6.252 NONLINEAR PROGRAMMING
LECTURE 9: FEASIBLE DIRECTION METHODS
LECTURE OUTLINE

e Conditional Gradient Method
e Gradient Projection Methods

A feasible direction atan x € X is a vector d = 0
such that x 4 ad is feasible for all suff. small o > 0
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e Note: the set of feasible directions at x is the
setofall a(z — x) where z € X, z #x,and a > 0



FEASIBLE DIRECTION METHODS

o A feasible direction method:
gkl = ok + qkdk.

where d*: feasible descent direction [V f(xF)'dk <
0], and o* > 0 and such that z¢+1 ¢ X.

e Alternative definition:
rhtl = gk 4 ok (T — k),
where oF € (0, 1] and if z* is nonstationary,

Th € X, Vf(xk) (ZF — zF) < 0.

e Stepsize rules: Limited minimization, Constant
ak =1, Armijo: ok = g™k, where my is the first
nonnegative m for which

F@k)=f (@587 (7 ~ak)) = —aGmV (b (7 —ah)



CONVERGENCE ANALYSIS

e Similar to the one for (unconstrained) gradient
methods.

e The direction sequence {d*} is gradient related
to {z*} if the following property can be shown:
For any subsequence {x*}rcic that converges to
a nonstationary point, the corresponding subse-
quence {d* }rex is bounded and satisfies

limsup Vf(xF)drF <O.
k—oo, kel

Proposition (Stationarity of Limit Points)
Let {z*} be a sequence generated by the feasible
direction method z++1 = x¥ 4 akdk. Assume that:

— {d*} is gradient related

— ok is chosen by the limited minimization rule
or the Armijo rule.
Then every limit point of {z*} is a stationary point.

e Proof: Nearly identical to the unconstrained
case.



CONDITIONAL GRADIENT METHOD

o zkt+l = gk 1 ok (zT¥ — 2¥), where

Fk : ENI ( _ ok
T arg;rél)I(lVf(a: ) (x — xF).

e We assume that X is compact, so z" is guar-
anteed to exist by Weierstrass.
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CONVERGENCE OF CONDITIONAL GRADIENT

e Show that the direction sequence of the condi-
tional gradient method is gradient related, so the
generic convergence result applies.

e Suppose that {z*}icx converges to a nonsta-
tionary point . We must prove that

{z"—2" Ve : bounded, limsup Vf(z") (@ —z") <0
k—oo, keK

e 1st relation: Holds because z" € X, z* € X,
and X Is assumed compact.

e 2nd relation: Note that by definition of z*,
Vf(zk) (@ —ak) <V (k) (z—2F), VreX

Taking limitas k — oo, k € K, and min of the RHS
over x € X, and using the nonstationarity of z,

limsup Vf(xk) (Z"—2zF) < min Vf(2) (z—2) < 0,
k—o0, k€K zeX

thereby proving the 2nd relation.



GRADIENT PROJECTION METHODS

e Gradient projection methods determine the fea-
sible direction by using a quadratic cost subprob-
lem. Simplest variant:

rhtl = gk 4 ok (T — oF)

¢ = ok — Ska(ka)}—i_

where, |-]* denotes projection on the set X, af €
(0, 1] is a stepsize, and s* is a positive scalar.

Gradient projection itera-
tions for the case

xk—l—l k

T

If aF < 1, zF*1 is in the
line segment connecting x”

e Stepsize rules for ok (assuming s = s): Limited
minimization, Armijo along the feasible direction,
constant stepsize. Also, Armijo along the projec-
tion arc (o = 1, sk: variable).



CONVERGENCE

e If ok is chosen by the limited minimization rule
or by the Armijo rule along the feasible direction,
every limit point of {x*} is stationary.

e Proof: Show that the direction sequence {z* —
rk}is gradientrelated. Assume{x*}cx converges
to a nonstationary x. Must prove

{z"—2"Yreck : bounded, limsup Vf(z*) (@ —z") <0
k—oo, keK

1st relation holds because {|[z* — «*||} _, con-
vergesto |||[z—sV f(z)|T—2||. By optimality condi-
tion for projections, (z* —sV f(z*)—7*) (z—7*) <
0 for all x € X. Applying this relation with x = z*,
and taking limit,

limsup Vf(z®) (@"—2F) < ——Ha: [x SVf(:r;)] H2 <0
k—oo, keK
e Similar conclusion for constant stepsize o =1,
sk = s (under a Lipschitz condition on V f).

e Similar conclusion for Armijo rule along the pro-
jection arc.



CONVERGENCE RATE - VARIANTS

e Assume f(z) = la/Qx — bz, with Q > 0, and
a constant stepsize (a* = 1, sk = s). Using the
nonexpansiveness of projection

ka—l—l _ ¥

= [|[* ~ svsH] " = [+ = svs)] |
<[ (@~ 5w s64) - (o~ 59 50)|
= ||(I = sQ)(z" — z¥)

< maX{|1 — smy, |1 — sM|}Haﬁk —z”

where m, M. min and max eigenvalues of ().
e Scaled version: zF+1 = x* 4+ ok (T¥ —2*), where

Z" = arg min {Vf(xk)/(a: —zF) + L(31: — zF) H* (z — a:k)} :
reX 2sk

and H* > 0 (involves transformation y* = (H*)1/22k.

Since the minimum value above is negative when

z* is nonstationary, V f(z*)"(z* — x*) < 0.
e Newton’s method for Hx = V2 f(xF).

e Variants: Projecting on an expanded constraint
set, projecting on a restricted constraint set, com-
binations with unconstrained methods, etc.



