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linearly independe nt, then L(dl, ••. , d,J = Em and hence X"+l is a minimurn
point of f over E.•.This completes the proof.

where

Generating Conjugate Directions

In the remainder of this section, we describe several methods for generating
conjugate directions of quadratic forms. These methods lead naturally to
powerful algorithrns for minirnizing both quadratic and nonquadratic functions.
In particular, we discuss the Davidon-Fletcher-Powell method, the conjugate
gradient method of FJetcher and Reeves, and the method of Zangwill.

pj=\dj

qj =Vf(Yj+l)-V!(Yj)

Replace j by j + 1, and repeat step 1.

(8.19)
(8.20)

The Method of Davidon-Fletcher-Powell

The method was originally proposed by Davidon [1959] and iater developed by
Fletcher and Powell [1963]. The Davidon-Fletcher-Powell method is also
referred to as the oariable metric method. This method falls under the general
c1ass of quasi-Newton procedures, where the search directions are of the form
-DjVf(y). The gradient direction is thus deflected by premultiplying it by --Dj,
where D, is an n X n positive definite symmetric matrix that approximates the
inverse of the Hessian matrix. For the purpose of the next step, DJ+l is forrned
by adding to D, two symrnetric matriccs, each of rank one. Thus, this
scheme is sometimes ref'erred to as rank two correction.

8.6.4 Example
Consider the following problem

Minimize (x, - 2)4 + (Xl - 2X2f

The summary of the computations using the Davidon-Fletcher-Powell method
is given in Table 8.13. At each iteration, for j= 1,2,dj is given by -DjVf(y),
where DI is the identity matrix, anel D2 is computed from (8.18) to (8.20). At
iteration k = 1, we have PI = (2.7, -1.49)' and ql = (44.73, - 22.72)' in (8.18). At
iteration 2 we have PI = (-0.1,0.05)' and q1 = (-0.7,0.8)', and finally at iteration
3, we have PI = (-0.02,0.02)' and Gl= (-0.14, 0.24)'. The point Yj+1 is computed
by optimizing along the direction d, starting from Yj for j =1,2. The procedure
is terminated at the point Y2 = (2.115,1.058)' in the fourth iteration, since
IIV'f(Y2)11= 0.006 is quite smal!. The path taken by the method is depictcd in
Figure 8.17.

Lemma 8.6.5 shows that each matrix Di is positivo definire anel d, is a
direction of dcscerit.

Summary of the Davidon-Fletcher-Powell Method

We now summarize the Davidori-Fletcher-Powell method for mmumzing a
differentiable function of several variables. In particular, if the function is
quadratic, then, as shown later, the method yields conjugate directions and
terrninates in one complete iteration, that is, after searching along each of the
conjugate directions.

8.6.5 Lemma

initialization Step Let E> O be the termination scalar. Choose an initial
point XI and an initial syrnmetric positive definire matrix DI' Let Yl = Xl, let
k = j = 1, and go to the main step.

Let YIEEm and lct DI be an initial positive definire symrnctric rnatrix. For
j == 1, ... , n, let Yj+1 == Yj + Àjdj, where dj = -D/9Í(Yj), and \ solves the problcm
to minimize f(Yj + Adj) subject to À?: O. Furthermore, for J == 1, ... , n -1, let
Dj+l be given by (8.18) to (8.20). If Vf(Yj) I: O for j == 1, ... , n, then DI,"" D,
are symmetric and positive definite so that d., ... , d, are descent directions.

Main Step
1. If IIVf(Yj)l!<s, stop; otherwise let, dj=-DiVj'(y) and let \ be an optimal

solution to the problcrn to minimize its, +Ad) subject to À?: O., Let
Yj;I=Yí+\d,. If j<ll. go to srcp 2. Tf j=n. lct YI =Xk'I=Y,,;I, rcplacc k
by 1.. + 1, let j == 1, and rcpcat stcp 1.

2. Construct DI+I as follows:

Proof

We prove the result by induction. For j = 1, D1 is syrnmetric and posmve
definite by assumption. Furthermore, Vf(YI)'dl =-'\}'flrl)'D:vTYI)<O, since
DI is positive definite. By Theorem 4.2.1, then di is a desccnt direction. V/e will
assume that thc rcsult holds true for j ~ ri -- 1, anc! thcn xhow that it
holds for j + 1. Let x be a nonzero vcctor in E,,; thcn by (8.18), we have

Di"-I =Dj+~;~_~L'!1~;~
p,qj qpj'li

(8.18)
, (X'p)2 (.tD )2

X D. x=x'D.x+~ x -/);/J+I J --~
pJqj q;Dj(lj

(8.21)
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Table 8.13 Summary of Computations for the Davidou-Fletcher-Powell Method

Iteration Xk v,
k f(){k) j f(Vj) Vf(Vj) I!Vf(Vj)1I Dj dj Àj Yh1

1 (0.00,3.00) 1 (0.00,3.00) (-44.00,24.00) 50.12 [~ ~] (44.00, -24.00) 0.062 (2.70,1.51)
(52.00) (52.00)

2 (2.70,1.51) (0.73,1.28) 1.47 [0.25 0.38] (-0.67, -1.31) 0.22 (2.55, 1.22)
(0.34) 0.38 0.81

2 (2.55, 1.22) 1 (2.55, 1.22) (0.89, -0.44) 0.99 [~ ~] , (-0.89,0.44) 0.11 (2.45, 1.27)
(0.1036) (0.1036)

2 (2.45, 1.27) (0.18,0.36) 0.40 [0.65 0.45] (-0.28, -0.25) 0.64 (2.27,1.11)
(0.0490) 0.45 0.46

3 (2.27, 1.11) 1 (2.27,1.11) (0.18, -0.20) 0.27 [~~] (-0.18,0.20) 0.10 (2.25,1.13)
(0.008) (0.008)

2 (2.25, 1.13) (0.04,0.04) 0.06 [0.80 0.38] (-0.05, -0.03) 2.64 (2.12,1.05)
(0.004) 0.38 0.31

4 (2.] 2, 1.05) 1 (2.12, 1.05) (0.05, -0.08) 0.09 [~ ~] (-0.05,0.08) 0.10 (2.115, 1.058)
(0.0005) (0.0005)

2 (2.115,1.058) (0.004,0.004) 0.006
.(0.0002)
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Dj+2Hpk = [D +Pj+lV!+l1+1 rPj+lqj+1
q' D+I]!>j+lqj+1 1+1 J Hpk

q)+JDj+Jqj+J
(8.25)
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Note that Vf(Yj} té O by assumption, and that D, is posirive definite, so that
V f(y/ Dj V f(Yj) > O. Furthermore, d, is a descent direction and hence Aj > O.
Theref'ore, from (8.23), p;qj >O. Furthermore, qj té O, and hence b'b =

q)Ojqj>O.
We now show that X'Dj+lX> O. By contradiction, suppose that x'Dj+1x = O.

This is only possible if (a'a)(b'b) = (a'b)" and pjx = O. First, note that
(a'a)(b'b) = (a'b)? only if a = Ab; that is D;/2X = AD]/2qj. Thus x = Aqj' Since
xtéO, AtéO. Now, O=pjx=Ap)qi contradicts the fact that pjqj>O and AtéO.
Therefore X'Dj+lX > 0, so that Dj+l ís positíve definite.

Since Vf(Yj+l) té O and since Dj+l ís positíve definite, V!(Yj+l)'dj+1 =
-V!(Yj+l)'Dj+IV!(Yj+l) < O. By Theorem 4.2.1, then, dj+l is a descent direction.

In particular, HVI =qJ. Thus, letting j= 1 in (8.18), we get

D H = [o +PIP'I_DIGjq\DI] -2&PI I, 'D 'lI -PJPlql ql Jql

so that part 3 holds true for j = 1.
Now suppose that parts 1, 2, and 3 hold for j:S 11-1. To show that thcy also

hold true for j + 1, first rccall by part 1 of Thcrocrn 8.6.3 that d:V f(Yj+ J) = O for
i:5 j. By the induction hypothesis of part 3, d, = Dj+IHdj for i s: j. Thus, for
i:s j, we have

The Quadratic Case

If the objective function f is quadratic, then by Theorem 8.6.6 below, the
directions dI,"" d, generated by the Davidon-Fletcher-Powell method are
conjugate. Therefore, by part 3 of Theorem 8.6.3, the method stops after one
complete íteration with an optimal point. Furthermore, the matrix Dn+1

obtained at lhe end of the iteration is precisely the inverse of the Hessian
matrix H.

0= d/V!(Yj+l) = d/HDj+IVf(Yj+l) = -d/Hdj+l

In view of the induction hypothesis on part 2, the above equation shows that
part 2 also holds for j + 1.

Now we show that part 3 holds for j + 1. Letting k s: j + 1,

Noting (8.24) and letting k = j + 1 in (8.25), it follows that Dj+2Hpj+1 = Pi+l
Now let k s: j. Since part 2 holds for j + 1,

8.6.6 Theorem
pj+IHpk = AkAj+ldj+IHdk = O (8.2ó)

Let H be an n x n symmetric positive definite matrix, and consider the problem
to minimize !(x) = c'x + !x'Hx subject to x E En. Suppose that the problem is
solved by the Davidon-Fletcher-Powell method, starting with an initial point Yl
and a symmetric positive definite rnatrix DI' In particular, for j = 1, ... , n, let
Àj be an optimal solution to the problem to minimize f(Yj + Adj) subject to
À 2: O,and let Yi«: = Yi + AA, where d, = +D,Vf(yJ and D, is determined by
(8.18) to (8.20). If Vf(Yj) 1'- O for each j, then the directions di,"" d, are
H-conjugate and Dn+l = H-I, Furthermore, Yn+l is an optimal solution to the
problem.

Noting the induction hypothcsis on part 3, (8.24), and the faet that par! 2 holds
true for j + 1, we get

q;+IDj+1Hpk = qj+IPk =pj+IHpk = \+Ift.kdjHHdk == O (8.27)

Substituting (8.26) and (8.27) in (8.25), and noting the induction hypothesis on
part 3, we get

Dj+2Hpk = Dj+IHpk = Pk

Hp, = H(Akdk) == H(YHl -Yk) = V!(Yk'IJ) - Vf(Yk) = qk (8.24)

Thus part 3 holds for j + l.
To finish the induction argument, we only need to show that part 1 ho!ds

true for j + 1. Suppose that Ij~JI Ctjdj = O. Multip!ying by dj+iH and noting that
part 2 holds for j + 1, it follows that Cti; Jdj; JHdj+1 = O. By assurnption
V f(Yj+ J) 1'-O and by Lemrna 8.6.5 Dj+1 is positivo definire, 50 that di' I =
-Dj+IV!(Yj+l) té O. Since H is positive definite, then dj+!Hdj+1 té O, and hence
Ctj+l= O. This in turn implies that L{~I Ctjeij = 0, and since dI>' •• , d, are linear!y
indcpendcnt by the induction hypothesis, aj = O for j = 1, ... , j. Thus
dI, ... ,dj+l are linearly indepcndcnt and part 1 holds for j + 1. Thus parts 1, 2,
and 3 hold. In particular, conjugacy of d,, ... ,dn follow from parts 1 and 2 by
letting j = n.

Now let j = n in part 3. Then On+IHdk = dk for k = 1, ... , n. lf we lct D be
the matrix whose colurnns are dI,"" dn, then Dn+IHD = D. Since D is

Proof
We first show that for any j with 1:5 j:5 n, we must have the following
conditions:

1. dI,"" dj are linear1y indepenàent.
2. d'Hd; =0 for ité k; i, k:sj.
3. Dj+1Hpk =Pk, or equivalently, Dj+IHdk =dk for l:5k:5j.

where Pk = Akdk' We prove this result by induction. For j = 1, parts 1
and 2 are obvious. To prove part 3, first 110te that for any k, we have
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invcrtiblc, then O,,+IH=I, which is only possible if D"+I =H-I. Finally, Y"+I
is an optirnal solution by Thcorcm R.6.3.

The Conjuqate Gradient I'Vlethod of Fletcher and Heeves

The conjugate gradient method, credited to Fletcher and Reeves [1964],
deftects the direction of steepest descent by adding to it a positive multiple of
the direction used in the last step. For the quadratic case, as we wilI learn,
deflecting the steepest descent direction in this fashion produces a set of
conjugate directions.

Summary of the Conjugate Gradient Method

A summary of the conjugate gradient method for minimizing a differentiable
function is summarized below. _ J

/'

Initialization Step Choose a termination scalar e> O and an initial point Xl'

Let YI = Xl> d, = -Vf(yl)' k = j = 1, and go to the main step. ", :z ,
2 .J ~~Main Step v -/~ \ c ,.<) v J rJ'

1. If IIVf(yj)lI< e: stop. Otherwise, let Aj be an opymal solution to the pfoblem
to rninimize i's, +Ad) subject to A ~ O, and Irt Yj+1= Yj +AA. If j < n, go to
stcp 2; otherwise, go to step 3. I c,~ <,

IIVf(Yj+1 )IIY-- .." .' \
2. Let dj+1 = --Vf(Yj+l) + aA, where (Xj= IIVf(Yj)112. Replace ] by J+ 1, and go

ta step 1.
3. Let YI = Xk+ I = Y,,+I~ and let d, = -Vf(Y1)' Let j = 1, replace k by k + 1, and

go to slep-r:-

Note that dj+1 = (l/ILI)(,uI[ -Vf(Yj+l)]+ /L2d), where

_ IIVf(Yj)112 _ IIVf(Yj+l)II2
/LI -IIV f(Yj)iI2 + IIVf(Yj+l)112 and /L2 -IIV f(yiW + IIVf(Yi+l)112

so that dj+1 is essentially a convex combination of the current steepest descent
direction and the direction used at the last iteration.

8.6.7 Example
Considcr the foilowing problem:

Minimze (XI - 2)4 + (x, - 2X2?

The summary of the computations using the method of Fletcher and Reeves is
given in Table 8.14. At each iteration di was given by -Vf(Yl)' and d2 was
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given by d2 == -Vf(Y2) + O'ldl, where aI == IIVf(yJII2/jjVf(YI)1I2. Furtherrnore, Yj+l
is obtained by optimizing along dj, starting from Yj' At iteration 4, the point
Y2= (2.185,1.094)', which is very close to the optimal point (2.00,1.00), is
reached. Since the norm of the gradient is equal to 0.02, which is small, we
stop here. The progress of the algorithm is shown in Figure 8.18.

The Quadratic Case

If the function f is quadratic, Theorem 8.6.8 below shows that the directions
dI> ... ,dn generated are indeed conjugate, and hence by Theorem 8.6.3, the
conjugate gradient algorithm produces an optimal solution after one complete
application of the main step, that is, after, at most, n line searches have been
performed.

X,

2 3

Figure 8.18 IlIustration of the method of Fletcher and Reeves.
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'I

Tbeorem 8.6.8
Consider the problem to minimize f(x) == c'x + ~x'Hx subject to X E En' Suppose
that the problem is solved by the conjugate gradient rnethod, starting with Yl
and di ee -Vf(YI)' In particular, for j == 1, ... , n, let Ài be an optirnal solution to
the problem to minimize iis, + Àdj) subject to A 2': O. Let Yj+l = Yi + AA, and let
dj+I=-Vf(Yi+l)+ajdj, where aj=IIVf(Yj+I)112/IIVf(y)112. If Vf(Yj);i-O for i=
1, ... , n, then the following statements are true:

1. dl>"" e, are H-conjugate.
2. di,"" d, are descent directions.

3 = IIVf(Yj+l)112== d:HVf(Yi+1)

• aj IIVf(Yi)112 d:Hdj

for i= 1, ... ,n

Proof
First suppose that parts 1, 2, and 3 hold for j. We show that they also hold for
j + 1. To show that part 1 holds for j + 1, we firstdemonstrate that d~Hdi+1= O
for k ~ j. Since dj+1 = -V f(Yj+l) + aA, noting the induction hypothcsis in part
3, and letting k == j, we get

d~d =d'H[-Vf(y, )'+djHV[(Yi+l
) óJ=o

J J+1 J J+1 _d'Hd, I
, I I

(8.28)

Now let k < j. Since dj+1 = -V f(Yj+l) + a;d;, and sicnc d~Hdi= O by thc induc-
tion hypothesis of part 1,

(8.29)d~Hdi+l= -d~HVf(Yi+l)

Since Vf(Yk+I) == c+ HYk+l and YHl = Yk + Àkdk> note that

dk+ 1 = -V f(Yk+1) + O'k dk

= -[Vf(Yk)+ ÀkHdk]+ akdk

= -[:""dk +ak_Idk_I+AkHdk]+akdk

By the induction hypothesis of part 2, d, is a descent direction, and hence
Àk > O. Therefore

d~H= L [-d~+I+(1+ak)d~-(Xk-ld~IJ

From (8.29) and (8.30), it follows that

d~Hdi+1= -d~HVf(Yj+1)

= - :k [-d~+lV f(Yj+l) + (1+ O'k)d~Vf(YJ+I) - a"_ld~_IV [(Yi+I)]

(8.30)
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By part 1 of Theorern 8.6.3, and since d., ... , d, are assurned conjugate, then
d~+IVf(Yj+j)=d~Vf(Yj+J=d~_jVf(yjll)=O. Thus the above equation implies
that d~Hdj+ I = O for k < j. This, togcther with (8.28), shows that d;,Hdj+1 = O
for all k s; j.

In arder to show that d., ... ,di+1 are H-conjugate, it thus sufficies to show
that thcy are linearly independent. Suppose that I!:::; yjdj = O. Then,
I!~l yjdj + Yi+l[-V!(Yj+J) + aAJ = o. MultipJying by Vf(Yi+l)', and noting part 1
of Theorern 8.6.3, it folJows that Yi+lIIVf(Yi+l)112= O. Since Vf(Yj+l) -;i 0, Yi+l =
O. This irnplies that L:i~J yjdj = O, and in view of conjugacy of d., ... , di' it
follows that YI = ... = Y, = O. Thus, d., ... , dj+1 are linearly independent and
H-conjugate, so tliat part 1 holds true for j + 1.

Now we show that part 2 holds for j + 1; that is, di+1 is a descent
direction. Note that V f(Yi+ I) -;i O by assumption, and that V f(Yi+l)' d, = O by
part 1 of Theorcrn 8.6.3. Then Vf(Yj+I)'dj+1 == -IIVf(yj+l)112 + aj Vf(yj + I)'dj =
-IIV f(Yi+I)II2 < O. By Theorem 4.1.2, dj+1 is a descent direction.

Now we show that part 3 holds for j + 1. By letting k = j + 1 in (8.30), and
rnultiplying by V f(Yj+2), it follows that

Àj+ld)+IHV f(Yi+2) = [-<1)+2 + (1+ aj+l)dj+1 - (XidíJVf(Yj+2)

= [Vf(Yj+2)' +dj+l- ajdjJVf(yj+2)

Since d., ... , dj+1 are H-conjugate, then by part 1 of Theorem 8.6.3,
dj+1Vf(Yj+2) =djVf(Yj+2) == o. The above equation then implies that

IIVf(Yi+2)II2 = Àj+ldj+lHVf(Yi+2) (8.31)

Multiplying Vf(Yj+J) == Vf(Yj+2) - Àj+ .Hd.; I by Vf(Yj+I)" and noting that
djHdj+1 ==d;+lVf(Yj+2) =djVf(Yj+2) =0, we get

IIVf(Yj+JII2 = Vf(Yj+I)'[Vf(Yj+2) - À;+lHdj+J

= (-d)+1 +ajdí)[Vf(Yj-r2)-À;+IHdj+l]

= \+ld;+jHdj+1 (8.32)

From (8.31) and (8.32), it is obvious that pare 3 holds true for j + 1.
We have thus shown that if parts 1, 2, and 3 hold for j, then they also hold

for j + 1. Note that parts 1 and 2 trivially hold for j = 1. In addition, using a
similar argument to that used in proving that part 3 holds for j + 1, it can be
easily demonstrated that it holds for j = 1. This completes the proof.

The Method of Zangwiil j
We now discuss a method creditcà to Zangwi!l [1967J for mmmuzmg a
function of several variables. At step j, suppose that the directions d\1 ... ,dj

are available. Zangwi!l's method gencrates a new direction dj+1 as follows. Let
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YI and LI bc two points such that LI -Y I fÉ L(dl, ... , di)' whcrc L(db ... , d.) is
the linear subspacc spanned by d., ,dj• Let Yjd and 2:j+1 be produced by
minimizing f sequenctially along d., ' dj starting írorn YI and ZI, respec-
tively. Then dj+1 is given by

dj+1 = Zj+1 - Yj+1

<,
Summary of the Method of Zangwill

A summary of Zangwill's method for minimizing a function f of several
variables is given below. As will be shown later, if the function f is differenti-
able, then the method converges to a point with zero gradient.

\

~
. 'f

)
\fi 'to j

\

Initia/ization Step Choose a termination scalar e> O, and choose an initial
point XI. Let YI = Xl> let d, =,-Vf(Yl),.let k = j = 1, and go to the main step.

\ c\ r ,"

Main Step ~ VI~./ y/ t
1. Let üe'an optimal solution to the problem to rninirnize t's, + Ádj) subject

to Á E E 1>and let Yj+ I = Yj + À;dj. If j = n, go to step 4; otherwise, go to step
2. .

2. et-~ -Vf(Yj+l), and let (L be an optimal solution to the problern to
inimize f(yj+l + fLd) subject to fL 2: O. Let ZI == Yj+1+ (Ld. Let i = 1, and go

to s ep .
3. If IlVf(zJlI < e, stop with Zj. Otherwise, Iet fLi be an optimal solution to the

..E!:~bleQ) .to ~~txZi + p,di) subject to p, E E.: Let Zi+i = Zi + J.tA. If
i<j, replace i by i+l, and repcat step 3. Othcrwise, let dj+I=Zi+l-Y;+l,
replace j by j + 1, and go to step 1.

4. Let Yl = Xk+1 =Yn+l. Let d, = -Vf(YI), replaee k hy k + 1, let j = 1, and go to
step 1.

Note that the steepest descent search in step 2 is used to ensurc rhat
ZI -Yl ~ L(dl> ... , dj) for the quadratÍf case so ~hat finite convergence is
guaranteed. ~' 'f.-

eL'v' '. , r

~\

v 8.6.9 Example
Consider the following problem:

Minimize (Xl - 2)4 + (XI - 2X2)2

We solve this problem using Zangwill's method, starting from the point
(0.0,3.0). The results are summarized in Table 8.15. Note that during each
iteration, Y2 is obtained from YI by optirnizing aiong d, = --'Ç' f(y 1), and Zl is
obtained from Y2 by optimizing along d::= - V f(Y2). To obtain 7.2 from z) we
optimize along dI, and to obtain Y3 from Yz we optimize along d2 ~~ (Z2 - Y2).
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3

2

2

Figure 8.19 lltustration of the method of Zangwill.
o~
ci Thc algorithm is tcrminatcd during thc sccond itcration whcn the point 7.) =

(2.00,1.01)' is reachcd, sincc IIV[(z,)il = 0.09 is smal\. The path takcn by the
algorithm is shown in Figure 8,19.

--
~1.0
ci
00
'<:j'

ci-.!.- The Quadratic Case

If the function f is quadratic, then Zangwill's mcthod generates conjugare
directions and from Theorem 8.6.3 wil\ yicld an optirnal solution in onc itcration
of thc algorithm. Thc proccss of gcncrating a ncw dircction is illustratcd in
Figure 8.20. Given d., Y2 and Z2 are produced by minimizing f alorig (1) starting
from YI and z]> respectivcly, where YI-ZI t Ad1 for any A E EI' Lctting
d2 = Z2 -Y2' note that d, and d2 are conjugare. In particular, as expected írorn
Theorem 8.6.3, minimizing f starting from either )'2 or Z2 along d2, ieads to the
optimal point i. Note that if YI -ZI = AdJ for some À, that is, if ZI is on the line
passing through YI along the direction dI> then Y2 = Z2 and d2 = o. Then dI and

s
~~
'<1'"
(')

N
'-'
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V,

Figure 8.20 Generating conjugate directions by the
method of Zangwill.

d2 are linearly dependent and henee not eonjugate. Lemma 8.6.10 below shows
that the above method for generating new directions produces a set of
conjugate directions.

8.6.10 Lemma.

I
Let H be an n x n symmetric matrix, and let f(x) = c'x+jx'Hx. Suppose that
j < n, and let a., ... , di, b~ H-conjugate. Let Yl b~:n arbit~ary vector in Em
and let ZI be such that ZI YI ~ L(di, ... , d). For 1- 1, ... ,], let Ai and I-'i be
optimal solutíons to the problems to minimize t's. + Ad.) subject to À E El and
to mínimize f(Zi + I-'dJ subject to I-' E E1, and let Yi+l = Yi + Aidi and Zi+l =
z, + I-'idi' Now let dj+1 = Zj+l -Yj+l' Then dI"", dj+1 are H-conjugate.

Proof

I
Sínce d., ... , di are H-eonjugate, then by part 1 of Theorem 8.6.3, we must
have

0= d:[Vf(zj+J) - V f(Yj I_I)] = d;H(zj+1 =s» ,)= d'Hd, I I for i=sj

! In view of the above equation, since dI, ... ,di are H-conjugate, it only suffices
to demonstrate that dI>' •• ,dj+1 are linearly independent. Suppose, by con-
tradiction to the desired conclusion, that dj+t could be represented as I{=1 "Yidi'
Therefore Zj+i =s,«. = D-t "Yidi' and since Yi+l = Yl + I{=l Aidi and Zi+l =

r-

~
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ZI + Ii=l I-'idi' it follows that
i

Zt-Yl = I ("Yi=t« +Ài)di E L(dl>"" di)
i= 1

which contradicts our assumption. Therefore, d., ... ,di+ t are linearly indepen-
dent, and the proof is complete.

Convergence of Conjugate Direction Methods
~ ----
As shown in Theorern 8.6.3, if the function under eonsideration is quadratic,
then any conjugate direction algorithrn produces an optirnal solution in a finite

umber of steps. Je now discuss convergencêõf these methodsífthe function
isrwt-Jl~es-s-aTi·ly quadratic.

In Theorem 7.3.4, we showed that a composite algorithm A = CB converges
to a point in the solution set fi if the following properties hold true:

1. B is closcd at points not in n.
2. If YE B(x), then f(y) < f(x) for x ~ O.
3. If Z E C(y), then f(z) =sf(y).
4. The set Â = {x: f(x.) =sI(xl)} is compact, wherc XI is the starting point.

For the conjugate direction algorithms discussed in this chapter, thc mar B is
of the following formo Given x, then y E Btx) mcans that y is obtaincd by
minimizing f starting from x along the dircction d = -DV'f(x), where D is a
specified positive definite matrix. In particular, for the conjugare gradient
method and for the method of Zangwill, D = I. For the Davidon-Flctcher-
Powell rnethod, D is an arbitrary positive definire matrix. Fur therrnore, starting
from the point obtained by applying thc map B, thc map C is dcfined by
minimizing the function f along the directions spccified by the particular
algorithms. Thus thc map C satisfies property 3 above.

Letting O"" {x: V f(x) = O}, we now show that the map B satisfies properties 1
and 2 above. Le t x~O, and let Xk~X. Furthermorc, let Yk EB(xk) and let
Yk~Y' We nccd to show that YEB(x). By definition of Yk? Y« =x, -ÀkDVf(xk)
for Àk 2: O such that

j"(Yk)=sf[Xk-ADVf(Xk)] forallÀ2:0 (8.33)

Since Vf(x) yf O, then Àk converges to Ã = liy - "11/110\1[(x)ll2: O. Therefore y:=::.
x-XDvf(x). Taking the limit as k-H/) in (iU3), thcn f(y)=sf[x-ÀDV'f(x» for
ali A 2: 0, so that Y is indeed obtaincd by minimizing f starting from x in lhe
direction - DV f(x). Thus YE B(x), and B is closed. Also part 2 holds by noting
that -Vf(x)'DVf(x) < 0, so that -DVf(x) is a descent direction. Assuming that
theset defined in part 4 is compact, it then follows that the conjugare direction
algorithms discussed in this section converge to a point with zero gradient.
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Some algorithms cannot naturally be broken into maps B and C satisfying
the abovc properties. The difficulty hcre is the absencc of a closcd map that
guarantees strict improvemcnt at points outside the solution set. In this case,
since the map C is not necessarily c1osed, overall convergence is not guaran-
teed. In order to overcome the difficulty, a spacer step, using a map B satisfying
properties 1 and 2 above, is employed at each iteration. Typically, the spacer
step involves minimizing the function along the nega tive gradient direction.
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Exercises
) z- «'{

(

8.1
(

For lhe uniform scarch rnethod, lhe dichotomous search method, the golden
section method, and the Fibonacci sea1rch rnethod., compute lhe nurnber of
Iunctional evaluations required for a = 0.1,0.01, O.O{l, and 0.000 1, W~ is
the ratio of the final interval or uncertainty to the length of lhe initial interval o(
~ertainty. • ' - -
Suppose that 8 is differentiable and let 18'1 $ a. Fur!hermore, SUPPos;ybat the
uniform search method is used to minimize O. Let A be a grid poir.t such that
8(Ã) - 8(Â) 2: e > 0, for each grid point Ã;é Â. If the grid length 8 is such that
a8 $ e, show, without assuming strict quasiconvexity, that no point outside the
interval [Â - 8, Â + 8] couJd provide a functional value less than O(Â).
Show that the golden section method approaches the method of Fibonacci as the
number of functional evaluations n approaches 00.

Consider the following definitions.
A function 8: EI -'; EI to be minimized is said to be strongly unimodal over lhe
interval [a, b] if there exists a Ã that minimizes () over the interval, and for. AI>
A2 E [a, b] such that AI < A2 we have:

8.2

A2$Ã

AI2: Ã

implies O(A I) > O(A2)

implies O(A I) < &(A2)

A function 8: E,-,; EI to be minimized is said to be unimodal over the interval
[a, b] if there exists a X that minirnizcs O over the intcrval and for Ah >"2 E [a, b]
such that 8(AI);é O(X), 8(A2);é O(Ã), and AI < A2 we have

A2$X
AI2: X

irnplies O(A ,) > 0(A2)

implies O(A I) < 0(À2)

8.5

a. Show that if 8 is strongly unimodal over [a, b], then O is strongly quasiconvex
ovcr [a, b]. Converse!y, show that ir o is strongly quasiconvcx over [a, b] and
has a minimum in this intcrval, thcn it is strongly unirnodal over lhe interval.

b. Show that if 8 is unimodal and continuous over [a, b], the n O is strictly
quasiconvcx over [a, b]. Convcrsely, show that ir O is strictly quasiconvex over
[a, b] and has a minimum in this interval, then it is unimodal over this
interval.

Consider the runction [ dcfined by [(x) = (x 1
3 + X2)2 + 2( x2 - X I - 4)4. Given a point

XI and a nonzero direction vector d, let O(A) = [(XI + Ad),
a. Obtain an explicit exprcssicn for O(A).
b. For XI = (0, O)' and d = (1, I)', using thc Fibonacci mcthod, find the value of À

that solves the problem to minimize O(A) subject to A E E"
c. For XI = (4, 5)' and d = (1, -2)', using the golden section rncthod, find the value

of A that solves the problcm to minimize 0(,1.) subjcct to A E E"
d. Rcpcat parts b ano c using lhe intcrval biscction mcthod,
Find the minimum of e-À + A2 byeach of the following procederes.
a. Golden scction method.
b. Dichotomous search method.
c. Newton's method.
d. Bisecting search method.

8.6
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8.7 Consider lhe problern to mmrrmze f(x+Ad) subject to AEEI' Show that a
necessary condition for a minirnurn at Ã is that d'V f(y) = O, whcre y = x + Ã d.
Undcr what assurnptions is this condition sufíicient for optirnality?
Consider the problcrn to minirnize f(x + Ad) subject to x + Ad E S and A 2: O,
whcrc S is a cornpact convex set, and f is a convex íunction. Furthermore,
suppose that d is an improving direction. Show that an optimal solution Ã is given
by Ã = minimurn (A I> A2), where A I satisfies d'V f(x + A1d) = O, and A2 =
maximum {A :x+ AdE S}.
Considcr the problem to mir.imize 31. - 2A 2+ A 3+ 2A 4 subjeet to A 2: O.
a. Write a necessary condition for a minimum. Can you rnake use of this

condition to find the global minimum?
b. Is the íunc.ion strictly quasiconvex over the region {A: A 2: O}? Apply the

Fibonacci search method to find the minimum.
c. Apply both the bisecting search method and Newton's method, to the above

problem, starting from A 1= 6.
In Section 8.2 we described Newton's method for finding a point where the
deriva tive of a function vanishes.
a. Show how the method can be used to find a point where the value of a

continuously differentiable function is equal to zero. Illustrate the method for
8(A) = A 3 - A starting frorn AI = 5.

b. Will the method converge for any starting point? Prove or give a counterex-
ample.

Show how the linc search procedures of Section 8.1 can be used to find a point
where a given íunction assumes the value zero. Illustrate by the function 8
defined by 8(A) = A 2- 3A + 2.
(Rim: Consider the absolute value function ê = 1(1).
In Section 8.2 we discussed the bisecting search method for finding a point where
the deriva tive of a pseudoconvex function vanishes. Show how the method can be
used to find a point where a function is equal to zero. Explieitly state the
assumptions that the function needs to satisfy. IlIustrate by the function 8 defined
by 8(A) = 1.3_ A defined on the interval [0.5, 10.0].
lt can be verified that, in Example 9.2.3, for a given value of u, if x" = (XI> X2)',
then XI satisfies

8.8

8.9

~.10

8.11

8.12

8.13

2(xI- 2)3 + fLX,(8x/ - 6xI + 1)
4+ =0. fL

8.14

For fL = 0.1, 1.0, 10.0, and 100.0, find the value of XI> satisfying the above
equation using a suitable procedure.

Let 8: EI-> EI and suppose that we have the three points (A I> (1), (A2, 8~), and
(A~, 8,), where 0, = 8(Aj) for j = 1,2,3. Show that the quadratic curve q passing
through thesc points is given by

()
OI(A - A2)(A - .\,) 82(}, - A 1)('\ - A~) 8,(À - A I)(A - A2)q A = -------+ . +....,::...:.-~-'--.:::..
(A 1- À2)(>'1 - 1.3) (A2 - A I){A2 - A3) lAl - 1.1)(1.3 - A2)
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8.15

Furthermore, show that the deriva tive of q vanishes at the point À given by

-A_1 b2)(JI + b3182 + b1283
-2

a2381 + Q3107+ al203

where aij = Ai - Aj and bij = A;2- Ar Find the quadratic curve passing through the
points (1,3), (2, 1), and (4,6), and compute X.
Let O: EI->EI> and suppose that we have the three points (A1> (1), (A2, (2),

(A3, (h), where 8j = 8(Aj)' Furtherrnore, suppose that AI < A2 < A3, 81 ~ 82, and
9

2
$ 83, Utilizing Exercise 8.14 above, compute a minimum point A of the

quadratic form passing through the points (AI, O,), (A2' (2), and (1.3, (3), li
8(Ã) > 8(A2), let Ã I = AI> X2 = A2' and X3 = X. If, on lhe other hand, II(X) $ 8(1.2),
let XI = A2' Ã2 = X, and X3 = 1.3, The process is repeated by letting A I = X I, A2 = X2,

and A3= X3 and fitting a new quadratic form through the points (1.1,8,), (A2' (2),

and (A3, (3),

a. Propose a method for finding A h A2' A~ such that À I < A 2< 1.3, 612:82, and
82$ 83,

b. Show that if 8 is strictly quasiconvex, then the new interval of uncertainty
indeed contains the minimum.

c. Use the procedure described in this exercise to minimize 31. - 2A 2+ A3 + 21. 4

over A 2: O.
(We have described in Exercises 8.14 and 8.15 a derivative-frec line search
method using quadratic fir.)
Consider the problem to minimize (x/ - X2)2 + 2(X2 - XI)4. Solve the problem
using each of the following methods. Do the rnethods converge to the same
point? If not, explain.
a. The cyc1ie coordinate method.
b. The method of Hooke and Jeeves.
c. The method of Rosenbrock.
d. The method of Zangwill.
e. The method of steepest descent.
f. Thc method of Fletcher and Rceves .
g. The method of Davidon-Fletcher-Powell.
Consider the problern to minimize (l_XI)2+5(X2-XI2)2. Starting from the point
(2, O), solve thc problcrn by lhe following procedures.
a. The cyc1ic coordinate method.
b. The mcthod of Hookc and Jeeves.
C. The method of Rosenbrock.
d. The method of Davidon-Fletcher-Powell .
e. The method of Zangwill.
Solve the problern to maximize xl+2x2+5xIX2--XI2+3x22 by the method of
Hooke and Jeeves.
Consider the model y = a + {3x + ,,/x2 + E, where X is the independent variable, y is
the observed dependent variable, a, (3, and "/ are unknown parameters, and I; is a
random component representing the experimental errar. The following table
gives the values of X and the corresponding values of y. Formulare the problem

8.16

8.17

8.18

8.19
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x O 1 2 3 4 5

Y 2 2 -12 -27 -60 -90

a. Show that the vcctors d., ... , d, defincd bclow are H-conjugatc.

{

ak

d = k-I d'Ha
k a, - '~I [d;Hd~]d, if k ~ 2

b. Suppose that a., ... , a, are the unit vectors in En, and let D be lhe rnatrix
whose colurnns are the vectors dlt ••• , d ••, defined in part a above. Show that
D is upper triangular with ali diagonal elernents equal to one.

c. IlIustrate by letting al=(l,O,O)', a2=(1,-1,4)', aJ=(2,-1,6)', and

if k = 1
of linding thc bcst estirnates of a, {3, and l' as an unconstrained optirnization
problcm, by minimizing:
a. The surn of squared errors.
b. The sum of the absolute values of the errors.
c. The rnaximum absolute value of the errar.
For each case, find a, (3, and l' by a suitable rnethod.

Maxirnize

subject to

O(ü+Ad)

[ 1 O -1]
H= O 3 4

-1 4 2
d. IIlustrate by letting 81> a2, and 83 be the unit vectors in E3 and H as given in

part c above.
8.26 Consider the quadratic form f(x) = c'x+jx'Hx, where H is a symmetric ri x ri

matrix. In many applications, it is desirable to obtain separability in thc variables,
by eliminating the cross-product terms. This could he done by rotating the axes
as íollows. Lct D be an ri x ri rnatrix whosc columns di,"" d, are H-conjugatc.
Letting x = Dy, verify that the quadratic form is equivalcnt to Lí'~I a,y, +
à Li'· I f3iY/' where (ai,"" a") = c'D, and f3, = d/Hd, for j = 1, ... ,ri. Further-
more, translating and rotating the axes could bc accomplished by lhe transforma-
tion x = Dy + z, where z is any vcctor salisfying Hz + c = 0, that is V[(z) = O. In this
case, show that the quadratic form is cquivalcnt to (c'z+~z'Hz)+~Lj~1 (3,y;. Use
thc rcsult of this cxercisc to draw accurate contours of the quadratic form
2xI -4X2 + XI' + 2XIX2 + 3x/.

8.27 Consider the problem to rnaximizc - x/ - x/ + XIX2 - XI + 2:':2' Starting from the
origin, solve the problem by thc Davidon-Flctchcr-Powell rncthod, with DI as
the identity. Also solve lhe problcrn by thc conjugare gradicnt method. Note that
the two procedures gcneratc identical sct of dircctions. Shov •..that, in general, if
DI = I, then the two mcthods are idcntical for quadratic Iunctions.

8.28 Consider the problern to minimizc XI2 + X2" subjcct to XI+ x2 - 2 = O.
a. Find the optirncl solution to this problern, and verify optimality by the

Kuhn- Tucker conditions.
b. One approach to solve the problcm is to transform i: into a problem of the

form to minimize xI2 + x/ + p.(xl + X2 - 2)2, where IL > O is a largc scalar. Solve
the unconstr aincd problcm for IL = 10 by thc conjugatc gradie nt rncthod,
starting from the origino

8.29 Solve the problem to minimize Xl + 2x/ + e,,'TX,', starting with the point (1, O)
and using both the conjugate gradient mcthod and lhe mcthod of Zangwill.

8.30 Consider the following problcm:

Minirnize XI
2 + 2XlX2 + 2x/ + x/ - X2X3 + XI + 3X2 - X3

8.20 Let f: E" ~ EI be differentiable at x and let the vectors di>"" d •• in E" be
linearly independent. Suppose that the minimum of f(x+ Adi) over A E EI occurs
at À == O, for j = 1, ... , n. Show that V[(x) = O. Does this imply that f has a local
minimum at x?
Suppose that Xk and Xk+l are two consecutive points generated by the steepest
desccnt method. Show that V[(xd'V[(Xk+l) = O.
Consider the following problem.

Minimize XI+ X2

subject to XI2 + x/ = 4
-2xl - X2 ::;4

a. Formulate the Lagrangian dual problem by incorporating both constraints into
the objective function via lhe Lagrangian multipliers Ul and U2'

b. Using a suitabie unconstrained optirnization method, compute the gradient of
the dual Iunction O at the point (1,2).

C. Starting Irorn the point ü = (l , 2)', carry one iteration of the steepest ascent
methoci of the dual problern. In particular, solve the following problem, where
d=VO(ü).

8.21

8.2:2

ü2+Àd2~0

À~O

8;23 Suppose that f is twice continuously difTerentiable and that the Hessian matrix is
invertible everywhere. Given Xkt ietxk+1 =x, +Akdk, where d, = -H(xd-IVf(xk)
and Ak is an optirnal solution to the prob!em to minimize f(Xk + Àdk) subject to
A E EI' Show that this rnodification of Newtori's rnethod converges to a point in
the solution sct n= {i: Vf(i)'H(irIV f(i) = O}. Illustrate by rninirnizing (Xl - 2t +
(XI - 2X~)2 starting írorn lhe point (-2,3).
Let H bc a symmctric /I x n matrix, and let d., ... , d, be a set of characteristic
vectors of H. Show that d., ... ,dn are H-conjugate.
Let 31t ••• , a" be a set of linear1y independent vectors in En, and let H be an
ri x fi symmetric positive definite matrix. Using Exercise 8.25 or any other method, gcnerate three conjugare directions.

8.24

1
8.25

I
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Starting from the origin, solve the problem by minimizing along these directions.
8.31 Consider the system of simultaneous equations

ai :SXi :Sbi for i= 1, ... , m
hi(x) =°

Minimize

subject to

f(X)

for i= 1, ... , 1
a. Investigate appropriate modifications of the unconstrained optirnization

methods discussed in this chapter so that the lower and upper bounds on the
variables could be handled.

b. Use the results of part a to solve the following problem:

Minimize (x, - 2t + (Xl- 2X2f

a. Show how to solve the above system by unconstrained optimization techni-
ques.
(Hint:Consider the problem to minimize L:~l Ihi(x)iP, where p is a positive
integer.)

b. Solve the following system

(xl-2t+(xl-2x2)2-5 = O

X/-X2=O

3:sxl:s5

2:Sx2:s6

8.35 Consider the following method of poraliel tangents credited to Shah, Buehler,
and Kempthorne [1964] for minimizing a differentiable function f of several
variables.

subject to

8.32 Consider the problem to minimize f(x) subject to h.(x) = O for i= 1, ... ,I. A
point x is said to be a Kuhn- Tucker point if there exists a vector v E EI such that

I

Vf(x) + I ViVhi(X) = O
;=1

b. Show that unconstrained optimization techniques could be used to find a
solution to the above system.
iHiat: See Exercise 8.31 above.)

c. Use a suitable unconstrained optimization technique to find a Kuhn- Tucker
point to the following problem:

8.36

Initialization Step
Choose a termination scalar e> 0, and choose a starting point XI' Lct Yo= x.,
k = j = 1, and go to the main step.

Main Step
1. Let d=-Vf(Xk) and let Â be an optimal solution to the problern to minirnize

f(Xk + Ad) subjcct to A~ O. LeI YI = x, + Âd. Go to stcp 2.
2. Let d = -Vf(Yj), and let Aj be an optirnal solution to the problem to minimize

i's, + Ad) subject to A ~ O. Let Zj = Yí+ ,\d, and go to stcp 3.
3. Let d = Zj - Yj-l> and let /-Libe an optimal solution to the problcrn to minirnize

f(zj+/-Ld) subject to /-LEEI' Let Yi+l=zj+/-Ljd. If j<n, replacc j by j+l, and
go to step 2. If j = n, go to step 4.

4. Let Xk+1 = Yn+l' If I!Xk+1 - xdl < e, stop. Otherwise, let Yo= Xk+11 replace k by
k + 1, let j = 1, and go to step 1.

Using Theorem 7.3.4 show that the method converges. Solve the following
problems using the method of parallel tangents.
a. Minimize XI2+X/+2xIX2-2xl-6x2'
b. Minimize XI2+X22_2xjX2-2xl-X2'

(Note that the optimal solution for this problern is unbounded.)
c. Minimize (x, - 2)2 + (x, -2X2)2.
Let f: En~ EI be differentiable. Consider the following procedure for minimizing
f.
Initialization Step
Choose a termination scalar e> O and an initial stcp size u> O. Let m be a
positive integer denoting thc number of allowablc Iailures beforc reducing step
size. Let XI be the starting point and let the current upper bound on lhe
optimal objective value, UB = f(XI)' Let v = O, let k'" 1, and go to lhe main step.

Main Step
1. Let d, = -Vf(xd, and let Xk+l = x, + udk• If f(xk+l) <UB, lei v'" O, i = Xk+h

UB = f(i), and go to step 2. If, 011 the other hand, f(Xk+l) ~ UB, then replace I'

hi(x) = O for i= 1,... , I

8.33

a. Show how to solve the above system using unconstrained optimization techni-
ques.
(Hint: See Exercise 8.31 above.)

b. Find lhe Kuhn- Tucker point for lhe following problem.

Minimize (Xl - 2)4 + (XI - 2X2)2

subject to XI
2

- X2 = °
Consider the problem to minimize f(x) subject to gi(X):S O for i= 1, ... , m.
a. Show that rhe Kuhn- Tucker conditions hold at a point x if there exist Ui and Si

for i= 1, ... , m such that
m

Vf(x) + I u/v gi(X) = O
i""l

gi(X) + s/ = O

UiSi =0

for i= 1, , m

for i= 1, , m

Minimize 2Xl
2 + X22- 2XIX2 + 2x, + 6

-2x1-x2+3:S0subject to

8.34 A problem of lhe following structurc frcquently arises in the context of solving a
more general nonlinear programming problcm:


