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“I love information upon all subjects that come in my way, and especially 

upon those that are most important.” Thus boldly declares Euphranor, one of 

the defenders of Christian faith in Berkley's Alciphron (Dialogue 1, Section 5, 

Paragraph 6/10, see Berkeley [1732]). Evidently, information has been an 

object of philosophical desire for some time, well before the computer 

revolution, Internet or the dot.com pandemonium (see for example Dunn 

[2001] and Adams [2003]). Yet what does Euphranor love, exactly? What is 

information? The question has received many answers in different fields. 

Unsurprisingly, several surveys do not even converge on a single, unified 

definition of information (see for example Braman [1989], Losee [1997], 

Machlup and Mansfield [1983], Debons and Cameron [1975], Larson and 

Debons [1983]). 

Information is notoriously a polymorphic phenomenon and a polysemantic 

concept so, as an explicandum, it can be associated with several explanations, 

depending on the level of abstraction (Floridi [2008]) adopted and the cluster 

of requirements and desiderata orientating a theory. The reader may wish to 

keep this in mind while reading this entry, where some schematic 

simplifications and interpretative decisions will be inevitable. Claude E. 

Shannon, for one, was very cautious: 

The word ‘information’ has been given different meanings by various writers 

in the general field of information theory. It is likely that at least a number of 

these will prove sufficiently useful in certain applications to deserve further 

study and permanent recognition. It is hardly to be expected that a single 

concept of information would satisfactorily account for the numerous possible 

applications of this general field. (italics added). (Shannon [1993], p. 180) 

Thus, following Shannon, Weaver [1949] supported a tripartite analysis of 

information in terms of 

(1) technical problems concerning the quantification of information and dealt 

with by Shannon's theory 

(2) semantic problems relating to meaning and truth; and 

(3) what he called “influential” problems concerning the impact and 

effectiveness of information on human behaviour, which he thought had to 

play an equally important role. 



And these are only some early examples of the problems raised by any 

analysis of information. 

Indeed, the plethora of different analyses can be confusing. Complaints about 

misunderstandings and misuses of the very idea of information are frequently 

expressed, even if to no apparent avail. Sayre [1976], for example, criticised 

the “laxity in use of the term ‘information’” in Armstrong [1968] (see now 

Armstrong [1993]) and in Dennett [1969] (see now Dennett [1986]), despite 

appreciating several other aspects of their work. More recently, Harms [1998] 

pointed out similar confusions in Chalmers [1996], who 

seems to think that the information theoretic notion of information [see 

section 3, my addition] is a matter of what possible states there are, and how 

they are related or structured […] rather than of how probabilities are 

distributed among them. (p. 480). 

In order to try to avoid similar pitfalls, this entry has been organised into four 

sections. Section 1 attempts to draw a map of the main senses in which one 

may speak ofsemantic information, and does so by relying on the analysis of 

the concept of data (depicted in Figure 1 below). Sometimes the several 

concepts of information organised in the map can be variously coupled 

together. This should not be taken as necessarily a sign of confusion, for in 

some philosophers it may be the result of an intentional bridging. The map is 

not exhaustive and it is there mainly in order to avoid some obvious pitfalls 

and to narrow the scope of this article, which otherwise could easily turn into 

a short version of the Encyclopedia Britannica. Its schematism is only a 

starting point for further research and the reader interested in knowing more 

may wish to consult Floridi [2010] and [2011] and Adriaans and van Benthem 

[2008]. 

After this initial orientation, Section 2 provides a brief introduction to 

information theory, that is, to the mathematical theory of communication 

(MTC). MTC deserves a space of its own because it is the quantitative 

approach to the analysis of information that has been most influential among 

several philosophers. It provides the necessary background to understand 

several contemporary theories of semantic information, especially Bar-Hillel 

and Carnap [1953], Dretske [1981] and Floridi [2004b]. 

Section 3 analyses information as semantic content. Section 4 focuses entirely 

on the philosophical understanding of semantic information, what Euphranor 

really loves. 



The reader must also be warned that an initial account of semantic information 

as meaningful data will be used as yardstick to outline other approaches. 

Unfortunately, even such a minimalist account is open to disagreement. In 

favour of this approach one may say that at least it is less controversial than 

others. Of course, a conceptual analysis must start somewhere. This often 

means adopting some working definition of the object under scrutiny. But it is 

not this commonplace that one needs to emphasize here. The difficulty is 

rather more daunting. Philosophical work on the concept of (semantic) 

information is still at that lamentable stage when disagreement affects even 

the way in which the problems themselves are provisionally phrased and 

framed. Nothing comparable to the well-polished nature of the Gettier 

problem is yet available, for example. So the “you are here” signal provided in 

this article might be placed elsewhere by other philosophers. The whole 

purpose is to put the concept of semantic information firmly on the 

philosophical map. Further adjustments will then become possible. 

 1. An informational map 

o 1.1 An everyday example of information 

o 1.2 The data-based definition of information 

o 1.3 A definition of data 

o 1.4 Taxonomic neutrality 

o 1.5 Typological neutrality 

o 1.6 Ontological neutrality 

o 1.7 Genetic neutrality 

 1.7.1 Environmental information 

o 1.8 Summary of the first part 

 2. Information as data communication 

o 2.1 The mathematical theory of communication 

o 2.2 Conceptual implications of the mathematical theory of 

communication 

 3. Information as semantic content 

o 3.1 Instructional information 

o 3.2 Factual information 

 3.2.1 Constraining affordances 

 3.2.2 Levels of abstraction 

 3.2.3 Information and truth 

 4. Philosophical approaches to semantic information 

o 4.1 The Bar-Hillel-Carnap Paradox 

o 4.2 The strongly semantic approach to information 

 5. Conclusion 

 Bibliography 

http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.3
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.4
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.5
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.6
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.7
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.7.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#1.8
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#2.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#2.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#2.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3.2.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3.2.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#3.2.3
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#4
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#4.1
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#4.2
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#5
http://plato.stanford.edu/archives/spr2013/entries/information-semantic/#Bib


 Academic Tools 

 Other Internet Resources 

 Related Entries 

 

1. An informational map 

Information is a conceptual labyrinth, and in this section we shall begin to 

have a look at a general map of one of its regions, with the purpose of placing 

ourselves squarely in the semantic area. Figure 1 summarises the main 

distinctions that are going to be introduced. 

 
Figure 1: An informational map 

Clearly, percolating through the various points in the map will not make for a 

linear journey. Using a few basic examples, to illustrate the less oblivious 

steps, will also help to keep our orientation. So let me introduce immediately 

the one to which we shall return more often. 

1.1 An everyday example of information 

Monday morning. You turn on the ignition key of your car, but nothing 

happens: the engine does not even cough. The silence of the engine worries 

you. Unsurprisingly, you also notice that the red light of the low battery 

indicator is flashing. After a few more attempts, you give up and ring the 
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garage. You explain that your husband forgot to switch off the lights of the car 

last night — it is a lie, you did, but you are too ashamed to confess it — and 

now the battery is flat. The mechanic tells you that the instruction manual of 

your car explains how to use jump leads to start the engine. Luckily, your 

neighbour has everything you need. You read the manual, look at the 

illustrations, follow the instructions, solve the problem and finally drive to the 

office. 

This everyday episode will be our “fruit fly”. Although it is simple and 

intuitive, it provides enough details to illustrate the many ways in which we 

understand one of our most important resources: information. 

1.2 The data-based definition of information 

It is common to think of information as consisting of data. It certainly helps, if 

only to a limited extent. For, unfortunately, the nature of data is not well-

understood philosophically either, despite the fact that some important past 

debates — such as the one on the given and the one on sense data — have 

provided at least some initial insights. There still remains the advantage, 

however, that the concept of data is less rich, obscure and slippery than that of 

information, and hence easier to handle. So a data-based definition of 

information seems to be a good starting point. 

Over the last three decades, several analyses in Information Science, in 

Information Systems Theory, Methodology, Analysis and Design, in 

Information (Systems) Management, in Database Design and in Decision 

Theory have adopted a General Definition of Information (GDI) in terms 

of data + meaning (see Floridi [2005] for an extended bibliography). GDI has 

become an operational standard, especially in fields that treat data and 

information as reified entities (consider, for example, the now common 

expressions “data mining” and “information management”). Recently, GDI 

has begun to influence the philosophy of computing and information (Floridi 

[1999] and Mingers [1997]). 

A clear way of formulating GDI is as a tripartite defintion: 

The General Definition of Information (GDI):  

σ is an instance of information, understood as semantic content, if and only if: 

(GDI.1) σ consists of one or more data; 

(GDI.2) the data in σ are well-formed; 



(GDI.3) the well-formed data in σ are meaningful. 

GDI requires a definition of data. This will be provided in the next section. 

Before, a brief comment on each clause is in order. 

According to (GDI.1), data are the stuff of which information is made. We 

shall see that things can soon get more complicated. 

In (GDI.2), “well-formed” means that the data are clustered together correctly, 

according to the rules (syntax) that govern the chosen system, code or 

language being analysed. Syntax here must be understood broadly (not just 

linguistically), as what determines the form, construction, composition or 

structuring of something (engineers, film directors, painters, chess players and 

gardeners speak of syntax in this broad sense). For example, the manual of 

your car may show (see Figure 2) a two dimensional picture of the two cars 

placed one near the other, not one on top of the other. 

 
Figure 2: How to jump start your car  

(Copyright © Bosch UK) 

This pictorial syntax (including the linear perspective that represents space by 

converging parallel lines) makes the illustrations potentially meaningful to the 

user. Using the same example, the actual battery needs to be connected to the 

engine in a correct way to function: this is still syntax, in terms of correct 

physical architecture of the system (thus a disconnected battery is a syntactic 

problem). And of course the conversation you carry on with your neighbour 

follows the grammatical rules of English: this is syntax in the ordinary 

linguistic sense. 

Regarding (GDI.3), this is where semantics finally occurs. “Meaningful” 

means that the data must comply with the meanings (semantics) of the chosen 

system, code or language in question. However, let us not forget that semantic 



information is not necessarily linguistic. For example, in the case of the 

manual of the car, the illustrations are such as to be visually meaningful to the 

reader. 

1.3 A definition of data 

According to GDI, information cannot be dataless but, in the simplest case, it 

can consist of a single datum. Now a datum is reducible to just a lack of 

uniformity (diaphorais the Greek word for “difference”), so a general 

definition of a datum is: 

The Diaphoric Definition of Data (DDD): 

A datum is a putative fact regarding some difference or lack of uniformity 

within some context. 

Depending on philosophical inclinations, DDD can be applied at three levels: 

1. data as diaphora de re, that is, as lacks of uniformity in the real world 

out there. There is no specific name for such “data in the wild”. A 

possible suggestion is to refer to them as dedomena (“data” in Greek; 

note that our word “data” comes from the Latin translation of a work by 

Euclid entitled Dedomena). Dedomena are not to be confused with 

environmental data (see section 1.7.1). They are pure data or proto-

epistemic data, that is, data before they are epistemically interpreted. 

As “fractures in the fabric of being” they can only be posited as an 

external anchor of our information, for dedomena are never accessed or 

elaborated independently of alevel of abstraction (more on this in 

section 3.2.2). They can be reconstructed as ontological requirements, 

like Kant's noumena or Locke's substance: they are not epistemically 

experienced but their presence is empirically inferred from (and 

required by) experience. Of course, no example can be provided, but 

dedomena are whatever lack of uniformity in the world is the source of 

(what looks to information systems like us as) as data, e.g., a red light 

against a dark background. Note that the point here is not to argue for 

the existence of such pure data in the wild, but to provide a distinction 

that (in section 1.6) will help to clarify why some philosophers have 

been able to accept the thesis that there can be no information without 

data representation while rejecting the thesis that information requires 

physical implementation; 

2. data as diaphora de signo, that is, lacks of uniformity between (the 

perception of) at least two physical states, such as a higher or lower 



charge in a battery, a variable electrical signal in a telephone 

conversation, or the dot and the line in the Morse alphabet; and 

3. data as diaphora de dicto, that is, lacks of uniformity between two 

symbols, for example the letters A and B in the Latin alphabet. 

Depending on one's position with respect to the thesis of ontological neutrality 

(section 1.6) and the nature of environmental information (section 1.7.1) 

dedomena in (1) may be either identical with, or what makes possible signals 

in (2), and signals in (2) are what make possible the coding of symbols in (3). 

The dependence of information on the occurrence of syntactically well-

formed data, and of data on the occurrence of differences variously 

implementable physically, explain why information can so easily be 

decoupled from its support. The actual format, medium and language in which 

semantic information is encoded is often irrelevant and hence disregardable. 

In particular, the same semantic information may be analog or digital, printed 

on paper or viewed on a screen, in English or in some other language, 

expressed in words or pictures. Interpretations of this support-independence 

can vary quite radically. For DDD (above) leaves underdetermined 

 the classification of the relata (taxonomic neutrality); 

 the logical type to which the relata belong (typological neutrality); 

 the kind of support required for the implementation of their inequality 

(ontological neutrality); and 

 the dependence of their semantics on a producer (genetic neutrality). 

We shall now look at each form of neutrality in turn. 

1.4 Taxonomic neutrality 

A datum is usually classified as the entity exhibiting the anomaly, often 

because the latter is perceptually more conspicuous or less redundant than the 

background conditions. However, the relation of inequality is binary and 

symmetric. A white sheet of paper is not just the necessary background 

condition for the occurrence of a black dot as a datum, it is a constitutive part 

of the [black-dot-on-white-sheet] datum itself, together with the fundamental 

relation of inequality that couples it with the dot. Nothing seems to be a 

datum per se. Rather, being a datum is an external property. So GDI endorses 

the following thesis of taxonomic neutrality: 

Taxonomic Neutrality (TaN): 

A datum is a relational entity. 



The slogan is “data are relata”, but GDI is neutral with respect to the 

identification of data with specific relata. In our example, GDI refrains from 

identifying either the red light or the white background as the datum. To 

understand why there cannot be “dataless information”, we shall now look at 

the typological neutrality of GDI. 

1.5 Typological neutrality 

GDI also endorses the thesis of typological neutrality: 

Typological Neutrality (TyN):  

Information can consist of different types of data as relata. 

Five classifications are quite common, although the terminology is not yet 

standard or fixed (but see Floridi [1999]). They are not mutually exclusive, 

and one should not understand them as rigid: depending on circumstances, on 

the sort of analysis conducted and on the level of abstraction adopted, the 

same data may fit different classifications. 

(D1) Primary data. These are the principal data stored e.g. in a database, for example a 

simple array of numbers. They are the data an information-management system — 

such as the one used in the car to indicate that the battery needs to be charged — is 

generally designed to convey (in the form of information) to the user in the first 

place. Normally, when speaking of data, and of the corresponding information 

they constitute, one implicitly assumes that primarydata/information is what is in 

question. So, by default, the red light of the low battery indicator flashing is 

assumed to be an instance of primary data conveying primary information. 

(D2) Secondary data. These are the converse of primary data, constituted by their 

absence (one could call them anti-data). Recall how you first suspected that the 

battery was flat: the engine failed to make any of the usual noise. Likewise, 

in Silver Blaze, Sherlock Holmes solves the case by noting something that has 

escaped everybody else: the unusual silence of the dog. Clearly, silence may be 

very informative. This is a peculiarity of information: its absence may also be 

informative. When it is, the point is stressed by speaking of secondary 

information. 

(D3) Metadata. These are indications about the nature of some other (usually primary) 

data. They describe properties such as location, format, updating, availability, 

usage restrictions, and so forth. Correspondingly, metainformation is information 

about the nature of information. “‘The battery is flat’ is encoded in English” is a 

simple example. 

(D4) Operational data. These are data regarding the operations of the whole data 

system and the system's performance. Correspondingly, operational information is 

information about the dynamics of an information system. Suppose the car has a 

yellow light that, when flashing, indicates that the car checking system is 

malfunctioning. The fact that the light is on may indicate that the low battery 

indicator is not working properly, thus undermining the hypothesis that the battery 



is flat. 

(D5) Derivative data. These are data that can be extracted from some data whenever the 

latter are used as indirect sources in search of patterns, clues or inferential 

evidence about other things than those directly addressed by the data themselves, 

e.g., for comparative and quantitative analyses (ideometry). As it is difficult to 

define this category precisely, a familiar example may be helpful to convey the 

point. Credit cards notoriously leave a trail of derivative information. From 

someone's credit card bill, concerning e.g., the purchase of petrol in a certain 

petrol station, one may derive the information of her whereabouts at a given time. 

Again, derivative information is not something new. Hume provides a beautiful 

example in these days of global warming. In the Essays Moral, Political, and 

Literary (Part II, Essay 11. Of the Populousness of Ancient Nations, Para. 155/186 

mp. 448 gp. 432, see now Hume [1987]) he reports that “It is an observation of 

L'Abbe du Bos that Italy is warmer at present than it was in ancient times. ‘The 

annals of Rome tell us,’ says he, ‘that in the year 480 ab U.C. the winter was so 

severe that it destroyed the trees. […] Many passages of Horace suppose the 

streets of Rome full of snow and ice. We should have more certainty with regard 

to this point, had the ancients known the use of thermometers: But their writers, 

without intending it, give us information, sufficient to convince us, that the winters 

are now much more temperate at Rome than formerly.” Hume has just extracted 

some derivative information from some primary information provided by L’Abbe 

du Bos. 

Let us now return to our question: can there be dataless information? GDI 

does not specify which types of data constitute information. This typological 

neutrality (TyN, see above) is justified by the fact that, when the apparent 

absence of data is not reducible to the occurrence of negative primary data, 

what becomes available and qualifies as information is some further non-

primary information μ about σ constituted by some non-primary data (D2)–

(D5). For example, if a database query provides an answer, it will provide at 

least a negative answer, e.g., “no documents found”. This is primary negative 

information. However, if the database provides no answer, either it fails to 

provide any data at all, in which case no specific information σ is available — 

so the rule “no information without data” still applies — or it can provide 

some data to establish, for example, that it is running in a loop. Likewise, 

silence, this time as a reply to a question, could represent negative primary 

information, e.g., as implicit assent or denial, or it could carry some non-

primary information, e.g., about the fact that the person has not heard the 

question, or about the amount of noise in the room. 

1.6 Ontological neutrality 

By rejecting the possibility of dataless information, GDI also endorses the 

following modest thesis of ontological neutrality: 



Ontological Neutrality (ON):  

There can be no information without data representation. 

Following Landauer and Bennett [1985], and Landauer [1987]; [1991]; 

[1996], (ON) is often interpreted materialistically, as advocating the 

impossibility of physically disembodied information, through the equation 

“representation = physical implementation”, that is: 

(ON.1) There can be no information without physical implementation. 

(ON.1) is an inevitable assumption, when working on the physics of 

computation, since computer science must necessarily take into account the 

physical properties and limits of the data carriers. Thus, the debate on (ON.1) 

has flourished especially in the context of the philosophy of quantum 

information and computing (see Deutsch [1985]; [1997] and Di Vincenzo and 

Loss [1998]; Steane [1998] provides a review). (ON.1) is also the ontological 

assumption behind the Physical Symbol System Hypothesis in AI and 

Cognitive Science (Newell and Simon [1976]). But (ON), and hence GDI, 

does not specify whether, ultimately, the occurrence of every discrete state 

necessarily requires a material implementation of the data representations. 

Arguably, environments in which all entities, properties and processes are 

ultimately noetic (e.g., Berkeley, Spinoza), or in which the material or 

extended universe has a noetic or non-extended matrix as its ontological 

foundation (e.g., Pythagoras, Plato, Descartes, Leibniz, Fichte, Hegel), seem 

perfectly capable of upholding (ON) without necessarily embracing (ON.1). 

The relata in DDD (above) could be dedomena, such as Leibnizian monads, 

for example. Indeed, the classic realism debate on the ultimate nature of 

“being” can be reconstructed in terms of the possible interpretations of (ON). 

All this explains why GDI is also consistent with two other popular slogans, 

this time favourable to the proto-physical nature of information and hence 

completely antithetic to (ON.1): 

(ON.2) It from bit. Otherwise put, every “it” — every particle, every field of force, even 

the space-time continuum itself — derives its function, its meaning, its very 

existence (even if in some contexts indirectly) from the apparatus-elicited 

answers to yes-or-no questions, binary choices, bits. “It from bit” symbolizes 

the idea that every item of the physical world has at bottom — a very deep 

bottom, in most instances — an immaterial source and explanation; that which 

we call reality arises in the last analysis from the posing of yes-no questions and 

the registering of equipment-evoked responses; in short, that all things physical 

are information-theoretic in origin and that this is a participatory universe. 

(Wheeler [1990], 5); 



and 

(ON.3) [information is] a name for the content of what is exchanged with the outer 

world as we adjust to it, and make our adjustment felt upon it. (Wiener [1954], 

17). Information is information, not matter or energy. No materialism which 

does not admit this can survive at the present day (Wiener [1961], 132). 

(ON.2) endorses an information-theoretic, metaphysical monism: the 

universe's essential nature is digital, being fundamentally composed of 

information as data/dedomena instead of matter or energy, with material 

objects as a complex secondary manifestation (a similar position has been 

defended more recently in physics by Frieden [1998], whose work is based on 

a loosely Platonist perspective). (ON.2) may but does not have to endorse a 

computational view of information processes. (ON.3) advocates a more 

pluralistic approach along similar lines. Both are compatible with GDI. 

A final comment concerning (GDI.3) can be introduced by discussing a fourth 

slogan: 

(ON.4) In fact, what we mean by information — the elementary unit of information — 

is a difference which makes a difference. (Bateson [1973], 428). 

(ON.4) is one of the earliest and most popular formulations of GDI (see for 

example Franklin [1995], 34 and Chalmers [1996], 281). The formulation 

usually attributed to Mackay [1969] (yet not to be found in that text) — that 

is, “information is a distinction that makes a difference” — predates Bateson's 

but it is slightly different from it in that, by speaking of “distinction” instead 

of “difference”, it has an epistemological rather than an ontological twist. A 

“difference” (a “distinction”) is just a discrete state, namely a datum, and 

“making a difference” simply means that the datum is “meaningful”, at least 

potentially. 

1.7 Genetic neutrality 

Finally, let us consider the semantic nature of the data. How data can come to 

have an assigned meaning and function in a semiotic system in the first place 

is one of the hardest problems in semantics. Luckily, the point in question 

here is not how but whether data constituting information as semantic content 

can be meaningfulindependently of an informee. The genetic neutrality (GeN) 

supported by GDI states that: 

Genetic Neutrality (GeN):  

Data (as relata) can have a semantics independently of any informee. 



Before the discovery of the Rosetta Stone, Egyptian hieroglyphics were 

already regarded as information, even if their semantics was beyond the 

comprehension of any interpreter. The discovery of an interface between 

Greek and Egyptian did not affect the semantics of the hieroglyphics but only 

its accessibility. This is the weak, conditional-counterfactual sense in which 

(GDI.3) speaks of meaningful data being embedded in information-carriers 

informee-independently. GeN supports the possibility of information without 

an informed subject, to adapt a Popperian phrase. Meaning is not (at least not 

only) in the mind of the user. GeN is to be distinguished from the stronger, 

realist thesis, supported for example by Dretske [1981], according to which 

data could also have their own semantics independently of an 

intelligentproducer/informer. This is also known as environmental 

information, a concept sufficiently important to deserve a brief presentation 

before we close this first part. 

1.7.1 Environmental information 

One of the most often cited example of environmental information is the 

series of concentric rings visible in the wood of a cut tree trunk, which may be 

used to estimate its age. Yet “environmental” information does not need to 

be natural. Going back to our example, when you turned the ignition key, the 

red light of the low battery indicator flashed. This signal too can be interpreted 

as an instance of environmental information. 

Environmental information is defined relative to an observer (an information 

agent), who is supposed to have no direct access to pure data in themselves. It 

requires two systems a and b to be coupled in such a way that a's being (of 

type, or in state) F is correlated to b being (of type, or in state) G, thus 

carrying for the observer the information that b is G (this analysis is adapted 

from Barwise and Seligman [1997], who improve on a similar account by 

Dretske [1981]): 

Environmental information:  

Two systems a and b are coupled in such a way that a's being (of type, or in 

state) F is correlated to b being (of type, or in state) G, thus carrying for the 

information agent the information that b is G. 

The correlation above is usually nomic (it follows some law). It may be 

engineered — as in the case of the low battery indicator (a) whose flashing 

(F) is triggered by, and hence it is informative about, the battery (b) being flat 

(G). Or it may be natural, as when litmus — a natural colouring matter from 

lichens — is used as an acid-alkali indicator because it turns red in acid 



solutions and blue in alkaline solutions. Other typical examples include the 

correlation between fingerprints and personal identification. 

One may be so used to see the low battery indicator flashing as carrying the 

information that the battery is flat to find it hard to distinguish, with sufficient 

clarity, between environmental and semantic information. However, it is 

important to stress that environmental information may require or involve no 

semantics at all. It may consist of (networks or patterns of) correlated data 

understood as mere differences or constraining affordances. Plants (e.g., a 

sunflower), animals (e.g., an amoeba) and mechanisms (e.g., a photocell) are 

certainly capable of making practical use of environmental information even 

in the absence of any (semantic processing of) meaningful data. 

1.8 Summary of the first part 

To summarise, GDI defines information, broadly understood, as syntactically 

well-formed and meaningful data. Its four types of neutrality (TaN, TyN, ON 

and GeN) represent an obvious advantage, as they make GDI perfectly 

scalable to more complex cases and reasonably flexible in terms of 

applicability and compatibility. Indeed, philosophers have variously 

interpreted and tuned these four neutralities according to their theoretical 

needs. 

Our next step is to check whether GDI is satisfactory when discussing the 

most important type of semantic information, namely factual information. 

Before addressing this issue, however, we need to pause and look at 

the mathematical theory of communication (MTC). 

MTC is not the only successful mathematical approach to the concept of 

information. Fisher information (Frieden [2004]) and the algorithmic 

information theory (Chaitin [1987]) provide two other important examples. 

However, MTC is certainly the most widely known among philosophers. As 

such, it has had a profound impact on philosophical analyses of semantic 

information, to which it has provided both the technical vocabulary and at 

least the initial conceptual frame of reference. One needs to grasp its main gist 

if one wishes to make sense of the issuing philosophical debate. 

2. Information as data communication 

Some features of information are intuitive. We are used to information 

being encoded, transmitted and stored. One also expects it to 

be additive (information a + information b = information a + b) and non-



negative, like other things in life, such as probabilities and interest rates. If 

you ask a question, the worst scenario is that you receive no answer or a 

wrong answer, which will leave you with zero new information. 

Similar properties of information are quantifiable. They are investigated by 

the mathematical theory of communication (MTC) with the primary aim of 

devising efficient ways of encoding and transferring data. 

The name for this branch of probability theory comes from Shannon's seminal 

work (Shannon and Weaver [1949]). Shannon pioneered this field and 

obtained many of its principal results, but he acknowledged the importance of 

previous work done by other researchers and colleagues at Bell laboratories, 

most notably Nyquist and Hartley (see Cherry [1978] and Mabon [1975]). 

After Shannon, MTC became known as information theory, an appealing but 

unfortunate label, which continues to cause endless misunderstandings. 

Shannon came to regret its widespread popularity, and we shall avoid using it 

in this context. 

This second part of the article outlines some of the key ideas behind MTC, 

with the aim of understanding the relation between MTC and some 

philosophical theories of semantic information. The reader with no taste for 

mathematical formulae may wish to go directly to section 2.2, where some 

conceptual implications of MTC are outlined. The reader interested in 

knowing more may start by reading Weaver [1949], Pierce [1980], Shannon 

and Weaver [1949 rep. 1998], then Jones [1979], and finally Cover and 

Thomas [1991]. The latter two are technical texts. Floridi [2003a] provides a 

brief and simplified analysis oriented to philosophy students. 

2.1 The mathematical theory of communication 

MTC has its origin in the field of electrical engineering, as the study of 

communication limits. It develops a quantitative approach to information as a 

means to answer two fundamental problems: the ultimate level of data 

compression (how small can a message be, given the same amount of 

information to be encoded?) and the ultimate rate of data transmission (how 

fast can data be transmitted over a channel?). The two solutions are the 

entropy H in equation [9] (see below) and the channel capacity C. The rest of 

this section illustrates how to get from the problems to the solutions. 

To have an intuitive sense of the approach, let us return to our example. Recall 

the telephone conversation with the mechanic. In Figure 2, the wife is 

the informer, the mechanic is the informee, “the battery is flat” is the 



(semantic) message (the informant), there is a coding and decoding procedure 

through a natural language (English), a channel of communication (the 

telephone system) and some possible noise. Informer and informee share the 

same background knowledge about the collection of usable symbols 

(technically known as the alphabet; in the example this is English). 

 

Figure 3: Communication model  

(adapted from Shannon and Weaver [1949]) 

MTC is concerned with the efficient use of the resources indicated in Figure 3. 

Now, the conversation with the mechanic is fairly realistic and hence more 

difficult to model than a simplified case. We shall return to it later but, in 

order to introduce MTC, imagine instead a very boring device that can 

produce only one symbol. Edgar Alan Poe wrote a short story in which a 

raven can answer only “nevermore” to any question. Poe's raven is called 

a unary device. Imagine you ring the garage and your call is answered by 

Poe's raven. Even at this elementary level, Shannon's simple model of 

communication still applies. It is obvious that the raven (a unary device) 

produces zero amount of information. Simplifying, we already know the 

outcome of the communication exchange, so our ignorance (expressed by our 

question) cannot be decreased. Whatever the informational state of the system 

is, asking appropriate questions (e.g., “Will I be able to make the car start?”, 

“Can you come to fix the car?”) of the raven does not make any difference. 

Note that, interestingly enough, this is the basis of Plato's famous argument in 

the Phaedrus against the value of semantic information provided by written 

texts: 



[Socrates]: Writing, Phaedrus, has this strange quality, and is very like 

painting; for the creatures of painting stand like living beings, but if one asks 

them a question, they preserve a solemn silence. And so it is with written 

words; you might think they spoke as if they had intelligence, but if you 

question them, wishing to know about their sayings, they always say only one 

and the same thing [they are unary devices, in our terminology]. And every 

word, when [275e] once it is written, is bandied about, alike among those who 

understand and those who have no interest in it, and it knows not to whom to 

speak or not to speak; when ill-treated or unjustly reviled it always needs its 

father to help it; for it has no power to protect or help itself. 

As Plato well realises a unary source answers every question all the time with 

only one message, not with silence or message, since silence counts as a 

message, as we saw in 2.5, when discussing the nature of secondary 

information. It follows that a completely silent source also qualifies as a unary 

source. And if silencing a source (censorship) may be a nasty way of making a 

source uninformative, it is well known that crying wolf is a classic case in 

which an informative source degrades to the role of uninformative unary 

device. 

Consider now a binary device that can produce two symbols, like a fair 

coin A with its two equiprobable symbols {h, t}; or, as Matthew 5:37 

suggests, “Let your communication be Yea, yea; Nay, nay: for whatsoever is 

more than these cometh of evil”. Before the coin is tossed, the informee (for 

example a computer) is in a state ofdata deficit greater than zero: the informee 

does not “know” which symbol the device will actually produce. Shannon 

used the technical term “uncertainty” to refer to data deficit. In a non-

mathematical context this can be a very misleading term because of the strong 

epistemological connotations of this term. Remember that the informee can be 

a simple machine, and psychological, mental or doxastic states are clearly 

irrelevant. 

Once the coin has been tossed, the system produces an amount of information 

that is a function of the possible outputs, in this case 2 equiprobable symbols, 

and equal to the data deficit that it removes. 

Let us now build a slightly more complex system, made of two fair 

coins A and B. The AB system can produce 4 ordered outputs: <h, h>, <h, t>, 

<t, h>, <t, t>. It generates a data deficit of 4 units, each couple counting as a 

symbol in the source alphabet. In the AB system, the occurrence of each 

symbol <_,_> removes a higher data deficit than the occurrence of a symbol 

in the A system. In other words, each symbol provides more information. 



Adding an extra coin would produce a 8 units of data deficit, further 

increasing the amount of information carried by each symbol in 

the ABC system, and so on. 

We are now ready to generalise the examples. Call the number of possible 

symbols N. For N = 1, the amount of information produced by a unary device 

is 0. For N = 2, by producing an equiprobable symbol, the device delivers 1 

unit of information. And for N = 4, by producing an equiprobable symbol the 

device delivers the sum of the amount of information provided by a device 

producing one of two equiprobable symbols (coin A in the example above) 

plus the amount of information provided by another device producing one of 

two equiprobable symbols (coin B), that is, 2 units of information, although 

the total number of symbols is obtained by multiplying A's symbols byB's 

symbols. Now, our information measure should be a continuous and 

monotonic function of the probability of the symbols. The most efficient way 

of satisfying these requirements is by using the logarithm to the base 2 of the 

number of possible symbols (the logarithm to the base 2 of a number n is the 

power to which 2 must be raised to give the number n, for example log2 8 = 3, 

since 23 = 8). Logarithms have the useful property of turning multiplication of 

symbols into addition of information units. By taking the logarithm to the base 

2 (henceforth log simply means log2) we have the further advantage of 

expressing the units in bits. The base is partly a matter of convention, like 

using centimetres instead of inches, partly a matter of convenience, since it is 

useful when dealing with digital devices that use binary codes to represent 

data. 

Given an alphabet of N equiprobable symbols, we can now use equation [1]: 

[1] The average informativeness per symbol (or “uncertainty”) = 

 
    log2(N) bits of information per symbol 

to rephrase some examples more precisely: 

Device Alphabet 
Bits of information 

per symbol 

Poe's raven (unary) 1 symbol log(1) = 0 

1 coin (binary) 2 equiprobable symbols log(2) = 1 

2 coins 4 equiprobable symbols log(4) = 2 

1 die 6 equiprobable symbols log(6) = 2.58 

3 coins 8 equiprobable symbols log(8) = 3 



Some communication devices and their information power 

The basic idea is all in equation [1]. Information can be quantified in terms of 

decrease in data deficit (Shannon's “uncertainty”). Unfortunately, real coins 

are always biased. To calculate how much information they produce one must 

rely on the frequency of the occurrences of symbols in a finite series of tosses, 

or on their probabilities, if the tosses are supposed to go on indefinitely. 

Compared to a fair coin, a slightly biased coin must produce less than 1 bit of 

information, but still more than 0. The raven produced no information at all 

because the occurrence of a string S of “nevermore” was 

not informative (not surprising, to use Shannon's more intuitive, but 

psychologistic vocabulary), and that is because the probability of the 

occurrence of “nevermore” was maximum, so overly predictable. Likewise, 

the amount of information produced by the biased coin depends on the 

average informativeness (also known as average surprisal, another 

unfortunate term to refer to the average statistical rarity) of the 

string S ofh and t produced by the coin. The average informativeness of the 

resulting string S depends on the probability of the occurrence of each 

symbol. The higher the frequency of a symbol in S, the less information is 

being produced by the coin, up to the point when the coin is so biased to 

produce always the same symbol and stops being informative at all, behaving 

like the raven or the boy who cries wolf. 

So, to calculate the average informativeness of S we need to know how to 

calculate S and the informativeness of the ith symbol in general. This requires 

understanding what the probability of the ith symbol (Pi) to occur is. 

The probability Pi of the ith symbol can be “extracted” from equation [1], 

where it is embedded in log(N), a special case in which the symbols are 

equiprobable. Using some elementary properties of the logarithmic function, 

we have: 

[2]     log(N) = −log(N −1) = −log(1/N) = −log(P) 

The value of 1/N = P can range from 0 to 1. If Poe's raven is our source, the 

probability of it saying “good morning” is 0. In the case of the coin, P(h) 

+ P(t) = 1, no matter how biased the coin is. Probability is like a cake that gets 

sliced more and more thinly depending on the number of guests, but never 

grows beyond its original size and, in the worst case scenario, can at most be 

equal to zero, but never become “negative”. More formally, this means: 
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The sigma notation in [3] is simply a shortcut that indicates that if we add all 

probabilities values from i = 1 to i = N their sum is equal to 1. 

We can now be precise about the raven: “nevermore” is not informative at all 

because Pnevermore = 1. Clearly, the lower the probability of occurrence of a 

symbol, the higher is the informativeness of its actual occurrence. The 

informativeness u of the ith symbol can be expressed by analogy with −log(P) 

in equation [4]: 

[4]     ui = −log(Pi) 

Next, we need to calculate the length of a general string S. Suppose that the 

biased coin, tossed 10 times, produces the string: <h, h, t, h, h, t, t, h, h, t>. 

The (length of the) string S (in our case equal to 10) is equal to the number of 

times the h type of symbol occurs added to the numbers of times the t type of 

symbol occurs. 

Generalising for i types of symbols: 

[5]     S =  

N 

∑ 
i=1 

Si 

Putting together equations [4] and [5] we see that the average informativeness 

for a string of S symbols is the sum of the informativeness of each symbol 

divided by the sum of all symbols: 

[6]     
∑Ni=1 Siui 

∑Ni=1 Si 
 

Term [6] can be simplified thus: 

[7]     

N 

∑ 
i=1 

Si 

S 
 

ui 

Now Si/S is the frequency with which the ith symbol occurs in S when S is 

finite. If the length of S is left undetermined (as long as one wishes), then the 

frequency of the ithsymbol becomes its probability Pi. So, further generalising 

term [7], we have: 



[8]     

N 

∑ 
i=1 

Piui 

Finally, by using equation [4] we can substitute for ui and obtain 

[9]     H = − 

N 

∑ 
i=1 

Pi log Pi (bits per symbol) 

Equation [9] is Shannon's formula for H = uncertainty, which we have 

called data deficit (actually, Shannon's original formula includes a positive 

constant K which amounts to a choice of a unit of measure, bits in our case; 

apparently, Shannon used the letter H because of R.V.L. Hartley's previous 

work). 

Equation [9] indicates that the quantity of information produced by a device 

corresponds to the amount of data deficit erased. It is a function of the average 

informativeness of the (potentially unlimited) string of symbols produced by 

the device. It is easy to prove that, if symbols are equiprobable, [9] reduces to 

[1] and that the highest quantity of information is produced by a system whose 

symbols are equiprobable (compare the fair coin to the biased one). 

To arrive at [9] we have used some very simple examples: a raven and a 

handful of coins. Things in life are far more complex, witness our Monday 

morning accident. For example, we have assumed that the strings of symbols 

are ergodic: the probability distribution for the occurrences of each symbol is 

assumed to be stable through time and independently of the selection of a 

certain string. Our raven and coins are discrete and zero-memory sources. The 

successive symbols they produce are statistically independent. But in real life 

occurrences of symbols are often interdependent. Sources can be non-ergodic 

and have a memory. Symbols can be continuous, and the occurrence of one 

symbol may depend upon a finite number n of preceding symbols, in which 

case the string is known as a Markov chain and the source an nth order Markov 

source. Consider for example the probability of hearing “n” (followed by the 

string “ing”) after having received the string of letters “Good mor_” over the 

phone, when you called the garage. And consider the same example through 

time, in the case of a child (the son of the mechanic) who is learning how to 

answer the phone instead of his father. In brief, MTC develops the previous 

analysis to cover a whole variety of more complex cases. We shall stop here, 

however, because in the rest of this section we need to concentrate on other 

central aspects of MTC. 



The quantitative approach just sketched plays a fundamental role in coding 

theory (hence in cryptography) and in data storage and transmission 

techniques. MTC is primarily a study of the properties of a channel of 

communication and of codes that can efficiently encipher data into recordable 

and transmittable signals. Since data can be distributed either in terms of 

here/there or now/then, diachronic communication and synchronic analysis of 

a memory can be based on the same principles and concepts (our coin 

becomes a bistable circuit or flip-flop, for example). Two concepts that play a 

pivotal role both in communication analysis and in memory management are 

so important to deserve a brief explanation: redundancy and noise. 

Consider our AB system. Each symbol occurs with 0.25 probability. A simple 

way of encoding its symbols is to associate each of them with two digits, as 

follows: 

Code 1:  

<h,h> = 00 <h, t> = 01 <t, h> = 10 <t, t> = 11 

In Code 1 a message conveys 2 bits of information, as expected. Do not 

confuse bits as bi-nary units of information (recall that we decided to use 

log2 also as a matter of convenience) with bits as bi-nary digits, which is what 

a 2-symbols system like a CD-ROM uses to encode a message. Suppose now 

that the AB system is biased, and that the four symbols occur with the 

following probabilities: 

A Biased System:  

<h, h> = 0.5 <h, t> = 0.25 <t, h> = 0.125 <t, t> = 0.125 

This biased system produces less information, so by using Code 1 we would 

be wasting resources. A more efficient Code 2 (see below) should take into 

account the symbols’ probabilities, with the following outcomes: 

Code 2 (Fano Code):  

<h, h> = 0 0.5 × 1 binary digit = .5 

<h, t> = 10 0.25 × 2 binary digits = .5 



<t, h> = 110 0.125 × 3 binary digits = .375 

<t, t> = 111 0.125 × 3 binary digits = .375 

In Code 2, known as Fano Code, a message conveys 1.75 bits of information. 

One can prove that, given that probability distribution, no other coding system 

will do better than Fano Code. 

In real life, a good codification is also modestly redundant. Redundancy refers 

to the difference between the physical representation of a message and the 

mathematical representation of the same message that uses no more bits than 

necessary. Compression procedures work by reducing data redundancy, but 

redundancy is not always a bad thing, for it can help to 

counteract equivocation (data sent but never received) and noise (data 

received but unwanted). A message + noise contains more data than the 

original message by itself, but the aim of a communication process is fidelity, 

the accurate transfer of the original message from sender to receiver, not data 

increase. We are more likely to reconstruct a message correctly at the end of 

the transmission if some degree of redundancy counterbalances the inevitable 

noise and equivocation introduced by the physical process of communication 

and the environment. Noise extends the informee's freedom of choice in 

selecting a message, but it is an undesirable freedom and some redundancy 

can help to limit it. That is why the manual of your car includes both verbal 

explanations and pictures to convey (slightly redundantly) the same 

information. 

We are now ready to understand Shannon's two fundamental theorems. 

Suppose the 2-coins biased system AB produces the following message: <t, h> 

<h, h> <t, t> <h, t> <h, t>. Using Fano Code we obtain: 11001111010. The 

next step is to send this string through a channel. Channels have different 

transmission rates (C), calculated in terms of bits per second (bps). Shannon's 

fundamental theorem of the noiseless channel states that: 

Shannon's Fundamental Theorem of the Noiseless Channel: 

Let a source have entropy H (bits per symbol) and a channel have a 

capacity C (bits per second). Then it is possible to encode the output of the 

source in such a way as to transmit at the average rate of C/H − ε symbols per 

second over the channel where ε is arbitrarily small. It is not possible to 

transmit at an average rate greater than C/H. (Shannon and Weaver [1949], 

59) 



In other words, if you devise a good code you can transmit symbols over a 

noiseless channel at an average rate as close to C/H as one may wish but, no 

matter how clever the coding is, that average can never exceed C/H. We have 

already seen that the task is made more difficult by the inevitable presence of 

noise. However, the fundamental theorem for a discrete channel with noise 

comes to our rescue: 

Shannon's Fundamental Theorem for a Discrete Channel: 

Let a discrete channel have the capacity C and a discrete source the entropy 

per second H. If H ≤ C there exists a coding system such that the output of the 

source can be transmitted over the channel with an arbitrarily small frequency 

of errors (or an arbitrarily small equivocation). If H > C it is possible to 

encode the source so that the equivocation is less than H − C + ε where ε is 

arbitrarily small. There is no method of encoding which gives an equivocation 

less than H − C. (Shannon and Weaver [1949], 71) 

Roughly, if the channel can transmit as much or more information than the 

source can produce, then one can devise an efficient way to code and transmit 

messages with as small an error probability as desired. 

These two fundamental theorems are among Shannon's greatest achievements. 

They are limiting results in information theory that constrain any conceptual 

analysis of semantic information. They are thus comparable to Gödel's, 

Turing's, and Church's theorems in logic and computation. With our message 

finally sent, we may close this section and return to a more philosophical 

approach. 

2.2 Conceptual implications of the mathematical theory of communication 

For the mathematical theory of communication (MTC), information is only a 

selection of one symbol from a set of possible symbols, so a simple way of 

grasping how MTC quantifies information is by considering the number of 

yes/no questions required to determine what the source is communicating. 

One question is sufficient to determine the output of a fair coin, which 

therefore is said to produce 1 bit of information. A 2-fair-coins system 

produces 4 ordered outputs: <h, h>, <h, t>, <t, h>, <t, t> and therefore 

requires at least two questions, each output containing 2 bits of information, 

and so on. This erotetic (the Greek word for “question”) analysis clarifies two 

important points. 

First, MTC is not a theory of information in the ordinary sense of the word. In 

MTC, information has an entirely technical meaning. Consider some 



examples. According to MTC, two equiprobable “yes”'s contain the same 

quantity of information, no matter whether their corresponding questions are 

“have the lights of your car been left switched on for too long, without 

recharging the battery?” or “would you marry me?”. If we knew that a device 

could send us, with equal probabilities, either this article or the 

whole Stanford Encyclopedia of Philosophy, by receiving one or the other we 

would receive very different amounts of bytes of data but actually only one bit 

of information in the MTC sense of the word. On June 1 1944, the BBC 

broadcasted a line from Verlaine's Song of Autumn: “Les sanglots longs des 

violons de Autumne”. The message contained almost 1 bit of information, an 

increasingly likely “yes” to the question whether the D-Day invasion was 

imminent. The BBC then broadcasted the second line “Blessent mon coeur 

d'une longueur monotone”. Another almost meaningless string of letters, but 

almost another bit of information, since it was the other long-expected “yes” 

to the question whether the invasion was to take place immediately. German 

intelligence knew about the code, intercepted those messages and even 

notified Berlin, but the high command failed to alert the Seventh Army Corps 

stationed in Normandy. Hitler had all the information in Shannon's sense of 

the word, but failed to understand (or believe in) the crucial importance of 

those two small bits of data. As for ourselves, we were not surprised to 

conclude in the previous section that the maximum amount of information 

(again, in the MTC sense of the word) is produced by a text where each 

character is equally distributed, that is by a perfectly random sequence. 

According to MTC, the classic monkey randomly pressing typewriter keys is 

indeed producing a lot of information. 

Second, since MTC is a theory of information without meaning (not in the 

sense of meaningless, but in the sense of not yet meaningful), and since we 

have seen that [information − meaning = data], “mathematical theory of data 

communication” is a far more appropriate description of this branch of 

probability theory than “information theory”. This is not a mere question of 

labels. Information, as semantic content (more on this shortly), can also be 

described erotetically as data + queries. Imagine a piece of (propositional) 

information such as “the earth has only one moon”. It is easy to polarise 

almost all its semantic content by transforming it into a [query + binary 

answer], such as [does the earth have only one moon? + yes]. Subtract the 

“yes” — which is at most 1 bit of information, in the equiprobable case of a 

yes or no answer — and you are left with virtually all the semantic content, 

fully de-alethicised (from aletheia, the Greek word for truth; the query is 

neither true nor false). To use a Fregean expression,semantic 

content is unsaturated information, where the latter is semantic information 



that has been “eroteticised” and from which a quantity of information has 

been subtracted equal to −log P(yes), with P being the probability of the yes-

answer. 

The datum “yes” works as a key to unlock the information contained in the 

query. MTC studies the codification and transmission of information by 

treating it as data keys, that is, as the amount of details in a signal or message 

or memory space necessary to saturate the informee's unsaturated information. 

As Weaver [1949] remarked “the word information relates not so much to 

what you do say, as to what you could say. The mathematical theory of 

communication deals with the carriers of information, symbols and signals, 

not with information itself. That is, information is the measure of your 

freedom of choice when you select a message” (p. 12). 

Since MTC deals not with semantic information itself but with the data that 

constitute it, that is, with messages comprising uninterpreted symbols encoded 

in well-formed strings of signals, it is commonly described as a study of 

information at the syntactic level. MTC can be successfully applied in ICT 

(information and communication technologies) because computers are 

syntactical devices. What remains to be clarified is how H in equation [9] 

should be interpreted. 

H is also known in MTC as entropy. It seems we owe this confusing label to 

John von Neumann, who recommended it to Shannon: 

“You should call it entropy for two reasons: first, the function is already in use 

in thermodynamics under the same name; second, and more importantly, most 

people don't know what entropy really is, and if you use the word entropy in 

an argument you will win every time” (quoted by Golan [2002]). 

Von Neumann proved to be right on both accounts, unfortunately. 

Assuming the ideal case of a noiseless channel of communication, H is a 

measure of three equivalent quantities: 

a. the average amount of information per symbol produced by the 

informer, or 

b. the corresponding average amount of data deficit (Shannon's 

uncertainty) that the informee has before the inspection of the output of 

the informer, or 

c. the corresponding informational potentiality of the same source, that is, 

its informational entropy. 



H can equally indicate (a) or (b) because, by selecting a particular alphabet, 

the informer automatically creates a data deficit (uncertainty) in the informee, 

which then can be satisfied (resolved) in various degrees by the informant. 

Recall the erotetic game. If you use a single fair coin, I immediately find 

myself in a 1 bit deficit predicament: I do not know whether it is head or tail. 

Use two fair coins and my deficit doubles, but use the raven, and my deficit 

becomes null. My empty glass (point (b) above) is an exact measure of your 

capacity to fill it (point (a) above). Of course, it makes sense to talk of 

information as quantified by H only if one can specify the probability 

distribution. 

Regarding (c), MTC treats information like a physical quantity, such as mass 

or energy, and the closeness between equation [9] and the formulation of the 

concept of entropy in statistical mechanics was already discussed by Shannon. 

The informational and the thermodynamic concept of entropy are related 

through the concepts of probability and randomness (“randomness” is better 

than “disorder” since the former is a syntactical concept whereas the latter has 

a strongly semantic value, that is, it is easily associated to interpretations, as I 

used to try to explain to my parents when I was young). Entropy is a measure 

of the amount of “mixedupness” in processes and systems bearing energy or 

information. Entropy can also be seen as an indicator of reversibility: if there 

is no change of entropy then the process is reversible. A highly structured, 

perfectly organised message contains a lower degree of entropy or 

randomness, less information in Shannon sense, and hence it causes a smaller 

data deficit, which can be close to zero (remember the raven). By contrast, the 

higher the potential randomness of the symbols in the alphabet, the more bits 

of information can be produced by the device. Entropy assumes its maximum 

value in the extreme case of uniform distribution, which is to say that a glass 

of water with a cube of ice contains less entropy than the glass of water once 

the cube has melted, and a biased coin has less entropy than a fair coin. In 

thermodynamics, we know that the greater the entropy, the less available the 

energy. This means that high entropy corresponds to high energy deficit, but 

so does entropy in MTC: higher values of H correspond to higher quantities of 

data deficit. 

3. Information as semantic content 

We have seen that, when data are well-formed and meaningful, the result is 

also known as semantic content (Bar-Hillel and Carnap [1953]; Bar-Hillel 

[1964]). Information, understood as semantic content, comes in two main 

varieties: factual and instructional. In our example, one may translate the red 

light flashing into semantic content in two senses: 



a. as a piece of factual information, representing the fact that the battery is 

flat; and 

b. as a piece of instructional information, conveying the need for a 

specific action, e.g., the re-charging or replacing of the flat battery. 

In this third part of the article we shall be concerned primarily with (a), so it is 

better to clear the ground by considering (b) first. It is the last detour in our 

journey. 

3.1 Instructional information 

Instructional information is a type of semantic content. An instruction booklet, 

for example, provides instructional information, either imperatively — in the 

form of a recipe: first do this, then do that — or conditionally, in the form of 

some inferential procedure: if such and such is the case do this, otherwise do 

that. 

Instructional information is not about a situation, a fact, or a state of 

affairs w and does not model, or describe or represent w. Rather, it is meant to 

(help to) bring about w. For example, when the mechanic tells one over the 

phone to connect a charged battery to the flat battery of one's car, the 

information one receives is not factual, but instructional. 

There are many plausible contexts in which a stipulation (“let the value of x = 

3” or “suppose we discover the bones of a unicorn”), an invitation (“you are 

cordially invited to the college party”), an order (“close the window!”), an 

instruction (“to open the box turn the key”), a game move (“1.e2-e4 c7-c5” at 

the beginning of a chess game) may be correctly qualified as kinds of 

instructional information. The printed score of a musical composition or the 

digital files of a program may also be counted as typical cases of instructional 

information. 

All these instances of information have a semantic side: they have to be at 

least potentially meaningful (interpretable) to count as information. Moreover, 

instructional information may be related to factual (descriptive) information in 

performative contexts, such as christening (e.g., “this ship is now called HMS 

The Informer”) or programming (e.g., as when deciding the type of a 

variable). The two types of semantic information (instructional and factual) 

may also come together in magic spells, where semantic representations 

of x may be (wrongly) supposed to provide some instructional power and 

control over x. Nevertheless, as a test, one should remember that instructional 

information does not qualify alethically (cannot be correctly qualified as true 



or false). In the example, it would be silly to ask whether the information 

“only use batteries with the same rated voltage” is true. Stipulations, 

invitations, orders, instructions, game moves, and software cannot be true or 

false. As Wittgenstein remarks “The way music speaks. Do not forget that a 

poem, even though it is composed in the language of information, is not used 

in the language-game of giving information.” (Zettel, §160, see Wittgenstein 

[1981]) 

3.2 Factual information 

In the language game that Wittgenstein seems to have in mind, the notion of 

“semantic information” is intended in a declarative or factual mode. Factual 

information may be true or untrue (false, in case one adopts a binary 

logic). True semantic content is the most common sense in which information 

seems to be understood (Floridi [2004b]). Quine [1970, pp. 3–6, 98–99], for 

example, equates “likeness of meaning” “sameness of proposition” and 

“sameness of objective information” by treating propositions as information in 

the factual sense just highlighted (having the same meaning means conveying 

the same objective information, though according to Quine, this only 

rephrases the problem). The factual sense is also one of the most important, 

since information as true semantic content is a necessary condition for 

knowledge. Some elaboration is in order, and in the following sub-sections we 

shall briefly look at the concept of data as constraining affordances, at the role 

played by levels of abstraction in the transformation of constraining 

affordances into factual information, and finally at the relation between 

factual information and truth. 

3.2.1 Constraining affordances 

The data that constitute factual information allow or invite certain constructs 

(they are affordances for the information agent that can take advantage of 

them) and resist or impede some others (they are constraints for the same 

agent), depending on the interaction with, and the nature of, the information 

agent that processes them. For example, the red light flashing repetitively and 

the engine not starting allow you (or any other information agent like you) to 

construct the information that (a) the battery is flat, while making it more 

difficult to you (or any other information agent like you) to construct the 

information that (b) there is a short circuit affecting the proper functioning of 

the low battery indicator, where the engine fails to start because there is no 

petrol in the tank, a fact not reported by the relevant indicator which is 

affected by the same short circuit. This is the sense in which data 



are constraining affordances for (an information agent responsible for) the 

elaboration of factual information. 

3.2.2 Levels of abstraction 

In section 1.3, we saw that the concept of pure data in themselves (dedomena) 

is an abstraction, like Kant's noumena or Locke's substance. The point made 

was that data are never accessed and elaborated (by an information agent) 

independently of a level of abstraction (‘LoA’) (see also the comparable 

concept of “matrix” in Quine [1970]). The time has come to clarify what a 

LoA is. 

A LoA is a specific set of typed variables, intuitively representable as an 

interface, which establishes the scope and type of data that will be available as 

a resource for the generation of information (see Floridi [2008]). This concept 

of LoA is purely epistemological, and it should not be confused with other 

forms of “levellism” that are more or less explicitly based on an ontological 

commitment concerning the intrinsic architecture, syntax or structure of the 

system discussed (Dennett [1971], Marr [1982], Newell [1982], Simon 

[1969], see now Simon [1996]; Poli [2001] provides a reconstruction of 

ontological levellism; more recently, Craver [2004] has analysed ontological 

levellism, especially in biology and cognitive science). Ontological levellism 

has come under increasing attack. Heil [2003] and Schaffer [2003] have 

seriously and convincingly questioned its plausibility. However, 

epistemological levellism is flourishing, especially in computer science 

(Roever et al. [1998], Hoare and Jifeng [1998]), where it is regularly used to 

satisfy the requirement that systems constructed in levels (in order to tame 

their complexity) function correctly. 

Through a LoA, an information agent (the observer) accesses a physical or 

conceptual environment, the system. LoAs are not necessarily hierarchical and 

they are comparable. They are interfaces that mediate the epistemic relation 

between the observed and the observer. Consider, for example, a motion 

detector (Figure 4). In the past, motion detectors caused an alarm whenever a 

movement was registered within the range of the sensor, including the 

swinging of a tree branch (object a in Figure 4). The old LoA1 consisted of a 

single typed variable, which may be labelled ‘movement’. Nowadays, when a 

PIR (passive infrared) motion detector registers some movement, it also 

monitors the presence of an infrared signal, so the entity detected has to be 

something that also emits infrared radiation — usually perceived as heat — 

before the sensor activates the alarm. The new LoA2 consists of two typed 

variables: ‘movement’ and ‘infrared radiation’. Clearly, your car (object b in 



Figure 4) leaving your house is present for both LoAs; but for the new LoA2, 

which is more finely grained, the branch of the tree swinging in the garden is 

absent. Likewise, a stone in the garden (objectc in Figure 4) is absent for both 

the new and the old LoA, since it satisfies no typed variable of either one. 

 
Figure 4: An example of Levels of Abstraction 

The method of LoA is an efficient way of making explicit and managing the 

ontological commitment of a theory. In our case, “the battery is what provides 

electricity to the car” is a typical example of information elaborated at a 

driver's LoA. An engineer's LoA may output something like “12-volt lead-

acid battery is made up of six cells, each cell producing approximately 2.1 

volts”, and an economist's LoA may suggest that “a good quality car battery 

will cost between $50 and $100 and, if properly maintained, it should last five 

years or more”. 

Data as constraining affordances — answers waiting for the relevant questions 

— are transformed into factual information by being processed semantically at 

a given LoA (alternatively: the relevant question is associated to the right 

answer at a given LoA). Once data as constraining affordances have been 

elaborated into factual information at a given LoA, the next question is 

whether truth values supervene on factual information. 

3.2.3 Information and truth 

Does some factual content qualify as information only if it is true? Defenders 

of the alethic neutrality of semantic information (Fetzer [2004] and Dodig-

Crnkovic [2005], who criticise Floridi [2004b]; Colburn [2000], Fox [1983], 

among situation theorists Devlin [1991], and Scarantino and Piccinini [2010]) 

argue that meaningful and well-formed data already qualify as information, no 

matter whether they represent or convey a truth or a falsehood or indeed have 

no alethic value at all. Opponents, on the other hand, object that 



“[…] false information and mis-information are not kinds of information — 

any more than decoy ducks and rubber ducks are kinds of ducks” (Dretske 

[1981], 45) and that “false information is not an inferior kind of information; 

it just is not information” (Grice [1989], 371; other philosophers who accept a 

truth-based definition of semantic information are Barwise and Seligman 

[1997] and Graham [1999]). The result is a definition of factual semantic 

information as well-formed, meaningful and truthful data (defended in Floridi 

[2004b; Floridi [2005]), where “truthful” is only a stylistic choice to be 

preferred to “true” because it enables one to say that a map conveys factual 

information insofar as it is truthful. 

Once again, the debate is not about a mere definition, but concerns the 

possible consequences of the alethic neutrality thesis, three of which can be 

outlined here, whereas a fourth requires a longer analysis and will be 

discussed in section 4.1. 

If the thesis “meaningful and well-formed data already qualify as information” 

is correct then 

i. false information (including contradictions) would count as a genuine 

type of semantic information, not as pseudo-information; 

ii. all necessary truths (including tautologies) would qualify as 

information (on this issue see Bremer [2003]); and 

iii. “it is true that p” — where p is a variable that can be replaced by any 

instance of genuine semantic information — would not be a redundant 

expression; for example, “it is true” in the conjunction “‘the earth is 

round’ qualifies as information and it is true” could not be eliminated 

without semantic loss. 

All these new issues are grafted to some old branches of the philosophical 

tree. 

Whether false information is a genuine type of information has important 

repercussions on any philosophy and pragmatics of communication. 

The question about the informative nature (or lack thereof) of necessary 

truths, tautologies, equations or identity statements is an old one, as it runs 

through Hume, Kant, Frege and Wittgenstein. The latter, for example, 

interestingly remarked: 

Another expression akin to those we have just considered is this: ‘Here it is; 

take it or leave it!’ And this again is akin to a kind of introductory statement 



which we sometimes make before remarking on certain alternatives, as when 

we say: ‘It either rains or it doesn't rain; if it rains we’ll stay in my room, if it 

doesn't…’. The first part of this sentence is no piece of information (just as 

‘Take it or leave it’ is no order). Instead of, ‘It either rains or it doesn't rain’ 

we could have said, ‘Consider the two cases…’. Our expression underlines 

these cases, presents them to your attention. (The Blue and Brown Books, The 

Brown Book, II, p. 161, see Wittgenstein [1960]) 

The solution of the problem of hyperintensionality (how one can draw a 

semantic distinction between expressions that are supposed to have the same 

meaning according to a particular theory of meaning that is usually model-

theoretic or modal in character) depends on how one can make sense of the 

relation between truth and informativeness in the case of logically equivalent 

expressions. 

Finally, the possibly redundant qualification of information as true is also 

linked with the critique of the deflationary theories of truth (DTT), since one 

could accept a deflationary T-schema as perfectly correct, while rejecting the 

explanatory adequacy of DTT. “It is true that” in “it is true that p” could be 

redundant in view of the fact that there cannot be factual information that is 

not true, but DTT could mistake this linguistic or conceptual redundancy for 

unqualified dispensability. “It is true that” could be redundant because, strictly 

speaking, information is not a truth-bearer but already encapsulates truth as 

truthfulness. Thus, DTT may be satisfactory as theories of truth-ascriptions 

while being inadequate as theories of truthfulness. 

Once information is available, knowledge can be built in terms 

of justifiable or explainable semantic information. An information agent 

knows that the battery is flat not by merely guessing rightly, but because e.g., 

it perceives that the red light of the low battery indicator flashing and/or that 

the engine does not start. In this sense, information provides the basis of any 

further scientific investigation. Note, however, that the fact that data may 

count as resources for (i.e., inputs an agent can use to construct) information, 

and hence for knowledge, rather than sources, may lead to constructionist 

arguments against mimetic theories that interpret information as some sort of 

picture of the world. The point requires some elaboration. 

Whether empirical or conceptual, data make possible only a certain range of 

information constructs, and not all constructs are made possible equally easily. 

An analogy may help here. Suppose one has to build a shelter. The design and 

complexity of the shelter may vary, but there is a limited range of “realistic” 

possibilities, determined by the nature of the available resources and 



constraints (size, building materials, location, weather, physical and biological 

environment, working force, technical skills, purposes, security, time 

constraints, etc.). Not any shelter can be built. And the type of shelter that will 

be built more often will be the one that is more likely to take close-to-optimal 

advantage of the available resources and constraints. The same applies to data. 

Data are at the same time the resources and constraints that make possible the 

construction of information. The best information is that better tuned to the 

constraining affordances available. Thus informational coherence and 

adequacy do not necessarily entail nor support naïve or direct realism, or a 

correspondence theory of truth as this is ordinarily presented. Ultimately, 

information is the result of a process of data modelling; it does not have to 

represent or photograph or portray or photocopy, or map or show or uncover 

or monitor or … the intrinsic nature of the system analysed, no more than an 

igloo describes the intrinsic nature of snow or the Parthenon indicates the real 

properties of stones. 

When semantic content is false, this is a case of misinformation (Fox [1983]). 

And if the source of misinformation is aware of its nature, one may speak 

of disinformation, as when one says to the mechanic “my husband forgot to 

turn the lights off”. Disinformation and misinformation are ethically 

censurable but may be successful in achieving their purpose: tell the mechanic 

that your husband left the lights on last night, and he will still be able to 

provide you with the right advice. Likewise, information may still fail to be 

successful; just imagine telling the mechanic that your car is out of order. 

4. Philosophical approaches to semantic information 

What is the relation between MTC and the sort of semantic information that 

we have called factual? The mathematical theory of communication 

approaches information as a physical phenomenon. Its central question is 

whether and how much uninterpreted data can be encoded and transmitted 

efficiently by means of a given alphabet and through a given channel. MTC is 

not interested in the meaning, “aboutness”, relevance, reliability, usefulness or 

interpretation of information, but only in the level of detail and frequency in 

the uninterpreted data, being these symbols, signals or messages. 

Philosophical approaches differ from MTC in two main respects. 

First, they seek to give an account of information as semantic content, 

investigating questions like “how can something count as information? and 

why?”, “how can something carry information about something else?”, “how 

can semantic information be generated and flow?”, “how is information 



related to error, truth and knowledge?”, “when is information useful?”. 

Wittgenstein, for example, remarks that 

One is inclined to say: ‘Either it is raining, or it isn't — how I know, how the 

information has reached me, is another matter.’ But then let us put the 

question like this: What do I call ‘information that it is raining’? (Or have I 

only information of this information too?) And what gives this ‘information’ 

the character of information about something? Doesn't the form of our 

expression mislead us here? For isn't it a misleading metaphor to say: ‘My 

eyes give me the information that there is a chair over there’? (Philosophical 

Investigations, I. § 356, see now Wittgenstein [2001]) 

Second, philosophical theories of semantic information also seek to connect it 

to other relevant concepts of information and more complex forms of 

epistemic, mental and doxastic phenomena. For instance, Dretske [1981] and 

Barwise and Seligman [1997] attempt to ground information, understood as 

factual semantic contents, on environmental information. The approach is also 

known as the naturalization of information. A similar point can be made about 

Putnam's twin earths argument, the externalization of semantics and 

teleosemantics. 

Philosophical analyses usually adopt a propositional orientation and an 

epistemic outlook, endorsing, often implicitly, the prevalence or centrality of 

factual information within the map outlined in Figure 1. They tend to base 

their analyses on cases such as “Paris is the capital of France” or “The 

Bodleian Library is in Oxford”. How relevant is MTC to similar researches? 

In the past, some research programs tried to elaborate information 

theories alternative to MTC, with the aim of incorporating the semantic 

dimension. Donald M. Mackay [1969] proposed a quantitative theory of 

qualitative information that has interesting connections with situation 

logic (see below). According to MacKay, information is linked to an increase 

in knowledge on the receiver's side: “Suppose we begin by asking ourselves 

what we mean by information. Roughly speaking, we say that we have gained 

information when we know something now that we didn't know before; when 

‘what we know’ has changed.” (Mackay [1969], p. 10). Around the same 

years, Doede Nauta [1972] developed a semiotic-cybernetic approach. 

Nowadays, few philosophers follow these lines of research. The majority 

agrees that MTC provides a rigorous constraint to any further theorising on all 

the semantic and pragmatic aspects of information. The disagreement 

concerns the crucial issue of the strength of the constraint. 



At one extreme of the spectrum, any philosophical theory of semantic-factual 

information is supposed to be very strongly constrained, perhaps even 

overdetermined, by MTC, somewhat as mechanical engineering is by 

Newtonian physics. Weaver's optimistic interpretation of Shannon's work is a 

typical example. 

At the other extreme, any philosophical theory of semantic-factual 

information is supposed to be only weakly constrained, perhaps even 

completely underdetermined, by MTC, somewhat as tennis is constrained by 

Newtonian physics, that is in the most uninteresting, inconsequential and 

hence disregardable sense (see for example Sloman [1978] and Thagard 

[1990]). 

The emergence of MTC in the 1950s generated earlier philosophical 

enthusiasm that has gradually cooled down through the decades. Historically, 

philosophical theories of semantic-factual information have moved from “very 

strongly constrained” to “only weakly constrained”. Recently, we find 

positions that carefully appreciate MTC for what it can provide in terms of a 

robust and well-developed statistical theory of correlations between states of 

different systems (the sender and the receiver) according to their probabilities. 

This can have important consequences in mathematically-friendly contexts, 

such as some approaches to naturalised epistemology (Harms [1998]) or 

scientific explanation (Badino [2004]). 

Although the philosophy of semantic information has become increasingly 

autonomous from MTC, two important connections have remained stable 

between MTC and even the most recent philosophical accounts: 

1. the communication model, explained in section 2.1 (see Figure 2); and 

2. what Barwise labelled the “Inverse Relationship Principle” (IRP). 

The communication model has remained virtually unchallenged, even if 

nowadays theoretical accounts are more likely to consider as basic cases 

multiagent and distributed systems interacting in parallel, rather than 

individual agents related by simple, sequential channels of communication. In 

this respect, the philosophy of information (Floridi [2002]; [2004a]; [2011]; 

Allo [2010]) is less Cartesian than “social”. 

IRP refers to the inverse relation between the probability of p — which may 

range over sentences of a given language (as in Bar-Hillel and Carnap) or 

events, situations or possible worlds (as in Dretske) — and the amount of 

semantic information carried by p (recall that Poe's raven, as a unary source 



provides no information because its answers are entirely predictable). It states 

that information goes hand in hand with unpredictability. Popper [1935] is 

often credited as the first philosopher to have advocated IRP explicitly. 

However, systematic attempts to develop a formal calculus involving it were 

made only after Shannon's breakthrough. 

We have seen that MTC defines information in terms of probability space 

distribution. Along similar lines, the probabilistic approach to semantic 

information defines the semantic information in p in terms of logical 

probability space and the inverse relation between information and the 

probability of p. This approach was initially suggested by Bar-Hillel and 

Carnap [1953] (see also Bar-Hillel [1964]) and further developed by Kemeny 

[1953], Smokler [1966], Hintikka and Suppes [1970] and Dretske [1981]. The 

details are complex but the original idea is simple. The semantic content 

(CONT) in p is measured as the complement of the a priori probability of p: 

[10]     CONT(p) = 1 − P(p) 

CONT does not satisfy the two requirements of additivity and 

conditionalization, which are satisfied by another measure, the 

informativeness (INF) of p, which is calculated, following equations [9] and 

[10], as the reciprocal of P(p), expressed in bits, where P(p) = 1 − CONT(p): 

[11]     INF(p) = log  
1 

1 − CONT(p) 
 

 = − log P(p) 

Things are complicated by the fact that the concept of probability employed in 

equations [10] and [11] is subject to different interpretations. In Bar-Hillel and 

Carnap [1953], the probability distribution is the outcome of a logical 

construction of atomic statements according to a chosen formal language. This 

introduces a problematic reliance on a strict correspondence between 

observational and formal language. In Dretske, the solution is to make 

probability values refer to the observed states of affairs (s), that is: 

[12]     I(s) = −log P(s) 

where I(s) is Dretske's notation to refer to the information contained in s. 

The modal approach further modifies the probabilistic approach by defining 

semantic information in terms of modal space and in/consistency. The 

information conveyed by p becomes the set of all possible worlds, or (more 

cautiously) the set of all the descriptions of the relevant possible states of the 

universe, that are excluded by p. 



The systemic approach, developed especially in situation logic (Barwise and 

Perry 1983, Israel and Perry 1990, Devlin 1991; Barwise and Seligman 1997 

provide a foundation for a general theory of information flow) also defines 

information in terms of states space and consistency. However, it is less 

ontologically demanding than the modal approach, since it assumes a clearly 

limited domain of application. It is also compatible with Dretske's 

probabilistic approach, although it does not require a probability measure on 

sets of states. The informational content of p is not determined a priori, 

through a calculus of possible states allowed by a representational language, 

but in terms of factual content that p carries with respect to a given situation. 

Information tracks possible transitions in a system's states space under normal 

conditions. Both Dretske and situation theorists require some presence of 

information already immanent in the environment (environmental 

information), as nomic regularities or constraints. This “semantic externalism” 

can be controversial. 

The inferential approach defines information in terms of entailment space: 

information depends on valid inference relative to an information agent's 

theory or epistemic state. 

Each of the previous extensionalist approaches can be given an intentionalist 

interpretation by considering the relevant space as a doxastic space, in which 

information is seen as a reduction in the degree of personal uncertainty, given 

a state of knowledge of the informee. Wittgenstein addressed this distinction 

in his Remarks on the Philosophy of Psychology: 

The important insight is that there is a language-game in which I produce 

information automatically, information which can be treated by other people 

quite as they treat non-automatic information — only here there will be no 

question of any ‘lying’ — information which I myself may receive like that of 

a third person. The ‘automatic’ statement, report etc. might also be called an 

‘oracle’. … But of course that means that the oracle must not avail itself of the 

words ‘I believe…’. ((Wittgenstein [1980], §817) 

In using the notion of a language game, Wittgenstein seem to have in mind 

here the information game we have already encountered above. 

4.1 The Bar-Hillel-Carnap Paradox 

Insofar as they subscribe to the Inverse Relationship Principle, the 

extensionalist approaches outlined in the previous section can be affected by 



what has been defined, with a little hyperbole, as the Bar-Hillel-Carnap 

Paradox (Floridi [2004b]). 

In a nutshell, we have seen that, following IRP, the less probable or 

possible p is the more semantic information p is assumed to be carrying. This 

explains why most philosophers agree that tautologies convey no information 

at all, for their probability or possibility is 1. But it also leads one to consider 

contradictions — which describe impossible states, or whose probability is 0 

— as the sort of messages that contain the highest amount of semantic 

information. It is a slippery slope. Make a statement less and less likely and 

you gradually increase its informational content, but at certain point the 

statement “implodes” (in the quotation below, it becomes “too informative to 

be true”). 

Bar-Hillel and Carnap [1953] were among the first to make explicit this prima 

facie counterintuitive inequality. Note how their careful wording betrays the 

desire to defuse the problem: 

Bar-Hillel-Carnap Paradox (BCP):  

It might perhaps, at first, seem strange that a self-contradictory sentence, 

hence one which no ideal receiver would accept, is regarded as carrying with 

it the most inclusive information. It should, however, be emphasized that 

semantic information is here not meant as implying truth. A false sentence 

which happens to say much is thereby highly informative in our sense. 

Whether the information it carries is true or false, scientifically valuable or 

not, and so forth, does not concern us. A self-contradictory sentence asserts 

too much; it is too informative to be true. (p. 229) 

Since its formulation, BCP has been recognised as an unfortunate, yet 

perfectly correct and logically inevitable consequence of any 

quantitative theory of weakly semantic information. It is “weakly” semantic 

because truth values play no role in it. As a consequence, the problem has 

often been either ignored or tolerated (Bar-Hillel and Carnap [1953]) as the 

price of an otherwise valuable approach. Sometimes, however, attempts have 

been made to circumscribe its counterintuitive consequences. This has happen 

especially in Information Systems Theory (Winder [1997]) — where 

consistency is an essential constraint that must remain satisfied for a database 

to preserve data integrity — and in Decision Theory, where inconsistent 

information is obviously of no use to a decision maker. 



In these cases, whenever there are no possible models that satisfy a statement 

or a theory, instead of assigning to it the maximum quantity of semantic 

information, three strategies have been suggested: 

1. assigning to all inconsistent cases the same, infinite information value 

(Lozinskii [1994]). This is in line with an economic approach, which 

defines x as impossible if and only if x has an infinite price; 

2. eliminating all inconsistent cases a priori from consideration, as 

impossible outcomes in decision-making (Jeffrey [1990]). This is in 

line with the syntactic approach developed by MTC; 

3. assigning to all inconsistent cases the same zero information value 

(Mingers [1997], Aisbett and Gibbon [1999]). 

The latter approach is close to the strongly semantic approach, to which we 

shall now turn. 

4.2 The strongly semantic approach to information 

The general hypothesis is that BCP indicates that something has gone 

essentially amiss with the theory of weakly semantic information. It is based 

on a semantic principle that is too weak, namely that truth-values are 

independent of semantic information. A semantically stronger approach, 

according to which information encapsulates truth, can avoid the paradox and 

is more in line with the ordinary conception of what generally counts as 

factual information, as we have seen in section 3.2.3. MTC already provides 

some initial reassurance. MTC identifies the quantity of information 

associated with, or generated by, the occurrence of a signal (an event or the 

realisation of a state of affairs) with the elimination of possibilities (reduction 

in uncertainty) represented by that signal (event or state of affairs). In MTC, 

no counterintuitive inequality comparable to BCP occurs, and the line of 

argument is that, as in the case of MTC, a theory of strongly semantic 

information, based on alethic and discrepancy values rather than probabilities, 

can also successfully avoid BCP (Floridi [2004b; Floridi [2005], see Bremer 

and Cohnitz [2004] chap. 2 for an overview; Sequoiah-Grayson [2007] 

defends the theory of strongly semantic information against recent 

independent objections from Fetzer [2004] and Dodig-Crnkovic [2005]; 

D'Alfonso [2011] supports the veridicality thesis but quantifies semantic 

information using the notion of truthlikeness). The idea is to define semantic-

factual information in terms of data space, as well-formed, meaningful and 

truthful data. This constrains the probabilistic approach introduced above, by 

requiring first a qualification of the content as truthful. Once the content is so 

qualified, the quantity of semantic information in p is calculated in terms of 



distance of p from the situation/resource w that p is supposed to model. Total 

distance is equivalent to a p true in all cases (all possible worlds or probability 

1), including w and hence minimally informative, whereas maximum 

closeness is equivalent to the precise modelling of w at the agreed level of 

abstraction. 

Suppose there will be exactly three guests for dinner tonight. This is our 

situation w. Imagine we are told that 

(T)   there may or may not be some guests for dinner tonight; or 

(V)   there will be some guests tonight; or 

(P)   there will be three guests tonight. 

The degree of informativeness of (T) is zero because, as a tautology, (T) 

applies both to w and to ¬w. (V) performs better, and (P) has the maximum 

degree of informativeness because, as a fully accurate, precise and contingent 

truth, it “zeros in” on its target w. Generalising, the more distant some 

semantic-factual information σ is from its target w, the larger is the number of 

situations to which it applies, the lower its degree of informativeness 

becomes. A tautology is a true σ that is most “distant” from the world. 

Let us now use ‘θ’ to refer to the distance between a true σ and w. Using the 

more precise vocabulary of situation logic, θ indicates the degree of support 

offered by w to σ. We can now map on the x-axis of a Cartesian diagram the 

values of θ given a specific σ and a corresponding target w. In our example, 

we know that θ(T) = 1 and θ(P) = 0. For the sake of simplicity, let us assume 

that θ(V) = 0.25 (see Floridi [2004b] on how to calculates θ values). We now 

need a formula to calculate the degree of informativeness ι of σ in relation to 

θ(s). It can be shown that the most elegant solution is provided by the 

complement of the square value of θ(σ), that is y = 1 − x2. Using the symbols 

just introduced, we have: 

[13]     ι(σ) = 1 − θ(σ)2 

Figure 5 shows the graph generated by equation [13] when we include also 

negative values of distance for false σ; θ ranges from −1 (= contradiction) to 1 

(= tautology): 



 
Figure 5: Degree of informativeness 

If σ has a very high degree of informativeness ι (very low θ) we want to be 

able to say that it contains a large quantity of semantic information and, vice 

versa, the lower the degree of informativeness of σ is, the smaller the quantity 

of semantic information conveyed by σ should be. To calculate the quantity of 

semantic information contained in σ relative to ι(σ) we need to calculate the 

area delimited by equation [13], that is, the definite integral of the function 

ι(σ) on the interval [0, 1]. As we know, the maximum quantity of semantic 

information (call it α) is carried by (P), whose θ = 0. This is equivalent to the 

whole area delimited by the curve. Generalising to σ we have: 

[14]     

   1 

∫ 
0 

ι(σ)dx = α = 2/3 

Figure 6 shows the graph generated by equation [14]. The shaded area is the 

maximum amount of semantic information α carried by σ: 



 
Figure 6: Maximum amount of semantic information α carried by σ 

Consider now (V), “there will be some guests tonight”. (V) can be analysed as 

a (reasonably finite) string of disjunctions, that is (V) = [“there will be one 

guest tonight” or “there will be two guests tonight” or … “there will 

be n guests tonight”], where n is the reasonable limit we wish to consider 

(things are more complex than this, but here we only need to grasp the general 

principle). Only one of the descriptions in (V) will be fully accurate. This 

means that (V) also contains some (perhaps much) information that is simply 

irrelevant or redundant. We shall refer to this “informational waste” in (V) as 

vacuous information in (V). The amount of vacuous information (call it β) in 

(V) is also a function of the distance θ of (V) from w, or more generally: 

[15]     

   θ 

∫ 
0 

ι(σ)dx = β 

Since θ(V) = 0.25, we have 

[16]     

   0.25 

∫ 
0 

ι(V)dx = 0.24479 

Figure 7 shows the graph generated by equation [16]: 



 
Figure 7: Amount of semantic information γ carried by σ 

The shaded area is the amount of vacuous information β in (V). Clearly, the 

amount of semantic information in (V) is simply the difference between α (the 

maximum amount of information that can be carried in principle by σ) and β 

(the amount of vacuous information actually carried by σ), that is, the clear 

area in the graph of Figure 7. More generally, and expressed in bits, the 

amount of semantic information γ in σ is: 

[17]     γ(σ) = log(α − β) 

Note the similarity between [14] and [15]. When θ(σ) = 1, that is, when the 

distance between σ and w is maximum, then α = β and γ(σ) = 0. This is what 

happens when we consider (T). (T) is so distant from w as to contain only 

vacuous information. In other words, (T) contains as much vacuous 

information as (P) contains relevant information. 

 

5. Conclusion 

Philosophical theories of semantic information have recently contributed to a 

new area of research in itself, the philosophy of information (Adams [2003], 

Floridi [2002], [2003b], [2004a], [2011]). The two special issue volumes 

of Minds and Machines on the philosophy of information (Floridi [2003c]) 

provide an overview of the scope and depth of current work in the field. 

Information seems to have become a key concept to unlock several 

philosophical problems. “The most valuable commodity I know of is 

information”, boldly declares Gordon Gekko in Oliver Stone's Wall 

Street (1987). Euphranor would probably have concurred. The problem is that 

we still have to agree about what information is exactly. 
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