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1.3.1

The Hessian matrix of the function f is

Q =

(
2 1.999

1.999 2

)

which has largest and smallest eigenvalues M = 3.999 and m = 0.001 respectively. Hence

f(xk+1)

f(xk)
≤

(
3.998

4

)2

≈ 0.999

Let vm and vM be the normalized eigenvectors of Q (see Prop. A.17, Appendix A) corre-
sponding to m and M , respectively, and let

x0 =
s

m
vm ± s

M
vM , s ∈ <,

(cf. Fig. 1.3.2 in Section 1.3). We have

x1 = x0 − α0Qx0 = (
1

m
− α0)svm ∓ (

1

M
− α0)svM

and

f(x1) = s2[m(
1

m
− α0)2 + M(

1

M
− α0)2]

Using the line minimization stepsize rule, i.e., a stepsize

α∗ = arg min
α0
{s2[m(

1

m
− α0)2 + M(

1

M
− α0)2]} =

2

m + M

, we get the first iteration,

x1 =

(
M −m

M + m

) ( s

m
vm ∓ s

M
vM

)
,

which has the same form as x0 except for the factor M−m
M+m

. Hence starting the iterations with
x0 we have for all k

f(xk+1)

f(xk)
=

(
M −m

M + m

)2

.
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1.5.2

We have
xk+1 = yk − α(yk − z2)

= xk − α(xk − z1)− α(xk − α(xk − z1)− z2)

= xk(1− 2α + α2) + α[(1− α)z1 + z2] = axk + b,

where a = 1 − 2α + α2 and b = α[(1 − α)z1 + z2]. Note that since 0 < α < 1, 0 < a < 1.
Further expanding xk+1 yields

xk+1 = a(axk−1 + b) + b = a2xk−1 + b(1 + a)

= a2(axk−2 + b) + b(1 + a) = a3xk−2 + b(1 + a + a2)

= . . . + ak+1x0 + b(1 + a + . . . + ak)

So

lim
k→∞

xk = 0 + b
1

1− a
=

(1− α)z1 + z2

2− α
= x(α).

Similarly for y, we have

yk+1 = xk+1 − α(xk+1 − z1) = yk − α(yk − z2)− α(yk − α(yk − z2)− z1),

and so yk+1 is related analogously to yk as xk+1 is to xk. Therefore we have

lim
k→∞

yk =
(1− α)z2 + z1

2− α
= y(α).

From these expressions, it is clear that unless z1 = z2 or α = 0, x(α) 6= y(α), and neither is
equal to the optimal least squares solution x∗ = (z1 + z2)/2. However, we do have x(α) → x∗

and y(α) → x∗ as α → 0.

2.1.6

The problem is equivalent to

min−xa1
1 · · ·xan

n

subjectto
∑n

i=1 xi = 1, xi ≥ 0, ∀ i.

From the discussion in Example 2.1.2, the necessary optimality conditions are

x∗i > 0 =⇒ ∂f(x∗)
∂xi

≤ ∂f(x∗)
∂xj

, ∀ j

or
−ai(x

∗
i )

ai−1
∏

k 6=i

(x∗k)
ak ≤ −aj(x

∗
j)

aj−1
∏

k 6=j

(x∗k)
ak , ∀ j

or
aix

∗
j ≥ ajx

∗
i , ∀ j.
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It is clear that if x∗ is a global minimum, we must have x∗i > 0 for all i. Therefore, the above
relation is equivalent to

aix
∗
j = ajx

∗
i , ∀ i, j.

Summing over all j and using the constraint
∑

j x∗j = 1, we have

∑
j

aix
∗
j =

∑
j

ajx
∗
i

or
ai

∑
j

x∗j = x∗i
∑

j

aj

or
x∗i =

ai∑
j aj

, ∀ i.

In fact, this is the only point satisfying the necessary conditions. Since the constraint region
is compact and the cost function is continuous, a global maximum exists by Weierstrass’
theorem, and thus this point is the unique global maximum.
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