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linearly independent, then L(dy,...,d,)=E,, and hence x,,, is a minimum
point of f over E,. This completes the proof.

Generating Conjugate Directions

In the remainder of this section, we describe several methods for generating
conjugate directions of quadratic forms. These methods lead naturally to
powerful aigorithms for minimizing both quadratic and nonquadratic functions.
In particular, we discuss the Davidon-Fletcher-Powell method, the conjugate
gradient method of Fletcher and Reeves, and the method of Zangwill.

The Method of Davidon-Fletcher-Powell

The method was originaily proposed by Davidon [1959] and later developed by
Fletcher and Powell [1963]. The Davidon-Fletcher-Powell method is also
referred to as the variable metric method. This method falls under the general
class of quasi-Newton procedures, where the search directions are of the form
—D,;Vf(y). The gradient direction is thus deflected by premultiplying it by —D),
where D; is an n X n positive definite symmetric matrix that approximates the
inverse of the Hessian matrix. For the purpose of the next step, D, is formed
by adding to D; two symmetric matrices, each of rank one. Thus, this
scheme is sometimes referred to as rank two correction.

Summary of the Davidon-Fletcher-Powell Method

We now summarize the Davidon-Fletcher-Powell method for minimizing a
differentiable function of several variables. In particular, if the function is
quadratic, then, as shown later, the method yields conjugate directions and
terminates in one complete iteration, that is, after searching along each of the
conjugate directions.

Initialization Step Let £>0 be the termination scalar. Choose an initial
point x; and an initial symmetric positive definite matrix ;. Let y; =x, let
k=j=1, and go to the main step.

Main Step

1. If [[Vi(y)) <&, stop; otherwise let, d, =—D,;Vf(y;) and let A; be an optimal
solution to the problem to minimize f(y;+Ad;) subject to A=0. Let
Vi1 =y;+Ad. I j<In gotostep 2. If j=n, let y, =X, =¥, replace k
by k-+1, let j=1, and repeat step 1. ‘

2. Construct I¥,,, as foliows:

t t
pp; D999, (8.18)
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where
p; =\ : (8.19)

177
q; =Vf(y;+1) '“Vf(yj'_) (8.20)
Replace j by j+1, and repeat step 1.

8.6.4 Example

Consider the following problem
Minimize (%, —2)%+ (x, — 2x,)?

The summary of the computations using the Davidon-Fletcher-Powell method
is given in Table 8.13. At each iteration, for j=1,2,d, is given by -D,V{(y,),
where D, is the identity matrix, and I, is computed from (8.18) to (8.20). At
iteration k=1, we havep; = (2.7, —1.49)" and ¢, =(44.73, -22.72)" in (8.18). At
iteration 2 we have p, = (—0.1, 0.05)" and g,=(-0.7, 0.8)", and finally at iteration
3, we have p;=(-0.02, 0.02)" and g;=(—0.14, 0.24)". The pointy,., is computed
by optimizing along the direction @; starting from y; for j =1, 2. The procedure
is terminated at the point y,=(2.115,1.058)" in the fourth iteration, since
[Vf(y)| = 0.006 is quite small. The path taken by the method is depicted in
Figure 8.17.

Lemma 8.6.5 shows that each matrix D; is positive definite and d&; is a
direction of descent.

8.6.5 Lemma

Let y, € E,, and let ID; be an initial positive definite symmetric matrix. For
j=1,...,nlety =y;+\d;, where d; = -DVfly;), and A, solves the problem
to minimize f(y;+Ad;) subject to A =0. Furthermore, for j=1,...,a-1, let
D, be given by (8.18) to (8.20). f Vf(y;) #0 for j=1,...,n, then Dy, ..., D,

are symmetric and positive definite so that dy, ..., d, are descent directions.

Proof

We prove the result by induction. For j=1, D, is symmaetric and positive
definite by assumption. Furthermore, Vf(y,Yd, = -V j(y )' B, V/{{y,) <0, since
D, is positive definite. By Theorem 4.2.1, then d, is a descent direction. We will
assume that the result holds true for j=n-—1, and then show that it
holds for j+1. Let x be a nonzero vector in E,; then by (8.18), we have

(Xtﬁsj)z B (Xtﬂ’j-%)z
BiY 40,4

D x=xDx+ (8.21)
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Table 8.13 Summary of Computations for the Davidon-Fletcher-Powell Method
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2 (245,127 (0.18, 0.36) 0.40 0.65 045 (-0.28,-0.25) 0.64 (2.27, 1.11)
(0.0490) 0.45 0.46
3 (2.27,1.11) 1 (2.27,1.11) (0.18,-0.20) 0.27 [1 O] (—0.18,0.20) 0.10 (2.25,1.13)
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Note that V[(y;)# 0 by assumption, and that I, is positive definite, so that

Vf(y;)'D,;Vf(y;)> 0. Furthermore, d; is a descent direction and hence A;>0.

Therefore, from (8.23), p;q;>0. Furthermore, ¢;#0, and hence b‘b=
q/D,q;>0. ’

We now show that x'D;,;x>0. By contradiction, suppose that x'D;,;x=0.
This is only possible if (a‘a)(b'b)=(a'b)*> and px=0. First, note that
(a‘a)(b'b) = (a'b)’® only if a=Ab; that is D/*x=AD]}?q;. Thus x=Agq,. Since
x#0, A#0. Now, O=px=Apjq; contradicts the fact that pjq; >0 and A#0.
Therefore x'D;, x>0, so that D;,, is positive definite.

Since Vf(y;.1)#0 and since D;,; is positive definite, Vi)', =
~Vf(y;+1)'D;41Vf(y;+1) <0. By Theorem 4.2.1, then, d;,; is a descent direction.

The Quadratic Case

If the objective function f is quadratic, then by Theorem 8.6.6 below, the
directions d;,...,d, generated by the Davidon-Fletcher-Powell method are
conjugate. Therefore, by part 3 of Theorem 8.6.3, the method stops after one
complete iteration with an optimal point. Furthermore, the matrix D,
obtained at the end of the iteration is precisely the inverse of the Hessian
matrix H.

8.6.6 Theorem

Let H be an n X n symmetric positive definite matrix, and consider the problem
to minimize f(x)=c¢'x+3x'Hx subject to xe E,. Suppose that the problem is
solved by the Davidon-Fletcher-Powell method, starting with an initial point y,
and a symmetric positive definite matrix ;. In particular, for j=1,...,n, let
A; be an optimal solution to the problem to minimize f(y;+Ad;) subject to
A =0, and let y;.; =y;+\;d;, where d;=-D,Vf(y;) and D, is determined by
(8.18) to (8.20). If Vf(y;)#0 for each j, then the directions d,,...,d, are
H-conjugate and D, ,,=H"". Furthermore, y,,, is an optimal solution to the
problem.

Proof

We first show that for any j with 1=j<n, we must have the following
conditions:

1. d,,...,d are linearly independent.

2. dH4, =0forizk; k=]

3. D,,Hp, =p,, or equivalently, D, Hd, =d, for 1sk=j.

where p, =A.d,. We prove this result by induction. For j=1, parts 1
and 2 arc obvious. To prove part 3, first note that for any k, we have

Hp, = HMd) = HY w1~ ¥0) = Ve = Vilye) = {8.24)
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In particular, Hp, = gq,. Thus, letting j=1 in (8.18}, we get

’ 7 D q;q"D‘
D,Hp, = [E) G U } =
255P 1 Pl q4D.q, q; =D

so that part 3 holds true for j=1.

Now suppose that parts 1, 2, and 3 hold for j=n—1. To show that they also
hold truc for j+1, first recall by part 1 of Theroem 8.6.3 that diV{(y,,,) =0 for
i=j. By the induction hypothesis of part 3, d;=D,,,Hd, for i<j. Thus, for
i=<j, we have

0= di’Vf(y;+x) = ditHDj+lvf(yj+1) = "di‘HdiH

In view of the induction hypothesis on part 2, the above equation shows that
part 2 also holds for j+1.
Now we show that part 3 holds for j+1. Letting k=j+1,

Pj+1Pj+1 D'-+~:Q'+1q€+‘ID'+11

D H =[D-+ S, LA AU (8.25)
S il Pi+1¥j+1 G 1,194 J Pie

Noting (8.24) and letting k=j+1 in (8.25), it follows that D, ,Hp, ., =p,;.,

Now let k =j. Since part 2 holds for j+1,

P+ 1 Hpy = A\, 4], Hd, =0 (8.26)

Noting the induction hypothesis on part 3, (8.24), and the fact that part 2 holds
true for j+1, we get

q,“+ ID)W-lHPk = q;‘tlpk = P;+1HPk = Ajﬂ)-kd; HHdk = (827)

Substituting (8.26) and (8.27) in (8.25), and noting the induction hypothesis on
part 3, we get

D,’+2HP;< = D;'HHPk = Px

Thus part 3 holds for j+1.

To finish the induction argument, we only need to show that part 1 holds
true for j+ 1. Suppose that 1*} a;d; = 0. Multiplying by &, ,H and noting that
part 2 holds for j+1, it follows that o, ,d;, Hd;,;=0. By assumption
Vf(y;+1)#0 and by Lemma 8.6.5 D,,, is positive definite, so that d,,,=
=D, 1Vf(y;+1) #0. Since H is positlive definite, then d;,,Hd,,; # 0, and hence
@;,;=0. This in turn implies that !, «;d, =0, and since &, ..., d; are lincarly
independent by the induction hypothesis, a;=0 for i=1,...,j Thus
dy,...,d;. are linearly independent and part 1 holds for j+ 1. Thus parts 1, 2,
and 3 hold. In particular, conjugacy of d,, ..., d, follow from parts 1 and 2 by
letting j=n.

Now let j='n in part 3. Then D, Hd, =d, for k=1,..., n If we lct D be
the matrix whose columns are d,,...,d,, then I, ., HD=D. Since D is
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| A

[ . . -~ . . . .
invertible, then D, H =1, which is only possibie if D, ,, =H . Finally, y, .,
is an optimal solution by Theorem 8.6.3.

Yi+1
4,1.21)

The Conjugate Gradient Method of Fietcher and Reeves

The conjugate gradient method, credited to Fletcher and Reeves [1964],

0.062 (2.70,1.51)

(2.5

0.23

0.11 (2.44,1.26)

0.63 (2.25,1.10)

0.10 (2.23,1.12)

(2.19, 1.09)

0.11 (2.185,1.094)

 defiects the direction of steepest descent by adding to it a positive multiple of
the direction used in the last step. For the quadratic case, as we will learn,

deflecting the steepest descent direction in this fashion produces a set of
conjugate directions.

- Summary of the Conjugate Gradient Method

| A summary of the conjugate gradient method for minimizing a differentiable
function is summarized below.

|
Initialization Step Choose a termination scalar & >0 and an initial point x;,.

(~0.036, —0.032) . 1.02

(44.00, —24.00)
(-0.16,0.20)
(—0.05,0.04)

(—0.87,0.48)
(-0.30,-0.25)

241

| Let y, =x;,d,=-Vf(y,), k=j=1, and go to the main step.

' Main Step

1. I [[Vi(yl <e, stop. Otherwise, let A; be an optimal solution to the problem
to munimize f(y; +Ad;) subject to A =0, and lety;,, =y; +A,d,. If j<n, go to
step 2; otherwise, go to step 3.

P ‘ :
]

. Letd;,; =-Vf(y;+1) + o;d;, where Q;

17
to step 1.

3. Lety, =%, =—-y,,”; and let d, =—Vf(y,). Let j=1, replace k by k+1, and
€0 to step 1.

Note that d;,; = (1/#1)(#«1["vf(yi+1)]+ pod;), where
= ”Vf(Y;)“Z il = HYf(yj—H)“z
CIVIGIP IVl * VG IV

so that d;, is essentially a convex combination of the current steepest descent

direction and the direction used at the last iteration.

8.6.7 Example
Consider the following problem:
(%1 =2)*+ (x,~ 2x,)°

The summary of the computations using the method of Fletcher and Reeves is
given in Table 8.14. At each iteration d, was given by =Vf(y,), and d, was

Minimze

PRI —

Xy
flx,)

lteration

TABLE 8.14 Summary of Computations for the Method of Fletcher and Reeves

IVl

Vf(Yi)

fly;)

/

k

50.12

(0.00,3.00) 1 (0.00,3.00) (—44.00,24.00)

1

52.00
2 (2.70,1.51)

52.00

1.47 0.0009 (-0.69,-1.30)

(0.73,1.28)

0.99

0.48)

|

r~
9]

y

(2.54,1.21) 1 (2.54,1.21) ©

2

0.10
2 (2.44,1.26)

0.10

0.37 0.14

(0.18,0.32)

0.04

0.26

(0.16, —-0.20)

(2.25,1.10) 1 (2.25,1.10)

3

0.008

0.008

0.04

5

0.0

(0.03,0.04)

; 1.12)

0.003

e

o2

o

0.06

(2.19,1.09) 1 (2.19,1.09) (0.05, -0.04)

4

0.6017
(2.185,1.094

0.6017

2

0.0

(0.02,06.01)

)

o)
s

0.0012
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given by d;, = =V{(y;) + a;d;, where o, = V1 (y)IF/[Vf(y,)|*. Furthermore, y;,,
is obtained by optimizing along d,, starting from y,. At iteration 4, the polint
y2.=(2.185, 1.094)", which is very close to the optimal point (2.00, 1.00), is
reached. Since the norm of the gradient is equal to 0.02, which is small, we
stop here. The progress of the algorithm is shown in Figure 8.18.

The Quadratic Case

If the function f is quadratic, Theorem 8.6.8 below shows that the directions
d,, e d, gengrated are indeed conjugate, and hence by Theorem 8.6.3, the
conjugate gradient algorithm produces an optimal solution after one complete

application of the main step, that is, after, at most, n line searches have been
performed.

3¢

40
2 1

25

)
7 ke XzY %3
| 0.05
0.25

14 7 5 3 3 3 5 7

0 | L | |
1 2 3

Figure 8.12 lliustration of the method of Fletcher and Reeves.
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Theorem 8.6.8

Consider the problem to minimize f(x)= ¢'x+1x'Hx subject to x€ E,.. Suppose
that the problem is solved by the conjugate gradient method, starting with y,
and d, = -V f(y,). In particular, for j=1,...,n, let A; be an optimal solution to
the problem to minimize f(y; +Ad,) subject to A =0. Lety;+, =y;+A;d;, and let
dj = —~Vf(y;j+1) + a;d;, where a;= HVf(y,-+1)l|2/llVf(y,-)|.i2- If Vf(y;)#60 for j=
1,...,n, then the following statements are true:

1. d,,...,d, are H-conjugate.
2. d,,...,d, are descent directions.

- llVf(ym)llz _ dHVf(y;+1)
N \SA d'Hd,

3. forj=1,...,n
Proof

First suppose that parts 1, 2, and 3 hold for j. We show that they also hold for
j+1. To show that part 1 holds for j+ 1, we first demonstrate that & Hd,;,, =0
for k=j. Since d,,; = ~Vf(y;+1) + o;d;, noting the induction hypothesis in part
3, and letting k = j, we get
( d'HVf(yq P

dHd,.,, =de[—‘?f(yj+1)+——‘}~;}~ﬁ)%~ g =0 (8.28;
Now let k <j. Since d;. =——Vf(yi;1)+a,~d,~, and sicne djHd,; =0 by the induc-
tion hypothesis of part 1,

dLHd, . = —diHVf(y;. )
Since Vf(yi,1)=c+Hy, ., and ¥, .1 =Y + Acdy, note that
disy =—V(Yir) + andy
~[Vflye)+ A Hd, ]+« dy
= —[~d, + oy 4, + A Hd ]+ o d,

Il

By the induction hypothesis of part 2, d, is a descent direction, and bence
A > 0. Therefore

1 1 ,
d H= I [— (4 )d oy dl g ] (8.30}

J
k
From (8.29) and (8.30), it follows that
;Hdwl G —dlﬂvf(yiﬂ)

1 N Bt ‘ . t
= —7\—[~d§<+1‘7f(y,-+1) + {1+ ak)dkvf(y)+l)—' (Xk—zdk~1vf()'j+1)}
k
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' By part 1 of Theorem 8.6.3, and since d, .. ., d; arc assumed conjugate, then
A Vily) =diVf(y;41) =4, Vf(y; 1) =0. Thus the above equation implics
that diHd,,, =0 for k <j. This, togcther with (8.28), shows that dHd,,, =0
for all k=j.

In order to show that d,,...,d;,, are H-conjugate, it thus sufficies to show
that they are linearly independent. Suppose that Y%l +y,d,=0. Then,
‘ Yiorvidi+ Y1 l=Vf(¥,41) + o;d;]= 0. Multiplying by V(y;+1)', and noting part 1

of Theorem 8.6.3, it follows that ;.. [[Vf(y;..)|>= 0. Since Vf(y,,,)#0, Yi+1=
' 0. This implies that }!_, v,d; =0, and in view of conjugacy of d,,...,d, it
~ follows that y1=:"-=7v=0. Thus, d,,...,d;;; are linearly independent and
' H-conjugate, so that part 1 holds true for J+1.

Now we show that part 2 holds for j+1; that is, d;.; is a descent
direction. Note that Vf(y;,,;)#0 by assumption, and that Vi(y;+)'d;=0 by
part 1 of Theorem 8.6.3. Then Vi)' dje ==V P + oV, )'d, =

- =lIVf(y;+ )P <0. By Theorem 4.1.2,d,,, is a descent direction.

. Now we show that part 3 holds for j+1. By letting k=j+1 in (8.30), and
- multiplying by Vf(y,,,), it follows that

| /\;+1d,"+1HVf(yi+2) = [“d,"+2+ (1 + a;+x)ﬂ,§+1 - a,-d;]Vf(sz)

\‘ = [Vf(y,wz)t + d,"+1 = ajd;]Vf(sz)

- Since d,,... ,d;,; are H-conjugate, then by part 1 of Theorem 8.6.3,

- i1 Vf(y;42) =dVf(y;.,) = 0. The above equation then implies that

| llvf()'j+2)l‘2: /\j+1d;+1va(y]‘+2) (8.31)
Multiplying  Vf(y;.1) = Vf(y;.2)— A;s,Hd,,, by Vf(y;+1)', and noting that
dHd,;,, =d;,,Vf(y;.2) =dVf(y;12) =0, we get

| “Vf{y;'n)lp = Vf(y,~+1)'[Vf(y;+2) - /\j+1ﬂdj+l]

= (“d,tw 1 +<’X,'d;)[vf(y;+2)”‘)\j+|de+1]

| = A4 Hd, (8.32)

From (8.31) and (8.32), it is obvious that part 3 holds true for j+1.
We have thus shown that if parts 1, 2, and 3 hold for j, then they also hold

for j+1. Note that parts 1 and 2 trivially hold for j=1. In addition, using a

similar argument to that used in proving that part 3 holds for j+1, it can be
casily demonstrated that it holds for j= 1. This completes the proof.

\
\
f

The Method of Zangwill |

We now discuss a method credited to Zangwill [1967] for minimizing a
function of several variables. At step j, suppose that the directions dy,...,d
are available. Zangwill’s method generates a new direction d;., as follows. Let
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y; and z, be two points such that z, —y, € L(d,, ..., d,), where L{d,,...,d) is
the linear subspace spanned by d,,....,d;. Let y;,; and z;,, be produced by
minimizing f sequenctially along d,,...,d; starting from y, and z,, respec-
tively. Then d;.; is given by

dj+1 =Ziy17 Y+

Summary of the Method of Zangwill

A summary of Zangwill’s method for minimizing a function f of several
variables is given below. As will be shown later, if the function f is differenti-
able, then the method converges to a point with zero gradient.

Initialization Step Choose a termination scalar ¢ >0, and choose an initia}
point x,. Let y; =%, let d;=-Vf(y,), let k=j=1, and go to the main step.

Main Step

1. Let ’)\, be an optimal solution to the problem to minimize f(y; + Ad;) subject
to A€ E,, and let y;., =y, +A;d;. If j=n, go to step 4; otherwise, go to step
2.

2. Let d=-Vf(y;,,), and let 4 be an optimal solution to the problem to
\m\inimize\ f(¥;41+ pd) subject to w=0. Let z,=y,,,+4ad. Let i=1, and go
to step 3.

3. If |Vf(z,)|| < &, stop with z;. Otherwise, let p; be an optimal solution to the
problem to minimize f(z;+ud;) subject to weE,. Let z,; =z, +ud. If
i<j, replace i by i+1, and repeat step 3. Otherwise, let d,,, =2, ., ;.1
replace j by j+1, and go to step 1.

4. Lety, =X 11 =Yne1- Letd, ==Vf(y,), replace k by k+1,let j=1, and go to
step 1.

Note that the steepest descent search in step 2 is used to ensure that
zl——yléL(dl,..y.,d)-) for the quadratic case so that finite convergence is
guaranteed.

'

8.6.9 Example

Consider the following problem:

(61 =2)"+ (x, = 2x)°

We solve this problem using Zangwill’s method, starting from the point
(0.0,3.0). The results are summarized in Table 8.15. Note that during each
iteration, y, is obtained from y,; by optimizing aiong 4,=-¥f(y,), and z, is
obtained from y, by optimizing along d=~Vf(y,). To obtain z, {from z; we
optimize along d;, and to obtain y, from y, we optimize along d, = (2, ~y,).

Minimize
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TABLE 8.15 Summary of Computations fcr the Method of Zan

lteration k=1

52.00

f(x,)

(0.00, 3.00)"

X, =

2,
f(z,)

23}

zZ,
f(z,)

Yi+1

(2.46,1.23)

—0.0013

(2.52,1.20)

0.062 (2.70,1.51) (-0.73,-1.28) 0.25

(44.00, —24.00)

(0.00, 3.00)
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Figure 8.19 lllustration of the method of Zangwill.

The algorithm is terminated during the second iteration when the point z, =
(2.00, 1.01)" is reached, since |[Vf(z,)]|=0.09 is small. The path taken by the
algorithm is shown in Figure 8.19.

The Quadratic Case

If the function f is quadratic, then Zangwill’s method generates conjugate
directions and from Theorem 8.6.3 will yield an optimal solution in onc iteration
of the algorithm. The process of generating a new direction is illustrated in
Figure 8.20. Given di, y, and z, are produced by minimizing f along &, starting
from y, and z;, respectively, where y,—z;#Ad; for any AeE,. Letting
d,=1z,—y,, note that d, and d, are conjugate. In particular, as expected from
Theorem 8.6.3, minimizing f starting from either y, or z, along d,, leads to the
optimal point . Note that if y, —z; = Ad, for some A, that is, if z; is on the line
passing through y, along the direction d,, then y, =2, and d,=¢. Then 4, and
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Figure 8.20 Generating conjugate directions by the
method of Zangwill.

d, are linearly dependent and hence not conjugate. Lemma 8.6.10 below shows
‘that the above method for generating new directions produces a set of
conjugate directions.

1 8.6.10 Lemma

Let H be an nXn symmetric matrix, and let f(x)=¢'x+3x'Hx. Suppose that
j<n, and let d,,...,d; be H-conjugate. Let y, be an arbitrary vector in E,,
"and let z, be such that z,—-yléL(dl, ...,d). Fori=1,...,j let A; and g, he
- optimal solutions to the problems to minimize f(y; + Ad;) subject to A€ E; and
to minimize f(z;+ud;) subject to weE,, and let y;.; =y, +Ad; and z,,, =

z; + u;d;. Now let d;,;=2;,;—y;,1. Then d,,...,d;,, are H-conjugate.

Proof

Since dy,...,d; are H-conjugate, then by part 1 of Theorem 8.6.3, we must
have )

0=d/[Vf(z.)—Vfly; . )] =d{H(z;,, —y;, =dHd,, fori=j

In view of the above equation, since d;, ..., d; are H-conjugate, it only suffices
to demonstrate that d,,...,d;,, are linearly independent. Suppose, by con-
tradiction to the desired conclusion, that d,+1 could be represented as Yi_, y.d..
- Therefore 2,,.;—y;41= Yie17v:d, and since Yi+1=Y1+2i-1 Ad; and Zjq =
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2, +Yi_; wd, it follows that
j
= Z (vi— i +A)d; e Ly, ..., d)
i=1

which contradicts our assumption. Therefore, d;, ..., d,, are linearly indepen-
dent, and the proof is complete.

Convergence of Conjugate Direction Methods

/ As shown in Theorem 8.6.3, if the function under co*xsxderatlon is quadratxc,
then any conjugate direction algorithm produces an optimal solution in a finite
number of steps. We now discuss convergence of these methods if the function
is not-necessarily quadratic.

In Theorem 7.3.4, we showed that a composite algorithm A = CB converges
to a point in the solution set {1 if the following properties hold true:

1. B is closed at points not in 2.

2. If yeB(x), then f(y)<f(x) for x£ (.

3. If ze C(y), then f(z) = f(y).

4. The set A ={x: f(x)=<f(x,)} is compact, where x, is the starting point.

For the conjugate direction algorithms discussed in this chapter, the map B is.
of the following form. Given x, then yeB{x) mecans that y is obtained by
minimizing f starting from x along the direction d=-DBVf(x), where D is a
specified positive definite matrix. In particular, for the conjugate gradient
method and for the method of Zangwill, B =1I. For the Davidon-Fletcher—
Powell méthod, I is an arbitrary positive definite matrix. Furthermore, starting
from the point obtained by applying the map B, the map C is defined by
minimizing the function f along the directions specified by the particular
algorithms. Thus the map C satisfies property 3 above.

Letting ) = {x: Vf(x) = 0}, we now show that the map B satisfies properties 1
and 2 above. Let x£, and let x, —x. Furthermore, let y, € B{x,) and let
Yi—y. We necd to show that y € B(x). By definition of y,, yx =% — A, DV f(x,)
for A, =0 such that

fiyi) =[x = ADVf(x,)] forall A =0 (8.33)

Since Vf(x)#0, then A, converges to A =|ly—x|/IDV/(x)]|=0. Therefore y=
x— ADVf(x). Taking the limit as k— in (8.33), then f(y) = f{x— ADVf(x)] for
all A =0, so that y is indeed obtained by minimizing f starting from x in the
direction —DVf(x). Thus ye B(x), and B is closed. Also part 2 holds by noting
that —Vf(x)'DVf(x) <0, so that —DVf(x) is a descent direction. Assuming that
the set defined in part 4 is compact, it then follows that the conjugate direction
algorithms discussed in this section converge to a point with zero gradient.
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|

: Some algorithms cannot naturally be broken into maps B and C satisfying
| the above properties. The difficulty here is the absence of a closed map that
| guarantees strict improvement at points outside the solution set. In this case,
| since the map C is not necessarily closed, overall convergence is not guaran-
 teed. In order to overcome the difficulty, a spacer step, using a map B satisfying
| properties 1 and 2 above, is employed at each iteration. Typically, the spacer

step involves minimizing the function along the negative gradient direction.

N

Exercises

8.1

8.3

8.5

For the uniform search method, the dichotomous search method, the golden
section method, and the Fibonacci search method, compute the number of
functional evaluations required for « =0.1, 0.01, 0.0(}"l, and 0.0001, where « is
the ratio of the final interval of uncertainty to the length of the initial interval of
uncertainty. S ' '
Suppose that @ is differentiable and let |6'| < a. Furthermore, suppose that the
uniform search method is used to minimize 6. Let A be a grid point such that
0(A)—6(A)=¢e>0, for each grid point A# A. If the grid length & is such that
a8 < ¢, show, without assuming strict quasiconvexity, that no point outside the
interval [A — 8, A + 8] could provide a functional value less than o(h).

Show that the golden section method approaches the method of Fibonacci as the
number of functional evaluations n approaches . '
Consider the following definitions.

A function 6: E,— E, to be minimized is said to be strongly unimodal over the
interval [a, b] if there exists a A that minimizes  over the interval, and for A,
A,€[a, b] such that A; <A, we have:

>

2=A implies 8(A;)> 6(A,)
(=A implies 6(A,)<6(A;)

>

A function 6: E,— E; to be minimized is said to be unimodal over the interval
[a, b] if there exists a A that minimizes @ over the interval and for A, A,€[a, b]
such that 8(A,)# 6(X), 6(x;) #6(R), and A, <A, we have

A=A implies 9(A,) > 8(A,)
A=A implies 0(A,) < 6{A,)

a. Show that if 8 is strongly unimodal over [a, b], then 6 is strongly gnasiconvex
over [a, b]. Conversely, show that if 8 is strongly quasiconvex over [a, b} and
has a minimum in this interval, then it is strongly unimodal over the interval.

b. Show that if 8 is unimodal and continuous over [a, b}, then 6 is strictly
quasiconvex over [a, b]. Conversely, show that if 6 is strictly quasiconvex over
{a,b] and has a minimum in this interval, then it is unimodal over this
interval.

Consider the function f defined by f(x) = (x;*+ x,)*+ 2(x, - x, —4)*. Given a point

x; and a nonzero direction vector d, let 6{A) = f(x, + Ad).

a. Obtain an explicit expression for 6(A).

b. For x;=(0,0)" and d= (1, 1), using thc Fibonacci method, find the value of A
that solves the problem to minimize 6(A) subject to A€ E,.

c. Forx,=(4,5) and d=(1, —=2)", using the golden section method, find the value
of A that solves the problem to minimize 6(A) subject to A € E;.

d. Repeat parts b and ¢ using the interval bisection method,

Find the minimum of e™ +A® by each of the foilowing procedures.

a. Golden section method. :

b. Dichotomous search method.

¢. Newton’s method.

d. Bisecting search method.




| 318

. 8.7

8.8

8.10

8.11

8.12

8.13

8.14
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Consider the problem to minimize f(x+ Ad) subject to A€ E,. Show that a
necessary condition for a minimum at A is that d'Vf(y)=0, where y=x+Ad.
Under what assumptions is this condition sufficient for optimality?

Consider the problem to minimize f(x+Ad) subject to x+Ade S and A =0,

where § is a compact convex set, and f is a convex function. Furthermore,

suppose that d is an improving direction. Show that an optimal solution A is given
by A=minimum (A,,A,), where A; satisfies d'Vf(x+A,d)=0, and A,=
maximum {A :x+ Ade S}. ‘

Consider the problem to minimize 3A —2A%+ A +2A* subject to A =0.

a. Write a necessary condition for a minimum. Can you make use of this
condition to find the global minimum?

b. Is the funciion strictly quasiconvex over the region {A:A=0}? Apply the
Fibonacci search method to find the minimum.

c. Apply both the bisecting search method and Newton’s method, to the above
problem, starting from A, =6.

In Section 8.2 we described Newton’s method for finding a point where the

derivative of a function vanishes.

a. Show how the method can be used to find a point where the value of a
continuously differentiable function is equal to zcro. Illustrate the method for
d(\)=A>— A starting from A, =35.

b. Will the method converge for any starting point? Prove or give a counterex-
ample. g

Show how the linc search procedures of Section 8.1 can be used to find a point

where a given function assumes the value zero. Illustrate by the function 8

defined by 8(A)=A*-3A+2.

(Hint: Consider the absolute value function 6 =|6)).

In Section 8.2 we discussed the bisecting search method for finding a point where

the derivative of a pseudoconvex function vanishes. Show how the method can be

used to find a point where a function is equal to zero. Explicitly state the
assumptions that the function needs to satisfy. Illustrate by the function 6 defined

by 6(A)=A>—X defined on the interval [0.5, 10.0].

It can be verified that, in Example 9.2.3, for a given value of p, if x, = (x4, X5)',

then x; satisfies

pxi(8x,°~6x,+1)

_ 3
2(x;—2Y + e

0

For pw=0.1, 1.0, 10.0, and 100.0, find the value of x,, satisfying the above
equation using a suitable procedure.

Let 6:E,— E, and suppose that we havé the three points (A, 6,), (A4, 6,), and
(A3, 03), where 6, = 9(A;) for j=1,2,3. Show that the quadratic curve g passing
through these points is given by

_ A=A —A3) | B5(A = A)A=A) | 0:(A— A~ A)
A= A)A=A3) (A= ADAa—As)  (Az=A)(As=A,)

q(A)
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Furthermore, show that the derivative of q vanishes at the point A given by

bz.‘sox + b;n 92+ b1293
G230+ a3 6, + a0,

x=3

where a; = A, —A; and b; = A=\ Find the quadratic curve passing through the

points (1,3), (2,1), and (4, 6), and compute A. ' ‘

Let 6: E,— E,, and suppose that we have the three points (A4, 8,), (A2, 62),

(As, 65), where ;= 0();). Furthermore, suppose that )\1<A2<)\3,' 8= 6,, afwd

§,< 6,. Utilizing Exercise 8.14 above, compute 2 minimum point A of the

quadratic form passing through the_ poipts (X1, 81), (Ag, 0y), and (_A3, 05). If

0(1)> 6(A,), let A=Ay, A, = Ay, and Az=A. If, on the other hand, 6(A) = 6(A2),

let A, = Az, A»= A, and A3 = A5. The process is repeated by letting A, = A, Az=1y,

and A,= A, and fitting a new quadratic form through the points (A, 8,), (A2, 62),

and (A3, 03). :

a. Propose a method for finding Ay, Az, As such that A< A< As, §;=0,, and
0,= 05. )

b. Show that if @ is strictly quasiconvex, then the new interval of uncertainty
indeed contains the minimum. o . .

c. Use the procedure described in this exercise to minimize 3A =205+ AT +2A
over A =0.

(We have described in Exercises 8.14 ard 8.15 a derivative-frec line search

method using quadratic fit.)

Consider the problem to minimize (x,*—x;)"+2(x,—x,)*. Soive the problem

using each of the following methods. Do the methods converge to the same

point? If not, explain.

The cyclic coordinate method.

. The method of Hooke and Jeeves.

The method of Rosenbrock.

. The method of Zangwill,

. The method of steepest descent.

The method of Fletcher and Reeves.

. The method of Davidon-Fletcher-Powell.

Consider the problem to minimize (1-x,)*+5(x,~x,?)’. Starting from the point

(2, 0), solve the problemn by the following procedures.

a. The cyclic coordinate method.

b. The method of Hooke and Jeeves.

c. The method of Rosenbrock.

d. The method of Davidon-Fletcher-Powell.

e. The method of Zangwill.

Solve the problem to maximize X +2%,+5x,%,—x,°+3x,> by the method of

Hooke and Jeeves.

Consider the model y = a + Bx + yx*+ ¢, where x is the independent variable, y is

the observed dependent variable, «, 8, and y ar¢ unknown parameters, and s isa

random component representing the experimental error. The following table

gives the values of x and the corresponding values of y. Formulate the problem

e o a0 o
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of finding the best estimates of a, B, and y as an unconstrained optimization
problem, by minimizing:

a. The sum of squared errors.

b. The sum of the absolute values of the errors.

c¢. The maximum absolute value of the error.

For each case, find «, 8, and y by a suitable method.

x 0 1 2 3 4 5

y 2 2 | =12 =27} =60 | =90

Let f:E,— E, be differentiable at x and let the vectors d,,...,d, in E, be
linearly independent. Suppose that the minimum of f(x+Ad;) over A € E, occurs
at A =0, for j=1,..., n. Show that Vf(x)=0. Does this imply that f has a local
minimum at x?

Suppose that x, and x,,, are two consecutive points generated by the steepest
descent method. Show that Vf(x,)'V/(x.;)=0. ‘

Consider the following problem.

Minimize Xyt X5

subject to X2+ x,2=4
—2x; —x; =4

a. Formulate the Lagrangian dual problem by incorporating both constraints into
the objective function via the Lagrangian multipliers u; and u,.

b. Using a suitabie unconstrained optimization method, compute the gradient of
the dual function 6 at the point (1, 2).

c. Starting from the point @ = (1, 2), carry one iteration of the steepest ascent
method of the dual problem. In particular, solve the following problem, where
d=Vao(a).

Maximize o(@+Ad)
subject to

Suppose that f is twice continuously differentiable and that the Hessian matrix is
invertible everywhere. Given x,, iet x,,; =x, + A, d,, where d, = —H(x,) 'Vf(x,)
and A, is an optimal solution to the problem to minimize f(x, +Ad,) subject to
A € E;. Show that this modification of Newton’s method converges to a point in
the solution set Q = {%x: Vf(%)'H(%)"'V/(®) = 0}. Illustrate by minimizing (x, —2)*+
(x,~2x,)% starting from the point (—2, 3).

Let H be a symmetric n X n matrix, and let d,,..., d, be a set of characteristic
vectors of . Show that d,,...,d, are H-conjugate.

Let a;,...,3a, be a set of linearly independent vectors in E,, and let H be an
n X n symmetric positive definite matrix.
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a. Show that the vectors d,, ..., d, defined below are H-conjugate.
a, ifk=1

dk: o d:}lak . N
a -y, [d;ﬂd,]d‘ if k=2

i=1

b. Suppose that a,,...,a, are the unit vectors in E,, and let D be the matrix
whose columns are the vectors d, ..., d,, defined in part a above. Show that
D is upper triangular with all diagonal elements equal to one.

c. lllustrate by letting a; =(1,0,0), a,=(1,~1,4), a;=(2, -1, 6)', and

1 0 -1
H=| 0 3 4
-1 4 2

d. Illustrate by letting a,, a,, and a; be the unit vectors in E; and H as given in
part ¢ above.

Consider the quadratic form f(x)=¢'x+3x'Hx, where H is a symmetric nXn
matrix. In many applications, it is desirable to obtain separability in the variables,
by climinating the cross-product terms. This could be done by rotating the axes
as follows. Let D be an n X n matrix whose columns d;, ..., d, are H-conjugate.
Letting x =Dy, verify that the quadratic form is equivalent to Y ay +
3 Y1 By’, where (ay,...,a,)=¢'D, and g, =d/Hd, for j=1,..., n. Further-
more, translating and rotating the axes could be accomplished by the transforma-
tion x = Dy +z, where z is any vector satisfying Hz + ¢ =0, that is Vf(z)=0. In this
case, show that the quadratic form is equivalent to (¢'z+ 37 Hz) +3Y7", By;. Use
the result of this exercise to draw accurate contours of the quadratic form
2x,—4x,+ %"+ 2%, %, +3x,°

Consider the problem to maximize —x,”— x,> + x,x,— x, + 2x,. Starting from the

origin, solve the problem by the Davidon-Fletcher-Powell method, with D, as

the identity. Also solve the problem by the conjugate gradient method. Note that
the two proccdures generate identical set of directions. Show that, in general, if

D, =1, then the two methods are identical for quadratic functions.

Consider the problem to minimize x>+ x,” subject to x,+ x,—2 = 0.

a. Find the optimel solution to this problem, and verify optimality by the
Kuhn-Tucker conditions.

b. One approach to solve the problem is to transform it into a problem of the
form to minimize x,%+ x,> + u(x, + x,—2)%, where >0 is a large scalar. Solve
the unconstrained problem for u =10 by the conjugate gradient method,
starting from the origin.

Solve the problem to minimize X+ 2%, + e starting with the point (1, Q)

and using both the conjugate gradient method and the method of Zangwill.

Consider the following problem:

+x,2

Minimize x;2+2x;%, +2%,%+ X35> — Xp%3+ X; + 3%, — X5

Using Exercise 8.25 or any other method, generate three conjugate directions.
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Starting from the origin, solve the problem by minimizing along these directions.
Consider the system of simultaneous equations

h(x)=0 for i1 o w5 d

a. Show how to solve the above system by unconstrained optimization techni-
ques.
(Hint: Consider the problem to minimize Y-, |h(x)|?, where p is a positive
integer.)

b. Solve the following system

(xl_2)4+(x“'24¥2)2"‘5=0
x12—X2=0

Consider the problem to minimize f(x) subject to h(x)=0 for i=1,...,L A
point x is said to be a Kuhn-Tucker point if there exists a vector ve E; such that

Vf(x)+ Y, o Vh(x)=0

=1

h(x)=0 fori=1,...,1

a. Show how to solve the above system using unconstrained optimization techni-

ques.
(Hint: See Exercise 8.31 above.)
b. Find the Kuhn-Tucker point for the following problem.

(i~ 2)* + (5, ~2m,

x;2=x,=0

Minimize
subject to
Consider the problem to minimize f(x) subject to gi(x)=0 for i=1,...,m.

a. Show that the Kuhn-Tucker conditions hold at a point x if there exist u; and s;
for i=1,..., m such that

VI + Y uiVg =0

i=1
g(®)+s*=0
ws; =0 fori=1,...,m

fori=1,...,m

b. Show that unconstrained optimization techniques could be used to find a
solution to the above system.
(Hint: See Exercise 8.31 above.)

c. Use a suitable unconstrained optimization technique to find a Kuhn-Tucker
point to the following problem:

2x 2+ %2 = 2%, %, +2%,+6
—-2X; =X, +3=<0

Minimize
subject to

A problem of the following structure frequently arises in the context of solving a
more general nonlincar programming problem:

8.35
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Minimize f(x)

subject to a;<x,=b fori=1,...,m

a. Investigate appropriate modifications of the unconsirained optimization
methods discussed in this chapter so that the lower and upper bounds on the
variables could be handled.

b. Use the results of part a to solve the following problem:

Minimize (1= 2)* + (5, — 2%,)°
subject to 3=x,=5
2=x,<6

Consider the following method of parallel tangents credited to Shah, Buehler,
and Kempthorne [1964] for minimizing a differentiable function f of several
variables.

Initialization Step
Choose a termination scalar €>0, and choose & starting point x,;. ‘Let yo=x,
k=j=1, and go to the main step.

Main Step

1. Let d=-Vf(x,) and let A be an optimal solution to the problem to minimize
f(x, +Ad) subject to A =0. Let y, =x, +Ad. Go to step 2.

2. Let d=~Vf(y;), and let A; be an optimal solution to the problem tc minimize
fly; +Ad) subject to A =0. Let z; =y;+A;d, and go to step 3.

3. Letd=z;~y,_;, and let p; be an optimal solution to the problem to minimize
f(z; + nd) subject to we E;. Let y;., =z; + p,d. If j<n, replace j by j+1, and
go to step 2. If j=n, go to step 4.

4. Let Xy =Ynere I K1 — x| < e, stop. Otherwise, let y, = x,.,,, replace k by
k+1, let j=1, and go to step 1.

Using Theorem 7.3.4 show that the method converges. Solve the following
problems using the method of parallel tangents.
a. Minimize x,%+ x>+ 2%, %, — 2, — 6X,.
b. Minimize x,%+ x,2 — 2%, %, — 2%, — X,.
(Note that the optimal solution for this problem is unbounded.)
¢. Minimize (x;—2)*+ (x, —2x,)".
Let f: E,— E, be differentiable. Consider the following procedure for minimizing
f:
Initialization Step
Choose a termination scalar £ >0 and an initial step size A>0. Let m be a
positive integer denoting the number of allowable failures before reducing step
size. Let x; be the starting point and let the current upper bound on the
optimal objective value, UB = f(x;). Let »=0, let k=1, and go to the main step.
Main Step
1. Let d, =-Vf(x,), and let X, =x, +Ad,. If f(x,,,)<UB, let v=0, £=x,.,,
UB = f(&), and go to step 2. If, on the other hand, f(x,,,)= UB, then replace »



