du 

and D2 are indicated pictorially in Fig. 5.4 by large dots. (The scale factor 1/7V is 
not shown.) 

Equivalent operations are shown in Figs. 5.4b-d. Dx operates on all columns 
of H (Fig. 5.4b), so that DXH has transform sequence numbers kx going down 
the column and data sequence numbers n2 across the rows. D2 operates on all 
columns of (Z^H) 7 (Fig. 5.4c) to convert the data to k2-k1 space. All operations 
are indicated in Fig. 5.4d. 
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THREE-INDEX F F T S The summation order in (5.154) can be interchanged with 
no effect on the answer. For L = 3 this interchange yields 

J J V i - l N2~l N3-l 

X(k3,k2,k1)=- Z E E [J>l(*l,«l)i>2(fr2,»2) 
ni = 0 n2 = 0 n3 = 0 

x D^n^Hin^n^)] (5.171) 

where H(n3,n2,n1) = x(ri) and n is specified by n1,n2, and n3. We shall define 
(5.171) in terms of matrix operations. To do this let A(lhn{) be an Mt x Nt 

matrix. Let 
JV3-I 

H3(h,n2,nx) = X A3{l3,n3)H(n3,n2,n^) (5.172) 
" 3 = 0 

Let H3 be the three-index array defined by H3 = (H3(l3,n2,n1)), where 
0 < l3 < M3, 0 < n2 < N2, and 0 ^ nx < Nx. The symbolic representation of 
(5.172) for all values of / 3 , n2, and n1 is defined as 

H3=A3H (5.173) 

Furthermore, we define the transpose of H3 by the circular shift of the indices to 
the left by one place, which gives 

HT

3 = ( # 3 ( / 3 , " 2 , * i ) ) T = (H3(n2,nl9!3)) (5.174) 

In like manner, let 

H2 = A2H\ and H± = AxHl (5.175) 

where H2 and H1 are M2 x Nx x M3 and Mx x M3 x M2 arrays, respectively, 

H2 = (H2(l2,nul3)) and H± = {Hx(lu l3, l2)) (5.176) 

Applying these equations to the Good algorithm for kt = lh i = 1,2,3, 

Z={D1{D2{D3Hfyy (5.177) 

where Z = (Z(k3, k2, kx)). If the SIR determines n through nu n2, and n3, then 
the C R T determines k through k3,k2, and kx, and the F F T output is X(k). As in 
the two-index case, the roles of C R T and SIR can be reversed. 

Let (2tfQuhJi)) be an M1xM3xM2 array, and let (^1(k1J2)), 
(jz?3(k3,l3)) and (stf2(k2J2)) be Nx x Mu N3 x M3, and N2 x M2 arrays, 
respectively. Let 

Mi - 1 

tfi(kl9l3,I2)= I ^i(fci,/i)^(/i,/3,/2) (5-178) 
h = o 

Let jex be the Nx x M3 x M2 array J^f1 = (J^(ku l3, l2)) and define 

! = (5.179) 

Let the inverse transpose of tff x result from the circular shift of the indices to the 
right by one place as follows: 

j ^ - T = (jtf(l2,kul3)) (5.180) 
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Let 

and 3 — si 3 ffl 2 
(5.181) 

Applying these equations to the nested algorithm yields 

z = s3(s2(s1 Co r 1 ( r 2 ( r 3 i / ) T ) T ) " T ) " T 

where the SIR and CRT yield the input and output indices (or vice versa), 
respectively; H = (H(n3,n2,n1)); (C(/ l 5 / 3 , /2)) is an M1 x M3 x M 2 array; and 

(5.182) 

(a) (b) 

Fig. 5.5 Meaning of (a) transpose and (b) inverse transpose in three-index processing. 

Fig. 5.6 Conversion of 30-point 1-D DFT evaluation to equivalent 2-, 3-, and 5-point 3-D DFT 
processing. 
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if Q = diagfe(O), . . . , Ci(Mi - 1)), / = 1,2,3, then 

C ( / 1 , / 3 , / 2 ) = c 1 ( / i ) c 3 ( / 3 ) c 2 ( / 2 ) (5.183) 

Figure 5.5 illustrates the meaning of transpose in a 3-D right-hand coordinate 
system. Transpose is a right-hand rotation about the diagonal from the origin in 
a cube containing the data. Inverse transpose is a left-hand rotation. 

Figure 5.6 illustrates the 3-D processing in (5.182) for Nt = 2, N2 = 3, and 
N3 = 5. D3 is applied to both planes perpendicular to the nx axis as shown. It is 
applied to each column of data parallel to the n3 axis using matrix-vector 
multiplication. Only two of six D3 matrices are shown pictorially in Fig. 5.6. 
Similar remarks apply to Dx and D2. Entries in Du D2, D3, and Hare indicated 
pictorially in Fig. 5.6 by large dots. 

MULTI-INDEX F F T S The definition of transpose and inverse transpose as a 
circular shift one place to the left and right, respectively, carries over from the 
three-index case. In the general case the Good algorithm is given by 

Z=(D1(D2(---(DLH)Y)'--)T (5.184) 
where H = (H(nL,..., n2, n,)) and Z = (Z(kL,..., k2, kx)) are L-dimensional 
arrays. Using the same Z and H in the W F T A yields 

Z = SL("' (S^Co T 1 ( T 2 ( • • • {TLHf • • • ) T ) T ) - T r T • • • T T (5.185) 

where C = (C( / 1 ? / 2 , . . . , lL)) is an Mx x M2 x • • • x ML array and 

CQu h,..., k) = c2{l2) • • • cL(lL) (5.186) 

SIGNIFICANCE OF THE MULTI-INDEX F F T S The matrix representation of the 
small N D F T s showed that Tt and St are matrices that can be implemented with 
additions. All multiplications are lumped in the C array. Since the Ct are 
diagonal matrices, only one term appears in their Kronecker product in array 
location ( / l 3 / 2 , . . . , lL) as specified in (5.186) (see Problem 24). As a consequence, 
the total number of multiplications is the number of points in the C array. Each 
multiplier c2(l2),... , c L ( / L ) is either real or imaginary and so 
C ( / L 3 / 2 , . . . , lL) is real or imaginary. 

Let M(L) be the total number of real multiplications to compute the R M F F T 
of a real input using (5.185). Note that the numbers in the C array are either real 
or imaginary and that T1(T2 • • • (TLH)T • • - ) T is also an array of real numbers. 
Therefore 

M(L) = M1M2 • • • ML — K X K 2 - • • KL (5.187) 

where Km, m = 1 ,2 , . . . , L, is the number of multiplications by + 1 or + j for the 
index lm in (5.186). Multiplications by + 1 or ±j are counted when specifying 
nested algorithm equations to account for the term K 1 K 2 • • • K L in (5.187). 

An estimate of the number of multiplications can be made by discarding the 
second term in (5.187). If we assume M{ ^ Nh then M(L) & N1N2 • • -NL. For 
the power-of-2 F F T the total number of real multiplications are the order of 
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27Vlog2(TV/2), so a reduction of multiplications of the order of 2 log2(7V/2) might 
be expected when using the nested algorithm instead of the power-of-2 
algorithm. This reduction is optimistic since, for larger values of Mh Mt > Nt. 
The Good algorithm does not group the multiplications and in general requires 
more multiplications than the WFTA. 

Redundancies in multiplying by powers of J^are evident in the flow diagrams 
of Chapter 4. The W F T A and Good algorithms reduce multiplications because 
they eliminate these redundancies. R M F F T s determined from polynomial 
transforms also eliminate redundancies in multiplying by powers of W. These 
R M F F T s are derived from techniques for multidimensional convolution 
evaluation using polynomial transforms. 

5.12 Multidimensional Convolution by Polynomial Transforms 

Section 5.6 presented efficient small N D F T algorithms derived from 
polynomial representations of one-dimensional (1-D) circular convolution. The 
systematic procedure for evaluation of these algorithms required the C R T 
expansion of the polynomials. Intuitively, we feel that the development might be 
extended to multidimensional space. This is indeed true, as we shall show in 
Sections 5.12 and 5.13. 

This section develops multidimensional linear convolution by means of 
polynomial transforms [N-22]. Section 5.13 applies the development to the 
derivation of F F T algorithms. Both sections are based on the work of 
Nussbaumer and Quandalle. In this section we shall first extend (5.70) through 
(5.73) to 2-D space. We shall show the impact of evaluating the C R T expansion 
of the 2-D polynomial. Finally, extensions to L-D space will be indicated. 

Let {h{nu n2)) and (g(n1,n2)) be matrices describing images having periods 
and N2 with respect to the indices nx and n2, respectively. Their 2-D circular 
convolution is the matrix (a(mu m2)), where 

J V i - l N2-l 

a(mum2) = £ £ cAn^ni)K™\ ~ num2 - n2), 
ni = 0 n2 = 0 

m1 = 0, - 2 , m 2 = 0 , l , . . . , 7 V 2 - 2 

(5.188) 

This convolution can be represented as 

a{tut2) = 
J V i - l N2~l 

E E g(ti,t2)^t1-n1T1)8(t2-n2T2) 
ni = 0 n2 = 0 

" i V i - 1 J V 2 - 1 

- n i = 0 n2 = 0 
(5.189) 

where h(tx, t2) and g{tl912) are 2-D images and 7\ and T2 are the sampling 
intervals along the tx and t2 axes, respectively. 
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Let # " 1 > 2 = ^ \ ^ i denote the 2-D Fourier transform, where $Fx and $F2 are 
the Fourier transforms along the tx and t2 axes, respectively. Let 

Hni(z2) = ^ 2 

H(z1,z2) = #r

1 

•n2 = 0 

Lm = 0 

where 

Zi — e , z2 = e -J2nf2T2 

(5.190) 

(5.191) 

(5.192) 

a n d / i and f2 are the frequency domain variables. Let Gni(z2) and G(z1,z2) be 
likewise defined. Let 

A(zuz2) = {[H(zuz2)G(zuz2)] mod (zN

2

2 - 1)} mod (z^ - 1) (5.193) 

Direct evaluation of (5.193) confirms that the coefficient of zmiz™2 in the 
polynomial A(z1,z2) is the circular convolution evaluation of a(m1,m2) in 
(5.188). Alternatively, after we substitute (5.192) in (5.193) we can view (5.193) 
as the frequency domain embodiment of the 2-D data sequence circular 
convolution property. 

We can also evaluate (5.188) by noting that 
Nt - 1 

Am(z2) = X [Hmi-ni(z2)Gni(z2) mod (z£* - 1)], m, = 0 , 1 , 2 , . . .,N, - 1 
H i = 0 

(5.194) 

is the circular convolution of the one-dimensional polynomials such that the 
polynomial product in the square brackets in (5.194) evaluates the circular 
convolution of data in rows {m1 — T^) mod TV and n1 of the matrices (h(n1,n2)) 
and (g(nl9n2)), respectively. Thus the coefficient of z™2 in ̂ 4 w i (z 2 ) also evaluates 
a(mum2). 

The preceding equations for A(z1,z2) are equivalent to 

A{zuz2) = [a(0,0) + a(0, \)z2 + • • • + a(0,TV2 - l ) ^ " 1 ] 

+ [0(1,0) + a(l, l)z2 + • • • + a(l,N2 - l ) ^ 2 " 1 ] ^ + • • • 

+ [ a ( i ^ - l , 0 ) + fl(i\^-l,l)z2 + ••• 

+ 0 ( 7 V 1 - 1 , 7 V 2 - 1 > 2 2 " 1 ] ^ 1 _ 1 

= I Ami(z2)z? (5.195) 

where 
i V 2 - l 

^ i f e ) = Z a(mum2)z\ 
m2 = 0 

-m2 
2 (5.196) 
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and similar expressions hold for G(zl9z2) and H(z1,z2). We note that ftTi =fi/fs. 
for i = 1,2 and that evaluating (5.195) for j\jfSi = 0, l/Ni9 2/Ni9 . . . , (Nt - 1)/7V-
yields the 2-D DFT multiplied by N1N2. The 2-D data sequence a(m1, m2) may 
be completely recovered by evaluating the IDFT of (5.195) for all of the N1N2 

values 

z.= W\\ Wi = e-j2n/Ni, ki = Q9\9...9Ni-l9 i= 1,2 (5.197) 

We can also recover Ami(z2) from (5.195) by using an IDFT with a \/N1 scaling 
along the first axis (i.e., with respect to hi): 

2 JVI-I 
Ami(z2) = — X A(Wkr\z2)W-k^ mod (zN

2

2 - 1) (5.198) 
^1 fc1=0 

The expression for Ami(z2) may be exploited by expanding it in terms of the 
CRT, as we describe next. 

CRT EXPANSION OF POLYNOMIALS We shall state conditions under which the 
polynomial version of the CRT can be used to expand Ami(z2). We shall show 
that evaluation of a part of the CRT expansion can be accomplished by using 
polynomial transforms. 

Let N2 = N, where N is an odd prime number (2 is the only even prime 
number), and let Nx = Nq, where gcd(7V, q) = 1. Then zN

2

2 — 1 factors into the 
product of two cyclotomic polynomials Cx(z2) and CN(z2): 

zN

2 - 1 = C ^ Q f e ) , 

Ci(z2) = z 2 - 1, CN(z2) = z ? " 1 + zN

2~2 + • • • + 1 (5.199) 

Expanding Ami(z2) using the CRT gives 

Ami(z2) = Wi , m i ^ i ( z 2 ) + A2tmi(z2)B2(z2)] mod (zN

2 - 1), 

m1 = 0 , 1 , . . . , ^ - 1 (5.200) 

where 

£i(z 2 ) = 1, B2(z2) = 0 (modulo Cx(z2)) 

Bt(z2) = 0, £ 2 (z 2 ) = 1 (modulo CN(z2)) (5.201) 

and a solution to (5.201) is given by (see Problem 32) 

Bt(z2) = (l/N)CN(z2), £ 2 (z 2 ) = [N — CN(z2)]/N (5.202) 

The scalars A1>mi are found using (5.50) and (5.194) to be 

A\,mi — 
Nq-l 

Y Hmi-ni{z2)Gni(z2) 
• ni = 0 

mod (z2 — 1) 

Nq-l 
= £ HUmi-niGlini (5.203) 

Ml = 0 
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where Hljl = Hri(z2) mod (z2 — 1) , . . . , so that 
JV2-I N2-I 

Hi,ri= I Krl9r2), GUni= £ g(nl9n2) (5.204) 
r2 = 0 n2 = 0 

We have specified the term A1,miB1(z2) in the CRT expansion of Ami(z2) and 
need only A2>mi(z2) to completely evaluate (5.200). We shall show that in certain 
cases a computationally efficient procedure exists to evaluate A2,mi(z2). We first 
note that (5.50) and (5.194) give 

~Nq - 1 
A2,nn(z2) = X H2,m1-n1(Z2)G2,ni(z2) 

_m = 0 
where 

mod CN(z2) (5.205) 

H2,r£z2) = Hri(z2) mod CN(z2), G2ini(z2) = Gni(z2) mod CN(z2) (5.206) 
The efficient procedure for evaluating (5.205) begins by noting that (5.193) and 
the axiom for polynomials for congruence modulo a product give 

A(zuz2) mod CN(z2) = {[H(zl9z2)mod CN(z2)G(zuz2) mod CN(z2)] 
mod CiV(z2)} mod (z*1 - 1) (5.207) 

We shall determine A(zl9z2) mod CN(z2) by evaluating the right side of (5.207). 
Using a summation similar to (5.195) yields 

H(zl9z2) mod CN(z2) = 

Using the SIR we get 

'Nq-l 
Z H2,Xz2)z\ 

- r=0 
mod CN(z2) (5.208) 

(5.209) r = axN + a2q 
where (5.20) determines ^ and ^ 2 . Using (5.209) and (5.197) gives 

z r _ e-j2nkir/Nq _ ĵ îkî -̂ TC f̂ci/iV^ pj/ _ e-j2n/q ^ 210) 

Since TV is an odd prime and since N and q are relatively prime, we can find an 
integer k such that (see Problem 37) 

kx = qkk2 (modulo N), kt = Nk (modulo q), k2 = 1,2,..., N - 1 (5.211) 

where kl9 k = 09l9... 9Nq - I. Using (5.211) in (5.210) yields 
z r __ jy{a1Nk)e-j2n{a2qkk2)/N _ jyi^N + ̂ 2q)ke-j2nk2(*iN + a2q)k/N (5 212) 

If k2 is a nonzero integer, then 

z\ =(Wz2)kr

9 k = 09l,29...9Nq-l (5.213) 

Substituting (5.213) in (5.208) leads to a polynomial in z 2 with the index k9 

which we define as Hk{z2): 

Hk(z2) = H(zl9z2)modCN(z2) = 
Nq-l 

Z / ^ f e X ^ ) * ' mod Q ( z 2 ) 

£ = 0 ,1 ,2 , . . . , JV#- 1 
(5.214) 
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Equation (5.214) specifies a 1-D polynomial transform. The right side is a 
function of the single variable z 2 if we incorporate Wkr into the coefficients of 
H2jV{z2). The utility of the transform is due to the fact that it is a valid 
representation of a 2-D frequency domain function. It can be multiplied with a 
similar function and the product inverse (or partially inverse) transformed to 
evaluate a convolution, as we show next. 

Corresponding to Hk{z2) we find the function Gk(z2), 
-Nq-l "j 

I G2,n(z2)(Wz2?" modCN(z2) Gk(z2) = G(zuz2) mod CN(z2) = 

We likewise define the polynomial transform 
Ak(z2) = A(zuz2) mod CN(z2), k = 0 ,1 ,2 , . . . , Nq - 1 

Its inverse transform is defined by 

A2,mXZ2) = 
I Nq-l _ 
- £ Ak(z2)(Wz2yk^ mod CN(z2), 

(5.215) 

(5.216) 

(5.217) 
m1 =0,1,2, ...,Nq- 1 

Note the relationship of (5.198) and (5.217). Note also that Hh(z2) and Gk(z2) are 
no longer explicitly functions of z1 so that (5.207) yields 

Mz2) = [Hk(z2)Gk(z2)] mod CN(z2), k = 0 ,1 ,2 , . . . , Nq - 1 (5.218) 
Substituting (5.214) and (5.215) in (5.218) and using (5.217), we have 

A2,mi(z2) = 
- I Nq-l Nq-l 
F I [ H2,r(z2)G2,n(z2) 
-NC1 r=0 n = 0 

Nq-l 
x £ (Wz2)k(r + "-mi) 

k=0 
mod CN(z2) (5.219) 

We define S to be the summation over k, on the right of (5.219), computed mod 
CN(z2). Using the SIR, we let k = SXN + l2q. We also let / = r + n — and we 
get 

S = 
~Nq-l 

£ (wz2r 
- k = 0 

mod CN(z2) 
q-l N-l 

L ^ = 0 2̂ = 0 
mod Ci V(z2) 

(5.220) 
Since zN = 1 (modulo CN(z2)), the summation over S-2 for / ^ 0 (modulo TV) can 
be reordered to zN

2~x + zN

2~2 + • • • + 1 = CN(z2) = 0 (modulo CN(z2)). 
Likewise, using (3.31) the summation over ^ yields zero unless / = 0 (modulo q). 
The conditions / = 0 (modulo N) and / = 0 (modulo q) and the axiom for 
congruence modulo a product imply / = 0 (modulo Nq). Therefore, the value of 
S in (5.220) is zero unless / = 0 (modulo TV), in which case S = Nq. Thus 

Nq-l 
Z H2 (z2)G2,n(z2) mod CN(z2), 

o, 
(5.221) 

1=0 (modulo Nq) 

otherwise 
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which agrees with (5.205). Equations (5.203) and (5.221) completely specify 
Ami(z2), and as mentioned in conjunction with (5.194), the coefficient of z™2 in 
the polynomial Ami(z2) evaluates a(m1,m2) and therefore the circular con
volution given by (5.188). 

We have used a frequency domain development to establish the validity of the 
polynomial transform. In particular, we relied on (5.196) to establish that we 
could recover the NXN2 data points a (m 1 ? m2) from N1N2 transform coefficients. 
We have noted that Aljmi(z2) is specified for k2 = 0 in (5.203). Note also from 
(5.202) that Bx(z2) = l,B2(z2) = 0, a n d , 4 m i ( z 2 ) = AliTnJovk2 = 0. We specified 
A2,mi(z2) for k2 = 1 ,2 , . . . , N2 - 1, and in this case B,{z2) = 0, B2(z2) = 1, and 
Ami(z2) = A2imi(z2). We conclude that Amx{z2) is completely determined by the 
N2 values k2 = 0 , 1 , 2 , . . . ,N2 - 1. 

COMPUTATIONAL CONSIDERATIONS F rom a computational viewpoint, the poly
nomial transforms Hk(z2) and Gk(z2) are computed using (5.214) and (5.215). 
Their product mod CN(z2) determines Ak(z2), and the inverse transform is 
computed using (5.217). If N± = 7V#,where# = 2 or 4, then powers of W are + 1 
or ± 1 and ±j, respectively, and evaluation of (5.214), (5.215), and (5.217) is 
accomplished without multiplications. If Nx = N2 = N, then there are no 
factors containing W, and the only products required are those for computing 

The polynomials Hk(z2) and Gk(z2) are computed by adding coefficients 
corresponding to a power of z. Since zN = 1 modulo CN(z), a final reduction mod 
CN(z) is accomplished by rotating coefficients in an Af-coefficient polynomial. 

GENERALIZED POLYNOMIAL TRANSFORMS The efficiency of the polynomial 
transforms in evaluating the Nq x N circular convolution depends on the 
reduction of a 2-D problem to evaluating the Nq polynomial products given by 
(5.218) and the circular convolution of length Nq given by (5.203). This in turn 
depends on the C R T expansion and the computation of polynomials mod 
CN(z2). This computation mod CN(z2) yields S = Nq for / = 0 (modulo Nq) and 
S = 0 otherwise. The computation can be generalized to other cases, including 
C R T expansions based on more than two cyclotomic polynomials and 
expansions based on noncircular convolution. 

Let M{z2) be a factor of zN

2

2 — 1 used in the C R T expansion of a polynomial, 
and let S have the representation (see Problems 38-41) 

Then S = 0 (modulo M(z2)) if / ^ 0, S = N, (modulo M(z2)) if / = 0; and aziis a 
root of S (modulo M(z2)). If az2 is a root of S and (az2)Nl = 1 (modulo Af(z2)), 
then the circular convolution can be evaluated using polynomial transforms. 

Table 5.6 states parameters for the computation of circular convolution using 
polynomial transforms. In the table N is an odd prime number and q a prime 
number. Figure 5.7 presents a flow diagram of circular convolution evaluation 
for Nx = N2 = N; the subscript 2 on z has been discarded. 

Hk{z2)Gk{z2). 

1^0 

otherwise 
(5.222) 
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g (nr n2) 

Ordering of 
polynomials 

Reduction Reduction 
4 mod CN(z) mod (z-1) 

(z) 
Polynomial 
transform 

Gk(z) 

Polynomial 
multiplication 
mod CN (z) 

Inverse polynomial transform mod CN(z) 

A2,m i (Z) 
1—L 

CRT reconstruction 

N-point circular convolution 

' a(m1,m2) 
Fig. 5.7 Flow diagram of circular convolution evaluation using polynomial transforms [N-22]. 

(Copyright 1978 by International Business Machines Corporation; reprinted with permission.) 

As was the case in 1-D circular convolution, economy of computation results 
when factors are incorporated into fixed elements of the circular convolution. 
Let the matrix (h(n1, n2)) be fixed. The polynomials determined by h(nu n2) can 
be precomputed. Furthermore, factors associated with B2(z2) in the CRT 
expansion can be incorporated into the polynomials Hk(z2) so that only 
multiplication by Gk(z2), an inverse transform to determine A2tmi(z2), and a 
CRT reconstruction are required for computation of Ami(z2) (see Problems 
33-34). Special algorithms have been developed to compute the product of 
Gk{z2) and the polynomial determined by incorporating B2(z2) into Hk{z2) 
[N-23]. Additions stated in Table 5.6 are based on these algorithms. 

The circular convolution of size IN2 x 2N2 is an interesting example of the 
flexibility of the polynomial transform method. Note from Table 5.6 that 
M(z) = (z2N2 — l)/(z2N — 1). The term in the CRT expansion, which is based on 
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computation in a ring mod M(z), is evaluated with 2TV2 polynomial products 
mod M(z). The remaining terms in the C R T expansion are based on com
putation in a ring mod (z2N — 1) and can be restructured as a 2TV x N2 circular 
convolution by interchanging the nx and n2 axes. The 2TV x N2 circular 
convolution is evaluated with 2N polynomial products mod M(z) plus another 
2N x 2N circular convolution. This is evaluated as stated under the 2N x 2N 
entry in Table 5.6. 

Evaluation of the circular convolution of size N x Nq follows by noting that 
(5.28) and (5.31) give zNq - 1 = C^z^C^C^z). Reduction in a ring 
mod CN(zq) yields N polynomials of Nq terms. These polynomials in the C R T 
expansion (5.200) are evaluated with TV products of polynomials mod CN(zq). 
The remaining terms in the C R T expansion are based on computat ion in a ring 
mod [Cq^C^z)], i.e., in a ring mod (zq — 1), and correspond to N polynomials 
of q terms. The latter represents a circular convolution of size N x q. 

Ordinary convolutions can also be calculated by the polynomial transform 
method. Let * after a dimension denote noncircular convolution. Then cases of 
interest include convolutions of size 2N x TV* computed by transforms defined 
(modulo [(zN + l)/(z + 1 ) ] ) with N a prime number and 2 L + 1 x 2 L * and 
2 L * x 2L* computed by transforms defined (modulo (z2L + 1)). 

EXTENSION TO L - D SPACE We shall indicate the evaluation of 3 - D circular 
convolutions of size N x N x N where TV is a prime number. Extension to L - D 
space is straightforward. The 3 - D circular convolution of 3 - D arrays h(n1,n2, n3) 
and g(n1,n2,n3) is the 3 - D array a(m1,m2,m3) defined by 

N - l N - l N - l 

a(mum2,m3) = £ £ £ / z ( m A - num2 - n2,m3 - n3)g(nun2,n3), 
ni — O nj = 0 713 = 0 

mi = 0,l, . . . , T V - 1, i = 1,2,3 (5.223) 

The C R T expansion along the n3 axis yields 

Amum2(z3) = U i , m i , m 2 ^ i ( z 3 ) + A2>mum2(z3)B2(z3)] mod (zN

3 - 1) (5.224) 

where i?i(z 3 ) and B2(z3) are given by substituting z3 for z2 in (5.202). We define 
corresponding to (5.208) 

H(zuz2,z3) mod CN(z3) = 
• N - l N - l 

Z Z H2m{z,)z^z\ 
• mi = 0 mi = 0 

mod CN(z3) 

(5.225) 

where zt = e - j 2 n k i / N , kt = 0 , 1 , . . . , TV - 1, i = 1,2,3, and 

Hnun2{z3)= £ h(nun2,n3)zn

3" 
" 3 = 0 

# 2 , " 1 , " 2 

(z 3 ) = Hnu„2(z3) mod C w ( z 3 ) 
(5.226) 
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mod CN(z3) (5.227) 

We find the 2-D polynomial transform 

HkM) = \ Y Y H2i„u„2(z3)zn

3

ik+n>1 

- « i = 0 n2 = 0 

by direct analogy to (5.214). Corresponding to (5.221), an inverse transform of 
HkJ(z3)GKl(z3) yields 

- J V - l J V - l 

X! YJ ^2,m1-n1,m2-n2(Z3)G2,n1,n2(z3) 
-m = o »2 = o 

1 2 ,mi,m 2 V z 3 ( * 3 ) = mod C N ( z 3 ) 

(5.228) 

A computation similar to (5.203) yields 
N-1 N-1 , 

^ l , m i , m 2 X! X ^l,m\ — n\,m2 — n2G\in\,n2 (5.229) 
H l = 0 712 = 0 

where 
J V - l N - 1 

Hi,rur2= X h(ri,r2,n3) and Gi , n i , „ 2 = £ g(nun2,n3) 
« 3 = 0 " 3 = 0 

(5.230) 
All terms in the C R T reconstruction are defined, and the coefficient of z™3 in 
^4 m i , m 2 ( z 3 ) evaluates a(m1,m2,m3). The 3-D circular convolution evaluation is 
complete. The L-D circular convolution for L > 3 is similar. 

Multidimensional linear convolutions have also been investigated by 
Arambepola and Rayner [A-72]. They computed convolutions by taking 
polynomial transforms in all dimensions but one, where a noncircular con
volution was used. They developed a mapping to translate circular into 
noncircular convolutions and vice versa. With this they mapped the 1-D 
noncircular convolution into a circular one so as to use the efficient polynomial 
transform methods. 

5.13 Still More FFTs by Means of Polynomial Transforms 

In the previous section we saw that multidimensional convolutions can be 
computed efficiently using polynomial transforms. A multidimensional D F T 
can be formatted as a multidimensional convolution, so R M F F T s can be 
computed using the polynomial transform method [N-22, N-23, N-27, N-35] . In 
this section we discuss some of these R M F F T algorithms. 

DIRECT APPLICATION OF CIRCULAR CONVOLUTION In Section 5.8 we found that a 
1-D D F T can be formatted as an L-D D F T (see also Problem 42). Let N = N1N2 

where Nx and N2 are prime numbers and an TV-point D F T is to be computed. Let 
Wt = e - j 2 n / N i , i = 1,2. Then 1-D and 2-D D F T s can be computed from 

j J V i - l N2-l 

X{kuk2) = - £ I x{nun2)W\^WY2 (5-231) 
^ , 1 1 = 0 H 2 = 0 
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Note that (3.31) may be extended to give x(nu0) = - x(nuQ){W\ + W2

2 + 
••• + WN

2

2~% x(0, n2) = - x(0,n2)(W{ + W\ + • • •'+ W\2~x\ and x(0,0) = 
x ( 0 , 0 ) [ ^ ( l ^ 1

1 + W\ + • • • + W^'1) + W\(W\ + w2

x + + ^ 1 _ 1 ) + 
••• + WN

2

2~1{W\ + W2+--- + W^-1)]. Thus a total of (TVr - 1)(TV2 - 1) 
transform coefficients given by (5.231) can be computed using , 

I J V i - 2 N2~2 

TV, 
x{J\ th) = — £ £ 0 ( ^ ~ m i , * r m 2 ) - x(a~m\ o) - x(o, rm2) + * ( o , o)] 

m i = 0 m2 — 0 

/£ = 0 , l , . . . , ^ - 2 ? * = 1 , 2 (5.232) 

where a and ^ are primitive roots of Nt and TV2, respectively. Equat ion (5.232) is 
the 2-D extension of (5.120). It is a 2-D circular convolution of size 
(N1 — 1) x (N2 — 1) and we can evaluate it using any algorithms for circular 
convolution evaluation by polynomial transforms. Nx points of (5.231) are 
computed using the TV^-point D F T 

- j v 2 - i - | 

fc! = 0, 1 (5.233) 
I i V i - l 

* ( * 1 . 0 ) = T 7 E 
i y /II = 0 

-n2 = 0 

The remaining TV2 — 1 points of (5.231) are computed using the (TV2 — l)-point 
circular correlation 

I N2-I 

i V m2 = 0 ^l_m = 0 

J V i - 1 

Y x{nu^2) - x(nu0) 

/ 2 = 0 , l , . . . , T V 2 - 2 (5.234) 

Equations (5.232) and (5.234) are 2-D and 1-D circular convolutions, re
spectively. The D F T given by (5.233) can be computed with the 1-D circular 
convolution of (5.120)-(5.125). 

TV x TV D F T FOR TV PRIME Let Nx = N2 = TV where TV is a prime number. Then 
(5.231) can be reduced to TV + 1 TV-point D F T s and one polynomial transform, 
as we show next. Dropping the subscript 2 on z and letting Xni(z) be the 
polynomial that results from transforming rows of the matrix (x(n1,n2)) gives 

1 N - l 

- £ x(nun2)zn 

' n2 = 0 

If we define X(kuz) by 

X(kuz) = 

mod (zN - 1), ^ = 1 , 2 , . . . , ^ - ! 

(5.235) 

" N - l 

Z Xnx{z)Wkini mod (f - 1) (5.236) 

we note that the substitution z = Wkl in (5.236) gives a solution for D F T 
coefficient X(k1,k2). We note also that zN — 1 = C^C^z), where Q ( z ) = 
z — 1 and (5.33), gives 

Q ( z ) = "[J (* - Wk2) (5.237) 
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Define 

Xx{kuz) = X(kuz) mod(z - 1) 

X2(kuz) = X(kuz) mod CN(z) 

(5.238) 

(5.239) 

Using (5.28) and the axiom for polynomials for congruence modulo a product 
gives X(kuz) = X2{kuz) (modulo (z - Wk2))9 or X(kuz) mod(z - Wk2) = 
X2(kuz) mod(z - Wk2). Let X(z) = aN_1zN~1 + % - 2 ^ " 2 + ' • • + a0 be a 
polynomial of degree TV — 1. Then direct computation shows that X(z) 
mod(z - Wk2) = X(Wk2). Thus X(kuk2) = X2(ku Wk% and we conclude that 

X(ku k2) = X2(kuz) mod(z - Wk2\ k2^0 (5.240) 

and Xi(ku 0) yield a solution to the TV x TV D F T . To further develop this D F T 
we consider separately the cases k2 = 0 and k2 = 1 ,2 , . . . , TV — 1. 

First, let &2 = 0. Then (5.236) and (5.238) reduce to 

X(ku0) = 
1 " J V - l 

\Wk"n\ k± = 0 , 1 , . . . , TV - 1 (5.241) 
n i = 0 L n 2 = 0 

The term in the square brackets is Xltfll = Xni{z) mod(z — 1). Equation (5.241) is 
computed by taking an TV-point F F T of X1}nr 

For k2 / 0 define 

X2(kuz) Y X2,ni(z)Wk^ 
•«i = 0 

mod C N (z), /c t = 0 , 1 , 2 , . . . , T V - 1 

(5.242) 

where 

X2,ni{z) = Xni(z) mod CN(z) 
j i V - 2 

— X [x(nun2)-x(nuN- l)]z"2 

^ n2 = 0 
(5.243) 

Since TV is a prime number, there is always a k for k2 ^ 0 such that 
kx = kk2 mod TV. We note that X2(kk2,z) contains the terms Wkkvn = 
zkni (modulo CN(z)). We may therefore substitute z for W*2 i n (5.242), getting 

X2(kk2,z) = 
• J V - l 

E ^ 2 , n i ( ^ 

M l = 0 

mod CN(z), k = 0 , 1 , . . . , TV - 1 (5.244) 

Equation (5.244) is a polynomial transform with 4>(N) = TV — 1 terms after 
reduction mod CN(z). The only computations in (5.244) are data transfers that 
order the data according to exponents of z. The redundancy in multiplying by 
Wkini and Wk2"2 is completely removed by substituting z for Wkl and noting that 
Wkl = Wkkl = zk for some k. The summation of TV — 1 terms on the right side of 
(5.244) defines a polynomial 

J V - l 

E yW 
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which corresponds to a data sequence yk(n). The only multiplications required to 
evaluate the 2-D coefficient X(k1,k2) = X(kk2,k2) result when Wkl is sub
stituted for z and (5.244) is evaluated yielding 

x(k1,k2) = x2(kk29wk>)= Y,y^nWk2n (5.245) 

where kx = kk2 mod TV. 
Equations (5.241) and (5.245) specify the evaluation of an TV x TV 2-D D F T by 

computing just TV + 1 DFTs . One D F T corresponds to k2 = 0, and TV D F T s 
correspond to k2 / 0, where in every case kx = 0 , 1 , . . . , TV — 1. These D F T s are 
evaluated in the most efficient manner possible. 

Each of the TV D F T s in (5.245) can be converted into a D F T in which the 
first data sequence term is ostensibly zero by using (3.31) to get yk(0) = 
- yuiOXW1 + W2 + • • • + WN~X). We then define a new sequence 
%{n) = yk{n) - yk(0) for n = 1 ,2 , . . . , TV - 1. We note that D F T [yk(n)] = D F T 
[yk(ri)]> but the first data sequence term in D F T [yk(n)] is missing. The 
transform sequence coefficient X(kly0) is computed by (5.233) so we can regard 
(5.245) as specifying a D F T in which the first data sequence and first transform 
sequence entries are missing. Such D F T s are referred to as reduced DFTs . 

i x(ni ,n2 ) 

Ordering of 
polynomials 

Reduction mod C N ( z ) 
C N ( z ) = ( z N - 1 ) / ( z - 1 ) 

Polynomial transform 

of N polynomials 

of N-1 Terms 

X 2 ( k k 2 , z ) 

N reduced DFTs 

(N correlations of N-1 
points) 

X ( k k 2 , k 2 ) 

Permutation 

k 2 * 0 

N polynomials of N terms 

Reduction mod (z-1) 

DFT of 
N points 

k~ = 0 

X ( k 1 , k 2 ) 

Fig. 5.8 Computa t ion of 2-D D F T by polynomial transforms for N prime [N-23] . 



158 5 FFT ALGORITHMS THAT REDUCE MULTIPLICATIONS 

Using the 1-D equivalent of the 2-D explanation at the beginning of this section, 
we can convert these DFTs to TV circular convolutions (correlations) of TV — 1 
points. Figure 5.8 presents a flow diagram for this method. 

The significance of using polynomial transforms is now apparent. As Fig. 5.8 
shows, the 2-D DFT is evaluated with TV + 1 TV-point DFTs. The brute force 
approach requires that the data first be transformed along each row using TV TV-
point DFTs. Finally, the columns are transformed using TV more TV-point DFTs. 
Thus the ratio of DFTs for the polynomial transform and brute force 
approaches is (TV -f 1)/(2TV) « 1/2; the polynomial transform method requires 
about one-half the number of complex multiplications required for the brute 
force method. This can be again reduced by about one-half by using an FFT with 
real multipliers (e.g., see Problem 4.7). 

x (nj,n2) 
Ordering of 
polynomials 

,Xni (z) 7 polynomials of 7 terms 
Reduction mod 
(z7-1)/(z-1) 

Reduction mod z-1 
7 polynomials of 6 terms 

Reordering 
16 polynomials of 7 terms 

Reduction mod 
(z7-0/(z-1) 

3_ 

Reduction mod 
(z6-1)/(z2-1) 

J L 
Reduction 
mod 
tz2-D Polynomial transform 

of 6 polynomials 
of 6 terms 

Correlation of 6x2 points 

6 polynomial products 
mod (z6-1)/(z2-1) 

Inverse polynomial 
transform of 6 terms 

Con of 

CRT reconstruction 

Reduction mod z-1 
• Correlation of 6 points 

elation " x 6 points 

DFT of 7 points 

Reordering 

X(k1fk2) 

Fig. 5.9 Computation of a DFT of 7 x 7 points by polynomial transforms [N-23]. 
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We have shown that TV x TV 2-D DFTs can be computed by polynomial 

transforms when TV is a prime. In this case zN — 1 — C1(z)CN(z) and only the 
polynomials X1(k1,z) and X2(kuz) are needed. 

However, the data in X2,NI(Z) may be reordered to give additional efficiencies. 
The reordering corresponds to the rotation of axes for the 2-D circular 
convolution and is illustrated for TV = 7 in Fig. 5.9, which also incorporates 
some procedures described next. 

TV x TV D F T FOR TV N O T PRIME When TV is not prime, we can extend the 
procedures of the previous subsection so as to use the polynomial transform 
method. Note that (5.28) gives zN - 1 = Y[l]N Q(z) = (z - 1) • • • Q(z) • • • 
CN(z), and (5.29) gives Q(z) = Ylu^ (z — Wkl) and Ex is the set of all integers 
kx = Nr/l such that gcd(r, /) = 1 and 0 < r < I where /1 TV, including / = TV. We 
note that 

Nr\ 
Wkl = exp — 

TV / / 
exp 

-j2nr 
~~1 

(5.246) 

For / = TV we observe that gcd(r, /) = 1 permits us to find an integer k such that 

x (n, n 

A 
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Reduction 
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Polynomial transform 

of q 2 polynomials of 
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of q terms 

Reordening 

q 2 reduced DFTs 
of q ( q - 1 ) points 

£ 

Permutation 
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m o d C q ( z q ) 

• 

q polynomials 
of q 2 terms 
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mod ( z q - 1 ) 

Polynomial transform 
of q polynomials 
of q (q -1 ) terms 

I 

DFT of 
q x q points 

q reduced DFTs 
of q (q -1 ) points 

Permutation 

TTr 
X ( k 1 , k 2 ) 

Fig. 5.10 Computa t ion of a D F T of q2 x q2 points by polynomial transforms for q prime [N-23] . 
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k1 = kr (modulo TV) for k1 = 0 , 1 , . . . ,TV — 1. Thus we can use the procedures of 
the previous subsection and (5.245) evaluates X(kl9r) when / = TV. Since 
deg[CiV(z)] = 0(7V), the result is an TV x c/>(TV) DFT. 

For / /TV we must evaluate X{kuz) mod[(zN - l)/CN(z)] for kx = 
0,1,...,TV — 1. These polynomials can be reformatted as a matrix of size 
TV x [TV — (f)(N)]. This is rotated to give a [TV — 0(TV)] x TV matrix. 
Polynomials of TV terms are again formed and reduced mod CN(z) and 
mod[(zN — l)/CN(z)]. This results, respectively, in another TV x 0(TV) DFT and 
polynomials that can be reformatted as a matrix of size [TV — <p(N)] 
x [TV - 0(TV)]. 

At this point we have evaluated an TV x TV DFT by using two DFTs of size 
TV x (/>(TV). We still need the DFT of the matrix of size [TV - 0(TV)] x 
[TV — 4>(N)]. We evaluate the latter DFT in the most efficient manner available. 

Figure 5.10 illustrates the method for a q2 x q2 DFT, where q is a prime 
number. In this case Cq2(z) = Cq{zq) = zq{q~X) + zq(q~2) + • • • + 1 = 
(zql — l)/(zq — 1). The reduction mod Cq(zq) yields q2 polynomials, each with 
q2 — q terms. The reduction mod (zq — 1) yields q2 polynomials, each with q 

* (nl5 n?) 
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z2 +1 

Polynomials transform 
of 2Lpolynomials 

2Lreduced DFTs of 
PL-1 points 

Permutation 

Ordering of polynomials 
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2Lpolynomials 
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Reordering 
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z2 +1 
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of 2Lpolynomials 
of 2 L _ 1 terms 

X 

DFT 
21"1 x 2L _ 1 
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of2L"1 points 

Permutation 

X (k1 ,k2) 

Fig. 5.11 Computation of a DFT of 2L x 2L points by polynomial transforms [N-23]. 
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terms. These are reformatted as polynomials of q2 terms. These polynomials are 
in turn reduced mod Cq(zq) and mod (zq — 1). The reduction mod (zq — 1) gives 
a q x q DFT,. which is evaluated with the procedures of the previous subsection 
since q is a prime number. 

Figure 5.11 illustrates the method for a 2L x 2 L D F T . Note that 

z2L - 1 = C2L(z)(z2L~i - 1), C 2x.(z) = C2(z2L~l) = z 2 ^ 1 + 1 (5.247) 

Since <p(2L) = 2L~1, we take the DFTs of two matrices of size 2L x 2 L ~ 1 and still 
need the D F T of a matrix of size 2L~1 x 2L~1. Thus we can apply the procedure 
iteratively (see also [N-27]). 

Ni x N2 D F T , gcd(NuN2)=\ This case is of particular interest since 
gcd(7V1?7V2) = 1 makes it possible to format a 1-D D F T as a 2-D D F T using the 
techniques in Section 5.8. For example, consider a 9 x 7 2-D D F T . A 7-point 
D F T reduces to a 6-point circular convolution. The 9-point D F T reduces to a 6-
point circular convolution plus auxiliary computations, as given by 
(5.128)—(5.130). The 7 x 9 reduces to the circular convolution of size 6 x 6 plus 
auxiliary computations. We conclude that polynomial transforms are a versatile 
method for D F T computation. 

ROLE OF POLYNOMIAL TRANSFORMS [N-29] Polynomial transforms provide an 
efficient (and in some ways optimum) method of mapping multidimensional 
convolutions and D F T s into one-dimensional convolutions and DFTs . In order 
to compute large convolutions and D F T s of dimension N x N, two approaches 
are possible. In the first approach one nests (see Problem 43) small convolutions 
or DFTs of dimensions Nx x JV 1 } N2 x N2,..., where N = N1N2- • • and these 
small convolutions and DFTs are evaluated by polynomial transforms. In the 
second approach, one does away with nesting and the large convolution or D F T 
of size N x N is computed by large polynomial transforms. 

The second method is particularly attractive for N = 2L because the 
polynomial transforms are computed without multiplications and the number of 
multiplications for this method is reduced by power-of-2 FFT-type algorithms 
[N-31]. This approach eliminates the involved data transfers associated with all 
Winograd-type algorithms and can be programmed very similarly to the power-
of-2 FFT . One difficulty with this method is that it implies the computat ion of 
large one-dimensional reduced D F T s or polynomial products. Nussbaumer has 
shown that large reduced D F T s are computed efficiently by the Rader-Brenner 
algorithm for N = 2L [N-27]. The Rader-Brenner algorithm [R-76] has the 
peculiarity that none of the multiplying constants is complex —most are purely 
imaginary. The Rader-Brenner algorithm can be replaced by the more 
computationally well-suited algorithm of Cho and Temes [C-57]. The latter 
algorithm is described in Problem 4.7. Nussbaumer has also shown that large 
one-dimensional polynomial products modulo ( z 2 L + 1 ) are computed ef
ficiently by polynomial transforms. Thus FFT-type polynomial transforms are 
an important application of the polynomial transform method in D F T 
computation. 
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5.14 Comparison of Algorithms 

In this section we shall first derive the number of additions and multiplications 
required to compute the WFTA and Good algorithms. This is done for the L-
factor case defined by N = NXN2 '' ' Nk • • • NL. We then shall compare WFTA, 
Good, polynomial transform, and power-of-2 FFT algorithms on the basis of 
the number of arithmetic operations required for their computation. We also 
shall show that savings result from using a polynomial transform to compute an 
L-dimensional DFT. 

ARITHMETIC REQUIREMENTS FOR THE WFTA [A-26, K-l, S-5, Z-3] The num
ber of additions and multiplications required for the L-factor case follows from 
the multidimensional WFTA algorithm definition. For the two-factor case 

Z = S2[StCo T1(T2H)T]T (5.248) 

where Z and H are N2 x Nt matrices and Su Tu S2, and T2 are N1 x Mu 

M x x Nu N2 x M2, and M2 x N2 matrices, respectively. 
Let Aik and Aok stand for input and output additions defined by Tk and Sk, 

respectively, k = 1,2,..., L. Then Table 5.7 shows the total number of additions 
to compute the two-factor nested algorithm with a real input. 

Table 5.7 
Additions to Compute Two-Factor WFTA Algorithm with a Real Input 

„ . .. Ti • + • Additions to evaluate ^ . Additions to Computation Points in x , 1 Computation column 1 r evaluate column 4 

T2x N2 Ai2 T2H Ai2N, 
T,x N, An T,{T2H)T AnM2 

Si* Mi Aol S.CoT^H)1 AolM2 

S2x M2 Ao2 Z Ao2N1 

Total number of additions: Nx(Ai2 + Ao2) + M2(An + A0l) 

Let A(L) be the total number of real additions to compute the L-factor case 
and let Ak = Aik + Aok. Then for a real input Table 5.7 gives 

A(2) = NtA2 + M2A± (5.249) 

Expanding Table 5.7 for the three-factor case for a real input yields 

A(3) = NXN2A3 + NtM3A2 + M2M3A1 (5.250) 

and, in general, for a real input [S-5] 

AL)= E U^A, f [ Mm (5.251) 
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where 
L 

f ] Mm = 1 for k + 1 ̂  L (5.252) 
m = /c+ 1 

k - 1 
J] Nt = 1 for = 0 (5.253) 
Z= 1 

We can select Sk and Tfc to minimize the number of additions. For example, if 
Si and S2 are interchanged in (5.248) and 7\ and r 2 are also interchanged, then 
(5.249) is changed to A(2) = N2AX + MXA2. If (5.249) minimizes the number of 
additions then 

NXA2 + M 2 ^ i < N2A1 + A M 2 or ( M x - A ^ ) / ^ ^ ( M 2 - N2)/A2 

(5.254) 
which generalizes to (see Problem 29) 

(M k _! - JVfc-i)/^-! > (Mk - iV f c ) /A (5.255) 

for k = 2,3,..., L. The expression (M* — Ni)/Ah I = 1,2,..., L, is called a 
permutation value, and the smallest values possible should be used. Further
more, if Dt = SiCiTi is an Appoint D F T , then the smallest permutation value 
should be used to specify DL, the next smallest to specify D L _ 1 ? Permutation 
values are listed in Table 5.8 along with the relative ordering. 

Table 5.8 

Permutat ion Values and Relative Ordering [S-6, 
S-31] 

Ni Permutat ion value Relative order 

2 0.0 5 
3 0.0 5 
4 0.0 5 
5 0.0588 1 
7 0.055 2 
8 0.0 5 
9 0.0465 3 

16 0.0270 4 

The number of multiplications to compute the F F T of a real input using the 
nested algorithm is approximately the product of the dimensions of the C 
matrices, as given by (5.187). Note that the multiplications are independent of 
the order of computation. 

If the input is complex, the input additions and multiplications are doubled, 
since all multipliers in the C matrix are either real or imaginary. Output 
additions of complex numbers are reduced by combining components that result 
from the real and imaginary parts of the input. 



164 5 FFT ALGORITHMS THAT REDUCE MULTIPLICATIONS 

ARITHMETIC REQUIREMENTS FOR THE GOOD ALGORITHM The Good algorithm 
for the three-factor case has N2N3, N1N3, and NXN2 transforms defined by Du 

D2, and Z>3, respectively, where the small Af DFTs Du D2, and D3 are applied in 
tandem. The outputs of Dx are complex numbers, so the computations involving 
D2 and D3 are not. affected significantly if the inputs to Dx are complex. If the 
input is complex and M(L) and A(L) are the number of real multiplications and 
real additions to compute the Good algorithm, then for the three-factor case 
[K-l] 

M(3) = 2{N2N3M1 + N1N3M2 + NXN2M3) (5.256) 

,4(3) = 2(N2N3AX + N1N3A2 + N±N2A3) (5.257) 

These expressions can easily be generalized to cases in which L > 3. 

RADIX-2 FFT ARITHMETIC REQUIREMENTS The number of real multiplications 
M(L) and real additions A(L) to compute a 2L-point FFT with a complex input is 
minimized at (see Problem 4.2) [A-34] 

M(L) = 3 [$N log2 N-jN + 2] (5.258) 

A(L) = IN log2 N 4- M(L) (5.259) 

COMPARISON OF ALGORITHMS The preceding expressions for arithmetic re
quirements lead to the data in Table 5.9 [A-26, A-34, K-l, N-23, S-5, S-6, S-31, 
T-22]. The data are plotted in Fig. 5.12. Note that approximately a 3:1 reduction 
in multiplications results from using the WFTA or a polynomial transform 
algorithm instead of a power-of-2 algorithm. 

Multidimensional DFT computation is compared in Table 5.10. The 2-D 
DFTs are for transforming N x N arrays where N = N1N2 and gcd(A/\,Af2) 
= 1. The polynomial transform method can be used in several ways, including 
nesting (see Problem 43). Note that the number of multiplications is sub
stantially less using polynomial transforms plus nesting than using the WFTA. 

Although the algorithms reduce the number of multiplications, they require 
an increase in data transfer. Silverman found that in spite of the increased 
bookkeeping the WFTA algorithm took only approximately 60% of the run time 
for a comparable power-of-2 algorithm [S-5]. Morris compared WFTA and 
power-of-4 algorithms on several computers that compile a relatively time 
efficient program for execution [M-33]. He found that data transfer, an increase 
in the number of additions, and data reordering resulted in execution times 
40-60% longer for the WFTA algorithm than those for the power-of-4 
algorithm. 

The preceding qualitative results were investigated quantitatively by Nawab 
and McClellan [N-l8, N-24]. They developed the following expression giving 
the ratio of run time for the WFTA and power-of-2 algorithms: 

T^ = MN f l + (AN/MN)pA + ( L N / M N ) p L 

TF M¥ L 1 + (AF/MF) pA + (LF/MF) p L . 
(5.260) 
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Power of two 

imial 

Number of Points 
Fig. 5.12 Comparison of real arithmetic operations to compute 1-D FFT algorithms with 

complex input data: solid line, additions; dashed line, multiplications. 

where M and A are multiplication and addition times, respectively, the 
subscripts N and F stand for nested FFT and (some other) FFT, respectively, 
and pA and pL are the ratios of additon to multiplication time and of load, store, 
or copy time to multiplication time, respectively. Indexing time (usually 
negligible) is not included. 

Their parametric curves show that the 120-point nested algorithm is always 
faster than the 128-point power-of-2 algorithm (Fig. 5.13). The 1008-point 
nested algorithm is slower than the 1024-point power-of-2 algorithm based on 
the typical computer performance parameters pA « 0.6 and p L « 0.5 (Fig. 5.14). 

Patterson and McClellan investigated quantization error introduced by fixed-
point mechanizations of the WFTA algorithm [P-44]. They found that in 
general the WFTA and Good algorithms require one or two more bits for data 
representation to give an error similar to that of a comparable power-of-2 FFT. 

If a 32-bit digital computer is used, a Fermat number transform (FNT) may be 
used to implement the circular convolution for Dx when N1 = 128 points. The 
FNT requires no multiplications and provides an error-free method for 
computing circular convolution (see Chapter 11). Agarwal and Cooley used 
mixed radix transforms based on the radices 2, 4, and 8 for comparison with a 
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Table 5.10 

Number of Real Multiplications and Additions per Output Point for Mult idimensional D F T s with 
Complex Input D a t a (Trivial Multiplications by ± 1 , ±j Are N o t Counted) [N-23] 

Polynomial transform 
method plus nesting 

Multiplica- Addit ions 
tions per 
per point point 

W F T A 

Multiplica- Addit ions 
tions per 
per point point 

G o o d 

Multiplica- Addit ions 
tions per 
per point point 

24 x 24 1.86 20.75 .1.87 21.00 3.67 21.00 
30 x 30 2.47 29.68 2.87 26.96 6.67 25.60 
36 x 36 2.57 27.38 2.96 29.73 4.44 27.56 
40 x 40 2.43 30.43 2.83 27.96 5.00 26.60 
48 x 48 2.30 25.69 2.48 27.66 5.17 26.50 
56 x 56 2.63 38.67 3.28 36.51 5.57 33.57 
63 x 63 3.44 51.63 4.94 56.85 9.02 40.13 
72 x 72 2.58 32.14 2.97 34.73 5.44 32.56 
80 x 80 2.93 38.68 3.62 38.59 6.50 32.10 
112 x 112 3.14 48.47 4.17 49.41 7.07 39.07 
120 x 120 2.47 38.43 2.87 35.96 7.67 34.60 
144 x 144 3.07 40.70 3.78 47.16 6.94 38.06 
240 x 240 2.94 46.68 3.64 46.59 9.17 40.10 
504 x 504 3.44 64.38 4.94 69.85 10.02 53.13 
1008 x 1008 4.08 79.00 6.25 91.61 11.52 58.63 
120 x 120 x 120 2.50 57.85 3.46 56.25 11.50 51.90 
240 x 240 x 240 3.04 50.74 4.92 78.61 13.75 60.15 

0.50 
0.25 0.75 1.25 

Relative addition time (p ) 

Fig. 5.13 Relative execution time of the 120-point W F T A to the 128-point F F T (radix 2 and 
mixed radix, 4 x 4 x 4 x 2 ) plotted as a function of the rat io of addition to multiplication time (p A) 
and data transfer time to multiplication time ( p j j on a machine with four or more registers [N-2] . 

relatively prime factor algorithm using an F N T [A-26]. They found that the 
mixed radix F F T algorithm for 1024 points took 12 multiplications per output 
point to compute a circular convolution, while the F N T , used with their 
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1.20h 

q\. I I I 1 I I I I I I 1 I L 

0.20 0.40 0.60 0.80 1.00 1.20 

Relative addition time {p ) 

Fig. 5 . 1 4 Relative execution time of the 1008-point W F T A to the 1024-point F F T plotted as a 
function of the ratio of addit ion to multiplication time ( p A ) and data transfer time to multiplication 
time ( p L ) on a machine with (a) four and (b) eight or more registers [N-24] . 

relatively prime factor algorithms for a composite 896 point transform, took 
only 2.71 multiplications per output point. The comparable figure for 840 points 
with their algorithms was 12.67 multiplications per output point. For N = 1920, 
2.66 multiplications were required per output point for the F N T method, while 
for N = 2048, the F F T method took 13 multiplications per output point. Based 
on their comparison, a reduction in the number of multiplications by almost 5:1 
resulted from incorporating the FNT. Other NTTs may be used to implement 
the circular convolution (see, e.g., [R-72] and Chapter 11). 

Speed of computation can be increased using residue arithmetic. Reddy and 
Reddy [R-73] used a technique which replaces a digital machine of b-bit 
wordlength by two digital machines of approximately (Z?/2)-bit wordlength. 
Normally, hardware requirements for addition and multiplication go up by 
approximately twice and more than twice, respectively, when the wordlength 
doubles. On the other hand, the speed goes up with a decrease in the wordlength. 
Thus the technique allows higher speed of computation of digital convolution 
with no increase in the total hardware. Further, the technique can also be used as 
a convenient tool to extend the dynamic range of the convolution and is useful in 
view of the smaller wordlengths usually associated with microprocessors. 

5.15 Summary 

This chapter includes a complete development of the theory required for the 
R M F F T algorithms [A-26, N-22, N-23, W-7-W-11, W-35]. It presents the 
computational complexity theory originated by Winograd to determine the 
minimum number of multiplications required for circular convolution. 
Winograd's theorems give the minimum number of multiplications to compute 
the product of two polynomials modulo a third polynomial and describe the 
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general form of any algorithm that computes the coefficients of the resultant 
polynomial with the minimum number of multiplications. This chapter shows 
how the Winograd formulation is applied to a small TV D F T by restructuring the 
D F T to look like a circular convolution. 

Circular convolution is the foundation for applying Winograd's theory to the 
D F T . In this chapter we showed that the D F T of the circular convolution results 
in the product of two polynomials modulo a third polynomial. Computationally 
efficient methods for computing coefficients of the resultant polynomial require 
that the D F T be expressed using a polynomial version of the Chinese remainder 
theorem. 

We showed that the D F T can always be converted to a circular convolution if 
the value of TV is a prime number / Conversion of the D F T to a circular 
convolution format can also be accomplished when some numbers in the set 
{1, 2, 3 , . . . , TV — 1} contain a common factor p. The results of the circular 
convolution development are applied to evaluate small TV DFTs . The small TV 
D F T s are represented as matrices for analysis purposes. Then a Kronecker 
expansion of the small TV D F T matrices is used to obtain a large TV D F T . 

The Kronecker product formulation is equivalent to an L-dimensional D F T . 
Multi-index data processing is shown to result from reformatting the Kronecker 
products. The two-index case can be reformatted in terms of equivalent matrix 
operations. The L-index case for L > 2 can also be defined in terms of matrix 
operations on an array with L indices. In the L-index case, the meaning of 
transpose and inverse transpose, respectively, generalizes to left and right 
circular shift of the indices. 

Polynomial transforms are introduced and are shown to provide an efficient 
approach to the computation of multidimensional convolutions. These trans
forms are defined in rings of polynomials where each polynomial is computed 
modulo a cyclotomic polynomial. When applied to 2-D D F T s the polynomial 
transforms eliminate redundancies in multiplying by powers of exp( — j2n/N1) 
and exp( — j2n/N2) along the two input data axes. 

The R M F F T algorithms do not have the in-place feature of the F F T s of 
Chapter 4 and therefore require more data transfer operations. These operations 
and associated bookkeeping result in a disadvantage to the R M F F T algorithms. 
The final decision as to the "best" F F T may be decided by parallel processors 
performing input-output , arithmetic, and addressing functions. 

PROBLEMS 

1 Let ^ = 1 , ^ = 4, c — 2 and d = 5. Show tha t the addition and multiplication axioms yield 
a, + c = 6- + d and uc = &d (modulo 3). Show that ac = &d and c = d so that & = S- (modulo 3) 
by the division axiom. Let k = 7. Show that the scaling axiom gives ka = k& modulo (3k). 

2 N o t e that 27 = 39 (modulo 6) and 9 = 3 (modulo 6). If we apply the division axiom, we get 
if = ^ or 3 = 13 (modulo 6), which is not true. Explain the reason for this incorrect answer. 

3 Let a, = 2 and N = 5. Show that if the numbers in the set 2&, 3&, 4^} are computed m o d N, 
then they can be reordered giving the set {1, 2, 3, 4}. 
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4 Let a, 6, c and Nbe positive integers such that gcd(^ , N) = 1, £• < N, c < N, and S ^ c. Show that 
6 a ^ ca (modulo N) so tha t the sequence 2a,..., (N — m o d N, i.e., all integers in the 
sequence are computed m o d N, may be reordered to {1, 2,...,(N— 1)}. 

5 Prove Euler 's theorem by considering the sequence {aa,u aa2, • • •, where gcd(^ , N) = 1, 
a{ < N, gcd(abN) = 1, / = 1 ,2 , . . . , (f>(N), and appropriately modifying the proof of Fermat ' s 
theorem. 

6 Prove that 2 is a primitive roo t of 25. Let & be a positive integer. Show that 2k modulo 25 generates 
all positive integers less than 25 except for 5, 10, 15 and 20. 

7 Let gcd(N/Nh Nt) = 1. Use Euler's theorem to show that there is an integer rf( such that 
{6iN)INi = 1 (modulo Nt). Define 6, = (N/Nd'1 and note that (N/Niy1N/Ni = 1 (modulo Nt). 

8 Let a, r and 6 be positive integers, and define q = ocro (modulo a r + 1 ) . Let gcd(#, a r + x ) = iocr. Show 
that the integers 0, q, 2q,..., (a - \)q may be reordered as the sequence Sf 

Sf = {0, iotr, 2iar,..., (a — i)ar, 0, iar,..., (a — /)«r} 

where the subsequence {0, iof, 2iar,..., (a — i)ar} repeats i times. 

9 Use Gauss 's theorem and (5.61) to prove (5.104). 

10 Convolution of Periodic Sequences Let h(i) be a periodic function with P = 1 s, and let it be 
sampled JV times per second to yield h(0), h(l),... ,h(N — 1) over one period. Let H(z) = 
h(0) + h(l)z + /z(2)z2 + • • • + h(N - l)zN~\ where z = e - j 2 n f T , be the z-transform of this finite 
sequence. Show that 

H(k)=^[H(z)]\z=e-jwN 

where 

j N-1 

H(k)=— X & = 0 , 1 , . . . , 7 V - 1 
N n=0 

is the D F T of the sequence h(ri), n = 0,1,..., # — 1. Conclude that the z t ransform of a finite 
sequence evaluated at equally spaced points on the unit circle in the z plane yields the D F T of this 
sequence within a constant l/N. 

11 Let 

A = (ai a2), C = (c1c2c3)T and D = (d) 

Show that 

(AB) <g> (CD) = (A® Q(B <g> D) (P5.11-1) 

12 Let D2 = S2C2T2 and D1 = S i C ^ . Use (P5.11-1) to show that D2®D1 = [($2C2)® 

(SiCMT, & T,) = (s2 ® 5 ! ) ( C 2 (g) D ) ( R 2 (8) t \ ) . 

13 Kronecker Product Indexing for L = 3 Let iVj, N2, and N 3 be mutually relatively prime. Let 
n = n1N2N3 + n2N1N3 + n3N1N2 and A: = a1k1 + a2A;2 + « 3 ^ 3 - T a k e the p r o d u c t s and show that 
the terms containing kxn2 and kxn3 are congruent to zero (modulo A ^ A ^ A y if 

axN2N3 = 1, fli^TVs = 0, a.N,^ = 0 (modulo N^NJ (P5.13-1) 

Show that a1 = (N/N^^ is a solution to (P5.13-1). Conclude tha t if the SIR determines n in 
D = Z)3 (x) D2® D l 5 then the C R T yields A: such tha t terms kxnm may be discarded for / / m in 
determining £ where D = W £ . 
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14 Let A = WEi and let Dt and Et be Nt x TV,- matrices, / = 1 , 2 , 3 , where gcd(Nh Nj) = 1, / # 7. Let 
D = D3® D2® Du where D = Let /? = 0 , 1 , 2 , . . . , N1N2N3 - 1 be the column number of £ 
and let nt = 0 , 1 , . . . . , N>[ — 1 be the column number of E{. Show that D is given by 

WE = WEiNINl (x) w E l N t N 2 ® tf/£lN/Nl 

and that the SIR defines the column number of E. Show that the C R T then defines row number k of 
E. 

15 Let TV" = A\N2N3, where the JVf are mutually relatively prime, i = 1 , 2 , 3. Let the integers k and n 
be given by 

3 3 

k = YJ atki and n = £ ntN/Ni 
i=l i=l 

where 0 ̂  w,- < Nt. Show that for fc« to contain no terms ktnj for i / j it is sufficient that a{ = 1 
(modulo TV,) and a£ = 0 (modulo Nj). 

16 Mixed Radix Integer Representation (MIR) Let N = NXN2 • • • JVL. Then given 
0 ^ ^ f < prove that there is a unique ^ such that 0 < a, < N and 

= & m o d 

2̂ = (•» - ai)INi m o d Â 2 

/̂c = - ^ 1 - ^2A^i - • • • - au-iNiNi • • • Nk-2)I{N1N2 • • • TVfc-x) m o d Nk, 

k = 3,4,...,L 

where 

a = uLNiN2 • • • 7V L_i + ^L-iNiNi • • • NL-2 + • • • + a2N1 + *i (P5.16-1) 

Let Nt = N2 = N3 = 2. Show that the seven positive integers that can be represented by (P5.16-1) 
are 1, 1 0 , . . . , 111 (radix-2 representation). Let Nt = N3 = 2 and N2 = 3 . Show that the integers 1, 
2 , . . . , 11 may be written in a mixed radix system as shown in Table 4.11. 

17 FFT with Twiddle Factors by Means of MIR Let L = 2. Use the following M I R for k and n: 

k = k1+k2N1 and n = n2+ntN2 (P5.17-1) 

Show that kn = k1n1N2 + k2n2Nx + kxn2 (modulo N). The term Wkl"2 is called a twiddle factor 
[ B - l ] . Show that the twiddle factor may be incorporated into the D F T with W = 
exp[-j2n/(N1N2)] 

1 N2 

W) = - I 
^ „2 = 0 

N i - 1 

- ^ 1 m = 0 

JVVpoint D F T twiddle 
factor 

A p p o i n t D F T (P5.17-2) 

No te that the twiddle factor can be grouped with either the n1 or n2 summation. Show that a reversal 
of the order of summation in (P5.17-2) cannot be done if the twiddle factor is applied between the Ni-
and A^-point D F T s . 

1 8 FFT with Twiddle Factors Using Another MIR Let L = 2. Use the following M I R repre
sentations for k and n: 

k = k2-\- kxN2 and n = n± + n2Nx (P5.18-1) 
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Show that this requires the following D F T computa t ion : 

X(k) = 
1 

(P5.18-2) J_ £ WN^x{nun2) 

which is the same as (P5.17-2) if the subscripts are interchanged. 

1 9 FFTs Using the Twiddle Factor for N = 6 Let = 3 and N2 = 2. Use (P5.17-1) to show that k 
and n are in Table 5.11. Use (P5.17-2) to show that the D F T is given by Fig. 5.15. Show that the 
twiddle factors at the outputs of the first (back) D F T are W°, W°, and W°. Show that at the outputs 
of the second (front) D F T they are W° W\ and W2 

Table 5.11 

M I R Representations for Nl = 3 and N2 = 2 

k2 * 1 k1 + 3k2 " 2 " l n2 + 2nt 

0 0 0 0 0 0 
0 1 1 0 1 2 
0 2 2 0 2 4 
1 0 3 1 0 1 
1 1 4 1 1 3 
1 2 5 1 2 5 

Data 
sequence 
number 

3-point DFTs 2-point DFTs Transform 
i ^ sequence 

number 
• 0 

Fig. 5.15 D F T with twiddle factors for N1 = 3 and N2 = 2. 

p a i a 2 -po in t DFTs 3-points DFTs 

sequence 
number 

0 

Transform 
sequence 
number 

Fig. 5.16 D F T with twiddle factors for Nx=2 and N2 = 3. 
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Let = 2 and N2 = 3. Show that Table 5.12 gives k and n and that Fig. 5.16 gives the F F T . Show 
that the twiddle factors are W°, W°, W°; W°, W\ and W2. 

Table 5.12 

M I R Representat ions for Nx = 2 .and N2 = 3 

k2 k1 kx + 2k2 n2 
n2 + 3nx 

0 0 0 0 0 0 
1 0 2 1 0 1 
2 0 4 2 0 2 
0 1- 1 0 1 3 
1 1 3 1 1 4 
2 1 5 2 1 5 

In Tables 5.11 and 5.12 interpret n and k as natural and digit reversed orderings. Show how these 
orderings follow from (P5.17-1). 

20 DIFFFTs for N = 6 [G-5] Combine the functions of the two 3-point D F T s and the twiddle 
factors in Fig. 5.15. D o this so that the inputs remain in natural order, six butterflies follow the 6-
point input, and three 2-point D F T s follow the butterflies. Interpret this as a D I F F F T . Show that 
equivalent matr ix operations are defined in Fig. 4.5b. 

Separate the two 3-point D F T s in Fig. 5.16 so that one is above the other and the outputs are 
ordered 0, 2, 4, 1, 3, 5. Combine the three 2-point D F T s and the twiddle factors so the inputs are in 
natural order. Again interpret this as a D I F F F T and show that equivalent matr ix operat ions are 
defined in Fig. 4.5a. 

21 DITFFTs for N = 6 [G-5] Separate the two 3-point D F T s in Fig. 5.15 so tha t one is above the 
other and the inputs are ordered 0, 2, 4, 1, 3, 5. Combine the three 2-point D F T s and the twiddle 
factors so that three butterflies are formed with the F F T outputs in natural order. Interpret the two 
3-point D F T s followed by butterflies as a D I T F F T . Show that equivalent matr ix operat ions are 
defined by E1 where E is in Fig. 4.5a. 

Combine the functions of the two 3-point D F T s and the twiddle factors in Fig. 5.16 so that six 
butterflies are formed and the outputs are naturally ordered as shown. Interpret this as a D I T F F T 
and show that equivalent matrix operations are defined by ET where E is in Fig. 4.5b. 

22 Power-of-2 FFTs by Means of the Twiddle Factor Let N1=2 and N2 = 4. Show that the four 
2-point D F T s in (P5.17-2) can be combined to yield Fig. 4 .1. Interpret (P5.17-1) as yielding a 
naturally ordered n and a bit-reversed k. 

23 Let Ax and A2 be Mx x N1 and M2 x N2 matrices, respectively. Let h = [h(0), h(\), h(2),..., 
h(NlN2 - 1 ) ] T and define y = [y(0), y(l), y(2),y(M1M2 - 1 ) ] T by 

Show that 

y = A2®A1h 

N2~l Ni-1 

y{k2M1 + kt) = X X Mk^AdkunJhfaNt + nj 
k 2 = 0 fci=0 

where 0 ^ kt < Mt for i = 1, 2. Define 

H-

h(0) h(l) 
h(Nx + 1) 

h[(N2 - l)N,] h[(N2 - \)N, + 1] 

h(Nx - 1) 
h(2Nx - 1) 

h(N1N2 - 1) 

(P5.23-1) 

(P5.23-2) 
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and 

Y = 

AO) y(M,) 
y(M, + l ) 

y(2M1 - 1) 

y[(M2 - \)M{\ 
y[(M2 - V)M1 + 1] 

y(M1M2 - 1) ' 

(P5.23-3) 

y(M, - l ) 

Show that y(k2M1 + kx) = Y(kl,k2) if 

Y=A1(A2H)T (P5.23-4) 

Show that y(k2M1 + kx) = Z(k2,kx), where Z = YT and 

Z = A2(A1HT)T (P5.23-5) 

24 Let Ci and C2 be Nt x A \ and N2 x Af2 diagonal matrices where C, = diag[c,(0), c , ( l ) , . . . , 
- 1)] for i = 1, 2. Let H be an N 2 x Nt matrix. Use (P5.23-1) and (P5.23-4) to show that if 

z = (C2 (x) d)h, then z f e A ^ + kA) = Z(kuk2), where His given by (P5.23-2), 

Z=CoHT 

Ci(P)c2(0) 
c i ( l )c 2 (0 ) 

C I ( 0 ) C 2 ( l ) 

C I ( l ) C 2 ( l ) 

C l (0)c 2 (7V 2 

C L ( l ) c 2 ( ^ 2 

1) 
1) 

CI(iVi - l ) C 2 ( 0 ) Cl(Nt - l ) C 2 ( l ) - l)c2(7V2 - 1) 

(P5.24-1) 

(P5.24-2) 

25 Let Di = StCiTi where S{ and Tx are A/",- x M f and Mt x A^ matrices, respectively and 
Q = diag[c,(0), ct(l),..., c,(M,- - 1)] for / = 1, 2. Use (P5.23-4), (P5.23-5), and (P5.23-1) to show 
that if z = (l/N)D2 <g) Dtx, then 

Z = (l/A0S2[SiCo T^HfY (P5.25-1) 

where C is defined by (P5.24-2) and 

z(0) z( l ) 
z(N,) z(N, + 1) 

z(N, - 1) 
z(27Vi - 1) 

(P5.25-2) 

zW.-lWi] z (A^V 2 - A^ + 1) • • • z{NtN2-\) 

26 Let z f e A ^ + k{) = Z(k2, kx) where Z is given by (P5.25-2). Let x(n2N1 + « x ) = J rY(« 2,«1) , 
where / / i s given by (P5.23-2). Let (P5.25-1) define an A^ A p p o i n t D F T . Show that n = n2Nx + n1 is 
determined by the SIR so that the C R T determines k. Show that X(k) = Z(k2,k1), where 
k = k^N^"^ + k ^ N ^ ^ (modulo N ^ ) and X(k) is a value in the D F T transform sequence. 

27 Let N1N2 and N3 be mutually relatively prime and D1, D2, and D3 be AV, AT2-, and N 3 - p o i n t 
D F T s . Use (5.171) and (5.178)-(5.180) to show that 

Z = (l/N)(D3(D2(D1^yT)-T) (P5.27-1) 

where z(fc3, k2,kx) = X(k), k is specified by the C R T , X = (^f(n1,n3,n2)), &n&2tf(nun3,n2) = x(n) 
with n specified by the SIR. 

28 Let Ni, N2, N3, D1, D2, and D3 be as in the previous problem. Let Dt = StCiTi, where St and T{ 

are Nt x M £ and M f x Nt matrices, respectively, and C{ = d iag (CJ (0) , c f ( l ) , . . . , cf(M,- — 1)). Use 
(5.173)-(5.181) to show that 

z - (s.is^Co r 3 ( r 2 ( r 1 / f ) - T ) - T ) T ) T ) T (P5.28-1) 

where Z = (Z(k3, k2, kx)), H = (H(nu n3, n2)), and C( / 3 , / 2 , = ( c 3 ( / 3 ) c 2 ( / 2 ) C l ( / 1 ) ) . 

29 Let the three-factor nested algorithm be computed using 

Z = S3[S2[SxCo T1(T2(T3H)T)T] - T ] " T (P5.29-1) 
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Show that if this ordering minimizes additions, then NiN2A3 + N1M3A2 + M2M3A1 ^ N2N3AX + 
N2MlA3 + M3M1A2 ^ N3NlA2 + N3M2A1 + M ! M 2 ^ 3 . Infer from Table 5.4 that JV k ^ M k , 
A: = 1, 2, 3, so that ( M / _ ! - Nl-1)/Al ^ (M, - Nl)/Al for / = 2, 3. 

3 0 Interchanging CRT and SIR Indices Let Z) l 5 Z ) 2 , . . . , DL be determined by (5.155) and let kh nt 

be naturally ordered, i = 1, 2 , . . . , L. Let X = (l/N)Dx, where D = DL® • • • ®D2®D1. Use 
(5.154) to show that the indices on D can be interchanged with no effect on D. Conclude that the C R T 
and SIR determine the output and input indices, respectively, or vice versa. 

31 Show that z 4 - 1 = C^C^C^z). Show that E1 = {0}, E2 = {2}, and E4 = {3, 4} so that 
d ( z ) = z - \ , C2(z) = z + 1, and C 4 (z) = (z + y)(z - y ) = z 2 + 1. 

32 Let C(z) = zN — 1, where TV is prime. Show that C(z) has only two polynomial factors with 
rat ional coefficients and that these factors are the cyclotomic polynomials Cx(z) = z — 1 and 
CN(z) = zN~l + zN~2 + • • • + z + 1. Show that Euclid's algorithm yields CN(z) = C^Diz) + N, 
where D(z) = zN~2 + 2zN~1 + 3 z N " 2 + • • • + (TV - 2)z + N - 1. Since CN(z)/N - C1(z)JD(z)/yY 
= 1, conclude from (5.54) that M x ( z ) = l/7Vand M2(z) = — D(z)/N. Show that a polynomial A(z), 
deg[^4(z)] < N, can be expanded in terms of Bx(z) = CN(z)/N and B2 = [N - CN(z)]/N. 

33 2 x 2 Circular Convolution Let 

H=(a C \ X=(« A 

ay + bd + COL + rfjff 

ad + 6y + c/? + da_ 

Show that this answer may be obtained using polynomial transforms with i?i(z) = (z + l ) /2 and 
# 2 ( z ) = ( - z + l ) /2 . Show that 

^ 1 > 0 ( z ) = (A + c)(a + y) + (6 + + (5), ^ i , i ( z ) = {a + c)(jS + 5) + (b + d)(a + y) 

Show that H2j0(z) = a + cz m o d (z + 1) = a — c and that # 2 , i = b — d, X2,o = a — y, and 
X2tl = P-d. Show that 

^ 0 ( z ) = + bp + cy + </<5 + (ay + 6(5 + ca + d#)z 

^ i ( z ) = a/? + 6a + c<S + dy + (a<5 + by + c£ + da)z 

Show that A0(z) and ^ ( z ) contain the evaluation of H*X. 

34 Alternative Representation of Circular Convolution Evaluation by Means of Polynomial 
Transforms [N-22] Let Nt = N2 = N, where Nis a prime number. Show that Ami(z) has the C R T 
polynomial expansion 

AJz) = ( l / i \ 0 [ * i ( z M l f m + T(z)A2,m(z)(z - 1)] mod(z" - 1) 

where B2(z) = T(z)(z - 1) (modulo (zN - 1)), Bx(z) and B2(z) are given in Problem 32, and T(z) = 
[- zN~2 + • • • + (3 - N)z2 + (2 - yV)z + 1 - yV]. Show that Hh(z)/N can be premultiplied by 
T(z). Show that the C R T reconstruction reduces to multiplying AUJNby z ^ _ 1 + • • • + z + 1 and 
T(z)A2ytn(z) by z — 1. Show that these two operat ions require 27V(7V — 1) addit ions. 

35 Let zN - 1 = Ch(z)Ch(z) • • • C1M(Z), where the Ch(z), i = 1, 2 , . . . , M, are cyclotomic poly
nomials and Nhas Mfac to r s including 1 and N. Show that zN = 1 (modulo Cj.(z)) and tha t C;.(z) = 0 
(modulo (z - i^ k ! ) ) where kt = Nr/lt and gcd(r, /,) = 1. Conclude that zN = 1 (modulo(z - WK)). 

Show that their circular convolution is given by 

- dy 

aa + bB + cy + <#> 
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36 3x3 Circular Convolution Evaluated Using Polynomial Transforms [N-22]1" Let Nv = N2 

= 3 and 

~4 3 0~~ ~2 0 2~ 
H = 4 3 1 x = 0 1 3 

2 1 0 3 4 4 

Let M(z) = z2 + z +1. Show that 

Am(z) = [AUm$M(z) + A2tm(z)#z - l ) ( - z - 2)] mod (z 3 - 1) 

Circular convolution .of length 3 Show that HUm = (7, 8, 3), XUm = (4, 4, 11) and AltJ3 = 
(128, 93, 121)/3, where H1%m denotes (Huo, Hltl, H1<2), and so on. 

Input polynomials Show that H2,m(z) = [(4 + 3z), (3 + 2z), (2 + z)] and Z 2 r(z) = [(0 - 2z), 
( - 3 - 2 z ) , - 1 ] . 

Polynomial transforms Show that Hk{z) = [(9 + 6z), (1 + 2z), (2 + z)] , [ # f c ( z ) ( - z - 2)/3] mod 
M(z) = - [(4 + 5z),z, (1 + z)] and Xk(z) mod M(z) = [ ( - 4 - 4z), (3 - 2z), 1]. 

Inverse polynomial transforms Show that [A2,m(z)(z — 2)/2] mod M(z) = [(— 7 + 10z)/3, 
( - 6 + 18z)/3, (1 + 2 0 z ) / 3 ] . 

CRT reconstruction Show that Am(z) = [(45 + 37z + 46z 2 ) , (33 + 23z + 37z 2 ) , (40 + 34z 
+ 47z 2 ) ] . 

3 7 Let N be an odd prime number, gcd(N, q) = \, k2 = \, 2,..., N — \ and k1 = 0, 1 , 2 , . . . , 
Nq — I. Given kx and k2, show that there is a k' such that 

k = N~1k1 (modulo q) and k = k~1q~1kl (modulo N) (P5.37-1) 

Show that the C R T yields 

k = N - ^ N ^ + k - l q - l k i q ^ N ) (modulo Nq) (P5.37-2) 

Define k = k' + aq. Show that (P5.37-1) is equivalent to 

kx = Nk (modulo q) and kx = qkk2 (modulo N) (P5.37-3) 

Show tha t for the specified kx and k2, k is one of the integers in the set {0, 1, 2 , . . . , Nq — 1}. 

38 Let S = £ 2 = o 1 ( - z)kl. Show that S = CN{z)(l - zN) so that - z is a root of S mod CN(z). Show 
that ( - z)2N = 1 (modulo CN(z)). 

39 Let S = Ysk^d z \ l > w n e r e N i s a prime number a n d z x = e~J2nlN - z. Show that S = CN(z) so that 
z is a root of S m o d CN(z). 

40 Let S = 1 z M where N i s a prime number. Show that 5 = Q ( z ) ( l + zN) = CN(z2)(l + z) so 
that - z N + 1 is a roo t of 5 m o d C i V (z 2 ) . 

41 Let Nx — N and N2 = Nq where N is a prime number and gcd(7V, q) = 1. Show that zNq - 1 
= C ^ C a f e ) ^ * ! ) - L e t z i = ^ " J 2 7 t / C l / i V and z 2 = e - J ' 2 7 C k 2 / i V ? . Show that there is a A: such that 
kk2 = kx (modulo N) so that S = = ^ J ^ 1 ( z 2 ) k i = CN(z«) = 0 (modulo CN(z\)) so that zf 
is a root of S m o d CN(zq

2). Show that (zf)* = 1 (modulo CN(z\)). 

42 Formatting a 1-D DFT as a 2-D DFT [A-58] Use the SIR to represent both n and k as 
k = kxN2 + fc2-Ni and n = n1N2 + n2Nx. Show that the 1-D D F T coefficient X(k) is determined by 

I JV2-1 
* ( * i , * 2 ) = — — 

^ 1 ^ 2 J ) 2 = 0 

"iVi-l 

X x(nun2)WkS 

where ^ = e ~ j 2 n l N \ i = 1, 2. Let = A : ^ m o d Nx. Show that AJX = 0, 1 , . . . , Nx - 1 generates 

f F r o m H. J. Nussbaumer and P. Quandalle, IBM J. Res. Develop. 22, 1 3 4 - 1 4 4 (1978). 
Copyright © 1978 by Internat ional Business Machines Corpora t ion ; reprinted with permission. 
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k\ = 0, 1 , . . . , TVi — 1 in a permuted order. Show that the summation in the square brackets can be 
accomplished with an TVX-point D F T along columns of the matrix (x(nu n2)) with the transform 
sequence number given by k\. Likewise, show that the outer summation can be accomplished with an 
AVpoint D F T . Conclude that a 1-D D F T may be obtained with a 2-D D F T . 

43 2-D DFT by Means of Polynomial Transforms Plus Nesting [N-23] Let / / b e an N x TV matrix, 
and let D be an TV-point D F T matrix given by D = Dt (x) D2, where D1 and D2 are Nt- and Af2-p°nrt 
D F T matrices, respectively, and gcd(TVl9 N2) = 1. Show that the 2-D D F T of H can be computed 
from Dx (x) D2H(D2 (x) DX)T, tha t / / c a n be represented as a 4-D array H(n2, n'2, n u n'J, and that its 2-
D transform can be computed from D± [D1[D2[D2H(n2, n'2, n1, n'1)]T]T]T, where nh n't = 0, 1 , . . . , 
TV, — 1 , / = 1,2. Show the computa t ions can be performed by nesting N2 x TV2 array computa t ions 
inside of x Nx array computat ions . Let the A^ x TVi and TV2 x N2 D F T s be taken with 
polynomial transforms, and interpret the 2-D D F T as being taken via polynomial transforms plus 
nesting. 

44 Show that Lagrange interpolation is equivalent to the C R T for polynomials [M-17] . 

45 Alternative Form of the CRT Let N = NXN2 • • • TVL, where gcd(Nh Nj) = 1 for / / j , and let 
Mi = N/Nh i= 1 , 2 , . . . , L. Show that the C R T for integers can be written 

Let ct = (N/Ni) m o d TV,-. Show that n{ is the smallest positive integer such that »fct- = 1 (modulo TV,-). 
Show that (P5.45-1) is equivalent to 

L 

a aiM^i mod N (P5.45-1) 

where 

MiYli 
1 (modulo TV,) 

.0 (modulo TV;), / / j 

a 

Let N1 = 3,N2 = 4, N3 = 5. Show that n1 = 2, n2 = 3, and n3 = 3. 
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DFT FILTER SHAPES A N D SHAPING 

6.0 Introduction 

A sampled-data equivalent of any analog system can be implemented using an 
appropriate analog filter, a sampler, and digital processing equivalent to the 
analog processing. Analog filters can be designed to detect signals in narrow 
frequency bands and converted to sampled-data filters using digital filtering 
technology, but frequently the F F T is a more efficient way of accomplishing 
narrowband signal analysis. There are a number of differences and analogies 
between the analog and D F T systems for signal analysis, and it is worth 
reviewing them. 

One difference is that an analog filter has a continuously varying time domain 
output that can be viewed with an oscilloscope. If there is a sinusoid in the 
passband, it can be seen on the scope. If white noise is the input and the center 
frequency of the analog filter is high compared to the passband, the scope will 
show a sinusoid whose amplitude and phase vary slowly. We cannot display 
sampled-data representations of these time domain waveforms anywhere in the 
D F T , but we do get a complex coefficient out of the D F T which describes the 
amplitude and phase of a sinusoidal input. 

Another difference between analog and D F T systems for spectral analysis is 
that the D F T is a waveform correlating device for the exponential sequence 
Qxp(j2nkn/N), n = 0, 2 , . . . , N — 1. If the input sequence is properly band-
limited and has the period N, then by virtue of its correlating property the D F T is 
a matched filter for the input sequence (if the noise is white) [C-43]. An analog 
system is less easy to realize as a matched filter that correlates exponential 
functions over exactly one period of the input function. 

One analogy between an analog system for spectral analysis and the D F T 
results from considering the detected outputs of both in response to a sinusoid. 
Let the output of the analog filter whose center frequency is nearest to that of the 
sinusoid be rectified and averaged with a low pass filter (LPF). Let coefficient 
X(k) have the maximum magnitude of all D F T outputs. Then both the LPF 
output and \X{k)\ are measures of the amplitude and frequency of the sinusoid. 

178 
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Either output indicates the sinusoid's amplitude and frequency, but not 
precisely. This is because either system responds to sinusoidal inputs regardless 
of frequency, except to signals at stopband nulls or of such low amplitude that 
they are lost in the system noise. 

Another analogy between the analog and D F T systems for signal analysis 
appears in considering a number of detected outputs in response to a sinusoidal 
input. Multiple detected outputs make it possible to specify the amplitude and 
frequency (but not phase) of the input, and both the analog filters and the D F T 
have a frequency response. For either system, we can compare several detected 
outputs and use the system frequency responses to determine the sinusoidal 
amplitude and frequency. 

Based on the analogies between the analog filter and D F T outputs, we refer to 
the D F T output as coming from a filter. In Section 6.1 we shall show that the 
basic D F T filter shape is accurately represented for a normalized period of 
P = 1 s and f o r / a continuous real variable (in hertz) by either of the following 
equivalent viewpoints [B-2, B-3, B-4, E-15, H-19, R-44, W-27] : 

1. An exp[ — jnf(\ — l/N)] sm(nf)/[Nsm(nf/N)] frequency response. 
This response repeats at intervals of N Hz and is convolved with a nonrepeated 
input frequency response. 

2. An exp[ — jnf(l — l/N)] sm(nf)/(nf) frequency response. This response 
is not repetitive and is convolved with a periodic input frequency response 
repeating at intervals of N Hz. 

In Section 6.2 we shall discuss requirements for frequency band limiting the 
input spectrum to account for the periodicity of the filter or input frequency 
response. We shall also show (Section 6.3) that the basic D F T filter can be 
modified by a data sequence (time domain) weighting applied to the D F T input 
or by an equivalent transform sequence (frequency domain) convolution called 
windowing at the D F T output. Section 6.4 illustrates the analytical derivation of 
both the periodic and nonperiodic filter shapes for triangular weighting. Section 
6.5 illustrates the application of either data sequence weighting or D F T output 
convolution to obtain the Hanning window. The construction of shaped D F T 
filters to meet specific criteria is illustrated with proportional filters in Section 
6.6. A summary of shaped D F T filters and some of their performance 
parameters is found in Sections 6.7 and 6.8. 

6.1 DFT Filter Response 

Whenever we draw gain/phase plots, we describe the steady state response of a 
linear time invariant system to sinusoidal inputs of fixed frequencies and 
constant amplitudes. The linear system may be part or all of a control, 
communication, or other kind of system. In any case, if we insert an input 
A cos(2nft + (j>), we get a steady state output of K(f)A cos[2nft + 4> + 6(f)], as 
Fig. 6.1 shows. K(f) and 9(f), the system gain and phase shift, respectively, are 
in general functions of frequency. 
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A cos(2nft + <j>) Linear K(f)Acos[2nft + <l> + QUy\ 
System 

Fig. 6.1 Response of a linear system to a sinusoid. 

The D F T is a linear digital system for determining the amplitude A and phase 
cj) of the input. The D F T is analogous to the linear system in Fig. 6.1 in that it 
displays a frequency dependent gain and phase shift. However, the D F T is not 
analogous to the system in Fig. 6.1 in other respects. The linear system in Fig. 6.1 
is characterized by a time domain convolution of the input and the system 
impulse response. This results in a frequency domain product of the input and 
system transfer functions. The D F T , as we shall show, reverses these operations. 
The D F T does a frequency domain convolution resulting from a time domain 
product. 

A D F T preceded by an analog-to-digital converter (ADC) is shown in Fig. 
6.2a. The A D C is composed of both a sampler and a quantizer (which is not 
shown). The input x(t) to the A D C is a function of time in seconds. The A D C 
output x(n) is a function of the time sample number n. The D F T linear system 
response to the sequence {x(0), x ( l ) , . . . , x(N — 1)} is in general a complex 
sequence {X(0), X(l),..., X(N - 1)}. If the D F T input is IA cos(2nkt) + 
Bksin(2nkt)], then (2.11) gives the magnitude and phase of coefficient X(k) as 
±(A2

h + B2

k)1/2 and 0fc = t a n " ^ - sign(k)(Bh/Ak)], respectively. 

PERIODIC D F T FILTER This filter may be derived with the aid of Figure 6.2b, 
which shows an equivalent representation of the DFT . The sampling is 
accomplished by multiplying the input x(t) by a series of TV delta functions. 
According to the definition of the delta function, the product x(t) 5(t — nT) must 
be integrated to give the sample x(n). The integration is over e seconds, where 
s < T. Fig. 6.2c shows a second equivalent D F T representation. Multiplication 
of x(i) first by exp( — jlnkt/P) and then by the sum of delta functions yields X(k) 
after integration, since, if P = NT, 

X(k)=^Yix(n)Wkn 

n = 0 

P 

1 
N 

N- 1 

X S(t - nT)x(t)e-j2nkt/pdt (6.1) 
n = 0 

Note that the integrand in (6.1) takes nonzero values only at the N times 
defined by the N delta functions. Note also that the limits of integration can be 
extended from — oo to oo, giving 

X(k) ^(t)x(t)e-j2Kkt/pdt (6.2) 
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where 
j JV— 1 

(6.3) 

The Fourier transform definition in Chapter 2 shows that (6.2) is the Fourier 
transform of x(f)d{i) with respect to the frequency domain variable k/P, so 

X(k) = ^[x(t)d{t)} (with frequency variable k/P) (6.4) 

Furthermore, Table 2.1 shows that the Fourier transform of a product is a 
convolution, so that (6.4) is equivalent to 

X(k) = [D(f/P) * Xa(f/P)] (evaluated a t / = k) (6.5) 

where D(f) is the Fourier transform of the N impulse functions given by d(t) 
and Xa(f) is the Fourier transform of the (analog) function x(t). Applying the 
convolution definition to (6.5) gives 

X{k) D 
'k-f 

x j - ) d -
p p 

(6.6a) 

k - f 
p 

(6.6b) 

Either (6.6a) or (6.6b) determines X(k). The equations are perfectly general 
and apply to all spectra. The function Xa(f/P) is the Fourier transform of the 
input x(t) with respect to the scaled frequency domain variable f/P. If x(t) is 
periodic with period P, it has a line spectrum with lines at integer multiples of 
1/P. If Xa(f/P) = 0 f o r / > N/2, then X(k) represents only the spectral line at k/P 
because, as we shall see, D(f/P) in (6.6b) has nulls at all other lines (see also 
Problem 8). 

The function D(f/P) is the Fourier transform of d(t) with respect to f/P and is 
called the DFT filter response. This response determines how energy feeds into 
X(k) through the convolution described by (6.6). Determination of D(f/P) 
follows on noting that D(f/P) is the Fourier transform of (6.3): 

D f 1 

TV 
^ 5(t-nT)e-J2*ftlPdt (6.7) 

Evaluation of (6.7) by using Table 2.1 and setting T/P = l/N gives 

D f 1 
7 V ^~ 

^ e~j2nfni /N (6.8) 

The series relationship Y^n = o y" = — yN)l(\ — y) can be applied to (6.8), 
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giving 
(f\ 1 1 - e~j2nf 

Equation (6.9) defines the D F T filter frequency response. At this point we 
note an interesting fact: The period P does not appear on the right side of (6.9). 
The real variable / is continuous and describes the D F T frequency response in 
scaled units of cycles per P s. Let a normalized period of P = 1 s be used. This 
normalization requires appropriate scaling (Problem 7). Then (6.5) and (6.9) 
reduce to 

X(k) = D(f) * Z a ( / ) (evaluated at / = k) (6.10) 

^ = r M ' l w r ™ ( 6 - n ) 

Nsm(nf/N) 

phase term ratio term 

The D F T filter frequency response given by (6.11) consists of the product of a 
ratio term and a phase term. The frequency response is defined by 1/TV times the 
Fourier transform of TV delta functions starting at t = 0. If the delta functions 
started at a time t # 0, the phase term in (6.11) would change but the ratio term 
would still be the same. The phase angle in the phase term is always a linear 
function of frequency. The ratio term is a periodic function of type 
(sinx)/[TVsin(.x/TV)], and hence D(f) is referred to as a periodic filter. 

Note that the right sides of (6.9) and (6.11) are the same so that plots of D(f/P) 
and D(f) ve r sus /a re the same. For example, both D(f/P) and D{f) have a first 
null a t / = 1 (i.e., D(l/P) = D(l) = 0). A plot of D(f) ve rsus /y ie lds a plot of 
D(f/P) versus f/P if the units of / are read as l/P Hz. 

Figure 6.3 illustrates the periodic D F T filter frequency response for TV = 16. 
The phase angle goes through multiples of (TV — l)n radians every N/P Hz. The 
combination of the phase and ratio terms gives the normalized response a gain of 
unity at integer multiples of TV (see Problem 1). As Fig. 6.3 shows, the D F T filter 
responds to all frequencies except to those at integer bin numbers. The response 
is continuous and is analogous to the response of a narrowband analog filter. 
There are peaks of unit magnitude, referred to as mainlobe peaks, a t / = 0, + TV, 
+ 2TV,... and peaks of small magnitudes, referred to as sidelobe peaks, near 

/ = ± f J ± i> ± 1' • • • • The response of a given D F T filter to frequencies other 
than those in a mainlobe frequency band is sometimes called spectral leakage. 

By substituting (6.11) in (6.6a) for P = 1 s we get 

X(k) = sin[7i(A: — f)] 
-XJJ)df (6.12) Nsin[n(k-f)/N] 

Equation (6.12) says to center the conjugate D F T filter so that the peak filter 
response at D(0) lies over f= k, multiply Xa(f) by D(k — f), and integrate. 
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Fig. 6.3 Frequency response of a periodic D F T filter for N = 16; (a) rat io term, (b) phase. 

If we substitute / f o r — / with P = 1 s and use (6.11), (6.6b) becomes 

X(k) = D(-f)Xa(k+f)df 

Jnf(l-1/N)_ sin(7t/) 

Nsm(nf/N) 
XJLk+f)df (6.13) 
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Equation (6.13) says that D F T coefficient X(k) is given by multiplying Xa(k + /) 
by the conjugate D F T filter response and integrating from — oo to oo. 

Note from the modulation property of Table 2.1 that XJJz + / ) in (6.13) is the 
demodulated spectrum of Xa(f). We can regard the integration in (6.13) as 
determining Xa(f) by a low pass filter operation on the demodulated spectrum. 
The LPF has a frequency response described by (6.11) and is followed by a 
frequency domain integration. 

The preceding development has shown that the D F T filter given by (6.10) has 
a frequency response which is periodic with period TV. The periodic D F T filter is 
convolved with a nonperiodic input to give D F T coefficient X(k) using either 
(6.6a) or (6.6b). Intuitively we feel that we should be able to reverse the periodic 
and nonperiodic roles of the D F T frequency response and the unsampled input 
frequency response, respectively, so that X(f) is periodic and D(f) is not. This, 
in fact, is true, as we show next. 

NONPERIODIC D F T FILTER [E-15] TO develop this filter we first note that Fig. 
6.2b includes a sequence of TV delta functions that are Ts apart. This sequence is 
equivalent to an infinite sequence of delta functions multiplied by a function that 
is unity over the extent of TV of the delta functions and zero otherwise. Such a 
sequence is given by rect[(/ t — (P — T)/2)/P] c o m b r . The rect, c o m b r , and input 
functions and their product are illustrated in Fig. 6.4. This product is a pictorial 
representation of delta functions weighted by x(nT). 

The rect function in Fig. 6.4 sets the integrand of (6.14) to zero outside of the 
interval encompassing time samples x(0), x ( l ) , . . . , x(N — 1). It appears that the 
rect function could encompass any interval — aT < t < (TV — a)T, where 
0 < a < 1. In practice we must select a = \ to get known answers for the 
nonperiodic D F T filter using test functions (see Problems 5 and 6) and we 
conclude that a = \ is correct in general. 

We now note that each entry in the time domain sequence input to the TV-point 
D F T can be represented for n = 0, 1, 2 , . . . , TV — 1 by 

x(n) = rect 
~t-(P- T)/2 

combTx(t)dt (6.14) 

where 0 < e < Tis arbitrary, P is the period of x(t), c o m b r = Y^n= - oo — nT), 
and the rect function is unity in the time interval — T/2 ^ ^ (TV — ^ )Tand zero 
elsewhere. Using (6.14) in the definition of the D F T and again recalling that 
P = NT, we find 

j N - 1 

X(k) = — X x(n)e~j2Kkn/N 

N n = 0 

1 

TV 
rect 

t - (P - T)/2 
combT x(t)e-j2nkt/pdt 
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= — 2F{ rect 
N \ 

~t-(P- D/2" 
c o m b T x ( / ) | (evaluated at / = k/P) 

(6.15) 

The term given by } in (6.15) has f/P as its frequency domain variable 
because — j2nft is scaled by 1 jP in exp( — j2nft/P). The Fourier transform of the 
product in (6.15) is the convolution 

X(k) = 
nf . 

/ s r e p / s X a 

f = k 

= D'(f/P) * r ep / s [Z a ( / /P ) ] (evaluated a t / = k) (6.16) 

where P = NT, T=l/f, D\f/P) is 1/P times the Fourier transform of 

f t - (P - T)/2] 

r 
-T/2 0 2T • 
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rect{[7 - (P - T)/2]/P}, given by (see Table 2.1) 

sin(;r/) • 
D\f/P) = e = p-jnf(l-l/N) . 

phase 
term 

ratio 
term 

(6.17) 

and 

r e P / , X„ = E S(f-lf,)*Xa I'- = S ^ 
Z=-oo V / J = - o o 

(6.18) 

D'(f/P) is the nonperiodic D F T filter frequency response, and rep / s [X( / /P)] is 
the input frequency response repeated every fs Hz (every N frequency bins). 

For a normalized period of P = 1 s, (6.16) and (6.18) reduce to 

X(k) = D'(f)*™VNiX*(f)] 
CO 

r e p w [* . ( / ) ] = £ d(f-kN)*Xt(f) 
k = — oo 

(6.19) 

(6.20) 

Note that the period P does not appear in the right side of (6.17) so that plots of 
D'(f/P) and D'(f) versus / are the same. D'(f) as given by (6.17) is the 

DC 0.4 

-0.2 

6 8 10 12 14 16 
f (1/P Hz) 

Fig. 6.5 Frequency response of the rat io term for a nonperiodic D F T filter. 
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nonperiodic D F T filter frequency response. It consists of the product of a ratio 
term and a phase term. The phase angle in the phase term is a linear function of 
frequency. The ratio term is a (sin x)/x type of nonperiodic function, and hence 
D'{f) is referred to as a nonperiodic filter. Figure 6.5 shows the ratio term for the 
nonperiodic D F T filter. The phase term is the same as that of the periodic filter 
(Fig. 6.3). 

Equations (6.5) and (6.16) are analogous as are (6.10) and (6.19). Equations in 
either pair are convolutions of the D F T filter shape and the input spectrum. In 
(6.5) the D F T filter frequency response D(f/P) is periodic with period / s Hz 
(periodic every TV frequency bins). The input frequency response Xa(f/P) is not 
periodic. In (6.16) the D F T filter frequency response D'(f/P) is not periodic, but 
the input frequency response is periodic with period fs. 

6.2 Impact of the DFT Filter Response 

Although the frequency response of a narrowband analog filter might 
resemble the D F T filter response, it would not exhibit peaks at integer multiples 
of N as does the D F T filter with Fourier transform D(f) given by (6.11) and 
shown for N = 16 in Fig. 6.3. The periodic repetition of a frequency response at 
intervals of N frequency bins is a characteristic of sampled-data spectra [T-12, 
T-13, L-13]. In this section we first consider the impact of the periodic frequency 
response of D(f) acting on a nonrepeated input spectrum. We shall then briefly 
consider the nonrepeating D F T filter frequency response D'(f) acting on a 
periodic input spectrum. In both cases we let TV be a power of 2 for illustrative 
purposes. 

Figure 6.6 is a pictorial representation of the magnitude of a properly limited, 
nonrepeated input spectrum Xa(f) and of the ratio term of D(f) for D F T filters 
centered at frequency bins 0, N/4, N/2, and 3N/4. The spectrum for Xa{f) is 
band-limited so that it is essentially zero except for a frequency band N Hz wide 
(based on an analysis period of P = 1 s). The spectrum shown is continuous and 
nonsymmetrical. Spectra for real inputs are always symmetrical. The non
symmetrical spectrum in Fig. 6.6 could only be due to a complex valued input 
which, for example, results from a complex demodulation. 

The periodic D F T filter centered a t / = 0 measures the energy about Xa(0i) \ the 
filter centered a t / = 1 Hz measures the energy about Xa(l); in general the energy 
in Xa(f) is estimated by filter number k for 0 < k < N and is given by D F T 
coefficients X(0), X(l),... ,X(N - 1). Owing to proper limiting of the input 
spectrum, the D F T filter number k measures energy about X{k). 

Figure 6.7 is a pictorial representation of the magnitude of an improperly 
limited input spectrum and of the periodic D F T ratio terms for (a) D(f) and (b) 
D(f — N/2). Xa(f) is improperly limited in that it is not essentially zero outside 
of a frequency band N Hz wide (based on an analysis period of P = 1 s). As a 
consequence some D F T frequency bins have outputs caused by energy in Xa(f) 
for / b o t h positive and negative. For example, consider Fig. 6.7b. D F T filter 
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D(0) 

-N -N/2 0 N/2 N f 

(0 

1 1 I* 

{ D(3N 

\ s l X a ( f ) l 

/4 - f) 

A 1 jnr-
LA* VTT -

-N -N/2 -N/4 0 N/2 3N/4 N f 
(d) 

Fig. 6.6 Properly band-limited, nonrepeated input spectrum analyzed by periodic D F T filters 
centered at frequency bins, (a) 0, (b) N/4, (c) N/2, and (d) 3N/4. 

numbers — N/2 and N/2 measure energy about Xa( — N/2) and Xa(N/2), 
respectively. Since D F T filter number — N/2 is just the periodic repetition of 
filter N/2, D F T coefficient X(N/2) represents the energy in Xa(f) for frequencies 
near b o t h / = - N/2 a n d / = N/2. Therefore, D F T coefficient X(N/2) contains 
aliased energy that may negate its value as a spectral estimate. Similar remarks 
apply to D F T filters near k = — N/2. 

Even though the nonrepeated spectrum \Xa(f)\ in Fig. 6.7 is improperly 
limited, some of the D F T coefficients obtained with the periodic filter D(f) yield 
a good spectral estimate. For example, Fig. 6.7a indicates that periodic 
repetitions of filter number zero measure essentially zero energy. As a 
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consequence, D(0) measures only energy about Xa(0). Similar remarks apply to 
D F T filters near k = 0. 

Fig. 6.7 Improperly limited spectrum analyzed by D F T filters, (a), (b) Periodic filters centered at 
frequency bins 0 and N/2, respectively, (c) Nonperiodic filter centered at JV/8. 

An analogous development applies to the nonrepetitive filter D'(f) filtering 
the periodic input spectrum r e p / s p f a ( / ) ] . Figure 6.7c shows the periodic 
spectrum for normalized frequency fs = N. The ratio term for D'(f — N/8) is also 
shown. If Xa(f) is essentially zero outside of a frequency band TV bins wide, then 
there is no aliasing in the spectra of rep^ [Xa(f)]. Figure 6.7c shows the spectra of 
Xa(f) overlapping Xa(f + N) and Xa(f— N). If the aliased power levels are 
negligible at the crossover points and beyond, then spectral analysis with 
nonrepeated D F T filter D'(f — k) gives an effective estimate of Xa(f). 
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6.3 Changing the D F T Filter Shape 

The D F T filter gain as a function of frequency is determined by 
sm(nf)/[N sin(nf/N)] or $m(nf)/nf, depending on whether one chooses not to 
repeat or to repeat, respectively, the input spectrum. Either filter has peak gain 
of 0 dB and nulls at all integer frequencies away from the peak (except for 0 dB 
peaks at integer multiples of N in the periodic D F T filter shape). 

It is often desirable to change the basic D F T filter shape to meet the objectives 
of a particular spectrum analysis [G-15, H-19, P-2, P-4, R - 1 6 , T-14, O-l , 0 -7 , 
A-38]. Some desirable modifications to the basic D F T filter include the 
following: 

(1) Reduce the peak amplitude of the filter sidelobes relative to the peak 
amplitude of the mainlobe. 

(2) Change the width of the mainlobe of the filter response. 
(3) Increase the rate at which successive sidelobe peak amplitudes decay. 
(4) Simultaneously, do (l)-(3). 

These objectives may be accomplished by one of the following operations: (1) 
Data sequence (time domain) weighting or (2) transform sequence (frequency 
domain) windowing. 

If the D F T filter shape is changed by time domain weighting, each point of the 
input function is multiplied by the corresponding point of the weighting 
function. If the D F T filter shape is changed by frequency domain windowing, a 
number of D F T outputs are scaled and added to achieve a frequency domain 
convolution equivalent to the time domain multiplication. The latter always has 
a frequency domain equivalent that can be exactly or approximately represented 



192 6 D F T F I L T E R SHAPES A N D S H A P I N G 

by summing D F T outputs. Therefore, the frequency domain windowing 
accomplishes the same objective as the time domain weighting. The terms 
"weighting" and "windowing" establish whether the D F T filter shape is 
changed by a time or frequency domain operation, respectively. We shall use 
"window" to mean the frequency response of the shaped D F T filter. 

Figure 6.8 shows a function x(t), which is weighted by (a) an analog weighting 
function t&(t) and (b) a sampled-data weighting function a>(ri). If analog 
weighting is used, a weighted product a>(t)x(t) is sampled to give the sampled-
data product u>(n)x(ri). If digital weighting is used, a sampled-data function x(n) 
is multiplied by the sampled-data weighting function u>(n). 

N-1 
7 6 ( t - n T ) 

n=0 

nT + 6 

/ ( •) dt 
n T - e 

N-1 

- 7 
n=0 

N-1 

1 7 
N n=0 

p 
/ ( • ) dt 

0 
X X X 

p 
/ ( • ) dt 

0 
X X X 

p 
/ ( • ) dt 

0 

p 
/ ( • ) dt 

0 

f t ) dt 
oo 

X(k) 

Fig. 6.9 Equivalent representations of D F T with time domain weighting. (See the text for 
explanation of par ts (a)-(c).) 

Figure 6.9 shows equivalent representations of the D F T with time domain 
weighting [E-21]. In Fig. 6.9a x(t) is weighted, sampled, and transformed to give 
D F T coefficient X(k). The only difference between Figs. 6.9a and b is the 
addition of the weighting function u>{i) at the input. The weighting function 
results in a shaped D F T filter response. The fcth D F T coefficient with weighting 
on the input is given by 

J N - 1 

X{k) = — £ u>(n)x{ri)e-j2nkn/N (6.21) 
N n = 0 

PERIODIC SHAPED D F T FILTER TO develop this filter we note that the 
operations in Fig. 6.9a may be rearranged as in Fig. 6.9b, which is equivalent to 
Fig. 6.9c. The sequence of TV delta functions in Fig. 6.9a is nonzero only in the 
interval 0 < t < P, so the integration interval in the right block in Fig. 6.9b may 
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be extended from between 0 and P to between — oo and oo. This extension is 
shown in Fig. 6.9c. Figures 6.9a-c are equivalent representations of the D F T and 
all give the same value for X(k). Let u>{f) be nonzero for t ^ — P/N and t ^ P as 
well as for te(-P/N,P). (Otherwise see Problems 19 and 24.) Then (6.21) can 
be expanded as 

X(k) = d(t)^(t)x(t)e-j2nkt/p dt (6.22) 

Again the frequency variable is f / P and the evaluation is at / = k, so that 

X(k) = ^\_d(f)w(f)x(f)\ * (with frequency variable k/P) (6.23) 

This is equivalent to 

X(k) = D(f/P) * Xa(f/P) (evaluated at / = k) (6.24) 

where D(f/P) and Xa(f/P) are the Fourier transforms of \^d(t)u>(f)\ and x(t) 
with respect to the scaled frequency f/P. The function D(f/P) is the shaped D F T 
filter frequency response. 

Equation (6.24) evaluated with P = 1 s is equivalent to 

X(k) D(k-f)Xa(f)df (6.25) 

Equation (6.25) is the same as (6.12) if the shaped D F T filter response D(k — f) 
is substituted for the normal D F T filter response D(k — f) in (6.12). A change of 
variables in (6.25) leads to 

X(k) = 8(-f)XA(f+k)df (6.26) 

Equation (6.26) is the same as (6.13) if D( — f) is substituted for D( — f) in 
(6.13). The operations accomplished by either (6.25) or (6.26) center the peak 
shaped D F T filter frequency response D(0) over X(k). Multiplying Xa{f + k) by 
D( — f) and integrating the product then gives the shaped D F T filter output. 
These operations are indicated pictorially in Fig. 6.10. The magnitude of the 
input spectrum is in Fig. 6.10a and the normal periodic D F T ratio term in Fig. 
6.10b. The normal D F T response has a narrower mainlobe and higher sidelobes 
than the shaped D F T response shown in Fig. 6.10c. The shaped D F T filter 
estimates the energy content of Xa(f) over a broader band than does the normal 
D F T filter. The stopband energy estimated by the shaped D F T filter is less than 
that of the normal D F T filter because of the lower sidelobes. Spectral content 
estimated by X(N/4) is given by integrating the product of the two spectra 
illustrated in Fig. 6.10d. 
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|X a ( f ) | D(N/4-f) 

— h - J — J 1 * 
0 
(d) 

Fig. 6.10 Spectra involved in calculating X(N/4): (a) Nonper iodic input spectrum, (b) basic 
periodic D F T filter response, (c) windowed periodic filter response, and (d) spectra convolved to 
determine X(N/4). 

The shaped D F T filter response, D(f/P), is commonly referred to as a window 
because it allows us to "view" a portion of the input signal spectrum Xa(f). We 
shall use "window" only to mean the D F T filter frequency response, although 
the term is also used in some of the literature to mean data sequence weighting. 
To eliminate ambiguity we shall use the term "weighting" to mean data sequence 
scaling to obtain a shaped filter, while "window" will mean shaped D F T filter 
frequency response. "Windowing" will designate the convolution operation at 
the D F T output which can replace weighting of the data sequence. 

The window D(f/P) is the Fourier transform of u>(t)d(i). For weightings that 
are nonzero for t ^ — P/N and t ^ P it can be expanded as 

D(f/P) = D(f/P) * if (f/P) (6.27) 

where iV (f/P) is the Fourier transform of the weighting function with respect to 
the scaled frequency variable f/P, and D(f/P) is the basic D F T periodic filter 
given by (6.9). Convolving if (f/P) with the periodic D F T filter results in D(f/P) 
being a periodic function. This periodic shaped D F T filter acts on a nonrepeated 
input spectrum to determine the D F T output. 
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Either ^{_d{i)u>(f)\ or D(f) * iT(f) is used to determine the shaped D F T 
filter frequency response, depending on whether or not ^>{t) is nonzero only for 
te(a, b), respectively, where — P/N ^ a < b ^ P. Use of #"[^(0^(0] t o derive 
the shaped D F T filter frequency response will be illustrated with triangular 
weighting. Use of D(f) * iV(f) will be illustrated with Hanning weighting. 

This development has shown that the shaped D F T filter is periodic and is 
convolved with a nonperiodic input. Intuitively, we feel that we should be able to 
reverse the periodic and nonperiodic roles of the shaped D F T filter frequency 
response D(f/P) and the input frequency response Xa(f/P), respectively. This is 
indeed true, as we show next. 

N O N P E R I O D I C S H A P E D D F T F I L T E R T O develop this filter we again recall that 
each entry in the time domain sequence input to the D F T of dimension TV is 
represented by an integral (see (6.14)). Paralleling the development of the 
nonperiodic D F T filter (see (6.15)), 

1 
v J N 

^(Orect ~t-(P- D/2" 
combTx(t)e-j2nkt/pdt 

= D'(f/P) * r e P / i [ Z a ( / / P ) ] (evaluated at / = fc) (6.28) 

where rep y - [Z a ( / /P)] is given by (6.18), c o m b r is given by (2.90), and 

>(0 rect 
~t-(P- T)/2 

e-J2nft/Pdt ( 6 2 9 ) 

The product of the weighting and rect functions in the preceding Fourier 
transform integrand results in a frequency domain convolution: 

D\f/P) = IT {f/P) * [e-**1-1/N) sin(7c/)/7c/l = W(f/P) * D'(f/P) (6.30) 

Equation (6.28) defines the spectral analysis output for a nonrepeating shaped 
D F T filter and a periodic input spectra. If a>(f) is nonzero only for te(a,b), 
- P/N ^ a < b < P, the rect function in (6.28) and (6.29) as well as D\f/P) in 
(6.30) may require modification as discussed in Problems 19 and 23. 

S H A P E D D F T F I L T E R S The remainder of this chapter is devoted to classical 
shaped D F T filter responses (i.e., windows) and to proportional D F T filters. 
Triangular and Hanning windows are analytically tractable filters that are used 
to illustrate analysis procedures. Proportional filters are used to illustrate 
empirical design of shaped D F T filters. 

D F T F I L T E R S H A P I N G B Y M E A N S O F F I R F I L T E R S Chapter 7 discusses finite 
impulse response (FIR) digital filters. These filters are transversal (feedforward 
only); furthermore, powerful computer aided design programs are available to 
evaluate F I R filter coefficients. Digital demodulators are also discussed in 



196 6 D F T F I L T E R SHAPES A N D S H A P I N G 

Chapter 7. The tandem combination of a demodulator and low pass F I R filter is 
equivalent to weighting plus a DFT . The bandwidth of the F I R filter permits a 
reduction of sampling rate at the filter output. Correspondingly, overlapped 
data is required at the D F T input. (See Problem 7.18 for further details.) 

Whereas the classical D F T windows have fixed responses versus frequency 
bin number (responses generally depend weakly on TV), the F I R filter method of 
designing D F T windows can provide a frequency response to satisfy a given 
bandwidth requirement. For some filter length the passband ripple and 
stopband rejection specifications are met. This length can be increased until the 
filter length corresponds to a suitable F F T size. Then the equivalent D F T 
weighting and demodulation are mechanized using the FFT . 

The F I R filter method provides great flexibility in designing D F T windows. 
For this reason the method has been used successfully in communication signal 
dechannelization (see Problems 7.18-7.21). 

6.4 Triangular Weighting 

The weighting function u>{ji) illustrated in Fig. 6.8 is known as triangular 
weighting [H-19, B-20]. In this section we derive both periodic and nonperiodic 
weighted D F T filter outputs for triangular weighting on the D F T input sequence 
[E-24]. Derivation of the periodic filter is more tedious than derivation of the 
nonperiodic filter. The derivations are an interesting illustration of developing 

1 

k r e c t ( - U 
VP/2/ 

-P/4 0 P/4 t 

rec t i 
P/2) 

1 

-3P/4 -P/2 -P/4 0 p/4 P/2 t 

-P/2 0 P/2 

Fig. 6.11 Convolut ion of two rect functions to derive the triangular function. 
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both the periodic and nonperiodic filters for a simple weighting function. 
Triangular weighting can be defined from the triangle function tri(//P) (Fig. 
6.11) which results from the convolution of two rect(//(P/2)) functions: 

.ft\ ( t \ / t 
t n — = rect * rect 

\Pj \P/2J \P/2 

P/2 - |?|, \t\ < P/2 
' " 1 1 ' (6.31) 

0 otherwise 

We shall describe triangular weighting that contains a normalization factor to 
give the shaped D F T filter frequency response a peak value of unity. The 
normalized analog triangular weighting function u>(t) delayed to start at time 
zero is given by 

' 4 
^(0 = ( - ) t r i 

't - P/2' 
(6.32) 

The sampled-data triangular weighting function u>(n) is defined by letting 
P = NT where fs= l/T Hz is the sampling frequency. One series of weighted 
delta functions that approximate (6.31) and (6.32) is given by (see Problem 19) 

2 r r^/2 i -<5 0 d d IN/2-]-i ~\ 

^ W O - T T ^ E S(t-nT)* Z &(t-nT)\ (6.33) 
m v / Z | u = i - 5 o d d n = 0 ) 

where [ ( ) ] means the smallest integer containing ( ) (e.g., [3.5~| = 4), d{t) is the 
sequence of TV delta functions that accomplish the sampling, both sides of (6.33) 
must be used in an integrand to give meaning to the convolution of delta 
functions, and <5even

 a n d <50dd
 a r e defined by 

^ j l , if TV is an even integer 

(0 otherwise 
(6.34) 

1, if TV is an odd integer 
(0 otherwise 

The function u>(ri) may also be derived by evaluating (6.33) for t = 0, 
r , 2 T , . . . , ( T V - l ) r t o give 

1 V \n + ^ o d d , 0 < n < VN/2\ 
{N - n, [N/2\ < n < N - 1 

— — r  o a a ? - - - - - { 6 3 5 ) 

where |_( )J denotes the largest integer contained in ( ) ; for example, [3.5J = 3. 
The function a>(t) looks like an isosceles triangle whose base is along the time 
axis and has a peak value of 2. The function u>(n) has a peak value 2/TV at TV/2 for 
TV even and a peak value of 2/(TV + l) at (TV — l)/2 for TV odd, where TV is the 
number of points in the D F T . 

The convolution given by (6.33) is illustrated in Fig. 6.12 for TV = 8 and TV = 7. 
Pictorial representations of the delta functions defined by dll2{i) and 
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Fig. 6.12 Sequences of delta functions: (a) ^1 / 2(0> (b) ^ i / 2 ( ? — 7"), (c) sequences convolved to 
yield (d), (d) tr iangular weighting for TV = 8, and (e) tr iangular weighting for N = 7. 

d1/2(t — T) are in Fig. 6.12a and b. The notation dll2(t) means a sequence of 
delta functions of length [N/2] given by 

I [N/2-] -1 

1̂/2(0 = 7 7 ^ 7 I S(t-nT) (6.36) 

Figure 6.12c indicates the convolution that determines u>(ri) for N = 8, as shown 
in Fig. 6.12d. The convolution d 1/2(t) * d 1/2(t) yields u>(ri), as shown in Fig. 
6.12e for N =1. Note that ^ ( 0 ) = 0 for TV even. Note also that the number of 
nonzero weightings is the same for TV = 7 and 8; it is in fact the same for any 
odd TV and the next larger even TV. This results in analytically tractable periodic 
D F T filters for triangular weighting. Finally, note that in evaluating the 
convolution integral we have interpreted the integrated product of two delta 
functions as giving unity when they overlap; that is (see Problem 16), 

S(t - t0) 8(t - t0) dt = 1 (6.37) 
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(6.43) 

D(f/P) = zM-jnf 
N J [N/2~]2 

sm(nf[N/2-]/Ny 
sinfr/yW) 

Note that the period P does not appear in (6.43). The independence from P 
corresponds to the unweighted D F T filter. For a normalized period of P = 1 s 
we get the following shaped D F T filter frequency response for triangular 
weighting: 

N even: 

D(f) = e — p-JKf sin n- /sin 7i 

N/2 \ 2JI V 2 N/2 
(6.44) 

The magnitude of (6.44) has mainlobe peaks a t / = 0 and integer multiples of 
N. Between the mainlobe peaks at / = 0 and N there are sidelobe peaks near 
/ = 3, 5, 7 , . . . , N — 3. The magnitude is zero between the mainlobe peaks at 
/ = 2 , 4 , . . . 5 7 V - 2 . 

N odd\ 

-jnfil-l/N) sin n- —~— I / sin | n-
N+l \ 2 N Jl V 2 N/2, 

(6.45) 

Solving (6.33) for N = 8, we get the output shown in Fig. 6.12a. We conclude 
that 

d(t)u>(t) = d1/2(j) * dll2(t - TSeven) (6.38) 

P E R I O D I C W I N D O W The periodic window that results from triangular weighting 
on the input is derived by taking the Fourier transform of (6.38) with respect to 
the scaled frequency variable f/P, yielding 

^ D4*M0J = & [ ^ 1 / 2 ( 0 ] & UmH ~ ^ e v e n ) ] (6-39) 
Let #'[^1/2(0] = D1/2(f/P), so that the shifting property in Table 2.1 gives 

F Uniit - TS^)] = D1/2(f/P)Qxp(-j2nfT3eyJP) (6.40) 

The shaped D F T filter response D(f/P) that results from the triangular 
weighting at the input is given by 

D(f/P) = & [ ^ M 0 ] = Wm(f/P)l2 exp( - j2nfTSmJP) (6.41) 

The response Dlj2(f/P) is determined by following the steps that led to (6.9). 
Taking the Fourier transform of the [Af/2] delta functions that define di/2(t) in 
(6.36) gives 

Dll2(f/P) = r A r m

 W ' , (6.42) 
[N/2] e JUJIN sm(nf/N) 

Using (6.42) in (6.41) gives the periodic shaped D F T filter frequency response 
with triangular weighting: 

, ( r # / 2 i - i + ^ e v e n ) 2 ) i 
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Fig. 6.13 Gain of periodic D F T filters for N = 32 for (a) unweighted input and (b) tr iangular 
weighting on input. 
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The magnitude of (6.45) has mainlobe peaks a t / = 0 and integer multiples of 
TV. Between the mainlobe peaks at / = 0 and TV there are sidelobe peaks near 
/ = 3TV/(TV + 1), 5TV/(TV + 1 ) , . . . , (TV - 3)N/(N + 1). The magnitude is zero at 
even multiples of TV/(TV + 1 ) between 0 and TV. 

The effect of the triangular window for TV even is to double the width of the 
filter mainlobes and to reduce the filter sidelobe levels. The first unweighted 
D F T sidelobe for TV = 32 has a peak value of — 13.43 dB, as Fig. 6.13a shows. In 
the triangular window the squaring operation in (6.43) doubles this value so that 
the first sidelobe peak has a value of — 26.87 dB, as Fig. 6.13b shows. The 
shaped D F T filter given by (6.43) is periodic with period fs Hz. It is convolved 
with a nonrepeated input spectrum to determine D F T coefficient X(k) as given 
by (6.24). 

N O N P E R I O D I C W I N D O W The nonperiodic window that results from triangular 
weighting on the input has a |sin(x)/x| 2 gain term and is convolved with a 
periodic input. For example, for TV even, triangular weighting defines a sequence 
at the D F T input given by (see Problem 19) 

v(ri)x(ri) = c o m b r x ( r ) - rect 
P/4\ ft - P/4 

* rect 
P/2 P/2 ) _ 

dt (6.46) 

0 5 10 15 20 25 30 

Frequency (1/P Hz) 

Fig. 6.14 Nonperiodic shaped D F T filter tha t results from triangular weighting on input. 



202 6 D F T F I L T E R SHAPES A N D S H A P I N G 

so that the D F T output for frequency bin k is defined by 

X(k) = D'(f/P) * rep / s [Xa(//i>)] (evaluated a t / = k) 

~sin(7c//2)~ 
£ ' ( / / P ) = e~M 

nf/2 

(6.47) 

(6.48) 

The derivation for N odd is similar. 
The gain term in square brackets in (6.48), shown in Fig. 6.14, is the 

nonperiodic shaped D F T filter frequency response which results from triangular 
weighting at the input. Comparing derivations of the periodic and nonperiodic 
shaped D F T outputs for triangular weighting, we see that it is easier to derive the 
analytical expression for the nonperiodic filter. 

6.5 Hanning Weighting and Hanning Window 

The basic D F T filter response was derived in Section 6.1. The basic D F T filter 
response is due to a rectangular weighting of unity on the input time samples for 
sample numbers 0, 1, 2 , . . . ,N — 1 and a weighting of zero on all other time 
samples. Changing the D F T filter shape with a time domain weighting different 
from the rectangular weighting or with frequency domain windowing was 
discussed in Section 6.3. Section 6.4 illustrated time domain weighting with the 
triangular function. In this section we discuss Hanning weighting and the 
Hanning window, which are attributed to the Austrian meteorologist Julius von 
Hann [B-20, H-18, H-19, 0 - 7 ] . Hanning weighting is also called cosine squared 
weighting. (See Problem 14 and compare cosa(nn/N) weighting in Section 6.7.) 

The Hanning mechanization is interesting for several reasons. It has simple 
implementations either in the time domain or in the frequency domain. It 
significantly reduces sidelobe levels. The mainlobe of the D F T filter is twice as 
wide between nulls with Hanning weighting as with rectangular weighting. Nulls 
in the sidelobes occur every frequency bin with Hanning weighting as with 
rectangular weighting. The weighting is tractable analytically. 

As Fig. 6.15 shows, the Hanning analog weighting is the sum of unity and a 
cosine waveform. The Hanning time-limited analog and the sampled-data 
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weightings are given by 

f 1 - COS(2TC7/P), O ^ t ^ P " 
= < 1 (6.49) 

[0 otherwise 

f l -cos(27c/ i / i \0 , • 7i = 0 , l , 2 , . . . , # - 1 , 
^(w) = s (6.50) 

(0 otherwise 

The Fourier transform of 1 — cos(2nt/P) determines the weighted D F T filter 
response. Using Table 2.1, we find that this transform for P = 1 s is 

W ) = 8(f) - W+ 0 - W- 1) (6-51) 

The periodic weighted D F T filter response D(f) follows from (6.27): 

D(f) = D(f)*iT(f) (6.52) 

where £>(/) is the unweighted D F T filter response. (It is important to note that 
what we commonly call unweighted is actually the D F T output with rectangular 
weighting). Combining (6.52) and (6.11) gives 

„ 1 sin(7c/') 
D(f) = 

N sin(nf/N) 

1/2 s i n [ 7 t ( / + l ) ] 

N sin[7i(/+ l)/iV] 

1/2 s i n K / - ! ) ] 

TV sin[7i(/- l)/iV] 
(6.53) 

Equation (6.53) is the sum of three terms. When used in (6.25) the first term 
defines the unweighted D F T frequency response for bin k; the second and third 
terms are minus half the unweighted D F T responses for frequency bins k + 1 
and k — 1, respectively. The periodic Hanning D F T filter response is therefore 

D(f) = D{f) - $D(f+ 1) - \D(f- 1) (6.54) 

With Hanning weighting, the D F T output for frequency bin k is given by (6.25) 
or (6.26) which is repeated below 

X(k) = D(-f)Xa(f+ k)df (6.55) 

— oo 

Using (6.54) and (6.55), we see that 

X(k) X(k) - $X(k + 1) - \X(k - 1) (6.56) 

where the arrow indicates that the quantity on the right replaces that on the left. 
Equation (6.56) means that Hanning weighting at the input is equivalent to 
replacing each D F T output by the scaled sum of normal D F T outputs from the 
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three frequency bins k, k + 1, and k — 1. This simple implementation resulted 
from the convolution operation in (6.52). This frequency domain implemen
tation is called the Hanning window. We see that either Hanning weighting at 
the D F T input or Hanning windowing at the D F T output gives the same result. 

The D F T filter response for either Hanning weighting or Hanning windowing 
follows from (6.53), which can be approximated for a large value of N by 

f 1 s in (7 i / ) 1/2 s i n | > ( / + 1)] 
D(f)&< l 7 b b + 

N sm(nf/N) N s i n [ 7 c ( / + l)/N] 

1/2 s i n [ 7 t ( / - 1)] 1 • m 

_ j _ L KJ / J yc-jnf(l-l/N) (6 51) 
N s i n [ 7 i ( / - 1)/JV]J ' ; 

The sum of the three terms in the curly brackets in (6.57) (see Fig. 6.16) gives a 
mainlobe filter width twice that of the basic D F T . The Hanning window 
sidelobes go to zero as often as the unweighted D F T , but the peak Hanning 
sidelobe is down over 30 dB (Fig. 6.17), as compared to less than 14 dB for the 
basic D F T . The sidelobe reduction results from the sidelobes of the two filters 
that peak a t / = + 1 canceling the sidelobes of the filter that peaks at / = 0. 

Response 

- 3 - 2 - 1 0 1 2 3 

Fig. 6.16 Frequency response of three scaled D F T filters whose sum response is the Hanning 
window (N = 16). 

—1—| 1—j -H=t4777t77T 
-:-7;- 7777 -~. \—\—\.~ 

7..j'"-7f_7' 
'77"}" t:i"7"r_p_" 7 .{7 | f-1 j . 7 7 : \ 

—j- - f — | - i 7 '! /"!'• !-'!: i ^ 
.7717 i :'. ; : : - \ i - j . \ 

0 1 2 3 4 5 
Frequency (1/P Hz) 

Fig. 6.17 Frequency response of the Hanning window. 
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Derivation of the nonperiodic Hanning filter is similar to the derivation just 
given for the periodic Hanning filter (see Problem 14). Hanning weighting of the 
input requires generation or storage of cosine functions used in N — 1 
multiplications. One weighting generates all N filters. Hanning windowing 
requires two shifts to accomplish the scaling by \ in (6.56) and two additions for 
each filter. Since in integer arithmetic division by 2 is accomplished by shifting 
the binary representation to the right by one bit and discarding or rounding with 
the rightmost bit, the Hanning window has become popular with hardware 
engineers. The windowing must be accomplished for each of the TV filters. Either 
the input weighting or output windowing is a relatively simple operation. 

6.6 Proportional Filters 

Sections 6.3-6.5 showed how to change the D F T filter shape by time domain 
weighting or frequency domain windowing. The filters were modified so that all 
had the same shape. Krause [K-3] and Harris [H-21] have independently 
described a windowing procedure for modifying the D F T filters so that the ratio 
of the filter center frequency fn and the filter bandwidth Afn is a constant, which 
we denote Q: 

The filters are sometimes called constant Q filters. Since the filter bandwidths 
are proportional to the center frequencies, they are also called proportional 
filters. 

Proportional filters are formed in the frequency domain by scaling and adding 
a number of adjacent D F T outputs (i.e., using a number of D F T filters as basis 
filters in the formation of a new filter). These filters are used for such purposes as 
acoustic or vibration analysis when closely spaced signal frequencies occur at 
low frequencies but more widely spaced signal frequencies appear higher up the 
frequency scale. The gain of the proportional filters is usually adjusted so that 
each of the proportional filters will contain the same total noise power. 
Proportional filters are an interesting example of how D F T filters are 
constructed [H-21, K-12, B-23]. Several constructed filters are included in the 
summary in Section 6.7. 

D E S I G N P A R A M E T E R S Let the proportional filters be linearly spaced on a base 2 
logarithmic scale. Let 7VP proportional filters cover the octave from f0 to 2 / 0 . 
Then the nth filter is centered at 

so that log 2 / „ = l o g 2 / 0 + n/Np, where n = 0 , 1 , 2 , . . . , Np — 1 are the tags of the 
proportional filters. Let the crossover point of adjacent proportional filter gains 
be as shown in Fig. 6.18, so that 

Q=fn/Afn 
(6.58) 

fn=fo2"/N> (6.59) 

fn+Ufn=fn W i - 2 Afn + 1 (6.60) 
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A f n / 2 

Filter 
gain 

A 

0 
f n n + 1 

Fig. 6.18 Propor t ional filter spacing. 

Substituting (6.58) for Afn and using (6.59) gives 2" + 2n/2Q = 2n + 1 - 2 n + X/2Q, 
from which 

The number of proport ional filters Np should be chosen so that the narrowest 
proportional filter has bandwidth no less than those of the D F T basis filters. 
Otherwise, too few D F T filters are used to form the proportional filters, which 
experimentally are then found to result in higher sidelobes [K-13]. Stated 
another way, frequency separation of the D F T basis filters must be small enough 
to approximate the convolution integral with farily good accuracy (see Problem 
9). Frequency separation can be stated in terms of bandwidth and therefore Q. If 
QDFT is the value of Q for the D F T filter at the low frequency end of the octave, 
then 

where Af is the spacing of N D F T filters spanning the octave from f0 to 2f0. 
The criterion that the D F T filter bandwidth A/be less than or equal to the 

proportional filter bandwidth Af0 at f0 gives 

Q=±(2l/N>+ l ) / ( 2 1 / i V p - 1) (6.61) 

QmT=foMf=N (6.62) 

S O F T > Q 

If Np » 1, (6.61) gives 

Q « l/(2l/N> - 1) 

Using (6.64) and (6.62) in (6.63) leads to 

l / (2 1 / i V p - 1 ) < N 

(6.63) 

(6.64) 

(6.65) 
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Using 2 1 / i V p = eiln2)/N> ^ 1 + (In2)/7VP for 7VP » 1 gives 

Np ^ 7Vln2 ' (6.66) 

Equation (6.66) says that the number of proportional filters should be less than 
the number of D F T filters by ln 2 to avoid undesirable sidelobe effects. 

F O R M A T I O N O F P R O P O R T I O N A L F I L T E R S The filters are formed by a windowing 
operation performed in the frequency domain. Let Dm(f) be the rath D F T filter 
response to frequency / . Let D„(f) be a proportional filter resulting from 
summing K D F T outputs. Then the convolution operation for proportional 
filtering is 

Hf) = £ 9 m n D K o + m { f ) (6.67) 
m= 1 

where gmn is the rath gain constant for the nth proportional filter and K0 + 1 is 
the number of the first D F T filter used. 

Equation (6.67) contains A" gain terms g m m which we must specify. These are 
specified by designating K desired values for the proportional filter. For 
example, atf = fn we may want unity gain, so that Dn(fn) = 1. Atf = fn ± \Afn 

we may want a crossover level ln giving Dn(fn ± ^Afn) = ln. Specifying gains at a 
total of K frequencies, / = / i , . / 2 5 • • • JK g i y e s K equations in K unknowns as 
follows: 

where 
i n = ®n%n (6-68) 

= &«Ui), Dnifi), - . . , Dn(fK)]T (6.69) 

g» = [gin,92n,---,gKn]T (6-70) 

DKo + 1(f2) DKo + 2(f2) ••• DKo+K(f2) (6.71) 

__DKo + 1(fK) DKo + 2(fK) ••• DKo+K(fK)_ 

Solving for the gain terms yields 

g n = D;1l (6.72) 

Equation (6.72) effectively solves the theoretical approach to proportional filter 
development. Two practical problems remain: 

(1) The proportional filters may need normalization so that each has the 
same broadband output power in response to rj(n), where rj(n) is the sequence 
that results from sampling n(t), a white noise input with a mean value of zero. 
White noise has a power spectral density (PSD) defined by \H(f)\2 = 1 for a l l / , 
which corresponds to an uncorrelated input: rj(t) *rj( — t) = S(t) (see, e.g., 
[P-24], Section 10.3). We shall tacitly assume that white noise has been band-
limited by appropriate analog filters to preclude aliasing. Normalization of the 
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proportional filters is important if a human observer is simultaneously viewing 
the output of all the filters. A human observer usually prefers to see filter outputs 
that have a constant power output at all frequencies with a uniform power 
spectral density noise input. 

(2) A procedure for specifying the proportional filter gains in (6.70) is 
required for the computation of the gains. The procedure permits automatic 
computation of the gains using a digital computer. 

NOISE NORMALIZATION Problem ( 1 ) requires that we normalize the pro
portional filters so that each has the same noise bandwidth. Bandwidth is 
defined in various ways, including 

(a) the frequency range between the — 3 dB points on the frequency 
response, 

(b) the bandwidth of a rectangular filter passing the same white noise power, 
and 

(c) Afn, which is proportional to center frequency fn for constant Q filters. 
This last definition of bandwidth will be used to define noise bandwidth for 
proportional filters. 

Let Afn be the bandwidth measure for proportional filters. Since Afn increases 
with frequency, the peak filter gain must decrease with frequency to keep noise 
power output a constant. Let the noise power spectral density (NPSD) input be 
\n(f)\2. Then the N P S D at the output of the nth filter is (see Problems 1 9 and 20) 

N P S D = \H(f)\2Dn(f)D*(f) (6.73) 

Using (6.67) we see that the total noise power output N P 0 from the mth filter is 
OO 

/% K K 

N P 0 = \H(f)\2 £ l9™DKo+m<J)g*nD*o+l(f)df (6.74) 
J m=1 1 = 1 

— oo 

Let H(f) be zero mean white noise with \H(f)\2 = 1 W/Hz. Then we have 

N P 0 = 

£ \9mnDKo+m(f)\2df= £ \gmn\2\cm\2 =^§- (6.75) 
m = 1 m = l N 

where cm = j^lDtfo+mCOl 2 df. To obtain a noise power output of unity we 
rescale each coefficient, obtaining a new coefficient vector 

(&0 a, (6-76) 

Use of the new scaled coefficients given by (6.76) results in the proportional 
filters having unity noise power output with 1 W/Hz input. 

FIT FUNCTIONS Problem (2) requires that we specify a procedure so that the 
gain vector g„ can be computed automatically using a digital computer. At this 
point the entries in the vector d„ are unspecified. These entries describe the 
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proportional filter gains at K different frequencies. To specify these entries a fit 
function may be used. The fit function should have a shape similar to that 
desired for the proportional filters. 

An example of a fit function is given by 

D{f) = \ ; I ' e x p [ - > ( / - / n ) ( l - l/N)Tn]wn(f-fn) (6.77) 

where the (sin x)/x function determines the basic filter shape, an is a constant 
used to adjust the crossover level /,„ wn(f — f n ) is a weighting, ordinarily set 
initially to unity and modified iteratively to meet design objectives, and 

) C / n f n - l ) ? f ^ f n , c „ Q x 

(f f f (p. I*) 
U n + 1 ~ J n ) J J > Jn 

Let /„ be the crossover level of adjacent filter gains, as shown by Fig. 6.18. With 
™n(f-fn)= 1,(6.77) yields 

a„ = log/ n / log(2/7i) (6.79) 

The value of /„ may be changed slightly to maintain crossover if T„ is varied by 
small amounts to vary the width of the filter mainlobe. 

Another example of a fit function has a shape which is basically Gaussian, i.e., 

~ / - / * A 2 

D(f) = exp ln(/„) exp[-Mf - / „ ) ( 1 - l/N)Tn]wn(f-f„) 

(6.80) 

where 

" lfcu(n), f>fn 

fci(n) and fcu(n) are the lower and upper crossover frequencies, respectively, and 
other parameters are as defined previously. 

D E S I G N E X A M P L E A practical design problem [K-3] used 256 proportional 
filters to span the octave from 160 to 320 Hz. Use of (6.64) gives Q = 369.33. 
Filter center frequencies are fn = 2 n / i V 160 for n — 0 , 1 , 2 , . . . ,255. Crossover 
levels are specified as ln = — 2dB, and upper and lower crossover frequencies 
are 

/ c u ( " ) = / , + L/2Q, fGl(n) =fn- fn/2Q 

A total of 368 D F T filters spanned the frequency range 160 to 320 Hz, with the 
first D F T filter centered at 160 Hz. Thus Qmin = 368 ^ 369.33 = Q, which was 
found to produce proportional filters meeting specification even though (6.63) is 
not quite satisfied at the 160 Hz end of the frequency band. Let m be the number 
of the D F T filter whose center frequency fm is closest to fn, the center frequency 
of the proportional filter, and let 

[D(fm,2),D(fcl),D(fn),D(fcuXD(fm + 2)] = [ 5 ( / m _ 2 ) , / n , l , / n , 5 ( / m + 2 ) ] 
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where (6.80) specifies D( ) on the right side of the above equation. Either the first 
or last four entries of the vector above specify fit function gains to be used in dn, 
given by (6.69), according to whether fn < fm or fn ^ fm, respectively. The fit 
function is shown in Fig. 6.19. Figure 6.20 shows the relationship of the sequence 
of proportional filters to the sequence of D F T filters (filter sidelobes are not 
shown). 

Gain 

Fig. 6.19 Gaussian fit function. 

Gain 

• DFT filters 

Fig. 6.20 Relat ionship of propor t ional and D F T filter banks. (Courtesy of Lloyd O. Krause.) 

Note in Figs. 6.19 and 6.20 that the peak values of the proportional filters 
decrease to keep the total noise power output a constant as the width of the filters 
increases. Three filters resulting from the design are shown in Fig. 6.21. The filter 
numbers are n = 1, 126, and 255, where proportional filter numbers 
0 , 1 , 2 , . . . ,255 cover the octave with D0(f) centered at 160 Hz. A typical 
mechanization might have an additional 256 proportional filters cover the 
octave from 320 to 640 Hz. 
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REFLECTIONS ON PROPORTIONAL FILTERS The proportional filters we have 
described were constructed using a frequency domain convolution accomplished 
by scaling and adding adjacent D F T coefficients. The scale factors were chosen 
to meet specific filter shape criterion including bandwidth, that is, Afn in Fig. 
6.18, and desired shape, for example Gaussian. Only four D F T outputs were 
used to form each filter in the examples (see Fig. 6.21). Each proportional filter 
has a different bandwidth so the scale factors are different for each. 

Since the proportional filter frequency responses all have different shapes, 
their inverse Fourier transforms are also different. These transforms determine 
the data sequence weighting to get the desired window. Since all weightings are 
different, practical application requires proportional filter formation in the 
frequency domain. 

Any window with an analytical definition is a candidate for the fit function. 
Weighting functions have been constructed by many investigators as sections, 
products, sums, or convolutions of other functions or of other weightings. 
A number of additional weighting functions and their windows are defined 
next. 

6.7 Summary of Weightings and Windows 

In this section we present Harris's summary of a number of weighting 
functions and the corresponding periodic shaped D F T filter frequency re
sponses (windows) [H-19]. Since both the weightings and windows are 
dependent on N, the weighting functions are defined and illustrated in the figures 
as even sequences about the origin for N/2 = 25. They therefore have an odd 
number of points. 

The D F T weighting for n = 0 , 1 , . . . , TV — 1 is used to derive the window 
illustrated in the figures. For presentation purposes this weighting function is 
formed by discarding the right end point so that the sequence has an even 
number of points. The resulting sequence is then shifted so the left end point 
coincides with the origin. The logarithm of the magnitude of the periodic shaped 
D F T filter frequency response is given for this latter weighting. Harris 
determined the filter shape by taking the Fourier transform of a sequence of 
delta functions weighted according to the weighting function. This Fourier 
transform is given by (6.27) and yields the periodic D F T shaped filters. The 
Fourier transform was obtained by an approximation that used a 512-point F F T 
of the sequence {^(0), ^ / ( l ) , . . . , ^ (49 ) , 0,0, . . . , 0 } where ( 5 1 2 - 5 0 ) zeros 
follow the weightings (see Problems 23 and 24). The frequency response is shown 
in the following figures for origin centered windows up to the point of periodic 
repetition of the filter. 

Nuttall has derived analytical expressions for some of the windows. 
Occasionally his frequency responses appear to give more accurate windows 
than were obtained by the F F T method. For theses cases, Nuttall 's results will be 
given [N-30]. Nuttall 's frequency responses all result from an origin centered 
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weighting that can be written 

" 1 2*t 
^(0 = — L akcos-~ 

(6.82) 

where L is the integer (normalized) analysis period so that the weighting is used 
only for \t\ < L/2. The nonperiodic shaped D F T filter for this origin centered 
weighting is found using (6.29) and Table 2.1 to yield 

D\f) = J^ j rec t 

= sinc(/L) * 

1 * Inkt 
— 2, akcos 
L k = 0 

Lf ^ 
= —sm(nLf) £ (• 

fc = 0 
K 

L 

l)kak (6.83) 

If i is an integer, then 

lim D'(i/L) = a0, 1 = 0 

Note that whereas Harris 's windows are periodic, Nuttall 's are nonperiodic. 
A peak amplitude of unity is shown for all the weighting functions, so the peak 

gain of the shaped D F T filter is not in general zero. However, the filter outputs 
have all been normalized to have a peak gain of OdB. A normalized period of 
P = 1 s is also assumed so that the basic D F T frequency bin has a width of 1 Hz 
and the abscissa of the window is in hertz. 

Rectantular (Dirichlei) Weighting [R-44, H-19, G-3] See Section 6.1 and Figs. 
6.3 and 6.5. 

Triangular (Frejer or Bartlet) Weighting [B-20, H-19, G-3] See Section 6.4 and 
Figs. 6.11-6.14. 

cosa(mi/A0 Weighting [N-3, H-19, B-20, 0 -7 , R-16, O- l , H-18, G-3] Hanning 
weighting for the D F T results for a = 2, as mentioned in Section 6.6. Hanning 
weighting may be generalized for the origin centered weighting as 

a>(ri) = cos a [(n/N)n], 

and for the D F T as 

n= - N/2,..., - 1 ,0 ,1 , . . . ,N /2 (6.84) 

= sm«[(n/N)n], n = 0 , 1 , 2 , . . . , N - 1 (6.85) 

The window for a = 2 is given by (6.53) and is approximated by (6.57). The 
weighting and window for a = 2 are shown in Figs. 6.16, 6.17, and 6.22. As a 
becomes larger, the mainlobe broadens and the sidelobe levels decrease. For 
a = 4, the first sidelobe is below — 45 dB, the second below — 60 dB, and the rest 
(up to periodic repetition) are below — 70 dB. 
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( a ) 

-25 

1.25 

1.00 

I ' • , > n 
25 

Fig. 6.22 Cosine squared (a) weighting and (b) window magni tude (dB). (Courtesy of Fredric J. 
Harris.) 

HAMMING WEIGHTING [H-19, B-20, 0 -7 , 0 - 1 , R-16, H-18, G -3 ] Hamming 
weighting is a generalization of Hanning weighting. The origin centered and 
D F T weightings, respectively, have the forms 

fa + (l -a)cos(2m/N), n = - N/2,..., - 1 , 0 , 1 , . . . ,N/2 
[a - (1 - a)cos(2nn/N), n = 0 , 1 , . . . ,N - 1 

(6.86) 

Observation of Fig. 6.16 shows that the three functions added to achieve the 
Hanning window did not sum to cause perfect cancellation of the sidelobes at 
/ = 2.5. Perfect cancellation of the sidelobe peaks may be achieved by selecting 
the proper value of a in (6.86). This value of a depends on N (weakly) and is 
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1.25 

( a ) 1.00 

-25 25 

Fig. 6.23 Hamming (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. 
Harris.) 

approximately 0.54. If a = 0.54, the Hamming window results. The weighting 
function and magnitude of the window (in dB) are in Figs. 6.23a and b, 
respectively. The Hamming window is an example of a window constructed to 
achieve a specific goal. 

B L A C K M A N W E I G H T I N G [H-19, B-20, O-l , G-3, N -30] Generalizations of 
Hanning and Hamming weightings for origin-centered and D F T sequences, 
respectively, yield 

'An) 
X am cos(2nmn/N), n = - N / 2 , - 1 , 0 , 1 , . . . , yV/2 (6.87) 

m = 0 
K 

X ( - l)mamcos(27imn/N), n = 0 , 1 , . . . ,N - 1 (6.88) 
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Fig. 6.24 Blackman (a) weighting and (b) window magni tude (dB). (Courtesy of Fredric J. 
Harris and Albert H . Nuttal l , respectively.) 

where the am coefficients are selected to produce desirable window characteris
tics and K ^ N/2. Applying (6.27) to (6.88) yields 

K 

D(f) = X (- [D(f+ m) + D(f- m)] (6.89) 
m = 0 

when D(f) is the basic D F T window given by (6.11). Blackman used K = 2 to 
null the shaped D F T filter gain at / = 3.5 and 4.5 by using 

7938 
a0 = 

a, = 

18608 

9240 

18608 

0.42659071 « 0.42 

0.49656062 « 0.50 

file:///f/f/
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1.25 

1.00 
(a) 

-L-U 

-25 25 

Fig. 6.25 Exact Blackman (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. 
Harris and Albert H. Nuttal l , respectively.) 

0 2 
1430 

18608 
0.07684867 « 0.08 (6.90) 

The weighting using the exact coefficients defined by the rational fractions in 
(6.90) is called the exact Blackman weighting whereas the two place approxi
mations in (6.90) define the Blackman weighting. Figures 6.24 and 6.25 show the 
Blackman and exact Blackman weightings and shaped filter magnitudes. 

BLACKMAN-HARRIS [H -19 , N-30] Harris used a gradient search technique 
[R -19] to find three- and four-term expansions of (6.88) that either (1) 
minimized the maximum sidelobe level for fixed mainlobe width or (2) traded 
mainlobe width versus maximum sidelobe level. The parameters are listed in 
Table 6.1 and the minimum three-term weighting and window (i.e., the 
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Table 6.1 

Parameters for Blackman-Harr i s Weighting Functions [H-19, N-30] 

Parameter values 

N o . of terms in (6.88) 3 3 4 4 

Maximum sidelobe (dB) - 70.83 - 62.05 - 9 2 - 74.39 

Parameter a0 

a3 

0.42323 
0.49755 
0.07922 

0.44959 
0.49364 
0.05677 

0.35875 
0.48829 
0.14128 
0.01168 

0.40217 
0.49703 
0.09892 
0.00188 

Fig. 6.26 Min imum three-term Blackman-Harr is (a) weighting and (b) window magnitude (dB). 
(Courtesy of Fredric J. Harr is and Albert H. Nuttal l , respectively.) 



6.7 S U M M A R Y O F W E I G H T I N G S A N D W I N D O W S 219 

maximum window sidelobe magnitude has been minimized) are displayed in Fig. 
6 . 2 6 . The four-term window mainlobe is very similar in appearance. 

K A I S E R - B E S S E L A P P R O X I M A T I O N T O B L A C K M A N - H A R R I S W E I G H T I N G [ H - 1 9 , 

H - 2 1 ] This weighting is defined by ( 6 . 8 8 ) using scaled samples of the Kaiser-
Bessel weighting ( 6 . 1 0 2 ) as follows: 

m ^ a, 2 ^ a < 4 , c = b0 + 2Yb1 m 

m 

a0 = b0/c, am = Ibjc, m = 1 , 2 or 1 , 2 , 3 ( 6 . 9 1 ) 

1.25 

1.00 

(a) 

n 

- 2 5 0 25 

A 
OdB 

(b) 

- 2 0 

- 4 0 

- 6 0 

- 2 5 0 

Fig. 6.27 Four-sample Kaiser-Bessel (a) weighting and (b) window magni tude (dB). (Courtesy 
of Fredric J. Harris.) 
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The four coefficients for a = 3.0 are a0 = 0.40243, at = 0.49804, a2 = 0.09831, 
and a3 = 0.00122. Note the closeness of these coefficients to the four-term 
( - 74 dB) Blackman-Harris weighting. Figure 6.27 shows the weighting and 
logarithm of the window magnitude. The mainlobe of the four-sample 
Blackman-Harris window is virtually the same as that in Fig. 6.27b, but the 
sidelobes for the former window are approximately 5 dB lower. 

PARABOLIC (RIESZ, BOCHNER, OR PARZEN) WEIGHTING [H-19, P-21 ] The origin-

centered weighting is 

0 < N < y (6.92) 

As Fig. 6.28 shows, the first sidelobe is only — 22 dB down. 

u>(n) = 1.0 -
N/2 

1.25 

Fig. 6.28 Parabolic (Riesz) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. 
Harris.) 
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R I E M A N N W E I G H T I N G [ H - 1 9 , B -22 , G - 3 ] The analog weighting is defined by 
sinc(0 and is optimum in the sense that it maximizes area under the mainlobe 
over the interval \f \ ^ 1 subject to the constraints that u>{t) ̂  0 , if(-f) = 
iT(f), HT{f) is real, and ^2(t)dt = if2(f)df = constant [ G - 3 ] . The 
discrete time weighting is defined by 

i#(n) = sinc(2n/N), 0 ^ |TI| < N/2 ( 6 . 9 3 ) 

and its characteristics are displayed in Fig. 6 . 2 9 . 

1.25 

I 
-25 

1.00 

25 

-25 0 25 

Fig. 6.29 Riemann (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. 
Harris.) 

C U B I C ( D E L A Y A L L E - P O U S S I N , J A C K S O N , O R P A R Z E N ) W E I G H T I N G [ H - 1 9 , P - 2 1 , 

G - 3 ] This is defined by convolving two triangular functions (see Problem 11 ) . 
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1.0 - 6 
n 2 

N/2_ 
\n\ • 3 

N/2_ 

1.0 
N/2_ 

N 

N 

N 
(6.94) 

^ n < • 
4 2 

normalized for a peak value of unity and centered at the origin. Fig. 6 . 3 0 shows 
the weighting and window magnitude. 

1.25 

1.00 

( a ) 

. . r i l l l l h , . 
I I r f i 

Fig. 6.30 Cubic (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. Harris.) 

COSINE TAPERED (TUKEY OR RAISED COSINE) WEIGHTING [ H - 1 9 , T - 1 4 , G - 3 ] 
Convolving a cosine lobe of width aN/2 with a rectangular function of width 
(1 - ±a)N gives this function defined for the origin-centered weighting defined 
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"1.0, 

0.5 1.0 + COS 71 
\n\ - aN/2 

2(1 - a)N/2 

Figure 6 . 3 1 shows results for a = 0 . 7 5 . 

0 ^ \n\ < aN/2 

aN/2 < \n\ < iV/2 

223 

(6.95) 

- 2 5 

( a ) 

1.25 

1.00 

- r - ^ n 

25 

Fig. 6.31 Cosine taper of 75% (Tukey) (a) weighting and (b) window magni tude (dB). (Courtesy 
of Fredric J. Harris.) 

BOHMAN WEIGHTING [ H - 1 9 , B - 2 4 ] This weighting is the product of a triangular 
weighting with a single cycle of a cosine function with the same period and with a 
corrective term added to set the first derivative equal to zero at the boundary. 

by 
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The origin-centered weighting is 

>(«) = 1.0 
N/2] 

COS 
'N/2_ 

H—sin 
71 

The results are shown in Fig. 6 . 3 2 . 

' N / 2 . 
0 ^ \n\ ^ 

N 
( 6 . 9 6 ) 

1.25 

1.00 

25 -25 

Fig. 6 .32 Bohman (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. Harris.) 

POISSON WEIGHTING [ H - 1 9 , B - 2 2 ] This is a family of weightings parameterized 
on a given by 

N 
a>{ri) = exp — a 

N/2 
0 < \n\ ^ - ( 6 . 9 7 ) 

The results are shown in Fig. 6 . 3 3 . 
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( a ) 

1.25 

1.00 

J_LL 

-25 25 

(b ) 

/ 

i 1 1 1 r 
- 2 5 

OdB 

- 2 0 

- 4 0 

- 6 0 

i , 1 1 f 
2 5 

Fig. 6.33 Poisson (a = 3.0) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric 
J. Harris.) 

HANNING-POISSON WEIGHTING [H-19] This is constructed as the product of 
Hanning and Poisson weightings and gives a family parameterized on a defined 
by 

•>(n) = 0.5 exp l — a "N/2 
0 < N < y (6.98) 

Figure 6.34 shows the results for a = 0.5. 
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( a ) 
1.25 

1.00 

25 - 2 5 

Fig. 6.34 Hanning-Poisson (a = 0.5) (a) weighting and (b) window magni tude (dB). (Courtesy 
of Fredric J. Harris.) 

CAUCHY (ABEL OR POISSON) WEIGHTING [ H - 1 9 , A - 4 6 ] The Cauchy weight

ing is also a family parameterized on a. It is defined for the origin-centered 
weighting by 

>s(n) = [ 1.0 + 
N/2] 

0 < \n\ ^ -
N 

( 6 . 9 9 ) 

The Fourier transform of this weighting is an exponential function, and when 
the logarithm of the window magnitude is plotted, the mainlobe is essentially an 
isosceles triangle, as shown in Fig. 6 . 3 5 for a = 4. 
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(a) 

_1U 

1.25 

1.00 

-25 25 

T
 L V f 

Fig. 6 . 3 5 Cauchy (a = 4 ) (a) weighting and (b) window magnitude (dB). (Courtesy of Fredric J. 
Harris.) 

G A U S S I A N ( W E I E R S T R A S S ) W E I G H T I N G [H-19, A-46] Gaussian weighting cen
tered at the origin is parameterized on oc as defined by 

v(ri) = exp 
2 

0 < \n\ < : 
N 

(6.100) 

The Fourier transform of a Gaussian function is another Gaussian function, 
which enters into the convolution in (6.27) to yield a result as shown in Fig. 6.36. 
As a becomes larger the mainlobe becomes broader and the sidelobe peaks have 
lower amplitude. 
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DOLPH-CHEBYSHEV WEIGHTING [ N - 3 , H - 1 9 , H - 2 1 , H - 1 8 , N - 1 3 ] This discrete 
weighting results in the minimum window mainlobe width for a given sidelobe 
level. It results from using the mapping TJj) = cos[> cos - to relate the nth-
order Chebyshev polynomial and the rcth-order trigonometric polynomial. The 
Dolph-Chebyshev window is defined in terms of uniformly spaced samples of 
the Fourier transform as follows: 

D(k) = (- l)k " " ) A \ O ^ k ^ N - l ( 6 . 1 0 1 ) 
cosh[/Vcosh x(jS)] 
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( a ) 

, i 1 -

1.25 

1.00 

-25 25 

(b) 

- 2 5 

OdB 

-20 

-40 

r 
2 5 

Fig. 6.37 Dolph-Chebyshev (a = 3) (a) weighting and (b) window magni tude dB. (Courtesy of 
Fredric J. Harris.) 

where c o s ( / z ) - 1 [ £ | means c o s " 1 x if M < 1 or c o s h - 1 x$\x\ > 1, cos and c o s " 1 

or cosh and c o s h - 1 are used together, and 

P = cosh c o s h _ 1 ( 1 0 a ) 

cos(A) \x) = 
n/2 - t a n - ^ / V l . O - x 2 ] , \x\ < 1-0 

1.0], 

The weighting a>(ri) is derived as the I D F T of (6.101). The parameter a is the 
logarithm of the ratio of peak mainlobe level to peak sidelobe level. For example, 
Fig. 6.37 shows that for a = 3 the sidelobe peaks are at — 60 dB. 
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KAISER-BESSEL WEIGHTING [ H - 1 9 , K - 1 2 , G - 3 ] Slepian, Pollak, and Landau 
[L-14, S-17] showed that prolate-spheroidal wave functions of zero order 
maximized the energy in a given frequency band. Kaiser found a simple 
approximation to these functions in terms of the zero-order modified Bessel 
function of the first kind. The Kaiser-Bessel weighting is defined by 

where 

k = 0 

\N/2j . 

N 
/oLTia], O ^ H ^ — ( 6 . 1 0 2 ) 

\X/2f 
k\ 

1.25 

( a ) 

1.00 

-25 
- p . 

25 

(b) 

A 

i r 
-25 

1 1 T 

OdB 

- 2 0 

- 4 0 

- 6 0 

i r f 
25 

Fig. 6.38 Kaiser-Bessel (a = 2.5) (a) weighting and (b) window magni tude (dB). (Courtesy of 
Fredric J. Harris.) 
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As the parameter a increases the sidelobe level drops and the mainlobe broadens. 
Figure 6.38 shows the weighting and window for a = 2.5. For a = 3 the sidelobe 
peaks are all below - 65 dB [N-30]. 

BARCILON-TEMES WEIGHTING [H-19, B-23] Whereas the Kaiser-Bessel win
dow tends to maximize mainlobe energy, the Barcilon-Temes window tends to 
minimize energy not in the mainlobe. A weighted minimum energy criterion 
leads to a window defined in terms of its Fourier transform. The sampled 
window is defined by 

w(k) = (-\y 
Acos([y(k)] + B[y(k)/C] sm[y(k)}) 

(C + AB)([y(k)/C]2 + 1.0) 
(6.103) 

1.25 

( a ) 1.00 

n 
- 2 5 0 25 

OdB 

(b) - 2 0 

- 4 0 

- 6 0 

- 2 5 0 2 5 

Fig. 6.39 Barcilon-Temes (a = 3.5) (a) weighting and (b) window magni tude (dB). (Courtesy of 
Fredric J. Harris.) 
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where 

A = sinh(C) = ^I02a - 1 

B = cosh(C) = 10a 

C = c o s h _ 1 ( 1 0 a ) 

P = c o s h [ ( l / J V ) C ] 

y(k) = Ncos-1[p cos(nk/N)] 

As with the Dolph-Chebyshev window, the weighting is determined by the 
IDFT. The shaped D F T filter response is shown in Fig. 6.39 for a = 3.5. The 
window shape is similar to the Kaiser-Bessel window and performance is also 
similar. As a increases the mainlobe broadens slightly and the sidelobe levels 
decrease. 

6.8 Shaped Filter Performance 

This section gives a number of performance parameters [H-19, P-3, P-4, G - 3 ] 
summarized by Harris for the shaped D F T filters presented in the preceding 
section. Figures of merit are given for each of the filters. Windows are compared 
on the basis of sidelobe levels and worst case processing loss. A short discussion 
is given for the problem of detecting a low amplitude signal in the presence of a 
high amplitude signal. 

Table 6.2 lists the windows and the figure of merit (FOM) for a number of 
parameters which characterize the nonperiodic filter frequency response 
[H-19]. The parameters in general depend on N, and a value of N = 50 was used 
for computation. A short description of each of the parameters follows. 

HIGHEST SIDELOBE LEVEL An indication of the stopband rejection of a filter is 
its highest sidelobe level. For example, the sidelobes of the basic D F T filter have 
maxima when d[\sm(x)/sm(x/N)\]/dx = 0. The first sidelobe near x = 3n/2 
radians (depends on N) is the highest and is less than — 13 dB. 

SIDELOBE FALL O F F This parameter describes the amplitude fall off of sidelobe 
peaks. For example, the basic D F T sidelobe peaks occur every % radians. For the 
nonperiodic D F T filter, these peak values are near x = (2k + l)n/2, where k is 
an integer, so that |sinx|/x = l/x and the fall-off rate is 6 dB/octave. The 
generalization of this result is that if the rath derivative of u>(t) is impulsive, then 
the peaks of the sidelobes of D'{f) fall off asymptotically at 6ra dB/octave (see 
Problem 13). 

COHERENT G A I N This is a measure of the shaped D F T filter gain that takes into 
account data sequence weighting and assumes a sinusoid is centered in the filter. 
In general, the weighting function is small (or zero) near n = 0 and n = N and 
this reduces the filter output. To measure the reduction let the sinusoid prior to 
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the weighting function be 

x(n) = ej2nkn/N (6.104) 

The peak shaped D F T filter output due to this signal is the coherent gain Gc, 
given by 

°o = ~Y ^(nW-knWk" = I Y (6-105) 
where {a>(n)} is the weighting sequence. 

E Q U I V A L E N T N O I S E B A N D W I D T H ( E N B W ) This is the width of a rectangular 
filter with a gain equal to the peak signal power gain of the shaped D F T filter 
and with a width that accumulates the same noise power as the shaped D F T filter 
(see Fig. 6.40). Let the input noise be band-limited white noise with a mean value 
of zero and a PSD defined by 

(0 otherwise 

where cj)(f) has the units of watts per hertz. Then the E N B W for a periodic 
shaped D F T filter with frequency response D(f) is given by 

E N B W - Ei\X(k)\2y\D(Q)\2o2IN = ^ ^ ° , — (6.107) 
LI / |D(0) |V/Ar V J 

where the integral in the numerator of (6.107) is equal to N0. Applying Fourier 
transform relationships to (6.27) for P = 1 s gives 

N - 1 
^ i i i 

Z)(0) = 
i^(-f)D(f)df=^ N-l / \ I N-1 

(0 I < V - ^ P = ^ S 

(6.108) 

NJ Nnt0 

Fig. 6.40 E N B W defined by (a) a shaped filter and (b) a rectangular filter accumulating the same 
noise power. 
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Using the D F T definition to evaluate N0 yields 

N0 = E i Y ^ M ' O ^ T f X x{m)u>{m)W-
\-N n = 0 ^ m = 0 

(6.109) 

The expectation of x(n)x(m) is <r2^m„ (see Problem 20), so (6.109) reduces 
to 

o1 N~1 

^ o = - E K " ) l 2 (6.110) 

Combining (6.107), (6.108), and (6.110) yields 
N - l 

ENBW = N X ">\n) 
n = 0 

Z (6.111) 

which is stated in Table 6.2 (see Problems 17 and 18 for examples of ENBW 
calculation). Note that windows with a broad mainlobe in Section 6.7 have a 
large ENBW in Table 6.2. 

3.0 dB BANDWIDTH The point at which the gain of the shaped filter is down 3.0 
dB, measured in D F T frequency bin widths, is listed in Table 6.2. For example, 
rectangular weighting defines the gain of the basic D F T filter, which at ± \(0.89) 
bin widths is down 3.0 dB. The 6.0 dB bandwidth is also stated in this 
table. 

SCALLOPING LOSS Signals not at the center of a filter suffer an attenuation 
called scalloping loss (also called picket-fence effect). If shaped filters are 
centered at every basic D F T output frequency, then the worst-case attenuation is 
for a signal half a frequency bin removed from the center frequency. Scalloping 
loss is defined as the ratio of gain for a pure tone (single frequency sinusoid) 
located a fraction of a bin from a D F T transform sequence point to the gain for a 
tone located at the point. Maximum scalloping loss occurs for a pure tone half a 
bin from the transform sequence point and is defined by 

£>(fs/2N) 
maximum scalloping loss = — ^ (6.112) 

F 5 D(0) V ; 

where fs is the sampling frequency. For a normalized period of P = 1 s we get 
fs = N and scalloping loss = D(^)/D(0). For example, rectangular weighting 
gives sin(7i /2)/{A^sin[7c /2^]} « sin(7r/2)/(7c/2) = 2/TT, or - 3.92 dB. Maximum 
scalloping loss is stated in Table 6.2. 

WORST-CASE PROCESSING Loss A small worst-case processing loss favors 
detection of a signal in broadband noise. Processing loss is the reduction of the 
output signal-to-noise ratio as a result of windowing (weighting) and frequency 
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location. Worst-case processing loss is defined as the sum (in decibels) of a 
window's maximum scalloping loss and ENBW. For example, for cosine cubed 
weighting ENBW = 1.734 bins (see Problems 17 and 18). The maximum 
scalloping loss is 1.08 dB and 10 log 1.734 + 1.08 = 3.47 dB. 

OVERLAP CORRELATION The shaped D F T filters described in this chapter all 
have mainlobes wider than the normal D F T filter. The wider filter passband 
results in more noise power at the filter output. The effect is countered by 
additional processing of the D F T output. Coherent processing uses both the 
magnitude and phase information to produce additional filtering or gain (see 
Problems 28-31). Noncoherent processing uses only the magnitude information 
to reduce the variance of the power spectrum (see Problem 27). In either case, 
overlapped data may be used at the D F T input [A-38, C-32, C-33, C-34, H-19, 
H-42, N - 3 , R-23]. If the fraction of overlap between successive weighting 
functions is 1 — l/R, where R ^ 1, then the quantity R is sometimes defined as 
redundancy. Figure 6.41 illustrates overlapping weighting functions applied to 
the input data for R = 4. 

Let l v a l u e s of \X(k)\2 be averaged and let the random components be due to 
band-limited zero mean white Gaussian noise, yielding a flat noise spectrum at 
the D F T input. The overlap correlation coefficient for the degree of correlation 
between random components in successive shaped D F T outputs as a function of 
R is defined as C ( / ) . Let R divide N. Then 

C ( / ) is shown in Table 6.2 for redundancies of 2 (50% overlap) and 4 (75% 
overlap). After averaging, the variance of \X(k)\2 is reduced by a factor KR given 
by [W-36] 

MAXIMUM SIDELOBE LEVEL VERSUS WORST-CASE PROCESSING LOSS Shaped filter 
sidelobes should have a small magnitude to minimize filter response to signals 
outside the mainlobe. A small worst-case processing loss is desirable because it 
indicates a small attenuation of desired signals whose frequency is near the 
center of the filter's mainlobe. Figure 6.42 shows maximum sidelobe level versus 
worst-case processing loss. Shaped filters in the lower left of Fig. 6.42 perform 
well in terms of rejecting out-of-band signals and noise while detecting in-band 
signals. 

It has also been found that the difference between the ENBW and 3.0 dB 
bandwidth referenced to the 3.0 dB bandwidth is a sensitive performance 
indicator [H-19] . For shaped D F T filters which perform well, this indicator 
is in the range of 4.0-5.5%. This latter filters also fall in the lower left of Fig. 
6.42. 

(6.113) 
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Worst-case processing loss (dB 

Fig. 6.42 Highest sidelobe level versus worst-case processing loss. Shaped D F T filters in the 
lower left tend to perform well. (Courtesy of Fredric J. Harris.) 

W E A K S I G N A L D E T E C T I O N A desirable feature of a sequence of shaped D F T 
filters is that they detect both a high and a low level signal. For example, consider 
two pure tones, one with a maximum amplitude of 1.0 and a frequency of 10.5 
Hz and the other with a maximum amplitude of 0.01 and a frequency of 16.0 Hz 
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[H-19]. The magnitudes of shaped D F T filter outputs are plotted versus D F T 
bin number in Fig. 6.43 for a 100 point transform. The strong signal located half
way between bins 10 and 11 is apparent. However, the weak signal centered in 
bin 16 is not even visible in the output derived with rectangular weighting. It is 

I 1 1 1 1 1 1 i 1 1 I k I n 1 I I 1 1 1 1 1 Ik 

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 

Fig. 6.43 Signal level detected by various shaped D F T filters with two sinusoids as input. 
(Courtesy of Fredric J. Harris.) Window: (a) Rectangle, (b) Triangle, (c) cos2(nn/N), (d) four-term 
Blackman-Harr is , (e) Dolph-Chebyshev (a = 3.0), (f) Kaiser-Bessel. 

Signal F F T bin Signal amplitude 

1 10.5 1.00 
2 16.0 0.01 
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progressively more visible using triangular weighting, Hanning weighting, and 
four-term Blackman-Harris weighting. The Dolph-Chebyshev window for 
a = 4.0 and Kaiser-Bessel window for a = 2.5 are also shown to perform well in 
this two-tone detection example. It is obvious that the D F T filter shape has a 
significant impact on the detection of a low amplitude signal in the presence of a 
much higher amplitude signal. Good detection capability results from filters 
with low sidelobe levels. This in general means the use of shaped D F T filters 
having mainlobes that are wider than the basic D F T mainlobe and that therefore 
have poorer resolution than the basic DFT. We must trade off improved 
detection capability against loss of frequency resolution in a given application. 

6.9 Summary 

We have shown that the magnitude of each D F T coefficient has a frequency 
response analogous to the detected response of a narrowband analog filter. 
Consequently, we use the term " D F T filters" when discussing an F F T spectral 
analysis. We have also shown that we can vary the D F T filter shape in a manner 
analogous to designing an analog filter. Time domain weighting or frequency 
domain windowing are used to modify the basic D F T filter shape. In either case 
the window (the shaped D F T frequency response) can be treated as periodic or 
nonperiodic, depending on whether the input is treated as being nonperiodic or 
periodic, respectively. 

The basic D F T filter shape is determined by a time domain weighting of unity 
for 0 ^ t < P and zero elsewhere. This is called rectangular weighting (rect 
function weighting), and the D F T output is said to be unweighted or basic. One 
alternative is to view the basic D F T filter for a normalized period of P = 1 s as 
having a sm(%f)l[Nsm(%flN)'\ response repeating at intervals of N Hz and 
acting on a nonrepeated input spectrum. The other alternative is to view the 
D F T as having a nonrepetitive sm(nf)/(nf) response acting on an input 
spectrum that repeats at intervals of N. 

There is a fundamental difference between a D F T filter and an analog filter 
used for spectral analysis. The analog filter output is characterized by the 
transform domain product of the filter and input transfer functions. This 
product is equivalent to a time domain convolution of the input time function 
and filter impulse response. The D F T output is characterized by the frequency 
domain convolution of the D F T filter and input frequency responses. This 
convolution is the result of the product of a finite observation interval and the 
input time function. Comparing the convolution and product operations of the 
analog and D F T filters, we see that the D F T reverses the domain of convolution 
and product operations with respect to the analog filter. 

A number of time domain weightings can be expressed as convolutions of 
simple time domain functions. In the frequency domain these convolutions 
become products of Fourier transforms. The products oflow amplitude sidelobe 
frequency responses give even lower weighted sidelobe levels. The penalty is 
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typically an increase in mainlobe filter width as exemplified by the weighting 
functions we have presented. 

Frequency domain windowing was illustrated by the Hanning window. This 
window is the sum of three successive scaled basic D F T filters. Sidelobes of the 
center filter are out of phase with the adjacent filters which reduces the sidelobe 
level of the sum. Again the mainlobe width is increased. The Hanning window 
can be replaced by a simple time domain weighting of unity minus a cosine 
waveform. 

Proportional filters have bandwidths that are proportional to center frequen
cies. They are formed by scaling and summing the order of four basic D F T 
outputs. This scaling and summing of D F T filters to form a new filter is similar 
to forming the Hanning window. Since the proportional filter shapes change 
with frequency, Hanning and proportional filters differ in that one time domain 
weighting suffices for all Hanning filters, whereas each proportional filter would 
have a different time domain weighting for filter shaping in the time domain. 

This chapter catalogs a number of weighting functions and windows. Table 
6.2 summarizes some significant performance parameters for each of the shaped 
D F T filters. Filters for detecting signals in broadband noise should have low 
sidelobe levels and small worst-case processing losses. Such shaped D F T filters 
are in the lower left of Fig. 6.42. Figure 6.43 demonstrates the importance of the 
D F T filter shape when detecting the presence of a small-amplitude signal in the 
presence of a large-amplitude signal. 

All classical windows suffer from a lack of flexibility in meeting design 
requirements. In contrast, D F T filter shaping by computer-aided F I R filter 
programs provides a flexible approach to D F T window design. Further details 
are elaborated in the next chapter (see in particular Problem 7.18). 

PROBLEMS 

1 Show that regardless of whether N is even or odd 

JHf) = e-J"«-™ (P6.1-1) 
Nsm(nf/N) 

is equal to unity for / = kN, k = 0 , 1 , 2 , . . . . 

2 DFT Frequency Response Let the only input to the D F T be a single spectral line defined by 
Xa(f) = d(f-fo). Use (6.12) to show that the D F T outputs are given by 

X{k) = g - * < » - / o X i - i / N ) s f r M / o - * ) ] ( p 6 2 _ 1 } 

# s i n [ 7 i ( / 0 - k)/N] 

for k = 0 , 1 , . . . , N — 1. Interpret (P6.2-1) as the D F T frequency response (see also Problem 3.14). 

3 Alternative s'm(x)/[N sin(x/7V)] Representation of the DFT Filter Show that the response of the 
periodic D F T filter to a nonperiodic input as given by (6.12) for P — 1 s can be written 

N/2 

X(k)= [ { i Xa{f+ ttvy*/-*>u-i/"> ™™~™}df (P6.3-1) 

-N/2 
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Show that the operations in (P6.3-1) may be interpreted as finding the aliased spectrum of a periodic 
input into a D F T filter extending only + N/2 frequency bins from D F T filter center frequency k. 

4 Alternative sin(x)/x Representation of DFT Filter Show that an element in the time domain 
sequence input to the D F T of dimension N can be represented as 

J | c o m b T rect — x(n) -1- — x(t)dt 

where P is the period and 0 < s < T is an arbitrarily small interval. Using the entries in Table 2.1 
show for P = 1 s that 

DFT[x(n)] = X(k) = vepND'(f)*Xa(f) (evaluated a t / = k) (P6.4-1) 

where 

D'(f) = e-Jnm-iiN)S_^l (P6.4-2) 

Show that the two preceding equations give 

" sm[n(f-lN)] 

X(k) = \ J exp 
-jn(f-lN)[l-^ 

n(f- IN) 
(P6.4-3) 

(evaluated at / = k). 

5 Equivalence of D(f) and D'(f) with Line Spectrum Input Let the input to the D F T be a line 
spectrum defined by 

XJif) = e-^a-nmd{f_fo) ( P 6 5_1} 

where | / 0 | < N/2. Show that using D(f) as defined by (P6.1-1) gives 

X(k) = G - I ^ - L / N ) S I N ^ ~ ^ ( P 6 > 5 _ 2 ) 

Nsm[n(k -f0)/N] 

Evaluate (P6.5-2) for k = 0 , / 0 = f, and N = 16 to show that X(0) = 0.63764. Show that using D'(f) 
and Xa(f) as defined by (P6.4-2) and (P6.5-1), respectively, gives 

X(k)= Y e - m - m ^ m ^ ^ - f o - 1 ^ ( P 6 . 5 . 3 ) 

*(* ~fo -IN) 

so that for f0 = \ and N even 

2 °° , 21N 
X(f>) = - + £ ( - I ) 1 (P6.5-4) 

n , = 1 (IN)2] 

Show again that X(0) = 0.63764 for TV = 16. 

6 Conclude from the previous problem tha t 

00 21N 1 / 7I \ 2 
Y ( - l ) ^ - 1 ) ' — - = —esc — - - (P6.6-1) 

1=1 n[i~(lN)2] N \2Nj n 
sin(7I/) » sin[7C( /- / iV)] . ^ 

J — — J±e-jm(i-N) (P6.6-2) Nsin(nf/N) l = _ m n(f-lN) 

Explain intuitively how the single term on the left side of (P6.6-2) can be equal to the infinite 
summation on the right. 
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7 Normalized Analysis Period ofls Let x(t) and x'(t) be defined by x{tP) = x'(t). Let x(t) have the 
period P so that x'(t) has a 1 s period. Use the scaling law (Table 2.1) to show that Xa(f/P) = 
PX'a(f) where Xa(f) and X'a(f) are the Fourier transforms of x(t) and x'(t), respectively. Show that 
the function Xa(f) in (6.10) is the normalized function PXa(f) and that a normalized analysis period 
of 1 s requires that we multiply the D F T coefficients by P to get the D F T coefficients for da ta 
spanning P s. 

8 DFT Filter Acting on a Line Spectrum Let x(t) be a periodic time function with period P = 1 s. 
Let x(t) be frequency band-limited with zero energy in lines for \f\ ^ fs/2. Show that the Fourier 
transform of x(t) yields spectral lines specified by 

Xa(f)= I X(k)S(f-k) (P6.8-1) 
k=0 

where X(0), X(l),... ,X(N — 1) are the Fourier series coefficients. Let these spectral lines be 
measured by a D F T filter given by either (P6.1-1) or (P6.4-2). Show that in either case the D F T filter 
centered at k measures only coefficient X(k), as Fig. 6.44 shows. 

Spectral lines of 

Fig. 6.44 Spectra of the D F T filter and periodic input. 

9 Filter Shaping Approximation Show for P = 1 s that the shaped D F T filter has outputs 

X{k) = D(f) * W{f) *Xa(f) (evaluated a t / = k) (P6.9-1) 

where D(f) is given by (P6.1-1) and Xa(f) and W(f) are the Fourier transforms of the input and 
weighting functions, respectively. Show that (P6.9-1) is equivalent to 

OO 00 

X{k)= JVoO ^ Xa(k-y-z)D(z)dydz 

which may be approximated by 

X(k) « X 1T(l)Xu(k - I) (P6.9-2) 

where Xu(k) is the unweighted D F T coefficient and if (I) is the Fourier transform of the weighting 
function for P = l s. Interpret (P6.9-2) as a filter shaping approximat ion to (P6.9-1). 
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10 Alternative DFT Filter Shape for Triangular Weighting Note that the sampled-data triangular 
weighting function for P = 1 s and N being an even integer can be written 

u>{i)d{f) = —comb 

Use the entries in Table 2.1 to show that a periodic shaped D F T filter frequency response alternative 
to (6.43) is given by 

^ ( / ) = r e p N [ ^ ^ s i n c 2 ( 7 i / / 2 ) ] 

£ -,r ,™ fsin[7i(/-/A0/2]l2 

= y e-Mf-m))— (P6.10-1) 

I <f-lN)/2 J 

Show that (P6.10-1) is convolved with a nonrepeated input spectrum to determine the D F T output. 

11 Cubic Weighting Cubic weighting results from convolving two triangle functions; 

cubeO/P] = tri[t/(P/2)]-* tri[f/(P/2)] (P6.11-1) 

The convolution is illustrated in Fig. 6.45 for a normalized period of P = 1 s. Show for P = 1 s that 

r i l ' l 3 - i ' 2 + V6(4 2 ) , 0 < | r | ^ i 

cube(0 = { [ l /3 (4 ) 2 ] [1 - 2\t\\ \ i<\t\<i 

otherwise to 
Using the fact that the Fourier transform of (P6.11-1) is the product of the Fourier transforms of 
triangular functions, show for integer K and N = 4K that the windowed D F T response for cubic 

-1/2 -1/4 0 1/4 1/2 t 

6 ( 4 ) 2 cube(t) 

-1/2 -1/4 0 1/4 1/2 t 

Fig. 6.45 Convolution of triangular functions to get a cubic function. 
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weighting at the D F T input has magnitude 

1 
\D(f)\ 

nf 
sin — 

N/4 \4 

/ J _ ' 
l4 N/4 (P6.11-2) 

F rom (P6.11-2) conclude that the filter lobes are four times as wide as the unweighted D F T filter 
lobes and that the first sidelobe is down four times as far, as shown in Fig. 6.30. 

12 Generalized Hamming Window A more general form of (6.49) is the weighting function 

fl - [ M l ~ P)1 cos(2nt/P), O^t^P 

0 

Show that the shaped, periodic D F T filter response is 

~1 sin(7c/) P 
D(f)- -jnf(l-l/N) 

1 

N sm(nf/N) 1 + p IN U i n | > ( / + l)/N] 

otherwise 

sin[7c(/+ 1)] 

(P6.12-1) 

s i n [ 7 r ( / - l ) ] c . 
+ s in[7c( / - l)/N] € 

(P6.12-2) 

Show that if ejn/N « 1 and p = 0.46, the first three sidelobe peak magnitudes are approximately 1% of 
the mainlobe peak magni tude ; that p = 0.5 defines the Hanning window; and that the first Hanning 
sidelobe magni tude has approximately 2.5% of the mainlobe peak magnitude. Show that p = 0.46 
defines the Hamming window. 

13 Rate of Fall off of DFT Filter Sidelobe Peaks Use the time domain integration property (Table 
2.1) to show that if the rath derivative of aAf) is impulsive, then the sidelobe peaks of D\f) fall off 
asymptotically at 6ra dB/octave. Show that this gives fall off rates of 6, 12, and 24 dB/octave for 
rectangular, tr iangular, and cubic weightings, respectively. 

14 Cosine Squared Weighting Hanning weighting is also called cosine squared weighting. Show 
the following definition is equivalent to (6.49): 

o{f) = 
2cos2[7t(r + P /2 ) /P] , 

0 

O^t^P 

otherwise 

Show that the shaped, nonperiodic Hanning window can be written 

rsin(7r/) 1 
D'(f) = 

nf l - f 2 

Verify that 

lim 
~sm(nf) 1 

(P6.14-1) 

(P6.14-2) 

(P6.14-3) 
LL nf 

Use (P6.14-2) to show that the sidelobe peaks fall off asymptotically as l/f3 (i.e., 18 dB/octave). 

15 Cosine-Cubed Weighting Cosine-cubed weighting is defined by 

O^t^P 

otherwise 

(Kcos3ln(t + P/D/P], 
(P6.15-1) 

Show for P = 1 s that using (P6.15-1) gives a shaped, nonperiodic D F T filter frequency response 
(normalized to a peak amplitude of unity) defined by 

U ) 8 I *(/+§) * ( / - f ) 

f)] 3smln(f+m 3 s i n M / - 1 ) ] 
(P6.15-2) 
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where K= - j3n/4. Show that (P6.15-2) is equivalent to 

D'(f)= - ; - C O S ( T T / ) 
l o 

1 

If2 
(P6.15-3) 

16 Use (P6.15-3) to show that the sidelobe peaks fall off asymptotically at 24 dB/octave. 

17 Let the analog input to a spectral analysis system be band-limited so that the noise power into 
the A D C is given by 

( 1 , \f\^N/2 

lo otherwise 
(P6.17-1) 

Let the A D C output go directly to the D F T . Show that the noise power into the nonperiodic D F T 
filter is (j)(f) = 1 for all / . Show that for the nonperiodic basic D F T filter 

E N B W 
1 P T s i n x l 2 

71 J L x _ 
dx= 1 (P6.17-2) 

18 Assume that the D F T coefficients are or thogonal (i.e., E[X{l)X{k)~] = 0 for / / k). Show that 
for cosine-squared weighting 

E N B W = E{\X(l)\2 + \\X{1 - 1) | 2 + \iX(l + 1)| 2} = 1.5 

whereas for cosine-cubed weighting E N B W = 1.73489. 

19 Time-Limited Weighting Function Let a>{t) be nonzero if and only if te[a,b), where 
- P/N < a < b ^ P. Let c ^ 0. Since 

£&{i) = a>(t) rect 
t - (a + 

_ b - a + 

b)/2 

2c 

conclude that the nonperiodic D F T filter is given by D'(f) = i^(f)/N and that the periodic D F T 
filter is given by 

[bN/P\ 

D(f) = - ^ \ £ d(t-n/N)u>(t)\ 
™ L n = \aN/p-] 

Let a>{t) be a delayed version of i^Sf) such that ^>{t) = a>x{t - (a + b)/2). Let d = b - a + 2c. 
Conclude that [L-14, S-17] 

Let iV and / be odd integers, I < (N - l ) /2 , and let 

~t-(N+ l)/4N~ 
a>{t) = rect 

(N + l)/2N 
*rect 

t-(N- l)/4N' 

(N - l)/2N 

Show that D(f) is given by 

4 e - J , 7 r / $in[nf(N + l)/2N] sm[nf(N - [)/2N] 

(N + /)(# - /) 

= p-jnf I ( - 1 ) ' 

sm2[nf/N] 

s i n [ > ( / + IN)(N + / ) / 2 # ] s i n | > ( / - flV)(tf - /)/27V] 

n(f+W)(N+l)/2N n(f- IN)(N - l)/2N 

Let / = 1. Show that there are N — 2 nulls between mainlobes in the periodic D F T filter gain and that 
the distance between nulls one and two, three and f o u r , . . . is 4mN/(N2 — 1), m = 1 , 2 , . . . , (N — /)/4. 
In addition, let N = 9 and show that there are nulls a t / = 1.8, 2.25, 3.6, 4.5, 5.4, 6.75, and 7.2. 
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20 Let the input to the D F T be sampled, band-limited, white noise with a mean value of zero and a 
correlation defined by 

E[x(n)x*(my\ = o2 Snm (P6.20-1) 

where Snm is the Kronecker delta function. Use the D F T definition to show that 

E[X(k)X*(m = {a2 IN) 5kl (P6.20-2) 

F r o m (P6.20-2) conclude that the energy in TV D F T coefficients is <r2, which is the correlation of the 
sampled-data as given by (P6.20-1). 

21 Effective Noise Bandwidth Ratio {ENBR) E N B R is the ratio of equivalent noise bandwidth to 
frequency interval between points where the filter gains crossover. Show that for propor t ional filters 

E N B R = Q/\D(fn)\2fn 

where (6.61), (6.77), and (6.59) define Q, D(f„), and /„ , respectively. 

22 Show that (6.68) can be reformulated as 

~RQD„ - ImZ)n~] [~Reg„~ 

_Im£>„ ReD„ J | _ I m g n _ 

23 M Time Samples into an N-Point Transform Let M da ta samples followed by N — M zeros be 
the input to an N-point D F T . Show that under these conditions the D F T outpu t for frequency bin 
number k is given by 

R e a „ _ 

_ima„_ 

X(k)- rect 
~t-(Q- T)I2 

c o m b r x(t)e-j2nktlPdt (P6.23-1) 

where T is the sampling interval, Q = MT, and P = NT. Show for a normalized period of P = 1 s 
that 

X(k) = e-jnf(M-l)/N 
M sm(nfM/N) 

~N nfM/N . 
* r e p N [ Z a ( / ) ] (evaluated at / = k) (P6.23-2) 

Using (P6.23-2) show that the effect of using fewer time samples than the D F T dimension is to 
broaden the D F T filter mainlobes, increase the gain at which adjacent filter mainlobes cross over, 
and reduce the peak D F T filter gain from unity to M/N. Conclude that using "zero padding ' 1 and the 
Appoint D F T smooths the spectrum, reduces ambiguities in specifying spectral lines in the M-point 
D F T spectrum, and reduces the error in the M-point D F T frequency estimate of a spectral line. 

24 If M time samples followed by N - M zeros are input to an N-point F F T , M < N, show that for 
P = 1 s (6.10) must be modified as follows: 

X(k) = -jnf(M-l)/N 
sm(nfM/N)~ 

Nsin(nf/N). 
* Xa(f) (evaluated &tf=k) (P6.24-1) 

25 Vernier Analysis Show that the D F T can be computed for arbitrary values of k/P and in this 
sense can be used to generate a spectrum as a function of the continuous variable k/P. Show that the 
F F T can still be computed for k/P = 0, a, 2 a , . . . , (N — l ) /a , where a < 1 is an arbitrary real number, 
by taking samples at Nt = 0, 1/a, 2 / a , . . . , (N - l ) /a . Show that as a -> 0 the bandwidth of the 
spectral analysis goes to zero. Show that analysis to a Hz about frequency f0 requires a single 
sideband modulat ion which shifts the spectrum to the left by f0 Hz. 

26 Figure 6.46 shows a system in which an analog signal is provided by a hydrophone. A 
broadband analysis of the signal is used to specify a frequency band centered a t / 0 . This frequency 
band contains low signal-to-noise ratio (SNR) signals. A vernier analysis is desired to provide 53 dB 
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rejection of the out-of-band signals and finer resolution of the frequency band centered at f0. The 
vernier analysis uses tr iangular weighting and covers |- of the b roadband region. Show that the digital 
filter passband should be essentially flat from 0 to N/16 and that a decimation of 2:1 can be used 
provided the digital filter gain is - 50 dB at TV/8. Show that the analog filter gain should be - 50 dB 
at 15TV/16 Hz with respect to the normalized sampling frequency of fs = 1 Hz. 

ANALOG 
FILTER 

I ~ "I 
I ADC I 

"I ^ H 
. s , 

- J 2 n f Q n / N 

Broadband 
Analysis 

Vernier 
Analysis! 

1 , DIGITAL 
FILTER 

X FFT DETECTORS DIGITAL 
FILTER 

X FFT DETECTORS 

Fig. 6.46 System for providing b roadband and vernier analysis. 

27 Figure 6.47 is a system for detecting a weak sonar signal. Let the input sequence have 
redundancy R, let the input contain uncorrelated noise samples rj(n) with a mean value of zero, and 
for k = 0 , 1 , 2 , . . . , TV - 1 let E[_Hf(ky] = a2, where i = 0 , 1 , . . . is the number of the D F T output and 
H(k) = DFT[,y(/i)]. Let the signal be defined by = S. Show that the S N R at the display 
after the M t h output is KS/a2, where R is an integer and K is the integrator gain given by 

K= M1 

M + 2 X (M -I) I 1 

Input 
Sequence Frequency 

Bin 
Select 

ST + H 1 ( S 2 + H 2 S M + H M 

Integrator 

Square 
Law 

Detector 

Display 

Fig. 6.47 System for detecting a weak sonar signal. 

28 DFT of a DFT In general the output of a D F T frequency bin is time varying owing to signal 
components not at the center frequency of the D F T filter. If TV2 sequential time samples are input to a 
D F T , N sequential outputs are obtained from frequency bin k. If these N complex samples are input 
to a second D F T , TV new complex coefficients are obtained, as shown in Fig. 6.48a. Use the filtering 
interpretation of the D F T to show that the second D F T gives a vernier analysis using filters 1/7V of 
the width of the first D F T filters. Show that the composite system mechanization has a p roduc t filter 
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amplitude response illustrated in Fig. 6.48b and approximated by 

sin(7i/) 

N2 sm(nf/N2) 

where / i s a cont inuous real variable in the second D F T . 

\D(f)\ = (P6.28-1) 

N c o e f f i c i e n t s 

N Input 
Sequence Frequency 

Bin 
Select 

/ V e r n i e r N Input 
Sequence F i r s t 

DFT 
Frequency 

Bin 
Select 

Second 
DFT 

Analysi s F i r s t 
DFT 

Frequency 
Bin 

Select 
Second 

DFT 
Frequency 

Bin 
Select 

( a ) 

Frequency response 
o f one f i l t e r in 
f i r s t DFT 

(b) 

Fig. 6.48 Vernier analysis by means of the D F T of a D F T : (a) system mechanization and (b) 
composite filter response. 

29 Filter Shaping for DFT of a DFT The D F T filter responses in Fig. 6.48 can be changed with 
weighting as indicated by Fig. 6.49. Show that the ou tpu t of the first D F T [N-3] is 

1  N i ~ ' ( Ni 

X(kl,n2) = e - j 2 n k i n 2 / R — X ( e - i 2 * / N l ) f c i n i * " i + " 2 — 
n i = o \ R 

^ i ( " i ) (P6.29-1) 

where R is an integer valued redundancy; n2 = 0 , 1 , 2 , . . . , N2 — 1 is the number of the first D F T 
output ; Nx/R is the number of samples each weighting function is delayed from the preceding one at 
the input to the first D F T ; and ^ i ( « i ) is the first weighting function. 

Frequency 
Bin 

Select 
X Buffer 

First 
DFT 

Frequency 
Bin 

Select 
X Buffer 

First 
DFT 

Frequency 
Bin 

Select 

0-?r) H 2 

U ^ ( n 2 ) 

"2 
Vernier 

Second Output Display 
DFT 

Display 

Fig. 6.49 Vernier analysis with weighting. 
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Show that the output of the second D F T is 

j j v 2 - i 
X{kuk2) = ~- X {e-^r^X{kun2)a>2{n2) 

^2 n2 = 0 

(P6.29-2) 

where w2(n2) is the second weighting function. Using (P6.29-1) show that for R = 2 and 4 the first 
D F T outputs require no complex multipliers prior to weighting and the second D F T . 

30 Frequency Response for DFT of a DFT [N-3] Show that the response of the second D F T output 
in Problem 29 is 

X{fv) = ir.i-v^xAf+v-nN, *A(v)*iT2(v) (P6.30-1) 

where all convolutions are on v with / held fixed, Xa(f) is the Fourier transform of the input function 
with respect to frequency variable / , X(f v) is the vernier spectrum for fixed / as a function of v, 
T^i(v) and if2{y) are the Fourier transforms of the first and second weighting functions, 
respectively, and 

A(y)-. I sit 
N2 

(P6.30-2) 

31 Zoom Transform [Y-7] Let n = n2N1 + nx and k = kxN2 + k2. Show that the 7VjAppoint 
D F T can be written 

X(kun2) = 
• N , - l 

£ x(nltn2WktniN2 

ni = 0 
wk-

1 JV2-1 
X(kuk2) = —- £ X(kun2)Wk^^ 

(P6.31-1) 

(P6.31-2) 

2(12 = 0 
where W = exp( — jlit/NiN^). Show that (P6.31-2) gives a vernier analysis of a selected region of a 
first D F T output (i.e., it zooms in on a par t of the first D F T output) . Show that this is implemented 
by taking the -point D F T of [ Wk2nix(n2, nx)], using N2 sequential outputs of a specific frequency 
bin of the first D F T and taking the D F T of these outputs. Discuss the computat ional disadvantages 
associated with the factor Wkzni in (P6.31-2). Compare this factor with the twiddle factor (Problem 
5.17). Also compare (P6.29-1) and (P6.31-2) and show that they are the same if we set 
expi-jlnk^/R) = 1 in (P6.29-1) and Wk2ni = 1 in (P6.31-1) and if we let R = = w2(n2) 
= 1 in Problem 29. 

32 Nyquist Rate for Sampling the DFT Output [A-38] Let the bandwidth of a shaped D F T filter 
be the frequency interval F across the mainlobe at a gain determined by the highest sidelobe level. 
Interpret the D F T as a low pass filtering operation on a complex signal resulting from a single 
sideband modulat ion and show that this signal must be sampled at a frequency ^ F to keep aliased 
signal levels below that of the highest sidelobe level. Show that this requires a rate higher than the 
D F T output rate and that this may be achieved by means of redundancy. Show that Fis the Nyquist 
sampling rate and that the Nyquis t rate requires R ^ FP, where R is the redundancy and P is the 
D F T analysis period. Show that this criterion yields R « 2 and 4 for rectangular and Hamming 
weightings, respectively. 
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SPECTRAL ANALYSIS USING THE F F T 

7.0 Introduction 

Spectral analysis is the estimation of the Fourier transform X(f) of a signal 
x(t). Usually X(f) is of less interest than the power of the signal in narrow 
frequency bands. In such cases the power spectral density (PSD) describes the 
power per hertz in the signal. We shall use the term "spectral analysis" to mean 
either the estimation of X(f) or the PSD of x(t). 

Spectral analysis is an occasion for frequent application of F F T algorithms. 
(For a discussion of some alternative spectral estimation procedures see 
[K-37].) The values X(k) or \X(k)\2 versus k/P estimate the spectrum or PSD, 
respectively, of the signal that is being analyzed, where P = N/fs is the analysis 
period, fs is the sampling frequency, and N is the number of samples. The 
spectrum may come from structural vibration, sonar, a voice signal, a control 
system variable, or a communication signal. In all these applications, the first 
step of spectral analysis is the use of a transducer to convert energy into an 
electrical signal. Structural vibration contains mechanical energy, which may be 
converted to electrical energy by a strain gauge. Sonar signals are due to water 
pressure variations, which are converted to electrical energy by a hydrophone. 
Air pressure variations caused by voice are detected by a microphone. The 
control system or communication signal may already be in electrical form. 

The electrical signal can be analyzed by either analog or sampled-data 
techniques. An analog technique might well be cheapest if the order of 10-100 
analog filters of fixed bandwidth will adequately analyze the signal. A digital 
technique is probably cheapest if many filters are required or if many signals are 
to be analyzed simultaneously. There are several types of digital mechanization. 
One digital mechanization is to convert the analog filters to digital filters [ 0 - 1 , 
G-5, H-18, R-16, S-22, S-34, T-23, W-12, W-13]. A more efficient digital 
mechanization is to implement the spectral analysis using the FFT. 

This chapter discusses some basic systems for F F T spectral analysis. The next 
section presents both analog and F F T spectral analysis systems. Because of 
spectral folding of real signals about N/2, half of the F F T outputs in frequency 

252 
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bins above N/2 will be complex conjugates of those outputs below N/2 if the 
input is real. If the inputs are complex, all F F T outputs contain unique 
information. A system for handling complex signals is discussed in Section 7.2. 
D F T and continuous spectrum relationships are reviewed in Section 7.3. 

Many digital spectral analysis systems use digital filters and single sideband 
modulators to increase system efficiency, and this- is discussed in Sections 
7.4-7.6. Section 7.7 presents an octave spectral analysis system as an example of 
a digital spectrum analyzer. F F T digital word lengths are an important 
hardware consideration and addressed under the heading "Dynamic Range" in 
Section 7.8. 

7.1 Analog and Digital Systems for Spectral Analysis 

In a typical analog or digital system for spectral analysis, the input goes 
through a variable gain and is low pass filtered. The low pass filter (LPF) 
restricts the spectrum to the frequency band of interest. The average power in the 
low pass filter output is maintained near a fixed level by using a power 
measurement to derive an automatic gain control (AGC) signal that adjusts the 
variable gain. By maintaining a fixed average power level, we can ensure linear 
operation (i.e., ensure both that the analog circuitry will not saturate and that 
the digital circuitry will not overflow) with various inputs. These inputs include 
noise, a pure tone, and combinations of pure tones and noise. A pure tone is a 
sinusoid with a fixed frequency and a constant amplitude. (If the input is, e.g., 
zero mean independent noise samples with amplitudes described by a Gaussian 
distribution, or merely contains such noise, we can only ensure linear operation 
with a high probability.) 

Figure 7.1 shows an analog system for spectral analysis. The system uses N 
spectral analysis filters in parallel. The first narrowband filter in the bank of 
analysis filters is a LPF whose bandwidth is l/N times that of the input LPF. A 
total of TV — 1 bandpass filter (BPF) blocks are in parallel with the LPF , giving a 

INPUT ^ VARIABLE 
GAIN 

LOW PASS FILTER 

ANALYSIS 
FILTERS 
K:0 

AGC 
POWER MEASUREMENT 

DETECTOR 

K = 1 

—*- DETECTOR 

AMPLITUDE 

* K = N-1 

A - DETECTOR 

DISPLAY 

Fig. 7.1 Analog system for spectral analysis. 
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total of N filters, labeled with the filter numbers k = 0, 1, 2 , . . . . , N — 1. A 
detector following each filter squares the magnitude of the filter output, which is 
displayed along with other square law detected signals out of the bank of filters. 
We shall use the simplified block diagram of Fig. 7.2 to represent Fig. 7.1. Many 
mechanizations also use a LPF following each detector to smooth the displayed 
signal. 

1 — AGC 

Analysis filters 

Input Variable 
gain 

Low pass 
filter 

Variable 
gain 

Low pass 
filter 

Variable 
gain 

Low pass 
filter 

0 

Detectors 

Display 

Fig. 7.2 Simplified representation of Fig. 7.1. 

Figure 7.3 presents a digital system for spectral analysis. The input is modified 
by analog circuitry consisting of a gain, LPF, and A G C feedback. The analog 
LPF band-limits the input so it can be sampled by the analog-to-digital 
converter (ADC), which outputs samples at a rate of 2/ s , or twice the rate of the 
input to the spectral analysis filters. Figure 7.4 shows plots of the PSD at several 
points in Fig. 7.3. The PSD plots in Fig. 7.4 may be regarded as the system 
response to white noise. (White noise has a continuum of frequencies with the 
same power spectral density at all frequencies.) The A D C sampling folds the 
analog spectrum about fs, so the sampled-data spectrum repeats at intervals of 
Ifs-

Decimation Analysis filters 

Input Variable 
gain LPF 

AGC 

ADC 

~ 2 f s 

LPF 
2:1 

Detectors 

Display 

Fig. 7.3 Digital system for spectral analysis. 

Attenuation of unwanted signals is increased by the digital LPF, as shown in 
Fig. 7.3. The analog and digital LPFs both have essentially unit gain in the 
passband, which is defined by the frequency interval 0 < / ^ fp, where fp is the 
frequency above which the attenuation of the filters increases appreciably. The 
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ADC input 
PSD 

0 fP fSb fs 2 f s - f s b 2 f s - f p 2fs
 f 

Digital filter 
output PSD 
after decimation 

Fig. 7 .4 Spectra in a digital system for spectral analysis. 

series attenuation of the two filters past fp results in a much higher rate of 
attenuation than that which the analog filter alone can provide. As a result of the 
attenuation of the combined analog and digital filters past fp, the digital filter 
output PSD before decimation (Fig. 7.4) displays a wide stopband, which is the 
region of high attenuation from the lower stopband frequency fsh to the 
frequency 2fs — fsh. The digital filter output PSD before decimation displays a 
ripple in the stopband that is characteristic of several types of filters. The 
stopband attenuation makes it possible to reduce the sampling rate at the input 
to the analysis filters, and therefore to reduce the digital computational load. 

A sampling rate reduction is accomplished in Fig. 7.3 by using only a fraction 
of the digital filter outputs. This operation is called a decimation in time (or 
simply a decimation) since some of the digital filter outputs are discarded. 
Figures 7.3 and 7.4 show a decimation of 2 :1 where a l : l decimation means 
that there are K inputs for every output used. The decimated digital filter output 
spectra repeats every fs Hz according to the periodic property (see Section 3.2), 
where fs is the F F T input sampling frequency. If the input is real, the decimated 
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spectrum folds about fs/2 (see Section 3.3), so that the spectral energy in 
frequency bins N — 1, N — 2, . . . , N/2 + 1 is indistinguishable from that in bins 
1 ,2 , . . . , N/2 — 1, respectively. Aliased signals indicated by the dotted lines in the 
decimated digital filter output in Fig. 7.4 introduce error into the F F T output. 
Typically, filters are designed so that aliased signals are at least — 40 dB below 
desired signals in the spectral region from 0 to fp. Such aliased error is usually 
insignificant. If smaller aliased errors are required, greater filter attenuation can 
be provided. 

The D F T output for frequencies between 0 and fp gives a spectral analysis of 
the region of the input. Outputs of the D F T between fp a n d / s — fp include the 
effect of filter attenuation, so a high rate of attenuation minimizes the number of 
D F T outputs between fp and fs — fp. These outputs are usually not used. 

Figure 7.5 shows the D F T PSD versus frequency. The flat spectrum shown 
could result from a white noise input and can be viewed as the cascade response 
of the analog and digital filters shown in Fig. 7.3. We note from Fig. 7.5 that only 
a fractional part of the information out of the F F T is useful. This fraction is 
represented by y where y < \. Another fraction y between (1 — y)fs and fs is the 
complex conjugate of the useful information. The remaining fraction 1 — 2y of 
the F F T output is attenuated by the filters and, as mentioned, is not generally 
used for spectral analysis. 

Power 
spectral 
density 

Useful 
information 

Filter attenuation 
needed to reject 
aliased power 

J , 

Complex conjugate of 
useful information 

0 fs/2 

yf s f s -x^s Frequency (Hz) 

Fig. 7.5 Spectral content of F F T output with real input. 

Viewing Fig. 7.5, we intuitively feel that we should be able to get useful 
information out of the F F T between (1 — y)fs and fs Hz. This can in fact be 
accomplished by using a complex demodulation before the digital or analog 
filter, and the result is a more efficient use of the FFT , as discussed in the next 
section. 

7.2 Complex Demodulation and More Efficient Use of the FFT 

We shall refer to the single sideband modulators shown in Fig. 7.6 as complex 
demodulators or simply as demodulators [B-42]. Analog complex demodu-
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Continuous time ^ 
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Frequency ( 
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x( t ) 
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Sampled:data time ( 
domain functic 

FFT 
coefficients 

e - j 2 T r f 0 n / f s 

x(n) e - j 2 T r f 0 n / f s x ( n ) 

X 

X(k) X(k+k 0 ) 
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0 ( f 0 / f s ) N 
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Fig. 7.6 (a) Analog demodulator , (b) sampled-data demodulator , and (c) the relation between 

analog and sampled-data demodula tor frequencies. 

lation results from multiplying x(t) by the phase factor e~j27tfot. Table 2.1 shows 
that the Fourier transform of this continuous time domain product gives 

F[e-»*'°tx(t)]=X(f + fo) (7.1) 
where 

P [*(*)] = X{f) (7.2) 

Comparison of (7.1) and (7.2) shows that complex demodulation shifts the 
frequency response of the input function to the left by f0 Hz. Figure 7.7 shows the 
power spectral densities \X(f)\2 and \X(f + f 0 ) \ 2 for functions x(t) and 
e x p ( - j2nf0t)x(i), respectively. 

Figure 7.6b shows a complex demodulator for a sampled-data system. Let k0 

be the transform sequence number corresponding to analog system frequency f0. 
To show the relation between k0 and f0 we follow the D F T development and let 
t = nT at sampling times, where T = l/fs is the sampling interval. Then at 
sample number n the analog and digital complex demodulator multipliers are 
related by 

e - j 2 i t f 0 t _ e-j2nf0nT _ e-j2nf0n/fs _ e-j27tk0n/N 

|e-J2Tf 0 t 
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( b ) 

Fig. 7.7 PSD of (a) x(t) and (b) e-J2nfotx(t). 

which gives 

ko = ifo/f.)N (7.4) 

as Fig. 7.6c shows. A nonintegral value of k0 is permissible in the digital system. 
The digital complex demodulator input is exp( — j2nk0n/N). The D F T of a 

sampled-data time domain function (see Problem 3) gives 

BFT[e-j2nkon/Nx(n)] = X(k + k0) (7.5) 

The D F T coefficients provide an estimate of the continuous spectrum between f1 

and f2 Hz in Fig. 7.7. (See Problem 4 for an explanation of why the D F T gives an 
estimate.) 

Figure 7.8 shows a digital implementation of an efficient spectral analysis 
system. The sampled demodulator output 

x(n)e-J2wkon/N = I{n) + jQ(n) (7.6) 

has real (in-phase / ) and imaginary (quadrature-phase Q) components. Filtering 
a complex-valued data sequence is accomplished by filtering the / and Q 
components separately, as shown in Fig. 7.8. 

Figure 7.9 shows the result of filtering the demodulated spectrum. The 
demodulated spectrum is the same as that shown in Fig. 7.7. The digital filters 
begin to attenuate sharply at fv and have essentially zero output at fs/2. The 
digital filters in Fig. 7.8 are shown operating at a rate of 2 / S 3 so the spectrum (see 

" I X ( f ) l 2 

Frequency region 
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Fig. 7.8 An efficient spectral analysis. 

Digital 
filter gain 

"fs/2 3f,/2 

Fig. 7.9 Spectra in an efficient spectral analysis system. 

Fig. 7.9) repeats at intervals of 2fs. The digital filter output spectrum also repeats 
at intervals of 2fs. 

The width of the spectrum at the output of the digital filters is considerably 
reduced with respect to the bandwidth of the demodulated analog spectrum. 
Therefore, the sampling frequency at the output can also be reduced. A 
decimation of 2:1 at the digital filter output is shown in Figs. 7.8 and 7.9. The 
F F T input spectrum after the 2:1 decimation repeats every fs Hz and has unique 
spectral content between - fs/2 andfJ2 (or between 0 andf s) . The N F F T filter 
outputs give unique information all of which is useful except for that attenuated 
by the digital filters. The digital filter transition band (the frequency band 
between passband and stopband) uses a band of 2( / s /2 — fp) out of the 0- / s Hz 
band (see Fig. 7.9). The transition band can be kept small by proper digital filter 
design. 
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Figure 7.10 shows two options for mechanizing the more general case of an 
m : 1 decimation. The sampling frequency at the digital LPF inputs is fs Hz. Due 
to attenuation of frequencies above fp (Fig. 7.9) the LPF output can be sampled 
at the lower frequency fjm. 

,-J27TFT 
Decimation 

Analog 
input 

1 DF 
L r r LPF FFT 

fs/m 

Wkon 

Input 
LPF -V 

I ft 

X LPF FFT 
n 

fs/m 

Fig. 7.10 Equivalent systems for efficient spectral analysis. 

We have compared complex and real inputs to the F F T and have shown that a 
complex input doubles the information out of the F F T as compared to a real 
input. We have considered a complex F F T input that results from inphase and 
quadrature components at a demodulator output. A complex F F T input also 
results from two distinct input sequences to the F F T where one sequence is real 
and the other imaginary (see Problems 3.18-3.20). Because of the factors W°, 
W1, W2,..., WN~1, roughly half the outputs of the first set of butterflies of a 
power-of-2 D I F F F T are complex even with real inputs (see, e.g., Fig. 4.4), and a 
complex input introduces no special problems. 

7.3 Spectral Relationships 

We noted in Chapter 3 that the sampling period T does not appear in the 
summation determining the Fourier coefficient X(k\ so we can think of the TV 
time samples into the F F T as coming from a function sampled every l/N s. The 
normalized period of the input time function is 1 s. In Chapter 6 we showed that 
the N D F T filter mainlobe peaks are at 0, 1, 2 , . . . , N — 1 Hz for a normalized 
period of P = 1 s. Users of F F T information want the D F T frequency bin 
outputs properly displayed as a function of the frequency of the analog input 
spectrum. To obtain the proper frequency ordering, scrambled order F F T 
outputs are first placed in proper numerical sequence. Then they are ordered to 
represent the spectrum of the analog input. In this section we review D F T and 
continuous spectrum frequency relationships for both real and complex 
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inputs. We shall see that complex D F T outputs in general have to be reordered 
for display. 

( a ) 

f (Hz) 

0 

( b ) 

fDi N/2 

N-fd 

k (bin number) 

( c ) 

-H I— At 

f (Hz) 

Fig. 7.11 (a) Analog, (b) digital, and (c) displayed spectra for a real input. 

Figure 7.11 shows analog and digital filter output spectra and the displayed 
spectrum for a real input. The analog L P F passband ends at fp, whereas the 
digital filter passband ends at fpl and the spectrum is displayed up to fp2. The 
F F T input sampling frequency is fs Hz and the resolution on the displayed 
spectrum is Af = fs/N. Frequency bins are usually displayed up to the point 
where the D F T spectrum is attenuated by the LPF. Minimizing attenuation of 
the displayed spectrum requires that 

/ P 2 < / p l < / P 

(7.7) 

The displayed spectrum for a real input is the numerically ordered D F T output 
for frequency bins 0, 1, 2, 3, . . . , / where 

(7.8) 

Frequency values (in hertz) are displayed along with the D F T spectrum. D F T 
frequency bin 0 corresponds to 0 Hz in the spectrum of a real input signal, bin / 
corresponds to lfs/N Hz, etc. 

Whereas / out of TV frequency bins contain useful spectral information when 
we take the D F T of a real input, 21 out of N bins contain useful spectral 
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information when we obtain the D F T of a complex input. Often we wish to 
analyze a frequency band from fx to f2 Hz, where 0 < fx <f2. If the band f2 — fx 

is small relative to fu then transforming the real input wastes the frequency 
region from 0 to fx Hz and may require a large value of N to give sufficient 
resolution of the fx-f2 Hz band. Complex demodulation, discussed in the 
previous section, results in significant savings by making it possible to analyze 
only the band from f± to f2. Figure 7.12 shows a spectrum from which we wish to 
analyze only the frequency band f\~f2 Hz. The demodulator translates frequency 
f0 Hz to zero, where 

The demodulated spectrum is filtered so that frequencies less than fx — f0 or 
greater than f2 — f0 are greatly attenuated. The spectrum originally between fx 

and f2 Hz is between 0 and fs Hz in the analyzed spectrum. Figure 7.12 shows that 
the F F T input sampling rate fs for the demodulated spectrum must satisfy 

whereas the original spectrum requires a sampling rate f's > 2f2. Iff2 » 0 and 
fi ~fi «fi, t h e n / ; » / s . 

The analyzed spectrum is shown in Fig. 7.12 versus both the demodulated and 
original frequencies. D F T bin numbers are also shown. Bin numbers 0-/contain 

/o = ic/i (7.9) 

fi-fo<M (7.10) 
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(Hz) 
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Fig. 7.12 Spectra in an efficient spectral analysis system. 
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the spectrum between f0 and f2 in the original system. Bin numbers TV — / to 
N — 1 contain the spectrum between ft and f0. The D F T output of interest is 
reordered as N — I, N — I + 1 , . . . , TV — 1 , 0 , 1 , . . . , / — 1,1 and displayed versus 
the frequencies fu . . . , f 0 , . . . , f2. 

7.4 Digital Filter Mechanizations 

We have shown how a typical system for spectral analysis uses both digital 
filters and an F F T . The digital filters attenuate unwanted spectral components 
and the arithmetic operations required to do this often have a considerable 
impact on the computational load of the digital system. Subsequent sections will 
indicate how to minimize the computational load by proper design of the 
demodulator and digital filter mechanizations. This section gives a brief 
development of digital filter mechanizations. Following sections use the filter 
mechanizations to develop trade-off considerations. Detailed development of 
digital filters is available in the digital signal processing literature [A-75, C-61, 
D - l , G-5, G-8, H-18, H-20, O-l , R-16, R-47, S-22, S-34, T-23, W-12, W-13] . 

Digital filters are similar to analog filters in that low pass, bandpass, and high 
pass filter designs may be accomplished. In fact, given a realizable analog 
transfer function, a digital filter may be designed whose frequency response is 
arbitrarily close to that of an analog prototype over the frequency range between 
0 and fs/2 Hz where fs is the sampling frequency. The frequency responses of 
digital filters differ from those of analog filters in that the former repeat at 
intervals of fs Hz, a characteristic common to all sampled-data systems. 

A digital filter is mechanized as either a transversal or a recursive filter. A 
transversal digital filter linearly combines present and past input samples. A 
recursive digital filter linearly combines not only present and past input samples 
but also past output samples. This section describes a mechanization of 
transversal and recursive digital filters using linear filter theory. 

A linear filter with an impulse response y(t) and with an input x(i) has an 
output o(t) given by (2.81): 

o(t) = x(t)*y(t) (7.11) 

As Table 2.1 shows, the Fourier transform of the convolution is a product, 

O(f) = ^ [x(t) * y(t)} = X(f) Y(f) (7.12) 

where 0(f), X(f), and Y(f) are the Fourier transforms of o(t), x(t), and y(i), 
respectively. Let 

y(i) = c o m b r j ^ O (7.13) 

where c o m b r is an infinite series of Dirac delta functions Ts apart (see Chapter 
2) and yt(t) is a continuous function of time. Then y(t) defines a function which 
may be suitable to mechanize a transversal digital filter. The use of Table 2.1 to 
determine the Fourier transform of (7.13) yields 

Y(f) = tepfXY1(f)] (7.14) 
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which is a typical sampled-data spectrum repeating at intervals of the sampling 
frequency fs Hz. Let yx(t) be nonzero only in the interval 0 ^ t < LT. Then 

L - 1 

c o m b r J l ( 0 = yi(t) £ S(t - nT) (7.15) 
n = 0 

Using the definition of a delta function and taking the Fourier transform of one 
term in the series on the right side of (7.15) give 

. ^[y^dit - kT)} = yi(kT)e~j27tfkT (7.16) 

Let yt(kT) = ak. Then taking the Fourier transform of (7.13) and using (7.15) 
and (7.16) yield 

L— 1 

Y(f) = I ake~^kT (7.17) 
k=0 

Define z = e~j2nfT. As in Chapter 5 we are using only Fourier transforms and 
are using the substitution z = e~j2nfT to reduce the complexity of the expression. 
Also as in Chapter 5, readers familiar with the z transform will note that it yields 
the same answer when evaluated on the unit circle in the complex plane (except z 
is usually defined as ej2nfT). Define the right side of (7.17) evaluated at 
z = e ' j 2 n f T as Y(z). Then (7.17) is equivalent to 

L— 1 

7 ( z ) = X akzk (7.18) 
fc=0 

Using (7.18) in (7.12) yields 
L- 1 

O(f) = X ake-^kTX(f) (7.19) 
k=0 

Table 2.1 gives 1 [e~j2nfkTX(f)] = x(t — kT), so taking inverse Fourier 
transforms of both sides of (7.18) and (7.11), respectively, yields 

L - 1 

y(t)= X an5(t-nT) (7.20) 

L- 1 

o(t) = X akx(t - kT) (7.21) 
k=0 

Furthermore, let x(n) and o{n) be the values of x(t) and o(t) at the sampling time 
nT, n = 0, 1, 2, . . . . Then 

L - 1 

o(n) = X akx(n - k) (7.22) 

Equation (7.22) determines the transversal filter output as the weighted sum of L 
inputs. At this point we can observe an interesting fact by comparing the 
transversal digital filter transfer function (7.18) with the output (7.22). The right-
hand sides are the same except that zk is replaced by x(n — k) in determining o(n). 
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This leads to the simple interpretation of zk as a delay operator that delays the 
input k samples: 

^ ^ { ^ W O * - nT+ kT)"]} = x(t - kT)3(t - nT) (7.23) 

Figure 7.13 shows a transversal filter structure in which each block containing z 
represents a unit delay. In a digital system the delay line is implemented by a shift 
register which shifts samples one location every sampling period. 

°L-I I °L-I I 
o(n) 

Fig. 7 .13 Transversal filter. 

The transversal filter impulse response is found by letting x(0) = 1 and 
x(n) = 0 for n # 0. Then x(n — k) = 1 if and only if n = k and (7.22) yields 
o(n) = an. Also, if y(n) is the sampled-data value of y in (7.20), then y(n) = an. 
Therefore, y(n) = o(n) when x(0) is the only nonzero input. This yields 

y(0) = a0, y(l) = au y(2) = a2, 

y(L - I) = aL-l9 y(n) = 0 for n^L (7.24) 

The preceding equations specify the impulse response as the filter gains ak, 
k = 0, 1 , 2 , . . . , L - 1. 

The recursive digital filter structure can be developed by rewriting Y(f) as a 
ratio of two polynomials in / : 

Y(f) = U(f)/V(f) (7.25) 

where U(f) and V(f) are yet to be defined. Using (7.12) yields 

0(f) = (U(f)/V(f))X(f) (7.26) 

Let Utit) and vx(t) be nonzero only for te [0, MT) and / e [ 0 , LT), respectively. 
Let U(f) and V(f) be the Fourier transforms of u(t) and v(t): 

u{f) = comb T «!(0 = ux{t) 8(t-nT) 
n=0 

L - 1 

v(t) = combjv^t) = vx(t) J] d(t - nT) 

(7.27) 

(7.28) 
7 1 = 0 

Let (a0,al7... ,dM-X) and (b0, bu ..., bL-±) be the sequences which result from 
sampling ux(T) and v^T), respectively, every T s. Then following the 
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development in (7.15)-(7.18) gives the recursive digital filter transfer function in 
terms of the variable z: 

M - 1 / L - 1 

Y(z) = X akzk X bkzk (7.29) 
k=0 I /c=0 

where M ^ L. If b0 ^ I, then the numerator and denominator of (7.29) can 
always be divided by b0 so that (7.29) can be implemented with b0 = 1. The 
recursive filter output-to-input relationship is derived using (7.29) in a 
development similar to (7.19)-(7.22): 

M - 1 L - 1 

= X - k) - X M » - k) (7.30) 
fc=0 k = l 

The impulse response is 

y(0) = a0, y(X) = ax - M o , y(2) = a2 - b1a1 + b\aQ - b2a0, ... 

(7.31) 
where {y(0), y(l), y(2), . . . } is usually not a finite sequence. The numerator and 
denominator of the recursive filter transfer functions in (7.29) can always be 
factored as 

M - 1 / L - 1 

Y{z) = fc)/ H O " ( 7 - 3 2 ) 
k=0 I k=0 

where M ^ L,KX ^ 0, z = l/£k is a filter zero, z = l / p k is a filter pole, and the dc 
gain Kdc is determined by s e t t i n g / = 0 (i.e., z = 1) in (7.32): 

M - 1 / L - 1 

= n o - &)/ n o - (7.33) 

fc=l / k = l 

Table 7.1 summarizes some analog and digital filter characteristics. The digital 
filters are often classified as 

1. infinite impulse response (IIR) or 
2. finite impulse response (FIR). 

As suggested by its name, an I IR filter has an impulse response sequence that 
does not go to zero in finite time, for example, e~an,n = 0 , 1 , 2 , . . . . As suggested 
by its name, an F I R filter has an impulse response sequence that goes to zero in a 
finite time and stays at zero, for example, 6 — nfov 0 ^ n ^3 and 0 otherwise. 
For both transversal and recursive digital filters, the parameter L — 1 is the 
number of unit delays required to implement the filter and is called the order of 
the filter. The parameter L is the number of nonzero samples (length) of the 
transversal filter impulse response. 

Theoretically, I IR and F I R filters can have either transversal or recursive 
mechanizations. F rom a practical viewpoint the F I R filter class is always 
realized as a transversal mechanization. A finite impulse response in a recursive 
mechanization would require cancellation of the response of each pole in (7.32) 
after some finite time t1. This is an impractical requirement. By the same token 
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the I IR filter class is always realized with recursive mechanizations. An infinite 
impulse response in a transversal mechanization would require that L -> oo in 
(7.22). This is equivalent to the impractical requirement that the delay line in Fig. 
7.13 have an infinite length. 

Many approaches to designing digital filters have appeared in the literature. 
One method, which we shall discuss for designing F IR filters, satisfies a large 
class of applications. This method uses an efficient computational scheme called 
the Remez exchange algorithm. F I R filter design parameters applicable to the 
Remez exchange algorithm have been widely discussed [M-2, M-3, M-4, M-5, 
R-16, R-17, R-18, T-2] . I IR filters designed by other approaches [D- l , G-5, 
G-7, H - 1 8 , 0 - l , R-16, P-46, S-34, T-23, W-12, W-13] make it possible to convert 
a standard analog transfer function into a sampled-data transfer function using 
straightforward procedures. Elliptic digital filters designed in this way are very 
suitable for spectral analysis applications because they give the sharpest cutoff 
for a given filter order. 

Spectral analysis systems can be implemented with either F I R or I IR filters. If 
decimation follows the filter, the computational rate of F I R filters needs only to 
be the decimated output rate. The computational rate of I IR filters must be the 
input rate because of feedback internal to the filter. Because of the difference in 
computational rate, there are definite advantages to using F I R filters for spectral 
analysis. These advantages are discussed in the following sections. 

7.5 Simplifications of FIR Filters 

For reasons cited in the previous section, F I R digital filters are implicitly 
understood to be transversal filters, and we shall use " F I R " and "transversal" 
synonymously. The first digital spectral analysis systems implemented used 
recursive filters because theory to implement them had appeared in the early 
1960s [G-5, G-6, G-7] . F I R filter theory leading to simple design algorithms, 
appeared in the late 1960s and early 1970s [A-27, H-12, M-2, M-3, O-l , R-16, 
R-17, R-18, R-19, R-20, R-21]. 

The advent of the simple F IR filter design algorithms resulted in the 
application of F I R digital filters in spectral analysis systems. Section 7.7 
compares spectral analysis systems mechanized with recursive elliptic filters or 
with F I R filters to show that multiplication and addition operations for 
demodulation and digital filtering can be reduced by approximately a factor of 2 
using F I R filters. Reduction of arithmetic operations in spectral analysis 
systems is accomplished by exploiting complex demodulator and filter in
terrelationships. The reduction is particularly successful using simplifications of 
F I R filters discussed in this section. 

Derivation of F I R filter parameters that permit simplification of hardware 
mechanization may be made with the aid of Fig. 7.14. This figure shows the 
actual and desired frequency responses of a nonrecursive digital filter. (The filter 
phase response is not shown.) The actual and desired frequency responses are 
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Actual frequency response 

- f s / 2 \S "fsb - f s / 4 "fp 

Filter response 

fp y 4 4 f,/2 t f (Hz) 

Desired frequency response 

1 / " h 
0 

Fig. 7.14 Actual and desired frequency responses of the transfer function for a nonrecursive 
digital filter. 

even functions and may be represented by Fourier series containing only cosine 
terms. 

A ripple in the actual filter gain is a variation from the desired gain to a local 
maximum or minimum gain and back to the desired gain (Fig. 7.14). Let the 
desired LPF passband gain be a. Let the maximum and minimum actual LPF 
passband gains be a(l + <5i) and a(l — c^), respectively. Then the peak-to-peak 
passband ripple Rpp in decibels is defined as 

The actual L P F frequency response illustrated in Fig. 7.14 has two ripples, with 
equal amplitude in both the passband and stopband; here the passband is 
defined by the frequency interval 0 ^ f ^ f v , the stopband includes the interval 

fsb ^ / < /sA and the frequency f p < f < f s h is defined to be the transition 
interval. The ripples result from truncating the series representation of the 
desired frequency response (see Problem 2.1). 

Extremal frequencies are defined as the frequencies where the error in the 
frequency response is a local maximum. Figure 7.14 shows three extremal 
frequencies both in the passband and in the stopband. For a specified number of 
ripples, the magnitude of the error at the extremal frequencies is minimized by 
the Remez exchange algorithm. 

In Section 7.7 we shall present two systems for spectral analysis. One system 
uses F IR filters and a characteristic that simplifies the filter mechanization is 
given by (7.18) for odd values of L. Setting z = e - j 2 n f T in (7.18) for odd L > 3 
yields 

tfPP = 2 0 1 o g [ ( l + 5 1 ) / ( l - < 5 1 ) ] (7.34) 

(L-3 ) /2 

+ X ( f l k + flL-i-fc)cos[27c/T((L/2)-(l/2)-A:))] 
fc=0 
(L-3)/2 

+ j I (ak-aL-1^sm[2nfT((L/2)-(l/2)-k))]\ (7.35) 
k = 0 
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Equation (7.35) gives the frequency response of a nonrecursive F IR digital filter 
for given coefficients ak, k = 0 , 1 , 2 , . . . , L — 1. The multiplier e ~ j 2 n f ( L ~ 1 ) 7 7 2 in 
(7.35) is a phase term corresponding to a delay of (L — l)/2 samples in the filter 
impulse response specified through the L coefficients ak in (7.18). The phase term 
in effect starts the F I R filter impulse response at time zero. The filter parameters 
determine the filter length L . For a low pass filter, L is influenced by parameters 
such as the ratio of highest passband frequency fp to sampling frequency / s , the 
maximum allowable inband and stopband ripple, and rate of attenuation in the 
filter transition region. 

Note that the filter in Fig. 7.14 is an even function whose Fourier series 
contains only cosine terms (see Problem 2.3). The sine coefficients in (7.35) must 
therefore be zero, and so 

ak = aL-\-k (7.36) 

Using (7.36) in the filter displayed in Fig. 7.13 shows that half the multiplications 
can be eliminated. For example, adding the input of the first delay and the 
output of the last delay makes it possible to use a common multiplier a0 rather 
than two multipliers a0 and aL-1. 

Another characteristic simplifying F I R filter hardware is that the desired 
response can be designed to be an odd function with respect to a vertical axis 
through fs/4 and a horizontal axis through \ . When this is done, half the ak 

coefficients in (7.35) are zero. To see this, subtract \ from the actual filter 
response in Fig. 7.14 and note that the passband width and shape correspond to 
the stopband width and shape. The filter response is therefore an odd function 
with respect to an origin at ( / s /4 , 1/2). Filters with this symmetry are called 
equiband filters [T-2] and have Fourier series representations in which 
coefficients with even subscripts are zero (see Problem 10). The Remez exchange 
algorithm does not require that any coefficient be zero. However, when a 
number of filters were designed with the algorithm for odd L, the coefficients 
with even subscripts were on the order of 1 0 " 5 , except for one coefficient whose 
value was \ , and setting the small coefficients equal to zero had negligible effect 
on the frequency response [E-2]. The filter coefficient in (7.35) with the value of 
\ is a(L-1)/2 and corresponds to the Fourier series coefficient a0/2 = \ in (2.1). 

The simplified F I R filter transfer function for L odd and every other 
coefficient equal to zero is 

( L - D / 4 

Y(z) = i z ( L ' 1 ) / 2 + X ^ k - i ^ 2 * " 1 + zL~2k) (7.37a) 
k= 1 

if (L — l)/4 is an integer, or 
(L-3)/4 

Y(z) = | z ( L - 1 ) / 2 + X a2k(z2k + z ^ 1 ' 2 ^ (7.37b) 
k=0 

if (L — 3)/4 is an integer. 
Problems 11 and 12 develop a mechanization of (7.37a) for L = 9 and for the 

Z ( L - i)/2 c o e f f i c i e n t rescaled from \ to 1. The mechanization is called an equiband 
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filter [T-2]. Equation (7.35) is a series truncated after L terms. As L -» oo the 
actual frequency response approaches arbitrarily close to the desired frequency 
response. 

Another advantage of F IR filters is that overflow can be precluded in fixed 
point mechanizations if two constraints are satisfied. The first constraint is that 
the input magnitude must be less than or equal to some maximum, say, Amax. The 
second constraint is that the filter coefficients are scaled so that (7.21) yields 
\o(n)\ ^ Am^Yj^=o\ak\ < Omax where O M A X is the maximum output word 
magnitude such that overflow will not occur. 

A final advantage of F I R filters is that arithmetic operations may be 
performed at the output rate because there are no feedback paths in the filter. 
For example, a 2:1 decimation in time follows each filter in Fig. 7.8, and the 
computational rate for F I R filters is reduced by 2 as compared to recursive filter 
computation, which must be performed at the input rate. 

7.6 Demodulator Mechanizations 

In Section 7.2 we showed that efficient spectral analysis resulted from using a 
complex demodulator like that shown in Fig. 7.8. The complex demodulator 
shifts the spectrum of a real input to the left, as shown in Fig. 7.7, and low pass 
filters attenuate all but the low frequency part of the shifted spectrum, as shown 
for a digital filter implementation in Fig. 7.8. The sampling rate is then decreased 
by decimating the output samples (a 2:1 decimation is shown in Fig. 7.8). We 
discovered that the D F T of the remaining complex samples gave an efficient 
spectral analysis of the frequency region of interest, shown as the shaded area in 
Fig. 7.7. The previous sections of this chapter discussed spectrum shifting and 
digital filters. Analog and digital complex demodulators for spectrum shifting 
were discussed in Section 7.2 and are shown in Fig. 7.6. In this section we discuss 
three alternatives for demodulator mechanization. 

The first alternative is to demodulate and then low pass filter as shown in Fig. 
7.15a. The output of the demodulator consists of in-phase / and quadrature-
phase Q components. Each of these components must be low pass filtered to 
prevent detection of aliased energy in the D F T . The frequency content out of the 
low pass filters is much lower than the frequency content at the demodulator 
input, and this permits a lower sampling rate. A 4:1 decimation of time samples 
is shown in Fig. 7.15a. 

A second alternative is to filter out the frequency band of interest, for 
example, the cross-hatched portion of the spectrum between fx and f2 in Fig. 
7.7a. The center of the spectrum (f0 in Fig. 7.7a) is shifted to 0 by complex 
demodulation. This demodulator is shown in Fig. 7.15b, with again a 4:1 
decimation of the low frequency output. Since only every fourth sample of the 
demodulator output is used, the demodulator can be moved to the right of the 
sampling switches to reduce computational requirements. 

A third alternative accomplishes bandpass filtering, demodulation, decima
tion, low pass filtering, and another decimation. As in the previous block 
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e - j 2 7 r ^ n / f . 

Low pass 
filter 

4:1 decimation 

Low pass 
filter 

to FFT 

( a ) 

e - j 2 7 r f 0 n / f ; 

Input signal Bandpass 
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( b ) 

e - j 2 7 r f 0 n / f s 

4:1 decimation 
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Input signal Bandpass 
filter to FFT 
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( c ) 

Fig. 7.15 Options for digital complex demodula tor mechanization. 

diagram the demodulator may be moved through the sampling switch as 
illustrated in Fig. 7.15c, where decimations of 2:1 are used for illustrative 
purposes. Offhand the mechanization in Fig. 7.15c looks less efficient than those 
in Figs. 7.15a and b. It can be more efficient because the bandpass filter can be 
very simple, with a low rate of attenuation versus frequency in the transition 
region between the passband and stopband, and because the low pass filters can 
provide a sharper rate of attenuation prior to decimation. Furthermore, the 
demodulator may be moved through F IR low pass filters so that computations 
are performed at the decimated output rate of the low pass filters (see Problem 
11). The option shown in Fig. 7.15c is used in the next section for octave spectral 
analysis with F I R digital filters. 

7.7 Octave Spectral Analysis 

Previous sections discussed spectral analysis of real and complex time series. 
The complex time series results from one or more complex demodulations of a 
real input signal. Digital filters remove unwanted spectral components. In this 
section we use complex demodulation and digital filtering in systems for octave 
spectral analysis. Such systems are employed, for example, in sonar signal 
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processing (see [K-38] for a tutorial discussion of sonar digital signal processing 
functions). 

Octave spectral analysis demodulates adjacent octaves and takes the D F T of 
each octave to produce an efficient spectral analysis. We shall use M points of an 
TV-point F F T , where M ^ TV, to provide a spectral analysis of each octave. Since 
the bandwidth of a given octave is twice that of the octave below, the bandwidth 
of the D F T filters in the given octave is twice that of the octave below. For 
example, 400 D F T filters give a resolution of 1.6 Hz in the 640-1280 Hz octave, 
0.8 Hz in the 320-640 Hz octave, etc. Thus, for a given filter number, in any 
octave the value of Q (see Section 6.6) is the same (e.g., for the first filters in the 
640 and 320 Hz octaves Q = 640/1.6 = 320/0.8). The proport ional filters 
described in Chapter 6 maintained a constant Q across the bandwidth analyzed, 
whereas the Q for the octave spectral analysis is a function of filter number. 
(For example for the last filters in the 640 and 320 Hz octaves Q = 
(1280 - 1.6)/1.6 = (640 - 0.8)/0.8.) 

We shall demonstrate the trade-off between a spectral analysis system 
mechanized with recursive elliptic digital filters and one mechanized with 
transversal F I R digital filters [E-2]. The trade-off is accomplished by comparing 
arithmetic operations for accomplishing all demodulation and digital filtering 
operations in the systems. Since demodulation and filtering operations are 
interdependent in the case of F I R filters, the arithmetic operations required to 
do both demodulation and filtering are included in the system trade-off. The 
spectral analysis system requirements are specified in Table 7.2. 

Table 7.2 

Spectral Analysis System Requirements 

Parameter Requirement 

A D C output frequency 

F F T outputs 

F F T resolution 

F F T size 

Maximum passband ripple due to all 
analog and digital filtering operat ions 

Min imum rejection of sinusoids ali
ased into D F T analysis band 

Analog low pass filter 

Redundancy 

6553.6 Hz obtained from counting down by a factor of 
300 the 1.96608 M H z output of a crystal oscillator 

5 octaves between 40 and 1280 Hz 

400 filters per octave yielding resolutions of 1.6 Hz in the 
640-1280 Hz octave, 0.8 Hz in the 320-640 Hz octave, etc. 

512 points 

+ 0.5 dB 

43 dB 

Less than 0.1 dB passband ripple and at least 48 dB 
rejection in s topband starting at half or less of the A D C 
output sampling frequency 

Arbi t rary — demodulated and filtered octaves are as
sumed to be stored in such a fashion that only memory 
and F F T throughput are affected 
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S Y S T E M M E C H A N I Z E D W I T H F IR F I L T E R S A block diagram for a spectral 
analysis system mechanized with F I R filters is given in Fig. 7.16. The ratio offv 

to fs is the same for each L P F preceding a filter labeled bandpass and for each 
LPF following a demodulator. These filters can be mechanized with one F IR 
filter transfer function Fx (z) because only scaling of the frequency axis is 
involved. Likewise one transfer function Fx(z) suffices for the F I R filters 
preceding the demodulators. 
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Fig. 7.16 Block diagram of a spectral analysis system mechanized with F I R digital filters. 

An equiband filter mechanizing F^z) in Fig. 7.16 is defined by (7.37a) for 
L = 27: 

Fl(z) = z^+ X a2k(z2k + z2 (7.38) 

The coefficients a2k, k = 0,1,2,... ,6, were obtained with the Remez exchange 
algorithm, and the filter's frequency response, shown in Fig. 7.17, meets the 
system requirements listed in Table 7.2. The filter passband is from 0 to 1280 Hz, 
and the stopband has width 1280 Hz extending from 1996.8 Hz up to half the 
input sampling rate fs/2 = 3276.8 Hz. The magnitude of the passband and 
stopband ripple is equal; also the peak-to-peak passband ripple is less than 
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0.05 dB. The filter response was obtained with filter coefficient word lengths of 
12 bits, including the sign bit, and requires 14 real additions and 7 real 
multiplications per output. 

Frequency (Hz) 

Fig. 7.17 Frequency response for an F I R low pass digital filter with transfer function Fi(z). 

A bandpass filter with transfer function F2(z) separates each octave, and the 
octave is then demodulated. Sinusoids outside the octave are further attenuated 
by the low pass filter with transfer function F^z). This is the mechanization 
shown in Fig. 7.15c. The LPF with transfer function Ft(z) increases the rate of 
attenuation outside the passband so that another 2:1 decimation is allowed at 
this LPF's output. 

An interesting technique to mechanize the bandpass filter and demodulator is 
first to reverse the operations and mechanize a demodulator and then to use an 
L P F with transfer function F'2(z). The passband at the LPF is from — fp to fp 

where 2fp is the bandwidth of the octave. The demodulator is then moved 
through the F I R filter, in effect converting it into a single sideband bandpass 
filter (see Problem 11). The attenuation of the L P F with transfer function F'2(z) 
is sufficient to allow a 2:1 decimation at its output. This decimation results in a 
reduction of the requirements for arithmetic computations. Since the de
modulator was moved through the filter to the filter output, the combined 
demodulation and filtering operations associated with F2(z) are performed at 
the decimated output rate of F'2(z). 

An equiband filter mechanizing F'2(z) is defined by (7.37b) for L = 9: 

F'2(z) = + £ fl^-^z2*-1 + z9-2k) (7.39) 
fc=l 
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The coefficients in ( 7 . 3 9 ) were obtained with the Remez exchange algorithm; the 
filter response is shown in Fig. 7 . 1 8 and a mechanization is discussed in Problem 
12. The filter passband is shown from 0 to 3 2 0 Hz, and the stopband extends 
from 1 3 1 8 . 4 Hz up to half the input sampling r a t e , / S / 2 = 1 6 3 8 . 4 . The passband 
and stopband have equal peak-to-peak ripple of less than 0 .1 dB. The filter 
response was obtained with filter coefficient word lengths of 1 2 bits, including 
the sign bit. The total operations for the single sideband bandpass filtering are 
nine real additions and eight real multiplications per output (see Problem 12) . 

8 0 0 1200 

Frequency (Hz) 

Fig. 7.18 Frequency response for an F I R low pass digital filter with transfer function F'2(z). 

The complex demodulator could be moved again (see Section 7 . 6 ) , this time 
through the F I R filter, which has transfer function Fx (z) and is at the right side of 
Fig. 7 . 1 6 . This is not done, because in this case no reduction of arithmetic 
operations results. The reason is that moving the demodulator through F^z) 
results in complex filter coefficients. The increase in multiplications due to 
complex coefficients is not offset by the decrease in demodulator calculations 
even if the demodulation is accomplished at the decimated filter output rate. 

MINIMUM REJECTION OF SINUSOIDS The spectral analysis system in Fig. 7 . 1 6 
mechanized with Fx{z) and F'2(z) (Figs. 7 . 1 7 and 7 . 1 8 ) meets all the system 
requirements stated in Table 7 . 2 . In particular, we shall verify that the minimum 
rejection of sinusoids aliased into the D F T analysis band due to decimation is 
better than 4 3 dB. Consider the digital filter at the top of Fig. 7 . 1 6 with transfer 
function Fx(z) and with input and output frequencies of 6 5 5 3 . 6 and 3 2 7 6 . 8 Hz, 
respectively. The stopband sidelobe peaks at 3 2 7 6 . 8 , 3 0 5 0 , . . . Hz (Fig. 7 . 1 7 ) alias 
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sinusoids centered at the peaks to 0, 226 .8 , . . . Hz, respectively, after the 2:1 
decimation at the filter output. Likewise, the digital filter with transfer function 
Fx(z) and input and output frequencies of 3276.8 and 1638.4 Hz, respectively, 
has sidelobe peaks at 1638.4, 1525 , . . . Hz that alias sinusoids centered at the 
peaks to 0, 113.4, . . . Hz, respectively, after the 2:1 decimation. In fact, the 
decimation at the output of each digital filter aliases a sinusoid centered at a filter 
sidelobe peak to 0 Hz. 

Let a sinusoid with complex amplitude Xx be centered at the — 60 dB peak of 
the sidelobe at 3276.8 Hz (Fig. 7.17) in the first (top) filter in Fig. 7.16 and let it be 
aliased to 0 Hz, yielding 2^(0) as the result of the sampling frequency reduction 
from 6553.6 to 3276.8 Hz. Let a second sinusoid with complex amplitude X2 be 
centered at the — 60 dB peak of the sidelobe at 1638.4 Hz in the second filter and 
let it likewise be aliased to 0 Hz, yielding X2(0) as the result of the sampling 
frequency reduction from 3276.8 to 1638.4 Hz. 2^(0) and X2(0) may be assumed 
to have independently distributed phases each of which obey a uniform 
probability distribution between — n and + n radians. 

For illustrative purposes we shall consider sinusoids with unit amplitude 
before being aliased to 0 Hz (e.g., = \X2\ = 1). In general, an automatic gain 
control (AGC) adjusts signal power so that some maximum level, such as unity, 
can be assumed for each sinusoid (see Section 7.8). Let a reference sinusoid with 
independently distributed phase be aliased to 0 Hz to yield a — 60 dB power level 
with respect to the unit signal. Then the two phasors Xt and X2, which have 
independently distributed phase and which are aliased to 0 Hz by two different 
sampling frequency reductions, increase this aliased power by 3 d B ; four 
independent phasors from four sampling frequency reductions increase the 
power by 6 dB; eight independent phasors from eight reductions increase the 
power by 9 dB; and so forth. There is actually a maximum of six filters with 
transfer function F^z) (in the path in Fig. 7.16 between the system input and 
the 40-80 Hz octave analysis). Sinusoids aliased to 0 Hz from the six filters 
give an aliased power level lower than — 60 + 9 = — 51 dB. The filter with 
transfer function F'(z) also aliases power to 0 Hz from a sidelobe with a gain of 
— 54 dB. This puts the total aliased power at 0 Hz, well below the — 43 dB 
requirement. 

ARITHMETIC OPERATIONS FOR F I R FILTER SYSTEM MECHANIZATION We begin 
the count of arithmetic operations required for the system mechanized with F I R 
filters by noting that the top complex demodulator in Fig. 7.16 runs at 
f0 = 960 Hz, which is the center frequency of the 640-1280 Hz octave. The 480, 
240,120, and 60 Hz demodulator outputs are computed only after 2 1 , 2 2 , 2 3 , and 
2 4 outputs, respectively, of the 960 Hz demodulator. Arithmetic operations 
required to demodulate and filter the 640-1280 Hz octave are stated in Table 7.3. 
Demodulation and filtering operations for the 640-1280 Hz octave total 
48,000 multiplications/s and 83,500 additions/s. When operations for lower 
octaves are totaled, they are approximately equal to those for the 640-1280 
Hz octave. 
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Table 7.3 

Real Operat ions for Demodula t ion and Digital Filtering in the Spectral Analysis System of Fig. 7.16 
with F I R Filters Used to Mechanize Fx(z) and F2(z) 

~ Operations 
Operations ~ , ^ r 

~ c \ . , Output per second 
Transfer per output sample ^ - . . . . 
r A . sampling (1000s) 
function / T T x 

(Hz) 
M P Y A D D M P Y A D D 

Ft{z) 7 14 3276.8 22.9 45.8 
F2(z) 8 9 1638.4 13.1 14.8 
i^(z) f l 14 28 819.2 12.0 22.9 

Demodula t ion and filtering operations 48.0 83.5 
for the 640-1280 Hz octave 

Approximate system total 96.0 167.0 

a Operat ions per ou tput sample cover in-phase and quadrature-phase components from the 
demodulator following F2(z). 

S Y S T E M M E C H A N I Z E D W I T H R E C U R S I V E F I L T E R S A block diagram for a spectral 
analysis system mechanized with recursive digital filters is given in Fig. 7.19. The 
ratio of fv to fs is the same for all the recursive digital filters to the left of the 
demodulators in Fig. 7.19, and only one transfer function Ri(z) is required. 
Likewise, one transfer function R2(z) suffices for the recursive digital filters to 
the right of the demodulators. Six-pole elliptic filters are required to mechanize 
transfer functions Ri(z) and R2(z) that meet system requirements. The six poles 
would normally be mechanized as three stages with two poles per stage (see 
Problems 8 and 9). 

Figures 7.20 and 7.21 show the frequency responses of the filters with transfer 
functions Ri(z) and R2(z), respectively. The first filter has a passband from 0 to 
1280 Hz, a sampling frequency of 6553.6 Hz, a less than 0.1 dB peak-to-peak 
passband ripple, and at least a 48 dB stopband rejection of aliased signals 
starting at 1710.0 Hz. The frequency response was obtained by using a bilinear 
substitution [G-5, O-l ] to transform an analog elliptic filter into a digital filter 
and with filter multiplier coefficient word lengths of 12 bits, including the sign 
bit. The second filter has a passband from 0 to 320 Hz, a sampling frequency of 
3276.8 Hz, a less than 0.1 dB peak-to-peak passband ripple, and at least a 48 dB 
stopband rejection of aliased signals starting at 469.2 Hz. The filter response was 
also obtained with the bilinear transform but used filter multiplier coefficient 
word lengths of 13 bits, including the sign bit. 

The system shown in Fig. 7.19 meets the requirements in Table 7.2 as can be 
shown by an analysis similar to that for Fig. 7.16. The system in Fig. 7.19 
requires five demodulators. The integer n represents the sample number in the 
reference waveform in the top (960 Hz) demodulator. The 480, 240, 120, and 60 
Hz demodulator outputs are computed only after 2 1 , 2 2 , 2 3 , and 2 4 outputs, 
respectively, of the 960 Hz demodulator. Each demodulator in the recursive 
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Fig. 7.19 Block diagram of a spectral analysis mechanized with recursive digital filters. 
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Fig. 7.20 Frequency response of a recursive low pass digital filter with transfer function Ri(z). 
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Frequency (Hz) 

Fig. 7.21 Frequency response of a recursive low pass digital filter with transfer function R2(z). 

mechanization must run at twice the rate of that in the nonrecursive mechani
zation because the demodulator cannot be moved through a recursive filter, 
whereas it can be moved through a transversal filter. 

A R I T H M E T I C O P E R A T I O N S F O R R E C U R S I V E F I L T E R S Y S T E M M E C H A N I Z A T I O N The 

arithmetic operations required to demodulate and filter the 640-1280 Hz octave 
are stated for six-pole elliptic filters in Table 7.4. Arithmetic operations for all 
five octaves total approximately twice those of the 640-1280 Hz octave. In-phase 
/ and quadrature-phase Q components of the demodulated signal must both be 
filtered, resulting in a doubling of the addition operations to mechanize R2(z) as 
compared to Rx(z). 

Table 7.4 

Real Operat ions for Demodula t ion and Digital Filtering in System of Fig. 7.19 with Six Pole Elliptic 
Filters Mechanizing Rx(z) and R2(z) [demodulator operations included for R2{z)~] 

Transfer 
function 

Operations 
per output sample 

Output sampling 
rate 
(Hz) 

Operations 
per second 

(1000s) 
Transfer 
function 

M P Y A D D 

Output sampling 
rate 
(Hz) 

M P Y A D D 

Riiz) 24 24 3276.8 78.6 78.6 
R2(z) 104 96 819.2 85.2 78.6 

Demodula t ion and filtering operations 163.9 157.2 
per second for the 640-1280 Hz octave 

Approximate system total 327.7 314.4 

C O M P A R I S O N O F S Y S T E M S Comparing Tables 7.3 and 7.4 we see that the system 
mechanized with F I R filters requires approximately one-third the multipli-
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cations and one-half the additions required by the system mechanized with 
recursive filters. The systems presented in this section illustrate design tech
niques available for octave spectral analysis. The systems have a great deal of 
spectral shifting and decimation. 

SYSTEM OPTIMIZATION Arithmetic computation rates in systems with digital 
filters and FFTs may be minimized by optimally locating the decimation among 
filter stages [C-59, E-26, G-8, L-22, M-34, M-35, S-7]. Other efficiencies result 
when number theoretic transforms (NTT) are used to accomplish the digital 
filter output evaluation (see Section 11.12 and [N-19, N-20]). A fivefold 
processing load reduction may be obtained with the N T T approach for filters 
having a length in the 40-250 range- [N-21]. Still other efficiencies result from 
recursive filters having only powers of z D , where D is the decimation ratio, in the 
denominator [M-38] and from nonminimal normal form structures [B-43]. 

7.8 Dynamic Range 

Dynamic range analysis is an analytical technique that investigates whether or 
not a system has sufficient digital word length in the digital filters, F F T , and 
other processor components. (Digital word length means the number of bits 
used to represent a number.) Dynamic range for a spectral analysis system is 
stated in terms of the maximum difference that can be detected in the power level 
of high and low amplitude pure tone signals. The high amplitude signal should 
drive a fixed point system near to saturation. The low amplitude signal should be 
detectable even if its power level is much less than the input noise power. This 
section discusses the dynamic range requirements of the F F T in a spectral 
analysis system. Dynamic range is stated in terms of the word length of various 
system outputs. The mode with the most narrow bandwidth D F T filters is the 
most taxing on dynamic range requirements because of a possible large variation 
in the signal-to-noise ratio (SNR) at the outputs of different D F T filters. 

A general development would cover both floating point (scientific notation) 
and fixed point (for an assigned position of the separating point within a digital 
word) mechanizations. We shall discuss only a fixed point mechanization that 
uses a sign-magnitude representation of numbers and that rounds the outputs of 
arithmetic operations [E-18, P-13, S-10, T-4, T-5, W-15]. The fixed point 
mechanization illustrates graphically how SNR improves in a spectral analysis 
system. We shall give an approximate analysis that is easily visualized and will 
indicate how to remove the approximations with correction terms. 

Word lengths in a fixed point spectral analysis system must be sufficient to 
accomplish the following objectives: 

(1) They must allow signals with a low SNR to integrate coherently to a level 
at which the signal can be detected. This requires that noise due to rounding the 
outputs of arithmetic operations contribute negligible noise power compared to 
a reference input. In a fixed point system this implies that the least significant 
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bit (lsb) represents a small enough magnitude so that the round-off noise does 
not become a dominant noise source compared to the reference. 

(2) They must prevent high amplitude signals from limiting. This requires 
that the processed words contain a sufficient number of bits to prevent high level 
signals from clipping while keeping low level signals from being lost in round-off 
noise. 

(3) They must accomplish an accurate spectral analysis. This requires that 
multiplier coefficients Wkn in the F F T be represented by a sufficient number of 
bits to maintain the accuracy of the sinusoidal correlation function. 

A S P E C T R A L A N A L Y S I S S Y S T E M W I T H A G C Figure 7.22 shows the block diagram 
of a fixed point spectral analysis system. The automatic gain control loop detects 
the average power out of the digital filter. Typically, detection is accomplished 
by squaring the output of the digital filter. The squared outputs are averaged in a 
digital LPF that might have a 1 s time constant, give or take an order of 
magnitude depending on the application. A G C action is accomplished by 
comparing the difference of average and desired LPF outputs. The difference in 
analog form controls the gain of the amplifier preceding the analog filter. 

Figure 7.23 shows how signal levels are adjusted at the digital filter output. We 
assume that the fixed point word out of the A D C is a real sign-magnitude 
number with the form ± 0.bib2b3 • • • bk • • • bh where bk = 0 or 1, bx is the lsb, 
k = 1 ,2 , . . . , / is the bit number, and 

0.111 • • • 1 = i + i + 1 -h + 1/2' « 1 = 2° (7.40) 

Analog 
filter 

Digital 
filter 

Detect 
and 
average 

Demod. 
and 
filter 

Display FFT Display FFT 

Fig. 7.22 Fixed point spectral analysis system. 
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Fig. 7.23 Signal levels at a digital filter ou tput due to real input. 
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is the maximum magnitude. To simplify the discussion we shall assume that 
large amplitude signals are scaled so that fixed point computations do not exceed 
digital register capacities. 

Suppose that the only signal in the system is a pure tone of frequency 1/P and 
phase angle 6. If the signal is oscillating from + 1 to — 1, its average power is 

P/2 
1 

P 

Jlllt 
cos z ——h 

\ p dt = 
1 

(equivalent to - 3 dB) (7.41) 

-P/2 

A bit, which represents a magnitude gain of 2 or a power gain of 4, is equivalent 
to 6 dB, so bits convert to decibels in the ratio of 6 dB/bit. Bit number, bit 
magnitude, and power level in decibels are shown in Fig. 7.23. The power level 
corresponds to a signal whose rms value is given by the bit magnitude. 

The A G C adjusts the power level to keep high amplitude signals from limiting 
(objective 2). This results in the real signal at the digital filter output having a 
power level that is typically — 12 dB, as shown in Fig. 7.23 (see Problem 14). We 
shall determine the result of sending the buffer output (Fig. 7.22) directly to the 
F F T . The addition of a complex demodulator and another filter will require only 
a simple modification to this result (see Problem 17). We shall consider an 
F F T of dimension N = 2L that accomplishes in-place computation requiring L 
stages. 

IMPACT OF SCALING WITHIN THE F F T The D F T coefficient X(k) has a scaling by 
l/N = 1/2L, which is accomplished by multiplying the output of each summing 
junction in each of the L F F T stages by \ . This is illustrated in Fig. 7.24, which is 
part of an F F T (it should be compared with Fig. 4.4). In general, an F F T is 
implemented with a multiplier Wkn following each summing junction. The 
exponents of W are labeled k u k2, and k3 in Fig. 7.24, and the scaling by \ is 
shown following the multiplier. 

kth stage (k+1)th stage 

Fig. 7.24 Scaling by \ in each stage of an F F T . 
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Let the input to the power-of-2 F F T be a pure tone signal plus zero-mean 
uncorrelated noise. Then the noise into the kth stage is uncorrelated and the rms 
noise out of any path in the M i stage is 1/^/2 times the rms noise input. For 
example, in Fig. 7.24 n1, n2, and n5 are related by 

| / i5 l = ( l /v /2)[ | / i i | 2 + | / i 2 | 2 ] 1 / 2 (7.42) 

Let the signal be centered in the D F T mainlobe determined by the paths in Fig. 
7.24. Then the maximum signal output magnitude is equal to the input 
magnitude. For example, the inphase condition gives \sx \ = \s2\ (see Problem 16), 
so that 

\s5\=ms1\2 + \s2\2)]1/2 = \s1\ = \s2\ (7.43) 

Comparison of (7.42) and (7.43) shows that the rms signal gains a factor of ^Jl 
on the rms noise per stage. Relative to the signal the rms noise is reduced by J l 
per stage, the noise power is reduced by 2 per stage, and the noise power output 
after all L stages is 1/2L = l/N of the input noise. Since there are N D F T 
coefficients, the noise power is divided equally between them if the input noise is 
band-limited white noise (see Problems 6.19 and 6.20). 

G R A P H I C A L A P P R O A C H T O SNR C A L C U L A T I O N We shall present a simple 
graphical approach to the calculation of the SNR. Figure 7.25 shows possible 
signal and noise levels at various stages of an F F T for which L = 12. The vertical 
axis is the bit level, 

(bit level) = - log 2 (rms level) (7.44) 
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Fig. 7.25 Possible rms signal and noise levels in an F F T . 
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that is, the number of bits below maximum word magnitude. Even with the real 
input shown in Fig. 7.22 the F F T produces real and imaginary signal 
components, so the bit level describes the magnitude of the complex word in the 
F F T . Figure 7.25 shows the following signals, some of which are either mutually 
inclusive or mutually exclusive: 

(1) A pure tone that is centered in a D F T frequency bin and that has a power 
level of — 12 dB set by the AGC. Any noise present is of much lower amplitude 
and other signals have insignificant power relative to the pure tone. 

(2) Zero-mean band-limited white noise with a — 12 dB power level. The 
white noise has been band-limited by analog filtering but has a flat spectrum 
over the frequency band being analyzed. The pure tone (1) is not present and all 
other signals have insignificant power. The band-limited white noise bit level 
decreases at 3 dB per stage (one bit every two stages) owing to the ^Jl gain in 
SNR per stage. 

(3) A low level signal 36 dB below (2) at the input but with an SNR of 0 dB 
after 12 stages. Band-limited white noise (2) controls the A G C . 

(4) Band-limited white noise 48 dB below (1) at the input and 84 dB below 
(1) after 12 stages. The pure tone (1) controls the A G C . 

(5) A pure tone low level signal with a pure tone (1) and band-limited white 
noise (4). The low level signal is centered in a bin different from (1). The SNR of 
(5) with respect to (4) is — 36 dB at the input and 0 dB at the output. 

Let a OdB SNR be the criterion for detecting the low level signal just described 
in (5). The dynamic range in the 12-stage system is then the difference of signal 
levels (1) and (5), or 84 dB. This result is readily generalized for other detection 
criteria and numbers of stages. 

Round-off of a real number to a digital word consisting of a sign bit plus / bits 
for magnitude is accomplished using good design procedures so that it is 
independent of other round-offs. As a result it is a white noise source with an 
amplitude uniformly distributed between — Q/2 and Q/2 where Q is the lsb value 
2~l. The round-off noise power Pr0 (see, e.g., [P-24]) is 

Pro = Q2/12 (7.45) 

For example, let the A D C output be eight bits, including the sign bit. Then the 
A D C contributes an rms round-off noise of 2 ~ 7 / x / l 2 or — 53 dB with respect to 
an input whose maximum magnitude is 1. 

We note from Fig. 7.25 that a sign bit plus at least 10 bits at stage zero and 16 
bits at stage 12 are required to keep round-off noise below the input noise level 
(4). The number of bits required increases by one every two stages. 

Round-off noise power is added at every computation so it is added fs times 
per second, where fs is the sampling frequency. The power spectral density due to 
round-off P S D r 0 is given by 
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where a unit describes what is being processed. Figure 7.26a shows the round-off 
noise PSD of an A D C , (b) shows the gain of the LPF following the round-off 
operation, and (c) shows the reduction in round-off noise due to the filter. 
Round-off internal to the filter and at the filter output are not shown. The effect 
of the LPF on the round-off noise of the preceding operation is to reduce the 
noise power, yielding a PSD at the LPF filter output given by 

Q2 E N B W 

(AO)LPF = ^ ^ — (7.47) 

where E N B W is the equivalent noise bandwidth of a rectangular filter given by 
(6.107) and shown in Fig. 7.26d. 
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Fig. 7.26 Effect of a filter on the round-off noise of the preceding operation. 

T R E A T I N G R O U N D O F F N O I S E A S A L O S S Good F F T design keeps all round-off 
noise negligible with respect to some reference input noise, for example, A D C 
round-off noise. As additional round-off noise is introduced it can be treated as a 
loss. The loss is an S N R degradation due to the additional round-off noise and is 
given by 

(loss) = 10 log[ (P R + P r 0 ) / P R ] (7.48) 



7.8 DYNAMIC RANGE 287 

where PR is the noise power due to the reference noise and PrQ is the additive 
round-off noise power. Losses are correction terms which are subtracted from 
total processor gain. The output of every arithmetic operation must be 
considered as a source of round-off noise in the loss calculations. Keeping losses 
to an insignificant level relative to A D C round-off noise ensures that word 
lengths are sufficient (see Problem 17). When applying (7.48), the power 
(variance) due to discarding the Isb of a S- + 1 bit number (sign bit plus 6 bits for 
magnitude) and right shifting one bit (i.e., dividing by 2) is 2~16jl. If the product 
of two I + 1 bit numbers is rounded to 6- + 1 bits, the variance is effectively 
2 - 2 7 l2 . 
IMPACT OF ROUNDING MULTIPLIER COEFFICIENT One other source of error in 
the F F T is rounding the multiplier coefficients Wkn. The F F T spectral analysis 
becomes more and more inaccurate as fewer and fewer bits are used for the 
cosine and sine terms of Wkn. Accuracy assessment of the number of bits to 
mechanize Wkn has been accomplished using a frequency response method 
[T-4]. The response of a given D F T filter was shown in Chapter 6 to be 
(sin 7if)/nf. Deviation from this response can be held at a predetermined level by 
specifying enough bits for the cosine and sine terms in Wkn. 

One measure of deviation is spurious sidelobe levels. Spurious sidelobes can 
occur at any frequency bin interval, as indicated in Fig. 7.27. Using too few bits 
for the multiplier coefficients results in higher spurious sidelobes. 

Magnitude 

Actual frequency response 

Desired frequency response y > / Largest spurious lobe 
Desired frequency response y 

Largest spurious lobe 

, ^ W 
\ \ 

\ V' 

Fig. 7.27 Effect of too few bits in the multiplier coefficient. 

Table 7.5 

Peak Spurious Sidelobe Levels versus F F T Coefficient Quant izat ion 
[T-4] 

Number of Power level of Number of Power level of 
magnitude largest sidelobe magnitude largest sidelobe 
bits (dB) bits (dB) 

0 - 12.0 8 - 6 0 . 4 
1 - 15.3 9 - 65.0 
2 - 2 3 . 6 10 - 71.0 
3 - 2 9 . 1 11 - 77.0 
4 - 36.6 12 - 83.4 
5 - 4 1 . 8 13 - 89.7 
6 - 4 6 . 3 14 - 9 5 . 6 
7 - 51.4 15 - 9 9 . 7 
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Table 7.5 shows the largest spurious sidelobe levels for a 64-point F F T . The 
largest spurious sidelobe is shown for a sign and magnitude representation of the 
coefficients as a function of the number of bits. For TV > 64 the levels and 
frequency locations of the sidelobes remained almost constant [T-4]. 

The spurious sidelobe levels indicate the effect of using just a few bits to 
represent Wkn. A more realistic assessment considers the result of using the 
processor word length to represent Wkn. Thus let all integers in a radix-2 F F T 
processor consist of a sign bit plus 6- bits for the magnitude. Let each multiplier 
output of 26 + 1 bits be rounded to {• + 1 bits. Then the total contribution of 
error due to imprecision in the coefficients Wkn is negligible compared to the 
round-off errors [ 0 - 3 ] . 

C R I T I Q U E O F T H E D Y N A M I C R A N G E D I S C U S S I O N This section presented a brief 
development of digital processor word length requirements for a fixed point 
sign-magnitude spectral analysis processor. The development shows how SNR 
improves in the digital filter and FFT . One advantage of the sign-magnitude 
fixed point dynamic range discussion is that it is easily visualized using a signal 
and noise level diagram like Fig. 7.25. Another advantage is that it suggests 
additional scaling methods for a radix-2 F F T based on fixed point arithmetic. 
The methods involve scaling that maintains the magnitudes of the input 
sequence and the butterfly outputs below a certain maximum and are readily 
generalized to radices other than 2. Methods which may be used to scale the 
magnitudes of the input sequence to a radix-2 F F T include the following: 

(1) Multiply each input sample by J Y,n = i Ux(n)\2] ~ 1 where x(n) is the F F T 
input sequence. Note that this is equivalent to normalizing the input power to 
— 12 dB. After normalizing, if \x(n)\ ^ 1 for any n, let \x(n)\ = ^. Thereafter, 
scale the butterfly outputs as specified in (a) below. 

(2) Use the average or filtered power level at the F F T output to scale the 
input as described in (1). Thereafter, scale the butterfly outputs as specified in (a) 
below. 

(3) Multiply each input sample by ^{max„ [ M « ) | ] } - 1 . Thereafter, imple
ment (a), (b), (c), or (d) below. 

(4) Scale the rms input to 2 " ( L + 2 ) (i.e., L + 2 bits below a magnitude of 
unity). For example, a 6-bit input to a 28-point F F T becomes the sign bit plus the 
least significant 5 bits of a 16-bit word. With the assumption that large amplitude 
input samples are scaled to preclude overflow, the F F T will not overflow for 
sizes up to 2 L with no further scaling internal to the FFT . 

Methods of scaling the magnitudes of butterfly outputs of a radix-2 F F T to 
smaller values include the following. 

(a) Scale each output of each set of butterflies by \ (i.e., right shift by one bit) 
as discussed earlier in this section. 

(b) Let gk(n) be the output sequence from the kth set of butterflies, 
k = 1 ,2, . . . , L — 1. If \gk(n)\ ^ \, n = 0 , 1 , . . . 9N - 1, multiply all outputs of the 
kth set of butterflies by i{max„ [ |^ f c (« ) | ]} _ 1 . 
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(c) Check each gk(n) as in (b). If \gk(n)\ ^ § for any n, multiply each gk(n) by \ . 
(d) Scale the outputs of a given set of butterflies in blocks. For example, the 

butterfly outputs of a D I F F F T may be scaled separately for the smaller DFTs 
which follow a given set of butterflies (see, e.g., Fig. 4.1). The scaling policies for 
the inputs to each successive smaller D F T include those just discussed. A 
normalization at the F F T output must compensate for the scaling as described in 
the next paragraph. 

All F F T input and internal scaling must be accounted for in the use of the F F T 
output. For example, let all octaves of a sequential spectral analysis be displayed 
to an operator. Let the operator be required to distinguish relative intensity of 
the spectral lines. Then a final scaling must normalize each F F T coefficient 
relative to some system input power level. 

The disadvantage of the dynamic range discussion is that it is not complete. 
First, we have assumed that round-off noise internal to the F F T is negligible 
compared to some other system noise (e.g., A D C round off). When losses in the 
F F T are kept small, as verified by using (7.48), this assumption is valid. When 
round off in the F F T is the only error source, it may be shown that at the output 
of a radix-2 F F T with scaling of \ in each stage and a white input signal is 

SNR oc E[x2(ny]/N<r2 (7.49) 

where a2 = 2~16j\2 and & bits are used for magnitude. Equation (7.49) shows 
that if F F T round off is the only source of noise, then for a radix-2 F F T 
^ / S N R oc l/s/N = ( f ) L / 2 and the white signal-to-FFT internal round-off noise 
ratio decreases by 3 dB per stage. By comparison the pure tone-to-white noise 
input ratio increases by 3 dB per stage. The impact of the rms round-off noise on 
the low amplitude signal is a function of the F F T algorithm. For additional 
details on the impact of noise as a function of mechanization, including floating 
point and generalized transform discussions, see [C-13, C-15, J-3, K-36, L- l , 
0 - 3 , P-13, P-46, S-10, T-4, T-5, T-6, W-14, W-15]. In practical situations some 
external noise input, for example ambient ocean noise, dominates all noise 
sources, and the decrease in the D F T filter bandwidth as TV increases results in an 
increase in SNR for a spectral line centered in the D F T filter. 

Second, we considered only signals centered in the D F T frequency bins. A 
signal feeds into other bins as its frequency changes from the center frequency of 
the D F T filter. The impact of this is discussed in Chapter 6. 

7.9 Summary 

Digital systems are a powerful tool for spectral analysis. A single system with 
sufficient speed can be time shared to analyze several real time inputs. 
Furthermore, the spectral bands analyzed can be changed simply by changing 
the analog filter bandwidth and the sampling frequency. The digital filter 
bandwidths and F F T outputs scale according to the sampling frequency. 
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This chapter has gone into some practical problems in the implementation of 
spectral analysis systems. If only one spectrum analysis is desired, a computer 
library F F T routine operating on a real input is probably the best approach. If 
continuous analysis of multiple inputs is desired, time-shared special purpose 
hardware is probably better. 

Spectral bands are analyzed most efficiently by a combination of complex 
demodulation, digital filtering and an FFT. A single system can provide, for 
example, octave and vernier filtering with vernier analysis bands under operator 
control. This chapter showed that F I R (transversal) digital filter structures lead 
to efficient mechanizations of complex demodulation and filtering functions. 
F F T word length considerations were treated from a dynamic range point of 
view. The fixed point mechanization discussed under the heading of dynamic 
range illustrates S N R improvement in the F F T and provides an approach to 
word length specification. 

P R O B L E M S 

1 Aliasing Signals to a Lower Frequency for Analysis A skyscraper is suspected of having a 
structural resonance between 0.8 and 1.0 Hz. This resonance is shattering plate glass windows during 
strong winds. Structural engineers who wish to know the exact resonance frequency so that damping 
can be introduced have at tached transducers at various points in the building, and a spectral analysis 
is to be accomplished by analog filtering the signals, storing them on tape as digital signals, and 
analyzing them off site. The requirements are as follows: 

(1) Aliased out-of-band signals must be down 40 dB from inband signals between 0.8 and 1.0 Hz. 
(2) Resolution must be at least 0.001 Hz. 
(3) There must be no more than 0.5 dB in-band ripple due to filtering. 

Show that the system of Fig. 7.28 accomplishes the spectral analysis where the analog and digital 
filter gain curves are shown in Fig. 7.29. Wha t is the decimation factor going from the A D C to F F T 
input? Draw the spectrum at the F F T input. Let the dimension of the F F T be 1024. Show that the 
F F T output for bins 146, 1 4 7 , . . . ,439 gives the equivalent of the spectrum from 0.8 to 1.0 Hz with a 
resolution of 0.7/1024 « 0.0007 Hz. 

Transducer L P F Transducer L P F Tape j - ^ BPF F F T 
Detect 

and 
d i s p l a y 

F F T 
Detect 

and 
d i s p l a y 

5.6 Hz 5.6 Hz 0.7 Hz 

Fig. 7.28 System for the spectral analysis of aliased signals. 

2 Analog Complex Demodulation Use Table 2.1 and the relationship 

cosd^^e*9 + e~je) (P7.2-1) 

to show that multiplication of cos(27t/i0 by e~~j2nfot translates the spectrum as shown in Fig. 7.30, 
wherein the vertical lines are delta functions. 

3 Digital Complex Demodulation Use (P7.2-1) to show that multiplication of cos(27i/irt/iV) by 
e-j2nf0n/N for « = 0 , 1 , 2 , . . . , iV — 1 also translates the spectrum as shown in Fig. 7.30. Show that the 
vertical lines determine the D F T coefficients through (6.5) or (6.16). 
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Analog filter 
gain (dB) 

- 4 0 

Essentially 0 d B -
at 0 . 8 Hz 

0 . 4 

Digital filter 
gain (dB) 

- 4 0 
0 . 4 

Digital filter 
inband ripple (dB) 

- 0 . 3 

- - 0 . 2 dB at 1.0 Hz 

1.2 1.6 

0 . 8 1.2 

0 0 . 4 0 . 8 1.2 f 

Fig. 7.29 Analog L P F and digital BPF gain versus frequency plots. 

- f i - fn 

Spectrumf Demodulator frequency 

0 

( a ) 

f, f (Hz) 

Demodulated' 
spectrum 

1 

' 2 

0 

(b) 
f . - fn f (Hz) 

Fig. 7.30 Spectrum of cos(2nft) (a) before and (b) after complex demodulat ion. 

4 Spectral Estimation Errors Figure 7.7 shows a spectrum for x(t). D F T coefficients are used to 
estimate this spectrum. Chapter 6 details how the coefficients can give an erroneous estimate. 
Summarize the arguments by answering the following questions: x(t) has a cont inuous spectrum 
over a finite frequency band. Wha t type of time domain function does this spectrum represent? Wha t 
type does the D F T spectrum represent? Why do the D F T coefficients not necessarily represent 
sampled-data values of the continuous spectrum? 

5 A real signal is sampled at 30 Hz and is t ransformed with a 30-point D F T . A spectral analysis of 
the 0-10 Hz band with aliased signals a t tenuated by at least 40 dB is required. An analog filter is 
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available that has an at tenuat ion of 45 dB per octave, a nominal cutoff frequency of 10 Hz, and a 
passband at tenuat ion that goes from 0 dB at 0 Hz to — 2 dB at 10 Hz. Draw the sampled spectrum 
and show that the aliased spectrum satisfies the specified value. If no processing other than the 
analog filter, A D C , F F T , and display is used, show that the displayed spectral lines are |Z(0)|, 
|X(1) | , . . . , |X(10) | . 

6 A specification requires that a spectrum sampled at 240 Hz be analyzed as follows: 

(1) Provide the 20-40 Hz spectrum to better than 0.05 Hz resolution. 
(2) Filter the input to reduce aliased signals in the passband (i.e., signals aliased into the 20-40 

Hz band), by at least 50 dB. 
(3) Peak-to-peak filter ripple in the passband must be less than 0.6 dB. 
(4) The signal must be analog filtered before it is sampled and recorded on tape. The analog filter 

passband is from 0 to 80 Hz with at least 40 dB at tenuation per octave and has less than 0.2 dB ripple 
in the passband. 

Show that the digital samples can be demodulated and filtered using an available digital computer 
and the block diagram shown in Fig. 7.31. A low pass digital filter mechanization is available as 
follows: 

e - j27rf 0t/f s 

Digital 
— ® V » » F F T f i lter 8:1 

F F T 

Computer 
Detector printout Detector 

Fig. 7 .31 Block diagram for spectral analysis of the 20-40 Hz signal band recorded digitally at 
240 samples/s. 

D i g i t a l f i l t e r 
r e s p o n s e ( d B ) 

- 5 0 

Composite response 

A l i a s e d signals 

I 
I 

341 

512 I 
I 

6 8 3 

1024 k ( b i n number) 

Displayed 
spectrum 

20 30 4 0 f ( H z ) 

Fig. 7 .32 Digital filter response and display of the detected D F T output . 
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(1) The passband extends from 0 to / p = 10 Hz. 
(2) Ripple from 0 to fp is less than 0.4 dB. 
(3) At tenuat ion above fp is 50 dB octave. 

Show that spectral analysis specifications are met using the digital filter and the following: 

(1) an F F T of dimension N = 1024, and 
(2) a complex demodula tor of frequency f0 = 30 Hz, and 
(3) a computer pr intout that displays the D F T output as shown in Fig. 7.32. 

Sketch the demodulated spectrum. Show that the digital filter output may be decimated by 8:1. 
Verify that the digital filter response and display of detected D F T outputs are as shown in Fig. 7.32. 

7 Show that the general recursive filter transfer function can be factored to give 

U

M ! Z 1 1 + Bkz M•-1 1 + Ckz + Dkz2 

Q(Z) = K0Z
M> n - = — - n — - — - r 

itJo l+Akzktl

M2l+Akz + Bkz2 

where Ak, Bk, Ck and Dk are real numbers , z = exp( — j2nfT), and T is the sampling interval. 

8 Show that the general first-order recursive digital filter transfer function 

Fx(z) = K(l + Az)/(l + Bz) 

has the mechanizations shown in Fig. 7.33. 

x(n) 
K 

( a ) 

x(n) : 0 
o(n) 

(b) 

Fig. 7.33 First-order recursive digital filters. 

x(n) 

-ta> 
o(n) 

Fig. 7.34 Second-order recursive digital filter. 
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9 Show that the general second-order recursive digital filter transfer function 

F2(z) = K(l + Cz + Dz2)/(\ + Az + Bz2) 

has the mechanization shown in Fig. 7.34. 

10 Equiband Filters Let a digital F I R L P F be an equiband filter, i.e., the gain response is 
symmetric about an origin th rough (fs/4, 1/2), where the nominal passband and s topband gains are 
unity and zero, respectively. Let f =f — / s / 4 . Show tha t the equiband L P F is an even function with 
respect to / and an odd function with respect to / ' . Substitute f =f — fs/4 in the Fourier series 
describing the gain response with respect to the origin ( / s /4 , 1/2), i.e., the series such tha t the filter 
gain response is an oddTunction (do not evaluate the coefficients). Expand the series and show that 
the series now contains bo th sine and cosine functions. Compare the terms of this series to the series 
derived with respect to the origin (0,0), i.e., the series such that the filter gain response is an even 
function. Conclude tha t the series for the equiband filter contains only coefficients with odd indices. 

11 Let a demodulator precede the filter in Fig. 7.35, let the demodulator input be real, and let the 
first delay be discarded as shown in Fig. 7.36a. Show that o(n) = I(n) + jQ(n) where I(n), Q(n), and 
o{ri) are the in-phase, quadrature-phase, and output signals at sample number n. Let 6 = 2nf0/fs. 
Show that the demodula t ion function can be moved into the L P F as shown in Fig. 7.36b. Show that 
the operator z can be implemented as a shift register which moves the data every sampling interval. 

Fig. 7.36 Equivalent mechanizations for demodulat ion and filtering. 
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Show that a l though the operat ions in Fig. 7.36b are identical to those in Fig. 7.36a, the signal is 
complex and the multipliers are real in Fig. 7.36a whereas the signal is real and the multipliers are 
complex in Fig. 7.36b. Show that the mechanization in Fig. 7.36a requires 4 + 2/) real 
multiplications per output , where D is the decimation. Show that Fig 7.36b requires 8 real 
multiplications per output . Interpret Fig. 7.36b as a single sideband bandpass filter, tha t is, as a 
bandpass filter for positive frequencies only. Let F(z) = 0(z)/R(z) be the transfer function of any low 
pass filter. Let F'(z) = 0(z)/X(z) be the transfer function of the single sideband bandpass filter and 
show that F'(z) = F(ze~j2nfoT) so that F'(z) is obtained from F(z) by a simple rotat ion in the z plane 
[C-62] . 

1 2 Show that Fig. 7.37 accomplishes the same operations as Fig. 7.36b. Show that if the da ta 
sequence is real then Fig. 7.37 requires nine real additions and eight real multiplications per output . 

x(n) 

ofl cos(3fl) a 3 c o s y a 3 sin 9 
X 

a 3 c o s y 
X X 

a 3 sin 9 
X X X X X 

<3isin(3fl) 

Fig. 7.37 Detailed mechanization of Fig. 7.36. 

1 3 A digital filter is required to meet the following specifications: (1) essentially 0 dB gain up to fp, 
and (2) 50 dB at tenuation of aliased signals in the passband after a 2:1 decimation at the filter output . 
Show that a tandem combinat ion of analog and digital filters that at tenuate an input signal as shown 
in Fig. 7.38 meets the specifications. 

14 Let the A G C in Fig. 7.22 adjust the mean square power out of the digital filter to — 12 dB. Let 
the only signal present be an inband sinusoid and let the filter have an eight-bit output . Show that the 
peak eight-bit word out of the filter has binary magnitude 0.0101101. 

15 Let the A G C in Fig. 7.22 adjust the mean square power out of the digital filter to — 12 dB. Let 
the only signal present be zero-mean uncorrelated noise with amplitudes described by a Gaussian 
probability distribution. Assume that the max imum signal magnitude given by (7.40) is 1. Show that 
the probability of the filter output being clipped to one is 0.003% (4rj value). 

16 Consider the 8-point F F T in Fig. 4.3. Let the only input be x(n) = cos(2nln/S). Trace the paths 
leading to X(l) and show that the nonzero summing junct ion outputs are 1,1 — j , or 1 + j for the first 
s tage; 2 for the second stage; and 4 for the third stage and \ for X{1). N o w let the | scaling be 
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-Useful information 

- 5 0 

Fig. 7.38 Signal (a) before and after filtering and (b) after Filtering and decimation. 

accomplished by multiplying the output of each of the three stages by \ . Show that after rescaling the 
rms power in the pa th from each summing junction is equal to the rms value of either input to the 
stage leading to the summing junction (see, e.g., Fig. 7.24). 

17 Figure 7.39 is a block diagram of a spectral analysis system. The A G C loop maintains a white 
noise input at an rms level of — 12 dB. A complex demodulat ion accomplishes a frequency 
translation that centers a 5 Hz band at 0 Hz for vernier analysis. The demodulated output is passed 
through a digital filter to remove frequency components outside of the 5 Hz band, and the output of 
the digital filter is decimated to a 6.4 Hz rate. In the vernier mode a 512-point F F T is taken. Show 
that 400 points can be used to cover the 5 Hz band and that the F F T spectral lines are separated by 
0.0125 Hz. Let the word length internal to the digital filter be sufficient to make round-off at the filter 
output the dominant source of filter noise. Let 14 bits be used for both real and imaginary words 
throughout the F F T . Verify the entries in Table 7.6 and show that the processor provides an S N R 
gain of approximately 52.9 dB. 

Table 7.6 

Word Lengths and Noise Levels for Functions in Fig. 7.39 

Funct ion 
Parameter 

A D C Digital filter F F T 

Bandwidth (Hz) 2560 5 0.0125 
Input word length including sign (bits) 8 8 8 + ; 8 
Internal word length including sign (bits) 8 24 + j24 14 + j\4 
Output word length including sign (bits) 8 8 + y 8 14 + j\4 
Bandwidth reduction (dB) N/A - 2 7 . 1 - 2 6 . 0 
Scaled system input noise at function output (dB) - 12 - 3 9 . 1 - 6 5 . 1 
Internal noise added (dB) - 53 - 4 7 - 78.8 
Cumulative noise added (dB) - 53 - 4 7 - 79.6 
Loss (dB) 0 0.17 0.15 
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2 5 6 0 Hz 6.4 Hz 
System 
input Analog 

f i l t e r 

A6C 
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D i g i t a l 
f i l t e r F F T 
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D i g i t a l 
f i l t e r 

P o s t 
processing 

Fig. 7.39 System for vernier spectral analysis. 

18 Design Your Own DFT Window Using an FIR Filter Computer-Aided Program [A-71, E-23, 
N-32, P-48, P-39, S-21] Let a D F T filter response be required to have 3 or less passband ripple and 
R or greater s topband rejection, where fp a n d / s b are the maximum passband and min imum s topband 
frequencies, respectively. Assume that an F I R L P F of length Nt meets these requirements. Assume 
that the F I R filter performance improves with length (see [R-16] Section 3.35 for a discussion) if the 
filter is redesigned for each length so that N1 can be increased to N where N is a highly composite 
integer suitable for mechanizing an F F T . 

Let the L P F of length TV be used in the mechanization of Fig. 7.40a and let its impulse response be 
a(m), m = 0,1,... ,N — 1. Let y(n) and Yn{k) be the input and output , respectively, of the L P F , 
where k is the frequency of the demodulator in Fig. 7.40a. Show that 

N-1 

Yn(k) = £ a(m)y(n - m) 
m = 0 

J V - 1 

: £ a(m)x(n - m)e-j2nk{n 

m = 0 

n = N- 1,7V, 

Let jc„(0 = x{n - N + 1 + /) where 0 ^ i < N. Also let ^ ( z ) = a{N - \ - i). Show that 

Y„(k) = NWkA"DFT[^(i)xn(i)] 

where Xn = (n + 1) m o d N. Show that as a consequence of the bandwidth reduction the ou tpu t of the 

e - j27rkn/N 

(a) 

(b) 

Fig. 7.40 Equivalent systems for spectral analysis. 
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system mechanized with the F I R filter may be decimated. Assume that an M : l decimation is 
permissible and let the output of the system in Fig. 7.2a be Xn(k), where for n^N—1, 
n = — N + 1)1 Ml 

Xn(k) = Y„(k) computed every M t h input sample (P7.18-1) 

and the computa t ion begins at n = N — 1. 
Let an Appoint F F T be used in the mechanization of Fig. 7.40b. Let the buffer output be the 

sequence xn(i), let sample x„(i) be weighted by a>(i), where again a>{\) = a(N — 1 - /) , and let 
tv{i)xn(i) be transformed by the Appoint F F T . Show tha t 

Xn{k) = D F T M / > „ ( / ) ] , Yn(k) = NWkX"Xn(k) 

Show that an output is required from the F F T only every M t h input sample starting at sample 
number N - l ; tha t is, show that the outputs are at n = N — I, N - 1 + M,... . Show that the 
blocks of data into the F F T should overlap by N - M samples so that the F F T redundancy R is 
given by R = N/M. Show that the output of the D F T system mechanized with the N/M redundancy 
is given by (P7.18-1). Conclude that the F I R filter impulse response effectively determines an input 
weighting to achieve a desired D F T window. 

19 Equivalence of Demodulation plus FIR LPF and Weighting plus DFT [B-33, C-16, P-47, S-41, 
V-6, V-7] A radio frequency ( R F ) communicat ion system consists of N{ + 1 channels in an 
intermediate frequency ( IF) bandwidth offlF Hz (Fig. 7.41 a). All the channels occupy Af Hz and are 
equally spaced every/- Hz (Fig. 7.41b). Each channel carries frequency shift keyed (FSK) modulated 
signals in the form of one or more tones spaced at intervals of Nx Hz where Af/Nt is the total possible 
number of tones (Fig. 7.41c). Tones are transmitted for 1/A^ s (symbol durat ion) . The R F signal is 
frequency shifted to center the f1F band at 0 Hz and is sampled at fs = Ncf = N4N5 where NA and N5 

are defined later to be compatible with other system parameters and are no t necessarily integers. Let 
k = kcNi + kt where kt = 0 , 1 , . . . ,Nt — 1 and kc = 0,1,... ,NC — I. Channel number kc is then 
centered at 0 Hz and all other channels are rejected by a length N F I R L P F where N = NcNt (Fig. 
7.42a). Show that the output of this filter is (see Problem 18) 

Yn(k) = NWkX" D F T M 0 x „ ( £ ) ] (P7.19-1) 

where Yn(k) is the output of channel kc at sample number n, n = N—l, N, N + l , . . . , ^ ( z ) 
= a(N - 1 - z ) and xn(i) = x{nmodN). The L P F transition band is such tha t interchannel 
interference is within specifications if the filter ou tput is sampled at Hz (Fig. 7.41c). Show that 
this requires an N3:l decimation where N3 = N4.N5/N1N2. Let the A p p o i n t D F T be synchronized 

>IF filter 
gain 

.——— I 
0 if,F 

( a ) 

f , /2 f 

"Information channels in IF 

0 

( b ) 

—I M i l — 

—LJ—L 
Coding of channels 

Transition band of FIR LPF 

0 

( c ) 

X 1=4 I I I I 
N , N 2 k 

Fig. 7 .41 Spacing of F S K communicat ion channels in f1F bandwidth. 
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with the symbol durat ion. Show that the 7V2-point D F T analysis specifies the F S K demodulated 
output . 

Show that (P7.19-1) is the scaled output of an TV-point D F T with the weighted input sequence 
xn{i)a>{i) and the ou tpu t scaling of NWkXn. Show that the D F T output occurs at a rate of N4N5/N Hz 
without redundancy. Show that the NXN2 output ra te requires that R = N1N2/(N/N4.N5) = N/N3. 
Conclude that a complex demodulator plus F I R L P F and a "weighting plus D F T are equivalent 
systems. Show tha t the TV-point D F T analysis of the redundant TV-point D F T output specifies the 
F S K demodulated output (Fig. 7.42b). 

R F 
O e m o d . x ( n ) 

N4N 
141N5 

3 - j27rf ,nT 

( a ) 
N* N 1̂ 2 

X 
L e n g t h 

" 3 - ' 
N 2 -point 

N L P F D F T 
^9 - a r y 

c o d e 

R F 
D e m o d . 

NO.1 No. N / N 3 

N-point N 2 - p o i n t 
D F T D F T 

(b) 
Fig. 7.42 Equivalent systems for F S K demodulat ion. 

Compare the systems in Fig. 7.42a, b with those in Problems 6.28-6.31 and conclude that F I R 
filter design programs (e.g., Remez exchange algorithm) provide a me thod of designing weightings. 
Let N4N5 = 160 K H z , Nt = 100 Hz, and f = 2500 Hz. Show that 7VC = 64, Nt = 16, 7V2 = 25, 
7V3 = 64, N4 = N = 1024, 7V5 = 156.25 and R = 16. 

20 Simplifying an FFT with a Decimated Output In the previous problem show that the only D F T 
outputs required are for kc = 0 , 1 , . . . , JVf/2, 7VC - NJ2 + 1 , . . . , JVC — 1. Let i = itNc + ic where 
ic = 0 , 1 , . . . , 7VC — 1 and 4 = 0 , 1 , . . . , 7Vt — 1. Show that the required D F T outputs are 

J V - l 
v n at \ V ~ t -\ s -\s ~ j2n/NcNt,kcNt(n - N + I + i) 

Nc - 1 -TV, - 1 

X xn{i)a>{i) 
-i. = 0 

{e-j2n/Nc)kJc (P7.20-1) 

where xn(i) = x(n — N + 1 + /) and <j>n = (2nkc/Nc)[(n + l )mod7V c ] . Show that this computa t ion 
can be accomplished by scaling the output of an 7Vc-point F F T that has as inputs the 7VC summations 
in the square brackets in (P7.20-1). 

21 Efficiency of Computing Demodulation plus LPF Output by Means of an FFT In the previous 
two problems let 7VC and N2 be powers of 2. Let CMPY f l and CMPY f c be the number of complex 
multiplications per second in the systems in Fig. 7.42a, b , respectively. Let a complex multiplication 
count as four real multiplications. Neglect pruning in the 7Vc-point F F T and efficiencies tha t result 
from mechanizing the F I R L P F as several stages of filtering and decimation. Assume that the F I R 
filter has linear phase (i.e., a>{i) = u>{N — 1 — /')) and that the demodulator is moved through the 
filter (see Problem 11). Show that 

CMPY f l * (TV,- + l)[(iTV + \)N,N2 + \N,N2 l o g 2 ^ V 2 ] 
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C M P Y , « ( i# + i#c log 2 i t f c )Wi t f2 + W + l ) ( i ^ i ^ 2 l o g 2 i ^ 2 ) 

C M P Y f l / C M P Y b « [(TV,- + 1)(7V + 2)]/[N + iVclog2(^7Vc)] 

Let 7Vf = 1 4 . Show for the parameters at the end of Problem 19 that 

C M P Y a / C M P Y b « 11.5 



C H A P T E R 8 

W A L S H - H A D A M A R D T R A N S F O R M S 

8.0 Introduction 

Preceding chapters have emphasized the D F T and its efficient implemen
tation by means of F F T techniques. The D F T evaluates transform coefficients 
used in a series representation defining a data sequence, which is assumed to 
have period TV. If the correct period is used to determine the transform 
coefficients, then these coefficients agree with the Fourier series coefficients for a 
properly band-limited function. The Fourier series represents a continuous 
periodic function x(t). The assumption that x(t) is the sum of sinusoids is implicit 
in its series representation. 

A function x(i) need not be a sum of sinusoids, however, and other basis 
functions may then provide a better series representation. One such set is the 
Walsh functions. These are rectangular waveforms orthonormal on the interval 
[0,1). A function normalized to have a period of P = 1 s has a Walsh series 
expansion 

where wal(fc, t) is the /cth Walsh function sequence and X(k) is the Walsh 
transform sequence. If N/2 is the highest k index required in (8.1), then the 
sampled-data expression 

is valid. A number of fast algorithms are available for computing the Walsh 
transform coefficients in (8.2). Some of these algorithms are discussed in this 
chapter. 

The Walsh functions, named after J. L. Walsh [W-2], who introduced them in 
1923, are the basis functions for the Walsh-Hadamard transform (WHT). They 
form a complete orthogonal set over a unit interval and can be developed from 

oo 

x(0 = Y X(k) wal(fc, 0 (8.1) 
k = 0 

(8.2) 

301 
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the Rademacher functions [R-4, F-2] . Walsh functions have some attractive 
features and hence have found applications in a number of diverse fields. Most 
of the credit for this should go to Harmuth [H- l , H-3, W-16, H-5] , who has not 
only focused the attention of engineers and scientists on the "wonderful world of 
Walsh functions" [L-6] but has himself developed several of their properties and 
investigated their applications. An entirely new theory has evolved based on 
sequency, including sequency filtering, sequency limited signals and their 
sampling theorem, the sequency power spectrum, and sequency spectrograms 
[C-2, C-3, A-18, M-37] . 

Because the Walsh functions are binary valued ( + 1), their generation and 
implementation is simple. Fast algorithms based on sparse matrix factoring of 
(WHT) matrices [T-25] similar to those of the D F T matrices and based on other 
techniques [Y-12] have been developed. These algorithms, however, require 
only addition (subtraction), as compared to the complex arithmetic operations 
(multiplication and/or addition) required for the FFT . Both computer simu
lation and hardware realization of the W H T have been carried out. Special 
purpose digital processors for implementing the W H T in real time have been 
developed [K-4, K-5, L-2, P-9, L-5, R-3, B-12, G-2, Y- l , Y-2, Y-3, F-4, F-3, E- l , 
W-16, C-8, W-4, A-2, J - l , J-2, C-52, A-20, R-15]. The W H T has also found 
applications in signal and image processing [A- l , K-4, K-5, L-2, P-7, W-16, J- l , 
J-2, H-6, 1-1, 1-2, 1-9, R-8, R-9, H-7, H-8, H-9, R-10, R - l l , R-12, A-22, L-8, 
R-13, A-24, P-12, A-23, R-14, A-25, N-5, 0 -5 , N-6, H-10, F-18, C-52, T-15, 
T-24, 0-18, 0-19, J-13, K-32, N-16, J-12, J-13, P-6, M-29, B-8, C-27, C-40, 
A-62], speech processing [R- l , B - l l , W-16, C-9, S-3, S-4, Z - l ] , word 
recognition [C-2, C-3, C-4], signature verification [N-4] , character recognition 
[A-15, W-3, W-5] , pattern recognition [H-23] , the spectral analysis of linear 
systems [A-4, C-10, C-l 1, C-12, R-71, Y-9, M-12] , correlation and convolution 
[A-7, A-14, R-7, A-21, L-7, G-4, Y-10], filtering [A- l , P-5, P-10], data 
compression [A- l , K-4, K-5, L-2, P-7, A-15], coding [L-5, Y-2, B-14, R-5, 
W-16], communications [H-3, T-17, C-7], detection [B-15], statistical analysis 
[ P - l l ] , spectrometric imaging [M-13, D-8, H-14] , and spectroscopy [G-17] . 

8.1 Rademacher Functions 

In 1922 Rademacher [R-4] developed the incomplete set of orthonormal 
functions (Fig. 8.1) named after him. Rademacher functions, denoted rad(fc, i), 
are square waves whose number of cycles increases as k increases. They are 
periodic over a unit interval, during which they make 2h~l cycles, with the 
exception of the first Rademacher function rad(0, t), which has a constant value 
of unity. These functions can also be generated recursively [A- l , B-2, A-2, 
W-16]. 
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rad(O.t) 0 

rad(l.t) 0 

- 1 

1 

rad(2,t) 0 

- 1 

1 

rad(3,t) 0 

- 1 

1 

rad(4, t ) 0 

- 1 

1 

rad(5,t) 0 

- 1 

1 

rad(6, t ) 0 

-1 

1 

rad(7, t ) 0 

- 1 

o i i y R ^ " 1 ' 

4 2 4 

Fig. 8.1 Rademacher functions. 

8.2 Properties of Walsh Functions 

Walsh functions form a complete or thonormal set over the unit interval [0,1). 
They can be expressed as products of Rademacher functions [A-l , B-9, 
A-2, W-2, H-2, L-4, L-3, L-6, W-16, S-4]. They can be rearranged in several ways 
to form different ordering schemes [A-l , A-2, B-9, W-16] such as Walsh or 
sequency order (Fig. 8.2), Hadamard or natural order (Fig. 8.3), Paley or dyadic 
order [P-8] (Fig. 8.4), and cal-sal order (Fig. 8.5) [K-6, R-2] . Techniques of 
transformation from one ordering to another exist as well [A-l , A-2, B-9, F - l , 

• 
t 

t 
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Sequency 

wol w (k , t ) 

k 
— 0 

F 
F 

F 

=1 
F 

F 

=LFT 

10 

I 13 

I 14 

Fig. 8.2 Walsh functions in Walsh or sequency order. 

C-l , H-2, L-4, L-3, L-6, B-13, W-16]. Because Walsh functions can be generated 
as products of Rademacher functions, they take only the values ± 1. Some 
properties of Walsh functions are described in this section. Subsequent sections 
describe the fast transform matrices, shift invariant power spectra, and 
multidimensional Walsh-Hadamard transform. 

SEQUENCY Observation of the Walsh functions shown in Figs. 8.2-8.5 shows 
that not all have the same interval between adjacent zero crossings. This is in 
contrast to the sinusoidal functions, for which the intervals are uniform. 
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walh(k,t) 
k 

0 

1 

1 
1 

1 1 — 1 

l_i i I L J 

1 r — 

1 l _ 

m i i i i m 

1 1 
1 L_ 

— 1 1 — 1 i m I 
1 

— 1 
1 

i 

1 

wal (k,t) 
k 
0 

1 5 

1 0 

Fig. 8.3 Walsh functions in H a d a m a r d or na tura l order. 

Analogous to frequency, which is one-half the average number of zero crossings 
or sign changes per unit interval ( I s ) , the term sequency (combining the number 
of sign changes and frequency) was coined by Harmuth [H- l , H-2, W-16, H-5] 
to describe Walsh functions. Sequency (seq) can be expressed in terms of the 
number of sign changes per unit interval: 

for even z.c. 

for odd z.c. seq = 
i(z-c.) 
| (z.c. + 1) 
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walp(k.t) 

10 

12 

13 

14 

15 

wal w (k , t ) 

k 

F F t F b F 

F F 
F 

Ft 
t 

F 10 

Fig. 8.4 Walsh functions in Paley or natural order. 

where z.c. is the average number of zero crossings per unit interval. This leads to 
units of zero crossings per second (zps). 

NOTATION The standard notation developed by Ahmed et al. [A-2] for 
describing Walsh and other functions is adopted here (Table 8.1). Note that cal 
and sal represent even and odd Walsh functions, respectively. For the various 
orderings of the Walsh functions, the subscripts w, h, p , and cs are appended to 
denote Walsh, Hadamard , Paley, and cal-sal orderings, respectively (i.e., wal w , 
wal h , walp, and wal c s ) . 
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Table 8.1 

Nota t ion for Cont inuous and Discrete Funct ions [A —2] 

Nota t ion 
N a m e of function = 

Cont inuous functions Discrete functions 

Rademacher rad Rad 
Haar har H a r 
Walsh wal Wal 
cosine Walsh cal Cal 
sine Walsh - sal Sal 

SEQUENCY SAMPLING THEOREM Analogous to the sampling theorem for 
frequency band-limited signals, the corresponding theorem for sequency band-
limited signals has been developed independently by Johnson [C-6] and Maqusi 
[M-10, M - l l ] . This theorem states that "a causal time function f(t) sequency 
band-limited to B = 2" zps can be uniquely reconstructed from its samples at 
every T = 1 /^sfor all positive t ime." Hence, sampling this time function at this 
minimum rate assures that the original signal f(t) can be uniquely recovered 
from the sampled data. The proof of this theorem is outlined in Problem 9 and is 
elaborated elsewhere [C-6, M-10, M - l l ] . 

WALSH OR SEQUENCY ORDERING The first 16 Walsh functions in sequency order 
are shown in Fig. 8.2. These are related to cal and sal functions as follows. 

cal(m, t) = walw(2ra, t), sal(ra, t) = walw(2ra — 1, t) (8.3) 

where walw(ra, t) represents the rath Walsh function in sequency order. This can 
be also generated as a product of Rademacher functions: 

L - l 

walw(ra, t) = Yl [md(k + 1, t)]g* (8.4) 
k = 0 

where gk, the Gray code equivalent of m, is obtained as follows: 

( r a ) 1 0 = ( m L _ 1 7 7 7 L _ 2 • • - r a i r a o ^ , ( # ) i o = (QL-IGL-I ' ' ' Q\Qo)i, 

gt = mi@mi+1 (8.5) 

In (8.4) mk and gk, k = 0 , 1 , 2 , . . . , L — 1, are bits of ra and g, respectively, 
expressed in base 2. The symbol © denotes modulo 2 addition. (For details see 
the Appendix.) For example, consider wal w (13, t): ( 1 3 ) 1 0 = (1101)2. The Gray 
code equivalent of 13 is (1011)2. Hence 

wal w (13 , 0 = [ r ad (4 , 0 ] 1 [ r ad (3 , 0 ] ° [ rad (2 , 0 ] 1 [ r ad ( l , 0 ] 1 = sal(7,0 

Walsh functions form a closed set under multiplication; that is, 

wal(ra, t) wal(/z, t) = wal(ra © /z, t) (8.6) 



308 8 W A L S H - H A D A M A R D T R A N S F O R M S 

Sequency w a l c s ( k , t ) 

k 

8 

= _ R U I I l t l ^ t « 
| 1 2 

14 

15 

13 

=t 

Fig. 8.5 Walsh functions in cal-sal order. 

Hence 

wal(ra, t) wal(m, t) = wal(0, t), wal(ra, t) wal(0, f) = wal(ra, t) 

wal(ra, 0 [wal(/i, 0 wal(fc, f)] = [wal(m, t) wal(A, 01 wal(fc, t) 

Equation (8.6) is valid for any of the orderings. From (8.3) and (8.6) the 
following expressions can be derived [ H - l ] : 
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cal(m, t) cal(fc, t) = cal(ra © k, t) 

sal(m, 0 cal(/c, f) = sal([fc © (m - 1)] + 1 , 0 

sal(ra, 0 sal(7c, r) = cal([(ra - 1) © (/c - 1)], t) 

( 8 . 7 ) 

WALSH-HADAMARD MATRICES Uniform sampling of the Walsh functions of 
any ordering results in the Walsh-Hadamard matrices of corresponding order. 
The rows of these matrices represent the Walsh functions in a unique manner. 
Let Walw(&, n) be the sampled-data values of walw(/:, t) for the fcth ordering 
index at times t = 0,1/7V, 2/N,n/N,..., (TV — l)/7Vs. Then an N x TV matrix 
of sampled Walsh function values results. For example, periodic sampling of the 
Walsh functions shown in Fig. 8.2 yields the following matrix: 

[ # w ( 4 ) ] = 

- l 
1 -

sequency 

0 
1 
1 

2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 

(8.8) 

[ / / w (4)] is the 2 4 x 2 4 Walsh-Hadamard matrix in Walsh or sequency order. 
The rows of this matrix represent the Walsh functions whose sequencies are 
listed on the right side. The Walw(&, n) entries in [ / / w (0 ) ] - [7 / w (3 ) ] , respectively, 
are 

[ # w ( 0 ) ] = [1], [ # w ( l ) ] 
1 

0 
L#w(2)] = l 

2 
3 

k\n 0 2 3 
1 1 
1 - 1 
1 1 
1 - 1 

sequency 
0 
1 
1 
2 
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sequency 
0 

1 

1 

2 

2 

3 

3 

4 

Walsh functions can be generated uniquely from these matrices. The elements of 
these matrices can be obtained independently as follows: 

hw(k,n) = (- l F-n fc,/i = 0 , l , . . . , J V - 1 (8.9) 

where r0 = k L - u rx = kL_1 + fcL_2, r2 = kL„2 + kL_3,.. . , r L _ 1 = + A:0? 

(*0io = (kL-ikL-2 • • • ̂ 1^0)2 , O)io = K - i ^ L - 2 ' ' ' ^ 0 ) 2 

kt and «f, z = 0 , 1 , . . . , L — 1, are the bits in binary representation of k and n, 
respectively, and hw(k, n) is the element of [ i / w (L) ] in row k and column n. 
Observe that [HW(L)] is symmetric and that the sum of any row (column) except 
the first row (column) is zero. It is also an orthogonal matrix; that is, 
[77W(L)] [HW(L)] = NIN, where N — 2L and IN is identity matrix of size N. 

Note that the summation that determines the exponent in (8.9) is a sum of 
products of bits from row k and column n. The most significant (ordering) row 
bit is multiplied by the least significant column (time) bit. The sum of the two bits 
to the right of the row msb is multiplied by the bit to the left of the column Isb and 
so forth. In essence, time sample bits representing the value 2l/N =2[~L (based 
on normalized period of 1 s) are multiplied by ordering bits representing the 
value 2 L _ I so that only the product of bits (not their values) need be taken. This 
technique can be extended to generate the generalized transform, to be described 
in Chapter 9. 

The function hw(k, n) is the value of the sampled Walsh function for indices k 
and n. It is analogous to the D F T variable Wkn. Whereas WE defines the D F T 
matrix for N = 2 L , [HW(L)] defines the (WHT) W matrix. 

8.3 Walsh or Sequency Ordered Transform (WHT) W 

An TV-dimensional data sequence (time series) x T = -Jx(O), x ( l ) , . . . , x(N — 1)} 
can be mapped into the discrete Walsh domain through the (WHT) W . The 
transform sequence is denoted = {Xw(0), Z w ( l ) , X w ( 2 ) , X W ( N - 1)}. The 
transform component X w (m) represents the amplitude of walw(ra, t) in a Walsh 
function series expansion for x. The first component X w ( 0 ) is the average or 
mean of x, and the succeeding components represent Walsh functions of 

0 

1 

2 

[ # w ( 3 ) ] = 3 
4 

5 

6 

n 0 

1 

1 

1 
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Fig. 8.6 Signal flowgraph for efficient computa t ion of ( W H T ) W for TV" = 8. 

increasing sequency. The (WHT) W and its inverse, respectively, can be defined as 

X w = (l/N)[Hw(L)]x, x = [HW(L)]XW (8.10) 

From (8.10) it can be observed that the difference between ( W H T ) W and its 
inverse is the scale factor l/N. Whereas direct implementation of ( W T H ) W 

requires N2 additions and subtractions, techniques such as sparse matrix 
factoring [A-l , B-9, W - l , P-7, A-5, B-10, G- l , T-7, A-8, A-l 1, A-37, A-12, S-l, 
K-22, U - l , S-2, W-16, G-3, S-3, S-4] or matrix partitioning [A- l , A-6, A-37, 
W-16] of [ i / w (L) ] lead to fast algorithms that reduce the computation to 
N\og2N additions and subtractions. For example, [ iJ w (2)] and [if w (3)] can be 
factored as 

[ # w ( 2 ) ] 

1 1 
0 

1 - 1 

0 
1 - 1 

1 1-

h 

h 

h 

-h. 
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[ # w ( 3 ) ] = [diag 

x fdiag 

1 r 1 - l l r "l - 1 
1 - i _ 

5 
J l_ _l _l 1 

- ~h / 2 ~h h h 

.h - 2_ Ji JA 
(8.11) 

where 7 ^ R O results from rearranging the columns of I N bit reversed order (BRO). 
The signal flowgraphs based on these sparse matrix factors for an efficient 
implementation of (WHT) W are shown in Figs. 8.6 and 8.7. (For other ways of 
factoring [ J7 W (L)] , see Problem 8). Based on the figures and (8.11), the following 
observations can be made : 

(i) The number of matrix factors is log 2 N. This is equal to the number of 
stages in the flowgraphs and is the same as that for the F F T , as described in 
Chapter 4. 

Fig. 8.7 Signal flowgraph for efficient computat ion of ( W H T ) W for N = 16. 



8 . 4 H A D A M A R D OR N A T U R A L O R D E R E D T R A N S F O R M ( W H T ) h 313 

(ii) In any row of these matrix factors there are only two nonzero elements 
( + 1), which correspond to an addition (subtraction). 

(iii) Each matrix factor corresponds to a stage in the signal flowgraph in the 
reverse order; that is, the first matrix factor is equivalent to the last stage, the 
second matrix factor is equivalent to the next to last stage, and so forth. 

(iv) In view of (ii), the algorithm based on (8.11) is called a radix 2 or 
power-of-2 algorithm. 

(v) The number of additions (subtractions) required to implement the 
(WHT) W is AHog2 N [see (i) and (ii)], just as for the F F T . However, for (WHT) W 

the additions are real whereas for the F F T they are complex. 
(vi) The flowgraph has the in-place [B-10, G- l ] structure. A pair of 

outputs at any iteration requires only the corresponding pair of inputs, which are 
no longer needed for any other computation. This pair of outputs can thus be 
stored in the locations used for the corresponding pair of inputs. The memory or 
storage requirements are therefore considerably reduced. 

(vii) By deletion of the scale factor the same flowgraph can be utilized for 
the forward or inverse (WHT) W , as shown by (8.10). 

Since the (WHT) W represents Walsh functions in sequency order, a sequency 
power spectrum analogous to frequency power spectrum for a D F T can be 
defined [A-l , A- l l -A-14 , A-37] : 

sequency 

i\v(0) = **(0) 0 

A v O ) = Xi(l) + Xlil) 1 

i\v(2) = Xl(3) + Xl(4) 2 

Av(3) = Xl(5) + Xl(6) 3 

-Pw(4) = Xlil) + Xl(8) 4 

= X%{N- 1) N/2 

(8.12) 

Each power spectral point P w (m) represents the power of sequency m in x. The 
sequency power spectrum is not shift invariant. The Walsh functions do have a 
shift invariant power spectrum, as will be discussed in Section 8.9. 

8.4 Hadamard or Natural Ordered Transform (WHT) h 

The Walsh functions shown in Fig. 8.2 can be rearranged to form the 
Hadamard or "na tura l" ordering (Fig. 8.3). The two orderings are related to 
each other as follows: 

walh(/c, 0 = w a l w ( & G C B C , 0 (8.13) 

where kGCBC is the Gray code to binary conversion of k after it has been bit 
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reversed. (See the Appendix.) The expression corresponding to (8.4) for 
Hadamard ordering is 

w a l h ( M ) = E[ [ r a d ( m + 1,*)]* 
m = 0 

(8.14) 

where (k)10 = (kL-1kL-2 ' ' ' k1k0)2. For example, wal h (13, t) = rad(4, t) 
rad(3, t) r ad( l , t) since (13) 2 = (1101)2. The sequency of walh(&, t) can be 
obtained easily from (8.2) and (8.13). As with the Walsh ordering the discrete 
version of Hadamard ordering leads to the matrices [H-4, L-l9] 

[#h(0)] = [1], [#h( l ) ] = 

[#h (2) ] = 

1 1 1 1 -

1 - 1 1 - 1 [#h( l ) ] 
1 1 - 1 - 1 -[-ffh(l)] 
1 - 1 - 1 1 _ 

[Hh(3)] 

n 0 1 2 3 4 5 6 7 sequency 

0 " 1 1 1 1 1 1 1 1 " 0 

1 1 - 1 1 - 1 1 - 1 1 - 1 4 

2 1 1 - 1 - 1 1 1 - 1 - 1 2 

3 1 - 1 - 1 1 1 - 1 - 1 1 2 

4 1 1 1 1 - 1 - 1 - 1 - 1 1 

5 1 - 1 1 - 1 - 1 1 - 1 1 3 

6 1 1 - 1 - 1 - 1 - 1 1 1 1 

7 _ 1 - 1 - 1 1 - 1 1 1 - 1 _ 3 

(8.15) 

Also 

[#h (3) ] = 
~[#h(2)] [#h(2)]" 
lHb(2)] ~[Hh(2)]_ 

= t^h ( l ) ] <8> [HB(2J] (8.16) 

The recursion relation shown in (8.15) and (8.16) can be generalized as follows: 

[Hh(m + 1)] = 
" [Hh(m)] [Hb(m)] 

m = 0,1,. (8.17) 

or 

[Hh(m + 1)] = [Hh(l)l ® [Hh(m)] = [Hh(l)] ® [Hh(l)] ® [Hh(m - 1)] 

= [^h(l) ] ® [^.(1)] ® • • • <8> [^h(l)] (8.18) 

The elements of [Hh(L)] can be generated as follows: 

hh(k,n) = (- l)^-- '*'-, k,n = 0,l,...,N-l (8.19) 
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where ki and nt are described following (8.9). Since [Hh(L)] results from the 
rearrangement of the rows (columns) of [ i / w (w)] , it is orthogonal: 
[HH(L)][HH(L)] = NIN. 

The ( W H T ) h and its inverse are similar to (8.10) and are defined as 

X h = (l/N)[Hh(L)]x, x = [HH(L)]XH • (8.20) 

respectively. The ( W H T ) h is also called a binary Fourier representation 
(BIFORE) transform [A-l , A-2, D-6, A-4, A-7, A-8, A-9, A-37, A-12, A-16, 
A-17, N-7 ] . As for the (WHT) W , fast algorithms for the ( W H T ) h have also been 
developed. The matrix factors for [Hh(L)] are 

[Hh(2)] = diag 
"1 1 "i r 

_1 - 1 _ _i - 1 _ 

= (d i ag [ [#„ ( ! ) ] , [Hh(l)]])([Hb(l)] ®I2) (8.21) 

Fig. 8.8 Signal flowgraph for efficient computa t ion of ( W H T ) h for N = 8. 
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[// h(3)] = diag 
1 1 1 1 "i r "1 1 

.1 - 1 . _1 - 1 _ 
5 

J - 1 _ 
5 

-1 - 1_ 

h h \ h 
Jl Jl ) JA 

x |^diag 

= ( d i a g [ [ # h ( l ) ] , [Hh(l)], [Hh(l)], [ / / h ( l ) ] ] ) 

x (d iag[ [ [ / f h ( l ) ] ® / 2 ] , [[Hb(l)] ® / 2 ] ] ) [ [ t f h ( l ) ] ® / 4 ] (8.22) 

From (8.22) the matrix factors for any [Hh{n)] can be developed. For example, 

[Hh(4)] = ( d i a g [ [ # h ( l ) ] , . . . , [Hh(l)]]) 

x (d iag [ [ i / h ( l ) ] ®I2,..., [Hh(l)] ®I21) 
x (d iag [ [ / / h ( l ) ] ® 7 4 , . . . , [#„(!)] ® 7 4 ] ) [ [ # h ( l ) ] ® 7 8 ] (8.23) 

Fig. 8.9 Signal flowgraph for efficient computat ion of ( W H T ) h for N = 16. 



8.5 PA LEY OR D Y A D I C O R D E R E D T R A N S F O R M ( W H T ) p 317 

The signal flowgraphs for efficient computation of ( W H T ) h based on these 
sparse matrix factors are shown in Figs. 8.8 and 8.9. All the properties observed 
for the fast (WHT) W are also valid for the fast (WHT) h . The matrix factors shown 
in (8.22) and (8.23) are not unique. For example [A-5, G-3] , 

[Hh(2)] = 

1 1 0 0 
0 0 1 1 
1 - 1 0 0 
0 0 1 - 1 

[ # h ( 3 ) ] = 

1 1 

1 - 1 

1 1 

1 - 1 

1 1 

1 - 1 

1 1 

1 - 1 

[ # h ( 4 ) ] = 

1 1 

1 - 1 

1 1 

1 - 1 

1 1 

1 - 1 

(8.24) 

Fast transform signal flowgraphs based on these matrix factors lead to 
additional efficient digital implementations of the (WHT) h . 

8.5 Paley or Dyadic Ordered Transform (WHT) p 

The first 16 Walsh functions in Paley or dyadic order are shown in Fig. 8.4. 
Paley and Walsh orderings are related as follows: 

walp(fc,0 = walw(ft(fe),0 (8.25) 

where b(k) is the GCBC of k. The discrete time version of Paley ordering leads to 
the following matrices for t = 0, ^ , . . . 
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[ # P ( 3 ) ] = 3 

sequency 

0 

1 

2 

1 

4 

3 

2 

3 

(8.26) 

The elements of [Hp(n)] can be generated as follows: 

hp(k,n) = (~ i ) S f - o ^ - i - ^ k,n = 0,l,...,N- 1 (8.27) 

Paley ordered W H T and fast algorithms similar to (WHT) W and ( W H T ) h can be 
developed. 

8.6 Cal-Sal Ordered Transform (WHT) C S 

The first 16 Walsh functions in cal-sal order [R-2] are shown in Fig. 8.5. In 
this ordering the first half of the Walsh functions represents cal functions of 
increasing sequency whereas the second half represents sal functions of 
decreasing sequency. These are related to walw(fc, t) as follows: 

w a l w ( . , o 4 W a l c s ( ^ ^ ^ ° ' 2 ' 4 - ^ - 2 ( 8 . 2 8 ) 
w V ; ( W a l c s ( 7 V - i ( / : + l),0? k = 1 , 3 ,5 , . . . ,N - 1 V ; 

The discrete version for this ordering leads to Walsh-Hadamard matrices of 
cal-sal order. These are 

L#cs (0 ) ] = [1], [ # c s ( l ) ] = 1 1 

[ # c s ( 2 ) ] 

[ ^ c s ( 3 ) ] = 

1 1 
1 - 1 
1 1 
1 - 1 

Wal(0, 0 
C a l ( l , 0 
Sal(2, 0 
Sa l ( l , 0 

1 - 1 

sequency 
0 
1 
2 
1 

1 1 

l 1 

1 1 

l 1 

1 - 1 

1 - 1 

1 - l 

1 - 1 

Wal(0, 0 

C a l ( l , 0 

Cal(2, 0 

Cal(3, t) 

Sal(4, 0 

Sal(3, i) 

Sal(2, 0 

S a l ( l , 0 

sequency 

0 

1 

2 

3 

4 

3 

2 

1 

(8.29) 
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The elements of [HCS(L)] can be generated directly as follows: 

hcs(k,n) = ( - l p - , k,n = 0 , 1 , . . . ,N - 1 (8.30) 

where p0 ='kL-1 + kL^2, p1 = / c L _ 2 + / c L _ 3 , /? 2 = / c L _ 3 + fcL_4,... ,pL_2 

= + &0, a n d ^ L _ ! = k0 and (,z)1 0 = ( " L - I « L - 2 • • • « i « 0 ) 2 . 
The Walsh functions are generated with a frequency interpretation in Chapter 

9. This frequency interpretation shows that waveforms with higher row numbers 
are aliased to produce the lower sequency values. 

The forward and the inverse transforms for cal-sal order [S-2] are 
X c s = (l/N)[Hcs(L)]x, x = [HCS(L)]XCS (8.31) 

The sparse matrix factors for the (WHT) C S matrix when N = 4 and 8 are as 
follows: 

[ # c s ( 2 ) ] 

- 1 0 1 0 

0 1 0 1 

0 1 0 - 1 

_ 1 0 - 1 0 

1 1 —1 1 1 
0 

1 - 1 

0 
1 1 

- 1 1 _ 

where 
[Ha(3)] = [H%(3)] [H$(3)] [#£>(3)] 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1_ 
0 0 0 1" 
0 1 0 0 
0 0 1 0 
1 0 0 0 

" Mi (2) ] U i ( 2 ) ] " 

. [A2(2)] - [A2(2)]. 
0 - 1 
0 0 

-1 0 

0 
1 
0 
0 
0 
0 

-1 
0 

(8.32) 

[#£ ' (3) ] = 

and 

[Hum = 

diag 

diag 

h 

h 
h 

h. 

h 

h 

h 

I2 

"1 1 i r i r 1 1 

1 - 1 _ - 1 i . i - 1 _ 
5 

_ - 1 1 _ 
(8.33) 

[v4x(2)] is J 4 whose columns are arranged in bit reversed order (BRO). [^42(2)] is 
a horizontal reflection of [ ^ ( 2 ) ] . The structure of sparse matrix factors for 
[HCS(L) is thus apparent. The signal flowgraphs for fast implementation of 
[Hcs(3)] and [Hcs(4)] are shown in Figs. 8.10 and 8.11, respectively. 

The flowgraphs shown in Figs. 8.10 and 8.11 with the multiplier deleted can be 
used for the inverse (WHT) C S . It may be observed that these flowgraphs, unlike 
those for (WHT) W , do not have the in-place structure. If the sequence is even or 
odd, one-half of the (WHT) C S transform components will be zero. Therefore, if 
the input sequence is even (odd), then the lower (upper) half of the operations in 
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Fig. 8.10 Signal flowgraph for efficient computa t ion of ( W H T ) C S for Â  = 8. 

Fig. 8.11 Signal flowgraph for efficient computa t ion of ( W H T ) C S for N = 16. 
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the last iteration of the flowgraph can be deleted. The fast algorithms for these 
cases require N/2 less additions (subtractions) than the N log 2 N additions 
(subtractions) required for any of the other orderings of the W H T . 

8.7 WHT Generation Using Bilinear Forms 

The W H T matrices and the transforms based on Walsh, Hadamard , Paley, 
and cal-sal orders are among the several that can be developed by rearranging 
the Walsh functions. Kunz and Ramm-Arnet [K-6] have shown that all these 
orderings can be generated by raising — 1 to a bilinear form as follows: 

h(k,n) = (- 1) k
Ti?n (8.34) 

where h(k, ri) is the element of the W H T matrix in row k and column n 
(k, n = 0 , 1 , . . . , N — 1), and where k and n are column vectors representing the 
bits of A" and n in binary notation. For example, if (£)io = ( A ' L - \ k L - 2 • • • k1k0)2 

then k T = {kL-u kL-2, • • •, k1,k0}. R is an L x L matrix whose elements are 0 
and 1. For example, R has the following structures for the orderings described so 
far [K-6, R - 2 ] : For Walsh or sequency ordering. 

R 

0 

1 1 
1 1 
1 

1 1 
1 1 
1 

0 

(8.35a) 

For Hadamard or natural ordering, R = IL. For Paley or dyadic ordering, 

1 ~ 

R = 

0 
1 

1 

Finally, for cal-sal ordering, 

R 
0 

1 
1 1 

1 1 

1 

0 

1 
1 1 

1 1 
1 

(8.35b) 

0 

(8.35c) 
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Fino and Algazi [F- l ] have developed a unified matrix treatment for the 
W H T , and by using the properties of Kronecker products they have shown the 
relationships between the Hadamard, Paley, and Walsh orderings. Also, an 
algorithm for obtaining the sequency structure of the ( W H T ) h matrix has been 
developed by Cheng and Liu [C-l , C-5]. Fast algorithms and transformations 
among the various orderings have also been developed by others [A-l , A-2, 
A-37, S - l , K-22, U - l , S-2, B-13, W-16, S-3, S-4]. 

8.8 Shift Invariant Power Spectra 

It is well known that the D F T power spectrum is invariant to the circular shift 
of a periodic sequence x. The power spectral points for the D F T represent 
individual frequencies. Power spectra invariant to circular and dyadic shifts of x 
can be developed for the W H T . For the W H T , however, the circular shift 
invariant power spectrum represents groups of sequencies, and hence detailed 
information about the signal is lost. 

P A R S E V A L ' S T H E O R E M Since W H T is an orthogonal transform, the energy of a 
sequence x described by the right side of (8.36) is preserved by the transfor
mation. This can be easily shown as follows: 

X = (l/N)[H(L)]x 

X T X = ((l/N)^[H(L)MW)[H(Lm 
or 

Yz 2(m) = iYx2(m) (8.36) 
m = 0 ™ m = 0 

where [H(L)] [H(L)] = NIN and [H(L)] is the W H T matrix based on any of the 
orderings described earlier. Equation (8.36) is Parseval's theorem for the WHT. 
D Y A D I C S H I F T I N V A R I A N T P O W E R S P E C T R U M [A-1, H- l , B -9 , W-16] The dyadic 
shift of a sequence is described in the Appendix. If xdl is the sequence obtained by 
dyadically shifting x by / places, then its W H T is given by 

Xm = (l/N)[H(L)]xdl = (l/N)[H(L)]Idlx (8.37) 
where If} results from shifting the columns of IN dyadically by /places and Xm is 
the W H T of xdl. F r o m (8.37) 

Xm = (l/N)[H(L)]Idl[H(L)]X = [Sm(L)]X (8.38) 

where [Sm(L)] = (l/N)[H(L)]lf}[H(L)] is the /th dyadic shift matrix relating 
X(dl) and X. For any ordering of the W H T the shift matrix [Sm(L)] is diagonal 
and its diagonal elements are ± 1. For example (see Problem 10), 

LX d l ) (3)] = diag(l , - 1,1, - 1,1, - 1 , 1 , - 1) 
and 

[S[dl\3)] = diag(l , 1, - 1, - 1, - 1, - 1,1,1) 

where the subscripts h and cs refer to Hadamard and cal-sal orders, respectively. 
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Hence 

a n d 

Xm{m) = ± X(m), m = 0 , 1 , 1 

{Xm(m)f = X\m) (8.39) 

From (8.39) we conclude that the W H T power spectrum is invariant to dyadic 
shift of x. 

CIRCULAR SHIFT INVARIANT POWER SPECTRUM [A-l , B-9, A - 3 , 0 - 6 , A-4, A-8, A-9, 

A-10, A - l l , A-12, A-375 0 -4 , A-13, A-14, N-4, A-16, W-16, H-5, A-19, A-35]. 
A power spectrum invariant to circular shift of x can be developed for (WHT) h . 
(Circular shift of x is described in the Appendix.) For all other orderings, this 
invariance is not valid. If x c m and fc m are the vectors resulting from circular shift 
of x T to the left and right by m places respectively, then their ( W H T ) h are defined 
as follows: 

X( - ) = (l/N)[Hh(L)]x™ = (l/N)[Hh(L)] I™x (8.40) 
and 

f(cm) = ( l / N ) [ H h ( L m o m = ( l / A r ) [ H h ( L ) ] 7 - X (8.41) 

where Xj 1

c m ) and Xj l

c w ) are the ( W H T ) h of x c m and x c m respectively. The two 
matrices 7^m and 7^m are IN whose columns are circularly shifted to the right and 
left respectively by m places. Using (8.20), (8.40) and (8.41), respectively, can be 
expressed 

Kcm) = (l/N)[Hh(L)]Ic-[Hh(L)]Xh = [S}T>(L)]Xh (8.42) 
and 

£ ( c m ) = ( i / 7 V ) [ H h ( L ) ] 7 - [Hh(L)]Xh = [S^\L)]Xh (8.43) 

The circular shift matrices [S^m)(L)] and [S(^m)(L)] possess block diagonal 
orthogonal structure. For example, for TV = 16 and m = 1 

[Sicl\4)] = diag 1, - 1, 
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(8.45) 

and 

# h

c " ( 8 ) ' 

#h

cl i(15)J 

Since DT = Dr1 (/ = 0.1 , 4), one can deduce from (8.45) that 

(# h

e l > ( / ) ) 2 = **( / ) , / = 0,1 

f l< c l ) (4)~) fZ h (4 )^ 
{ 2 ^ ( 4 ) • • • l < c l ) ( 7 ) } <̂  i > = (^h(4) • • • X h (7)} . 

(#h

c l ) (7)J (*h(7)J 

r ^ c l , ( 8 ) ~ ) fJr h (8)") 
{ l< c l > (8 ) - - - l< c l > (15)}^ : ^ = { Z h ( 8 ) - - - X h ( 1 5 ) } ; : I (8.46) 

( * r (15 )J ^h (15 ) j 
From (8.46) the ( W H T ) h circular shift invariant power spectrum for N = 16 is 

sequency composition 

^ ( 0 ) = ^ ( 0 ) 0 

i 'h(l) = ^ d ) 8 

A ( 2 ) = Xh

2(2) + X 2 (3) 4 

^ ( 3 ) = Z * h » 
m = 4 

2,6 

A ( 4 ) = Z Xl{m) 
m = 8 

1,3,5,7 

(8.47) 

where each of the square submatrices along the diagonal is orthonormal. 
Denoting these submatrices sequentially D0, Du D2, D3, D4 leads to the 
following relations: 

# h

c l > (0) = Xh(0), 1<c 1>(1) = - Xh(l) • 

^ c l , ( 2 ) l = f*h(2) 
#h

el )(3)J 2 U ( 3 ) 

f*h(4)"i 

*h(7) 1 
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We can generalize the power spectrum and the sequency composition shown in 
(8.47) for any TV = 2 L , giving 

P h (0) = Xh

2(Q) 

" ^ h ( l ) = Xlil) 

Ph(s)= X ^ ( 4 s = 2,3,...,L (8.48) 
m = 2s~ 1 

power spectral point sequency composition 

i \ ( 0 ) 0 

P*{L) 1 ,3 ,5 , . . . ,T V /2 - 1 

P h ( L - 1) 2 , 6 , 1 0 , . . . , N / 2 - 2 

Ph(L-2) 4 , 1 2 , 2 0 , . . . , T V / 2 - 4 

P h ( L - fc) 2\ 3 • 2f c, 5 • 2k,... ,TV/2 - 2* 

A ( l ) A /̂2 

From this distribution we observe that the ( W H T ) h power spectrum, although 
invariant to circular shift of x, represents groups of sequencies. This contrasts 
with the individual frequency composition characteristic of the D F T power 
spectrum. The sequency grouping, however, is not arbitrary. Each power 
spectral point represents a fundamental sequency and all valid odd harmonic 
sequencies relative to that fundamental component. Also, ( W H T ) h has only 
L + 1 power spectral points compared to TV/2 + 1 points for the D F T of a real 
input. Physical interpretations of this power spectrum and fast algorithms for 
computation of the power spectrum without computing Xh(m) have been 
developed [A-l , B-9, A-8, A - l l , A-37, A-12, A-13, A-14, A-16, N-7 , A-17, 
W-16, A-19]. Based on these algorithms, the signal flowgraphs for evaluating 
the ( W H T ) h power spectra are shown in Figs. 8.12 and 8.13 for TV = 8 and 16, 
respectively. A phase or position spectrum has the same sequency composition 
as that of the power spectrum [A-l , A-8, A-37, A-12, A-16, N-7 , A-17, W-16] . 
The ( W H T ) h power spectral flowgraphs shown in Figs. 8.12 and 8.13 can be used 
with some modifications for evaluating the phase spectra. An expanded phase 
spectrum based on from 0 to TV/2 — 1 circular shifts of x together with the power 
spectrum can be utilized to reconstruct the original data sequence x [N-7] . It 
also has been shown that the computation of phase spectrum and the recovery of 
x can both be accomplished much faster using the modified W H T (MWHT) 
[A-l , A - l l , A-13, A-14, A-17, W-16, B-41] rather than the ( W H T ) h [N-7] . 
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Data s e q u e n c e 

Fig. 8.12 Signal flowgraph for ( W H T ) h power spectrum for N = 8. 

Data s e q u e n c e 

x ( ) 

Fig. 8.13 Signal flowgraph for ( W H T ) h power spectrum for N = 16. 

The ( W H T ) h power spectrum described by (8.48) is also invariant to various 
interchanges of x, as shown by Arazi [A-3], who also showed the effect of 
circularly shifting groups of elements in x on the (WHT) h . As stated earlier, the 
power spectrum, though compact, has no individual sequency representation. 
This power spectrum has been utilized as a set of features in an automatic 
signature verification scheme [C-6]. There is thus potential for utilizing the 
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( W H T ) h power spectral points as a reduced but relevant number of features in 
classification and recognition techniques. A time varying power spectrum for 
on-line spectral analysis has also been developed [A-19]. 

A criterion called energy packing efficiency (EPE) for evaluating the 
effectiveness of W H T has been developed by Kitajima [K-9]. The EPE indicates 
how much energy of a sequence is packed into the first few transform 
components compared to the total energy. This concept has been extended to 
other discrete transforms [Y-4]. 

8.9 Multidimensional W H T 

Like any orthogonal transform the one-dimensional W H T described above 
can be extended to any number of dimensions [A-l , P -7 , A-9, A-10, A-37, A-12, 
W-16]. This is useful in processing multidimensional data such as images, x rays, 
thermograms, and spectrographic data. The r-dimensional ( W H T ) h can be 
expressed as 

Xh(ku . . . , * , ) = 1

 A V • • • V x(nl9.. . , * , ) ( - 1)<*"> (8.49) 
iy1iy2• • • Jyr ,ll = 0 U r = 0 

where Xh(ku..., kr) is the transform coefficient, x(nu ..., nr) is an input data 
point, kh n{ = 0 , 1 , 2 , . . . , Nt — 1, 

Lt = \og2Nh i= l , 2 , . . . , r 
r Li-1 

(k,n) = <khnt}, (khn{) = £ ^(ra)^(ra) 
i=l m = 0 

The terms k^m) and nt(m) are the binary representations of kt and nh 

respectively. 
The multidimensional function x(nt,..., nr) can be recovered uniquely from 

the inverse ( W H T ) h : 

x(nu ... ,nr) = • • ' V Xh(ku .. .,kr)(- l)<*-"> (8.50) 
k i = 0 k r - 0 

POWER SPECTRA An extension of the power spectrum of one-dimensional 
( W H T ) h to the multidimensional case leads to the following: 

P(Zi,...,zr)= Y ••• " j r 1 X*(ku...,kr) (8.51) 
A : 1 = 2 z i - 1 kr = 2zr~i 

where zt = 1 ,2 , . . . ,nt. The total number of spectral points is 
r 

[ ] (1 + Lt), where Lt = log 2 Nt 

i = l 

The sequency composition of the power spectrum consists of all possible 
combinations of the groups of sequencies based on the odd-harmonic structure 
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(half-wave symmetry) in each dimension. For example, the sequency grouping in 
the i i h dimension is 

0 

l , 3 , 5 , . . . , i V t - / 2 - l 

2 , 6 , 1 0 , . . . , 7 V , / 2 - 2 

Nt/2 

As an illustration, the sequency content for N x = 8, N2 = 16, and N 3 = 32 
consists of all possible combinations of the following groups: 

N2 N3 

0 0 0 
1,3 1,3,5,7 1 ,3 ,5 ,7 ,9 ,11 ,13,15 
2 2 ,6 2 ,6 ,10.14 
4 4 4,12 

16 

The total number of spectral points for this case is Yi?=i 0 + A) = 120. The 
power spectrum defined in (8.51) is invariant to circular shift of the sampled data 
in any or all dimensions. 

PROPERTIES Other properties of the multidimensional ( W H T ) h can easily be 
derived. Some of these follow. 

Parsevals's theorem: 
J N l - l Nr-1 Nl-1 Nr-1 

E ••• E x\nu...,nr) = £ ••• £ X&ku...,kr) 
ki = 0 /c r=0 

(8.52) 

Convolution: If 
Y Ni-l Nr-1 

v(mu ... ,mr) = Y . . . V x(nu... ,nr) 
i v 1 i v 2 iyr n i = o n r = o 

x y{m1 — nu ..., mr — nr) (8.53) 

where mt = 0 , 1 , 2 , . . . , N t — 1, then 
2 2 1 - 1 2 z r - l 

£ • • • E ^ h ( ^ i > • • • ,kr) 

kl=2zl~1 kr = 2zr~l 

2*1-1 2zr-l 

= E • • • E J r h ( f c „ . . . , * r ) 5 h ( * i , • • • , * , ) (8.54) 
ky = 2 z i - 1 &r = 2 z r ~ i 

Relationships similar to (8.54) are valid for cross-correlation and auto
correlation. 
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8.10 Summary 

In this chapter we defined Walsh functions of various orders and described 
their generation from Rademacher functions. Various properties of the 
Walsh-Hadamard matrices, the discrete version of Walsh functions, were 
generated and their sparse matrix factors were developed. These factors lead 
directly to the fast algorithms for the W H T , which were illustrated by signal 
flowgraphs. Both circular and dyadic shift invariant W H T power spectra were 
developed, as well as circular convolution and circular correlation properties 
of the W H T . The W H T was extended to the multidimensional case, followed 
by a description of its properties that parallel those in the one-dimensional 
case. 

Simple relations for rearranging Walsh functions from one order to another, 
such as from sequency order to natural order, have been developed. Depending 
on the application, a particular order of W H T can be used directly. For example 
in developing sequency spectrograms, sequency filters, or sequency power 
spectra it is simpler to use (WHT) W . On the other hand, for computing the 
compacted power spectrum based on the odd harmonic structure it is best to use 
(WHT) h . 

Walsh-Hadamard transforms are useful in a number of signal processing 
areas, as outlined in the beginning of this chapter. Chapter 9 extends the Walsh 
function concepts and leads to the development of a generalized transform that 
has both continuous and discrete time versions. 

PROBLEMS 

1 In (8.22) and (8.23) the matrix factors for [ if h (3)] and [Hh(4)] are shown. Based on these factors, 
develop the signal flowgraphs for ( W H T ) h , and verify them using the flowgraphs shown in Figs. 8.8 
and 8.9. 

2 The Modified ( W H T ) h ( M W H T ) h [A- l , A - l l , A-13, A-14, A-17, B-41, W-16] The ( M W H T ) h 

and its inverse are respectively defined as 

X m h = (l/N)[Hmh(L)]x, x = [Hmh(L)]Xmh (P8.2-1) 

where X m h is the iV-dimensional transform vector and [Hmh(L)] is the 2 L x 2L matr ix that can be 
generated recursively as follows: 

" [tfm l ,(0] 
. 2 " 2 / 2 , - 2 " 2 / 2 , . 

(P8.2-2) 

with [Hmh(0)] = 1. A fast algori thm for ( M W H T ) h can be developed based on the sparse matr ix 
factoring. For example, 

[ # m h ( 3 ) ] = 

(P8.2-3) 
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[ # m h ( 4 ) ] = (d i ag ,y/2I2Jl2 diag 

x I diag ,23l2h 
.h - h 

(P8.2-4) 

Based on these factors develop the signal flowgraphs for ( M W H T ) h and its inverse. Neglecting the 
integer powers of ^/l, determine the number of additions (subtractions) required for fast 
implementat ion of ( M W H T ) h for TV = 8 and 16 and compare with those for ( W H T ) h . 

3 F r o m [A- l , H - l , B-9, F - l , W-16] obtain the matrix factors for [ # p ( 3 ) ] and [ i / p ( 4 ) ] . Develop the 
corresponding signal flowgraphs for fast implementation of ( W H T ) p . 

4 Develop walw(fc, t), walh(&, t) for /c = 11 and 14 from Rademacher functions. Show that 
expressions similar to (8.3) and (8.14) can be developed for walp(A:, i) and walc s(&, t). 

5 For the (WHT) matrices the products of corresponding elements along any two rows (columns) 
results in another row (column) based on h(k, n)h(m, n) — h(k 0 m, n), h(k, n)h(k, m) — h(k, n © m). 
This relationship is valid for all the orders described — Walsh, Hadamard , Paley, and cal-sal. Obtain 
row (column) 5 from rows (columns) 3 and 6 for all the (WHT) matrices when yY — 16. 

6 Show that the circular shift invariant ( W H T ) n power spectrum as indicated in Fig. 8.13 yields 
(8.47). 

7 Alternative Generation of ( W H T ) h Cohn and Lempel [C-7] have shown that the ( W H T ) h 

matrices can be generated as follows: 

(i) Represent the rows 0 , 1 , . . . , N — 1 in L-bit binary form as a column matrix. 
(ii) Transpose the column matrix of (i). 

(iii) Postmultiply (ii) by (i) using addition m o d 2. 
(iv) Transform (iii) as 0 <- 1, 1 < 1. 

For example, for N = 2 

0" "0 0" "1 1 
[0 1] = 

_0 1_ 
<-

_1 - 1 _ _1_ 
[0 1] = 

_0 1_ _1 - 1 _ 
= [#h(l)] (P8.7-1) 

For N = 4 

r o on 
0 1 
1 o 
i i 

To o 1 

Lo 1 o 

- o o o o -
0 1 0 1 
0 0 1 1 
0 1 1 0 

r i 
i 
i 
i 

i 
i i 
i - i 
i - i 

i i - | i -
- i 
- i 

i 

= [ # n ( 2 ) ] (P8.7-2) 
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For N = : 
' 0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

-o 0 0 0 1 1 1 1 -

0 0 1 1 0 0 1 1 

_ 0 1 0 1 0 1 0 1_ 

0 0 0 0 0 0 0 0 

0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 

0 1 1 0 0 1 1 0 

0 0 0 0 1 1 1 1 

0 1 0 1 1 0 1 0 

0 0 1 1 1 1 0 0 

0 1 0 1 0 0 1 

= [ # h ( 3 ) ] (P8.7-3) 

8.17). Develop [Hh(4)] using this technique and compare with (8.16) and i 
8 Sparse Matrix Factorization of ( W H T ) W The ( W H T ) W matrices can be expressed as the product 
of sparse matrices in several ways. For example [S-3, S-4], 

1 
- 1 

" 1 1 
1 

[ # w ( 3 ) ] = 

1 
- 1 

1 
- 1 

(P8.8-1) 
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[ # w ( 3 ) ] = diag 
"i r "i r "i r "i r 

_i - 1 _ _i - 1 _ _i - 1 _ _i - 1 _ 

diag 

— ~ 1 1 ~~ ~ 1 1 ~ — 
1 - 1 1 - 1 

1 - 1 1 - 1 
_ 1 1 _ _ 1 1 _ 

- 1 

(P8.8-2) 

Based on these factors sketch the flowgraphs for ( W H T ) W . 

9 Prove the sampling theorem for the sequency band-limited signals. 

10 Using (8.38) show that [ ^ d l ) ( 3 ) ] = diag( l , - 1,1, - 1,1, - 1,1, - 1) and [ S ^ p ) ] = 
diag(l , 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 ) . Compute [Sj, d l ) (3)] and [ ^ d l ) ( 3 ) ] . 

11 Develop the matrix factors for the ( W H T ) C S based on the flowgraph shown in Fig. 8.11. 

12 Show that the power spectrum of the (WHT) C S is invariant to dyadic shift of a da ta sequence. 
Develop this spectrum for N = 8. 

13 1-D W H T s by Means of 2-D W H T s Show that a 2-D ( W H T ) h of 2-D data is equivalent to 1 -D 
( W H T ) h of these data rearranged in a lexicographic form [ F - 5 ] ; that is, 

[ X ( L 1 ? L 2 ) ] = (\IN1N2)lHh(Ll)-][_x{LuL2)-]iHh(L2)-] 

is equivalent to 

X = (l/N.N^H^L, + L 2 ) ] x = ( l / iV 1 iY 2 ) [ i7 h (L 1 ) ] <g> [ # h ( L 2 ) ] x 

(P8.13-1) 

(P8.13-2) 

where 

[x{LuL2)1 

is 2-D data, 

[X(LUL2)] = 

' JC(0,0) JC(0,1) 

JC(1,0) x ( l , l ) 
x(Nx - 1,0) x(Nx - 1,1) 

' X(0,0) X(0,l) 
X(l,0) X(\,l) 

x(0,N2-l) ' 
x(l,N2 - 1) 

4 ^ - 1 , ^ - 1 ) 

X(0,N2-l) ' 
X(l,N2 - 1) 

X{N, - l,N2- 1) 

is its 2-D ( W H T ) h , and 2 L l = Nx and 2Ll N2. In (P8.13-2) the vectors x and X result from 
lexicographic ordering of [ x ( L l 5 L 2 ) ] and [X(LliL2)]t respectively. For example, 

xT= { x ( 0 , 0 ) , x ( 0 , l ) , . . . , x ( 0 , N 2 - l ) , x ( l , 0 ) , x ( l , l ) , . . . , x ( l , A - 2 - 1 ) , . . . , 

x(Nx - l ,0),x(7V1 - 1 , 1 ) , . . . , ^ ! - \ , N 2 - 1)} 

14 D F T via ( W H T ) W Tadokoro and Higuchi [ T - l l ] have shown that the D F T can be 
implemented via the ( W H T ) W . They have indicated that this technique is superior to F F T in cases 
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when only M of the N D F T coefficients are desired ( M is relatively small compared to TV) and when 
bo th the ( W H T ) W and the D F T need to be computed. Investigate this method in detail and see if 
further work as suggested by the authors (see their conclusions in [ T - l l ] ) can be carried out. 
Comment on the efficiency of the D F T computat ion via the ( W H T ) W developed in [T-26] . 



C H A P T E R 9 

THE G E N E R A L I Z E D T R A N S F O R M 

9.0 Introduction 

The Fourier transform is based on correlating an input function x ( t ) with a 
sinusoidal basis function given by the phasor exp( —jlnft). The locus of this 
phasor in the complex plane is the unit circle. The continuous generalized 
transform is based on correlating x ( t ) with steplike basis functions. The locus of 
these functions in the complex plane is defined by a limited number of points on 
the unit circle. 

The generalized transform appears significant for several reasons. First, the 
continuous version is useful for system design and analysis. Second, the 
transform admits to a fast generalized transform (FGT) representation. Third, 
the basis functions have a frequency interpretation that carries over to the F G T 
algorithms. The frequency interpretation of the transform provides a common 
ground for comparison of generalized and other transforms. For example, it 
shows that frequency folding of real signals occurs at the F G T output just as at 
the D F T output. 

The frequency interpretation of the generalized transform basis functions 
results in a list of new and interesting problems, many as yet unsolved. For 
instance, can we design an analog filter in the generalized frequency domain, and 
if so, how? We shall show that such-a filter is required to avoid aliasing. Other 
problems to be solved result from taking any Fourier transform problem and 
solving the equivalent generalized transform problem. For example, the F F T of 
dimension TV has a response of either a sm(Tcf)/sin(nnf) or a s i n ( 7 i / ) / 7 c / t y p e as a 
function of frequency / . The equivalent F G T frequency responses have not yet 
been published. 

The generalized transforms presented in this chapter resulted from the need 
for a continuous transform to assess the fast generalized transform, which will be 
presented in Chapter 10 [A- l , A-19, A-29, A-31]. A continuous generalized 
transform was developed having its own F G T , which, however, is similar to the 
generalized transform of Chapter 10. 

334 
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The theory presented in this chapter covers a broad class of transforms 
including Walsh and Walsh-Fourier transforms, as well as an infinite number of 
new transforms. The first publication on the generalized continuous transform 
was for radix 2 [E~3]. Subsequent publications discussed radix-a transforms 
[E-5, E-6, E-7, E-9]. Although generalized transforms have been applied to 
signal detection [E-4, E-26] and have suggested a solution to an optimization 
problem [E-25], they are relatively undeveloped. Possible applications are 
solutions to physical phenomena, generalized filtering, and signal processing. 

The generalized transform basis functions are an extension of the Walsh 
functions described in Chapter 8. Both the continuous transform and the 
discrete algorithm are dependent on two integer parameters a and r. The integer 
oc = 2, 3 , . . . is the number system radix and r = 0, I,... ,K < co determines the 
number of points ocr+1 on the unit circle in the complex plane. Integral values of 
a ^ 2 and r = 0 give the Walsh and generalized Walsh transforms [W-2, C-17, 
F-7] . The values oc = 2 and r = 1 give the complex BIFORE transform (CBT) 
[A-47, A-50, R-46]. Other integer values of a and r yield an infinite number of 
new transforms. 

Let the dimension of the F G T matrix be JV = ocL. Then r = 0 gives the W H T 
and r = L — 1 gives the FFT . If r = 0, then the generalized transform defined by 
letting oc approach infinity is the Fourier transform of a periodic function. 

The next section defines the generalized transform. Following sections 
develop the basis functions and the transform properties. 

9.1 Generalized Transform Definition 

Specific values of the integers a and r define a transform. The integer ocr+1 is 
the number of sample points on the unit circle in the complex plane. As shown in 
Fig. 9.1, the first point is always at + 1 on the real axis. Transform basis 
functions step clockwise around the unit circle with time. Step 0 is at + 1, step 1 
is at a point l/ocr+1 of the distance around the unit circle, and so forth. 

Let / be the frequency of the generalized transform basis functions, where/ , in 
units of hertz, is the average number of basis function cycles per second. We shall 
use a stepping variable s, which is the average number of steps per second, that is, 
the average number of transitions from one point on the unit circle to another, as 
defined by 

s = af+lf 

Let s and t have the radix-a representations 

(9.1) 

OO 0 0 

s = YJ sk&k a n d  t = Y ^ (9.2) 
k= — oo k — co 

where sk, tk = 0 ,1 ,2 , . . . , oc — 1, tis time in seconds, and for finite values of s and 
t a finite upper limit suffices in the two preceding summations. The digits sk and 
tk are integers in the representations of s and t in a number system with radix a. 
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a = 3 

Fig. 9.1 Generalized transform basis function step numbers on the unit circle in the complex 
plane for a = 2, 3 and r — 0, 1 [E-6] . 

Representations like (9.2) are in an a-ary number system. Let || || define an 
operation whose values are integers, let || ± f || = + 1 in round-off operations, 
and let separating point be a generalization of decimal point. Definitions for || || 
include the following: 

(a) Round off to the next integer using any finite number of digits in the 
fractional part of the number. 

(b) Truncate by dropping the fractional part of the number (i.e., let 
|| || =LJ)- (This rule does not apply to Walsh functions generated with the 
frequency interpretation. See Problem 9.) 

The basis functions for the F F T are defined by the continuous variable 
exp( — jlnff). The basis functions for the generalized transform are defined by 
the variable exp( — (j2n/of + 1)<(ft}), which steps from one basis function value 
on the unit circle to the next. The variable {ft} is analogous to an inner product 
and is defined to give integral values corresponding to step numbers on the unit 
circle. The definition that accomplishes this is W<f0 where 

<f» = ( z 
\ k 

z /*• k )modc (9.3a) 
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= I X .Sk + v&V m o d a r 

W — &xp( — J2n/ocl'+1) 

It is convenient to define an auxiliary variable 

qk = Sk + v0(V 

Then 

</*> = \Hqkt-k jmodc 

(9.3b) 

(9.4) 

(9.5) 

(9.6) 

Note that the operator || || reduces the summation in (9.5) to an integer. Note also 
that the ( a r + 1 ) - a d i c (i.e., m o d a r + l ) operation in (9.6) may be applied to each 
term in the summation. Since qk and tk are integers, </*> given by (9.3) is an 
integer. The complex variable W given by (9.4) defines a point on the unit circle 
in the complex plane. The point is at an angle — 2n/ar + 1 radians from the 
positive real axis. As {ft} takes successive integral values, W<fty takes successive 
values so that W< f t > defines a total of ar + 1 points on the unit circle. These are the 
only values assumed by the basis functions. 

Let x(t) be magnitude integrable on the positive real axis. Then the generalized 
continuous transform with parameters a and r is defined by 

3Tx(t) = X(f) = x{t)W<ft>dt (9.7) 

Let X(f) be magnitude integrable on the positive real axis. Then the inverse 
generalized transform for X(f) is 

x(t) = sr-'x(f) X(f)W~<^df (9.8) 

When rule (a) for forming integers holds (round off), the basis functions of the 
transform for a = 2 do not skip steps. For a > 2, steps are skipped whenever 
sk > 1, where sk is a digit in the expansion of stepping variable, s. When a = 2 
and r = 0, rule (a) generates Walsh functions for s = 0, (10) 2 , (1.111 • • - ) 2 , 
(100)2 , (11.111 • • - ) 2 , . . . , where (1.111 • • - ) 2 is a binary expansion ending in 
repeated Is [W-2, B-5, B-6, B-7]. When a > 2 and r = 0, rule (b) (truncate) 
generates the generalized Walsh functions [C-17] and (9.7) defines the 
Walsh-Fourier transform [C-18, F-8, S-12]. When a = 2, rule (a) defines a class 
of generalized transforms [E-3] for integral values of r. Integer values of a and r, 
a ^ 2 and r ^ 0, define generalized transforms [E-5, E-6, E-8, E-9]. 

file:///Hqkt-k
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Table 9.1 defines the Fourier, Walsh, and generalized transforms. The Walsh 
and generalized transform variable s shows the symmetry between the subscripts 
on the variables sk and t-k. 

Table 9.1 

Definition of the Transforms 

Fourier - J x(t)e~J2nftdt 
— 00 

oo 

Walsh [ x(t)(-l)^k{Sk + Sk-l)t-kdt (round-off rule) 

-j2% 
Generalized x( / )exp ———V \ \ s k + rar + sk+r^1ar 

J \ar + 1

 k 

o 

+ l ? f c + 1 a + sfe + 5 k _ 1 o r 1 + •••\\t-^jdt 

where s = skak and t = £ tktxk 

k k 

Basis function values versus time may be determined using an exponent 
generator whose input is determined by a shift register generator. The input to 
the shift register is the stepping variable s. We shall show that finite values of s 
also determine basis function period, frequency, and orthogonality conditions. 

9.2 Exponent Generation 

Basis function values are determined by W<ft}, where (9.5) and (9.6) 
determine the exponent (ft} in terms of qk. Values of qk have the units of steps 
per second on the unit circle in the complex plane and may be obtained from a 
shift register generator. The shift register generator output is determined by 
expressing s in a number system with radix oc: 

s = smocm + l y w _ 1 a m " 1 + • • • + skock + • • • + stocl (9.9) 

where sm is the most significant digit (msd) and st is the least significant digit (lsd). 
F rom (9.5) 

qk = \\sk+rar + j k + r _ 1 a r " 1 + • • • + sk + ^ - i a _ 1 + • • • || (9.10) 

Equation (9.10) is a shift register readout of s shifted k digits to the right, 
integerized, and computed modulo ocr + 1; it is equivalent to 

qk = \\oc / c

ks , | |modar (9.11) 
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Digits in the readout more significant than sk+r overflow. Digits less significant 
than unity are rounded using either rule (a) or (b). Sign s is preserved. This 
readout has been called a shift register generator readout [E-3, E-4]. 

An exponent generator can likewise be developed to determine the sequence 
{ft) as a function of time. This generator gives the time sequence of step 
numbers on the unit circle in the complex plane. Step numbers are illustrated in 
Fig. 9.1 for a = 2, 3 and r = 0, 1. Let rule (b) hold; that is, truncate. Let (9.9) 
defines so that sm is t hemsd a n d s m + / c = 0 for k > 0. If t < oc~m, then t - m + k = 0 
for k ^ 0 and 

0 0 

(ft) = Z akt-k = \\sm-i + sm^2a~1 + • • • \\t-m + 1 

k = — oo 

+ \\sm + S m - l O T 1 + ' • • ||f_m 

+ | | j m + 1 + sm0L-1\\t.n^1 + • • • = 0 (9.12) 

The first value {ft} ^ 0 is specified by 

t = <*-*, <fi> = smt-n = qn (9.13) 

and exponent values continue to change every a~m s. A similar development 
applies to rule (a) (round off). 

A new shift register generator output qv occurs every a _ v s , v = m, m — 1, 
m — 2 , . . . . The corresponding exponent generator output for rules (a) and (b) 
may be expressed 

t = a~\ <fi} = qv (9.14) 

Step numbers continue to change at increments of a~m s as follows: 

^ = a~ v + a - m , <fi) = qy + qm steps (9.15) 

r = a " v + 2 a " m , (ft) = qv + 2qm steps (9.16) 

Table 9.2 illustrates exponent generator outputs. The first row of each pair in the 
table gives time and the second row gives step number on the unit circle in the 
complex plane. The first entry of (ft) in a given row is specified by the one and 
only nonzero qkt-km (9.6). The following (ft) entries in the row are obtained by 
adding the first entry in the row to each preceding entry starting with the entry at 
a~m s. Time is incremented by a~m s. It may be seen from Table 9.2 that qk = 0 
for k ^ — / + r + 1, so that the basis function waveform repeats every a~l+r + 1 

s. The waveform between 0 and a~l+r s repeats with shifts of arqh 2arqh..., 
(a — l)ocrqi steps at times of a~l+r, 2<x~l+r , . . . , (a — l ) a _ z + ' ' s, respectively. 

9.3 Basis Function Frequency 

The frequency of the basis functions is defined as half the average number of 
zero crossings per second. Let (9.9) define s so that in a number system with radix 
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a, s may be represented as an a-ary number: 

s = smsm _ ! • • • SQ.S-! • • • Si steps/^ (9.17) 

The lsd is sh its value is stocl, and for rules (a) or (b) at the time t = the lsd has 
contributed a total number of steps given by 

Sit-i = Sioc0 steps (9.18) 

At the time t = ar+1oc~l s the lsd has contributed a total of 

slt = slaf+1 steps (9.19) 

If we count the steps contributed by the more significant digits, we find that at 
the time t = ar + 1ot~l & total number of steps given by 

(sty = (smocm + • • • + ^ a V + 1 a _ 1 = sa~l+r+1 (9.20) 

have occurred. The steps per unit time are represented by s; since there are ar+1 

steps per cycle, the frequency / is 

f=s/ocr+1 Hz (9.21) 

The period P is the inverse of the frequency, which gives P = of+1/s s for the 
generalized transform basis functions. 

9.4 Average Value of the Basis Functions 

When s has a terminating expansion (i.e., one ending in repeated zeros) the 
average value of the basis function is zero for finite time. To show this we 
consider an increment in the step number corresponding to a particular digit sk in 
the expansion of s. Using truncation as the rule for || ||, we find that the increment 
first occurs at time t = oc~k s. The exponent generator gives step number versus 
time between oc~k and 2oc~k s by successively adding each previous number of 
steps to the number qk at oc~k s. An increment in the steps per second 
corresponding to the digit sk overflows in the shift register generator at a ~ k + r + 1 

s. The waveform due to digit sk is now in the exponent generator, and it repeats 
every a~k+r + 1 s. The smallest increment of time (still assuming truncation as 
the integerizing operation) at which steps change is given by (9.13) as a - m s. The 
basis function then holds a fixed value for <x~m s giving rise to a steplike 
appearance. 

Basis function generation was illustrated with Table 9.2. Note from Table 9.2 
that (ft) = 0 for /: ^ — / + r + 1 and that the waveform between 0 and a~l+r s 
repeats at times of (x~l+r, 2oc~l+r,..., (a — l)oc~l+r s with shifts of ofqh 

2arqh . . . , (a — l)arqi steps, respectively. Since st is the lsd we have st-h = 0 for 
integer k > 0. Therefore, at time t = oc~l+r s the total number of steps 
contributed by the lsd is 

(ft} = (sial)(a-l+r) = sl*r (9.22) 
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Performing an evaluation similar to the preceding one at times 

t = 2a~l+r, 3a~l+\ (a - l)a~l+r (9.23) 

yields the total steps contributed by the lsd as, respectively, 

(ft) = 2sta\ Istf, . . . , (a - l)star ' (9.24) 

Thus at time t = a~l+r+1 s we have 

< / f > = a r + i i S l steps (9.25) 

Since one complete rotat ion around the unit circle in the complex plane is 
equivalent to a ' ' + 1 steps, the value of (ft) in (9.25) is equivalent to st rotations 
(which are due to the lsd). Similarly, asx + x rotations are due to the digit to the left 
of the lsd, and so on. Therefore, at t = oc~l+r+1 s the basis function is guaranteed 
to repeat with a phase shift of zero. 

At t = a~l+r s (9.22) shows the step number is star. In the time interval 
0 ^ f ̂  al+r s step numbers change no more frequently than every At = a~m s. 
This gives a maximum number of shift register generator outputs of 

t/At = (xm~l+r (9.26) 

Let k assume integer values 0 < k < am~l+r, and let g(k) be the exponent 
generator output at time k At. Then the average value of the basis function in the 
time interval 0 ̂  ? < a'l + r is 

W<fodt = Wg{k)dt = a~m £ W9(k) (9.27) 
J k = 0 

0 0 

where the integral converts to a summation with use of the fact that the duration 
of W m is o T m s. 

Consider now the time interval a~l+r ^ t ^ a~l+r+1 s. In this time interval the 
exponent generator output g(k) repeats with shifts given by (9.22) and (9.24). 
These shifts form the sequence {0, arsh 2arsh . . . , (a — l ) a r ^ } . If the numbers in 
this sequence are computed modulo ar+1, then this sequence may be reordered to 
the sequence (see Problem 5.8) 

^ = {0, iar, 2ia\ . . . , (a - i)a\ 0, ia\ . . . , (a - i)ar} (9.28) 

where i = gcd(^, a) and the subsequence {0, ioc'\ . . . , (a — i)ar} repeats i times. If 
we extend the interval of integration in (9.27) by a factor of a, then (9.28) gives 

a~i+r+1 

a / i -1 a m - l + r 

W<ft>dt = i Yu Wviara~m X W 9 i k ) 

v = 0 

= i(x~m Y {W9{k) + Wiar+g{k) + W2icc> 
+ g(k) 

k=0 

+ • • • + W{A~I)AR+9IK)} (9.29) 
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A vector diagram similar to Fig. 3.8 phase shifted by g(k) shows that the term 
in brackets in (9.29) is always zero. Therefore, the average value is zero for 
stepping variables with a terminating expansion and rule (b). The proof for rule 
(a) is similar. 

9.5 Orthonormality of the Basis Functions 

LetfK > 0 andfx > 0 be two frequencies with terminating a-ary expansions. If 
fK z£fx, let sVt-fl(x~(M, v = K, X, be the value of the least significant nonidentical 
digit in fK and fx. Then the basis functions determined by the two frequencies are 
orthonormal over time intervals of"duration afi+r+1: 

(i+ l)aM + r + i 

W<^> (W<f^>)* dt = &ficU (9.30) 

ian + r+ 1 

where dficfji is the Kronecker delta function and i is a nonnegative integer. The 
proof of (9.30) is similar to the proof that the average value of each basis 
functions is zero and is shown by combining the exponents as 

<fK0 ~ < / A O = Efaa - qx,k)t-k (9-31) 
fc 

Since fK and fx have terminating expansions, so do stepping variables sK and sx. 
They will therefore have identical least significant digits, although these may be 
zeros. The value of the least significant nonidentical digit is s V j _ M a~ M , v = K, X. 
The identical digits in sK and sx have values 

= sXt-ll-1a'fl-1 + j A i _ A I _ 2 a - " - 2 + • • • + sXJal (9.32) 

For integer-valued p, it follows that 

\ocp(qK,-^ - qx,-»\ O^p^r 

where all step numbers are computed mod a''+1. Define = qK^ — qXtll. Then 
the step numbers at times nall+\ n = 0 , 1 , . . . , a — 1, are 

(ft} = narq^modar+1 (9.34) 

Equation (9.34) is the same as (9.22) and (9.24) if / = p. Using the reasoning 
following (9.24), (9.30) averages to zero between 0 and a f l + r + i s, or integer 
multiples thereof. 

Now let sK = sx. Then the integrand of (9.30) is unity, the integral is 
o ^ + r + 1 , and a " ^ ~ r - 1 times the integral is unity, which completes the proof of 
(9.30). 
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9.6 Linearity Property of the Continuous Transform 

So far in this chapter, we have discussed basis function properties. The rest of 
this chapter presents properties of the generalized transform. Use of the 
continuous transform properties provides a systematic approach to system 
design and analysis. The analysis would be difficult or tedious using the 
corresponding sampled-data matrices. 

The linearity property of the continuous transform follows from basic 
definitions. Let xx(t) and x2(t) be two time functions with transforms Xx(f) and 
X2(f), respectively. Let a and b be scalars. Then the linearity property gives 

P[aXl(t) + bx2{ty] = aXx(f) + bX2(f) (9.35) 

9.7 Inversion of the Continuous Transform 

Let X(f) be magnitude integrable on the positive real axis. Then the inverse 
transform is 

X(t)=<r-1x(f) (9.36) 

as defined by (9.8). Walsh-Fourier transform pairs have been shown to hold for 
r = 0 under more general conditions [C-17, S-12]. Let j ^ M O I P dt < oo. For 
1 < p < 2 the generalized Walsh-Fourier transform is obtained as a limit in the 
appropriate mean with the Plancherel theorem holding for p = 2 [C-17, T-3]. 

The simple heuristic derivation of the inversion formula that follows is of the 
type originally used by Cauchy in his independent discovery of Fourier 's 
inversion formula during the investigation of wave propagation [C-14]. The 
derivation begins by substituting (9.7) into (9.8) and interchanging the order of 
integration to give 

x(t) x(u) du (9.37) 

Expanding (9.3a) and recombining terms, we get 

where 

Z= - oo 

(9.38) 

(9.39) 

Let vuk and vUyk describe series (9.39) for T = t and T = u, respectively. Using 
(9.38) and (9.39) the exponents in the right-hand integral of (9.37) may be 
combined: 

<ft> + </"> = Z ( - v a + v M j k >- k 

k 

(9.40) 
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Define tn and un as the values obtained from t and u, respectively, by truncating 
each number after the nth digit to the right of the separating point. The 
reasoning used to show orthogonality of the basis functions may now be applied 
with the roles of stepping variable and time reversed. For terminating 
expansions of / and u,t u, the average value of the exponentials in (9.37) is zero 
and, in general, 

x(u) du lim x(u) 8(t -u)du = x(i) (9.41) 

0 0 0 

where 3 denotes the Dirac delta function. Equation (9.41) is equivalent to (9.36) 
and completes the proof of the inversion formula. 

9.8 Shifting Theorem for the Continuous Transform 

The shifting theorem is important because it is the basis of convolution and 
correlation. Definitions and development leading to the generalized transform 
of a time-shifted function are more cumbersome than for the Fourier transform. 
The shifting theorem for the generalized transform is consistent with previously 
known results, including those for the Walsh transform and for the Fourier 
transform of periodic functions. 

Let x(t) = 0 for t < 0. Let x{t — y) be a delayed function, so that y > 0, and let 

z=t-y (9.42) 

Let z and t have a-ary representations 

z = z m z m _x • • •z0.z-1 •••zl and t = tmtm-l • • • tQ.t.1 • • • tt (9.43) 

Then the generalized transform shifting theorem states that 

*Tx(t -y) = W<ft>x(t -y)dt = W<fz}W<fzyx(z)dz (9.44) 

for all y and all / if and only if T is defined digit by digit as 

Tk = t k - zk (9.45) 

for k = m, m — 1 , . . . . The symbolic solution for T defined by (9.45) will be 
denoted by 

x = tQz (9.46) 

The operation giving t, tk = zk + zk9 will be defined by 

t = z @ T (9.47) 

The operations defined by (9.46) and (9.47) are called signed digit a-ary time 
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shift operations because a sign must be carried with each coefficient in the a-ary 
expansion of T. Note that T varies with z and that in general W<fx> cannot be 
factored out of the integral in (9.44). (See also the discussion on dyadic 
translation or dyadic shift in the Appendix.) 

To prove the generalized transform shifting theorem, let y > 0 be fixed. Using 
(9.42) and its differentials gives 

3~x(t -y) = W<ft>x(t -y)dt- W<ft>x(z)dz (9.48) 

Equation (9.45) gives 

<fi> = ^q-ktk = Yq-kizu + TO - <fr> + < / T > (9.49) 

Therefore, (9.45) is a sufficient condition for (9.44) to hold. To prove necessity, 
let rule (b) hold and let 

t = aK and y = aK~1 (9.50) 

Then (9.42) yields 

Since t = aK, we have 

and 

z = (a - I K - 1 = z l c _ 1 a K - 1 (9.51) 

<ft> = q-K (9.52) 

</(z 0 T)> = (a - l)q-K + 1 + £q-kTk (9.53) 

k 
For (9.53) to be equal to (9.52) for all s requires 

T k - i = - (oc - 1) = - z K _ i and %K = tK (9.54) 

These equations are true for all y and all s only if T is defined digit by digit 
according to (9.45). If rule (a) holds, the proof is similar. 

A special case results when x(t — y) is zero except in an interval for which % is 
constant. Let 5 be the left endpoint of the time interval in which x(t) is nonzero. 
Let 

<5 = < 5 m < S m - i " ' ' <5fc + i<5k<5fc-i • • • (9.55) 

S - y = ymym + i ' ' ' 7 / c + i ^ A - i • ' ' (9.56) 

be the a-ary representations of 3 and 5 — y. The least significant digits of 8 and 
5 — y agree up to the kth digit and the digits to the left of the kth digit differ. 

As the least significant digits of t are incremented from 8, the digits oft — y are 
correspondingly incremented from 8 — y until 8k+1 and yk+ x change at the same 
time. After 8 k + 1 and yk+1 change v times, where 

v = m i n ( a - ^ f c + 1 , a - y f c + 1 ) (9.57) 
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J x ( / - y) = ]^</ T> W<fz>x(z) dz = W<fxyX(f) (9.60) 

which resembles the Fourier transform shifting theorem for finite a. In fact, 
(9.60) is the Fourier shifting theorem for functions represented by Fourier series; 
it will be discussed further under the headings "Limiting Transform" and 
"Circular Shift Invariant Power Spectra." In general, the integration to 
determine the transform may be broken into intervals over which T is piecewise 
constant. This permits application of the generalized transform in some signal 
processing applications [E-4]. 

9.9 Generalized Convolution 

Let functions x(t) and y(i) be magnitude integrable for 0. In conjunction 
with the generalized transform let * denote the generalized convolution 
operation given by 

x(t)*y(t) = y(z)x(t © z) dz (9.61) 

If (9.46) defines T , then the generalized transform of (9.61) is 

WiRzqbx»y(z)x(x)dxdz = X(f)Y(f) (9.62) 

9.10 Limiting Transform 

The limiting transform for r = 0 and a -+ oo gives the Fourier transform of a 
periodic function with normalized period of unity. To show this, we note that 
any number x may be written for r = 0, a -> oo, in the a-ary representation 

x = lim {x0 + x-x/a} (9.63) 

and min(a, b) means the smaller of a and b, then either 3k+1 = 0 or yk+1 = 0, and 
the digit xk changes sign. Prior to this the signed digits of T are unchanged. Let 

fi = vock + 1 - (3kak + 3k-1ak~1 + • • •) (9.58) 

Then the time at which a digit of T changes sign is 

t = 3 + e (9.59) 

Let x(z) have nonzero values only if 3^z<3 + s and let x(z) be zero elsewhere. 
In this special case T is constant for nonzero values of x{z) and (9.44) reduces to 
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where x0 is the integer part and X-JOL the fractional part. For example, in the 
decimal number system the digits of x to the left and right of the decimal point 
may be considered x0 and x - u respectively, with respect to the radix infinity. 
For r = 0, (9.1) and (9.3) give, respectively, 

lim \\s0/oc + s^/a2\\ = \\f\\ ' (9.64) 
a-*- oo 

lim {(l/a)</r>} = lim {(l/a)( | |s 0 + *-i /a | l 'o + | | V « + * - i / a 2 l | f - i ) } (9-65) 
a->-oo a->oo 

The || || operator may not be eliminated from (9.65) except for integer-valued 
frequencies, in which case 

lim \\s/a\\ = / 0 (9.66) 
a-+ oo 

where f0 is an integer in a representation like (9.63). Equations (9.63) and (9.65) 
give 

lim { ( l / a ) < / r » = lim {(l/a)(af0t0 + / 0 f _ 1 ) } = f0t (9.67) 
a->-oo a-+oo 

so that 

QxpU(2n/otKft^ = e ^ ^ (9.68) 

Substituting (9.68) into (9.7) gives a Fourier transform that applies to integer 
frequencies. Functions with discrete spectra at integer frequencies are periodic 
with a period which has been normalized to unity. Therefore, the generalized 
transform gives the Fourier spectrum of periodic functions whose period is 
unity. In like manner, (9.60) is the Fourier shifting theorem for periodic 
functions when r = 0 and a oo. 

9.11 Discrete Transforms 

A significant feature of the generalized transform is that F G T representations 
result when the sampled-data matrices are time or frequency reordered. Let 
N = a L , where L is an integer and L> r. F rom (9.30) it follows that basis 
functions for frequencies 0 , 1 , 2 , . . . , N — 1 Hz are orthonormal on 0 ^ 1. It 
further follows that T V " 1 / 2 times the N x TV transform matrix WE for frequencies 
of 0 , 1 , 2 , T V — 1 Hz sampled at times of 0,1/7V, 2/7V,..., (TV - l)/N seconds 
is unitary. 

When r = 0, the transform matrix is the discrete representation of the 
generalized Walsh functions [A-5, C-17]. When r + 1 = L, the transform 
corresponds to the D F T [S-8, S-9]. For 0 < r < L — 1 intermediate transforms 
are obtained. For a = 2, the limiting cases (WHT and FFT) coincide with those 
of the generalized discrete transforms of Chapter 10. Interest in these latter 
transforms led to the idea of a continuous transform dependent upon a 
parameter r [E-3, E-10]. 
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We shall show that the discrete transform can be put in the form of a fast 
algorithm. Let WE be the discrete transform matrix, let a, L and r < L be 
integers, and let 

dim WE = ocL x ocL (9.69) 

Let the basis functions be evaluated for frequencies k = 0 , 1 , . . . , aL — 1 Hz and 
be sampled at times n/otL s where n = 0 , 1 , . . . , ocL — 1 and let the digit-reversed 
row number specify the frequency. Then WE can be factored as follows: 

WE = WELWEL-' • • • WE^'{ -WEL (9.70) 

where W = e - j 2 7 t / a r + 1 and for i = 0 , 1 , . . . , L - 1 

EL-i = diag{Z>L _ J 

d i m { D L _ z } = oci + 1 x oci + 1 

For / = 0 , 1 , 2 , . . . , a — 1, 

DL-i = (CL-i(k, /)) (9.73) 

CL-i(k, /) = d i a g « / f c ^ m » (no entry for off-diagonal terms) (9.74) 

dim{CL_;(£:, /)} = a'' x a1' (9.75) 
fk = k a L - i - i ( 9 > 7 6 ) 

*im = /aVaL + m / a L , m = 0 , 1 , 2 , . . . , a1' - 1 (9.77) 

and if C L _ { = (C L _ f (v , ^)), the shorthand notation of a dot (or no entry) in 
CL-i(v,rj) means CL_^(v,^) = - y o o , that is, Wc^i{v^ = 0. 

Proof that the factored matrices correspond to a fast algorithm is by induction 
[E-9] and is outlined briefly as follows. Entries in the matrix WEL are determined 
by DL, which contains step numbers for frequencies of 0, ocL~~ \ . . . , (a — l ) a L ~ 1 

in a x a submatrices. The step numbers correspond to samples at times of 
0, l / a L , . . . , (a - l ) / a L . Let ^ £ , t £ ' " = WElWEm for integers / and m. Suppose 
EL^EL-I t " " ' t EL-i contains step numbers for frequencies 0, a L _ I _ 1 , . . . , 
(a - l ) a L - I ' " \ a L _ I ' , . . . , ( a - l ) a L _ 1 at sample times of 0, a ~ L , . . . , a~L+i + 1 

— a~L. The entries are in square submatrices along the diagonal of EL^ EH-X 

| • • • "\ EL-i where each submatrix is of dimension ai+1 and has entries for 
frequencies given by the row number (starting with 0) digit reversed. Then the 
definitions (9.71)-(9.77) show that E L t ^ L - i t ' ' ' t ^ L - i - i contains step 
numbers for frequencies 0, a L ~ 1 - 2 , . . . , (a — l ) a L _ l ~ 2 , a L - l _ 1 , . . . , (a — l ) a L _ 1 . 
Again, frequencies are specified by the digit-reversed submatrix row number. By 
induction (9.70) is true. 

As an example of F G T factorization, let a = 3 and L = 2. Transforms exist 
for r = 0 , 1 . The matrices of exponents giving WE2WEl = WEltEl are shown in 
Table 9.3 for || || rule (b). The matrix for r = 0 gives exponents for the generalized 
fast Walsh transform (FWT). For r = 1 the exponents give the F F T . 

As another example let a = 2 and L = 3. Transforms exist for r = 0 ,1 ,2 . The 
matrices of exponents, shown in Table 9.4 for rule (a), are labeled E°, E1 and E2, 

(9.71) 

(9.72) 
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corresponding to r = 0 , 1 , and 2, respectively. The factorization of each matrix is 
also shown. For r = 0, a fast Walsh transform distinct from those in Chapter 8 is 
obtained. For r = 1 an intermediate F G T is obtained [E-3] . For r = 2 an 8-
point F F T is obtained. 

In Tables 9.3 and 9.4 the values listed under k for Er and the factored matrices 
of exponents are to be interpreted as / and fk [see (9.76)], respectively. Both 
Tables 9.3 and 9.4 demonstrate the aliasing that makes the basis function for a 
frequency k > N/2 appear to be of a lower frequency, namely, TV — k. If real 
signals are processed with the F G T , signals with generalized frequencies higher 
than N/2 must be removed to preclude aliasing. 

9.12 Circular Shift Invariant Power Spectra 

The generalized transforms have power spectra that are invariant to circular 
shifts of the input data. The D F T power spectral points represent individual 
frequencies and are invariant to the periodic shift of the input data (see Problem 
18). The power spectra of all the other FGTs , though invariant to the circular 
shift of the data, represent groups of frequencies. When a = 2 the power spectral 
points group as described in Section 10.3, "Generalized Power Spectra." The 
grouping can be generalized for a > 2 [E-16]. 

9.13 Summary 

This chapter has presented the relatively new generalized continuous trans
form. First the transform was defined. Generation and properties of the basis 
functions were then discussed. Their properties include a frequency in
terpretation, an average value of zero for frequencies with a terminating a-ary 
expansion, and orthonormality. 

The generalized continuous transform was shown to be a linear operator, and 
a heuristic development of the inverse transform was given. The behavior of the 
transform under a time shift of the input function was discussed. 

Finally, the discrete generalized transform was presented and was shown to 
have an F G T representation. Simple methods were shown to yield the factored 
F G T matrices. Shift invariant properties of the discrete transform were 
indicated. 

P R O B L E M S 

1 Let a = 3, r = 2, and s = ( 5 7 ) 1 0 = (2010) 3 where (x)b is the representation of x in a number 
system with radix b. Let rule (a) hold; that is, round off. Then with computa t ions using the radix 3 
and answers in the decimal system show that 

^ = | |3 - f c (2010) | |mod27 = 0 if k > 4 

0 4 = | |O.2| |mod27 = | | i | | = 1 

q3 =2, q2 = 6, q1 = 19, q0 = 3, q^x = 9, and qk = 0 if k < — 1. 
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2 Let a = 2, r = 2, and s = ( 17 .5 ) 1 0 = (10001.1)2 steps/s. Show that the qk numbers in Table 9.5 
result. Show that qk specifies the location on the unit circle in the complex plane at time tk = 2~k. 

Table 9.5 

Values of qk for s = 17.5 

k 6 5 4 3 2 1 0 - 1 - 2 - 3 - 4 

2~ksmod 8 (binary) 0.0 0.1 1.0 10.0 100.0 0.1 1.1 11.0 110.0 100.0 0.0 
qk (decimal) 0 1 1 2 4 1 2 3 6 4 0 

3 Use Table 9.5 to show tha t Table 9.6 gives the exponents versus time for the da ta of the previous 
problem. Verify the waveform plotted in Fig. 9.2. Show that the basis function frequency is 2.1875 
Hz and verify tha t Fig. 9.2 indicates this. 

Table 9.6 

Exponent Values for s = 17.5 a 

</0 1 

t - ± - - 3 -
* 1 6 3 2 

<fiy i 2 

t 1 5 6 7 
1 8 3 2 3 2 3 2 

</0 2 3 3 4 

/ I _ 9 _ 1 0 1 i i 2 i 3 1 4 1 1 
1 4 32 32 32 32 32 32 32 

<//> 4 5 5 6 6 7 7 0 

t 1 
2 

1 7 
3 2 

1 8 
3 2 

2 9 
3 2 

3 0 
3 2 

3 1 
3 2 

(Jt) 1 2 2 0 0 1 

t 1 3 3 
3 2 

3 4 
3 2 

6 1 
3 2 

6 2 
3 2 

6 3 
3 2 

<ft> 2 3 3 2 2 3 

t 2 6 5 
3 2 

6 6 
3 2 

1 2 5 
3 2 

1 2 6 
3 2 

1 2 7 
3 2 

(Jf> 3 4 4 5 5 6 

t 4 1 2 9 
3 2 

1 3 0 
3 2 

2 5 3 
3 2 

2 5 4 
3 2 

2 5 5 
3 2 

<fi> 6 7 7 3 3 4 

t 8 2 5 7 
3 2 

2 5 8 
3 2 

<fi> 4 5 5 

a F rom [E-3] . a = 2, r = 2, s = 17.5. 
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Re 

Fig. 9.2 Waveform for s = 17.5 [E-3] . 

4 Use the da ta of the two previous problems and Tables 9.5 and 9.6 to verify tha t the exponents are 
periodic with period P = 24 s. Verify that the waveform between t = 2 3 and 2 4 is the waveform 
between t = 0 and 2 3 with a phase shift of % radians. 

5 Show that the steps contr ibuted by a digit sk in the a-ary expansion of s (e.g., the msd) are given by 
Table 9.7 for rule (b), that is, t runcate, r = 0, and a < 4. 

Table 9.7 

Steps Contr ibuted by sk 

a Sk 

0 1 2 3 

0 
1 

0 0 
1 2 
2 1 

0 0 0 
1 2 3 
2 0 2 
3 2 1 

6 Let a = 3, r = 0, and s = ( 5 7 ) 1 0 = (2010) 3 steps/s. Show the exponent generator ou tpu t is given 
by Table 9.8 for rule (a) (round off). 

7 Walsh Functions (Round off) Let a = 2, let r = 0, and let integerizing rule (a) (round-off) hold. 
Determine qk values f o r / = 0, 1, 2 , . . . , 7 Hz. Show tha t the waveforms change value no more often 
than every ^ s. Verify the entries in Table 9.9 f o r / = 6 and show tha t they give the step numbers in 
Table 9.10. Show W = — 1 and verify that W<ft> gives the waveform shown in Fig. 9.3 f o r / = 6. 
Repeat for / = 0, 1, . . . , 5, 7. Show that when the waveforms are sampled at t = 0, ^,..., f s the 
waveforms of Fig. 9.4 result. 

0 0 
1 0 

0 0 
1 0 
2 0 

0 0 
1 0 
2 0 
3 0 
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Table 9.8 

Exponent Values for s = 51a 

t 0 

<ft> 0 

t 1 
81 

2 
81 

</0 1 2 

t 1 
27 

JL 
81 

5 
81 

2 • 
27 

7 
81 81 

</0 2 0 1 1 2 0 

t i 
9 

10 
81 

11 
81 

4 
27 

13 
81 

14 
81 

5 16 
27 81 

1 1 
81 

2 19 
9 81 

20 
81 

7 
27 

22 
81 

23 
81 

8 25 
27 81 

26 
81 

</0 0 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0 

t 1 
3 

28 
81 

29 
81 

10 
27 

31 
81 

32 
81 

i i 
27 

53 
81 

2 55 

3 81 

79 
81 

80 
81 

<fi> 1 2 0 0 1 2 2 • • • 1 2 0 1 2 

a a = 3, r = 0,5 = (2010) 3 , qA = 1 , * 3 = 2, q2 = 0, q, = 1. 

Table 9.9 

Values of qk for Walsh Funct ions 

/ = ( 6 ) 1 0 = (110) 2 , j = 2 / = ( 1 1 0 0 ) 2 

qk = 0, k > 4 
^ = | |2 - 4 5|| = | |(0.11)2 | | = 1 
^3 = | | 2 - 3 5 | | = | | ( l . l ) 2 | N 0 ( m o d u l o 2 ) 
q2 = \\2~2s\\ = | |(11.0)2 | | = 3 = 1 (modulo 2) 
qk = 0 (modulo 2), & < 2 

Ta&te 9.10 

Exponent Values for Walsh Funct ions 

f ( X j ^ s ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
f _ 4 = g r 4 f _ 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
t-2 = q2t-2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
Y^kQnt-k mod 2 (step number) 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 

8 Walsh Functions {Round off) Show that the continuous waveforms in Fig. 9.4 are generated 
periodically with a period of P = 1 s by s = 0, (10) 2 , (100) 2 , (110) 2 , (111.111 • • - ) 2 , (101.111 • • - ) 2 , 
(11.111 • • - ) 2 , and (1.111 • • - ) 2 , going from top to bo t tom in the figure. 

9 Walsh Functions (Round off) Show that the continuous waveforms in Fig. 9.4 are generated for 
0 ^ t < 1 s by a = 2, r = 0, rule (a) a n d / = 0, 1, 2, 3, 3§, 2^, 1^, \ , respectively, going from top to 
bot tom in the figure. 
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Sequency 

0 2 4 6 8 10 12 14 16 Time (x j ^ s ) 

Fig. 9.3 Walsh functions for the first seven integer sequencies. 

1 0 Walsh Functions (Truncate) Show that the cont inuous waveforms in Fig. 9.4 are generated by 
a = 2, r = 0, rule (b) (i.e., t runcate), a n d / = 0, 3, 6, 5, 4, 1,2, 1, respectively, going from top to 
bo t tom in the figure. Using a tabulat ion of step numbers like that in Table 9.10 show tha t the basis 
functions can take two steps, go one revolution on the unit circle in the complex plane, and end u p on 
the same point. Show that this gives the basis functions a different number of cycles per second than 
/ . Develop a rule to determine / given the basis function versus time. 

11 Let sign(tf) = \a\ja. When sign(/ K ) ^ s ign( / A ) , the basis functions are not necessarily or thogo
nal. L e t / K = I, fx = % r = 1, and a = 2. (See (9.30).) Show that 

^ < / K O [ ^ < / A « > ] * = fl/<30-<0 (P9.11-1) 

^ < / K O [ ^ < - / A » > ] * = p p < 3 » + <«> (P9.11-2) 

Show that the exponents are given in Table 9.11 for rule (b). Using Table 9.11, show tha t (P9.11-1) 

file:///a/ja
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Apparent 

Sequency 

o 

H > 1 

i i i i i . i i i i • T ime (x — s ) 

0 2 4 6 8 U 8 ' 

Fig. 9.4 Walsh functions shown in Fig. 9.3 sampled every | s with frequency folding above 4 Hz 
producing sampled waveforms that appear to be of a lower frequency. 

Table 9.11 

Steps versus Time for Orthogonal and Nonor thogona l 
Funct ions 

t 0 r 
2 

1 3 
2 2 5 

2 3 7 
2 

0 1 3 0 2 3 1 2 

<t> 0 0 1 1 2 2 3 3 
<3f> - <0 0 1 2 3 0 1 2 3 
<3*> + <0 0 1 0 1 0 1 0 1 
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averages to zero whereas (P9.11-2) averages to 1 —j, so that (P9.11-1) defines or thogonal functions 
whereas (P9.11-2) does not . 

1 2 Use (9.7) to prove the operations of (9.35) are valid. 

13 Generalized Transform Inversion Formula Equat ion (9.36) may be verified from a heuristic 
viewpoint by starting with a series representation of x(t) in terms of generalized basis functions. 
Write this series and then express it in integral form as was done in Chapter 2 to develop the Fourier 
integral from the Fourier series. Verify that the integral form is equivalent to (9.36). 

14 Signed Bit Dyadic Time Shift Let x(t) = 0 for T < y where y > 0. Consider the time advanced 
function x(z + y) for r ^ 0. Let a = 2 and 

T = T _ }2 + T _ 2 2 ~ 2 + T _ 3 2 - 3 (P9.14-1) 

Show that for y = f, f, f, f s and r = 1,2,3, . . . the signed digit time shift is given by Fig. 9.5. Because 
the radix is 2 in (P9.14-1) the shift is called a signed bit dyadic time shift. 

• n n 
z r t - 1 

' n n n r • 
u . 

: n 

J u -

n 
. J L J 

11 
0 

-1 

1 

0 

- H 
1/2 1 

Fig. 9.5 Plots of signed bit dyadic time shift T versus time for r = 1, 2, . . . [E-3] . 
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15 Dyadic Time Shift As in the previous problem, consider the time advanced function. Let a = 2 
and r = 0 (Walsh transform). Show that 

T = tQz 

is determined by the bit-by-bit modulo 2 addition of the binary representations of / and z. Then show 
that the following hold: 

r=t@z=z@t=tQz=zQt 

Since we do not need to carry a sign with the bits of i for the Walsh transform, T is called a dyadic time 
shift. Show that the dyadic time shift for y = f, f, f, f s is given by Fig. 9.6. 

H 

LnJ 

H 

1/2 1/2 

0 1/2 1 0 1/2 1 

Fig. 9.6 Plots of i versus time for r = 0 [E-3^. 

16 A charged particle is rotat ing in the x-y plane under the influence of an impulsive field. The 
frequency of rotat ion is / and the particle's coordinates versus time t are given by 

x = R e [ J ^ < / f > ] , y = Im[PF< / f >] 

Let the impulsive field magni tude at times of instantaneous coordinate transitions be described by 
the derivative of an impulse function (i.e., a positive impulse function followed by a negative one). 
Describe the vector direction of the impulsive field during particle coordinate changes. 

17 In the preceding problem assume motion parallel to the x axis is uniform in time between y axis 
transitions. Describe the field controlling the latter mot ion. 

18 FGT Shifting Use (9.1) and (9.11) to show that f o r / = 0, 1, 2, . . . , ocL - 1 

qt = Ha-'+'+yilmodo^1 

where / = 1,2,..., L defines all entries in the F G T matrix. Let i be a signed digit time shift such that 

qiZ_t = | | A - I + R + 1 / | | T _ i m o d a r + 1 (P9.18-1) 
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Show that the operator || || precludes further reduction of (P9.18-1) except for the F F T , which results 
when L = r + 1. F o r the F F T , rules (a) and (b), and / = k = 0, 1, 2, . . . , aL~1 show that 

| | a - , ' + r + 1 ^ | | = ||aL£/V'|| = a L £/a ' ' 

Apply the two previous- equations to the F F T to show that 

L L 

< T ^ > = Yj a L ^ _ i / a ' m o d a L = aLk £ T _ I / a ' m o d a L = a L h m o d a L 

i = l i ' = l 

so that 

W<fr> = W ^ k z = e-j2nkr (P9.18-2) 

Note that (P9.18-2) is the result obtained with the Fourier shifting theorem applied to band-limited, 
periodic functions that have a normalized period of unity. 

19 Using (9.3) for arbitrary a and r show tha t 

k k 

so that a negative digit 

T-fc = - | | T - * | | 

in the signed digit time shift may be carried as a positive digit x'-k: 

T'_K = a ' + 1 + T-K = a R + 1 - \ \ T - K \ \ 

20 Series Representation of a Periodic Function Let x(t) be a function tha t is periodic and 
magni tude integrable over its period P. Show that if a > 2 or r > 0, then 

oo 

x(t)= X X(k)JV-<ktlP> 
k = 0 

where 

p 

:(t)W<kt/p> dt 

o 

Show that if a = 2, r = 0, and binary arithmetic is used, then 

oo 

x(t) = X [X(k)W-<ktlP> + + 1.111 • • .)fp-«* + i . i i i -> i /p>- | 
k = 0 



C H A P T E R 1 0 

DISCRETE ORTHOGONAL T R A N S F O R M S 

10.0 Introduction 

In recent years there has been a growing interest regarding the application of 
discrete transforms to digital signal and image processing. This is primarily 
owing to the impact of high speed digital computers following the rapid 
advances in digital technology and the consequent development of special 
purpose digital processors [A-72, S-3, R-49, C-8, W-4, Y-2, K- l4 , B-12, G-9, 
G-2, L-16, D-5 , H-32, C-39, A-63, K-4, L-2 ,0 -13 , N - l 4, L-18, C-44, F-17, M-25, 
B-28, S-23, S-25, P-36, A-69, M-16, T-19, P-38, C-51, W-26, H-37, H-41, C-52]. 
The emergence of minicomputers, microprocessors, and minimicro systems 
[ K - 1 9 , 1-12, C-53, 1-10] has acted as a catalyst to the general field of data 
processing. Fast algorithms based on matrix factoring, matrix partitioning, and 
other techniques [A-5, A-41, G- l , A-72, A-30, R-25, W - l , A- l , R-28, R-45, 
A-37, R-46, A-28, R-22, M-9, S-9, B-2, R-31, A-47, A-48, A-10, B-16, G-16, 
C-29, G-14, C-36, A-49, A-50, C-31, W-16, C-26, H-28, R-48, P-27, J-5, F - l , 
F-10, P-29, R-55, P-30, R-36, O-10, S-21, H-34, G-18, Y - l l , R-57, U - l , Y-7, 
Y-13, K-22, R-59, R-8, R-61, R-62, K - 2 3 , C-45, A-6, A - l l , 0-14, V-2, M-8, S-2, 
H-2, B-29, B-31, D-7, V-3, B-32, R-68, Y-14, S-30, A-70, B-9, 1-7, 1-6, W-26, 
H-37, T-25, T-26, K-8, J-12, H-41, A-66, C-41] have resulted in reduced 
computational and memory requirements and further accelerated the utility and 
widened the applicability of these transforms. An added advantage of these 
algorithms is the reduced round-off error [C-29, C-15, L-17, J -3 , Q-3, T-18, 
R-67, T-5]. This has resulted in a trend toward refining and standardizing the 
notation and terminology of orthogonal functions and digital processing [A-2, 
R-50]. 

Research efforts in discrete transforms and related applications have 
concerned image processing [A-l , R-22, H-25,1-3,1-1,1-4,1-6,1-9, P-23, P-7, 
A-22, W-25, H-8, W-16, A-51, H-27, P-24, F-5, A-15, A-43, P-19, P-5, C-25, 
A-24, P-25, C-26, H-28, N-4, S-18, R-48, T-15, L-8, R-54, A-56, P-26, P-28, J-5, 
L-16, K-16, P-29,1-2, R-41, P-12, H-9, H-7, K - 1 9 , B-26, P-31, H-32, R-9, H-33, 
R-14, R-10, A-63, K - 4 , L-2, R-43, 0 -13 , N-14, R-29, W-29, D-6, M-21, A-64, 

362 
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P-34, A-65, P-35, C-44, R-63, K-25, W-31, D-2, P-37, A-45, P-l 7, A-69, B-9, 
A-70, R-37, L-10,3-7 9 N-16, L-20, K-26, C-50, K-5, R-70, J-6, C-54, W-26, H-37 ? 

M-24, 0-18, 0-19, P-46, K-32, T-8, S-29, R-42, R-30, R-32, R-33, P-14, 0 -8 , 
M-27, M-28, M-30, K-29, J - l l , J-12, J-13, 0-18, 0-19, P-29, C-52, H-36, H-24, 
G-25, G - l l , S-38, A-68, A-74, C-19, C-22, C-23, C-55], speech processing [1-8, 
W-16, C-9, S-3,0-9, R-7, C-37, K-15, B-25 ,0 - l 1,0-12, R-16, S-22, R-58, M-25, 
H-35, R-65, 0 -15 , 0-16, S-4, B-28, S-23, C-2, C-4, S-24, N - l 5 , S-25, S-26, S-27, 
F-19, F-20, 0-17, F-21, M-26, S-28, K-24, C-49, B-9, A-71, F-13, Z-1 , B-19, 
A-74], feature selection in pattern recognition [A-l , R-34,1-4,1-6, W-16, A-43, 
N-4, F-14, K-17, R-43, F-16, M-22, B-9, B-19, H-23, S- l l , K-2] , character 
recognition [R-34,1-4, W-16, A-43, W-3, M-18, N-9, C-48, W-23, W-5, W-23, 
W-37, N-10] , signature identification and verification [N-4] , the characteri
zation of binary sequences [K- l8 ] , the analysis and design of communication 
systems [H- l , W-16, H-29, H-14, S-19, E-10, E-8, T-17, L-3, B-14], digital 
filtering [1-9, A - l , W-16, R-47, L-15, J-10, A-59, K-16, R-56, K-20, M-20, P-10, 
S-22, C-43, G-5, K-3, K-23, L-3, W-30, G-19, 0-16, M-25, E-12, C-46, C-19, 
A-73, B-18], spectral analysis [A-5, W-16, A-4, R-51, C-38, R-24, A-53, R-52, 
A-54, A-16, A-55, A-60, S-22, P-33, C-43, K-23, A - l l , B-30, G-20, B-9, A-71], 
data compression [A-l , R-22, H-25, H-26, W-16, P-19, C-25, A-24, P-25, C-26, 
H-28, T-15, L-8, A-23, R-9, W-28, R-43, N-14, D-6, M-21, S-4, B-28, C-2], 
signal processing [A-l , W-16, P-5, A-56,P-28,T-16,H-31, E-10,1-11,T-19, B-9, 
A-74, C-24], convolution and correlation processes [W-16, R-7, C-38, R-53, 
J-10, R-27, A-21, L-7, R-54, A-57, A-58, A-59, C-10, B-27, A-61, S-22, C-43, 
G-5, A - l l , S-35, F-12], generalized Wiener filtering [A-l , A-28, W-16, P-20, 
P-5, R-48, R-43, B-9], spectrometric imaging [W-16, M-13, D-8, H-14] , systems 
analysis [W-16, C-38, H-30, C-10, C-l 1, P-l 1, F-15, S-20, S-22], signal detection 
and identification [W-16, B-15, E-3, E-5, E-4, U - l , K-24, F-22] , statistical 
analysis [P-l 1, S-22], spectroscopy [W-16, G-17, L-3], dyadic systems [C-10, 
C - l l , P-32], digital and logic circuits [ E - l l ] , and other areas [S-19, D-4, N-13, 
M-19, C-43, C-47]. As such, orthogonal transforms have been used to process 
various types of data from speech, seismic, sonar, radar, biological, and 
biomedical sources and data from the forensic sciences, astronomy, oceano-
graphic waves, satellite television pictures, aerial reconnaissance, weather 
photographs, electron micrographs, range-Doppler planes, structural vibra
tions, thermograms, x rays, two-dimensional pictures of the human body, 
among other fields. The scope of interdisciplinary work and the importance and 
rapidly expanding application of digital techniques is apparent and can be 
further observed from the special issues of digital processing journals devoted 
exclusively to such disciplines [A-72,1-3,1-1,1-4,1-5,1-6,1-7,1-8,1-9,1-2,1-11, 
G-21, C-54, C-56]. 

Image processing includes spatial filtering, image coding, image restoration 
and enhancement, image data extraction and detection, color imagery, image 
diagnosis, Wiener filtering, feature selection, pattern recognition, digital 
holography, Kalman filtering, and industrial testing. Transform image process
ing (both monochrome and color) has been utilized for image enhancement and 
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restoration, for image data detection and extraction, and for image classifi
cation. The high energy compaction property of the transform data has been 
taken advantage of to reduce bandwidth requirements (redundancy reduction), 
improve tolerance to channel errors, and achieve bit rate reduction. 

Image processing by computer techniques [A-22] in many cases requires 
discrete transforms. Discrete Fourier [A-72, A- l , B-2, A-10, B-16, G-16, C-29, 
G-14, C-31, S-22, M-23, B-29, G-20, W-26, H-37], slant [A- l , R-22, C-25, P-25, 
C-26, P-29, W-37], Walsh-Hadamard [W-l , A- l , A-37, M-9, A-10, A-49, P-7, 
W-16, A-16, F - l , U - l , K-22, A-3, L-3, A - l l , B-9, K-9] , Haar [A-5, A- l , S-14, 
A-62, B-9, R-37, L-10, W-23, W-5, W-23, W-37], discrete cosine [A-l , A-28, 
S-13, A-24, H-16, C-50, W-26, H-37, D-9, D-10, M-7, N-33] , discrete sine [J-5, 
J-6, J-7, J-8, P-17, Y-15, Y-16, S-39], generalized Haar [R-45, R-55, R-57] , slant 
Haar [F-6, R-36] , discrete linear basis [H-25, H-28] , Hadamard -Haar [R-31, 
R-48, R-8, W-37, N-8 , R-38, R-57], rapid [R-34, W-3, U - l , K-22, N-9, N-10, 
B-41], lower triangular [H-26, P-25], and Karhunen-Loeve [A-22, W-25, H-8, 
A-32, A-43, P-5, S-18, F-14, J-5, K-17, H-33, R-43, F-16, P-33, P-43, P-35, J-7, 
J-6, H-37, R-40, K - l l , H-17, L-12] transforms have already found use in some 
of the applications we have cited. Except for the rapid transform all of these 
transforms are orthogonal. Various performance criteria have been developed 
to compare their utility and effectiveness. The optimal transform in a statistical 
sense is the Karhunen-Loeve transform (KLT) since it decorrelates the 
transform coefficients, packs the most energy (information) in few coefficients, 
minimizes the mean-square error (mse) between the reconstructed and original 
images, and also minimizes the total entropy compared to any other transform 
[A-l , A-22, W-25, K-17, R-43, F-16, P-33, H-37, K-33, K-34, A-67, A-44]. 
However, implementation of the K L T involves a determination of the eige
nvalues and corresponding eigenvectors of the covariance matrix, and there is no 
general algorithm for their fast computation. Some simplified procedures for 
implementation have been suggested [S-18], however, and some fast algorithms 
have been developed for certain classes of signals [J-5, J-7, J-6] . All the other 
transforms possess fast algorithms for efficient computation of the transform 
operations. The performance of some of them compares fairly well with that of 
the KLT [W-l , A- l , A-28, R-22, S-13, A-22, W-25, H-8, C-25, A-24, P-25, C-26, 
H-33, H-16, W-26, H-37, K-33, K-34]. 

The objective of Chapter 10 is to define and develop the discrete transforms 
and their properties, to develop the fast algorithms, to illustrate their appli
cations, and to compare their utility and effectiveness in information processing 
based on the standard performance criteria. 

10.1 Classification of Discrete Orthogonal Transforms 

In view of the problems associated with the implementation of KLT, other 
discrete transforms, although not optimal, have been utilized in signal and image 
processing. Real time processors for their implementation have been designed 
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Discrete 
orthogonal transforms 

Optimal transforms 
Karhunen-Loeve (statistical) 
Singular value decomposition 
(deterministic) 

Suboptimal transforms 

Type 1 Type 2 

Discrete Fourier 
Walsh-Hadamard 
Generalized 
Continuous generalized 

Type 2-Nonsinusoidal 
Haar 
Slant 
Discrete linear basis 
Hadamard-Haar 
Slant-Haar 
Fermat 
Generalized Haar 
Rationalized Haar 

Type 2-Sinusoidal 
Discrete cosine 
Discrete sine 

Fig. 10.1 A classification of discrete or thogonal transforms. 

and built. In fact some of the transforms, such as the D C T and D F T , are 
asymptotically equivalent to the K L T [H-16, S-13]. These transforms are 
suboptimal in that, unlike the K L T , they do not totally decorrelate the data 
sequence. 

From the above discussion it is apparent that a reasonable way of classifying 
discrete orthogonal transforms is to divide them into two major categories, (i) 
optimal transforms and (ii) suboptimal transforms. The latter can be divided 
into two more categories, which we may call types 1 and 2. Type 1 consists of a 
class of transforms whose basis vector elements all lie on the unit circle. All other 
transforms will be considered as belonging to type 2. Finally, type 2 can be 
further divided into two more categories, type 2 sinusoidal and type 2 
nonsinusoidal, depending upon whether the transform basis vector elements are 
sampled sinusoidal or nonsinusoidal functions, respectively. This classification 
scheme is summarized in Fig. 10.1. 

10.2 More Generalized Transforms [A-30, A- l ] 

The generalized transforms that preceded those developed in Chapter 9 are 
similar in many respects, although they do not have a frequency interpretation. 
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The earlier transforms also provide a systematic transition from the ( W H T ) h to 
the D F T . They consist of a family of log a N transforms that runs from the 
( W H T ) h to the D F T , as do the transforms described in Chapter 9. Thus, if Xr{k) 
denotes the M i transform coefficient of the rth transform, r = 0 , 1 , . . . , L — 1, 
then the generalized transform (GT),. is defined as 

X r = (l / iV)[G r (£)]x, r = 0 , 1 , . . . , L - 1 (10.1) 

where XJ = {Xr(Q), Xr(l),..., Xr(N - 1)}, x T = {x(0), x ( l ) , . . . , x(N - 1)}, 
2L = TV, and [Gr{L)] is the transform matrix that can be expressed as a product 
of L sparse matrices [Dl

r(L)] : 

[Gr(L)] = f[ Wl(L)] (10.2) 

where [D[(L)~\ = diaLg[Ar

0(i),A\(i),... ,Ar

2L-i_1(i)], i = 1 ,2 , . . . ,L . The matrix 
factors [Z>X«)] can be generated recursively as follows: 

"1 w^-r 

[ < ( ! ) ] = < r 

m = 0, l , . . . , 2 r - 1 

m = 2'', 2 r + 1 , . . . ,2 
(10.3) 

where exp( — j2n/N), the symbol ® denotes the Kronecker product, and 
mL-1 is the decimal number resulting from the bit reversal of an (L — l)-bit 
binary representation of m. That is, if m = m L _ 2 2 L ~ 2 + • • • + m^1 + m02° is 
an (L — l)-bit representation of m, then 

mL_1 = m02L~2 + m{2L~z + • • • + mL-z2l + m L _ 2 2 ° . 

The data vector x can be recovered using the inverse generalized transform 
(IGT) r , which is defined as 

x = [G r (L)]* T X r , r = 0 , 1 , . . . , L - 1 (10.4) 

where [Gr(L)] * T represents the transpose of the complex conjugate of [Gr(L)] • 
The ( IGT) r follows from (10.1) as a consequence of the property 

[Gr(L)]*T[Gr(L)] =NIN 

The transformation matrix [Gr(L)] * T for the (IGT),. can also be expressed as a 
product of sparse matrices: 

[ G r ( L ) ] * T = [I [D^-'(L)] (10.5) 

The family of transforms generated by the (GT) r can be summarized as follows: 

(i) r = 0 yields the Walsh-Hadamard transform ( W H T ) h [A-l , A-37]. 
(ii) r = 1 yields the complex B I F O R E transform (CBT) [A-47, A-48, A-50, 

R-46]. 





368 10 DISCRETE ORTHOGONAL TRANSFORMS 

(hi) r = L — 1 yields the F F T in bit-reversed order [P-42], 

xL-1(k) = x(«ky», * = o , i , . . . , # - 1 

where is the decimal number obtained by the bit reversal of a L-bit binary 
representation of k. 

(iv) As r is varied from 2 through L — 2, an additional L — 3 orthogonal 
transforms are generated. 

(v) The complexity of (GT) r increases as r is increased, in the sense that it 
requires a larger set of powers of W to compute the transform coefficients, as 
described in Table 10.1. 

COMPUTATIONAL CONSIDERATIONS Since the (GT) r matrix is in the form of a 
product of sparse matrices, the entire family of transforms associated with the 
(GT) r can be computed using the fast algorithms. For the purposes of discussion, 
the signal flowgraph to compute the (GT) r for a = 2 and N = 16 is shown in Fig. 
10.2. The various multipliers associated with Fig. 10.2 are summarized in Table 
10.2. It may be observed that the structure of the flowgraphs for all the 
transforms are identical, with only the multipliers varying. It requires arithmetic 
operations of the order of AHog2 TV to compute any of the transforms. In view of 
(10.5) it is obvious that the inverse transformation can be performed with the 
same speed and efficiency. 

Table 10.2 

Multipliers for the Signal Flowgraph Shown in Fig. 10.2; W= e~J2n/16 

Multiplier x0(k) 
coefficients 

X1(k) 
coefficients 

X2(k) 
coefficients 

X3(k) 
coefficients 

a1 
1 -j W4 W4 

- 1 j w12 w12 

a3 
1 1 w2 w2 

< 3 4 

- 1 - 1 w10 w10 

a5 
1 1 w6 w6 

a6 
- 1 - 1 w14 

a7 1 1 1 w 
- 1 - 1 - 1 w9 

a9 1 1 1 w5 

« 1 0 - 1 - 1 - 1 w13 

0 i i 1 1 1 w3 

« 1 2 - 1 - 1 - 1 w11 

« 1 3 1 1 1 w1 

« 1 4 - 1 - 1 - 1 w15 

The transform matrices [Gr(L)] can also be generated recursively: 

[ G 0 ( i M ) ] = [Hb(m)] = 
'[Hh(m - 1 ) 1 [Hh(m - 1 ) ] " 
.[Hh(m - 1 ) ] - [Hh(m - 1 ) ] . 

(10.6) 
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Data 
sequence 

Transform 
sequence 

*( ) • Stage 1 Stage 2 Stage 3 Stage 4 1/16 x < ) 
0 * * » R ^ — ^ - ^ » • 0 

1/16 

Fig. 10.2 Signal flowgraph for computa t ion of the generalized transform coefficients for N = \6. 
The multipliers are defined in Table 10.2. Fo r the D F T the transform coefficients are in BRO. 

where [Hh(0)] = 1 and [Hh(m)] is the ( W H T ) h matrix of order 2m x 2 m . For 
r= 1 , 2 , 3 , . . . , 

[Gr(m)] = 

with [Gr(0)] = 1 and 

[Gr(l)] = 

' [Gr(m - i)] [Gr(m - 1 ) 1 ' 

[Ar(m — i)] - [Ar{m - 1 ) ] . 
(10.7) 

1 1 

1 - 1 = [#.,(1)] 
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where [Ar(k — 1)] is given by 

[Ar(k - 1)] = [Br(r)] <g> [Hh(k - r - 1)] 

where 

[2«r ) ] = 

( 1 e - J « « 2 0 » / 2 i ) 0 . . . (g) (1 g - M < 2 ' - 2 » / 2 ' - 1 ) ^ 

(10.8) 

(1 e - J 7 i « 2 0 » / 2 - )<g> ••• <g)(l - e ' - j 7 c « 2 ' - 2 » / 2 ' - i -
) <g> 

(1 - e - ^ « 2 ° » / 2 l ) ( X ) • • • (X)(l e - M < 2 - ^ - l » / 2 - 1 ) 0 | 

(1 _ e - M < 2 « » / 2 i ) ( g ) . . . ^ ( J _ g - / « « 2 r - i - l » / 2 r - i j ^ 

? - M < 2 ' - i » / 2 ' - -

3 - j 7 C « 2 ' - - i » / 2 ' -

-7»c«2 ' - i + l » / 2 ' -

_ p - M < 2 ' - 1 + i » / 2 ' -

- i « « 2 ' - - 2 » / 2 ' -

- M < 2 ' " - l » / 2 ' -

As an example of (10.6) and (10.7), for r = 2 the recursion relationship is 

[G2(fc)] = 
"[G 2 (* - 1)] [G2(k - 1)]" 
. [ ^ ( * - 1)] - [A2(k -

where 

[ ^ 2 ( * " 1)] = 
[1 

[1 

-Jn/2 1 ® 

] ® 

'1 e~jnlA-~ 

: ! g - j 3 7 r / 4 " <g> [#h(fc - 3)] (10.9) 

10.3 Generalized Power Spectra [A-29, A-30, A-31, R-24, R-51, R-53, Y-8] 

The power spectra of (GT) r that are invariant to the circular shift of x can be 
developed through the shift matrix. The shift matrix relates the transforms of a 
circular shifted sequence to that of the original sequence. Let x c m denote the 
sequence obtained by circularly shifting x T to the left by m places. Thus 

xcm = Ic

N

mx (10.10) 

If X* c m ) is the (GT) r of x c m , then from (10.1) and (10.10) 

£ ( c « ) = ( i / J V ) [ G r ( L ) ] 7 ^ x = (l/N)[Gr(L)] I™ [Gr(L)]*TXr 

= [S(

r

cm\L)]Xr (10.11) 

where the shift matrix [S<C W )(L)] relates the (GT), of x c m with the (GT) r of x . This 
shift matrix represents a unitary transformation and has a block diagonal 
unitary structure [Y-18]. For N = 16 and m = 1, the shift matrices are as 
follows: 
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r = 0, (WHT),,. The shift matrix [5 (

0

c l ) (4 ) ] is described in (8.44). 
r = 1 (CBT). 

[ST >(4)] = diag 1, - 1, - j , ) , - . 
1 i - i i + y 

- ( i + i ) - 1 + y j 

3 - 7 
- (1 +j) 
- (i + ; ) 
- (i +j) 

i +j i +j 
3 + 7 l + ; 
1 +j 1 +j 
1 + / - 3 + y 

(1 +j) 
(1 + 7 ) 
3 - 7 

(1 + 7 ) 

(10.12) 

where the blank submatrices are the complex conjugates of the preceding 
submatrices. 

r = 2. 

[S (

2

c l ) (4)] = diag 1, 1 , -7 ,7 : 
. 1 + 7 - ( 1 + 7 ) - 1 + 7 1 - 7 

[52,o(l)],[52.l(l)].[52.2(l)],[52.3(l)] (10.13) 

where 

[S2(0(l)] 
0.8535 + yO.3535 

L0.1465 -yO.3535 

- 0.1465 +70.3535 " 
(0.8535 + y'0.3535)_ = [ S 2 > 3 ( 1 ) ] * 

and 

[S 2 , i ( l ) ] = = [52,2(1)]* 
"0.1465 -70 .3535 - (0.8535 -f 70.3535)" 

L0.8535 + 70.3535 - 0.1465 + 7-0.3535 J 

r = 3 (DFT). 

[S (

3

c l ) (4)] = d i a g [ ^ ° , W\ W4, W12, W2, W10, W6, W14, W\ 

W\ W5, W13, W\ W11, W\ W15] (10.14) 

where W=e-j2n/16. 

The unitary block diagonal structure of the shift matrices (10.12)—(10.14) is the 
key to the circular shift-invariant property of the generalized power spectra. The 
circular shift matrix of (10.14) has a diagonal structure and is characteristic of 
the D F T power spectrum; that is, the D F T power spectral points represent 
individual frequencies and are invariant to the circular shift of x. The power 
spectra of all the other transforms, although invariant to the circular shift of x, 
represent groups of frequencies, which are based on the block diagonal structure 
of the corresponding shift matrices. 

Based on (10.11)—(10.14) the generalized power spectra invariant to circular 
shift of x can be expressed as follows: 
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(i) r = 0, ( W H T ) h Power Spectrum. 
2l-l 

P0(0) = \X0(0)\2, P 0 ( / ) = I l*o(™)|2, / = 1 , 2 , . . . , L 

(ii) r = L — 1, D F T Power Spectrum. 

PL-I(S) = I ^ L - I ( « * » ) I 2 , * = 0 , 1 , . . •, N - 1 

(iii) r = 1 ,2 , . . . , L — 2, a family of power spectra 

Pr(l) = \Xr(l)\\ / = 0 , l ? . . . , 2 ' * + 1 - l 
(£ + 1 -~s)- 1 

P r ( 2 s " 2 + £ ) = X |Xr(™)l2 (10.15) 
m = k • s 

for ^ = r + 2, r + 3 , . . . , L , k = 2r, 2r + 1 , . . . ,2r + 1 - 1, and 

fc-j= £ \ + 1 _ , 2 s - ' , ^ T F - ; = J ^ + 1 _ , 2 ' - ' (10.16) 
1 = 0 1 = 0 

with and k'p I = 0 , 1 , . . . , r + 1, being the coefficients (0 or 1) of the (r + 2)-bit 
binary representation of (k)10 and (k + 1 ) 1 0 , respectively. 

Generalized expressions for the number of power spectral points for each 
transform can now be obtained. In the case of the D F T power spectrum there are 
N and N/2 + 1 independent spectral points, when the input sequence x is 
complex and real, respectively. The decrease in the number of independent 
spectral points when x is real is due to the folding phenomenon discussed in 
Chapter 3. This phenomenon occurs in all the log a TV spectra in the case of the 
(GT) r also, when x is real. The number of independent spectral points Cr and Rr 

in a particular spectrum when x is complex and real, respectively, is given by 

Cr = 2r(L-r+ 1), r = 0 , l , . . . , L - 1 

f L + 1 , r = 0 
Rr = ) l r ^ ^ 1 0 r 1 ( 1 0 - 1 7 ) l±Cr + l, r = 1,2, . . . , L - 1 

For the purposes of illustration, the values of Cr and Rr are listed in Table 10.3 
for N = 1024. 

Table 10.3 

Number of Independent Spectral Points for the Family 
of Orthogonal Transforms 

r Cr Rr r Cr Rr 

0 11 11 5 192 97 
1 20 11 6 320 161 
2 36 19 7 512 257 
3 64 33 8 768 385 
4 112 57 9 1024 513 
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From Table 10.3, it is clear that significant data compression is secured in the 
spectra as r decreases from 9 to 0, which correspond to the D F T and (WHT) h , 
respectively. This data compression is achieved at the cost of specific infor
mation because the power spectra, except for the D F T , no longer represent 
individual frequencies. Based on the groups of frequencies represented by the 
(GT) r power spectra, this spectra can be related to the D F T spectra as follows: 

r = 0, (WHT) h . 

p 0 ( 0 ) H * O ( 0 ) | 2 = | * L - I ( 0 ) | 2 

P0(l)= £ i ^ ) | 2 = V l ^ - ^ / w ) ) ) ! 2 , / = 1 , 2 , . . . , L 

m = 2 1 " 1 m = 2 ! - i 

r= 1 ,2 , . . . , L-2. 

Pr(l) = \Xr(l)\2 = \XL-l ( « m » ) | 2 , / = 0 , 1 , . . . , 2 r + 1 - 1 

Pr{2s~2 +k)= + X \Xr(m)\2 =( + X _ | * L - I ( « , » I » ) | 2 (10.18) 
m = k • s m = k • s 

for s = r + 2, r + 3 , . . . ,L , and k = 2\ 2r + 1 , . . . , 2 r + 1 - 1. 

10.4 Generalized Phase or Position Spectra [R-66] 

The D F T phase spectrum is defined as 

cosf3 L _ 1 (^) = R e [ Z L _ 1 ( « ^ » ) ] / ( P L _ 1 ( ^ ) ) 1 / 2 , * = 0 , l , . . . , t f - l (10.19) 

This spectrum characterizes the "posi t ion" of the original data sequence x, since 
it is invariant to multiplication of x by a constant, but changes as x is circularly 
shifted. The corresponding phase or position spectrum for the ( W H T ) h has also 
been developed [A-8, A-16, A-17]. The concepts of the D F T and ( W H T ) h phase 
spectra can be extended to define the (GT) r position spectra (denoted Br{l)) as 
follows: 

r = 0, ( W H T ) h Position Spectrum. 

0O(O) = |*o(0)|/(i\>(0)) 1 / 2 

2 ' - l 

0o(O= E | W ) l / 2 ( ' - 1 ) / 2 ( P 0 ( / ) ) 1 / 2 , / = 1 , 2 , . . . , L (10.20) 
k = 2<~> 

r= 1 ,2 , . . . , L-2. 

6r(l) = |A-r(/)|/(Pr(/))1/2, / = o, 1, . . . , 2'+1 - 1 
(* + 1 -7) - 1 

er(2s~2 + k)= X \Xr(m)\/a1/2(Pr(2s-2 + k))1'2 

m — k • s 

for_ 1 y_=r + 2 , r + 3, . . . ,L,yc = 2 r , 2 r + 1 , . . . , 2r + 1 - 1, and a = (k + 1 -7) 
= k r s (see (10.16)). 
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Inspection of (10.20) shows that the concept of phase for (GT) r is defined for 
groups of frequencies whose composition is the same as that of the power 
spectra. This is in contrast to the D F T phase spectrum in (10.19), which is 
defined for individual frequencies. However, all the spectra defined in (10.19) 
and (10.20) have the common property that they characterize the amount of 
circular shift of the data sequence x and are invariant to multiplication of x by a 
constant. 

10.5 Modified Generalized Discrete Transform [R-25, R-62] 

By introducing a number of zeros in the transform matrices of (GT) r , a 
modified version called the modified generalized discrete transform ( M G T ) r can 
be developed [R-25, R-62] . The matrix factors of the (MGT) r are much more 
sparse than the corresponding factors of (GT) r , and hence it requires a much 
smaller number of arithmetic operations to evaluate the ( M G T ) r than the (GT) r . 
Also, the circular shift-invariant power spectra of (GT) r and the phase spectra 
can be computed much faster using the (MGT) r . 

The ( M G T ) r and its inverse are defined as 

respectively, where = {Xmr(0), Xmr(l),..., XMR(N - 1)} is the ( M G T ) r trans
form vector and [MR(L)] is the 2 L x 2 L modified transform matrix, which is 
unitary; 

Similar to (10.2), [ M r ( £ ) ] can be factored into L sparse matrices as 

Xmr = (l/N)[Mr(L)]x and x = [ M r ( L ) ] * T X m r (10.21) 

[MR(L)][MR{L)VJ = NIF 
•N 

L 

[MR(L)] = n t w>] (10.22) 

where 

[£<'">(£)] = d i a g [ e < ° > ( i V ^ / = 1 , 2 , . . . , L 

The submatrices [ef\i)] are given for i = 1 by 

1 

(10.23) 

and for / # 1 by 

/ # 2 r 

/ = 2 r 
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The transform matrices [Mr(m)] can also be generated recursively: 

"1 f 

and 

[Mr(0)] = 1, [M r ( l ) ] = 

[Mr{m)l = 

1 - 1 = [#h(i)L 

~{Mr(m — 1)] [M r (m - 1)] " 
_ [Cr(m - 1)] - [Cr(m - 1 ) ] . 

(10.24) 

- # X m 0 ( 1 5 ) 

Fig. 10.3 Signal flowgraph of ( M G T ) 0 for N= 16. 
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where the submatrix [Cr{m — 1)] is obtained by replacing the ( W H T ) h matrix in 
(10 .8) by the identity matrix of the same order and by introducing a multiplier 
equal to the determinant of this Walsh-Hadamard matrix. For example, the 
recursion relationship for r = 2 is 

[M2(m)] = 
[M2(m — 1)] [M2(m - 1)] " 

. [C2(m - 1)] - [C2(m -- 1 ) ] . 
(10.25) 

Transform 
sequence 

ZQ6 , X m , ( 1 5 ) 

Fig. 10.4 Signal flowgraph of (MGT), for N = 16. 
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where 

[C2(m - 1)]. = 2 ( m ~ 3 ) / 2 

[1 

[1 

-Jn/4--
] ® 

-jn/2 ] ® 

"1 
_1 
"1 
1 _ g - J 3 « / 4 

-J7T /4 

-j3tt / 4 - ® / ; 
2 m - 3 

(10.26) 

« X m 2 ( 1 4 ) 

Xm2(15) 

-1 j _ e - j 3tt / 4 

Fig. 10.5 Signal flowgraph of ( M G T ) 2 for N= 16. 
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(MGT) r represents the following set of transforms: 

(i) r = 0 yields the modified BIFORE transform (MBT) or (MWHT) 
[A-42, A - l , B-41]. 

(ii) r = 1 yields the modified complex BIFORE transform (MCBT) [R-28]. 
(hi) r = L - 1 yields the D F T [R-25, R-62]. 
(iv) As r is varied from 2 through L — 2, an additional L — 3 transforms are 

generated whose complexity increases with increasing r. 

Based on (10.22)' and (10.23) the signal flowgraphs for efficient implemen
tation of the ( M G T ) r for r = 0 ,1 ,2 in the case N = 16 are shown in Figs. 
10.3-10.5, respectively. When these are compared with Fig. 10.2, it is clear that 
the (MGT),. requires fewer arithmetic operations than the (GT) r . In view of 
(10.21) and (10.22), fast algorithms for the inverse (MGT),. can be developed 
easily. 

10,6 (MGT) r Power Spectra [ R - 2 5 , R-62] 

By a development similar to that described in Section 10.3, it can be shown 
that the power spectra of the (MGT),. that are invariant to circular shift of x are 
the same as those of (GT) r . The (GT) r power spectra described in (10.15) can be 
computed much faster using the (MGT),.. The (GT) r position spectrum 
described in (10.20) can also be computed much faster using the (MGT),. as 
follows: 

r = 0, ( W H T ) h Position Spectrum. 

0o(O) = | X m O ( 0 ) | / ( P o ( 0 ) ) 1 / 2 

0o(O = 1^0(2'- W ) ) 1 ' 2 , / = 1 ,2, . . . , L 

r= 1 , 2 , . . . , L - 2 . 

6r{l) = \Xmr(l)\/(Pr(l))m, / = 0 , 1 , . . . , 2 ' + 1 - 1 

er(is-2 + k) = \xmrik • ~s)\i(priis-2
 + k)yi2

 ( i o . 2 7 ) 

for s = r + 2 , r + 3 , . . . , L and k = 2 r , 2r + l , . . . , 2 r + 1 - 1. 

As an example, computat ion of the (GT) r power and phase spectra through the 
(MGT), is illustrated in Figs. 10 .6-10.8 for N = 16 and r = 0 , 1 , 2 . It is 
interesting to note that the original sequence x can be recovered from the power 
and phase spectra for the entire (GT)r family [R-66] . 
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10.7 The Optimal Transform: Karhunen-Loeve 

The Karhunen-Loeve transform (KLT) is an optimal transform in a 
statistical sense under a variety of criteria. It can completely decorrelate the 
sequence in the transform domain. This enables one to independently process 
one transform coefficient without affecting the others. The basis functions of the 
K L T are the eigenvectors of the co variance matrix of a given sequence (Fig. 
10.9). The KLT, therefore, diagonalizes the covariance matrix, and the resulting 
diagonal elements are the variances of the transformed sequence. The K L T can 
be considered a measure in terms of which the performance of other discrete 
transforms can be evaluated. It is optimal in the following sense: 

Basis function 
Number , 

0 — 

8 

- ~LJlJlf1--qJ~U~Lr-

I I I I I I I I I I I I I I I I I > t 
0 2 4 6 8 10 12 14 16 

Fig. 10.9 Basis functions of the K L T for a first-order M a r k o v process for p = 0.95 and N = 16. 
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(i) It completely decorrelates any sequence in the transform domain. For a 
Gaussian distribution, the K L T coefficients are statistically independent. 

(ii) It packs the most energy (variance) in the fewest number of transform 
coefficients. 

(iii) It minimizes the mse between the reconstructed and original data for 
any specified bandwidth reduction or data compression. 

(iv) It minimizes the total entropy of the sequence. 

In spite of these advantages, the K L T is seldom used in signal processing: 

(i) There is no fast algorithm for its implementation, although efficient 
computational schemes have been developed for certain classes of signals [J-4, 
J-5, J-6, J-7, J-8, J-9] . 

(ii) There is considerable computational effort involved in generation of 
eigenvalues and eigenvectors of the covariance matrices. 

(iii) The K L T is not a fixed transform, but has to be generated for each type 
of signal statistic. 

(iv) It involves development of the covariance matrices for the random field. 
This involves large amounts of sampled data. 

The K L T is an orthogonal matrix whose columns are the normalized 
eigenvectors of the covariance matrix Zx of a given sequence, where 

(Zx)jk = E[{x{j) - x(j)}{x*(k) - **(£)}] 

= 4 (10-28) 

the covariance between x(j) and x(k). In (10.28), Is is the expectation operator 
and overbar labels the statistical mean. If [K(L)] is the K L T matrix, then 

[K(L)] [IX(L)] [K(L)]T* = [ Z X ( L ) ] K L T = d i a g U o A ^ • • •2 i V _ 1 ] (10.29) 

where Xj9 the j t h eigenvalue of [ZX(L)], is the variance of the j t h K L T coefficient 
Xk(j), [ZX(L)] K L T is the covariance matrix of x in the K L T domain, and N = 2L 

is the size of the transform. 
In (10.29), [K(L)] is arranged such that 

In view of (10.29) the K L T is also called the eigenvector transform. It is also 
named the principal component transform and Hotelling transform. If only the 
first M < N coefficients of Xk are chosen for reconstruction of x, then the mse 
between x and its estimate x is 

8 = EQx-±\2) = Y A* (10.30) 
k = M 

The mse given by (10.30) is minimum for the K L T compared to that for any 
other discrete orthogonal transform. The K L T and its inverse can be defined as 

Xk=[K(L)]x, and x = [K(L)] *TXk (10.31) 
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respectively, where [K(L)] *T = [K(L)] ~1. For a first-order Markov process 
techniques have been developed for (recursive) generation of the eigenvalues and 
eigenvectors of Ix [P- l7, P-5] . 

In view of (10.31) and the properties of the KLT, in problems involving data 
compression and bandwidth reduction, the transform coefficients with the 
largest variances are selected for processing. Those coefficients with small 
variances are either discarded or extrapolated at the receiver [P-12, J-9]. This 
technique also is applied in pattern recognition; that is, the K L T coefficients 
with the largest variances are selected as features for classification and 

Fig. 10.10 Variance distribution for a first-order M a r k o v process for p = 0.9 and N = 16 for 
various t ransforms: , H T , C H T ; — , W H T ; - • • - , D C T ; — , D F T ; x — x , ST. 
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recognition [A-43, A-32]. It may be pointed out that the K L T is not necessarily 
optimal for multiclass classification, and a generalized K L T with applications to 
feature selection has therefore been developed [C-28, N - l 1]. For purposes of 
comparison, the variance distribution (the variance of a sequence in the 
transform domain) is listed in Table 10.4 for the first-order Markov statistics 
with correlation coefficient p = 0.9 for a number of discrete orthogonal 
transforms (see Fig. 10.10). For the K L T the variances are the eigenvalues of Z x , 
and for other transforms the variances are the diagonal elements of I x -

Table 10.4 

Variance Distr ibution for First-Order Markov Process Defined by p = 0.9 and N = 16 Where / is the 
Transform Coefficient Number 

Transform 

l 

H T C H T W H T D C T D F T ST (SHT)j ( H H T ) X ( H H T ) 2 

1 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 9.8346 
2 2.5364 2.5364 2.5360 2.9328 1.8342 2.8536 2.7765 2.5364 2.5364 
3 0.8638 0.8635 1.0200 1.2108 1.8342 1.1963 1.0208 1.0209 1.0209 
4 0.8638 0.8635 0.7060 0.5814 0.5189 0.4610 0.4670 0.7061 0.7061 
5 0.2755 0.2755 0.3070 0.3482 0.5189 0.3468 0.3092 0.2946 0.3066 
6 0.2755 0.2755 0.3030 0.2314 0.2502 0.3424 0.3031 0.2946 0.3031 
7 0.2755 0.2755 0.2830 0.1684 0.2502 0.1461 0.2837 0.2562 0.2864 
8 0.2755 0.2755 0.2060 0.1294 0.1553 0.1460 0.2059 0.2562 0.2059 
9 0.1000 0.1000 0.1050 0.1046 0.1553 0.1047 0.1042 0.1024 0.1038 

10 0.1000 0.1000 0.1050 0.0876 0.1126 0.1044 0.1042 0.1024 0.1038 
11 0.1000 0.1000 0.1040 0.0760 0.1126 0.1044 0.1034 0.1024 0.1034 
12 0.1000 0.1000 0.1040 0.0676 0.0913 0.0631 0.1034 0.1024 0.1034 
13 0.1000 0.1000 0.1030 0.0616 0.0913 0.0631 0.1010 0.0976 0.1013 
14 0.1000 0.1000 0.1020 0.0574 0.0811 0.0631 0.1010 0.0976 0.1013 
15 0.1000 0.1000 0.0980 0.0548 0.0811 0.0631 0.0913 0.0976 0.0913 
16 0.1000 0.1000 0.0780 0.0532 0.0780 0.0631 0.0913 0.0976 0.0913 

RATE DISTORTION Another criterion for evaluating the orthogonal transforms 
is the rate distortion function. The rate distortion function yields the minimum 
information rate in bits per transform component needed for coding such that 
the average distortion is less than or equal to a chosen value D{6) (see (10.33)) for 
any specified source probability distribution. It has been shown [P-20, D - 3 ] that 
for a Gaussian distribution and for mse as a fidelity criterion, the rate distortion 
R(D) can be expressed 

R(D) 
1 

IN : 
£ max 0,log 

I-
(10.32) 

where ) H is the zth eigenvalue for the K L T or zth diagonal element of the 
covariance matrix in the transform domain for any other transform and where 9 
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is any parameter satisfying the relation 

D(f l )= iJmin [MJ (10.33) 
i = 1 

The rate distortion is a measure of the decorrelation of the transform 
components because the distortion can be spread uniformly in the transform 
domain, thus minimizing the rate required for transmitting the information. In 
Fig. 10.11 the rate is plotted versus distortion for a first-order Markov process 
for N = 16 and p — 0.9 for a number of transforms. Inspection of this figure 
shows that the K L T is best in terms of rate distortion, with the D C T and D F T 
very close ( H H T ) 1 ? ( H H T ) 2 , HT, and W H T following. The identity transform is 
the least favorable in that it maintains the correlation in the signal. 

Fig. 10.11 Ra te versus distortion of a first-order Markov process for p = 0.9 and N = 16 
(1 na t = 1.44 bi ts ; i.e., l o g 2 e = 1.44). 

10.8 Discrete Cosine Transform 

The discrete cosine transform (DCT) [K-34, D-10, N-33, S-13, H-15, H-16, 
W-17, M-15, M-14, P-18, G-10, G-26], which is asymptotically equivalent to the 
K L T (see Problem 14), has been developed by Ahmed et al. [A-28]. The basis 
functions of the D C T are actually a class of discrete Chebyshev polynomials 
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[A-28]. The D C T compares very closely with the K L T in terms of variance 
distribution, Wiener filtering, and rate distortion [A-28, A - l ] . Several algo
rithms for fast implementation of the D C T have been developed [A-28, H-15, 
A - l , C-20, W- l7 , M-15, M-14, W-16, L-9, M-7, D-10, N-33, B-17, N-12, C-35, 
K-35] , and digital processors for real time application of D C T to signal and 
image processing have been designed and built [W-l7, M-15, M-14, W-16, L-9, 
B-17, W-26, R-24, F-25, C-52, J-15, S-37]. Also, the effect of finite wordlength 
on the F D C T processing accuracy has been investigated [J-16]. In terms of 
variance distribution the D C T appears to be a near optimal transform for data 
compression, bandwidth reduction, and filtering. (See the problems at the end of 
this chapter for illustration of these properties.) 

The D C T of a data sequence x(m}, m = 0 , 1 , . . . , TV — 1 and its inverse are 
defined as 

2c(k) N~x 

Xc(k) = — — X *(m)cos 
™ m = 0 

N-l 

x(m) = Yj c(k)Xc(k) cos 
k=0 

respectively, where 

c(k) = 1 / V 

(2m + l)kn 
__ 

(2m + l)kn 
2TV 

£ = 0 , 1 , . . . , T V - 1 

m = 0 , l , . . . , T V - 1 (10.34) 

k = 0 

1, k= 1 , 2 , . . . , 7 V - 1 

and Xc(k), k = 0 , 1 , . . . , TV — 1, is the D C T sequence. The set of basis functions 
{(l/y/l, cos [(2m + l)kn/2N]} can be shown to be a class of discrete Chebyshev 
polynomials [ A - 2 8 ] . 

FAST ALGORITHMS Several algorithms involving real operations only have been 
developed for computing the D C T [C-20, N-33, D-10, M-7] . One technique that 
can be extended to any integral power of 2 and can be easily interpreted is 
described next. 

Equation (10.34) can be expressed in matrix form as 

XC = (2/N)[A(L)]x (10.35) 

where x and X c are the TV-dimensional data and transform vectors, respectively, 
TV = 2 L , and 

[A(L)]mk = c(k)cos[(2m + l)kn/2N], m, k = 0 , 1 , . . . , TV - 1 

[A(L)] can be factored into a number of sparse matrices recursively as follows: 

[A(L)] = [P(L)] 
\A(L - 1)] 0 

0 
[BN] (10.36) 

where 

[R(L - 1)] = <c(k) cos 
'(2m + 1)(2£ + l)n 

2N 
m,k = 0 ,1 , . . . ,N/2 - 1 
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I ± N I 2 N / 2 

L̂JVJ = I 7 T 
IN/2 ~ 1N/2. 

Im is the opposite diagonal matrix, 

1 

[BN] = 
In/2 In 12 

In/2 In/2 A 
(10.37) 

0 

and [P(L)] is a permutation matrix that rearranges Xc(k) from a BRO to a 
natural order. The D C T matrix [A(L)] can be generated recursively from 

1 1 1 

/ i l l - 1 . 

and from the decomposition of [R(L — 1)], 

[R(L - 1)] = [M,(L - 1)] [ M 2 ( L - 1)] [ M 3 ( L - 1)] [ M 4 ( L - 1)] 

x • • • x [ M 2 1 o g 2 i V _ 3 ( L - 1)] 

or simply 

[R(L - 1)] = [ M J [ M 2 ] [ M 3 ] [ M 4 ] • • • [ M 2 1 o g 2 i Y _ 3 ] (10.38) 
Details of (10.38) are 

^ 9 A 

^ 2 

^ 2 I V 

5? 2iV 

M 2 = (d i ag [5 2 , B2, B2, B2,...,B2,B2]) 

1 

^7N 

^N/2 

-S> N/2 ^N/2 

°JV /2 

(10.39a) 

(10.39b) 

CbN/8 
N/2 

^N/2 

QbNIS 
° iV /2 L 0 1 J 

(10.39c) 
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M 4 = (diag [^4 , £ 4 , B 4 , B*,..., £ 4 , A J ) 

/ 2 

(10.39d) 

M , = 

- C N/4 
yN/4 -C 

>N/4 

N/4 

>N/4 c N/4 

^N/4 ° J V / 4 

LO 

M6 = d i a g [ 5 8 , B8, B8, B8,..., B8, 5 8 ] 

In/16 

- c 1 

i " * 
[ M 2 l o g 2 i V - 5 ] 

^ c 3 

[M2log2N-4] = ( d i a g [ £ N / 4 ] , [Bm]) 

(10.39e) 

(10.39f) 

C 1 

In/16 0 
0 / , JV/16 

c 3 

[ M 2 1 o g 2 N - 3 ] = 

0 0 0 

0 0 

0 0 

0 0 0 In/s 

(10.39g) 

(10.39h) 

(10.39i) 

where 

[Sk] = (sin(fc7c/0) [/JV/2,-] , [Sf ] = (s in(^ /z) ) [ Z ^ J 

[C*] - ( C 0 S ( / T 7 1 / Z ) ) [ 4 / 2 I ] 5 [C*] = ( C O S ( * 7 c / 0 ) [ 7 i V / 2 f ] 

The M matrices are of four distinct types: 

(10.40) 

Type 1. [ M i ] , the first matrix. 
Type 2. [ M 2 l 0 g 2 i Y _ 3 ] ,

 t n e l a s t matrix. 
Type 3. [ M J , the remaining odd numbered matrices [ M 3 ] , [ M 5 ] , . . 
Type 4. The even numbered matrices [ M 2 ] , [ M 4 ] , . . . . 
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Type 1: [ M x ] is formed with submatrices Sa

2

j

N, Sa

2

J

N, Ca

2

j

N, C2

j

N, where the 
values of a} are the binary bit-reversed representation of N/2 + j' — 1 for 
7 = l , 2 , . . . , JV/2 . 

Type 2: The development of [M2{og2N-3] is clear from (10.39a)-(10.39i). 
7>/?e 5: The remaining odd matrices [Mq] are formed by repeated con

catenation of the matrix sequence IN/2h — C\\ — S\\ and IN/2i where 
/ = N/2iq~1)/2 fory = 1,2, . . . ,z /8 along the upper left to middle of the main 
diagonal and the matrix sequence IN/2h C\\ S\j, and IN/2i for j = i/S + 1 , . . . , z/4 
along the middle to lower right. The opposite diagonal is formed similarly, using 
the matrix sequence 0N/2b S\j, — CfJ', 0N/2i along the upper right to middle and 
the matrix sequence 0N/2i, — S •J, C£J', 0N/2i along the middle to lower left where 0, 
is a / x / null matrix. Repeated concatenation of a matrix sequence along a 
diagonal is clearly illustrated in (10.39), where for clarity the k} have been 
replaced by bj, cj9... because the value of kj depends on the matrix index q. For 
this type of matrix, the values of the k} are the binary bit-reversed variables 
Z - / 4 + 7 - 1 . 

Type 4: This is clear from M2, M 4 , M 6 , . . . . 
(10.39a)-(10.39i). 

For purposes of illustration [R(3)] follows. 

M-2 1 o g 2 i V - 4 described in 

[ * ( 3 ) ] = 

S i n 3 2 
sinff 

COS: 

- s i n ^ 

' 1 1 
1 - 1 

-sinff 

- 1 1 
1 1 

sinff 

•sinJ^f 

s i n ^ 
- s i n f f 

c o s ^ 
cosff 

cosff 
cosff 

32 

cosff 
c o s - ^ . 

0 

0 

1 1 
1 - 1 

1 1 
1 1 

-cosi 

— sini 
cos 3a. 

- sinf — cosf 
1 0 
0 1 

cos-i 
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- 1 
- 1 

1 1 
1 1 

- c o s f 
cos j 

cosj 
cos5 

C0S7 

(10.41) 

Data sequence 

x ( ) 

Transfom sequence 
r „ , 1 

4 x c ( 0 ) N = 4 OjX c (0)N = 8 O ] X c ( 0 ) N = 1 6 
c V /4 j 

J X C ( 4 ) 

•X c (2 ) 

C1_5_77_/32 • 

I X c ( 8 ) 

i 
J X C ( 4 ) 

! 
| X C ( 1 2 ) 

X C ( 2 ) 

j X c ( 10 ) 

1 
| X C ( 6 ) 
1 
] X C ( 1 4 ) 

l 
] X C ( 1 ) 
1 
| x c ( 9 ) 

j X c ( 5 ) 
rC57r/3 2 

> c d 3 ) 
C137T/32 

! X c ( 3 ) 
S37T/32 

[ Xc (11) 
> - S 7 t t / 3 2 
I X C ( 7 ) 

r S 1 5 7 r / 3 2 
X c (15) 

Fig. 10.12 Signal flowgraph for efficient computa t ion of the D C T for TV = 4, 8, 16 [C-20] . Fo r 
notat ional simplicity, the multiplier c9 and s6 s tand for cos 6 and sin 6, respectively. 
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The signal flowgraph based on (10.35), (10.36), and (10.41) for computing the 
fast D C T is shown in Fig. 10.12. For brevity of notation in the figure the 
multipliers c6 and s6 replace cos 0 and sin 0, respectively. For this flowgraph the 
following comments are in order: 

(i) The signal flowgraph for TV = 16 automatically includes the signal 
flowgraphs for TV = 4 and 8. This follows from the recursion relation described 
by (10.36). 

(ii) For every TV that is a power of 2 the D C T coefficients are in BRO. 
(hi) As TV increases the even coefficients of each successive transform are 

obtained directly from the coefficients of the prior transform by doubling the 
subscript of the prior coefficients. 

(iv) The extension of the signal flowgraph in Fig. 10.12 to TV = 32, 6 4 , . . . is 
straightforward. 

(v) The D C T coefficients at each stage (TV = 4, 8,16, 32) can be normalized 
by the multiplier TV/2. 

(vi) Since [A(L)] is an orthogonal matrix (i.e., [A(L)]"1 = %N[A(L)]T) and 
using (10.36) and (10.39), the signal flowgraph for the fast inverse D C T can be 
easily developed. 

(vii) The fast algorithm requires only §TV(log2^TV) + 2 real additions and 
TV(log2 TV) — fTV + 4 real multiplications. This is almost six times as fast (Fig. 
10.13) as the conventional technique using a 2TV-point F F T [A-l , A-28]. (See 
also (10.42).) 

Fig. 10.13 Compar ison of (a) additions and (b) multiplications required for conventional 
F D C T , F F T , and F D C T of Chen et al. [C-20]. 
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The D C T in (10.34) can be expressed alternatively 

2c(k) % 

Xc(k) = —-Re 
c V } TV 

2N- 1 

e-jkn/2N £ X ( m ) ^ 

m = 0 

& = 0 , 1 , . . . , 7 V - 1 (10.42) 

where W 2 i V = cxp(-j2n/2N) and x(w) = 0, ra = TV, TV + 1 , . . . , 2 T V - 1. This 
implies that the D C T of an TV-point sequence can be implemented by adding TV 
zeros to this sequence and using a2TV-point F F T [A-28, A - l ] . Other operations 
such as multiplication by exp( — jkn/lN) and taking the real part are also 
needed. This is shown in block diagonal form in Fig. 10.14. Using the F F T on 
two TV-point sequences, Haralick [H-15] developed a D C T algorithm that is 
more efficient computationally and in terms of storage than implied by (10.42). 

Augmented sequence 

x(0), x ( 1 ) , . . . . , x ( N - l ) , 0 , 0 , . . . . , 0 
c(k) exp(- jk7T /2N) 

2N-point 
FFT 

Real 
part J 
Real 
part 

Fig. 10.14 Computa t ion of even D C T by even-length extension of x (see Problem 17). 

Corrington [C-35] has also developed a fast algorithm for computat ion of the 
D C T involving real arithmetic only. This algorithm appears to be comparable to 
that of Chen et al. [C-20]. Based on this algorithm a real time processor for 
implementing a 32-point D C T utilizing CMOS/SOS-LSI circuitry has been built 
for transmitting images from a remotely piloted vehicle (RPV) with reduced 
bandwidth [W-l 7] . Belt et al. [B-17] and Murray [M-36] have also developed a 
D C T algorithm on which real time processors have been designed and built. 
Narasimha and Peterson [N-33] have developed a fast algorithm for the 14-
point DCT. 

10.9 Slant Transform 

Enomoto and Shibata [E-8, S-15] originally developed the first eight slant 
vectors. This was later generalized by Pratt et al [C-25, P-15, P-16, C-26], who 
also applied the slant transform (ST) to image processing. Slant vectors are 
discrete sawtooth waveforms that change (decrease and increase) uniformly over 
their entire lengths. These vectors can therefore represent efficiently the gradual 
brightness changes in a line of a TV image. The ST matrix is designed to have the 
following properties: 

(i) an orthonormal set of basis vectors, 
(ii) one constant basis vector, 

(iii) one slant basis vector changing uniformly over the entire length, 
(iv) sequency interpretation of the basis vectors, 
(v) variable size transformation, 
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(vi) a fast computational algorithm, and 
(vii) high energy compaction. 

The ST matrices can be generated recursively as products of sparse matrices, 
leading to the fast algorithms. For example, 

1 
1 0 1 0 ~ 

a4 bA — a4 b4 

0 1 0 - 1 

-*4 aA bA fl4 _ 
[S(2)] = 

where 

1 

/ 2 L 1 - 1 

and a4 and b4 are scaling constants. From (10.43) 

[5(1)] 0 

0 [S(l)] 
(10.43) 

[5(1)] = 
1 

[5(2)] = 
1 

" 1 
# 4 + b4 

1 
<24 — & 4 

1 
a4 — b4 

- 1 
— a4 — b4 

1 
- a 4 + b4 

- 1 
a 4 + b4 

1 
• « 4 — b4 

1 
a 4 + Z?4 

(10.44) 

The step sizes between adjacent elements of the slant basis vector (row 2 above), 
2b4, 2a4 — 2b4, and 2Z?4, must all be equal (see property (hi)). This implies that 
a4 = 2b4. The orthonormality condition [S(2)] [5 (2 ) ] T = I4 leads to b4 = \/-J~5. 
Substituting for a4 and b4 in (10.44) results in 

[S(2)j = 
O A / 5 ) ( 3 

1 

1 

1 
- 1 

- 3 

1 

- 1 

- 1 

3 

1 - 1 

3) 
1 

1) 

no. of sign 
changes 

0 
1 
2 
3 

(10.45) 

Besides being orthonormal, [5(2)] also has the sequency property; that is, the 
number of sign changes increases as the rows increase. [5(3)] can be developed 
from [5(2)] as follows: 

C^(3)] = 

1 0 0 0 1 0 0 0 
a8 0 0 -a8 bs 0 0 
0 0 1 0 0 0 1 0 
0 0 0 1 0 0 0 1 
0 1 0 0 0 - 1 0 0 

- h a8 0 0 bs a8 0 0 
0 0 1 0 0 0 - 1 0 
0 0 0 1 0 0 0 - 1 

x (diag [[5(2)] , [S(2)]]) (10.46a) 
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where a8 = 4/^/21 and b8 = v

/ / 5/21~. This yields 

[ 5 ( 3 ) ] 

1 1 1 1 1 1 1 1 " 

(1/V21)(7 5 3 1 - 1 - 3 - 5 - 7 ) 

' O A / 5 ) ( 3 1 - 1 - 3 - 3 - 1 1 3) 
1 ( l / v

/ 1 0 5 ) ( 7 - 1 - 9 - 1 7 17 9 1 - 7 ) 
1 - 1 - 1 1 1 - 1 - 1 1 
1 - 1 - 1 1 - 1 1 1 - 1 

( 1 / 7 5 ) ( 1 - 3 3 - 1 - 1 3 - 3 1) 

_ (1/V5)(1 - 3 3 - 1 1 - 3 3 

(10.46b) 

The first 16 slant vectors are shown in Fig. 10.15. The recursion shown in 
(10.46a) can be generalized as follows: 

Waveform number 

» H-TLJirUFb-
10 HJirLRJU1 

" r u u u L J i n J 

* T[^lnJ"L% 

i i i i i i i i i i i i i i i i i 
0 2 4 6 8 10 121416 

Fig. 10.15 Slant transform waveforms for N = 16 [P-15]. 
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1 0 
aN bN 

0 
1 0 

0 

1 
0 V /2 - 2 0 In/2 - 2 

0 1 
-bN aN 

0 
0 - 1 

bN aN 

0 

0 /w/2 - 2 0 ~ In/2 - 2 

x ( d i a g [ [ S ( L - l ) ] , [ S ( L - l ) ] ] ) (10.47) 

where 

a2 = \, bN = 1/(1 + 4aNI2)112, aN = 2 b N a m , N = 4 , 8 , 1 6 , . . . . 

(10.48) 

Fast algorithms for efficient computation of the ST involve factoring the ST 
matrices into sparse matrices. For example, [5(2)] and [5(3)] can be factored as 

[S(2)] = 

1 0 " 

1) 

1 0 

( 1 / 7 5 X 0 0 3 
1 - 1 0 0 

L ( l / v

/ 5 ) ( 0 0 1 - 3 ) J 

1 0 
0 1 
1 0 
0 1 

0 1 
1 0 
0 - 1 

-1 0 

(10.49) 

[5(3)] = — 
1 

J 2 

1 0 0 0 
0 6 8 a» 0 
0 0 0 1 
0 a 8 

0 

h 0 h 0 

h 0 — h 0 

0 0 1 0 0 0 1 0 
0 0 1 0 0 0 -1 0 
0 0 0 1 0 0 0 - 1 
0 0 0 1 0 0 0 1 _ 

x (diag[[S(2)], [5(2)]]) (10.50) 

The flowgraphs based on (10.49) and (10.50) for implementation of the ST 
are shown in Figs. 10.16 and 10.17, respectively. Computations similar to those 
for the FFT (see Section 4.4) show that the ST of a data sequence of 
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length N requires N log 2 N + (N/2 - 2) additions (subtractions) and 2N - 4 
multiplications. The ST and its inverse are defined as 

X, = [S(L)]x, x = [S(L)] T X S (10.51) 

respectively, where [S (L) ] T = [S(L)] _ 1 . The signal flowgraphs for implement
ing the inverse ST are shown in Figs. 10.18 and 10.19 for N=4 and 8, 

Transform Data 
sequence sequence 

Fig. 10.18 Signal flowgraph of the inverse ST for N = 4. (For simplicity, the multiplier 1/^/4 is 
not shown.) 
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respectively. These result from the property [S(L)] ~1 = [S(L)]T and from the 
sparse matrix factors shown in (10.49) and (10.50). The flowgraphs for the ST 
and its inverse as shown here do not have the in-place structure. Ahmed and 
Chen [A-39] have developed a Cooley-Tukey algorithm for the ST and its 
inverse that has the in-place property and programming simplicity.. This can be 
implemented by a simple modification of the Cooley-Tukey algorithm used to 
compute the (WHT) h . Ohira et al [0-18, 0-19] have designed and built a 32-
point ST processor for transform coding of National Television Systems 
Commission (NTSC) color television signals in real time. 

10.10 Haar Transform 

The Haar transform (HT) [A-5, A-22, A-32, A-41, L-10, A- l , W-23, W-37, 
D-9] is based on the Haar functions [S-14], which are periodic, orthogonal, and 
complete (Fig. 10.20). The first two functions are global (nonzero over a unit 
interval); the rest are local (nonzero only over a portion of the unit interval). 

10 

12 

13 

L T 

u 
n 

L i 

Fig. 10.20 Haa r functions for N = 16. 

n 

L 
14 

15 

t r 
n 
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Haar functions become increasingly localized as their number increases. The 
global/local structure is useful in edge detection and contour extraction when 
applied to image processing. This set of functions was originally developed by 
Haar [H-13] in 1910 and has subsequently been generalized to a wider class of 
functions by Watar i [W-24]. Haar functions can be generated recursively. 
Uniform sampling of these functions leads to the Haar transform. Both the H T 
and its inverse are defined as 

X h a = . ( l /W)[Ha(L)]x and x = [ H a ( L ) ] T X h a 
(10.52) 

respectively, where the N x N Haar matrix [Ha(L)] is orthogonal: 
[Ha(L)] [ H a ( L ) ] T = NIN. The Haar matrices are 

[Ha(l ) ] = 

[Ha(3)] = 

- 1 1 1 1 ~ 
1 1 1 - 1 - 1 

- 1 _ 
[Ha(2)] = 

>/2(l - 1 0 0) 
0 1 - 1 ) _ 

1 1 1 1 1 1 1 1 -
1 1 1 1 - 1 - 1 - 1 - 1 

V2(l 1 - 1 -• 1 0 0 0 0) 
0 0 0 1 1 - 1 - 1 ) 

2 - 2 0 0 0 0 0 0 
0 0 2 -• 2 0 0 0 0 
0 0 0 0 2 - 2 0 0 
0 0 0 0 0 0 2 - 2 -

(10.53) 

Higher order Haar matrices can be generated recursively as follows [R-35] : 

[Ha(fc + 1)] = 
"[Ha(*)] ® (1 

2k/2I2k ® ( 1 

1)" 

1). 
k > 1 (10.54) 

Haar matrices can be factored into sparse matrices, which lead to the fast 
algorithms. Based on these algorithms both the H T and its inverse can be 
implemented in 2(N — 1) additions or subtractions and N multiplications. The 
matrix factors for (10.53) are 

[Ha(2)] = diag 

[Ha(3)] = diag 

"1 1 

_ _1 - 1 _ 

- "1 r 
_1 - 1 _ 

21, 

2h,L 

h ® (1 1)~ 

h ® (1 - 1). 

h ® (1 diag 
I2 (X) (1 

1)" 

- 1 ) . 

'/* ® (1 

Ih ® (1 

1)" 
- 1 ) . 

, 2 / 4 

(10.55) 
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This factoring can be extended to higher order matrices. For example, 

[Ha(4)] = diag 

diag 

1 1 

1 - 1 

h ® (1 

h ® (1 

1)" 

1). 

diag 

,2 3l2h 

h <g> (1 

h ® (1 

/ 8 ® (1 

h ® (1 

1)" 
1). , 2 / 4 , / 8 

1)" 
1). 

(10.56) 

The flowgraphs for fast implementation of the H T and its inverse for N = 8 and 
16 are shown in Figs. 10.21 and 10.22, respectively. Like the ST, these 
flowgraphs do not have the in-place structure. A Cooley-Tukey type algorithm 
that restores the in-place property has been developed by Ahmed et al. [A-40]. 
Fino [ F - l l ] has demonstrated some simple relations between the Haar and 
Walsh-Hadamard submatrices and has also developed various properties 
relating the two transforms. 

Fig. 10.21 Signal flowgraphs for computing (a) the HT and (b) its inverse for N = 8. 
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10.11 Rationalized Haar Transform 

Haar matrices (10.53) and (10.54), and therefore their sparse matrix factors 
(10.55), contain irrational numbers (powers of yjl). Lynch et al. [L-10, L-l 1, 
R-37] have rationalized the H T by deleting the irrational numbers and 
introducing integer powers of 2. The rationalized H T (RHT) preserves all the 
properties of the H T and can be efficiently implemented using digital pipeline 
architecture. Based on this structure, real time processors for processing 
remotely piloted vehicle (RPY) images have been built [L-10, R-37] . 

The rationalized version of (10.52) is 

X r h = [Rh(L)]x, x = [ R h ( L ) ] T [ P ( L ) ] X r h (10.57) 

where [Rh(L)] T [P(L)] = [ R h ( L ) ] " 1 , [Rh(L)] is the R H T matrix, Xrh(m), 
m = 0 , 1 , . . . ,N — 1, are the R H T components of the data vector x, and [P(L)] is 
a diagonal matrix whose nonzero elements are negative integer powers of 2. For 
example, 

1 1 1 1 " 

[Rh(l)] = 
1 

_1 

1 

- 1 _ 
[Rh(2)] = 

1 
1 

1 
- 1 

— 1 
0 

- 1 
0 

0 0 1 - 1 

" 1 1 1 1 1 1 1 1 — 

1 1 1 1 - 1 — 1 — 1 - 1 
1 1 - 1 — 1 0 0 0 0 

[Rh(3)] = 
0 
1 -

0 
- 1 

0 
0 

0 
0 

1 
0 

1 
0 

— 1 
0 

- 1 
0 1 

0 0 1 — 1 0 0 0 0 
0 0 0 0 1 — 1 0 0 

_ 0 0 0 0 0 0 1 - 1 
[Rh(4)] = 

- l 1 1 1 1 1 1 1 1 1 1 1 1 1 l 
1 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 1 - l 
l 1 1 1 - 1 - 1 - 1 - 1 0 

1 
0 
l 

0 
l 

0 
l 

0 
- l 

0 
l 

0 
- l 

l 1 - 1 - 1 
1 1 - 1 - 1 

1 1 - 1 - 1 
1 1 - 1 - 1 

1 - 1 
1 - 1 

i - i 0 
1 - 1 

1 - 1 
0 i - i 

1 - 1 
1 - 1 -I 

(10.58) 
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(b) 

Fig. 10 . 23 Signal flowgraphs for computing (a) the R H T and (b) its inverse for TV = 8. 

and 

[P(2)] = d i a g [ 2 - 2 , 2 - 2 , 2 - 1 , 2 - 1 ] 

[P(3)] = d i a g [ 2 - 3 , 2~\2"2, 2 " 2 , 2 " 1 , 2 " 1 , 2 " 1 , 2 " 1 ] 

[P(4)] = d i a g [ 2 - 4 , 2 " 4 , 2 ~ 3 , 2 " 3 , 2 ~ 2 , 2 ~ 2 , 2 ~ 2 , 2 ~ 2 , 2~\2~\2~\ 

2 ~ \ 2 ~ \ 2 - \ 2 ~ \ 2 " 1 ] 

The matrix factors of [Rh(L)] are 

[Rh(3)] = diag 
i r 

J - 1 _ \ h ® (1 

h ® (1 

1)" 

1). 
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[Rh(3)] = diag 
"i r V 

_i - 1 _ 
II diag 

_i - 1 _ 
II diag 

_ _ 

h ® (1 1)" 

1). 

h ® (1 1)" 

_h ® (1 - 1 ) . 

[Rh(4)] = diag 
"1 1 

_1 - 1 _ 
•> A 4 5 

' / 2 ® (1 
72 <g> (1 

x diag 
/ 4 ® ( 1 1)" 
/ 4 ® ( 1 " - ! ) _ 

1)~ 
1)_ 

/ 8 <8> (1 

h ® (1 

1)" 

1). 
(10.59) 

Comparison of (10.59) with (10.55) and (10.56) reveals that the structure of the 
flowgraphs for fast implementation of R H T is identical to that of the H T except 
for some changes in the multipliers. The flowgraphs for R H T and its inverse for 
TV = 8, for example, are shown in Fig. 10.23. 

10.12 Rapid Transform 

The rapid transform (RT) [R-34, W-3, U - l , K-8, N-9, N-10, B-41, S-36, 
W- l8 , W-19, W-20, W-32], which was developed by Reitboeck and Brody 
[R-34], has some very attractive features. It results from a minor modification of 
the (WHT) h . The signal flowgraph for the R T is identical to that of the ( W H T ) h 

except that the absolute value of the output of each stage of the iteration is taken 
before feeding it to the next stage (Fig. 10.24). The R T is not an orthogonal 
transform as no inverse exists. The signal can be recovered from the transform 
sequence with the help of additional data [V- l ] . The transform has some 
interesting properties (apart from its computational simplicity), such as 
invariance to circular shift, to reflection of the data sequence, and to a slight 
rotation of a two-dimensional pattern. It is applicable to both binary and analog 
inputs and can be extended to multiple dimensions. The algorithm based on the 
flowgraph shown in Fig. 10.24 can be implemented in TVlog2TV additions and 
subtractions (where TV is the dimension of the input data and is an integral power 
of 2) and has the in-place structure. Improved algorithms for computation of the 
RT have been developed by Ulman [U- l ] and Kunt [K-22]. It has been applied 
to the recognition of hand- and machine-printed alphanumeric characters 
[R-34, W-3, N-9, N-10] , including Chinese characters, and also to phoenemic 
recognition [B-19] and to scene matching [S-36]. Feature selection, recognition, 
and classification have to be carried out in the R T domain because the RT has no 
inverse. 

The properties of R T as developed by Reitboeck and Brody [R-34] are as 
follows: 
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Data sequence 

x( ) 

0 

Transform sequence 
X R T ( ) 

0 

Notation 

A + B| B @ — — ^ | A - BJ 

Fig. 10.24 Signal flowgraph for the rapid transform for N = 8 [R-34] . 

(i) Circular Shift Invariance The R T is invariant to circular shift of the 
data sequence (Fig. 10.25): 

RT{jc(0)jc(1) • • • * ( # - 1)} 

= R T { x ( / ) x ( / + 1)- • • x(N - l ) x (0 ) x ( l ) • • • * ( / - 1)} 

(ii) Reflection Invariance The R T is invariant to reflection of the data 
sequence: 

RT { x (0 ) x ( l ) • • • x(N - 1)} = RT{x(N - l)x(N - 2) • • • x ( l ) x (0)} 

(iii) Periodicity of the RT Components Periodicity in the data sequence or 
in the pattern domain corresponds to a null subspace (all zeros) in the R T 
domain. A null range or subspace in the data sequence or in the pattern domain 
results in periodicity in the R T domain (Figs. 10.26 and 10.27). 
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(iv) Invariance to Small Rotation and Inclination The R T is invariant to 
inclination and small rotation (10°-15°) of the input pattern as long as the 
general shape of the input pattern is preserved. 

Wagh and Kanetkar [W-18, W-19, W-20, W-21, W-22] have further 
developed the properties of the R T and extended it to a class of translation 
invariant transforms. Because the R T involves only additions and subtractions 
and has a fast algorithm, its implementation is very simple. Because of its 
invariance to circular shift, slight inclination, and pattern rotation, the R T 
appears to be a valuable tool in character recognition. Burkhardt and Muller 
[B-41] have developed additional translation invariant properties of the RT. 

10.13 Summary 

In this chapter we developed a number of discrete transforms, including the 
generalized (GT) r and modified generalized (MGT),. transforms. The family of 
the (GT) r span from the ( W H T ) h to the D F T . The circular shift invariant power 
spectra and the phase spectra of the (GT) r and (MGT) r were found to be 

Table 10.5 

Approximate N u m b e r of Arithmetic Operat ions (Real or Complex) Required for 
Fast Implementat ion of Various Discrete Transforms 0 

N o . of arithmetic operat ions required 
Transform — 

Real Complex 

H T 2(N- 1) 
R T N\og2N) 

} additions or subtractions 
W H T N\og2N) 
(HHT) i 4(N/2 - 1) + N = 37V - 4 
( H H T ) 2 8(AT/4 - 1) + 2N = 4N - 8 
( H H T ) 3 16(JV/8 - 1) + 3N = 5N- 16 
(DLB) N\og2N (integer arithmetic) 
( H H T ) r 2r+1(N/2r - 1) + rN = [(r + 2)N - 2r+1] 
(SHT), (r + 2 ) 7 V - 2 r + 1 

ST M o g 2 # + ( 2 W - 4 ) 
C H T 3N-4 
D F T N\og2N 
D C T N\og2N 
D S T 2Nlog2(2N) 
K L T N2 N2 

a An arithmetic operat ion is either a multiplication or an addit ion (sub
traction). N o t e that the R T and W H T require additions only. The K L T has no 
fast implementat ion except for certain classes of signals. The arithmetic 
operations required for the K L T can be real or complex depending on the 
co variance matrices. Reference [A-45] lists the arithmetic operat ions required 
for image processing based on various transforms. 
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identical. These spectra can be computed much faster using the ( M G T ) r rather 
than the (GT),.. The complexity (both software and hardware) of these 
transforms increases as r varies from 0 through L — 1. The Karhunen-Loeve 
transform (KLT), which is optimal under a variety of criteria, was defined and 
developed. Various other transforms such as the slant (ST), Haar (HT), 
rationalized Haar (RHT), and rapid (RT) transforms were also described and 
fast algorithms leading to their efficient implementation were outlined. The 
computational complexity of these transforms is compared in Table 10.5. All 
these transforms can be extended to multiple dimensions where such properties 
as fast algorithms and shift-invariant spectra are preserved. The discrete 
transforms described in this chapter have been utilized in digital signal and 
image processing fields and also have been realized in hardware. 

P R O B L E M S 

1 F r o m Fig. 10.2 and Table 10.2 obtain the matr ix factors for the (GT) r , r = 0, 1, 2, 3. Show that 
these matrix factors can be obtained from (10.2) and (10.3). Verify that these matr ix factors for r = 0 
and 3 correspond to those for the ( W H T ) h and D F T , respectively. 

2 Using (10.2) and (10.3) develop the matr ix factors for the ( G T ) r for r = 0, 1, 2 and TV = 8. Based 
on these sparse matr ix factors develop the signal flowgraph (see Fig. 10.2) for the fast 
implementat ion of the (GT) r . 

3 Repeat Problems 1 and 2 for the ( M G T ) r (See Figs. 10.3-10.5.) 

4 Obta in the shift matrices for the ( M G T ) r analogous to (10.12) and (10.13). 

5 It is stated in Section 10.6 that the circular shift invariant power spectra of ( G T ) r and ( M G T ) r are 
one and the same. Verify this. 

6 Verify (10.18). 

7 Develop the 8-point transform matrices for the ( G T ) r for r = 1, 2 and the ( M G T ) r for r = 1. 
Show that [G 2 (3) ] is the D F T matrix whose rows are rearranged in BRO. 

8 Prove (10.30). 

9 It is stated that the eigenvalues and eigenvectors of the covariance matr ix of a first-order M a r k o v 
process can be generated recursively. See the references [P-l 7, P-5] and show this technique in detail. 

10 Eigenvalues and Eigenvectors of the Covariance Matrix Fo r the zero-mean r andom process 

(P10.10-1) 

eigenvalues and eigenvectors of the covariance matr ix are given [P- l7] by 

^ = (1 - p 2 ) / ( 1 - 2 p c o s c o w + p 2 ) 

and 
[K(L)]lm = [2/(N + k2J\ sm[ojm(j - %N - 1)) + \(m + 1)TT] (P10.10-2) 

j,m = 0,1,... ,N — \, respectively, where the ojm are the positive roots of the transcendental 
equation 

tan(Afo) = (1 - p2) sin co/(cos oo - 2p + p2 cos co) (P10.10-3) 

11 Show that the eigenvalues and eigenvectors of a symmetric tridiagonal Toeplitz matr ix 

1 - a 0 
- a 1 - a 

Q 
1 - a 

(P10.11-1) 
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are given [J-4] by 

Xm = 1 - 2acos((m + l)n/(N + 1)) 

and 

[K(L)],,„ = I — j sm 
1 / 2 "(7+ l)(m + \)n 

N + 1 
(P10.11-2) 

7,m = 0 , 1 , 1, respectively, where a = p/(\ + p2) is the adjacent element correlation 
coefficient of a Markov process. 

12 77ze Discrete Sine Transform (DST) This transform was originally developed by Jain [J-4, J-5, 
J-6, J-7, J-14] and is described by (P10.11-2). Show that the D S T can be implemented efficiently by 
taking the imaginary par t of the F F T of an extended sequence [J-4, J-5, J-6, J-7, J-8, J -9] . 

13 Refer to [P-19, P-20, D-3] and derive (10.32). 

14 Asymptotic Equivalence of Matrices Two matrices A and B of size N x N are said to be 
asymptotically equivalent [G-10] provided that 

\\A\\, \\B\\ ̂  oo and lim \A - B\ = 0 (P10.14-1) 

In (P10.14-1) || || denotes the operator or strong n o r m : 

P | | = max [ ( x * T ^ * L 4 x ) / ( x * T x ) ] 1 / 2 (P10.14-2) 
X 

where x T = {x(0), x ( l ) , . . .,x(N — 1)}, and | | denotes the normalized Hilbert-Schmidt or weak 
n o r m : 

fl \ l / 2 / l N-l N-l \ l / 2 

\A\ = [-tv[A^A]) = - E I Kk\2) (PlO.14-3) 

where alkJ, k = 0 , 1 , . . . , N - 1, are the elements of A. Show that [H-16, P-18, P-40, K - 3 4 ] : 
(i) The D C T and D F T are both asymptotically equivalent to the K L T of a first-order Markov 

process and the rate of convergence is of order N~1/z. 
(ii) The D C T offers a better approximation to the K L T of a first-order Markov process than the 

D F T for all dimensions and correlation coefficients p. 
(iii) The D C T is asymptotically equivalent to the K L T for all finite-order M a r k o v processes 

[H-16] . 
(iv) The D C T is asymptotically optimal compared to any other transform for all finite-order 

Markov processes. Note that the K L T is the optimal transform as it completely decorrelates the 
signal in the transform domain. 

(v) For any finite-order Markov process the performance degradation of a discrete t ransform in 
both coding and filtering is a direct measure of the residual correlation that can be represented by the 
weak norm of the covariance matrix in the transform domain with diagonal elements set equal to 
zero. 

15 Show that the I D C T of an Appoint transform vector can be implemented using a 2N-point F F T . 
See (10.42). 

16 Develop the D C T algorithm of Haralick [H-15] . 

17 The Even DCT Show that an alternative way of expressing (10.42) [M-14, W-26] is 

c(k) f-jkn\ N ' x 

XM = ^ c x p \ ^ - J I x(m)WfN, k = 0,l,...,N-\ (P10.17-1) 

where x(— 1 — m) = x(m), m = 0, 1,..., N — I. This is an even-length extension of the original 
sequence x(m), m = 0, 1 , . . . , N — 1. For example, the even-length extension of the sequence 
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{x(0), 41), x(2)} is {x(2), x ( l ) , x(0), x{0), x ( l ) , x(2)}, which has an even symmetry. Both (10.42) and 
(P10.17-1) are called the even D C T of x. 

18 The Odd DCT As in Problem 17, an odd length extension of x{m), m = 0 , 1 , T V - Heads to 
the odd D C T . For example, the odd-length extension of the sequence (x(0), x ( l ) , x(2)} is {x(2), x ( l ) , 
x(0), x ( l ) , x(2)}, which has even symmetry about x(0). Show that the odd D C T of x is defined by 

XJJc) = — X x(m)WfN_„ £ = 0, 1 , . . . , 7 V - 1 (P10.18-1) 
TV m= -<JV- 1 ) 

where x ( - m) = x(m), m = 0, 1 , . . . , N - 1 (See Fig. 10.28). 

c ( k ) 

x(N-l), . . . ,x(2),x(1),x(0),x(1),... ,x(-N-1) 

(2N-1 ) -po in t » , ( 
FFT •0 

odd DCT 

Fig. 10.28 Computa t ion of odd D C T by odd-length extension of x. 

19 The 2-D DCT Given a 2-D array x(mum2), my = 0 , 1 , . . . , ^ - l a n d r a 2 = 0 , 1 , . 
the 2-D D C T corresponding to the 1-D D C T (see (P. 10.17-1)) can be described as 

,7V, 

c\k) 
Xc(k1,k2) = exp 

N,N2 ~ 2A7V^ + Tvj 

N I - 1 N 2 - l 

mi = -JVi m2=-N2 

kx = 0 , 1 , . . . , ^ ! - 1, k2 = 0 , 1 , . . . , 7 V 2 - 1 (P10.19-1) 

where x( — (1 4- m^, — (1 + m2)) = x( — (1 + m j , m 2 ) = x(m1, — (1 + m2)) = x{mum2) is the 
even-length extension of x ( m l 5 m2). This is the even 2-D D C T of x ( m 1 ? m2). This implies that the even 
D C T technique can be extended to multiple dimensions. Develop expression similar to (P10.19-l)for 
the odd D C T . 

20 Chirp Implementation of the Even DCT The even D C T described by (P10.17-1) can be 
expressed 

2c(k) 
Xc{k) = — - R e 

TV 

N-l 

2c(k)N~1 

X x(m)cos TV 

i = 0 

"(2m + \)kn 

_ 27V . 
(P10.20-1) 

Show that the even D C T can be implemented by a Chirp Z transform ( C Z T ) 
[W-26, R-39] using the expression 

2c(k) 
Xc(k) = —-Re 

TV 
exp 

-jn k 

2N . 
exp 

N~1 l-jnm 
X x(m)exp( _ /exp 

m = 0 

A: = 0 , 1 , 

27V 

-jnk: 

2N 

'jn(m — k)2 

27V 

, 7 V - 1 (P10.20-2) 

where the identity 2mk = m2 + k2 — (m — k)2 is used. Develop a C Z T algori thm for implementing 
the odd D C T . 
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21 It was stated in Section 10.9 that Ahmed and Chen [A-39] developed a Cooley-Tuckey type 
algorithm for the ST. Derive this algori thm and develop the flowgraphs for the ST and its inverse 
when TV = 16. 

22 Using (10.47) and (10.50) develop the matrix factors for [£(4)] . Based on this, sketch the 
flowgraphs for the ST and its inverse and compare with those in Problem 21 . 

23 Show that an ST power spectrum, invariant to circular or dyadic shift of a sequence cannot be 
developed. 

24 A Cooley-Tukey type algori thm is developed for the H T by Ahmed et al. [A-40]. Based on this 
algorithm develop the flowgraphs for H T and its inverse when TV = 8 and 16. 

25 Repeat Problem 23 for the H T . 

26 Explain why the Cooley-Tukey type algorithm developed for the H T is also applicable to the 
R H T . 

27 Some of the properties of the R T are listed in Section 10.12. Verify that they are true. 

28 Show how a sequence can be recovered from the inverse R T [ V - l ] . 

29 Sketch the variance distribution similar to Fig. 10.10 for a first-order M a r k o v process when 
p = 0.95 and TV = 16. 

30 Discrete D Transform (DDT) The D D T , developed by Dillard [D-2] , requires only additions. 
For nonnegative data, such as image array data, the D D T can be implemented using C C D s or 
noncoherent optical methods [D-2, D-6 ] . The D D T matrix is obtained by replacing the - 1 entries 
in ( W H T ) W or ( W H T ) h matrices by zeros. Develop the relationship between the transform 
coefficients of the D D T and the W H T . 

31 Slant-Haar Transform A hybrid version of ST and H T called the s lan t -Haar transform 
(SHT) r has been developed [K-10, R-36] . The (SHT) r and its inverse are defined as 

X s h r = (1/TV) [Sh r (L)] x and x = [Sh r (L)] T X s h r , r = 0 , 1 , . . . , L - 1 

respectively, where X s h r is the (SHT) r vector and [Shr(L)] = [S(r)] ® [Ha(L - r)] is the (SHT) r 

matrix. Develop the (SHT) r for r = 1 and 2 and TV = 16. Obtain the sparse matr ix factors and the 
corresponding flowgraphs for the (SHT) r and its inverse. 

32 Show that the power spectrum of the (SHTL described in Problem 31 is invariant to dyadic shift 
of x. Determine the groupings of coefficients that are invariant. 

33 Hadamard-Haar Transform Repeat Problems 31 and 32 for the H a d a m a r d - H a a r transform 
( H H T ) r [R-8, R - l l , R-48, W-37] where the ( H H T ) r and its inverse are defined as 

X h h , = i [Hh r (L) ] x and x = [Hh r (L)] T X h h r , r = 0 , 1 , . . . , L - 1 
TV 

respectively, where [Hh r (L) ] - [Hh(r)] (x) [Ha(L - r ) ] . 

34 A rationalized version of the ( H H T ) r that is similar to the R H T , called the ( R H H T ) r , has been 
developed [R-38, R-57] . Develop the ( R H H T ) r and its inverse for r = 1 and 2 and TV = 16. Show the 
corresponding flowgraphs. 

35 Using pipeline architecture, real time digital processors for implementing R H T have been 
designed and built [L-10, R-37] . They require only adders, subtracters, and delay units. Design the 
corresponding processors for implementing ( R H H T ) r for r = 1 and 2 and TV = 16. 

36 Asymptotic Equivalence of Discrete Transforms to KLT Hamidi and Pearl [H-16] have 
compared the effectiveness of the D C T and the D F T in decorrelating first-order M a r k o v signals. 
The fractional correlation left undone by a transform is a measure of the mean residual correlation 
still retained in the transform vector. Develop characteristics similar to that shown in Fig. 1 of 
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[H-16] for other transforms, such as the DST [Y-16], W H T , ST, and H T . Verify that there is 
asymptotic equivalence of these transforms to the K L T . 

37 Complex Haar Transform A complex version of the H T called the complex H a a r transform 
(CHT) [R-45, R-60] has been developed. Develop the flowgraphs for the C H T and its inverse when 
N = 16. Modify these flowgraphs such that the in-place (Cooley-Tukey type) property can be 
restored. Show that a C H T power spectrum invariant to circular shift of a sequence cannot be 
developed. 

38 Several properties of R T are outlined in Section 10.12. (i) If the 

then what is the 

2-D R T of 

2-D R T of 

1 2" "4 2 
is 

_0 1_ _2 0_ 

(ii) If the 

2-D R T of 

0 1 2 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 12 4 0 0 
0 1 0 1 

is 
4 4 0 0 

1 1 1 1 
is 

0 0 0 0 
0 1 0 1 0 0 0 0 

then what is the 

2-D R T of 
1 1 

.0 1. 

(iii) If the 

2-D R T of 

then what is the 

(iv) If the 

2-D R T of 

then what is the 

1 0 2 0 4 4 2 2 
0 0 0 0 

is 
4 4 2 2 

0 0 1 0 
is 

2 2 0 0 
0 0 0 0 2 2 0 0 

2-D R T of 

1 1 3 3 
1 1 3 3 
0 0 2 2 
0 0 2 2 

"1 2 

0 1. 

24 0 16 0 
0 0 0 0 
8 0 0 0 
0 0 0 0 

2-D R T of 
1 3 

.0 2. 

Wha t conclusions can you draw from these regarding the properties of R T ? (See also Figs. 
10.25-10.27.) 
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39 Transforms Using Other Transforms Jones et al. [J- l2] have shown that any discrete 
transform can be computed by means of any other discrete transform and a conversion matrix 
provided the two transforms have an even/odd structure. The even/odd property implies that one 
half of the row vectors of the transform matrix are even vectors and the other half are odd vectors. 
For example, the ST is an even/odd transform (see (10.46b)). The row vector (1/^/21X7, 5, 3, 1, — 1, 
— 3 , - 5 , - 7 ) is an odd vector, whereas ( l / x / 5 ) ( 3 , 1, — 1, — 3, — 3, — 1, 1, 3) is an even vector. 
When the rows of the transform matrices are rearranged such that the first half represents the even 
vectors with the remainder representing the odd vectors, the conversion matrix is sparse. Hein and 
Ahmed [H-41] have specifically shown this for the D C T . Develop the conversion matrix for 
computing the ST from the ( W H T ) W for TV = 8 and 16. Compare the computat ional complexity of 
this with that based on sparse-matrix factorization of [S{L)] (see (10.50)). 

40 Repeat Problem 39 when ST is replaced by D F T . 

41 DST Computation with Real Arithmetic The D S T and its inverse can be defined (see Problem 
12) as 

/ 2 . Urn + l)(k + 1)TA 
X(k) = / Y x(m) sm -

V 7V+ 1 m% \ TV + 1 J 

and 

x(m)= / V X(k)sm( (PlO.41-1) 

VTV + 1 k = 0 V 0 • / 

m, k = 0 , 1 , . . . , TV — 1, respectively, where x(m) and X{k) are the TV-dimensional da ta and transform 
sequences, respectively. An improvement over the Jain's algorithm [J-4, J-5, J-6, J-7] for efficient 
implementation of the D S T is based on the sparse-matrix factorization of the D S T matr ix recursively 
[Y-15]. This technique, which parallels that of Chen et al. [C-20] for the D C T , involves real 
arithmetic only. Derive this algorithm in detail and develop the D S T flowgraph for TV = 15. 

42 Naras imha and Peterson [N-12] have shown that an Appoint D C T can be implemented with an 
Appoint D F T . Show that an TV-point D S T can be implemented with an TV-point D F T . 

43 Hein and Ahmed [H-41] have discussed the hardware implementation of a real time image 
processor for image coding based on a ( W H T ) W or D C T that is computed th rough the ( W H T ) W . 
Investigate if a similar development can be carried out for the ( W H T ) W and D S T [Y-16]. 

44 Bu rkha rd t and Muller [B-41] show that RT{[8 3 5 1] T } = RT{ [3.5 7.5 0.5 5.5] T } = [ 1 7 9 5 1 ] T . 
Discuss this structural ambiguity of the R T , and outline the various translation invariant properties 
of the R T . 

45 An efficient algorithm for computing a 14-point D C T has been developed by Naras imha and 
Peterson [N-33] . Develop a similar fast algorithm for the 15-point D S T [S-39]. 

46 Jones et al. [J- l2] have developed a " C mat r ix" which approximates the conversion matrix for 
the D C T [H-41] when TV = 8 (see Problem 39). Extend the " C mat r ix" for TV = 16, and compare its 
performance [S-40] with the D C T in terms of the figure of merit, normalized energy versus sequency 
[J-12] and mse for scalar filters (see Fig. 8.4 of [A- l ] ) . 

47 Repeat Problem 36 for the C matr ix transform (see Problem 46) [S-40]. 
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N U M B E R THEORETIC T R A N S F O R M S 

11.0 Introduction 

Recently, number theoretic transforms (NTT) have been developed that have 
applications in digital filtering, correlation studies, radar matched filtering, and 
the multiplication of very large integers [R-54, A-58, A-59, A-61, J-10, K-31, 
N-20, N-21 , N-25, N-26, N-28, R-26, R-69, R-74, R-75, V-4, V-5, R-77, 
R-26]. These applications are based on digital convolution, which can be 
implemented most efficiently by N T T with some constraints. The arithmetic to 
accomplish the N T T is exact and involves additions, subtractions, and bit shifts. 
As in the case of the D F T , fast algorithms exist for the NTT. These transforms 
are defined on finite fields and rings of integers with all arithmetic performed 
modulo an integer. The development of the N T T has been followed by hardware 
design and the building and testing of a digital processor [M-23]. Baraniecka 
and M i e n [B-39] have presented two additional hardware structures that 
implement the N T T using the residue number system [B-39]. 

The basic properties of integers are described in Chapter 5. Number theory 
will be expounded further in the following sections as we lead up to the definition 
of the NTT. The family of N T T includes Mersenne, Fermat, Rader, pseudo-
Mersenne, pseudo-Fermat, complex Mersenne, and complex Fermat transforms 
[A-61, R-72, N-19, N-20, N-21 , N-25, N-26, N-35, V-4, V-5]. After an 
exposition of these transforms, their potential advantages and limitations will be 
outlined. 

11.1 Number Theoretic Transforms 

Number theoretic transforms are defined over a finite ring of integers and are 
operated in modulo arithmetic. They are truly digital transforms and their 
implementation involves no round-off error. The circular convolution described 
by (5.93) can be obtained by the N T T with perfect accuracy, which, however, can 
impose constraints on word lengths. 

The implementation of an N T T requires additions, subtractions, and bit 
shifting, but usually no multiplications. Some have fast algorithmic structures 

417 
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similar to those of the F F T . To understand the N T T requires the basic 
knowledge of number theory developed in Chapter 5 together with some 
concepts from modulo arithmetic. These are described next. 

11.2 Modulo Arithmetic 

Modulo arithmetic was described in Section 5.1. In this arithmetic all basic 
operations such as addition, subtraction, and multiplication are carried out 
modulo an integer M. Division, however, is undefined; its equivalent in modulo 
arithmetic is multiplication by the multiplicative inverse. Commutative, asso
ciative, and distributive properties hold in modulo arithmetic. 

Recall that Euler's phi function and Euler's theorem are described by (5.1) and 
(5.7), respectively, and (5.8) stated that the order of a modulo M is the smallest 
positive integer N such that 

aN = 1 (modulo M ) (11.1) 

If TV = 4>{M) then a is a primitive root. If M is prime and a is a primitive root, 
then the set of integers {a1 mod M, I = 0 , 1 , . . . , M — 2} is the total set of nonzero 
integers in ZM. 

As we shall show, N T T are based on roots of order N modulo M , and these 
roots do not necessarily have to be primitive roots. For example, let M = 17. We 
then have 0(M) = 16. Because the order of 2 modulo 17 is 8,2 is a root but not a 
primitive root of 17, and we shall show that it can be used to generate an 8-point 
transform. On the other hand, 3 is a primitive root of 17 as 

3 1 6 = 1 (modulo 17) 

and the order of 3 modulo 17 is 16. The set {3l mod 17, / = 0 , 1 , . . . , 15} is the set 
of all nonzero integers in Z 1 7 , which may be reordered to produce 
{ 1 , 2 , 3 , 4 , . . . , 16}. Since 3 is a root of order 16 modulo 17, we shall show that it 
can be used to generate a 16-point transform. 

Note that Z 1 7 i s a field and that in general ZM is a field if M i s a prime number. 
Since the conditions to be a field are more stringent than the conditions to be a 
ring, a field is also a ring. Thus there are rings that support the N T T and that are 
also fields. However, the general requirement for the N T T is that ZM be a ring of 
integers. 

R I N G OF INTEGERS ZM Let M be a composite number. Then Z M is a ring and not 
a field. Furthermore, if M has a primitive root, this root generates only (j)(M) 
integers in the ring. Similarly, a root of order N generates N integers in the ring, 
where N\(f)(M). 

In the following, let gcd(M, TV) = 1. If M i s a composite number represented 
by its unique prime factored form as 

M=pr

1Y2

2'"Pril (H.2) 

where the pt are distinct primes, and a, = S- (modulo M ) , then the axiom for 
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congruence modulo a product (see Section 5.1) implies 

A = 6 (modulo pr}\ i= 1 , 2 , . . . , / (11.3) 

In this case, oc is a root of order TV in ZM if and only if it is a root of order TV in each 
ZMi, Mt = p\\ that is, aN = 1 (modulo Z M i . ) [A-61] 

a N = 1 (modulo p\% z = 1 ,2 , . . . , / (11.4) 

Since TV is relatively prime to M, it has a multiplicative inverse TV"1. Also TV 
divides (/>(.M), denoted N\<fi(M), and we have 

. N\<t>(ft\ i = l , 2 , . . . , / (11.5) 

But (5.126) yields 

W ) = ^ t _ 1 ( A - l ) (11-6) 

Hence 

Nlpr'iPi-lX i = l , 2 , . . . , / (11.7) 

and since /?£ is a prime number, we conclude that N\(pt — 1). Define 

0(M) = gcd{Pl - l,p2 - 1 , . . . 9 ? l - 1} (11.8) 

Note that N\gcd{p1 — l,p2 — 1 , . . . ,PI — 1}, so that a necessary and sufficient 
condition for the existence of an TV-point N T T is that 

N\0(M) (11.9) 

In practice it is often easier to verify the following three necessary and 
sufficient conditions for the existence of TV-point N T T defined modulo a 
composite number M [E-22]: 

1. a* = 1 (modulo M) 
2. TVTV"1 = 1 (modulo M) 
3. gcd{a' — 1,M} = 1 for all / such that TV// is a prime number. 

As an example, let M = p2 = 32 and a = 8. Then 8 is a root of order 2 modulo 
9, TV = 2, gcd(M,TV) = 1, TV"1 = 5 (modulo 9), and N\(p - 1). 

CIRCULAR CONVOLUTION PROPERTY Circular convolution of periodic sequences 
has been described in Chapters 3 and 5. If g(n) and h(n), n = 0 , 1 , 2 , . . . , TV — 1, 
are two periodic sequences with period TV, their circular convolution is a periodic 
sequence a(i), i — 0 , 1 , 2 , . . . , TV — 1, with period TV described (see (5.93)) by 

a(i) = \\(i-n)g(n) (11.10) 
71 = 0 

If the discrete transforms of the sequences g(n), h(n), and a(n) can be related as 

T[a(n)] = T[h(n)]T[g(n)] (11.11) 

then we say that the transform has the circular convolution property (CCP). 
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Hence the CCP states that the transform of the circular convolution of two 
sequences is the product of the transforms of the two sequences. Certainly, the 
D F T has this property (see Table 3.2). Circular convolution can be obtained by 
implementing (11.11) and 

a(n) = T-'iTlain)]] = T-\T[h(n)])(T[g(n)]) (11.12) 

In (11.11) and (11.12) T and T~l refer to forward and inverse transform 
operations, respectively. 

11.3 DFT Structure [A-59, A-61] 

If an TV-point sequence x(n) and its transform X(k) can be related by 
J V - 1 

X(k) = £ x(n)oink, k = 0 , 1 , . . . ,TV - 1 

(11.13) 
N - l V J 

x(n) = T V - 1 X X(k)a~n\ n = 0 , 1 , . . . ,TV - 1 
then the transform, whose basis functions are anh, is said to have a D F T 
structure. In this case both the forward and inverse transforms have similar 
operations. If a = exp(-y27i/TV), then (11.13) reduces to the D F T [see (3.4)] 
except that the factor TV - 1 is moved from the equation determining X(k) to the 
equation determining x(n). In (11.13), T V " 1 represents the multiplicative inverse 
in the field in which the arithmetic is carried out (see Section 5.1). An TV-point 
transform having the D F T structure has the CCP, provided T V - 1 exists, and a is 
a primitive root of order TV. When all the transform operations are carried out in 
a field of integers modulo M, the transform belongs to the NTT. Implementa
tion of the N T T involves digital arithmetic, and the sequences are limited to 
integers. This restriction, however, poses no particular problem: The data are 
processed in digital computers and processors with some finite precision, and 
hence the sequences can be considered integer sequences with an upper bound 
determined by the number of bits used to represent the magnitude of the 
numbers. 

Circular convolution of two integer sequences x(n) and h(ri) by the N T T 
results in an output sequence y(n) that is congruent to the convolution of x(n) 
and h(n) modulo M. An TV-point transform having the D F T structure will 
implement the circular convolution in modulo arithmetic if and only if (11.9) is 
satisfied [A-61]. The maximum transform length T V m a x is therefore 

T V m a x = 0 ( M ) (11.14) 

In a ring of integers Z M , as — k = M — k (modulo M), conventional integers 
can be uniquely represented only if their absolute value is less than M/2. Since 
the convolution is implemented in modulo arithmetic, so long as the magnitude 
of the convolution of two sequences does not exceed M/2, the N T T can yield the 
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same result as that obtained using ordinary arithmetic. In digital filtering 
applications this limit implies that an upper bound on the peak magnitude of 
a(n) be placed such that (see (11.10)) 

where h(n), g(n), and a(n) represent the unit sample response, input sequence, 
and output sequence, respectively, of the digital filter. This constraint does not 
preclude any overflow during the intermediate stages of the convolution 
operation by the NTT. Scaling of one or both of the two sequences g(n) and h(n) 
may be required to meet this constraint, which is analogous to overflow 
constraints. The N T T having both the D F T structure and the C C P can be 
implemented by fast algorithms similar to that of the F F T , provided TV is highly 
composite. 

N T T CONSTRAINTS Although there are a large class of N T T that can implement 
circular convolution, only a few of them are computationally efficient when 
compared to the D F T and other techniques. Three constraints dictate the 
selection of N T T for discrete convolution: 

(i) TV should be highly composite so that the N T T may have a fast 
algorithm, and it should be large enough for application to long sequence 
lengths. 

(ii) Multiplication by powers of a [see (11.13)] should be a simple 
operation. If a and its powers have a simple binary representation, then this 
multiplication reduces to bit shifting. 

(hi) To simplify modulo arithmetic, M should have property (ii) and should 
be large enough to prevent overflow. 

(iv) Another constraint on the N T T is that the word length of the arithmetic 
be related to the maximum length of the sequence. For example, for the F N T , 
when a = Jl, TV = 2t+2 = 4b = 4 times the word length. When a = 2, TV = 2t+1 

= 2b = 2 times the wordlength. This constraint can, however, be minimized by 
adopting multidimensional techniques for implementing one-dimensional con
volution [A-58]. 

SELECTION OF M, TV, A N D a Selection of the modulus M, sequence length TV, and 
the order of a modulo M is based on meeting the above constraints so that the 
efficient N T T can be developed. For example, if M is even, then by (11.14) the 
maximum possible sequence length is 1, a case of no interest. When M is a prime 
number, T V M A X = M — 1. Finally, when M = 2k — 1 and k is a composite number 
k = PQ, where P is a prime number and Q is not necessarily a prime number, 
then 

(11.15) 
k = 0 

(2P - 1 ) | ( 2 P G - 1) (11.16) 

and N, max 1. 
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11.4 Fermat Number Transform 

If M = 2k + 1 and k is odd, then 31(2* + 1). Hence T V m a x = 2. When k is even 
and k = s2\ where s is an odd integer and t is an integer, 

( 2 2 t + l ) | ( 2 s 2 t - h l ) (11.17) 

and the sequence length is governed by 2 2 t + 1. For integers of the form 
M = 22t + 1, called Fermat numbers, the N T T reduces to the Fermat number 
transform (FNT). Ft'is the tth Fermat number, defined as 

Ft = M = 22t + 1 = 2b + 1, b = 2l (11.18) 

The first few Fermat numbers are 

F0 
= 2° + 1 = 3 

Fx = 2 2 + 1 = 5 

F2 
= 2 4 + 1 = 17 

F3 
= 2 8 + 1 = 257 

F4 
= 2 1 6 + 1 = =65537 

F5 
= 2 3 2 + 1 = =4294967297 

(11.19) 

Of all the Fermat numbers only F0-F4 are prime. The F N T and its inverse can be 
defined as 

x{n) = 

N- 1 

£ x(n)an 

\-n = 0 

N-l 
-nk 

modFt, k = 0,l,...,N- 1 

(11.20) 

T V " 1 X Xf(k)a~ 
k=0 

modFt, n = 0,1,...,TV- 1 

where TV is the order of a modulo F f : a N = 1 (modulo Ft). All indices and 
exponents in (11.20) are evaluated modulo TV. Symbolically (11.20) can be 
expressed 

Xf(k) = FNT[x(«) ] , x(n) = I F N T [ Z f (fc)] (11.21) 

Table 11.1 

Integral Powers of a (a = 2 , 3 , 4 , 6 ) m o d [ A - 6 1 ] 

N 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2N 1 2 4 8 16 15 13 9 1 2 4 8 16 15 13 9 1 
3N 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1 
4N 1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1 
6N 1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1 
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where I F N T stands for inverse FNT. Several possible values exist for oc and TV, 
depending on Ft. For t = 0 , 1 , . . . , 4, 0(Ft) = 22t = 2b and N = 2 m , m ^ b\ then 
when oc = 3 the order of oc is 2 b and 7 V m a x = 2b (see Table 11.1). 

Agarwal and Burrus [A-59] have discussed in detail the hardware implemen
tation of modulo arithmetic for the FNT. This arithmetic can be illustrated with 
the following example: 

Consider F2 = M = 17, and a = 2. Thus N = 8, because 2 is of order 8 
modulo 17. The F N T matrix is then 

[a" k ] = 

" 1 1 1 1 1 1 1 1 " 
1 2 2 2 2 3 2 4 2 5 2 6 2 7 

1 2 2 2 4 •26 2 8 2 i o 2 1 2 2 1 4 

1 2 3 2 6 2 9 2 1 2 2 1 5 2 1 8 2 2 1 

1 2 4 2 8 2 1 2 2 i e 2 2 0 2 2 4 2 2 8 

1 2 5 2 1 0 2 1 5 2 2 0 2 2 5 2 3 0 2 3 5 

1 2 6 2 1 2 
2 1 8 2 2 4 2 3 0 2 3 6 2 4 2 

_ 1 2 7 
2 1 4 2 2 1 2 2 8 2 3 5 2 4 2 2 4 9 _ 

(11.22) 

This matrix is symmetric, and since ocnk = ocn' (11.22) reduces to 

[a n f c ] = 

1 1 1 1 1 1 1 1 _ 

1 2 2 2 2 3 2 4 2 5 2 6 2 7 

1 2 2 2 4 2 6 1 2 2 2 4 2 6 

1 2 3 2 6 2 2 4 2 7 2 2 2 5 

1 2 4 1 2 4 1 2 4 1 2 4 

1 2 5 2 2 2 7 2 4 2 2 6 2 3 

1 2 6 2 4 2 2 1 2 6 2 4 2 2 

1 2 7 2 6 2 s 2 4 2 3 2 2 2 

(11.23) 

The inverse F N T matrix is J V _ 1 [ a ~ w f c ] where T V - 1 = 15, since 8 1 5 = 1 
(modulo 17). Here a~nk = a ( _ n / c m o d 8 ) . The matrix [a""*] can be obtained by 
adding a negative sign to the integer powers of 2 in (11.23). In this ring 2 2 = 4, 
2 3 = 8, 2 4 = 16, 2 5 = 15, 2 6 = 13, and 2 7 = 9 (modulo 17). Also 2 " 1 = 9, 
2~2 = 13, 2 " 3 = 15, 2 ~ 4 E E 16, 2 " 5 E E 8, 2 " 6 E E 4, and 2 " 7 = 2 (modulo 17). 
The F N T matrix and its inverse can therefore be simplified respectively to 

1 1 1 1 1 1 1 _ 

2 4 8 16 15 13 9 
4 16 13 1 4 16 13 
8 13 2 16 9 4 15 

16 1 16 1 16 1 16 
15 4 9 16 2 13 8 
13 16 4 1 13 16 4 
9 13 15 16 8 4 2 

(11.24) 
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i V - ^ o T ^ ] = 15 

1 1 1 1 1 1 1 " 
9 13 15 16 8 4 2 

13 16 4 1 13 16 4 
15 4 9 16 2 13 8 
16 1 16 1 16 1 16 
8 13 2 16 9 4 15 
4 16 13 1 4 16 13 
2 4 8 16 15 13 9 

(11.25) 

To illustrate the CCP of the F N T let the two sequences to be convolved be 
g T = {2, - 2 ,1,0} and h T = {1,2 ,0 ,0}. Considering (11.15) the choice of t = 2, 
F2 = 17, N = 4, a = 4 (see Table 11.1) is adequate to evaluate the convolution of 
g and h. The F N T and I F N T matrices [A-59, A-61] are 

[ocnk] = 

= 13 

1 1 1 ~ 1 1 1 1~ 
4 4 2 4 3 1 4 - 1 - 4 
4 2 4 4 4 6 1 - 1 1 - 1 
4 3 4 6 4 9 _ 1 - 4 - 1 4 _ 

1 1 1~ 
4 

16 
16 

1 
13 
16 

(modulo 17) 

13 16 4 _ 
_ 1 1 1 1 ™1 1 1 1~~ 

1 
1 

4 " 
4 " 

1 4 " 
2 4 -

2 4 - 3 

4 4 - 6 = 4-' 
1 
1 

- 4 
- 1 

- 1 
1 

4 
- 1 

_ 1 4 " 3 4 - 6 _ 1 4 - 1 - 4 _ _ 

~ 1 1 1 1"" 
1 
1 

13 
16 

16 4 
1 16 

(modulo 17) 

1 4 16 13 

The F N T of g is given by 

Gf = [ a "* ] g = 

~ 1 1 1 1~ ~ 2~ 
1 4 16 13 15 
1 16 1 16 1 
1 13 16 4 0 

_ 18~ ~ 1~ 
78 10 

243 5 
_ 2 1 3 _ _ 9 _ 

(modulo 17) 

Similarly = {3,9 ,16,10}. From the CCP of F N T , A({k) = G((k)Hf(k) and 
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Af

T = {3,90,80,90} E E {3,15,12,5} (modulo 17). The I F N T of A f yields a(n), the 
circular convolution described using (11.10) by 

a = N-^[ot-nk]Ac = (2,2,14,2) E E (2,2, - 3,2) (modulo 17) 

Observe that the overflows during the intermediate stages of modulo arithmetic 
have no effect on the final result. The circular convolution by (11.21) is exact, 
provided (11.15) is satisfied. F rom this example it is apparent that the concept of 
closeness of any two integers has no meaning in modulo arithmetic. Hence 
approximations such as truncation or rounding do not exist in this arithmetic. 

11.5 Mersenne Number Transform [R-54] 

Mersenne numbers are the integers given by 2P — 1 where P is prime. When M 
is a Mersenne number the N T T is called the Mersenne number transform 
(MNT). When a = — 2,N = Nmax = IP. (See Problem 28.) When a = 2, N = P, 
since 2P = M + 1 E E 1 (modulo M). Mersenne numbers, denoted here MP, are 
1 ,3 ,7 ,31 ,127 ,2047,8191, . . . . For a = 2 the M N T and its inverse can be 
defined respectively as 

XJk) = 

x(ri) = 

In (11.26), 

-n = 0 

P " 1 Y*m(*)2 
k=0 

m o d M p , k = 0 , 1 , . . . , P - 1 

m o d M p , « = 0 , 1 , . . . , P - 1 (11.26) 

p - 1 = Q where Q = MP - (MP - l)/P (11.27) 

Rader [R-54] has shown that the M N T satisfies the CCP (Problem 7) and has 
discussed hardware implementation for the M N T . Application of the CCP to 
(11.10) results in 

Am(k) = Hm(k)Gm(k), k = 0 , 1 , . . . , P - 1 (11.28) 

where 

HJk) = M N T [ A ( , i ) ] , GJk) = MNT [gf( , i ) ] , AJk) = M N T [ a ( « ) ] 

The I M N T of (11.28) yields 

p-1 

I h{i-n)g(n) 
n = 0 

m o d M p (11.29) 

which reduces to (11.10) provided \a(i)\ is bounded by MP/2. 
The M N T requires only additions and bit shifting. There is, however, no FFT-

type algorithm for the M N T since P is prime when a = 2 and since 2P is not 
highly composite when a = — 2. Circular convolution by the M N T requires two 
MNTs , one I M N T , and P multiplications. The limitation is that the sequence 
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length, P, or 2P, for P prime, is also the word length. As for the F N T , the 
convolution length can be increased by adopting multidimensional convolutions 
that require additional computation and storage. Some of these limitations can 
be overcome by pseudo- and complex pseudo-MNTs, which are the subject of 
Section 11.11 and Problem 20. 

11.6 Rader Transform [A-59, A-61] 

The Rader transform is a special case of the NTT. For any Fermat number, 2 
is of order N = 2b = 2 f + 1 ; that is, 22b = 1 (modulo Ft). When a is any power of 2 
all the multiplications by ank become bit shifts and the F N T can be computed 
very efficiently; for the case a = 2, both the F N T and M N T are called the Rader 
transforms. When N is an integer power of 2, the Rader transform can be 
implemented by a radix-2 FFT-type algorithm. Substituting 2 for the multiplier 
W = exp( — j2n/N) in the F F T flowgraph yields the fast algorithm for the Rader 
transform. Observe from Table 11.1 that 3 and 6 are primitive roots of F2. These 
two roots generate the set of nonzero integers in Z 1 7 . However, every prime 
factor ofFt for t > 4 is of the form k2t + 2 + 1 (see Problem 9), so that 2t + 2\0(Ft). 
In particular, for F5 and F6 

Nmax = 0(Ft) = 2t+2 = 4b (11.30) 

Agarwal and Burrus [A-59] have shown that a = y/2 is of order 2t + 2 = 4b 
(modulo Ft), t ^ 2: 

( y / 2 ) * b = 1 (modulo F t ) (11.31) 

For this case ^ 2 = 2b'\2b/2 - 1) and a2 =2 (modulo Ft), 2f = b. Further, from 
(11.31) a = 2 is of order 2t + 1 = 2b (modulo Ft). Indeed, any odd power of 2 is 
also of order 4b, as shown in Table 11.2 for Ft, t = 3,4,5,6. 

Table 11.2 

Parameters for Several Possible Implementat ions of F N T s [A-61] 

t b Ft 

(« = 2f 

yV 
N 
1 ' m a x 

a for N m a x 

3 8 2 8 + 1 16 32 256 3 
4 16 2 1 6 + 1 32 64 65536 3 
5 32 2 3 2 + 1 64 128 128 
6 64 2 6 4 + 1 128 256 256 

a This case corresponds to the Rader transform. 

Computationally it is desirable to have a a power of 2, since in this case 
N = 2t + 1 = 2b. Because N is highly composite, FFT-type algorithms can be 
used and all multiplications have simple binary representations. For a = ^J2, 
the sequence length can be doubled; N = 4b = 2t+2, compared to 2b for a = 2. 
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This, too, has the FFT-type algorithm, but multiplication by powers of Jl 
involves additional complexity [A-59]. 

11.7 Complex Fermat Number Transform [N-25] 

Digital filtering of complex signals or circular convolution of complex 
sequences can be accomplished in a complex integer field. In a ring of complex 
integers ZC

M all the arithmetic operations are performed as in normal complex 
arithmetic except that both the real and imaginary parts are evaluated separately 
m o d M . The set ct = at + jbh ah bt = 0 , 1 , . . . ,M — 1, where at = Re[c f ] and 
bt = lm[ct], represents ZC

M. All complex integers are congruent modulo M to 
some complex integer in this set. The complex convolution is exact provided the 
magnitudes of both the real and imaginary parts of the output are bounded by 
M/2. Modulo arithmetic in complex rings is presented in detail elsewhere 
[V-5]. Complex convolution by both the F N T and the C F N T is presented in this 
section. Complex convolutions arise in many fields, such as radar, sonar, and 
modem equalizers. The circular convolution of two complex integer sequences 
g(n) and h(n), n = 0 , 1 , 2 , . . . , M — 1, is another complex integer sequence a(ri) 
described by 

J V - l 

a(n)= £ g(m)h(n - m ) , n = 0 , 1 , 2 , . . . , M - 1 (11.32) 
m = 0 

where, for n = 0 , 1 , 2 , . . . , M — 1, 

g(n) = gT(n) + jg{(n\ h{n) = hx(ri) + jh{{n), a(n) = ar(n) +ja{(n) (11.33) 

and the subscripts r and i label the real and imaginary parts of the complex 
integers. It must be reiterated that an ordinary (noncircular) convolution can be 
implemented by means of circular convolution, provided the lengths of the two 
sequences to be convolved are increased appropriately by appending zeros. With 
use of (11.32) and (11.33), the complex convolution can be expressed 
alternatively 

J V - l 

ar(n) = Y i9r(rn)hv(n - m) - gim)h{(n - m)] 
m = 0 

J V - l 

a{(n) = X [gv(rn)hi(n - m) + g{{m)hv(n - m)], 
m = 0 

From (11.34) we observe that the complex convolution (11.32) can be 
implemented by four real convolutions. Therefore, N T T such as the F N T and 
the M N T can be used to evaluate (11.34). For example, the CCP of the F N T 
leads to 

(11.34) 

« = 0 ,1 ,2 , M - 1 

Ad(k) = Gr((k)Hr((k) - Gi{(k)Hi((k) 

Ai((k) = Gl((k)Hu(k) + Gi({k)Hr[{k) 
(11.35) 
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where 

GJk) = 

HrS(k) = 

N- 1 

E Ar(«)a" 
-n = 0 

modi 7 , , Gif(k) = 

modi 7 , , FIi{(k) = 

'N-l 

• n = 0 

~N-1 

mo&Ft 

m o d i 7 , 

(11.36) 

The complex convolution (11.32) can be implemented by the four FNTs 
described in (11.36), the 47V multiplications and 27V additions needed to 
implement (11.35), and the following two inverse F N T s : 

ar(n) = I F N T [ G r f ( £ ) # r f ( £ ) - G{f{k)H{i{k)] 

a{{n) = IFNT[Gr f(fc)# i f (fc) + Gif(k)HTf(k)l 
(11.37) 

An alternative approach is to evaluate complex convolutions using the 
CFNT. To define this latter transform note that (11.18) gives 

2b = M - 1 = - 1 (modulo Ft) (11.38) 

Hence j = — 1 can be represented in the Fermat ring by 2b/2. F rom (11.32), 
(11.33), and (11.38) the F N T can be utilized to yield the complex convolution: 

a(n) = X [gr(m) + 2b'2

gi(m)] [hT(n - m) + 2bl2h{{n - m)] m o d i 7 . 

ar(n) + 2b,2ai(n) m o d i 7 , (11.39) 

Also 

a*(n) = X [Qrirn) - 2bl2gim)] [hr(n - m) - 2b'2hi(n - m)} m o d i 7 , 

aT(n) - 2bl2ax{n) m o d i 7 . (11.40) 

From (11.39) and (11.40) 

at(n) = 

a{(ri) = 

-2b-1[a(n) +a*(n)] 

-2{b-2)/2[a(n) - a*(n)] 

modi 7 , , 

m o d i 7 , 

(11.41) 
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By applying the CCP of the F N T to (11.39) and (11.40), we obtain from (11.41) 

ax(n) ±= 

Oi(n) 

- 2 * " 1 IFNT([Gr f(fc) + 2^2Gi{(kmHr{(k) + 2*2Hif(k)l 

+ lGr[(k) - 2b'2Gi{(kmHTf(k) - 2b?2Hif(k)-]) modFt 

(11.42) 

- 2<*--2>/MFNT([C7rf(£) + 2b'2Git(kmHTl(k) + 2^2Hi{(k)-] 

- [Grf(fc) - 2b'2Gi{(kmHr{(k) - 2b'2Hif(kW modFt 

Compared to (11.37) the complex convolution by (11.42) requires four FNTs , 
2N multiplications, 6N additions, and two I F N T s ; there is no increase in word 
length. 

11.8 Complex Mersenne Number Transform [N-26] 

The M N T developed in Section 11.5 can be extended to the complex field. In a 
Mersenne ring, 2 and — 2 are of order P and 2P (modulo MP), respectively. 
Hence 2d and — 2d are of order P and 2P, respectively, provided d is not a 
multiple of P. Another possibility is that there may be complex roots. For 
example, 2j and 1 + j are of order 4P and 8P, respectively. These values of oc can 
be utilized to implement the complex Mersenne number transform (CMNT). 
For oc = 2j, the C M N T and its inverse can be defined as 

x(n) = 

E *(H)(2/7 
- n = 0 

4-P-l 

( 4 P ) - 1 X Xcm(k)(2j) 

m o d M p , k = 0 , 1 , . . . , 4 P - 1 

(11.43) 

m o d M p , n = 0 , 1 , . . . , 4 P - 1 

Nussbaumer [N-26] has shown that the C M N T also satisfies the CCP (Problem 
17) so that relations similar to (11.28) hold. In this case the complex sequences to 
be convolved are of length 4P, and the real and imaginary parts are evaluated 
separately modulo MP. For oc = 1 ±j, the C M N T also satisfies the CCP 
(Problem 18), except now the convolution size increases to SP for the same bit 
size. In both these cases the sequence length is no longer prime, and arithmetic 
operations (additions/subtractions and bit rotations) can thus be reduced by 
adopting either DIT- or DIF-FFT- type algorithms (Problem 19). Additional 
savings in processing can be obtained when the two sequences {gin)} and {h(n)} 
are real. The savings result from convolving a complex sequence 
{g(n) + jg(n + mP)}, formed from two successive blocks or sections of {g(n)} 
with {h(n)} where m = 4 or 8 for oc = 2j or 1 + j . The real and imaginary parts of 
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the resulting convolution are the convolutions of successive blocks of {g(n)}. For 
further details on convolution by sectioning see the descriptions of the overlap-
add and overlap-save methods in the references [ 0 - 1 , G-5, S-35]. 

11.9 Pseudo-Fermat Number Transform [N-l9] 

In Section 11.3 we described the rigid relationship between word length and 
sequence length for the F N T . Nussbaumer [N-19, N-20, N-21 , N-25, N-26] has 
defined and developed pseudo-NTT that relax this constraint. For example, 
consider the case in which M = 2b + 1, b ^ 2*. If the unique prime factorization 
of M is given by (11.2), then 

M = prlpr

2

2 • • • p? = 2b + 1, Z?# 2 (11.44) 

and the N T T can be defined in a ring in which the modulus is a divisor of M 
rather than M. Nussbaumer [N-19] has named the resulting transform the 
pseudo-FNT (PFNT) and has developed it for a an integer and a power of 2. The 
P F N T and its inverse can be defined as 

x(n) = 

E x(n)2" 
- n = 0 

mod M/pri, k = 0 , 1 , . . . , 7 V - 1 

TV"1 £ Xpf(k)2~ 

(11.45) 

mod M/p^, n = 0,l,...,N - 1 

where TV is the order of 2'° (modulo Mjprf), that is, 

(2"0N = 1 (modulo Mjprf) (11.46) 

In general choose p\l as the smallest factor such that Mjp\l allows a large 
sequence length. Nussbaumer [N-19] has compiled a list of transform lengths, 
beginning with 2a\ for P F N T when b is even (Table 11.3). The complexity of 
performing arithmetic operations modulo Mjp\i can be overcome by performing 
all arithmetic operations for the P F N T and its inverse modulo M with the final 
operations carried out modulo Mjpr>: 

x(n) = 

k = 0,l,...,N- 1 

m o d M mod M/p'\ 

(11.47) 

n = 0 , 1 , . . . , 7 V - 1 

N - l 

Xpf(k)= £ x(n)2-nhmodM, 
,i = 0 

N - 1 y * p f ( * ) 2 ~ " 

k = 0 

This simplification is also applicable to the CCP of the P F N T (Problem 21 ; see 
(11.11)): 

a{n) = ( [ IPFNT((PFNT [ 6 i(n)])(PFNT[A(n)]))] m o d M ) m o d M / p p (11.48) 

From Table 11.3 it can be observed that there is a wide selection of word 
lengths and sequence lengths. Because in general is small compared to M, 
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there is only a small increase in word length on account ofmodulo M rather than 
modulo Mjp\{ arithmetic. For N composite, mixed-radix FFT-type algorithms 
can be adopted to reduce the number of additions and bit rotations. 

11.10 Complex Pseudo-Fermat Number Transform [N-19] 

The complex pseudo-FNT (CPFNT) can be developed when b is odd in 
(11.44) and 2m is a root of order N (modulo M/prf). Let Nu> = 2b. TV is then even 
and N/2 is odd. For this case 

((- 2Yf12 = ( ( - 2 ) w f / 2 = 1 (modulo M/pJ') (11.49) 

(if d and b have no common factors) 

((2JT)2N = ((1 + jY)4N = 1 (modulo M/pJO (11.50) 

This leads to a complex version of the PFNT. The C P F N T pair can be defined 
as 

"2N- 1 

x(n) = 

n = 0 

2N-1 

mod M/p\\ k = 0,1,...,2TV- 1 

(11.51) 

k = 0 
(27V)' 1 £ Xcp[(k)(2jy modM/X', n = 0,1,...,27V- 1 

Similar transform pairs can be defined for a = (1 + jY- Several other complex 
values of a can also be developed. These values of a have, however, no simple 
structure such as 2j or 1 + y and hence are difficult to implement. The C P F N T as 
defined in (11.51) satisfies the CCP (Problem 22). To obtain the circular 
convolution, standard complex arithmetic {j2 = — 1) is carried out with the real 
and imaginary parts evaluated modulo M. Only the final operation is evaluated 
modulo M/pr> since 

a(n) mod M/py = (a(n) mod M) mod M/p^ (11.52) 

Various options for the C P F N T are listed in Table 11.4 [N-19], which is 
analogous to Table 11.3. From this table, we can see that when b is prime the 
transform length is Sb and a = 1 + j . Fast algorithms do not significantly 
increase the efficiency of the C P F N T because the sequence length is not highly 
factorizable. (See the cases of b = 29 and 41.) On the other hand, for composite b 
such as 25, 27, or 49 the transform lengths are large (200, 216, and 392, 
respectively), highly composite, and amenable to mixed-radix FFT-type algo
rithms. As with the C M N T , further reduction in processing workload can be 
obtained when the two sequences to be convolved are real. The P F N T and 
C P F N T both offer a number of possible transform lengths, fast algorithms, and 
word lengths, and both satisfy the CCP. 
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11.11 Pseudo-Mersenne Number Transform [N-26] 

Similar to the P F N T , a pseudo-MNT (PMNT) can be defined when 
M = 2b — 1, for b composite. When M = 2P — 1 , we have the M N T for which 
the maximum sequence length is P for a = 2, or 2P for a = — 2. If M can be 
factored as in (11.2), then the transform length is governed by (11.9). NMAX for 
this case when b is odd is listed in Table 11.5. When b is prime, such as b = 23,29, 
37, 41, 43,47, the M N T results. When b is composite, 7 V M A X is very short. Hence, 
as can be seen from Table 11.5, the P M N T is of no practical interest. This can be 

Table 11.5 

Maximum Odd Length and Corresponding Power-of-2 for Real Transforms modulo M = 2b — 1 
with b Odd and M Compos i t e 0 

b 
Prime factorization of 
M=2h-\=p\y>---P

r

l' 
Prime factorization of p(— 1 

Max imum 
odd 
length 5 (AT) 

Power-
of-2 
roo t s b 

15 7-31-151 (2 -3) (2-3-5) (2-3-5 2 ) 3 _ 
21 7 2 -127-337 (2 -3 ) (2 -3 2 - 7 ) (2 4 - 3 -7 ) 3 -
23 47-178481 (2-23) (2 4 -5 -23-97) 23 2 
25 31-601-1801 ( 2 - 3 - 5 ) ( 2 3 - 3 - 5 2 ) ( 2 3 - 3 2 - 5 2 ) 15 -
27 7-73-262657 ( 2 - 3 ) ( 2 3 - 3 2 - 2 9 - 3 3 - 1 9 ) 3 -
29 233-1103-2089 (2 3 - 29 ) (2 -19 -29 ) (2 3 -3 2 - 29 ) 29 2 
33 7-23-89-599479 ( 2 - 3 ) ( 2 - l l - 2 3 - l l ) ( 2 - 3 - l l - 3 1 - 2 9 3 ) - -
35 31-71-127-122921 ( 2 - 3 - 5 ) ( 2 - 5 - 7 - 2 - 3 2 - 7 ) ( 2 3 - 5 - 7 - 4 3 9 ) - -
37 233-616318177 (2 • 3 • 37)(2 5 - 3 • 37 • 167 • 1039) 37 

111 
2 

39 7-79-8191-121369 ( 2 - 3 ) ( 2 - 3 - 1 3 - 2 - 3 2 - 5 - 7 - 1 3 ) 3 _ 
(2 3 -3 -13-389) 

41 13367-164511353 (2-41-163)(2 3 -41-59-8501) 41 2 
43 431-9719-2099863 (2 • 5 • 43)(2 • 43 • 113)(2 • 43 • 3 2 • 2713) 43 2 
45 7-31-73-151-631-23311 (2 • 3)(2 • 3 • 5)(2 3 • 3 2 ) (2 • 3 • 5 2 )(2 - 3 2 • 5 • 7) 3 -

( 2 - 3 2 - 5 - 7 - 3 7 ) 
47 2351-4513-13264529 (2 • 5 2 • 47)(2 5 • 3 • 47)(2 4 • 31 • 47 • 569) 47 2 
49 127-4432676798593 ( 2 - 3 2 - 7 ) ( 2 7 - 3 2 - 7 2 - 4 3 - 3 3 7 - 5 4 1 9 ) 63 -

a F r o m [N-26 ] ; copyright 1976 by Internat ional Business Machines Corpora t ion ; reprinted with 
permission. 

b A blank entry denotes "does not exist." 

overcome to some extent for some values of b if the P M N T is defined in a ring in 
which the modulus is a divisor of M rather than M: 

x(n) = 
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where 

M = flf2 • • • = 2b - 1 , b # 2X (11.54) 

and 

(2"JY = 1 modulo M/pY (11.55) 

For this case a is power of 2 and the transform length increases (see Table 11.6). 

Table 11.6 

Length and Roots for Real and Complex Transforms in the Ring (2b — a 

b 
Transform 
ring 
modulus 

Real transform Complex transform Approximate 
word length 
(no. of bits) 

b 
Transform 
ring 
modulus Length (N) Root (a) Length (TV) Roo t (a) 

Approximate 
word length 
(no. of bits) 

15 
2 1 5 - 1 

7 
5 2 3 

40 

(2 3 -5 ) 
2(7 - 1) 12 

21 
2 2 1 - 1 

7 2 
1 2 3 

56 

(2 3 -7 ) 
2 ( 7 - 1 ) 15 

25 
2 2 5 - 1 

31 
25 2 

200 

( 2 3 - 5 2 ) 
7 + 1 20 

27 
2 2 7 - 1 

7.73 
27 2 

216 

( 2 3 - 3 3 ) 
7 + 1 18 

35 
2 3 5 - 1 

31.127 
35 2 

280 

( 2 3 - 5 - 7 ) 
7 + 1 23 

35 
2 3 5 - 1 

127 
5 2 7 

40 

(2 3 -5 ) 
2 3 (1 -j) 28 

35 
2 3 5 - 1 

31 
7 2 5 

56 

(2 3 -7 ) 
- 2 2 ( l + 7 ) 30 

45 
2 4 5 — 1 

7.73 
5 2 9 

40 

( 2 3 - 5 ) 
2 4 d + 7 ) 36 

49 
2 4 9 _ X 

111 
7 2 7 

56 

( 2 3 - 7 ) 
2 3 (1 -j) 42 

49 
2 4 9 — 1 

127 
49 2 

392 

( 2 3 - 7 2 ) 
7 + 1 42 

a F r o m [ N - 2 6 ] ; copyright 1976 by Internat ional Business Machines Corpora t ion ; reprinted with 
permission. 

For instance, when b = 25 the P M N T as defined in (11.53) results in a transform 
length of 25 when a is a power of 2, compared to a transform length of 15 
otherwise, as shown in Table 11.5. By utilizing a complex version of P M N T , long 
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transform lengths and fast algorithms for obtaining real and complex con
volutions can be found (Problem 20). For example, when b = 25 the maximum 
sequence length is 200, which is highly composite (Table 11.6). Some of the 
comments made for the C P F N T are equally applicable to the C P M N T . 

11.12 Relative Evaluation of the NTT 

Nussbaumer [N-19, N-20, N-25, N-26] , who has developed the pseudo- and 
complex pseudo-FNT and - M N T has also compared the performance of these 
transforms [N-21]. Table 11.7, compiled by Nussbaumer [N-21] , lists those 
N T T that can be computed by additions and bit shifts only (a is a power of ± 2 
or 1 + j). The number of real additions Q1 in this table is based on 

fix = tf( £ JV, - (11.56) 

for composite N = NXN2 • • • Ne, and results from mixed-radix FFT-type 
algorithms. For a = y/2 (11.56) changes slightly, and for complex N T T the 
number of real additions increases to 2QX. 

Table 11.7 

Transforms and Pseudo-Transforms Defined modulo 2b — 1 or modulo 2h + 1 [N-21] 

b 
Transform 
ring 
modulus 

R o o t 
(a) 

Transform 
length 
(N) 

Approximate 
output 
word length 
(no. of bits) 
( A ) 

N o . of real 
additions 
(<2i) 

Transform 

prime 2b - 1 - 2 2b b 2b1 M N T 

2< 
2' 

2 2 t + 1 
2 2 t + 1 

2 2t + 1 

2t + 2 
2' 
2X 

(t + 1 ) 2 ' + 1 

(4t + 9)2* F N T 

b\ 
b,b2 

(2*> - l ) / ( 2 * - 1) 
( 2 f c l b 2 - l ) / (2 f e l - 1) 

- 2 
_ 2 b l 

2b\ 
2b2 

bi(h - 1) 
bx(b2 - 1) 

2b\(2b, - 1) 
2b\ P M N T 

prime 

b\ 
b,b2 

6,2 ' 

(2 b + l)/3 
(2*1 + l ) / ( 2 b l + 1) 
( 2 b l b 2 + l ) / ( 2 b l + 1) 
( 2 b l 2 t + l ) / ( 2 2 t + 1) 

2 
2 
2*i 

2 

2b 
2b\ 
2b2 

b,2t + 1 

b-2 
biib, - 1) 
b,{b2 - 1) 
2Kb, - 1) 

2b2 

2 ^ ( 2 ^ - 1) 
2 * 2 P F N T 

prime 2b - 1 7 + 1 &b b 4b(4b + 9) C M N T 

bl (2b* - l)/(2*' - 1) 
( 2 5 l b 2 - l ) / (2 f c l - 1) 

7 + 1 
U + i ) b l 

8Z?2 

%b2 

- 1) 
bi(b2 - 1) 

4b2

1(^b1 + 5) 
4b2(4b2 + 9) 

C P M N T 

prime 

b,b2 

(2* + l)/3 
(2*1 + l ) / ( 2 b l + 1) 
( 2 b l b 2 + l ) / ( 2 b l + 1) 

7 + 1 
7 + 1 
(7 + l ) " 1 

Sb 
8£ 2 

%b2 

b - 2 
biib, - 1) 
bi(b2 - 1) 

4b(4b + 9) 
4b](%bY + 5) 
4b2(4b2 + 9) 

C P F N T 
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TV-dimensional circular convolution can be implemented by N T T that satisfy 
(11.12). The implementation requires two forward transforms, one inverse 
transform, and TV multiplications. For long input sequences {g(n)}, overlap-add 
or overlap-save methods are used [O-l , G-5, S-35]. In these methods {g(n)} is 
divided into successive blocks of equal length Nx and each block is convolved 
with the unit sample sequence {h{n)} of length TV 2. Nonperiodic convolution of 
{g(n}} with {h(n)} is accomplished by 

(i) appending zeros to each of the sequences {g(n)} and {h(n)} so that both 
of them are of length TV ^ Nx + TV2 — 1, 

(ii) carrying out a circular convolution of these extended sequences, and 

Table 11.8 

Computa t ional Complexity for Real Filters Computed by Transforms and Pseudo-Transforms 
[N-21] 

Transform 

b 
Length 
(AO 

Approximate 
output 
word length 
(no. of bits) 
(Lu) 

Figure of merit 
(Qi) 

Transform 

prime 2b b 
10b2 + 2(N2 - 1) 

2N2(2b - N2 + 1) 
M N T 

2' 

2' 

2t + 1 

2' + 2 

2' 

2' 

2t + 2(t + 1 + 2 ' ~ 2 ) + TV2 - 1 
2' 

2' 

2t + 1 

2' + 2 

2' 

2' 

N2(2t + 1 - N 2 + 1) 

2' + 1 (4? + 9 + 2 ' ) + j v 2 - i 
F N T 

2' 

2' 

2t + 1 

2' + 2 

2' 

2' 
7V2(2' + 2 - 7 V 2 + l) 

b\ 2b\ - 1 ) 
b\{b\ + lb, - 4) + b1{N2 - 1) 

P M N T b\ 2b\ - 1 ) 
N2{b1-\){2b\-N2 + \) 

P M N T 

b,b2 2b2 b!(b2 - 1) 
b\(b,b2 - bx + 4) + N2 - 1 

P F N T b,b2 2b2 b!(b2 - 1) 
N2(b2 - l)(2b2 -N2 + l) 

P F N T 

bx21 + 1 2\b, - 1) 
b\2t + 2\b1 + 1 + 2 ' - 2 ( ^ - 1)] + b1(N2 - 1) 

P F N T bx21 + 1 2\b, - 1) 
NAb.-Wa1*1 - N 2 + 1) 

P F N T 

prime 86 b 
b(43b + 102) + 2(N2 - 1) 

2N2(8b -N2 + l) 
C M N T 

b\ %b\ b,{b, - 1) 
bKUbl + 53bx + 7 0 ) + 2 ( 7 V 2 -

C P M N T b\ b,{b, - 1) 
2 i V 2 ( 6 1 - l ) ( 8 6 2 - 7 V 2 + l) 

C P M N T 

btb2 86 2 bi(b2 - 1) 62(11M2 - H ^ i + 32b2 + 102) + 2b2(N2 - 1) C P F N T btb2 86 2 bi(b2 - 1) 
2N2(b2 - l)(Sb2 - N2 + 1) 

C P F N T 



438 11 N U M B E R T H E O R E T I C T R A N S F O R M S 

(iii) adding overlapping samples from the convolution in the case of the 
overlap-add method, or saving the last N2 — 1 samples from the convolution of 
the preceding block and discarding the first N2 — 1 samples from the con
volution of the present block in the case of the overlap-save method. 

Based on the overlap-add method, Nussbaumer [N-21] has evaluated the 
computational complexity involved in implementing the digital filters by NTT. 
The results are equally applicable to the overlap-save method. The hardware 
costs corresponding to arithmetic modulo (2b ± 1) are similar. A figure of merit 
(FOM) (Q2 for real filters and Q3 for complex filters) is used to compare the 
NTT. The F O M represents the number of additions of words of length L U (see 
Table 11.7) per output sample and per filter tap using modulo M arithmetic. This 
F O M takes into account such schemes as FFT-type algorithms, implementing 
real filters by complex N T T (where applicable), and special logic design for 
modulo arithmetic [N-21]. A low F O M Q2 or Q3 corresponds to an efficient 
number theoretic transform for implementing the digital filter. The F O M s for 
real and complex filters for various N T T are listed in Tables 11.8 and 11.9, 
respectively. 

It can be observed from Tables 11.7-11.9 that the filter length N2 (the length of 
{h(n)}) plays a minor role in the numerators of Q2 and Q3. Because the 
N2(N — N2 + 1) term appears in the denominators of Q2 and Q3, the F O M is 

Table 11.9 

Computa t ional Complexity for Complex Filters Computed by Transforms and Pseudo-Transforms 
[N-21] 

Transform 

b Length 
(AO 

Approximate 
ou tpu t 
word length 
(no. of bits) 
(A,) 

Figure of merit 

( f i 3 ) 
Transform 

prime 86 b 
22b2 + 566 + N2 - 1 

2N2(%b - JV2 + 1) 
C M N T 

b\ 86 2 hib, - 1) 
6 i [ 2 6 2 ( 3 6 2 + 136i + 2 0 ) + 7V2 - 1] 

2N2{b, - 1)(862 - N2 + 1) 
C P M N T 

b,b2 86 2 bi(b2 - 1) 
6 2 [ 2 6 2 ( 8 6 2 + 28 + 36 i (6 2 - 1)) + N2 - 1] 

C P F N T b,b2 bi(b2 - 1) 
2N2(b2 - 1)(862 -N2 + l) 

C P F N T 

2 ( 

2' 

2t + 1 

2t + 2 

2X 

2' 

2 , + 2 ( 2 ' - 2 + ? + 2) + 7 V 2 - 1 

2N2(N -N2 + \) 

2t + 1(2l + 4t + 13) + N2 - 1 

2N2(N -N2 + l) 

F N T 
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optimized when this term is a minimum. This corresponds to TV2 = N/2 
(Problem 26). The input sequence can be sectioned into blocks of length TV, such 
that TV2 = TV/2 where TV ^ TVX + TV2 — 1. To compare the computational 

E o o 

- -5 l a 
= 2 

- A — A — A -

f i l ter length N 2 

I L 
5 0 100 150 

(No. of taps) 

2 0 0 2 5 0 

Fig. 11.1 Computa t ional complexity versus filter length for real filters and for a word length L s 

of 32 bits [N-21] . Symbols: , direct computa t ion ; A — A , F N T ; x — x , P M N T and P F N T , 
modulo ( 2 4 9 ± l ) / ( 2 7 + 1); <g>--(g>, C P M N T and C P F N T , modulo ( 2 4 9 ± l ) / ( 2 7 ± 1), a = 1 + j. 

I 

filter length No 

6 0 " 100 150 2 0 0 2 5 0 

(No. of taps) 

Fig. 11.2 Computa t ional complexity versus filter length for real filters and a word length Ls of 42 
bits [N-21] . Symbols are as in Fig. 11.1, and + - - + , P F N T , b = 56. 
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complexity of N T T in digital filtering applications, the word length L s 

corresponding to a specified accuracy in the digital filter design must be taken 
into account. Nussbaumer [N-21] defines this as 

(Q?LU/F for real filters 
g 4 = < (11.57) 

4 \Q3LJLS for complex filters 

where L u is the approximate output word length described in Table 11.7. Figures 
11.1 and 11.2 show the computational complexity Q4 as a function of filter 
length N2 = N/2 for Ls = 32 and 42 bits, respectively. The input sequence word 
length is in the 10-18 bits range. For direct evaluation of (11.10), it can be shown 
[N-21] that 

Q4 = (N - \)/2N + i L u for direct computation (11.58) 

It is apparent from these figures that the F N T with a = J2 and the C P M N T and 
C P F N T with a = 1 + j are the most efficient in implementing the digital filters 
and allow up to a factor of 5 in processing workload reduction compared to the 
direct implementation. 

11.13 Summary 

In this chapter number theoretic transforms (NTT) were defined and 
developed. Basically, they can be categorized as Mersenne and Fermat number 
transforms ( M N T and FNT) . Both the M N T and F N T and their pseudo and 
complex pseudo versions were developed and their properties discussed. It was 
seen that since N T T can be implemented with only additions and bit shifts they 
require no multiplications; fast algorithms comparable to F F T algorithms were 
shown to exist for some of the NTT, and constraints on word and sequence 
lengths were pointed out. We observed that, because they usually have the C C P , 
digital filters can be implemented by N T T , and both real and complex filtering 
can be carried out using the complex NTT. 

A comparison of approaches for evaluating circular convolution (digital 
filtering) was given. Some N T T were shown to be highly efficient for evaluating 
circular convolution as compared with direct computation of (11.10). This is an 
incentive for designing and building hardware structures for implementing N T T 
[B-39, M-23]. The properties of the N T T can be summarized as follows. 

PROPERTIES OF THE N T T [A-59] All N T T operations are performed in modulo 
arithmetic in a finite field of integers. N T T that have the D F T structure and 
possess the C C P have the following properties: 

(i) Basis Functions. These are defined by 

ank where n,k = 0 , 1 , . . . ,N - 1 

(ii) Orthogonality. The basis functions a"k form an orthogonal set. 

h h , (N, n = mmodN 

k=o k=o 1° otherwise 
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(iii) Transform pair. 
N-l 

• x(k) = X x(n)oLnk, & = 0 , 1 , . . . ,TV - 1 
n = 0 

N-l 

x(n) = N~1 £ X(k)a~nk, n = 0 , 1 , . . . , TV - 1 ' 
k = 0 

(iv) Periodicity. 

x(n) = x(n + TV), X(k) = X(k + TV) 

(v) Symmetry Property. Both the symmetry and antisymmetry proper
ties of a sequence are preserved in the transform domain. If x(n) is symmetric 
X{k) is also symmetric: 

x(n) = x(-n) = x(N - n) if and only if X(k) = X(-k) = X(N - k) 

If x(n) is antisymmetric, X(k) is also antisymmetric: 

x(n) = — x( — n) = — x(N — n) if and only if 

X{k) = - X(k) = - X(N - k) 

(vi) Symmetry of the Transform. 

T[T[x(n)]] = T[X(k)] = Nx(-n) 

(vii) Shift Theorem. If T[x(n)] = X(k), then T[x(n + m)] = (x~mkX(k). 
(viii) Fast Algorithm. If TV is composite and can be factored as TV = 

N1N2 ''' Nh then the NTTs have an FFT-type fast algorithm that requires 
about TV(TVi + TV2 -f • • • + Nt) arithmetic operations. 

(ix) Circular Convolution. The transform of the circular convolution of 
two sequences is the product of the transforms of these sequences. (See (11.10) 
and (11.11).) 

(x) ParsevaVs Theorem. Let T[x(n)] = X(k) and T[y(n)] = Y(k). Then 

N \ x(n)y(n)= £ X(k)Y{- k) 
n=0 k=0 

and 
N-l N-l 

N X x(n)y(-n)= ^ X{k)Y{k) 
n=0 k=0 

When x(n) = y(n) 

n=0 k=0 
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Magnitude is not defined in modulo arithmetic, so the conventional Parseval's 
theorem (see Problem 3.4) is not valid. 

(xi) Multidimensional Transform. Like the F F T , the N T T can be extend
ed to multiple dimensions. For example, the 2-D N T T and the inverse 2-D N T T 
can be defined as 

i V i - l N2~l 

X(kuk2) = £ E x(nun2)a\^k\ ^ = 0 , 1 , . . . , ^ - 1, 
/ i i = 0 n2 = 0 

fc2 = 0 , l , . . . , i V 2 - l 

x(n1,n2) = N;1N;1 £ £ X(kuk2)a;"^a2"^, n, = 0 , 1 , . . . ,N, - 1, 
k i = 0 k2 = 0 

, 1 2 = 0 , 1 , . . . , J V 2 - 1 

where a : is of order Nx and a2 is of order N2 modulo M. All the properties of the 
1-D N T T are also valid for the multidimensional case. 

PROBLEMS 

1 Prove (11.16). 

2 Prove (11.17). 

3 The first five Fe rma t numbers F0-F4 are prime. In this case 3 is an a of order N = 2b. Show that 
there are 2b~1 — 1 other integers also of the same order. 

4 Show that for every prime P and every integer a, P\(ap — a). 

5 Mersenne numbers are MP = 2P — 1 where P is prime. Use Fermat ' s theorem to show that 
P\(2P - 2). Conclude that (MP - l)/P is an integer. 

6 Prove (11.27). 

7 Show that the M N T as defined by (11.26) satisfies the CCP. 

8 Rader [R-54] has shown a possible hardware configuration for the M N T when P = 5 
(MP = 31). Develop a similar processor for the M N T when P = 7, (MP = 127). 

9 Show that every prime factor of composite Ft (see (11.19)) is of the form 2t + 2k + 1 [D- l 1]. Hence 
show that 2t+2\0(Ft) for / > 4. 

10 Show that a = J~2 is of order 2t + 2 = 4b m o d Ft, t ^ 2 [A-57, A-59, A-61] . 

11 Prove the orthogonali ty proper ty of the basis functions <xnk. 

12 Show that the Parseval 's theorem as described in the Summary is valid for the N T T . 

13 Circular Convolution by Means of the FNT The F N T and I F N T matrices for F2 = 17, a = 2, 
and N = 8 are given by (11.24) and (11.25), respectively. Consider two sequences g T = {1, 1, 0, — 1, 
2, 1, 1, 0} and h T = {0, 1, - 1, 1, 0, — 1, 1, - 1}. Obtain the circular convolution of these two 
sequences using the F N T and check the result by direct computa t ion (see (11.10)). 

14 Fast FNT In Problem 13 TV is an integer and a power of 2. Develop a radix 2 FFT- type 
flowgraph for fast implementat ion of the F N T and show that the algorithm based on this flowgraph 
yields the same result as that obtained by direct implementat ion of the F N T . 
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15 If M = M1M2 where Mx and M2 can be composite show that O(M) = gcd{0{M1), 0{M2)}. 

16 Parameters of interest for the N T T for binary and decimal arithmetic are available [A-61]. 
Develop similar tables for octal and hexadecimal arithmetic. 

1 7 Show tha t the C M N T satisfies the C C P for a = 2j. 

1 8 Repeat Problem 17 for a = 1 ±j. 

1 9 Fast CMNT Develop a D I T or D I F FFT- type algorithm for the C M N T when a = 2j and 
a = 1 +./• Choose P = 7. Indicate the savings in number of additions and bit shifts by this technique 
compared to the evaluation of complex convolution by the M N T [N-26] . 

2 0 Complex Pseudo-MNT Nussbaumer [N-26] has extended the C M N T to the complex pseudo-
Mersenne number transform (CPMNT) . Develop the C P M N T in detail and compare its advantages 
over the C M N T in terms of transform length,-word length, and fast algorithms. 

2 1 Show that the P F N T satisfies the CCP. 

2 2 Repeat Problem 21 for the C P F N T (see (11.51)). 

2 3 Define the C P F N T and its inverse for a = 1 + j . Show that this also satisfies the CCP. 

2 4 Pseudo-Mersenne Number Transform Consider the following transform pair : 

Forward transform 

xm -

Inverse transform 

x(n) -

~N— 1 

X x{n)a 
- 7 1 = 0 

m o d M , k = 0,\,...,N-\ (P l l .24-1) 

N ' 1 Y Xn(k)ot-nk m o d M , TI = 0, 1 (Pl l .24-2) 

Show that this pair satisfies the C C P [E-22]. In (PI 1.24-1) and (PI 1.24-2), N = Ps, Pis prime, a a n d s 
are integers, s ^ l , |a| ^ 2, a ^ l (modulo P) , a is a root of order Ps modulo M, and 
M = ( a p S - l ) / ( a p S _ 1 - l ) . 

2 5 Pseudo-Fermat Number Transform Repeat Problem 24 for N = 2PS, s ^ 1, |a| ^ 2, a ^ — 1 
(modulo P) , a a root of order 2PS modulo M, and M = (apS + l ) / ( a p S l + 1). 

2 6 It is stated in Section 11.12 that Q2 and Q3 are opt imum when N2 = N/2. Prove this. 

2 7 Prove (11.49) and (11.50). 

2 8 Fo r the M N T , when a = 



APPENDIX 

This appendix explains some necessary terminology and the operations 
Kronecker product, bit-reversal, circular and dyadic shift, Gray code con
version, modulo arithmetic, correlation, and convolution (both arithmetic and 
dyadic). Also defined are dyadic, Toeplitz, circulant, and block circulant 
matrices. 

Direct or Kronecker Product of Matrices [A-5, A-41, B-34, B-40, N-17, B-35, 
L-21] 

A®B = 

a11B a12B 
a2\B ci22B 

alnB 
a2nB 

am„B 

(Al) 

If the order of A is m x n and the order of B is k x /, then the order of A ® B is 
mk x nl. 

B® A = 

Ab11 Ab12 

Ab21 Ab22 

Abkl Abk2 

Ab,' 
Ab2l 

AbH 

(A2) 

ALGEBRA OF K R O N E C K E R PRODUCTS It is clear from (Al) and (A2) that the 
Kronecker product is not commutative. Further, 

A®B®C = {A®B)®C = A®(B®C) 

(A + B)®(C + D) = A®C + A®D + B®C + B®D (A3) 

(A ® B)(C ®D) = (AC)® (BD) 

444 
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Sequence in Binary Bit Sequence in 
natural order representation reversal bit-reversed order 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

The Kronecker product of unitary matrices is unitary. The Kronecker product 
of diagonal matrices is diagonal. 

( A ^ i ) ® (A2B2) ® • • • <g> (ANBN) 

= ( A 1 ® A 2 ® " - ® A N ) ( B 1 ® B 2 ® - - - ® B N ) ' (A4) 

trace (A ® B) = (trace A)(trace B) 

(A ® B)T = AT (x) BT (A5) 

{A®E)-\ = A ' 1 ®B~X 

K R O N E C K E R POWER 

A[2] = A®A 

A[K+1] = A <g) = y4[/c] ® ,4 (A6) 

(AB)[K] = ,4 [ / c ] £ [ / c ] for all ^ and 5 

Kronecker products of matrices are useful in factoring the transform matrices 
and in developing generalized spectral analysis. For example, ( W H T ) h matrices 
can be generated recursively. (See (8.15)—(8.18).) 

Bit Reversal 

A sequence in natural order can be rearranged in bit-reversed order as 
follows: For an integer expressed in binary notation, reverse the binary form and 
transform to decimal notation, which is then called bit-reversed notation. For 

Table Al 

Bit Reversal of a Sequence for N = 8 
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example, if an integer is represented by an L-bit binary number, 

(m)10 = (rriL-^-1 + m L _ 2 2 L ~ 2 + • • • + m 2 2 2 + m^1 + m02°) 

= (mL-imL-2 • • • m2m1m0)2 

where mt = 0 or 1, / = 0, 1 , . . . , L — 1, then the bit reversal of m is defined by 

(bit reversal of m ) 1 0 

= ( m 0 2 L " 1 + m ^ ' 2 + m 2 2 L " 3 + • • • + m L _ 2 2 x + m ^ ^ 0 ) 

= ( m 0 m 1 m 2 • • • m L _ 2 m L _ 1 ) 2 (A7) 

Let m = 6 = (110) 2 . Then the bit reversal of m is (011)2 = 3. The bit reversal for 
a sequence of length TV = 8 is shown in Table A l . 

Circular or Periodic Shift 

If the sequence {x(0), x( l ) , x(2), x ( 3 ) , . . . ,x(N — 1)} is shifted circularly or 
periodically to the left (or right) by / places, then the sequence {x(l), 
x(l + 1 ) , . . . , x(N — 1), x(0), x ( l ) , . . . , x(/ — 1)} results. For example, circular 
shift of the sequence to the left by two places yields {x(2), x(3), 
x ( 4 ) , . . . , x(N — 1), x(0), x ( l )} . Circular shift of the sequence to the right by three 
places yields {x(N - 3), x(TV - 2), x(7V - 1), x(0), x ( l ) , . . . , x(N - 4)}. 

Dyadic Translation or Dyadic Shift [A-l , C-10, C-20, C-21, B-9] 

The sequence z(k) is obtained from the sequence x(k) by the dyadic translation 

x(k) = x(k 0 T) (A8) 

where k .© T implies bit-by-bit addition mod 2 of binary representation of k and 
T. This is equivalent to EXCLUSIVE OR in Boolean operations [see (Al 1)]. For 
example, {x(k)} = {x(0), x( l ) , x(2), x(3), x(4), x(5), x(6), x(7)} changes under 
dyadic translation for T = 3 to {x(3), x(2), x( l ) , x(0), x(7), x(6), x(5), x(4)}. Thus 
for x(6) we have h = 6 = (110)2 , T = 3 = (011) 2 , SO that 

k © T = (101)2 = 5, x(6 0 3) = x(5) 

For negative numbers, addition mod 2 is 

(" k) © ( - T) = k © T, ( - fc) © T = /C © ( - T) = - (k © T) 

These rules can be generalized in a straightforward manner to describe the 
signed digit a-ary shift (Section 9.8). 
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modulo or mod 

m mod n is the remainder of m/n: m mod n = 0timjri). If m = p (modulo n) 
where m, n, and p are integers, then m/n = / + p/n, wherep =. M(mjn) and / is an 
integer. For example, 

(A9) 
2 1 m o d 9 = 3, ^ = 2 + f 

2 mod 9 = 2, 21 = 3 (modulo 9). 

As an application, note that 

W= Qxp(-j2n/N) 

W q = WqmodN = exp(-y(27i/A0<7) 

, u f7V, if n = mmodN 
y ^ ( " _ m ) i = { ( A i o ) 

/ = 0 (0 otherwise 

Modulo 2 addition is an EXCLUSIVE O R operation given by 

0 0 1 = 1, 1 0 0 = 1, 0 0 0 = 0, 1 0 1 = 0 ( A l l ) 
Gray Code 

The Gray code equivalent of a number can be obtained as follows: 

1. Transform the decimal number to binary representation. 
2. Carry out addition mod 2 of each bit with the one to its immediate left. 
3. Transform this result to decimal notation. 

For example, 

1. ( 19 ) 1 0 • (10011) 2 

ADDITION M O D 2 

2. (10011)2 • (11010)2 (A12) 

3. (11010)2 ( 2 6 ) 1 0 

Under Gray code ( 1 9 ) 1 0 transforms to (26 ) 1 0 . 

GRAY CODE TO BINARY CONVERSION [A-1, B-9] A sequence in natural order can 
be rearranged based on Gray code to binary conversion (GCBC) as follows: 
Consider the L-bit binary representation of a decimal number k, 

(k)10 = (kL-XkL„2 • • • k2k1k0)2 

where kt = 0 or 1, / = 0 , 1 , 2 , . . . , L - 2, kL_1 = 1. The GCBC of ( k ) 1 0 is given 
by (Oio where (Oio = ik-ik-i' ' 'Wo)i and iL_1 = / c L _ 1 ? it = kt® il + u 
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/ = 0 , 1 , . . . , L — 2 . This can be illustrated with an example for TV = 8. Table A 2 
shows that the naturally ordered sequence {x(0), x( l ) , x (2 ) , x (3 ) , x ( 4 ) , x ( 5 ) , x (6 ) , 
x ( 7 ) } converts to the G C B C sequence {x(0), x( l ) , x (3 ) , x (2 ) , x ( 7 ) , x ( 6 ) , x (4 ) , 
x ( 5 ) } . A table similar to Table A 2 can be developed to yield a G C B C of the bit 
reversal of (k)10. This is shown in Table A 3 for TV = 8. 

Table A2 

Sequence Based on G C B C 

WlO (*>2 (02 = (*)io (O10 

0 000 000 0 
1 001 001 1 
2 010 011 3 
3 011 010 2 
4 100 111 7 
5 101 110 6 
6 110 100 4 
7 111 101 5 

Table A3 

Sequence Based on G C B C of Bit Reversal of (k)10 

(k)2 

Bit reversal 
of(k)2 

(02 
(GCBC of the 
previous column) 

(O10 

0 000 000 000 0 
1 001 100 111 7 
2 010 010 011 3 
3 011 110 100 4 
4 100 001 001 1 
5 101 101 110 6 
6 110 011 010 2 
7 111 111 101 5 

Correlation 

DYADIC OR LOGICAL AUTOCORRELATION [ R - 7 , A - 2 1 , G - 4 , G - 2 4 , H - l , C - 1 0 , C - l l , 
C - 1 2 , L - 7 , G - 2 4 ] If a sequence has period N, i.e., x(kN + /) = x(/) for integer-
valued k, we say that it is TV-periodic. The dyadic or logical autocorrelation of an 
TV-periodic random sequence x(/), / = 0 , 1 , 2 , . . . , TV — 1, is 

j J V - 1 

y(V = T7 I *(»' e k)x(i\ k = 0 , 1 , 2 , . . . ,N - 1 (A13) 
M i = 0 
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where the symbol © implies dyadic additon mod 2. As an example, for N = 8, 
the dyadic autocorrelation can be expressed as 

" J ( 0 ) 1 " x ( 0 ) x(l ) x(2) x(3) x ( 4 ) x ( 5 ) x ( 6 ) x(7) 
J ( l ) x ( l ) x(0) x(3) x(2) x(5) x ( 4 ) x(7) x(6) 
y(2) x(2) x(3) x(0) x( l ) x(6) x(7) x ( 4 ) •x(5) 
4 3 ) 1 x(3) x(2) x ( l ) x(0) x(7) x(6) x(5) x ( 4 ) 

4 4 ) ~" 8 4 4 ) x(5) x(6) x(7) x(0) x( l ) x(2) x(3) 
J(5) x(5) x ( 4 ) x(7) x(6) x( l ) x(0) x(3) x(2) 
4 6 ) x(6) x(7) x ( 4 ) x(5) x(2) x(3) x(0) x ( l ) 

_ J(7) _ _ * ( 7 ) x(6) x(5) x ( 4 ) x(3) x(2) x ( l ) x(0) 

( A 1 4 ) 

x(0) 
x( l ) 
x(2) 
x ( 3 ) 

x ( 4 ) 

x ( 5 ) 

x ( 6 ) 

L 4 7 ) J 

ARITHMETIC AUTOCORRELATION The arithmetic autocorrelation of an TV-
periodic random complex sequence x(/), / = 0 , 1 , 2 , . . . ,N — 1, is 

I » - i 

r(k) = — X x(i + k)x(i), = 0 , 1 , 2 , . . . , 7 V — 1 ( A 1 5 ) 

N i = 0 

For N = 8, the arithmetic autocorrelation can be expressed 

r k o ) - i - x ( 0 ) X (1) x(2) x ( 3 ) x(4) 4 5 ) 4 6 ) 4 7 ) "I 
K l ) x( l ) '(2) x(3) x(4) x(5) 4 6 ) 4 7 ) 4 0 ) 

r(2) x(2) x(3) x(4) x(5) x(6) 4 7 ) 4 0 ) 4 1 ) 
r(3) 1 x(3) X •(4) x(5) x(6) x(7) 4 0 ) 4 1 ) 4 2 ) 

r(4) 
— 8 x(4) X '(5) x(6) x(7) x(0) 4 1 ) 4 2 ) 4 3 ) 

r(5) x(5) X (6) x(7) x(0) x ( l ) 4 2 ) 4 3 ) 4 4 ) 

K6) x ( 6 ) x(7) x(0) x( l ) x(2) x ( 3 ) 4 4 ) 4 5 ) 

_ K 7 ) _x(7 ) X (0) x( l ) x(2) 4 3 ) 4 4 ) 4 5 ) 4 6 ) _ 

" x(0) -
x( l ) 
x(2) 
x(3) 

X x(4) 0 

x ( 5 ) 

x ( 6 ) 

_ 4 7 ) 

( A 1 6 ) 
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Convolution 

C I R C U L A R OR PERIODIC CONVOLUTION Circular or periodic convolution of two 
TV-periodic sequences x(m), h(m), m = 0 , 1 , 2 , . . . , TV — 1, is 

I N-I i N-l 

^ ) = 7 7 I x(l)h(n-l)=- X h(l)x(n-l), n = 0 , 1 , . . . ,TV - 1 (A17) 
^ z = o ^ Z = 0 

where *(/), /z(/), and >>(/) are periodic sequences. For TV = 8 (A 17) can be 
expressed in matrix form 

~>(0)~ ~ h(0) A(7) A(6) h(5) h(4) h{3) K2) Ki)~ rx(0) -I 

y(l) h(l) A(0) KT) h(6) h{5) h(4) h{3) h{2) 4 1 ) 
J(2) h{2) A(l) KO) Kl) h(6) h(5) h{4) h(3) x(2) 
X3) 1 A(3) A(2) Kl) KO) hil) h(6) K5) h{4) x(3) 
J(4) _ g A(4) A(3) h(2) Kl) KO) Kl) K6) h{5) x(4) 
J(5) A(5) A(4) h(3) h{2) Kl) KO) Kl) h(6) x(5) 
J(6) A(6) A(5) h(4) h(3) h(2) Kl) KO) Kl) x(6) 

_ J ( 7 ) _ _ A(7) A(6) h(5) h(4) h(3) h(2) Kl) K0)_ _*(7)_ 

(A18) 

For any TV (A18) becomes 

KO) 
y(i) 
y(2) 

l 
~N 

KO) 
Ki) 
h{2) 

h(N-
h(0) 
Kl) 

I) h(N-
h(N-
K0) 

2) • 

I) • 
• K2) 
• K3) 
• h{4) 

Kl) 
h(2) 
h{3) 

_y(N-i)_ _ KN - 1) h(N - 2) h(N- 3) • • Kl) KO) 

•x(0) 
x ( l ) 
x(2) (A19) 

_ x ( T V - l ) _ _ 

The square matrices in (A 18) and (A 19) are circulant matrices (see (A22)). 

D Y A D I C OR LOGICAL CONVOLUTION Dyadic or logical convolution of two TV-
periodic sequences x ( m ) , h(m), m = 0 , 1 , 2 , . . . , TV — 1, is an TV-periodic sequence 
y(n) given by 

I N-l J N - l 

y(") = Y J ^  X { L ) H { N Q I ) = M £  H { L ) X { J L 0 / ) ? N = °51?• • • > N ~ 1 ( A 2 0 ) 

T V l = 0 T V l = 0 

the symbol © implies subtraction mod 2. Dyadic convolution and correlation 
are identical to the operations © and ©, respectively. For TV = 8 the dyadic 
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convolution can be obtained from (A 14) by replacing the column vector {x(0), 
x ( l ) , . . . , x(7)} T on the right side by the column vector {/z(0), / z ( l ) , . . . , /z(7)}T. 

Special Matrices 

D Y A D I C M A T R I X [ R - 7 , H - l ] A dyadic matrix is formed by addition mod 2 of k 
and n (see Table A4). The square matrix shown in (A 14) is an example of a 
dyadic matrix ( D M ) . The eigenvectors of any dyadic matrix are the set of 
discrete Walsh functions [K-27]. A dyadic matrix can be transformed into a 
diagonal matrix under a similarity transformation by a W H T matrix. The 
elements of this diagonal matrix are the eigenvalues of the dyadic matrix. 
(l/N)G0BG0 = D, where D is a diagonal matrix, G0 a W H T matrix, and B a 
dyadic matrix. The W H T can be based on Walsh, Hadamard, Paley, or cal-sal 
ordering (see Chapter 8). 

Table A4 

Bitwise m o d 2 Addit ion, Given by n © k, for Integers Between 0 and 15. This Table 
Can Be Extended by Inspection" 

n 
k 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 0 1 3 2 1 5 4 1 7 6 9 8 11 10 13 12 15 14 

2 2 3 1 0 1 1 6 7 4 5 10 11 8 9 14 15 12 13 
3 3 2 1 0 I 7 6 LL 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 1 2 3 12 13 14 15 8 9 10 11 
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
6 6 7 4 5 1 2 3 0 1 14 15 12 13 10 11 8 9 
7 7 6 5 4 

! 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
15 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0 

fl Adapted from [R-7 ] . 

The inverse of a dyadic matrix is a dyadic matrix. The product of dyadic 
matrices is a dyadic matrix. The product of dyadic matrices is commutative. A 
dyadic matrix is symmetric about both of its diagonals. 
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TOEPLITZ M A T R I X [B -34 , G-22, G-23, W-33, T-20, T -21 , Z-2, K-28, L-21] 

A Toeplitz matrix is a square matrix whose elements are the same along any 
northwest (NW) to southeast (SE) diagonal. The Toeplitz matrix of size 2 2 x 2 2 

is designated T(l), and diagonal directions are indicated 

7 X 2 ) = 

«11 ^ « 1 2 - ^ 1 3 ^ a14 

/ * 2 i \ ^ 0 1 3 " 

^ # 1 2 ^ 

0 4 1 \ ^ 3 > - a2i 

(A21) 

CIRCULANT MATRICES A circulant matrix is a square matrix whose elements in 
each row are obtained by a circular right shift of the elements in the preceding 
row. An example is 

C(2) = 

-11 14 
C 1 4 C 

Cl2 

C12 C13 

11 C12 C13 
C14 C l l C12 
C13 C1A- C l l 

{All) 

Given the elements of any row, the entire matrix can be developed. A circulant 
matrix is diagonalized by the D F T matrix [H-38, H-39, A-45]. If [F(L)] is the 
(2 L x 2 L ) D F T matrix, then [F(L)]*[C(L)][F(L)] = [D(L)] and [D(L)] is a 
diagonal matrix. The D F T matrix 

F(l) = (A23) 

diagonalizes C(2). The diagonal elements of D(L) are the Fourier series 
expansion of the elements in the first row of C(L). A circulant matrix is also 
Toeplitz. The inverse of a circulant matrix is a circulant matrix. The product of 
circulant matrices is a circulant matrix that is commutative. Sums and inverses 
of circulant matrices result in circulant matrices. 

BLOCK CIRCULANT M A T R I X [H-38] A block circulant matrix ( B C M ) is a square 
matrix whose submatrices are individually circulant. The submatrices in any row 
of a B C M can be obtained by a right circular shift of the preceding row of 
submatrices. A B C M can be diagonalized by a two-dimensional D F T . An 
example is 

# 0 Hv-i HV-2 H, 

Hi Ho Hu -1 H2 

H2 H, H0 H3 

\ Hj 
Hv-i HV-2 Hu-3 •'" H0 
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where each submatrix Hj,j = 0 , 1 , . . . , U — 1, is a circulant matrix of size V x V. 
There are U2 submatrices in H, which is of size UV x UV. Note that H is not a 
circulant matrix. 

Dyadic or Paley Ordering of a Sequence [A- l , B-9] 

Let the sequence {x(L)} in natural order be {x(0), x ( l ) , x ( 2 ) , . . . , x{N — 1)}. 
Then the sequence in dyadic or Paley ordering is obtained by rearranging (x(L)} 
by its Gray-code equivalent. This is illustrated for TV = 8 in Table A5. If the 
natural order of the sequence is {x(0), x ( l ) , x(2), x(3), x(4), x(5), x(6), x(7)}, then 
the dyadic or Paley order is {x(0), x ( l ) , x(3), x(2), x(6), x(7), x(5), x(4)}. 

Table A5 

Dyadic or Paley Ordering of a Sequence for N = 8 

(k) 

(*)io ( * ) 2 Gray code Gray code 
in binary in decimal 

0 0 0 0 
1 1 1 1 
2 10 11 3 
3 11 10 2 
4 100 110 6 
5 101 111 7 
6 110 101 5 
7 111 100 4 
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A 

Aliased signals, 38, 290 
Analog-to-digital converter (ADC), 180 
Autocorrelation 

arithmetic, 449 
continuous function, 32 

B 

Bandwidth, 236, see also No i se bandwidth 
BIFORE Transform, 315 

complex, 366 
modified, 378 
modified complex, 378 

Bit reversal, 70, 445 
Bit reversed order (BRO), 312 
Butterfly, 63 

C 

Chebyshev polynomials, 228, 386 
Chinese remainder theorem (CRT) 

expansion of polynomials, 147 
for integers, 105 
for polynomials, 112 

Circulant matrix, 452 
block, 452 

Circular convolution, see Convolution 
Circular or periodic shift, 446 
C matrix transform, 416 
Coherent gain, 232 
Coherent processing, 238 
Comb function 

definition, 23 
Fourier transform, 29 

Congruence 
modulo an integer, 27 
modulo a polynomial, 108 
modulo a product, 101 

Constant Q filters, 205 
Convolution 

circular (periodic), 50, 123, 450 
evaluation using the CRT, 121 
evaluation using polynomial transforms, 

152 
property, 419 

dyadic or logical, 450 
frequency domain, 18 
noncircular (aperiodic), 50 

minimum number of multiplications for, 
116 

time domain, 17 
C o o k - T o o m algorithm, 115 
Correlation 

arithmetic, 50, 449 
dyadic, 448 

Cross-correlation, 31 
Cyclotomic polynomial, 109 

D 

Data sequence 
definition, 34 
number, 35 

Decimation in frequency (DIF) FFT, see 
Fast Fourier transform 

Decimation in time, 255 
Decimation in time (DIT) FFT, see also 

Fast Fourier transform 
radix-2, 82 

483 



484 I N D E X 

Delta function 
Dirac, 14, 26 
Kronecker, 7 

Demodulation, complex 
analog, 290 
digital, 290 

Demodulator, 256, see also Single sideband 
modulation 

mechanization, 271 
DFT, see Discrete Fourier transform 
D F T filter 

figure of merit (FOM), 232 
nonperiodic, 185 
nonperiodic shaped, 195 
performance, 232 
periodic, 180 
periodic shaped, 192 
response, 179, 182 
shaping, 191 
shaping approximation, 244 
shaping by means of FIR filters, 195, 

297 
Digital filter 

characteristics, 267 
elliptic, 268 
finite impulse response (FIR): 

definition, 266 
use in design of D F T windows, 297 

infinite impulse response (IIR), 266 
mechanizations, 263 
order, 266 
recursive, 263 
transversal, 263 

Digital word length, 281 
Digit reversal, 72, 77 
Discrete cosine transform, 386 

even, 393, 412 
odd, 413 

Discrete D transform, 414 
Discrete Fourier transform (DFT), see also 

Fast Fourier transform 
calculation using an (M2)-point FFT, 56 
definition, 35 
of DFT output 

definition, 249 
filter shaping for, 250 
frequence response for, 251 

equivalence of 1-D and L-D, 135 
equivalent representations, 181, 192 
evaluation by circular convolution, 127 
folding property, 37 
matrix factorization, 46 
multidimensional, 51 

of an JV-point even (odd) sequence using 
an (M4)-point F F T , 56 

periodic property, 36 
with power of a prime number dimension, 

125 
with prime number dimension, 124 
properties summarized, 49 
reduced, 157 
of sequence padded with zeros, 56, 92, 

248 
small N algorithms, 127 

matrix representation of, 131 
structure, 420 
of two real TV-point sequences , 55 

Discrete sine transform, 412 
Discrete time system, 34 
Discrete transform classification, 365 
Discrete transform comparison, 410 
Double sideband modulation, 16, 28 
Dyadic matrix, 451 
Dyadic or Paley ordering, 453 
Dyadic shift, 446 

matrix, 322 
Dyadic time shift, 359 
Dynamic range, 281 

E 

Effective noise bandwidth ratio, 248 
Eigenvector transform, 383 
Elliptic filters, 268 
Energy packing efficiency (EPE), 327 
Equivalent noise bandwidth, 235, 286 
Euclid's algorithm, 111 
Euler's phi function, 102 
Euler's theorem, 104 
External frequencies, 269 

F 

Fast Fourier transform (FFT), see also Dis
crete Fourier transform 

algorithms, 2 
algorithm comparison, 165 
arithmetic requirements, 71, 164 
bit reversal, 70 
decimation in frequency (DIF) 

mixed radix, 173 
radix-2, 60, 69 

decimation in time (DIT) 
mixed radix, 173 
radix-2, 82, 91 
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derivation using 
factored identity matrix, 88 
matrix inversion, 84 
matrix transpose, 81 

digit reversal, 72 
in-place computation, 90 
mixed radix, 58, 72 
polynomial transform method of computa

tion, 154 
power-of-2 (radix-2), 59, 81, 173 

minimum multiplications for, 90 
radix-3, -4, etc . , 81, 94 
scaling, 283 

Fermat numbers, 422 
Fermat number transform, 166, 422 

complex, 427 
complex pseudo, 432 
fast, 442 
matrix, 423 
pseudo, 430, 443 

Fermat's theorem, 103 
FFT, see Fast Fourier transform 
Field 

of integers, 102, 418 
of polynomials, 108 

Filter 
equiband, 270, 294 
passband, 269 
stopband, 269 
transition interval, 269 

Filters, see Digital filters 
Fit function, 208 
Fourier series 

with complex coefficients, 8 
existence of, 9 
with real coefficients, 6 

Fourier transform 
derivation, 10 
inverse, 11 
multidimensional, 23 
pair, 12 
properties, 24 

Frequency 
bin number, 36 
tags, 77 

G 

Gauss's theorem, 103 
Generalized continuous transform 

basis function 
average value, 341 
frequency, 340 

generation, 338 
orthonormality, 343 
per iod,341 

convolution, 347 
definition, 335 
discrete transforms derived from, 348 
inversion, 344 
linearity property, 344 
shifting theorem, 345 

Generalized transform (GT) r 

definition, 366 
modified, 374 
phase or position spectra, 373 
power spectra, 370 

Good algorithm, 99, 136 
arithmetic requirements, 164 

Gray code, 95, 307, 447 
to binary conversion (GCBC), 313, 447 

Greatest common divisor (gcd) 
for integers, 10 
for polynomials, 110 

H 

Haar 
functions, 399 
matrices, 400 
transform, 400 

complex, 415 
rationalized, 403 

Hadamard-Haar transform, 414 
rationalized, 414 

Hotelling transform, 383 
Hybrid (DIT-DIF) F F T , 98 

I 

Impulse response, 19 
In-place computation, 90, 313 
Index of an integer relative to a primitive 

root, 105 
Infinite impulse response (IIR), see Digital 

filter 
Integer representation 

constraint, 420 
mixed radix integer representation (MIR), 

73, 171 
second integer representation (SIR), 106 

Inverse discrete Fourier transform, 44 
Inverse fast Fourier transform (IFFT), 85, 

95 
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K 

Karhunen-Loeve transform, 382 
asymptotic equivalence, 414 

Kronecker product, 132, 444 
algebra, 444 
power, 445 

L 

Lagrange interpolation formula, 114 
Leakage, spectral, 183 

M 

Matrix 
permutation, 88 
sparse, 47, 67 
unitary, 44 

Mersenne numbers, 425 
Mersenne number transform, 425 

complex, 429 
complex pseudo, 443 
pseudo, 434, 443 

Mixed radix integer representation (MIR), 
73, 171 

Modified generalized transform, 374 
Modified Walsh-Hadamard transform, 329 
Modulo (mod) 

arithmetic, 418 
an integer, 27, 40, 447 
a polynomial, 108 

Multidimensional 
DFT, 51, 139 
WHT, 327 

Multiplicative inverse, 102, 418 

N 

Noise 
bandwidth, 208 
equivalent noise bandwidth, 235, 247 
normalization, 208 
power spectral density, 208 

Noncoherent processing, 238 
Nonrecursive filters, see Digital filters 
Number theoretic transforms (NTT), 411 

computational complexity, 439 
constraints, 421 
figure of merit, 438 
properties, 440 
relative evaluation, 436 
selection of parameters, 421 

Number theory, 100 
Nyquist 

frequency, 38 
rate, 38 

for sampling D F T output, 251 

O 

Order of an integer modulo N, 104 
Orthogonal functions, 7, 9 
Overlap correlation, 238 

P 

Padding with zero-valued samples 
added at end of sequence, 56, 92, 248 
inserted between consecutive samples, 56 

Parseval's theorem 
for continuous functions, 31 
for DFT, 53 
for WHT, 322 

Passband, see Filter 
Permutation values, 163 
Picket-fence effect, 236 
Polynomial transforms, 99 

definition, 149 
evaluation of circular convolution by, 175 
generalized, 150 
inverse, 149 
multidimensional convolution by, 145 
plus nesting, 177 

Power-of-2 FFT 
algorithms, 59 
arithmetic operations, 71 

Power spectral density (PSD) 
definition, 32 
estimation, 252 

Power spectrum 
circular shift invariant for 

generalized continuous transform, 353 
WHT, 323 

DFT, 53 
(GT)r, 370 
(MGT)„ 378 
WHT, 322 

Prime factor algorithm, 137 
Prime number, 102 
Primitive root 

of an integer, 104, 418 
of unity, 109 

Principal component transform, 383 
Processing loss , worst case , 236 
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Proportional filters, 205 
Pruning, 92 
Pure tone, 236 

Q 

Q of a filter, 205 

R 

R a d e m a c h e r funct ions , 302 
Rader-Brenner algorithm, 161 
Rader transform, 426 
Rapid transform, 405 

properties, 405 
Rate distortion, 385 
Rationalized Haar transform, 403 
rect function 

definition, 12 
Fourier transform, 13 

Reduced multiplications F F T algorithms, see 
Fast Fourier transform 

Redundancy, 238 
Relatively prime 

integers, 102 
polynomials, 111 

Remez exchange algorithm, 268 
Residue, 40 
Residue number system, 107 
rep operator, 23 
Ring 

of integers, 101, 418 
of polynomials, 108 

Ripple in filter frequency response, 269 
Roundoff noise, 285 

S 

Sampled-data system, 34 
Sampling theorem 

frequency domain, 30 
sequency, 307 
time domain, 29, 38 

Scaling in the FFT, 281 
Scalloping loss , 236 
Second integer representation (SIR), 106 
Sequency 

definition, 304 
power spectrum, 313 

Shorthand notation 
D F T matrix, 47 
FGT matrix, 349 

Sidelobe, 
fall off, 232,-246 
highest level, 232 
maximum level v s . worst-case processing 

loss , 238 
spurious, 287 

Sign( /c ) , 8 
Signal level detection, 240 
sine function 

definition, 13 
Fourier transform, 13 

Single sideband modulation, 15, 28, 256 
Slant-Haar transform, 414 
Slant transform, 393 
Spectral analysis, 178, 252 

equivalent systems for, 297 
octave, 272 
system using A G C , 282 

Spectrum, demodulated, 258, see also 
Power spectrum 

Stage, 63, 311 
Stepping variable, 335 
Stopband, see Filter 

T 

Time sample number, 35 
Toeplitz matrix, 411, 452 
Totient, 103 
Transfer functions, 18 
Transform sequence 

definition, 36 
number, 36 

Transforms using other transforms, 416 
Twiddle factor, 60, 134, 171 

U 

Unit step function, 23, 28 

V 

Variance distribution for a first-order Mar
kov process, 384 

W 

Walsh-Fourier transform, 337 
Walsh functions, 301 

generation of, 356, 357 
Walsh-Hadamard matrices, 309 
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Walsh-Hadamard transform 
cal-sal ordered, 318 
generation using bilinear forms, 321 
Hadamard or natural ordered, 313 
Paley or dyadic ordered, 317 
Walsh or sequency ordered, 310 

Walsh ordering, 307 
Weighting 

Abel, 226 
Barci lon-Temes, 231 . 
Bartlet, 213 
Blackman, 215 
Blackman-Harris, 217 
Bochner, 220 
Bohman, 223 
Cauchy, 226 
cosa(mrlN), 202, 213 
cosine cubed, 246 
cosine squared, 202, 213, 246 
cosine tapered, 222 
cubic, 221, 245 
De La Val le-Pouss in , 221 
Dirichlet, 213 
Dolph-Chebyshev , 228 
Frejer, 213 
Gaussian, 227 
Hamming, 214 

generalized, 246 
Hanning, 202, 246 

Hanning-Poisson, 225 
Jackson, 221 
Kaiser-Besse l , 230 
Kaiser-Besse l approximation to Black-

man-Harris, 219 
parabolic, 220 
Parzen, 221 
Poisson, 224, 226 
raised cosine, 222 
rectangular, 213 
Riemann, 221 
Riesz, 220 
time domain, 191, 194 
triangular, 196 
Tukey, 222 
Weierstrass, 227 

White noise, 207 
Windowing, frequency domain, 191, 194, see 

also Weighting 
Winograd Fourier transform algorithm, 99, 

138 
arithmetic requirements, 162 

Worst-case processing loss , 236, 238 

Z 

Zero padding, see Padding with zero-valued 
samples 

Zoom transform, 251 
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