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Brief Review
of Probabilistic Modeling

Our focus in this chapter is on the construction of models, given descriptions
of physical situations. Since many of these models will contain elements of
uncertainty, at least from the model builder’s point of view, we should review
bricfly the fundamentals of probabilistic modeling. While this material will
serve as a review for those readers who have a solid grounding in probabilistic
reasoning, it is still recommended reading for all, since concepts and results
are developed that are of direct use in later chapters.

2.1 EXPERIMENT, SAMPLE SPACE, AND EVENTS

Each probabilistic situation that we wish to analyze can be viewed in the
context of an experiment. By experiment we mean any nondeterministic
process that has a number of distinct possible outcomes. Thus, an experiment
is first characterized by a list of possible outcomes. A particular performance
of the experiment, sometimes referred to as an experimental trial, yields one
and only one of the outcomes.

The finest-grained list of outcomes for an experiment is the sample space
of the experiment. Examples of sample spaces are:

I. {heads, tails} in the simple toss of a coin.

N

{1,2,3,...}, describing the possible number of fire alarms in a city
during a year.

3. {0<x<10,0 <y <10}, describing the possible locations of
required on-the-scene social services in a city 10 by 10 miles square.
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As these three examples indicate, the number of elements or points in a
sample space can be finite, countably infinite, or noncountably infinite.
Also, the elements may be something other than numbers (e.g., “heads” or
“tails”).

Probabilistic analysis requires considerable manipulation in an experi-
ment’s sample space. For this, we require knowledge of the algebra of events,
where an event is defined to be a collection of points in the sample space.
A generic event is given an arbitrary label, such as 4, B, or C. Since the entire
sample space defines the universe of our concerns, it is called U, for universal
event. An event containing no points in the sample space is called @, the

empty event (or null set). There are three key operations in the algebra of
events:

l. Union. A U B = setof all points in either A or B.
2. Intersection. A4 N B = set of all points in both A and B.
3. Complement. A’ = set of all points (in U) not in A.

These three operations are governed by the following seven algebraic axioms:

. AUB=BUA Commutative law.
9 A WBwC)=AuBucl Associative law.
3. ANBUC)=(ANB)U (4N C) Distributive law.
4, (A)Y = A Complement of the com-

plement of an event is
the original event.

5. ANnBY=A4UUPB Complement of the inter-
section of two events is the
union of their comple-
ments.

6. ANA'=g Intersection of an event
with its complement is the
empty event.

. AntU=A4 Intersection of an event
with the universe of events
is the original event.

The events 4,, 4,, ..., Ay are said to be mutually exclusive if they share
no point(s) in common:

iy A, g8 = s 12y il
o ifik)
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Events A4,, 4,,..., Ay are said to be collectively exhaustive if they include
all points in the universe of events:

N
UAI =U
=1

A set of events A, 4,, ..., Ay that are both mutually exclusive and collec-
tively exhaustive contains cuch point of the sample space U in one and only
one of the events 4,.

Given these notions, we can more carefully define a sample space as
follows:

Definition: A sample space is the finest-grained, mutually exclusive, collectively
exhaustive listing of all possible outcomes of an experiment.

The first (and perhaps most important) step in constructing a probabilistic
model consists of identifying the sample space for the corresponding experi-
ment.

Example 1: Stick Cutting

A simple example drawn from geometrical probability will serve to illustrate
some of these ideas. Suppose that two points are marked (in some nondeter-
ministic way) on a stick of length 1 meter.

Define the sample space for this experiment.
Identify the event, “The second point is to the left of the first point.”

c.  Suppose that the stick is cut at the marked points. Identify the event,
“A triangle can be formed with the resulting three pieces.”

Solution:

a. Call the first point x, and the second x,. Since we are given no infor-
mation about x; and x, other than that each is between 0 and 1, the
sample space is the collection of points in the unit square shown in
Figure 2.1.

b. The event indicated, call it E,, corresponds to (x; > x;). This set of
points lies in the triangular region of the sample space below the line
X2 = Xiy»

c. Let A be the event that a triangle can be formed. Identification of A
in the (x,, x,) sample space requires a bit more care than in the case
of the event E, = (x, > x;). Suppose that, in fact, x; > x,. Then
the three stick lengths are x,, x;, — x5, and 1 — x,. For a triangle to
be formed, each length must be less than }:
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FIGURE 2.1 Sample space for the broken-stick experiment.

A: Xy < i
B: xy—x,<4%
C: 1— X < i

So, given x,; > x,, A is composed of the set of points that simulta-
neously satisfies these three inequalities or, equivalently, the set of
points in 4 N B N C. The resulting set is contained in the lower
triangle of area § in the sample space. Now suppose that (x; << x;)
= E{. Here we can invoke symmertry. A current dictionary defines
symmetry as “similarity of form or arrangement on either side of a
dividing line or plane; correspondence of opposite parts in size,
shape, and position.”! Since the labeling of points x; and x, was
totally arbitrary, there exists symmetry about the line x, = x,. Thus,
we obtain a similar triangle of area | above the line x; = x,.

As one final point, we may wish to express A in terms of the
algebra of events. If we define

D: Xy << i
E: x3—x <}
) ] — X2 < %

then

A=[(ANBNC)NEJU(DNEN F)n E}]

L Webster’s New World Dictionary of the English Language, Second College Edition,
World Publishing Co., New York, 1974, p. 1442.
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In modeling experiments, extreme care must be given to a precise inter-
pretation of the word statement. Statements that may at first sound the same
may actually imply markedly different experiments; or, statements may
simply be imprecise and ambiguous. A famous illustration of this in a geo-
metrical setting, known as Bertrand’s paradox (1907), yields three different
answers to the question: What is the probability that a “random chord” of
a circle of unit radius has a length greater than ,/ 3, the side of an inscribed
equilateral triangle ?* Each of the three solutions, which we will develop in
Chapter 3, is “correct” since each involves a different interpretation of that
difficult word “random.”

To strengthen your understanding of word statements as they relate
to concepts of sample space and event, try the following two exercises:

Exercise 2.1: Stick Breaking, mod 2 Repeat parts (a) and (c) of the triangle
problem described in Example 1, given that the problem statement is changed
as follows: “A point is marked (in some random way) on a stick of length 1
meter. Then a second point is marked on the stick (in some random way) to
the left of the first point.”

Exercise 2.2: Stick Breaking, Still Again! Repeat parts (a), (b), and (c¢) of
the triangle problem given that the problem statement is changed as follows:
“A point is marked (in some random way) on a stick of length 1 meter. The
stick is then cut at that point. Another point is marked (in some random way)
on the larger of the two resulting stick pieces.”

2.2 EVENT PROBABILITIES

The second step in constructing a probabilistic model is to assign probabilities
to events in the sample space. For any arbitrary event 4, we say that P{A4]} is
the probability that an outcome of the experiment is contained or included
in event 4. This is a clearer statement than saying thut ' !}is the “probability
of event A occurring,” a statement that sometimes leads to confusion. Unless
event A is a single point in the sample space, event A4 never “occurs” in its
totality, but rather a single element or point in 4 may be the outcome of a
particular experiment. The assigned event probabilities must obey the three
axioms of probability:

1. Foranyevent 4, P{A4} > 0 (nonnegativity of probabilities).

2. P{U} = 1 (totality of the universe U).

3. If An B= @, then P{4 U B} = P{A} I P{B] (additivity of prob-
abilities of mutually exclusive events).

2 J. Bertrand, Calcul des probabilités, Paris, 1907.
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For the moment we will not be concerned with the method of assigning
probabilitiecs. We will assume that these probabilities are assigned to each
finest-grained outcome of the experiment so that for each event 4 one can
compute P{A} by simply summing the probabilities of the finest-grained out-
comes comprising 4. As we will see shortly, this summation could entail
the sum of a finite number of elements or a countably infinite number of
elements (in a countably infinite sample space), or it could entail integration
(in a noncountably infinite sample space).

Sometimes we have conditioning events in a sample space, reflecting par-
tial information about the experimental outcome, and we wish to know what
this means about the likelihood of other events “occurring or not occurring,”
given the conditioning event. Thus, we define conditional probability as

P{B| A} = P{outcome of the experiment is contained in event B,
given that it is contained in event A4}

Given that the conditioning event requires that the collection of “B-type”
outcomes that could occur must also be contained in 4, we could rewrite the
definition of conditional probability as

P{B| A} = P{outcome of the experiment is contained in event
B N A, given that it is contained in event A}

In manipulating conditional probabilities, the set of outcomes contained
in the conditioning event 4 now constitutes the universal set of outcomes.
Where “before the fact” (of A) the a priori universe was U, “after the fact”
the a posteriori universe is 4. Given the conditioning event, the new universe
A is to be treated just as a sample space. Thus, the probabilities distributed
over the finest-grained outcomes in 4 must be scaled so that their total
(conditional) probability sums to 1. To do this, any event C that is fully
containedin 4 (i.e., A N C = Cor A U C = A) must have its corresponding
probability scaled by |/P{4}. Thus,
. P{C}

P(C| A} == Pla} (assuming that C is contained in A)

Since A N B is the collection of all outcomes in both 4 and B, it must be
true that 4 M Bis contained in 4, and thus

P{4 N B}

PIBIA) = =50

where P{A4} > 0 (2.1)

This is the operational definition of conditional probability.
When dealing with the intersection of events, we will on occasion substitute
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a comma for the intersection operator. As an example, given two condi-
tioning events 4, and A4,, P{B|4, N A,} and P{B|A4,, A,} have the same
meaning: the probability that the experimental outcome is contained in event
B, given that it is contained in both A, and A4,.

Two events are said to be independent if information concerning the occur-
rence of one of them does not alter the probability of occurrence of the other.
Formally, events 4 and B, with P{4} > 0 and P{B} > 0, are said to be
independent if and only if

P{B|A} = P{B}
Using the definition of conditional probability, we can write
P{A N B} = P{A}P{B| A} = P{B}P{A| B}
Thus, independence implies that P{4 | B} = P{A4} and that
P{4A N B} = P{4}P{B} (2.2)
Question: 1f A and B are mutually exclusive, can they be independent ?
Question: 1f A and B are collectively exhaustive, can they be independent ?

Exercise 2.3: Independence of Events If 4 and B are independent, show
that 4 and B’ are independent, as are A" and B, and A" and B’.

Suppose that we have a collection of N events, 4,, 4,, ..., Ay. These
events are said to be mutually independent if

P{A,|A4,,...,A4,} = P{A} foralli==n, n,, ..., 0,
ny=1,20.05N; p=12,..., N—1L

In other words, for each possible event 4,, information on the occurrence of
any combination of the other events does not affect the probability that the
experimental outcome is contained in event A4,. It is important to be aware
that events may be pairwise independent or be otherwise conditionally
independent but not mutu..., ndependent. Only with mutual independence
does “information about the ‘other’” events A4, j 7 i, tell us nothing about
event A4,.”

2.3 RANDOM VARIABLES

Many, if not most, experiments have numerical values associated with dif-
ferent outcomes. In fact, for some experiments the finest-grained outcomes
are described directly in terms of numbers. This is the case for the triangle
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problem, but not for a simple flip of a coin (in which the two possible out-
comes are “heads” or “tails”). But even for the flip of the coin we may wish
to associate numerical values with the outcomes, say +$1 for “heads” and
— $2 for “tails.” To facilitate such numerical descriptions of the outcomes of
an experiment, we introduce the notion of a random variable.

Definition: Given an experiment with a sample space and a probability assign-
ment over the sample space, a random variable is a function that assigns a numer-
ical value to each finest-grained outcome in the sample space.

Note: While each finest-grained outcome is unique, it is not necessary that
each assigned value of the random variable be unique. Thus, two or more
finest-grained points may yield the same value of the random variable.

We shall usually denote random variables by capital letters, such as
X, Y, or Z. Each of these represents a complete set of correspondences
between finest-grained outcomes in the experiment, with their probability
assignments, and associated numerical values. Thus, the notation X does not
refer to a number such as 2.3 or —z, but rather to a listing (or, if you like,
mapping) which provides a numerical value for the random variable for each
point in the sample space. This sample space is assumed to have a probability
assignment associated with it. Once an experiment is carried out, each par-
ticular outcome yields specific numerical values for the random variables,
s, X =2x, Y=y,and Z = z. In general and whenever convenient, we will
use the same letter (but in lowercase form) to indicate a particular experi-
mental value of the random variable. However, it would also be entirely
reasonable to say that X = 2.62, X = a, X = ¢ - n/3, or X = any other
number or representation for a number.

The set of possible values for a random variable is called its event space.
For the purpose of summing probabilities, it is convenient to discuss sepa-
rately discrete random variables, whose event spaces contain a finite or
countably infinite number of values, and continuous random variables, whose
event spaces contain a noncountably infinite number of values.

2.4 PROBABILITY MASS FUNCTION
We define for a discrete random variable X,

px(X) = probability that the random variable X assumes the
experimental value x on a performance of the
experiment

or, in shorthand,
px(x) = P{X = x}
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The function py(+) is the probability mass function (pmf) of the (discrete)
random variable X. Clearly, we must have

; px(x) =1
0 px(x) < 1 for all x

The probability mass function is the assignment of probabilities to each
possible value of the random variable. It plays an identically analogous
role for random variables that the assignment of probabilities to finest-
grained outcomes plays in the original sample space.

Associated with each pmf is its cumulative distribution function (cdf),
which is simply defined to be the probability that the random variable assumes
an experimental value less than or equal to a specified amount,

P¥)=P(X<x}= T px) 2.3)

Note that the cdf for a discrete random variable is a step function. It starts
at zero for x values less than the smallest possible and proceeds from left to
right in steps, the height of a step at X = x, equaling the probability that X
will assume that particular experimental value. The step function eventually
reaches unity as a maximum value since Py(co) = 1.

If we wish to obtain information about two or more (discrete) random
variables simultaneously, we must introduce the concept of compound (or
Jjoint) probability'mass functions. For instance, for two random variables X
and Y, their compound pmf is given by

pX,Y(x,y):P{X:x: Y:y} a”xsy

In general, given N discrete random variables X, X,, ..., X}, there exists
a corresponding N-argument pmf,

Px.,x.,...,xN(xn Xgyoooy Xy) = P{Xx = Xy, X, = X3..., Xy = xN}
Clearly,

0 —<—- p.\’...\’.,...,XN(xl, xla s ey xN) S l

Px,,x. ..... ,\’N(xlsx2a-",xN)= 1

all x), x8,..+, XN

In cases involving multiple random variables X, X, ..., Xy,

px(x) = P{X, = x}
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is said to be the marginal pmf for X,. We can calculate the marginal from the

point pmf simply by summing over all the values of the other random
variables:

pX:(x) - _ 2 thXs.---.XN(xl’ L :xl—hx: xH-l)"‘axN) (2'4)

2.5 CONDITIONAL PMF'S AND INDEPENDENCE

Suppose we are told that an experimental outcome is contained in event A.
We then wish to explore the probabilistic behavior of random variables X
and Y, given 4. Following the definition of conditional probability, we
introduce the conditional compound pmf,

Px.¥(X,))
prrteyly={ Pa NS4 A0,

0 otherwise

If event A is stated in terms of the specific experimental value of one of the
random variables of the experiment, we introduce another notation:

Pxir(x|y) = P{X = x| Y = )}
By conditional probability,

Pa(xly) = 222D p, () > 0 (2.6)

These notations and definitions extend in an obvious way to situations with
more than two random variables.

Example 2: Minibus

Suppose that a minibus with capacity for five passengers departs from a com-
muter station. Observation has shown that the bus never departs empty (with
no passengers) but that each possible positive number of passengers is equally
likely to be on the bus at departure time. Passengers are of two types: male
and female. Given that the departing bus contains exactly n passengers
(n=1,2,...,5), each possible combination of male and female passengers
has been found to be equally likely.

a. Identify the sample space and joint probability mass function for this
experiment,

b. Determine the marginal pmf for the number of females on the mini-
bus.
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c. Determine the joint conditional pmf for the number of females and
the number of males on the minibus, given that the bus departs at
full capacity.

d. Determine the conditional marginal pmf for the number of females,
given that there are at least twice as many females as males on the
minibus.

Solution:
There are two random variables in this experiment:

Np = number of females on the minibus

N = number of males on the minibus

a. A complete listing of their possible (paired) values constitutes the
sample space for this experiment. These points occupy the nearly
triangular region shown in Figure 2.2, The region is not perfectly
triangular since the origin (Ny = 0, N, = 0) is excluded because
the minibus never departs empty. The region is bounded above by
the line np + ny, = 5, which expresses the capacity constraint for the
minibus.

To determine the joint pmf for N and N,,, we must use the condi-
tional information given in the word statement. We know that any
particular positive total number of passengers, ranging up to 5, is
equally likely. Let

A, = event that i total passengers are on the bus

We know that P{4,} =1, i=1,2,...,5. Points in an event 4, lie
on theline np + nye = i, as shown for 45 in Figure 2.2. Given that an
outcome of the experiment is contained in event A4;, we know that
each of the points in A, is equally likely. Since the number of points
in A, is equal to 7 -+ 1, we have

- N B for all positive integer np,
P(Ng = np, NM_anA‘}_i—f-l ny such that np + np = i

For any {ng, n,} such that np + n,, = i, we can write

pr,NM(”I': ny) = P{Np = np, Ny = ny}
5
— 121 P{Ng = np, Npy = ny |AI}P[A/}

=P{Np = Np, NM = Ny IA(}P{A{}

1 Yy for all positive integer ng, ny such
i+l 3 that ng + ny = i
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é -
5 ng
Origin excluded Event A3 = exactly 3 passengers
from sample space on the minibus

FIGURE 2.2 Sample space for minibus problem.

This is the answer to part (a). It says, roughly, that the probability
that {Ny = np and Ny = ny}is equal to } divided by 1 plus the sum
ng + ny. For i = 3, for instance,

P{Np =0, Nps =3} = P{Ny =1, Npy = 2} = P{Np = 2, Np¢ = 1}

1 1 1
=P{N”=3’NM=O]=(3_—|—1')'_S—=QT)

The complete joint pmf is shown in Figure 2.3.

Once we have the joint pmf for Ny and N,,, we can readily answer
any question about the experiment. The marginal pmf for Ny is found
by invoking (2.4), which simply asks us to sum over all values of Ny,
at- each particular fixed value for Np. For instance, to obtain
P{Ny = 3} = py,(3), we sum the probabilities corresponding to the
(finest-grained) events {Np = 3, Ny = 0}, {Nr = 3, Ny = 1}, and
{Np = 3, Ny = 2}, yielding 5l; + 5l + 55 = 4%%. The complete pmf
is shown in Figure 2.4.

If we are given conditional information that the bus departs at full
capacity, we know that the experimental outcome is contained in
event As (i.e., ng + npe = 5). Thus, invoking (2.5),

(np,ny) € A
pNi".Nu("P, nMIAs) = {? r M 5

0 otherwise
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FIGURE 2.4 PMF for the number of female minibus passengers.

or

ng, Ny € A
pr,NM(nF: ”M|As) — {% (e M.) g
0 otherwise

Ch. 2

This corresponds to a straight line of probability masses, each having
mass 4, at the integer points on the line ny -+ ny = 5 (ng, npe = 0).

Let

B = event that “there are at least twice as many females as

males on the minibus”

We want py,(ny| B). First we work in the original joint sample space
to determine finest-grained outcomes contained in the event B.
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Clearly, these are points ng, n,, satisfying the inequality 2n,, <~ n,.
This corresponds to points lying on or below the line ny = § ny
(shown in Figure 2.3). Summing the probabilities of the eight finest-
grained outcomes satisfying this inequality, we find that P{B} == 154
= «;—51 Then, to find the conditional marginal pmf for N, given B, we
simply sum the probabilities at a fixed value for n, over all values of
ne contained in B, then scale by l/a,,‘—%. For instance,

+< 15420 35
Pni(2|B) = fLL_r.Li = —ljﬂ— =124

75

The entire conditional marginal pmf is displayed in Figure 2.5. Notice
how the conditional information has shifted the pmf for Ny toward
greater numbers of females (compare to Figure 2.4).

1 PNF(nF |B)
B (Tiz%‘)
"] (12224')
, i i i 5
0 1 2 3 4

FIGURE 2.5 Conditional marginal pmf for the number of female pas-
sengers, given B,

Just as events can be independent, so, too, can random variables be
independent. Intuitively, if X and Y are independent, any information
regarding the value of one tells us nothing new about the value of the other.
Formally, random variables X and Y are independent if and only if py (¥ | x)
= py(y) for all possible values of x and y.

Exercise 2.4: Independence of Random Variables Show that the definition of
independence of X and Y implies that

and

ler(x | ») = px(x)

Px.v(x, ¥) = px(X)py(») for all possible values of x and y  (2.7)
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Given an arbitrary number N of random variables, they are said to be
mutually independent if their joint pmf factors into the product of the cor-
responding N marginal pmf’s.

Sometimes random variables may be independent but conditionally
dependent; or, they may be dependent but conditionally independent. The
definition of conditional independence is just what we expect: random
variables X and Y are said to be conditionally independent given event A4 if
and only if

P{Y=y|X =x,(x,y) € A} = py(y|A)

Exercise 2.5: Conditional Independence Show that for two random variables
X and Y that are conditionally independent given event A4,

Px,y(x, Y| A) = px(x|A)py(y|4)  forall (x,y) € 4 (2.8)

Example 2: (continued)

In the minibus example, argue that Ny and N, are not independent. Does
there exist any nontrivial event A such that, given 4, Ny and N,, are condi-
tionally independent ?

2.6 FUNCTIONS OF RANDOM VARIABLES

In Example 2 it was sometimes convenient to discuss the sum of the two
random variables, reflecting the total number of people on the minibus.
This is a particular case of defining one or more random variables as functions
of other random variables. This function can be any rule for assigning an
experimental value to the new random variable(s), given the experimental
value(s) of the original random variable(s). Given original random variables
X and Y, several possible functions of X and Y are as follows:

D=|X-Y|

R=,/X*+7T?

7 [1 if X 4+ Y is an even number
—1 otherwise

V= L—J; + lJ where | x | = greatest integer not exceeding x
E = Min (X, Y)

The derivation of probability laws for functions of random variables will
be a primary concern of Chapter 3.



2.7 EXPECTATION

Suppose that we have an experiment with random variable X and a function
of X, Y = g(X), which is itself a random variable. By this we mean that every
experimental value x of the random variable X yields an experimental value
g(x) for the random variable g(X) = Y. Then the expectation or expected
value of g(X) is defined to be

Efg(X)] = X g(x)pa(x) = 2(X) (2.9)

The conditional expected value of g(X), given the experimental outcome is
contained in event A, is

E[g(X)] 4] = X g(px(x|4) = (g(X)|4) (2.10)

A key motivation for these definitions arises from large-sample theory, which
reveals that if the experiment is performed independently many times, the
empirically calculated average value of g(-) will probably be “very close to”
E[g(X)].? There are other motivations, too, such as z- and s-transforms, as
we will see shortly.

Unfortunately, the word expectation or expected value of a random
variable is perhaps one of the poorest word choices one encounters in
probabilistic modeling. In practice, these words are often used interchange-
ably with average or mean value of a random variable. The problem here is
that the mean or expected value of a random variable, when considered
as a possible experimental value of the random variable, is usually quite
unexpected and sometimes even impossible. For instance, a flip of a fair
coin with “tails” yielding X = 0 and “heads” X = 1 results in an expected
value E[X]=14, an impossible experimental outcome. Still, use of the
term “expected value” persists and has caused considerable confusion
in the minds of public administrators when reading consultants’ reports or
being briefed by unwary technical aides.

Two particular functions g(X) will be of special interest in our work:

1. g(X)= X yields the mean value or expected value of the random
variable X,

E[X] =X =} xpx(x) (2.11)

3 For this statement to be true, g(X) has to be “well behaved,” where goodness of
behavior usually implies that E[g2(X)] be finite.
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2. g(X)=(X— E[X])* yields the variance or second central moment
of the random variable X,

E[(X — E[X]*] = 0% = X, (x — E[X])?px(x) (2.12)

Here oy, which is the square root of the variance, is the standard
deviation of the random variable X.

Exercise 2.6: Expected Value of a Sum Show that the expected value of the
sum of two arbitrary random variables X and Y is the sum of the two indi-
vidual expected values (i.e., E[X + Y] = E[X] + E[Y]).

Exercise 2.7: Variance in Terms of Moments Show that
c% = E[X?] — E[X]>.

Exercise 2.8: Variance of a Sum Show that for two independent random
variables X and Y, the variance of the sum is the sum of the two individual
variances (i.e., 0%,y = 0% + o}).

Exercise 2.9: Expected Value of a Product Suppose that X, X;,..., X,
are mutually independent random variables. Let

h(Xh XZ: LI ) Xn) = gl(Xl)gZ(XZ) LR gn(Xn)
Show that

Elh(Xy, X2, ..., X)) = Elg(XD]E[g2(X2)] . . . E[g,(X,)]

2.8 THE z-TRANSFORM

The expectation of one particular function g(X), namely g(X) = z¥, is of
wide use in computations and analysis for those discrete random variables X
that take on only nonnegative integer experimental values. This expected
value is defined to be the z-transform (or discrete transform or geometric
transform or moment-generating function) of py(x),

px(z) = E[z*] = f\:‘o z*px(x) (2.13)
Since 0 << py(x) < 1, we are guaranteed that the summation identified in
the definition of p%(z) will converge for |z| << 1. In fact, summations asso-
ciated with z-transforms and their derivatives will usually converge for larger
values of z, but restricting z so that |z| < 1 will assure us of no convergence
problems in our work. Here we discuss briefly several useful properties of
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z-transforms. The reader should be aware that material in subsequent chapters
will not emphasize transform techniques and thus all of our coverage of
transforms in this chapter may be considered to be optional material.

Given the z-transform of a pmf, we can uniquely recover the pmf. We do
this by considering the definition of the z-transform,

px(2) = px(0) + px()z + px(2)z* + ... + px(k)z* + ...  (2.14)

which yields through successive differentiation
Pl i[ﬁpr(z)] k=0,1,2 (2.15)
X k! dzk X - ) ) 3 v v ‘.

The important moment-generating properties of the z-transform are
obtained from the following relationships:

[dpx(z) i [go xz""px(x)] = E[X] (2.16)

1

[__dzggfz)l_l = E x(x — 1)z*- sz(x)] = E[X?*] — E[X] (2.17)

x=0

Manipulating (2.17), we can summarize the three key moment-generating
properties of z-transforms as follows:

E[X]= [‘%@] " (2.18)
2 — [42P%(2) dp’(2)
soc1=[ S|+ (%57 A

A= [SF0] [0, - (20]) e

Applications of these relationships are shown in the following section.

Exercise 2.10: z-Transform of a Sum Suppose that X, X,,..., X, are
mutually independent random variables. Let S = X, + X, + ... + X,.
Show that

p5(2) = px.(2) . . . P%.(2)

2.9 OFTEN-USED PMF’'S

Several specific pmf’s arise frequently in practice, including in the analysis
of urban service systems. In this section we identify and discuss some of these
pmf’s.



2.9.1 Bernoulli PMF

A random variable X whose probability law is a Bernoulli pmf can take
on only two values, 0 and 1:

px(0)=PX=0}=1—p (2.21a)
px()=PX=1}=p (2.21b)

The mean and variance of a Bernoulli random variable are

E[X]=0.(1—p)+ lp=p (2.22a)
oy = E[X?] — (E[X])* = 1’p — p* = p(l — p) (2.22b)

The z-transform is p§(z) = (1 — p) + pz. The Bernoulli pmf arises in simple
trials having only two outcomes; it is also useful in the analysis of set-
indicator random variables (see Section 3.3).

As an example of the use of a Bernoulli pmf, consider a police car per-
forming “random” patrol. Each hour (on the hour) the patrol officer spins a
wheel of fortune on the car’s dashboard to see if the car should patrol a
specially designated “high-crime zone” during the next hour. If police crime
analysts have determined that approximately 25 percent of the time on
random patrol should be spent in this zone, then an angle equal to 7/2 on
the wheel of fortune will be designated, “Patrol next hour in high-crime
zone.” Here the “patrol indicator” random variable X equals 1 if the car
patrols the next hour in the high-crime zone; otherwise, X = 0. The expected
value for X is E[X] = p = 0.25. The variance is p(l1 — p) = (0.25)(0.75)
= 0.1875. Each hour a separate (independent) experiment is performed.
Thus, the total number of hours that the high-crime zone is patrolled during
an 8-hour period is the sum of the individual X"’s corresponding to each hour.
The idea of such a sequence of Bernoulli experiments will be developed further
with the next two pmf’s.

2.9.2 Geometric PMF
A random variable X has a geometric pmf if
px(x) =p(l —p)*~*  x=12,... (2.23)
The z-transform is

PR = 30— pyie = 228
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By differentiating p%(z) and substituting in (2.18) and (2.20), we obtain the
mean and variance,

E[X] = (2.25)

1
p
a}=l—p

FL (2.26)

One important interpretation of the geometric pmf involves the “first
time until success” in a sequence of Bernoulli experiments (trials). Here
“success” corresponds to the Bernoulli random value taking on the value 1.
Suppose in the police example above that Y, is the outcome of the Bernoulli
trial conducted at the ith hour. Thus, if Y, = 1, the high-crime zone is
patrolled during the ith hour; otherwise, it is not patrolled that hour. Suppose
that we (as observers) start looking at the high-crime zone during hour 1.
We ask the question: Which hour X (X = 1, 2,...) will be the first hour
during which the high-crime zone will be patrolled ? The probability that it
will be patrolled during the first hour is simply p. The probability that it will
be first patrolled during the second hour is P{Y, = 0, Y, = 1}, which by
independence is (1 — p)p. In general, the probability that it will be first
patrolled during the kth houris P{Y, =0, Y, =0,..., Y3, =0, Y, =1},
which by independence is (1 — p)*~!'p. Thus, the random variable X is a
geometrically distributed random variable which, when we substitute
p = 0.25, has mean E[X]= 1/0.25 = 4 and variance o} = (})/(})? = 3318
= 12 (and oy = 2,/3 = 3.44).

Question: What is the probability that the high-crime zone receives no patrol
coverage during any particular 8-hour tour of duty?

Exercise 2.11: No Memory Property of Geometric PMF Suppose we have
observed that the high-crime area has received no patrol coverage during the
first k£ hours. Show that the probability law for the hour at which patrol first
occurs, given this information, is the same as the original pmf, but shifted
to the right k units. Thus, the geometric pmf has a no-memory property in the
sense that the time (k hours) that we have invested waiting for the first hour of
patrol coverage of the high-crime zone has not in any way reduced the mean
or variance or any other measure of the remaining time we must wait until the
first patrol.

2.9.3 Binomial PMF

A random variable W has a binomial pmf if

Py = ——1 P =Py w=0,12...,n  (227)

w!(n—
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Here W can be interpreted to be the number of successes in n independent
Bernoulli trials, each having success probability p. We can see this by writing

W= Yl’i' Yz‘*‘...'{"Y"

where Y, is the ith Bernoulli random variable. Since the z-transform of the
pmfof Y,is[(1 — p) + pz], we know from Exercise 2.10 that the z-transform
of py(+) is

pi(2) = [(1 — p) + pz]" (2.28)

Recalling the binomial theorem,

@+by=3% (?)a'bn-' (2.29)

=0

and the expanded form of the z-transform, (2.14), we obtain the binomial
pmf shown in (2.27). By considering W to be the sum of »n independent,
identically distributed Bernoulli random variables, we obtain the mean and
variance by inspection:

E[W]=np (2.30a)
o = np(l — p) (2.30b)

In the police patrol example, with p = 0.25, the probability that the
high-crime zone receives exactly w hours of patrol during an 8-hour tour of
duty is

- 8! 1 w 3 8-w B
Pw(W)—m(—[> <T) w=0,1,...,8
2.9.4 Poisson PMF

A random variable K has a Poisson pmf if

#ke-;l

Px(k):_'k‘r— k=0)1s23";#>0 (2'31)

Substituting into the definition of the z-transform, we obtain
px(z) = e~V (2.32)

Differentiating (2.32) and substituting in (2.18) and (2.20), the mean and
variance are found to be equal:

E[K]= u (2.33a)
0% = u (2.33b)
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In our work the Poisson pmf will arise most frequently in describing
Poisson processes. These are processes in which “Poisson-type events” or
“arrivals” are distributed totally randomly in time (or in space—see Section
3.4). In urban service systems, the Poisson process can be used as a reasonable
model for the process generating fire alarms, police calls, ambulance calls,
inquiries at a “little city hall,” traffic passing through a lightly traveled
intersection, breakdowns in a city’s fleet of vehicles, letters arriving on the
desk of a city administrator, the filled trash cans produced by a housechold,
traffic violators on a given street segment, and so on. With the (time) Poisson
process, we suppose that the process commences at 7 == 0 and that at random
times 7y, 15, ..., Poisson-type events occur (see Figure 2.6). Suppose that

| v \ Vi NONL N \ <
K 7ay K A AR 1 rAY -

A\V4
AN
0 \/ Time, ¢

Times of
Poisson arrivals

FIGURE 2.6 Poisson arrivals in time,

we are interested in the number of Poisson-type events N(¢) occurring in the

time interval [0, r]. We prove in Section 2.12 that N(¢) has a Poisson pmf with
mean At:

P(N(f) = k} = (lt{"e‘“ k=0, 1; 25 (2.34)

Here A represents the average number of arrivals per unit time (see 2.12).

2.10 PROBABILITY DENSITY FUNCTIONS

Many random variables encountered in practice are distributed over a
continuous rather than a discrete set of values. Examples include the time
one waits at a bus stop until the next bus arrives, the tons of trash collected
in a city on a given day, the distance a social worker in the field will travel on
a given day, and the amount of electricity consumed by a household during
a year. Just as probability mass functions (pmf’s) allowed us to explore the
probabilistic behavior of discrete random variables, probability density
functions (pdf’s) allow us to do the same for continuously distributed random
variables.

We define a pdf for the (continuous) random variable X as follows:

[x(x) dx = probability that the random variable X
assumes an experimental value between x
and x -+ dx on a performance of the experiment
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Note that our definition is not stated in terms of the probability that random
variable X assumes exactly the value x; for a purely continuous random
variable, this probability is zero. Thus, in order to make any probability
statement using pdf’s, one must integrate the pdf (even if only over an infini-
tesimal interval of length dx).

Some random variables occurring in practice are mixed; that is, they
have a purely continuous part and they have a discrete part. An example
could be the location of a bus at a random time along a straight-line street
route; the bus might be viewed as uniformly distributed over the route except
for a probability p, of being located at X = x,, the location of the ith stop
(i=1,2,...,N). In this case Y ¥, p, is the “probability that the random
variable X is discrete” and (1 — ¥, p,) is the probability that it is contin-
uous. To analyze the probabilistic behavior of X, we would treat separately
each of the two components of X (discrete and continuous), and then com-
bine the results using methods of conditional probability (see Problem
2.2). Thus, whenever possible throughout the remainder of this book, a
continuous random variable is viewed as a purely continuous (rather than
mixed) random variable. Still, on occasion it is necessary to consider a “con-
tinuous” random variable that has a positive probability of assuming a
particular value. We do this with the unit impulse function, as shown later in
this section.

Since probabilities must be nonnegative, we must have fy(x) > 0. But
unlike the pmf, whose value cannot exceed unity, there is no upper bound on
the value of a pdf. A fundamental probabilistic statement involving a pdf
relates the pdf to its cumulative distribution function (cdf),

F()=PX<x}= [ fe(y)dy (2.35)
Since P{X < +oo} = 1, we must have

[T royay=1 (2.36)

Example 3: Uniform PDF
Random variable U is distributed according to a uniform pdf (Figure 2.7) if

1
Su(x) = {b — as=x=xb (2.37)

0 otherwise

The cdf grows linearly from zero at U = a to 1 at U = b (Figure 2.8). The
uniformly distributed random variable is often implied when the term
“random” is used in problem statements, although we will attempt to avoid
such ambiguous terminology here.
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Ju(x)4
_ﬁl ——————
b—a
0 a b %X
FIGURE 2.7 PDF of a uniformly distributed random
variable.
FU (x) 4
[
| P
0 a b %
FIGURE 2.8 CDF of a uniformly distributed random
variable.

The compound pdf allows us to study two or more continuous random
variables simultaneously. For two random variables X and Y, their com-
pound pdf is given by

Sen(e, ) dxdy =Px < X<x+dx,y< Y<y-+dy allxy

In general, given N continuous random variables X,, X,,..., Xy, there
exists a corresponding N-argument pdf,

Sxoxaoxn(X1s X5 o ooy Xy) dxy dx, .. dxy
=P, < X, <xp+dx,; X, < Xy < X, FdldXg, o o 3 Xy XS X+ dxy)
Clearly,

le.X:.~~~.XN(xl’ Xoy ooy xN) 2 0

+ o0 {00 + oo
J dx, J‘ dxy o . s J dxy fyoxe..xxa(X1s X2y 000y Xy) = |

oo

In cases involving multiple random variables X, X;, ..., Xy, one may still
be interested in the marginal pdf for X,, fy(x,), defined so that fy (x) dx, =
P{x, < X, < x, + dx;}. We can calculate the marginal from the joint pdf
simply by integrating over all the other random variables:

Sl = [ doxy [dxy . [, [ dxy -

f:\'u.z\’l,--...’(),....Xu(xh Xoy oo es Xy oo oy Xy s Xy X 15 0 0 0y xy) j#Ei (2.38)



2.10.1 Conditional PDF’'s and Independence

When considering conditioning events and independence, the definitions
from the discrete case carry over directly to the continuous case. For instance,
given that an experimental outcome is contained in event A4 (P{4} > 0),
the conditional compound pdf for two random variables X and Y is

S 2(%, ¥)
Sex(x,y|d) =14 P{4} (x,y) € 4, P{4}>0

0 otherwise

(2.39)

If the event A is stated in terms of the specific experimental value of one of
the random variables of the experiment, say Y = 3.23, we have a problem,
because P{Y = 3.23} = 0. We circumvent this by considering an infinitesimal
strip of width dy in the (X, Y) sample space and equate the conditioning
event A to {y < Y <y -+ dy}. Then, employing the definition of conditional
probability for the conditional event {x << X < x + dx}, given 4, we have

_ JSx(x,y)dxdy
fXIY(xly) dx = fy(y) dy

Thus, the conditional pdf for one random variable, given the value of the
other, is written

Fewlx|y) = i—f—g)—” f(p) >0 (2.402)
or, similarly,
Frn(y | %) = f—f-%y—) fe(x) >0 (2.40b)

The general shape of this type of point-conditional pdf is determined by a
vertical cut through the three-dimensional joint pdf at the fixed value of
the conditioning random variable (Figure 2.9). The denominator, which is
equal to the area of this cut, is simply a scaling factor.

Now, two continuous random variables X and Y are said to be independent
if and only if

Srix(W1%) = fr(») for all possible values of x and y

Exercise 2.12: Independence of Random Variables Show that the indepen-
dence of X and Y implies that

Sxir(x|y) = fx(x)

and

Sx,v(x, ¥) = fx(xX)fy(y) for all possible values of x and y
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Two “cuts” through the 3-dimensional joint pdf fy y(x, y)
FIGURE 2.9 Pictorial depiction of fyx(y|x).

Given an arbitrary number N of continuous random variables, they are
said to be mutually independent if their joint pdf factors into the product of
the corresponding N marginal pdf’s.

2.10.2 Expectation

Given a continuous random variable X with pdf f,(x), the expectation
or expected value of the function g(.X) is

Elg(X)] = | _g(x)fa(x) dx

All the results concerning expected values derived in Section 2.7 carry over
in the obvious way, with summations réplaced by integrations.

Exercise 2.13: Expected Values, Revisited Verify that the results of Exercises
2.6-2.9 also apply to continuously distributed random variables.

Example 1: (continued)

Here we continue our triangle problem initially described in Example 1,
Section 2.1. We restate the problem as follows: “Two points X, and X, are
marked randomly and independently on a stick of length 1 meter.”
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a. Determine the probability that a triangle can be formed with the
three pieces obtained by cutting the stick at the marked points.

b. Determine the conditional pdf for X,, given that a triangle can be
formed.

c. Determine the conditional pdf for X, given that X, = } and a tri-
angle cannot be formed.

Solution:

a. First we must interpret the word “random.” In the absence of any
further information, the most reasonable interpretation is that X,
and X, are uniformly and independently distributed over [0, 1]. Thus,
the joint pdf for (X,, X;) is

feon x0) = feedfGe) = o= m=DOS RS
0 otherwise

Letting A be the event that a triangle can be formed, we recall that A
corresponds to the two triangular regions of the (X, X;) sample
space shown in Figure 2.1. Since the area of each is § and since the
joint pdf is uniform with height 1, we obtain by inspection that
P{A} = }. If the pdf were not uniform, we would have to evaluate
the following integral:

1 1/2
P{A] = dxl J. dxzfx,,x,(x, ’ Xz)

1/2 x1=1/2

x1+1/2
-+ J.m dx, J ' dxy fx,, x,(x1, X2)
0

1/2
Since in this case fy, x,(x;, x;) = 1 over the regions of integration,

1/2 1

1
P[A}=f dx(1 —x,)+f dxy xy =
1

/2 0

ESN

as we obtained by inspection.

b. Given that a triangle can be formed, the conditional (X, X,) sample
space comprises the two triangular regions over which we have just
integrated. If one invokes the definition of the marginal pdf in terms
of probabilities of lying within infinitesimal strips,

Sx(xy |A) dx =P <X, < x + dx,|A}

then one can see from Figure 2.1 that this “surip probability” in-
creases linearly from 0 to a maximum at X, = } and then decreases
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linearly (and symmetrically) back to zero. Thus, by inspection,

cx 0<x<1}

fx.(xllA)={c(l_x) e

where we find that ¢ = 4 by the requirement that
Se(xy|A) dxy =1

Here again this problem is solvable by inspection since
Jx,,x,(+, +) is uniform over the region of interest. In general, we
would obtain fy,(x,;| A) by “integrating out” x,:

(1/2)+x,
L/z S, xi(x1, X2 | A) dx, 0<x <}
fXx(xl IA) == 1/2

fX,,x,(xl,leA)dX2 _&legl

=-(1/2)+x,

Here, since fx,, x,(x, x5 | A) = constant = 4 over the region of inte-
gration, we have

4({‘+x1—i)=4xl OSXIS%

La(xi | A) = {4(* + 4 = xy) =401 — x) P<x <1

as anticipated.

¢. The conditioning information is that X', =} and a triangle cannot be
formed. By inspection of Figure 2.1, the conditional pdf for X, is

¢ 0<x;<4Li<xn<l

0 otherwise

frax(a| Xy =3, A) = {

This pdf, which is displayed in Figure 2.10, is derived by considering
a strip of infinitesimal width dx, at x, = }. Integration requires that
c =4

Wi could continue the process of conditioning indefinitely and,
in theory, incur no additional problems. For instance, let 4 =
event | X, — 4| > }; this means that X, is either less than { or
greater than §. Then

B 0<x<{ i<x<1

Srax(x2 | Xy = i, A A4) = {0 othieiiise

where ¢’ = [} + (1 — ]! = §. We could also find conditional
moments, such as the conditional mean

3/8 1
E[X,| X, = }, A, A] = jo x; §dxy + L/‘ x4 dxy = 3}
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FIGURE 2.10 Conditional PDF for triangle problem.

or the conditional variance

3/8 1
Olxixi=1/4,8,4) = _f x3 8 dx, + x5 §dx, — (33)*
0 3/4

= 323 — (31)% ~ 0.12255
2.10.3 Unit Impulse Function

On occasion we confront a “continuous” random variable that has a
positive probability of assuming one or more particular experimental values.
It is difficult to extend the notion of probability density functions to cover
this case, since for any finite fy(x) the probability of assuming an experi-
mental value in the interval x to x -+ Ax is approximately fy(x) Ax,
becoming vanishingly small as Ax — 0.

A mechanism for circumventing this problem is to define a function
Ho(x) that has area equal to 1 at x = 0. That is,

j" f14(%) dx = 1 (2.41)

for any positive @ and b. Here p,(x), the unit impulse function, may be thought
of as the limit as Ax — 0 of the function

1
glx) = 1A%
0 otherwise

0< x < Ax

Clearly, g(x) is a legitimate pdf since it is always nonnegative and it integrates
to 1. Since any probabilistic statement involving pdf’s must always involve
integration, we need not concern ourselves with the “value” of u,(x)
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= lim,, ., g(x) at x = 0, but only its integration propertics near x = 0.
Since uy(x) has area 1 at x = 0, the integral of any function 4(x) multiplied
by z,(x) is simply A(0), provided that the range of integration includes x = 0;
that is,

, :
[* hmax) dx = h©) (2.42)
for any positive @ and b.

For instance, a Bernoulli random variable having probability p of
equaling 1 and (1 — p) of equaling zero may be summarized by the following
probability “density” function:

Fx(x) = (1 — p)uo(x) + ppo(x — 1)
The cdf behaves as we wish; for instance,
1/2
Fe) = [ 710 = Ppo() + pao(x — Dldx =1 —p

3/2
Fx@ = [ 710 = paso®) + paolx — D] dx = 1
In a similar manner, we could write any pmf as a pdf using impulse functions.
We could also use impulse functions to depict the pdf of a mixed random
variable.

2.10.4 The s-Transform

For continuous random variables the s-transform plays a role analogous
to that played by the z-transform with discrete random variables. For a
random variable X with pdf fy(x), the s-transform (or exponential transform
or Laplace transform) is defined to be

F30 = Ele ) = [ e fiyx) d (2.43)
If s is considered to be a complex number, with real and imaginary parts,
the integrals associated with s-transforms and their derivatives will be finite
if the real part of s is zero. If P{X < a} = 0 for some finite a, these integrals
will be finite as long as the real part of s is nonnegative. In the remainder of
our work we will assume that the real part of s is chosen appropriately. And
again, as with z-transforms, emphasis in subsequent chapters will not be given
to transform techniques.

Given the s-transform of a pdf, one can uniquely recover the pdf. In
general, this is done by contour integration in the complex plane. For those
s-transforms whose numerators and demoninators factor into products of
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terms (s — s5,)(s — 5;)..., the pdf can be recovered by partial fraction
expansion.

By direct substitution into the definition of the s-transform, one can
verify the following moment-generating properties:

ex) = —[L9] (2.44)
E[X?] = "ZT%(S)]_O (2.45)
2 _ [d*f5(s)  [dfi(s)]?
ot = { L) | dlx }3_0 (2.46)

Applications of these relationships are shown in the following section.
Exercise 2.14: s-Transform of a Sum Suppose that X, X5,..., X, are
mutually independent continuous random variables., Let R = X, + X, +
...+ X,. Show that

HOESSNOVSAC P SAC) (2.47)

211 OFTEN-USED PDF’'S

(n this section we will introduce several pdf’s that arise in the analysis of
urban service systems. For future reference, we will tabulate the means and
variances and other properties of interest.

2.11.1 Uniform PDF

In Section 2.10 we introduced the uniform pdf,

1

Ju(x) = b—a
0 otherwise

a<x<b

This pdf will arise often in the modeling of the distribution of entities in
space (and in time, for that matter) and in the generating of random numbers
for use in simulation experiments (see Chapter 7). By substituting directly
into the definition, we find that

a-+b

E[U] =43

(2.482)

o 2
P (. 12a) (2.48b)

Jio(s) = (7 — e™*)[s(b — a)] ™! (2.48¢)



2.11.2 Exponential PDF

A random variable T is said to have an exponential pdf if

ae t >0, o>l
8 B
() {0 otherwise
The mean, variance, and s-transform are

E[T] = _(11- (2.49a)

ok = % (2.49b)
RO |
b0 Bl g (2.49¢)

The exponential pdf arises in numerous contexts, including Poisson proc-
esses. It has a “no-memory” property similar to that of the geometric pmf.
We demonstrate this in the following example.

Example 4: Jitney Rider

Suppose that a person walks to the side of the roadway to wait for a jitney,
which will transport her to the next town. A jitney is a form of usually unsched-
uled transportation service involving minibuses or macro-taxicabs that
travel back and forth between two towns or other centers. Jitney service,
although uncommon in Europe and North America, is popular in many
countries throughout the world. Suppose that, by analysis of past data or
other means, it is known that the time required until the arrival of the next
jitney is an exponentially distributed random variable with mean 10 minutes.
Now suppose that our potential jitney rider has already waited 15.5 minutes
and she wants to know the conditional mean additional time that she will
have to wait,

Solution:

Let event A == {T > 15.5 minutes]. Then we can find the conditional mean
from the conditional pdf fi(¢| A4). But, by definition,

Il_(j()—t/lo ” t A
- - a (2
Sr(t|A) = { P{A]}

0 otherwise

But “all r € A” corresponds to {¢r> 15.5} and P{A4} =1 — Fp(15.5) =
1 — (1 — e~15:5/10) — ¢-15.5/10_ Thuys,

_ilce—-(r—-li..'»)/lo s 155
t|A) = .
folt]4) {O otherwise
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Hence, the conditional pdf is identical to the original exponential pdf but
shifted to the right 15.5 units (Figure 2.11). By inspection, then, the condi-
tional mean additional time that she has to wait remains 10 minutes. Here,
“sunk investment” in waiting reaps no rewards in terms of reducing the
remaining expected time until jitney arrival.

‘r Jr(t|A)

t

155
FIGURE 2.11 Exponential PDF shifted to the right.

Exercise 2.15: Jitney Rider, Revisited Redo Example 4 assuming that the

pdf for the time until arrival of the next jitney is uniform between 2 and 18
minutes. How does sunk investment affect waiting time in this case?

2.11.3 Erlang PDF

A random variable L, is said to be a kth-order Erlang random variable
if its pdf is given by

lkxk-le-lx
A k=1L2.:.:] x>0
Fuld)==4 te — D! (2.50)
0 otherwise
The mean, variance, and s-transforms are
k
E[L,] = 3 (2.51a)
ot = 1"_2 (2.51b)
k
i = (25) 2.510)

The Erlang pdf arises frequently in the application of Poisson processes.
As we will show in Section 2.12, the kth-order Erlang pdf describes the prob-
abilistic behavior of time until the kth arrival in a Poisson process. Note
that for k = 1, the Erlang reduces to the familiar negative exponential pdf.
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In fact, L, may be thought of as the sum of & independent, identically dis-
tributed negative exponential random variables, each with mean 1/1; this
provides a convenient way to understand intuitively the Erlang pdf and to
remember the mean, variance, and s-transform.

2.11.4 Gaussian PDF

A random variable Y is said to have a Gaussian or normal pdf if

] =(y=-my)?/20? —~
Sr(y) = W‘—’ SERRSSS —oo <y < oo (2.52)
The mean, variance, and s-transforms are
E[Y]=m, (2.53a)
o} = o? (2.53b)
=gt (2.53¢)

The Gaussian pdf arises most often in practice in applications of the
Central Limit Theorem, which states (roughly) that the pdf of the sum of a
large number of independent random variables approaches a Gaussian pdf
with mean equal to the sum of the individual means and variance equal to
the sum of the individual variances. The analyst of urban service systems
should be familiar with this application of the Gaussian pdf. On occasion in
this text we may invoke the Central Limit Theorem to approximate the pdf
of a sum of random variables as a Gaussian random variable. Since we can-
not obtain a closed-form expression for a partial integral of f,(y), tables of
the Gaussian pdf and cdf are widely available, for instance in mathematics
and engineering handbooks.

2.12 POISSON PROCESS

We wish now to utilize our knowledge of pmf’s, pdf’s, and probabilistic
modeling to analyze a very important process in urban services: the Poisson
process. As mentioned earlier in Section 2.9, when introducing the Poisson
pmf, the Poisson process is most often applied to occurrences of events in
time. In an urban services context, these events could be requests for service,
breakdowns of equipment, arrivals of vehicles at an intersection, or any of
numerous other entities. So as not to confuse a Poisson event with events
having an algebra (e.g., union and intersection), hereafter we will refer to
Poisson-type events as arrivals, such as customers arriving at a queue. As
we will see later, the concepts of a Poisson process can be extended to spatial
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applications in order to model, for instance, the locations of demands for
service throughout a city.

First, we list the postulates of a Poisson process so that we can see the
underlying physical assumptions necessary to give rise to the process. As we
will see in Chapter 3, these postulates carry over in a natural way to spatial
applications.

2.12.1 Postulates of a Poisson Process

There are four postulates associated with the Poisson process: First we
state them informally, then mathematically:

1. The probability that at least one Poisson arrival occurs in a small
time period At is “approximately” A At. Here A is called the arrival-
rate parameter of the process. In applications, a numerical value for
A is found by measurement. Examples might be 4 = 10 fire alarms
per hour, or A = 62 cars per hour passing through a tunnel, or
A = 8.3 unscheduled requests per day for a particular social service.

2.  The number of Poisson-type arrivals happening in any prespecified
time interval of fixed length is not dependent on the “starting time” of
the interval or on the total number of Poisson arrivals recorded prior to
the interval. For instance, if water-main breakdowns occur as a
Poisson process, the number of breakdowns occurring in a particular
day does not depend on the day being the tenth day of the month
versus, say, the twentieth day of the month; nor does it depend on the
number of breakdowns that occurred on the previous day or in the
previous week.

3. The numbers of arrivals happening in disjoint time intervals are
mutually independent random variables. Referring again to water-
main breakdowns, say that we were interested in the number of
breakdowns on September 28; this assumption would imply that
knowledge (even partial knowledge) of the numbers of breakdowns
on any days or combination of days other than September 28 would
tell us nothing about the number of breakdowns on the 28th.

4. Given that one Poisson arrival occurs at a particular time, the condi-
tional probability that another occurs at exactly the same time is zero.
Thus, two or more arrivals cannot occur simultaneously. This may
or may not be a good model for water-main breakdowns, but it
certainly is not valid for the number of persons injured in auto
accidents; given that an auto accident occurs at a particular time,
it is an unfortunate fact that two or more persons may be injured at
once.
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These same four postulates can be stated mathematically more precisely:

1. The probability that at least one Poisson arrival occurs in a time
period of duration 7 is

p(t) = At + o(7)

where o(7) is a generic expression for a term or collection of termsthat
“goes to zero faster than kt as 7 goes to zero” (for any constant k).
Mathematically, lim,_, o(z)/t = 0. Note that for any finite sum of
terms oV(t) = 0,(7) + 0,(z) + -+ -+ on(tr) such that o, (r)/r — 0
astT—0(j=1,2,...,N), we have lim,_., o¥(t)/r = 0.

2. Let N(¢) = total number of Poisson arrivals occurring in the interval
[0, ]. We assume that N(0) = 0. For the interval [z, #,], the number
of Poisson-type arrivals [N(z,) — N(t,)] (1, > t, = 0) is dependent
only on (1, — t,) and not on ¢, or N(¢,).

3. Ifo<t, <t <ty <...,the numbers of arrivals occurring
in disjoint time intervals [N(z,) — N(t))], [N(t,) — N(1,)], . .. are
mutually independent random variables.

4. The probability that two or more Poisson arrivals occur in a time
interval of length 7 is o(7).

Given postulates 1-4, we now wish to prove the fundamental result for
a Poisson process: that the number of Poisson arrivals occurring in a time
interval of length 7 is Poisson-distributed with mean Ar:

(Ilt)ke—/ll

P{N(t) =k} = A

k=0,1,2,... (2.54)

Armed with this result, we can derive all the other interesting properties of
a Poisson process.

Proof of (2.54): Let P,(r) denote the probability that exactly m arrivals
occur in time ¢,

P,(t) = P{N(t) = m} m=40,12...

We consider the time interval [0, t] and expand it by an amount 7, as shown
in Figure 2.12. We are interested in the probability that exactly m - |
Poisson arrivals have occurred by time ¢ - 7. As shown in Figure 2.12, this
event could occur with m - 1 arrivals occurring in [0, 7] and no arrivals
in [¢, ¢t + 7], or m arrivals in [0, ¢] and 1 arrival in [¢, 7 + 7], and so on.
Invoking independence of nonoverlapping intervals (postulate 3) and depen-
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L Cumulative
number of
Poisson arrivals

m+ 1 O .

A T
m-—2 I l /

t o 2 4 TimVe
FIGURE 2.12 Possible system trajectories to reach m -+ 1 arrivals by time ¢ + 7.

149

dence only on time differences (postulate 2), we can write form = 1,2, ...
Pusi(t + 7) = Ppy1(1)Po(t) + Pu()Py(7) + Ppo 1 ()P2(7) +- ...
Letting 7 become small, say 7 — At, we have, by postulates 1 and 4,
Pryi(t + At = Py y(D[1 — A At — o(AD)] + P, (D[4 At + o (At)]
+ [terms that are o(At?)]
Grouping the o(Ar) terms together, we have

Ppo(t + At) = P (1)1 — A At) + P,()A At + o(At)
or

Posi(l 4= AD) =~ £.alt) ; o(At)
. Al 1 — APm-l-l(t) + )'Pm(t) c 3 T

Letting At — 0, which implies that o(A?)/At — 0, we obtain the differential
equation

Lot @ _ P, 0) = Prus®]  m=1,2,... 255

This equation makes sense intuitively: it states that the time rate of change
of the probability of exactly m - 1 arrivals by time 7 is equal to the prob-
ability of exactly m arrivals in time ¢ multiplied by the rate at which a “tran-
sition occurs” from m to m + 1 arrivals, minus the probability of already
having m - 1 arrivals by ¢ multiplied by the rate at which a transition
occurs from m - 1 to m -+ 2 arrivals; the conditional transition rate in each
case is A. Similar logic can be used to develop sets of coupled differential



Sec. 2.12 Poisson Process 53

equations for more complicated processes, say where A is dependent on the
number of previous arrivals or perhaps where arrivals can “depart,” as in
queueing systems. These ideas are expanded further in the discussion of
“birth” processes in Chapter 3 and “birth-and-death” processes in Chapter 4.

While (2.55) holds for m =1, 2, ..., we also require an equation for
m = 0. In a manner similar to the derivation above, we obtain

dPy(t)
— - AP(1) (2.56)

The intuitive interpretation here is directly analogous to that of (2.55). The
solution to (2.56) is clearly

Py(t) = ce~* t >0

with the constant ¢ determined by the initial condition that P,(0) = 1,

implying that ¢ = 1. Then, by substitution into (2.55), one proves by induc-
tion that

_ (Ayre™ _
Pm(t)—T ”1—1,2,...

This completes the proof.
2.12.2 Interarrival Times

We are now interested in other properties of the Poisson process. For
instance, suppose that we start observing the process at time 7 = 0 and we

wish to know the pdf for the time of occurrence of the kth arrival. Define
the random variable

L, = time of occurrence of the kth arrival o=, 20

Its pdf f,,(+) is sometimes called the “Ath-order interarrival time distribu-
tion.” We obtain f; () simply by the following reasoning:

Sf1.(x) dx = P{kth arrival occurs in the interval x to x - dx]}

= P{exactly k — | arrivals in the interval [0, x] and
exactly one arrival in [x, x + dx]}

By invoking the postulates of the Poisson process, plus (2.54), we can write

J1.(x) dx = P{exactly k — 1 arrivals in [0, x]}-
P{exactly one arrival in [x, x - dx]}

_ %[A dx + o(dx)]
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Since dx is infinitesimal, we can ignore the o(dx) term, and obtain the kth-
order interarrival time distribution

A'kxk— le—lx

f'-'(")‘_‘(T—‘l)—! x>0 k=12... (2.57)

We have the fundamental result that the kth-order interarrival time distribu-
tion for a Poisson process is a kth-order Erlang pdf.
Setting £ = | in (2.57), we have the first-order arrival distribution

Ju(x) =4e** x>0 (2.58)

This is our familiar exponential pdf with its now famous “no-memory”
property. This result proves that the Poisson process is a no-memory process,
that is, that future arrivals do not depend on the number or times of occur-
rences of previous arrivals.

2.12.3 Unordered Arrival Times

We now know that arrivals occur singly in a Poisson process with inter-
arrival times between successive arrivals distributed as negative exponential
random variables. But suppose that we turn things around a bit and say that
we have waited through the interval [0, ¢] and that exactly m Poisson arrivals
have occurred in [0, r]. And, rather than queue up in some orderly fashion
(like first arrivals first in line), all the arrivals are mixed together, such as the
students sitting in a classroom or the patients sitting in the waiting room of
an outpatient clinic. We wish to derive a property of the Poisson process
which in part is responsible for its nickname “most random of random
processes.”

We call the m arrivals the unordered arrivals of a Poisson process, since
they are not ordered in accordance with the time of their arrival. We wish
to determine the probabilistic behavior of the m unordered arrival times.
To do this, we partition the interval [0, 7] into 2m -~ | arbitrary subintervals
a,and b,, as shown in Figure 2.13. Suppose that we are interested in the event
E,, that exactly one arrival occurred in each of the subintervals b, and that

no arrival occurred in any of the subintervals ¢,, We wish to calculate the
probability of E,, occurring, given that exactly m arrivals occurred in [0, 7].

m+1

FIGURE 2.13 Partitioning of [0, t] for unordered arrival times.
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(Clearly, the probability of E,, is zero for any numbers of arrivals other than
m.) Thus, invoking the definition of conditional probability, we want

P{E, and m Poisson arrivals in [0, 1]}
P{m Poisson arrivals in [0, ]}
__ P{m Poisson arrivals in [0, t]| E,.}: P{E,.}
[(At)™/m!]e~*

P{E,,| m Poisson arrivals in [0, 1]} =

___PE,)
= [ m e ™ o
But E,, is the union of 2m - 1 events that, by the Poisson postulates, are
mutually independent. For m of the events, we want the probability of exactly
one arrival in a subinterval b,, and this is simply

Ab e
1!

P{exactly one arrival in b,} = A B N

For m - 1 of the events, we want the probability of no arrivals in a sub-
interval a, and this is

P{zero arrivals in a,} = e = K== 100 . o5 it ]

Invoking mutual independence to multiply the individual probabilities, we
have, upon substitution into (2.59),

P{E,, | m Poisson arrivals in [0, 7]}

__(4bjAb, . .. Ab e Pie M, @”Br)(p Mgmint , ,  gTewmT)

[((A)"/m!']e~*

Since Y, b, -+ 3 a, = t, the exponentials divide out and we have

_bby...b

P{E, |m Poisson arrivals in [0, 1]} mm! (2.60)

tm

But suppose that the process had been one in which we took each potential
arrival, say a person, and “tossed” him/her “at random” into the interval
[0, 7], with successive tosses being independent. The probability that any
particular arrival “ends up” in interval b, is then simply b,/1, since the arrival
time of such a person is uniformly distributed over [0, ¢]. The probability o
that the m arrivals distributed over [0, 7] in this way each end up as the single
occupant of one subinterval b, is then simply

G- aw
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where the factorial term arises from the number of distinct ways in which
the arrivals could be situated in the subintervals; that is, there are m! points
in the experiment’s sample space having the property we desire, and each
point has the same probability.

Since (2.60) and (2.61) are identical, we thus have derived the following
result: the unordered arrival times in a Poisson process are independently,
uniformly distributed over the fixed time interval of interest.

2.12.4 Multiple Independent Poisson Processes

Suppose that there are two Poisson processes operating independently,
with arrival rates 1, and 4,, respectively. N,(r) and N,(r) are the respective
cumulative numbers of arrivals through time 7. Then the combined or pooled
process has a cumulative number of arrivals equal to N(¢) = N,(1) + N,(2).
A fundamental property of independent Poisson processes is that their
pooled process is also a Poisson process with arrival-rate parameter equal
to the sum of the individual arrival rates. Thiis. N(r) has a Poisson distribution
with mean (4, + 4,)¢. This result extends in the obvious way to more than
two independent Poisson processes. There are many ways to prove this
result, but the simplest is just to observe that the pooled process satisfies each
of the four postulates of the Poisson process.

We are often confronted with the following question: Given two inde-
pendently operating Poisson processes with rate parameters A, and A,,
respectively, what is the probability that an arrival from process 1 (a “type 1”
arrival) occurs before an arrival from process 2 (a “type 2” arrival)? To solve
this problem, let the two arrival times of interest be denoted by X, and X,
for processes 1 and 2, respectively. We want to compute P{X; < X,}.
Invoking our knowledge of Poisson processes, we know that the pdf’s for
X, and X, are negative exponentials with means A7' and 13!, respectively.
Thus, because of independence, the joint pdf is

X3.=0
(o x (X1, X2) = }, ,1 e~ Mxi—daxs
f:‘ l.4\|( 1 2) 1/v2 xz > 0

Integrating over the part of the positive quadrant for which x, < x,, we have
P[X] < XZ} = J‘w (Ix‘ J‘w dlellze—llxr-hxg
0 X1

= J‘w dxl Ale—llan(e"h.\'l)
0

._._;"1_____ h -u
“LH;L" =
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or, since the integral equals 1,

A

P(X, < Xo} = S (2.62)

This result makes sense intuitively: The probability that a type 1 arrival occurs
before a type 2 arrival is equal to the fraction of the pooled arrival rate
comprising type 1 arrivals.

This important result can be derived in a number of other ways, as well.
Suppose that we are awaiting the first Poisson-type arrival and finally we are
given the conditional information that the arrival occurred in the interval
[z, t + dt]. Let

Pftype 1|one arrival in [z, t + dt]} = probability that the arrival is
type 1 given that it occurs in
(¢, t + dt]
Invoking conditional probability,

P{type 1 and it occurs in [t, t -+ dt]
P{one arrival occurs in [t, t + dt]}
A, dt + o(dr)

(A, + Ay dt + o(dr)

P{type 1|one arrival in [¢, t + dt]} =

Since dt is infinitesimal, we can ignore the o(dt) term, thereby obtaining
A./(A, + A,) for the conditional probability, conditioned on the infinitesimal
arrival interval. We uncondition the probability by integrating over all
possible arrival intervals, weighted by the probability of their occurrence,

Ptype 1} = J? P{type 1|one arrival in [t, t -+ dr]}(A, + A,)e”P+2e gy

S
~ L+ A

Yet a third way of deriving the result involves consideration of a long
time period of length 7. During that period the expected total number of
arrivals is (4, -+ 4,)7’; the expected number of type 1 arrivals is 1,7 Thus,
roughly speaking, the fraction of total arrivals that is type | is

('11 + Az)T '11 =} '12

a result in agreement with the more formally derived (2.62).
A final point about this result: in examining a Poisson process we occa-
sionally only have to look at the arrival instants, distinguishing between,
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say, type 1 and type 2 arrivals, not caring about the exact times of their
occurrence. Then, because of the no-memory property of Poisson processes,
each arrival instant becomes an independent Bernoulli experiment, with
probability of a type 1 arrival equal to 4,/(1, + 4,) and of a type 2 equal to
A,/(A, ++ A,). Thus, when considering questions of the types of Poisson
arrivals occurring (and not their times), we may invoke ideas of Bernoulli
experiments which often lead to geometric distributions, binomial distribu-
tions, and other pmf’s associated with independent discrete random variables.

We apply most of our results for a Poisson process to a “pedestrian
crossing” problem at the end of the chapter.

2.13 RANDOM INCIDENCE

The Poisson process is one of many stochastic processes that one encounters
in urban service systems. The Poisson process is one example of a “point
process” in which discrete events (arrivals) occur at particular points in time.
For a general point process having its zeroth arrival at time 7', and the

remaining arrivals at times T,, T, T3, ..., the interarrival times are
Y,=T —T,
Yz = Tz — Tl
Y, =T, — Ty,
Such a stochastic process is fully characterized by the family of joint pdf’s
S0 Y Ympeeer¥nsL0s Vs Vogs - - » V) fOr all integer values of p and all possible
combinations of different n,, n,, ..., where each n, is a positive integer

denoting a particular interarrival time. Maintaining the depiction of a
stochastic process at such a general level, although fine in theory, yields an
intractable model and one for which the data (to estimate all the joint pdf’s)
are virtually impossible to obtain. So, in the study of stochastic processes, one
is motivated to make assumptions about this family of pdf’s that (1) are
realistic for an important class of problems and (2) yield a tractable model.

We wish to consider here the class of point stochastic processes for which
the marginal pdf’s for all of the interarrival times (Y, ) are identical. That is,
we assume that

) =L =f&=...=LK=...
Thus, for Y, if we selected any one of the family of joint pdf’s fy, vn,...,v,,(Vaus
Vs -+ s Vir - + + » V) and “integrated out” all variables except y,, we would

obtain f,(+). Note that we have said nothing about independence of the Y’s.
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They need not be mutually independent, pairwise independent, or condi-
tionally independent in any way. For the special case in which the Y,’s are
mutually independent, the point process is called a renewal process. The
Poisson process is a special case of a renewal process, being the only con-
tinuous-time renewal process having “no memory.” However, the kind of
process we are considering can exhibit both memory and dependence among
the inter-event times. In fact, the dependence could be so strong that once
we know the value of one of the Y,’s we might know a great deal (perhaps
even the exact values) of any number of the remaining Y, 's.

Example 5: Bus Stop

Consider a potential bus passenger arriving at a bus stop. The kth bus arrives
Y, time units after the (k — 1)st bus. Here the Y)’s are called bus headways.
The probabilistic behavior of the Y,’s will determine the probability law for
the waiting time of the potential passenger (until the next bus arrives). Here
it is reasonable to assume that the Y,’s are identically distributed but not
independent (due to interactions between successive buses). One could
estimate the pdf fy(.) simply by gathering data describing bus interarrival
times and displaying the data in the form of a histogram. (This same model
applies to subways and even elevators in a multielevator building.)

Example 6: Police Patrol

Consider the process of passings of a police patrol car by a residence or busi-
ness. Successive passings may be identically distributed but not independent.
For instance, the patrolling officer may think to himself or herself: “Well,
I’ve passed that address three times during the last two hours, so I won’t go
by there again until tomorrow.”

In situations such as these, for which we know f,(+) or at least the mean
and variance of Y, we are often interested in the following problem. An
individual, say a potential bus passenger or a homeowner looking for a police
patrol car, starts observing the process at a random time, and he or she wishes
to obtain the probability law (or at least the mean) of the time he or she must
wait until the next arrival occurs. In various applications this time could be
the waiting time for a bus, subway, er elevator or the time until arrival of
a patrol car. This is said to be a problem of random incidence, since the
individual observer is incident to the process at a random time. The random
time assumption is important: the time of random incidence of the observer
can in no way depend on the past history of actual arrival times in the process.

We now derive the probability law for V, the time from the moment of
random incidence until the next arrival occurs. We do this for continuous
random variables since the same reasoning applies in the discrete case. The
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derivation proceeds in stages, first conditioning on W, the length of the inter-
arrival gap entered by random incidence. For instance, the gap in which a
potential bus passenger arrives has length equal to the sum of two time
intervals: (1) the time between the arrival of the most recent bus and the
arrival of the potential passenger, and (2) the time between the passenger’s
arrival and the arrival of the next bus. We now argue that the probability that
the gap entered by random incidence assumes a value between w and w + dw
is proportional to both the relative frequency of occurrence of such gaps
Jy(w) dw and the duration of the gap w. That is,

fw(w) dw cc wf,(w) dw

Since a pdf must integrate to 1, the constant of proportionality must be
1/E[Y], so that

Sir(w) = Wéﬁ,“i) (2.63)

This result says that random incidence favors gaps of longer duration in
direct proportion to their duration. The argument for this result is most
simply given by example. Given two gap lengths w, and w, = 2w, for which
the relative frequencies are identical [ fy(w,) dw = f,(w,) dw], then one is
twice as likely to enter the gap of length 2w, compared to the gap of length w,.
Or, given the same two gap lengths, w, and w, = 2w,, for which the relative
frequency of the large gap length is only half that of the smaller [ f,(w,) dw
= 4 fy(w,) dw], we are equally likely to enter either of the two types of gaps;
here the doubling of relative frequency for w, “makes up for” the doubling
of duration of w,.

Now, given that we have entered a gap of length w by random incidence,
we are equally likely to be anywhere within the gap. More precisely, there is
a constant probability of being in any interval 7 to 7 + A& for any fixed
h > 0, assuming that [t, T + A] is fully contained within the gap. Thus,
given w, the time until gap completion (i.e., the time until the next event)
has a uniform pdf:

Srw(w|w) = % 0<v<w (2.64)

Combining our two results so far, we obtain the joint pdf for ¥ and W:

So.w@, w) = fy(v|w)fu(W)

_ 1 whi(w) o
_— E[Y] 0<<rsw<
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The marginal for ¥, which is what we want, is formed simply by “integrating
out” w,

o= L

v

which can be expressed in terms of the cdf for Y,

fw) = 1—'1%’](”) v20 (2.65)

Question: Assuming that Fy(0) = 0, does this result make intuitive sense for
values of v near zero?

Example 5: (continued)

Suppose that buses maintain perfect headway; that is, they are always T,
minutes apart. Then

0 ‘U<To
1 DZTO

1
file) = {To O0=v=To

0 otherwise

Fy(v) = {

That is, the time until the next bus arrives, given random incidence, is uni-
formly distributed between 0 and 7, with a mean E[V] = T,/2, as we might
expect intuitively.

Example 6: (continued)

Suppose that police cars patrol in a completely random manner, with car
passings occurring according to a Poisson process with mean rate A passings
per day. Then interpassing times are distributed as negative exponential
random variables with mean 1/A. Hence,

Fw)=1=—e% v >0
and
1= —e)
fV(v) g l/l
= Ae~ & v>0

as we expect from the no-memory property of Poisson processes.
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Example 7: Clumped Buses

Suppose that buses along a particular route are on schedule “half the time”
and “clumped” together in pairs the other half of the time. That is, for 50
percent of the day (which 50 percent is unpredictable), the bus headways are
exactly T,. For the remaining 50 percent of the day, (crowded) buses arrive in
pairs, the time between each pair being 27,. Note that in this case, given
paired buses, half of the bus interarrival times are 27, and half are 0 (!),
because of zero elapsed time between two paired buses. Thus,

-k 0S‘D<To
Fy(’v) = % Tg S’U <2T0
1 2Ty <wv

E[Y] S 0--&- + To"% -+ ZTOO% bencc To
The pdf for bus waiting time, given random incidence, becomes

3

m 0 S v < To
fy(v) = 4_1(_) To<v< 27-0
0 otherwise

The mean wait for a bus is
E(V] = [ ufw) do =3 T
0

which represents a 50 percent increase over the case of perfect headways.
(Note that successive bus interarrival times are not independent in this case.)

Sometimes we may only be interested in E[V], the mean time from the
moment of random incidence until the next arrival occurs. Or, we may
have only partial statistics about Y, perhaps the first few moments, and we
desire to obtain at least E[V]. We may compute E[V]simply by conditioning
on the length of the gap entered and integrating over all possible gap lengths:

E[V] = j: E[V|w]fi(w) dw

But, given W = w, V is uniformly distributed between 0 and w [see (2.64)];
thus,

E[V|w] = {w
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Using (2.63), we can now write

_ [T L whH(w)
E[V]—J‘o 7111%[37‘—1])—(1“)

_ E[Y?*] _ o} + E*[Y]
ElV]= 25171 = ~ 2E[7]

(2.66)

Thus, the mean time from random incidence until the next event depends only
on the mean and variance of the inter-event time Y.

Example 5: (continued)

For buses with perfect headways, E[Y] = T, and o} = 0. Substituting in
(2.66), we have

0+4+T% T
E[V]=To°.=_29

as previously computed.

Example 6: (continued)

For perfectly random police patrol,

—_

1
E(Y] = o o = TS
and thus

A2 4 1/A2 2
EM="=am =7

as expected.
Example 7: (continued)

For buses that are clumped in pairs 50 percent of the time,

E[Y?] =0.} + T§-4 + QTo)*} =} T}

Substituting in (2.66), we obtain the earlier result

T2
E[V]=iz-ﬁ‘1=§To

It is interesting to examine (2.66) to acquire an understanding of the
range of plausible values of E[V]. The minimum possible mean waiting
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time until the next arrival is 2£[ Y], which occurs for a “perfectly scheduled”
system (i.e., o = 0). For systems with temporal irregularity comparable to
that of the Poisson process, namely those for which the standard deviation
of interarrival times o, equals the mean E[ Y], the waiting time E[V] is equal
to the mean E[Y]. Thus, for such systems one incurs the same average wait
arriving at random as an observer arriving immediately after the most recent
event (e.g., bus). Intuitively, in this case one half the mean wait is due to the
average spacing between successive buses and the other half is due to uncer-
tainties (i.e., randomness) in the arrival process. For systems with irregularity
greater than the Poisson process, namely those for which ¢, > E[ Y], the mean
wait of the observer can assume any value greater than E[ Y]; here, somewhat
surprisingly, one waits longer (on the average) arriving at a random time com-
pared to arriving just after the most recent event. An example of such a situa-
tion would be arriving at the turnstiles of a sports stadium, say Yankee
Stadium in New York, and waiting for the next sports fan to pass through
the turnstile. The wait is likely to be very small (say in the order of seconds)
if one arrives just after the arrival of a random fan (thereby guaranteeing that
a baseball game is about to be played) compared to arriving at some random
time during the year (in which case the wait is likely to be quite long if one
arrives, say, in December).

214 PEDESTRIAN CROSSING PROBLEM

In this section we study a problem involving the timing of a pedestrian-
street-crossing light. The problem provides a good illustration of many of
the probabilistic modeling techniques that we have reviewed in this chapter,
particularly the Poisson process. It also provides an example of applying
mathematical modeling to the evaluation of technological alternatives in an

urban setting.

left

The problem is as follows. Pedestrians approach from the {right

} side of

ok : : i A g
the crossing in a Poisson manner with average arrival rate {AL arrivals per
R

minute (Figure 2.14). Each pedestrian then waits until a light is flashed, at
which time all waiting pedestrians must cross. We refer to each time the light
is flashed as a “dump” and assume that a dump takes zero time (i.e., pedes-
trians cross instantly). Assume that the left and right arrival processes are
independent.

We wish to analyze three possible decision rules for operating the light:

Rule 4: Dump every 7 minutes.

Rule B: Dump whenever the fotal number of waiting pedestrians
equals N,.
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Automobile
traffic
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Pedestrian traffic Pedestrian traffic
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Pedestrian crossing light

FIGURE 2.14 Pedestrian crossing problem,

Rule C: Dump whenever the first pedestrian to arrive after the previous

dump has waited 7, minutes.

Presumably, implementation of each rule requires a particular type of
technology with its attendant costs, and thus it is important to determine
the operating characteristics of each in order to understand tradeoffs between
performance and cost.

For each decision rule, determine:

The expected number of pedestrians crossing left to right on any
dump.

The probability that zero pedestrians cross left to right on any
particular dump.

The pdf for the time between dumps.

The expected time that a randomly arriving pedestrian must wait
until crossing.

The expected time that a randomly arriving observer, who is not a
pedestrian, will wait until the next dump.

The last two parts to this question will provide a good motivation for our
more general study of queues in Chapter 4.

We answer each part in sequence, analyzing each of the three decision
rules as we proceed.

1. Let N,,, N.s and N, be the expected number of pedestrians crossing
left to right on any dump for each of the three decision rules 4, B, and C,
respectively.
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For interdump times fixed at 7" minutes, we simply require the expected
number of Poisson arrivals in an interval [0, 7], which gives

Ne,=4,T (2.67)

If the decision rule is to dump whenever there are exactly N, waiting
pedestrians, obviously the total number of pedestrians crossing will be equal
to N,. However, the probability that any particular one is a left-to-right
crossing pedestrian is 4,/(4, + Az), and the type of each successive pedestrian
is chosen independently. Thus, we may think of each dump as N, independent
Bernoulli trials each having “success” probability 1./(1, + Az). Clearly, the
expected number of left-to-right crossing pedestrians in this case is

Ny = Dohs_ (2.68)

For rule C, the expected number of left-to-right crossing pedestrians
during the pedestrian-initiated waiting period of duration T, minutes is
A.T,. However, we must also count the first arriving pedestrian who initiates
this waiting period; he has a probability equal to 4,/(4, + 4z) of being a
“left-to-right” pedestrian. Thus, using a “left-pedestrian” indicator random
variable, added to a Poisson random variable, we obtain

Ny = A,T, + ﬁ; (2.69)

2. Let B, B and f. be the three desired probabilities for decision rules
A, B, and C, respectively.

For decision rule 4, #, is simply the probability of zero Poisson arrivals
in a fixed interval of length 7,

B.= e T (2.70)

For decision rule B, the probability that zero of the N, crossing pedes-
trians are left-to-right pedestrians is equal to the probability that N, succes-
sive independent Bernoulli trials yield a right-to-left pedestrian. Thus,

po= ()" @71)
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For decision rule C, . is equal to the probability that the first arriving
pedestrian is a right-to-left pedestrian and that no left-to-right pedestrians
arrive in the following T, minutes. By independence, the probability of this
intersection of events is equal to the product of the individual probabilities,

Bec = i 'f: lxe‘*m (2.72)

3. Let the three desired pdf’s be fy,(+), fx,(*), and fy.(+), respectively.
Since we are finding the pdf’s for the time between dumps and since the
decision rules utilize information on the fotal number of arriving pedestrians
(and rule 4 utilizes no information on arriving pedestrians), we need only
consider in this part the pooled Poisson process having arrival rate A, -+ A.

The first pdf is simply the unit impulse located at T'; thus,

fed®) = tolx — T) | (2.73)

The second pdf corresponds to the N,th-order interarrival time pdf for
a Poisson process with (pooled) arrival rate A, + Ax. By (2.57), this is simply
the Nyth-order Erlang pdf,

(A Ag)exrlp=Aurinls
Sa¥) = (N, — D! X2 0

(2.74)

For the third pdf we use the fact that the time between dumps X, can be
expressed as

X, = time until first pedestrian arrives + T,

But the time until the first pedestrian arrives is equal to the first-order
interarrival time in a (pooled) process with rate A, + A, and this is simply
a negative exponential pdf with mean (4, + 1z)~'. Thus, the pdf for X_ is
simply the negative exponential pdf shifted to the right by 7, minutes,

filx) = Qi + Ap)e~Virdnlta=Td %> T, (2.75)

4. Let W,, W,, and W, be the three desired expected waiting times of a
randomly arriving pedestrian. The reasoning here, while the most advanced
in the problem, will provide some beginning insights into the theory of
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queues, which we study in earnest in Chapters 4 and 5. As in part 3, here
we need only study the pooled process having rate A, + A.

For rule 4, in which a dump occurs every 7" minutes, we can correctly
reason that his or her arrival time in the interval [0, 7] is uniformly distributed
over the interval, and thus the waiting time until the end of the interval is
uniformly distributed, implying

W,=

= T
= (2.76)

To analyze rule B we must be a bit more careful. A randomly arriving
pedestrian is equally likely to be the first to arrive since the last dump, the
second toarrive, . . . , the Nyth to arrive. Thus, the probability that a randomly
arriving pedestrian is the kth to arrive since the last dump is equal to 1/N,
for k=1,2,..., N, Given that he or she is the kth to arrive, his or her
conditional waiting time until the next dump is distributed as an (¥, — k)-
order Erlang random variable with parameter 4, + A (where we define a
zero-order Erlang random variable to always assume the experimental value
zero). Thus, the conditional mean waiting time of the kth arriving pedestrian
is

If we uncondition by multiplying by the probability of being the kth arriving
pedestrian and summing over all possibilities, we have

A No NO = k _l_
o= 2 (11T, §er
If we utilize the fact that
§k=ﬁﬁ%iﬁ (2.78)
k=1
(2.77) simplifies to
5 Ny— |1
B T (2:79)

Does this make sense intuitively ?

To analyze rule C, let us condition on the total number of pedestrians
who arrive during the interval of length 7' initiated by the first arriving pedes-
trian. Clearly, the first arriving pedestrian has an expected wait of 7, minutes
and any other arriving pedestrian prior to the dump has an expected wait of
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T,/2 minutes. We seek to combine these two conditional expected waits in
an appropriate manner. Call (W, |k) the conditional expected wait of a
randomly arriving pedestrian, given that exactly k& pedestrians arrive in the
associated interval of length T',. Then clearly

o] k T, 2+k
Bl = i T e F 12 "+

To find now the expected unconditional waiting time, W,, per pedestrian,
we must multiply by the probability that a randomly chosen pedestrian has

crossed the street in a group of k¥ + 1 pedestrians. This is a case of random

incidence and the probability in question [use the discrete analogue of
(2.63)] is given by

(4 DIk, + AT Jre~ bt
KU+ G + ADTS)

k=0,12,...

We then have for the unconditional expectation:

W — i (2 o i k)To (k + 1)[().1‘ -} AR)TO]ke"(’lb*"n)To
EREE ) KT (A, + 29T,

which simplifies to

I+ (A + AT

W — %[1 + 1 ] ‘ (2.80)

We can check the reasonableness of this result for two limiting cases: (1)
as T, becomes large compared to the mean passenger interarrival time
(AL + Ag)~', the mean wait approaches one half the mean interdump time,
a result in agreement with (2.66) for the case in which the variance of the
interdump time is small compared to the square of the mean; and (2) as T,
becomes very small, W, approaches T, (which is also expected, since in that
case nearly all crossing pedestrians are first arriving pedestrians).

We could obtain (2.80) by another argument, based on “perturbation
random variables,” as formalized in Section 3.8. Roughly, the argument goes
as follows. Each pedestrian must incur an average wait of 7,/2 minutes. In
addition, there is a certain probability that 2 randomly arriving pedestrian
must incur an additional mean wait of 77/2 minutes; this probability is equal
to the probability of being the first arriving pedestrian. Thus, we could write
W, as the sum of T,/2 plus a perturbation term, as follows:

Wy = %—9 4 %P{random pedestrian first to arrive since last dump}
(2.81)
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To compute the probability in the perturbation term, consider a very
long period of time during which N dumps, where N is a large number, have
taken place. This means that N “first pedestrians” have arrived and an
expected number of N(A, + Ax)T, pedestrians arrived during the T;-long
intervals that follow the arrival of the first pedestrian. Thus,

P{randomly chosen pedestrian was __ N
first to arrive since last dump} — N + N(A, + AT,

o 1
T 1+ AL+ AT,

Substituting into (2.81), we again obtain

= -———-Z:Q i 1
We =3[ 14 1+(1L+AR)TJ

Note that the result above has been argued quite informally, in keeping with
the informality of the perturbation argument.

5. This part is considerably easier than part 4. However, it is instructive
to compare the answers to those in part 4 for each of the three decision rules.
In part 4, the randomly arriving person is a pedestrian and he or she thus
“disturbs” the system. In this part the randomly arriving person is strictly
an observer, and thus he or she does not affect the system. Call the times
desired V ,, V5, and V, for the three respective decision rules.

All we need do to obtain the three required answers is apply (2.66)
derived for random incidence. Recalling that equation, in the context of
this problem, it states that the expected time until the next dump (from the
moment of the observer’s arrival) is equal to one half the sum of the mean
squared and the variance of the interdump times, divided by the mean.
For instance, for decision rule 4 we have E[X,] = T and o}, = 0, implying
that

7y e % (2.82)

as expected.
For decision rule B, we have E[X] = N,/(A, + Ap) and 6%, = Ny/(4,
+ Ag)?, implying that

N, + 1

VB ——— m (2.83)
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Note that this result is similar to that derived in part 4, except that the “4-1"
here is replaced by a “—1.” Does this make sense intuitively? Can you
derive (2.83) along the lines argued in part 4 to confirm this result?

For decision rule C, we have

E[X]=-—]———+T and ot = (—1—)2
¢ /lL =+ }'R ” o )’L + )'R
Thus,
po=Toy 1 1 (2.84)
€72 T2+ A T 20 + (0 + To[AL + 1R)

This result, too, checks with our intuition in two limiting cases: as 7, — 0,
Ve — 1)(AL + Ap), implying that the expected time until the next dump is
equal to the expected time of arrival of the next pedestrian. As 7, becomes
large, Vo — [Ty + (AL -+ Az)~']/2, which is one half the expected interdump
time; this result checks with (2.66) for the case in which the variance of the
interdump time is negligibly small in comparison to the square of the mean.

This completes our analysis of the pedestrian crossing problem. In
addition to providing us with a good example of probabilistic modeling as
applied to an urban service system, it has pointed to directions we wish to
pursue in Chapters 3-5.

Example 8: Pedestrian Crossing, One More Time

One way to evaluate the alternative decision rules is to design each system to
yield the same mean pedestrian waiting time and then to determine which
system has the smallest average frequency of pedestrian light flashes (a small
frequency would reduce the disruption of vehicular traffic). Or, we could hold
constant the frequency of pedestrian light flashes and determine which system
has the smallest mean pedestrian waiting time. Intuitively, how would you
rank-order the systems according to this evaluation yardstick ? Can you prove
your intuition mathematically ? Try several typical values of A,, Az and desired
mean wait to observe the range and sensitivity of the results.

Hint: Write an expression for the mean time between pedestrian light
flashes for each of the three systems. You should then be able to express
each of the pedestrian mean waiting times derived in part (4) in the form
%+(mean time between pedestrian light flashes)—(perturbation term). By
examining the perturbation terms, you should be able to show that system
A is the least preferred, system B the most preferred, and system C falls
between the two. However, in comparing systems B and C, you should
also consider the technological feasibility and associated cost of each of
the systems.
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This chapter has reviewed the fundamentals of probabilistic modeling, with
emphasis on modeling physical situations in an urban setting. In practice
there is no magic procedure for developing such models. In fact, it is the
reduction of a situation to a sample space with its probability assignment
and random variables that is usually the most difficult step. The formal mani-
pulation that follows from that point is (relatively) straightforward but still
quite interesting. By having described physical situations in terms of word
statements, we hope to have given the reader some feeling for the problem
definition process. However, our problems in this book are preselected to
illustrate concepts relevant to that portion of the text. They are also usually
selected to yield a tractable analysis. No such guarantee is available in an
actual city, and one is hard-pressed to find problems tightly worded with no
ambiguity. But these complexities contribute to the challenge of urban
analysis, which in many ways is as much an art form as a formalism.

Armed with the prerequisite background of Chapters 1 and 2, we now
proceed to methods, procedures, and points of view in modeling analysis that
are especially important in an urban setting.

Problems

The exercises contained within this chapter have been designed to give the reader
needed review experience in formal manipulation in probabilistic analysis. The fol-
lowing four problems have the dual purpose of continuing such review and providing
experience in the modeling of physical situations that typically arise in urban analy-
sis. The reader is also referred to Problem 3.1 for more review on the basic concepts
of probability modeling.

2.1 Discrete random variables: a clean sweep A 300-foot-long city block face con-
tains eight 25-foot-long parking spaces, as shown in Figure P2.1. For convenience,
we have numbered the parking spaces consecutively from 1 to 8. Each Tuesday at
8:00 A.M. a street sweeper attempts to clean the entire street. Any cars parked in
those spaces inhibit the work of the sweeper and are, accordingly, each given a $25
fine (parking ticket). We assume that the probability that any given parking space
will be occupied by an illegally parked car is p and that the status (full or empty) of
each parking space is independent of the status of all other parking spaces.

a. For any given Tuesday morning, determine the mean and variance of the
number of illegally parked cars on this block face.

b. Repeat part (a) for the mean and variance of the total dollar value of park-
ing tickets issued.

For each parked car, the sweeper is unable to sweep the 25 feet contained within
that car’s parking space and, in addition, because of maneuverability problems, it is
unable to sweep within 12.5 feet on either side of that car’s parking space (we ignore
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size differences of cars here). For instance, if cars were only parked in spaces 1 and
3, the sweeper would be unable to sweep 100 consecutive feet of the street, starting
at x = 37.5 feet (see Figure P2.1).

¢. Determine the probability of a clean sweep of the street (i.e., that no illeg-
ally parked cars are present).

d. Given that there are exactly two illegally parked cars on the street, deter-
mine the conditional pmf for the length (in feet) of street swept.

e. Find the unconditional mean length of street swept.

Hint: Avoid “brute-force” methods by arguing as follows: for any
“interior” point x, 62.5 < x < 237.5, the probability that x will be
swept is (1 — p)2. Why? Then, the expected length of parking space
4 that will be swept is 25(1 — p)2. Continuing this reasoning and
including the other “noninterior” points, you should find that the
answer is 75 + 50(1 — p) + 175(1 — p)? feet. (This line of reasoning
utilizes ideas of coverage that are explained more fully in Chapter 3.)

=50 ft > —>{25 ft
| |
T3 T4

e - 50 ft -
| | |
[ 1 L

| | |
1 T

5'¢ 7" 8 ‘

|
T

| | "
F | i

0 50 250 300 X (in feet)

2.2 Mixed random variables: a shuttle Suppose that two buses, Bl and B2, are
used to shuttle passengers between two stations, .S1 and S2, as shown in Figure P2.2.
For convenience, we denote the location x; and x, of each bus Bl and B2, respec-
tively, by its counterclockwise distance from S1, 0 < x < 2n. We are given the fol-
lowing facts about system operation:

B2 §
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Statistically, buses B1 and B2 behave identically, as do stations S1 and S2.

Each bus spends 25 percent of its time at station S1, 25 percent at S2, and
50 percent traveling between the two stations.

Speed of travel is a fixed constant.

Draw the cdf and pdf for the location of Bl at a randomly chosen time. [If
the cdf is differentiated to yield the pdf, any impulses that result (associated
with probability masses) are usually sketched as spikes with numbers adja-
cent to the spikes equal to the corresponding probability masses.]

For parts (b) and (c), assume that Bl and B2 operate completely independently. (Is
that reasonable?)

b.

Sketch and describe the joint pdf for the locations of Bl and B2. (You may
have to extend to two dimensions your notion of impulses.)

Define the headway H between Bl and B2 as the clockwise distance from
Bl to B2.

i. Argue that

X1 — X2 ifXIZXZ
xl—x2+27t ifxi<X2

s {
For the remaining parts in (c), let
n
= event that {H < T}
ii.  Sketch the conditional joint pdf for x; and x,, given 4.
iii.  Sketch the conditional marginal pdf for x{, given A.

iv.  Find the conditional mean headway, given A

(i.e., E[H|A] = E[H |H < %])

Suppose that the system operates mechanically so that

{x, +m whenever0 < x, <m
Xq =
Xy — 7 wheneverm < x; <271

Sketch and describe the joint pdf of x, and x,.

2.3 Poisson processes: subways are for waiting. Two one-way subway lines, the A4
train line and the B train line, intersect at a transfer station, as shown in Figure P2.3.
A trains and B trains arrive at the station according to independently operating
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ﬁn B train

/— Transfer station

B

A train

Poisson processes, with Poisson rates of arrival

4 = 3 A trains per hour

Ap = 6 B trains per hour

We assume that passenger boarding and unboarding occurs almost instantaneously,
not unlike true rush-hour conditions in many cities throughout the world!

a.

At a random time, Bart, a prospective passenger, arrives at the station,
awaiting an A train.

i What is the pdf for the time he will have to wait?

ii.  What is the probability that ar least 3 B trains will arrive while Bart
is waiting?

iii. What is the probability that exactly 3 B trains will arrive while Bart
is waiting ?

What is the probability that the station handles exactly 9 trains during any
given hour?

If an observer counts the number of trains that the station handles each
hour, starting at 8:00 A.M. on Tuesday, what is the expected number of
hours until he or she will first count exactly 9 trains during an hour that
commences “on the hour”? (e.g., 9:00 A.M., 10:00 A.M., 2:00 p.M.)

Whenever an A train is ready to depart from the station, it will be held if an
approaching B train is within 30 seconds of the station. This delay policy is
to facilitate the rapid transfer of passengers from the B train to the A train.

i Approximately what fraction of A trains are delayed in this manner ?

ii. Given a B-train passenger who benefits from such instantaneous
transfer to an A train, using the up-to-30-second-delay policy for the
A train, compute his or her mean waiting time reduction and compare
to the mean increase in travel time for an already boarded A train
passenger. Intuitively, under what conditions would such a delay
policy provide net global travel-time reduction?



