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CHAPTER 7: SOLUTION MANUAL

7.1 (Fenchel’s Inequality)

Let f : <n 7→ (−∞,∞] be a closed proper convex function and let g be its convex
conjugate.

(a) For any x ∈ <n and λ ∈ <n, we have

x′λ ≤ f(x) + g(λ).

Furthermore, the following are equivalent:

(i) x′λ = f(x) + g(λ).

(ii) λ ∈ ∂f(x).

(iii) x ∈ ∂g(λ).

(b) The set of minima of f over <n is ∂g(0).

(c) The set of minima of f over <n is nonempty if 0 ∈ ri
(
dom(g)

)
, and it is

nonempty and compact if and only if 0 ∈ int
(
dom(g)

)
.

Solution: (a) From the definition of g,

g(λ) = sup
x∈<n

{
x′λ− f(x)

}
,

we have the inequality x′λ ≤ f(x) + g(λ). In view of this inequality, the equality
x′λ = f(x) + g(λ) of (i) is equivalent to the inequality

x′λ− f(x) ≥ g(λ) = sup
z∈<n

{
z′λ− f(z)

}
,

or
x′λ− f(x) ≥ z′λ− f(z), ∀ z ∈ <n,

or
f(z) ≥ f(x) + λ′(z − x), ∀ z ∈ <n,

which is equivalent to (ii). Since f is closed, f is equal to the conjugate of g,
so by using the equivalence of (i) and (ii) with the roles of f and g reversed, we
obtain the equivalence of (i) and (iii).

(b) A vector x∗ minimizes f if and only if 0 ∈ ∂f(x∗), which by part (a), is true
if and only if x∗ ∈ ∂g(0).

(c) The result follows by combining part (b) and Prop. 4.4.2.
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7.2

Let f : <n 7→ (−∞,∞] be a proper convex function, and let g be its conjugate.
Show that the lineality space of g is equal to the orthogonal complement of the
subspace parallel to aff

(
dom(f)

)
.

Solution: Let f : <n 7→ (−∞,∞] be a proper convex function, and let g be
its conjugate. Show that the lineality space of g is equal to the orthogonal
complement of the subspace parallel to aff

(
dom(f)

)
.

7.3

Let fi : <n 7→ (−∞,∞], i = 1, . . . , m, be proper convex functions, and let
f = f1 + · · ·+ fm. Show that if ∩m

i=1ri
(
dom(fi)

)
is nonempty, then we have

g(λ) = inf
λ1+···+λm=λ

λi∈<n, i=1,...,m

{
g1(λ1) + · · ·+ gm(λm)

}
, ∀ λ ∈ <n,

where g, g1, . . . , gm are the conjugates of f, f1, . . . , fm, respectively.

Solution: Let fi : <n 7→ (−∞,∞], i = 1, . . . , m, be proper convex functions,
and let f = f1 + · · · + fm. Show that if ∩m

i=1ri
(
dom(fi)

)
is nonempty, then we

have

g(λ) = inf
λ1+···+λm=λ

λi∈<n, i=1,...,m

{
g1(λ1) + · · ·+ gm(λm)

}
, ∀ λ ∈ <n,

where g, g1, . . . , gm are the conjugates of f, f1, . . . , fm, respectively.

7.4 (Finiteness of the Optimal Dual Value)

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a convex set, and f and gj are convex over X. Assume that the
problem has at least one feasible solution. Show that the following are equivalent.

(i) The dual optimal value q∗ = supµ≥0 q(µ) is finite.

(ii) The primal function p is proper.

(iii) The set

M =
{
(u, w) ∈ <r+1 | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w

}
does not contain a vertical line.
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Solution: Consider the function q̃ given by

q̃(µ) =
{

q(µ) if µ ≥ 0,
−∞ otherwise,

and note that −q̃ is closed and convex, and that by the calculation of Example
7.1.5, we have

q̃(µ) = inf
u∈<r

{
p(u) + µ′u

}
, ∀ µ ∈ <r. (1)

Since q̃(µ) ≤ p(0) for all µ ∈ <r, given the feasibility of the problem [i.e.,
p(0) < ∞], we see that q∗ is finite if and only if −q̃ is proper. From Eq. (1), −q̃
is the conjugate of p(−u), and by the Conjugacy Theorem [Prop. 7.1.1(b)], −q̃ is
proper if and only if p is proper. Hence, (i) is equivalent to (ii).

We note that the epigraph of p is the closure of M . Hence, given the
feasibility of the problem, (ii) is equivalent to the closure of M not containing a
vertical line. Since M is convex, its closure does not contain a line if and only if
M does not contain a line (since the closure and the relative interior of M have
the same recession cone). Hence (ii) is equivalent to (iii).

7.5 (General Perturbations and Min Common/Max Crossing
Duality)

Let F : <n+m 7→ (−∞,∞] be a proper function, and let G : <n+m 7→ (−∞,∞]
be its conjugate. Let also p be the function defined by

p(u) = inf
x∈<n

F (x, u), u ∈ <m.

Consider the min common/max crossing framework for the set M = epi(p), and
the cost function of the max crossing problem, q(λ) = inf(u,w)∈M{w + λ′u}.

(a) Show that q and the conjugate h of p satisfy

h(λ) = G(0, λ), q(λ) = −G(0,−λ), ∀ λ ∈ <m.

Show also that these relations generalize Example 7.1.5.

(b) Consider the alternative min common/max crossing framework where

M =
{
(u, w) | there is an x such that F (x, u) ≤ w

}
.

Show that the optimal values of the corresponding min common and max
crossing problems are the same as those corresponding to M = epi(p).

(c) Show that with F (x, u) = f1(x)−f2(Qx+u), the min common/max cross-
ing framework corresponds to the Fenchel duality framework. What are the
forms of F that correspond to the minimax and constrained optimization
frameworks of Sections 2.6.1 and 6.1?
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Solution: (a) We have

h(λ) = sup
u

{
λ′u− p(u)

}
= sup

u

{
λ′u− inf

x
F (x, u)

}
= sup

x,u

{
λ′u− F (x, u)

}
= G(0, λ).

Also
q(λ) = inf

(u,w)∈M
{w + λ′u}

= inf
x,u

{
F (x, u)′λu

}
= − sup

x,u

{
−λ′u− F (x, u)

}
= −G(0,−λ).

Consider the constrained minimization propblem of Example 7.1.5:

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,

and define

F (x, u) =
{

f(x) if x ∈ X and g(x) ≤ u,
∞ otherwise.

Then p is the primal function of the constrained minimization problem. Consider
now q(λ), the cost function of the max crossing problem corresponding to M . For
λ ≥ 0, q(λ) is equal to the dual function value of the constrained optimization
problem, and otherwise q(λ) is equal to −∞. Thus, the relations h(λ) = G(0, λ)
and q(λ) = −G(0,−λ) proved earlier, show the relation proved in Example 7.1.5,
i.e., that q(λ) = −h(−λ).

(b) Let

M =
{
(u, w) | there is an x such that F (x, u) ≤ w

}
.

Then the corresponding min common value is

inf
{(x,w) | F (x,0)≤w}

w = inf
x

F (x, 0) = p(0).

Since p(0) is the min common value corresponding to epi(p), the min common
values corresponding to the two choises for M are equal. Similarly, we show that
the cost functions of the max crossing problem corresponding to the two choises
for M are equal.

(c) If F (x, u) = f1(x)− f2(Qx + u), we have

p(u) = inf
x

{
f1(x)− f2(Qx + u)

}
,
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so p(0), the min common value, is equal to the primal optimal value in the Fenchel
duality framework. By part (a), the max crossing value is

q∗ = sup
λ

{
−h(−λ)

}
,

where h is the conjugate of p. By using the change of variables z = Qx + u in
the following calculation, we have

−h(−λ) = − sup
u

{
−λ′u− inf

x

{
f1(x)− f2(Qx + u)

}}
= − sup

z,x

{
−λ′(z −Qx)− f1(x) + f2(z)

}
= g2(λ)− g1(Qλ),

where g1 and g2 are the conjugate convex and conjugate concave functions of f1

and f2, respectively:

g1(λ) = sup
x

{
x′λ− f1(x)

}
, g2(λ) = inf

z

{
z′λ− f2(z)

}
.

Thus, no duality gap in the min common/max crossing framework [i.e., p(0) =
q∗ = supλ

{
−h(−λ)

}
] is equivalent to no duality gap in the Fenchel duality

framework.
The minimax framework of Section 2.6.1 (using the notation of that section)

is obtained for
F (x, u) = sup

z∈Z

{
φ(x, z)− u′z

}
.

The constrained optimization framework of Section 6.1 (using the notation of
that section) is obtained for the function

F (x, u) =
{

f(x) if x ∈ X, h(x) = u1, g(x) ≤ u2,
∞ otherwise,

where u = (u1, u2).

7.6

Use Minimax Theorem III (Prop. 3.5.3) to derive the following version of the
Primal Fenchel Duality Theorem: Let the functions f1 and −f2 be proper and
convex. Then we have

inf
x∈<n

{
f1(x)− f2(x)

}
= sup

λ∈<m

{
g2(λ)− g1(λ)

}
,

and the supremum in the right-hand side above is attained, if

ri
(
dom(f1)

)
∩ ri
(
dom(−f2)

)
6= Ø.

Hint : In view of the results of Exercise 1.35, it is sufficient to show the above
equality when f1 and −f2 are replaced by their closures.
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Solution: By Exercise 1.35,

cl f1 + cl (−f2) = cl (f1 − f2).

Furthermore,

inf
x∈<n

cl (f1 − f2)(x) = infx∈<n
(
f1(x)− f2(x)

)
.

Thus, we may replace f1 and −f2 with their closures, and the result follows by
applying Minimax Theorem III.

7.7 (Monotropic Programming Duality)

Consider the problem

minimize

n∑
i=1

fi(xi)

subject to x ∈ S, xi ∈ Xi, i = 1, . . . , n,

where fi : < 7→ < are given functions, Xi are intervals of real numbers, and S is
a subspace of <n. Assume that the problem is feasible and that its optimal value
is finite.

(a) Show that a dual problem is

minimize

n∑
i=1

gi(λi)

subject to λ ∈ S⊥,

where the functions gi : < 7→ (−∞,∞] are the conjugate convex functions

gi(λi) = sup
xi∈Xi

{
λixi − fi(xi)

}
, i = 1, . . . , n.

(b) Show that the dual problem has an optimal solution and there is no duality
gap under one of the following two conditions:

(1) Each function fi is convex over Xi and S contains a point in the
relative interior of X1 × · · · ×Xn.

(2) The intervals Xi are closed and the functions fi are convex over the
entire real line.

Solution: We apply Fenchel duality with

f1(x) =

{∑n

i=1
fi(xi) if x ∈ X1 × · · · ×Xn,

∞ otherwise,
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and

f2(x) =
{

0 if x ∈ S,
−∞ otherwise.

The corresponding conjugate concave and convex functions g2 and g1 are

inf
x∈S

λ′x =

{
0 if λ ∈ S⊥,
−∞ if λ /∈ S⊥,

where S⊥ is the orthogonal subspace of S, and

sup
xi∈Xi

{
n∑

i=1

(
xiλi − fi(xi)

)}
=

n∑
i=1

gi(λi),

where for each i,
gi(λi) = sup

xi∈Xi

{
xiλi − fi(xi)

}
.

By the Primal Fenchel Duality Theorem (Prop. 7.2.1), the dual problem has an
optimal solution and there is no duality gap if the functions fi are convex over
Xi and one of the following two conditions holds:

(1) The subspace S contains a point in the relative interior of X1 × · · · ×Xn.

(2) The intervals Xi are closed (so that the Cartesian product X1×· · ·×Xn is
a polyhedral set) and the functions fi are convex over the entire real line.

These conditions correspond to the two conditions for no duality gap given fol-
lowing Prop. 7.2.1.

7.8 (Network Optimization and Kirchhoff’s Laws)

Consider a linear resistive electric network with node set N and arc set A. Let
vi be the voltage of node i and let xij be the current of arc (i, j). Kirchhoff’s
current law says that for each node i, the total outgoing current is equal to the
total incoming current ∑

{j|(i,j)∈A}

xij =
∑

{j|(j,i)∈A}

xji.

Ohm’s law says that the current xij and the voltage drop vi − vj along each arc
(i, j) are related by

vi − vj = Rijxij − tij ,

where Rij ≥ 0 is a resistance parameter and tij is another parameter that is
nonzero when there is a voltage source along the arc (i, j) (tij is positive if the
voltage source pushes current in the direction from i to j). Consider the problem

minimize
∑

(i,j)∈A

(
1
2
Rijx

2
ij − tijxij

)
subject to

∑
{j|(i,j)∈A}

xij =
∑

{j|(j,i)∈A}

xji, ∀ i ∈ N .
(7.0)
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Show that a set of variables
{
xij | (i, j) ∈ A

}
and {vi | i ∈ N} are an opti-

mal solution-Lagrange multiplier pair for this problem if and only if they satisfy
Kirchhoff’s current law and Ohm’s law.

Solution: This problem is a monotropic programming problem, as considered
in Exercise 7.7. For each (i, j) ∈ A, the function fij(xij) = 1

2
Rijx

2
ij − tijxij is

continuously differentiable and convex over <. The dual problem is

maximize q(v)

subject to no constraints on p,

with the dual function q given by

q(v) =
∑

(i,j)∈A

qij(vi − vj),

where

qij(vi − vj) = min
xij∈<

{
1

2
Rijx

2
ij − (vi − vj + tij)xij

}
.

Since the primal cost functions fij are real-valued and convex over the entire real
line, there is no duality gap. The necessary and sufficient conditions for a set of
variables {xij | (i, j) ∈ A} and {vi | i ∈ N} to be an optimal solution-Lagrange
multiplier pair are:

(1) The set of variables {xij | (i, j) ∈ A} must be primal feasible, i.e., Kirch-
hoff’s current law must be satisfied.

(2)

xij ∈ arg min
yij∈<

{
1

2
Rijy

2
ij − (vi − vj + tij)yij

}
, ∀ (i, j) ∈ A,

which is equivalent to Ohm’s law:

Rijxij − (vi − vj + tij) = 0, ∀ (i, j) ∈ A.

Hence a set of variables {xij | (i, j) ∈ A} and {vi | i ∈ N} are an optimal
solution-Lagrange multiplier pair if and only if they satisfy Kirchhoff’s current
law and Ohm’s law.

7.9 (Symmetry of Duality)

Consider the primal function

p(u) = inf
x∈X, g(x)≤u

f(x)

of the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r.
(7.1)
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Consider also the problem

minimize p(u)

subject to u ∈ P, u ≤ 0,
(7.2)

where P is the effective domain of p,

P =
{
u | there exists x ∈ X with g(x) ≤ u

}
.

Assume that −∞ < p(0) < ∞.

(a) Show that problems (7.1) and (7.2) have equal optimal values, and the
same sets of geometric multipliers.

(b) Consider the dual functions of problems (7.1) and (7.2) and show that they
are equal on the positive orthant, i.e., for all µ ≥ 0,

q(µ) = inf
x∈X

{
f(x) +

r∑
j=1

µjgj(x)

}
= inf

u∈P

{
p(u) + µ′u

}
.

(c) Assume that p is a closed and convex function. Show that u∗ is an optimal
solution of problem (7.2) if and only if −u∗ is a geometric multiplier for
the dual problem

maximize q(µ)

subject to µ ≥ 0,

in the sense that
q∗ = sup

µ≥0

{
q(µ)− µ′u∗

}
.

Solution: (a) We have f∗ = p(0). Since p(u) is monotonically nonincreasing,
its minimal value over u ∈ P and u ≤ 0 is attained for u = 0. Hence, f∗ = p∗,
where p∗ = infu∈P, u≤0 p(u). For µ ≥ 0, we have

inf
x∈X

{
f(x) + µ′g(x)

}
= inf

u∈P
inf

x∈X, g(x)≤u

{
f(x) + µ′g(x)

}
= inf

u∈P

{
p(u) + µ′u

}
.

Since f∗ = p∗, we see that f∗ = infx∈X

{
f(x) + µ′g(x)

}
if and only if p∗ =

infu∈P

{
p(u) + µ′u

}
. In other words, the two problems have the same geometric

multipliers.

(b) This part was proved by the preceding argument.

(c) From Example 7.1.5, we have that −q(−µ) is the conjugate convex function
of p. Let us view the dual problem as the minimization problem

minimize − q(−µ)

subject to µ ≤ 0.
(1)
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Its dual problem is obtained by forming the conjugate convex function of its
primal function, which is p, based on the analysis of Example 7.1.5, and the
closedness and convexity of p. Hence the dual of the dual problem (1) is

maximize − p(u)

subject to u ≤ 0

and the optimal solutions to this problem are the geometric multipliers to problem
(1).

7.10 (Second-Order Cone Programming)

Consider the problem

minimize c′x

subject to ‖Ajx + bj‖ ≤ e′jx + dj , j = 1, . . . , r,

where x ∈ <n, and c, Aj , bj , ej , and dj are given, and have appropriate dimension.
Assume that the problem is feasible. Consider the equivalent problem

minimize c′x

subject to ‖uj‖ ≤ tj , uj = Ajx + bj , tj = e′jx + dj , j = 1, . . . , r,
(7.3)

where uj and tj are auxiliary optimization variables.

(a) Show that problem (7.3) has cone constraints of the type described in
Section 7.2.2.

(b) Use the conic duality theory of Section 7.2.2 to show that a dual problem
is given by

minimize

r∑
j=1

(b′jzj + djwj)

subject to

r∑
j=1

(A′
jzj + ejwj) = c, ‖zj‖ ≤ wj , j = 1, . . . , r.

(7.4)

Furthermore, show that there is no duality gap if either there exists a
feasible solution of problem (7.3) or a feasible solution of problem (7.4)
satisfying strictly all the corresponding inequality constraints.

Solution: (a) Define

X =
{
(x, u, t) | x ∈ <n, uj = Ajx + bj , tj = e′jx + dj , j = 1, . . . , r

}
,

C =
{
(x, u, t) | x ∈ <n, ‖uj‖ ≤ tj , j = 1, . . . , r

}
.
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It can be seen that X is convex and C is a cone. Therefore the modified problem
can be written as

minimize f(x)

subject to x ∈ X ∩ C,

and is a cone programming problem of the type described in Section 7.2.2.

(b) Let (λ, z, w) ∈ Ĉ, where Ĉ is the dual cone (Ĉ = −C∗, where C∗ is the polar
cone). Then we have

λ′x +

r∑
j=1

z′juj +

r∑
j=1

wjtj ≥ 0, ∀ (x, u, t) ∈ C.

Since x is unconstrained, we must have λ = 0 for otherwise the above inequality
will be violated. Furthermore, it can be seen that

Ĉ =
{
(0, z, w) | ‖zj‖ ≤ wj , j = 1, . . . , r

}
.

By the conic duality theory of Section 7.2.2, the dual problem is given by

minimize

r∑
j=1

(z′jbj + wjdj)

subject to

r∑
j=1

(A′
jzj + wjej) = c, ‖zj‖ ≤ wj , j = 1, . . . , r.

If there exists a feasible solution of the modified primal problem satisfying strictly
all the inequality constraints, then the relative interior condition ri(X)∩ri(C) 6= Ø
is satisfied, and there is no duality gap. Similarly, if there exists a feasible solution
of the dual problem satisfying strictly all the inequality constraints, there is no
duality gap.

7.11 (Quadratically Constrained Quadratic Problems [LVB98])

Consider the quadratically constrained quadratic problem

minimize x′P0x + 2q′0x + r0

subject to x′Pix + 2q′ix + ri ≤ 0, i = 1, . . . , p,

where P0, P1, . . . , Pp are symmetric positive definite matrices. Show that the
problem can be converted to one of the type described in Exercise 7.10, and
derive the corresponding dual problem. Hint : Consider the equivalent problem

minimize ‖P 1/2
0 x + P

−1/2
0 q0‖

subject to ‖P 1/2
i x + P

−1/2
i qi‖ ≤ (ri − q′iP

−1
i qi)

1/2, i = 1, . . . , p.
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Solution: Since each Pi is symmetric and positive definite, we have

x′Pix + 2q′ix + ri =
(
P

1/2
i x

)′
P

1/2
i x + 2

(
P
−1/2
i qi

)′
P

1/2
i x + ri

= ‖P 1/2
i x + P

−1/2
i qi‖2 + ri − q′iP

−1
i qi,

for i = 0, 1, . . . , p. This allows us to write the original problem as

minimize ‖P 1/2
0 x + P

−1/2
0 q0‖2 + r0 − q′0P

−1
0 q0

subject to ‖P 1/2
i x + P

−1/2
i qi‖2 + ri − q′iP

−1
i qi ≤ 0, i = 1, . . . , p.

By introducing a new variable xn+1, this problem can be formulated in <n+1 as

minimize xn+1

subject to ‖P 1/2
0 x + P

−1/2
0 q0‖ ≤ xn+1

‖P 1/2
i x + P

−1/2
i qi‖ ≤

(
q′iP

−1
i qi − ri

)1/2
, i = 1, . . . , p.

The optimal values of this problem and the original problem are equal up
to a constant and a square root. The above problem is of the type described

in Exercise 7.10. To see this, define Ai =
(
P

1/2
i | 0

)
, bi = P

−1/2
i qi, ei = 0,

di =
(
q′iP

−1
i qi − ri

)1/2
for i = 1, . . . , p, A0 =

(
P

1/2
0 | 0

)
, b0 = P

−1/2
0 q0, e0 =

(0, . . . , 0, 1), d0 = 0, and c = (0, . . . , 0, 1). Its dual is given by

maximize −
p∑

i=1

(
q′iP

−1/2
i zi +

(
q′iP

−1
i qi − ri

)1/2
wi

)
− q′0P

−1/2
0 z0

subject to

p∑
i=0

P
1/2
i zi = 0, ‖z0‖ ≤ 1, ‖zi‖ ≤ wi, i = 1, . . . , p.

7.12 (Minimizing the Sum or the Maximum of Norms [LVB98])

Consider the problems

minimize

p∑
i=1

‖Fix + gi‖

subject to x ∈ <n,

(7.5)

and
minimize max

i=1,...,p
‖Fix + gi‖

subject to x ∈ <n,
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where Fi and gi are given matrices and vectors, respectively. Convert these
problems to second-order cone programming problems (cf. Exercise 7.10) and
derive the corresponding dual problems.

Solution: Consider the problem

minimize

p∑
i=1

||Fix + gi||

subject to x ∈ <n.

By introducing variables t1, . . . , tp, this problem can be expressed as a second-
order cone programming problem (see Exercise 7.10):

minimize

p∑
i=1

ti

subject to ||Fix + gi|| ≤ ti, i = 1, . . . , p.

Define

X = {(x, u, t) | x ∈ <n, ui = Fix + gi, ti ∈ <, i = 1, . . . , p},

C = {(x, u, t) | x ∈ <n, ||ui|| ≤ ti, i = 1, . . . , p}.

Then, similar to Exercise 7.10, we have

−C∗ = {(0, z, w) | ||zi|| ≤ wi, i = 1, . . . , p},

and

g(0, z, w) = sup
(x,u,t)∈X

{
p∑

i=1

z′iui +

p∑
i=1

witi −
p∑

i=1

ti

}

= sup
x∈<n,t∈<p

{
p∑

i=1

z′i(Fix + gi) +

p∑
i=1

(wi − 1)ti

}

= sup
x∈<n

{(
p∑

i=1

F ′
i zi

)′

x

}
+ sup

t∈<p

{
p∑

i=1

(wi − 1)ti

}
+

p∑
i=1

g′izi

=

{∑p

i=1
g′izi if

∑p

i=1
F ′

i zi = 0, wi = 1, i = 1, . . . , p
+∞ otherwise.

Hence the dual problem is given by

maximize −
p∑

i=1

g′izi

subject to

p∑
i=1

F ′
i zi = 0, ||zi|| ≤ 1, i = 1, . . . , p.
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Now, consider the problem

minimize max
1≤i≤p

||Fix + gi||

subject to x ∈ <n.

By introducing a new variable xn+1, we obtain

minimize xn+1

subject to ||Fix + gi|| ≤ xn+1, i = 1, . . . , p,

or equivalently

minimize e′n+1x

subject to ||Aix + gi|| ≤ e′n+1x, i = 1, . . . , p,

where x ∈ <n+1, Ai = (Fi, 0), and en+1 = (0, . . . , 0, 1)′ ∈ <n+1. Evidently, this
is a second-order cone programming problem. From Exercise 7.10 we have that
its dual problem is given by

maximize −
p∑

i=1

g′izi

subject to

p∑
i=1

((
F ′

i

0

)
zi + en+1wi

)
= en+1, ||zi|| ≤ wi, i = 1, . . . , p,

or equivalently

maximize −
p∑

i=1

g′izi

subject to

p∑
i=1

F ′
i zi = 0,

p∑
i=1

wi = 1, ||zi|| ≤ wi, i = 1, . . . , p.

7.13 (Complex l1 and l∞ Approximation [LVB98])

Consider the complex l1 approximation problem

minimize ‖Ax− b‖1
subject to x ∈ Cn,

where Cn is the set of n-dimensional vectors whose components are complex num-
bers. Show that it is a special case of problem (7.5) and derive the corresponding
dual problem. Repeat for the complex l∞ approximation problem

minimize ‖Ax− b‖∞
subject to x ∈ Cn.
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Solution:
For v ∈ Cp we have

‖v‖1 =

p∑
i=1

|vi| =
p∑

i=1

∣∣∣∣∣∣∣∣( Re(vi)
Im(vi)

)∣∣∣∣∣∣∣∣ ,
where Re(vi) and Im(vi) denote the real and the imaginary parts of vi, respec-
tively. Then the complex l1 approximation problem is equivalent to

minimize

p∑
i=1

∣∣∣∣∣∣∣∣( Re(a′ix− bi)
Im(a′ix− bi)

)∣∣∣∣∣∣∣∣
subject to x ∈ Cn,

(1)

where a′i is the i-th row of A (A is a p× n matrix). Note that(
Re(a′ix− bi)
Im(a′ix− bi)

)
=

(
Re(a′i) −Im(a′i)
Im(a′i) Re(a′i)

)(
Re(x)
Im(x)

)
−
(
Re(bi)
Im(bi)

)
.

By introducing new variables y = (Re(x′), Im(x′))′, problem (1) can be rewritten
as

minimize

p∑
i=1

‖Fiy + gi‖

subject to y ∈ <2n,

where

Fi =

(
Re(a′i) −Im(a′i)
Im(a′i) Re(a′i)

)
, gi = −

(
Re(bi)
Im(bi)

)
. (2)

According to Exercise 7.12, the dual problem is given by

maximize

p∑
i=1

(
Re(bi), Im(bi)

)
zi

subject to

p∑
i=1

(
Re(a′i) Im(a′i)
−Im(a′i) Re(a′i)

)
zi = 0, ‖zi‖ ≤ 1, i = 1, . . . , p,

where zi ∈ <2n for all i.
For v ∈ Cp we have

‖v‖∞ = max
1≤i≤p

|vi| = max
1≤i≤p

∣∣∣∣∣∣∣∣( Re(vi)
Im(vi)

)∣∣∣∣∣∣∣∣ .
Therefore the complex l∞ approximation problem is equivalent to

minimize max
1≤i≤p

∣∣∣∣∣∣∣∣( Re(a′ix− bi)
Im(a′ix− bi)

)∣∣∣∣∣∣∣∣
subject to x ∈ Cn.
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By introducing new variables y = (Re(x′), Im(x′))′, this problem can be rewrit-
ten as

minimize max
1≤i≤p

‖Fiy + gi‖

subject to y ∈ <2n,

where Fi and gi are given by Eq. (2). From Exercise 7.12, it follows that the dual
problem is

maximize

p∑
i=1

(
Re(bi), Im(bi)

)
zi

subject to

p∑
i=1

(
Re(a′i) −Im(a′i)
Im(a′i) Re(a′i)

)
zi = 0,

p∑
i=1

wi = 1, ‖zi‖ ≤ wi,

i = 1, . . . , p,

where zi ∈ <2 for all i.

7.14

Consider the case where in Prop. 7.3.1 the function P has the form

P (z) =

r∑
j=1

Pj(zj),

where Pj : < 7→ < are convex real-valued functions satisfying

Pj(zj) = 0, ∀ zj ≤ 0, Pj(zj) > 0, ∀ zj > 0.

Show that the conditions 7.22 and 7.23 of Prop. 7.3.1 are equivalent to

µ∗j ≤ lim
zj↓0

Pj(zj)

zj
, ∀ j = 1, . . . , r,

and

µ∗j < lim
zj↓0

Pj(zj)

zj
, ∀ j = 1, . . . , r,

respectively.

Solution: The condition u′µ∗ ≤ P (u) for all u ∈ <r can be written as

r∑
j=1

ujµ
∗
j ≤

r∑
j=1

Pj(uj), ∀ u = (u1, . . . , ur),

and is equivalent to

ujµ
∗
j ≤ Pj(uj), ∀ uj ∈ <, ∀ j = 1, . . . , r.

In view of the requirement that Pj is convex with Pj(uj) = 0 for uj ≤ 0, and
Pj(uj) > 0 for all uj > 0, it follows that the condition ujµ

∗
j ≤ Pj(uj) for

all uj ∈ <, is equivalent to µ∗j ≤ limzj↓0
(
Pj(zj)/zj

)
. Similarly, the condition

ujµ
∗
j < Pj(uj) for all uj ∈ <, is equivalent to µ∗j < limzj↓0

(
Pj(zj)/zj

)
.
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7.15 [Ber99b]

For a vector y ∈ <n, let d(y) be the optimal value of the projection problem

minimize ‖y − x‖

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a convex subset of <n, and the functions gj : <n 7→ < are convex
over X. Assuming that the problem is feasible, show that there exists a constant
c such that

d(y) ≤ c
∥∥(g(y)

)+∥∥, ∀ y ∈ X,

if and only if the projection problem has a geometric multiplier µ∗(y) such that
the set

{
µ∗(y) | y ∈ X

}
is bounded.

Solution: Following [Ber99b], we address the problem by embedding it in a
broader class of problems. Let Y be a subset of <n, let y be a parameter vector
taking values in Y , and consider the parametric program

minimize f(x, y)

subject to x ∈ X, gj(x, y) ≤ 0, j = 1, . . . , r,
(1)

where X is a convex subset of <n, and for each y ∈ Y , f(·, y) and gj(·, y) are
real-valued functions that are convex over X. We assume that for each y ∈ Y ,
this program has a finite optimal value, denoted by f∗(y). Let c > 0 denote a
penalty parameter and assume that the penalized problem

minimize f(x, y) + c
∥∥g+(x, y)

∥∥
subject to x ∈ X

(2)

has a finite optimal value, thereby coming under the framework of Section 7.3.
By Prop. 7.3.1, we have

f∗(y) = inf
x∈X

{
f(x, y) + c

∥∥g+(x, y)
∥∥} , ∀ y ∈ Y, (3)

if and only if
u′µ∗(y) ≤ c‖u+‖, ∀ u ∈ <r, ∀ y ∈ Y,

for some geometric multiplier µ∗(y).
It is seen that Eq. (3) is equivalent to the bound

f∗(y) ≤ f(x, y) + c
∥∥g+(x, y)

∥∥, ∀ x ∈ X, ∀ y ∈ Y, (4)

so this bound holds if and only if there exists a uniform bounding constant c > 0
such that

u′µ∗(y) ≤ c‖u+‖, ∀ u ∈ <r, ∀ y ∈ Y. (5)

Thus the bound (4), holds if and only if for every y ∈ Y , it is possible to select
a geometric multiplier µ∗(y) of the parametric problem (1) such that the set{
µ∗(y) | y ∈ Y

}
is bounded.

18



Let us now specialize the preceding discussion to the parametric program

minimize f(x, y) = ‖y − x‖

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(6)

where ‖ · ‖ is the Euclidean norm, X is a convex subset of <n, and gj are convex
over X. This is the projection problem of the exercise. Let us take Y = X. If c
satisfies Eq. (5), the bound (4) becomes

d(y) ≤ ‖y − x‖+ c
∥∥(g(x)

)+∥∥, ∀ x ∈ X, ∀ y ∈ X,

and (by taking x = y) implies the bound

d(y) ≤ c
∥∥(g(y)

)+∥∥, ∀ y ∈ X. (7)

This bound holds if a geometric multiplier µ∗(y) of the projection problem (6)
can be found such that Eq. (5) holds. We will now show the reverse assertion.

Indeed, assume that for some c, Eq. (7) holds, and to arrive at a contra-
diction, assume that there exist x ∈ X and y ∈ Y such that

d(y) > ‖y − x‖+ c
∥∥(g(x)

)+∥∥.
Then, using Eq. (7), we obtain

d(y) > ‖y − x‖+ d(x).

From this relation and the triangle inequality, it follows that

inf
z∈X, g(z)≤0

‖y − z‖ > ‖y − x‖+ inf
z∈X, g(z)≤0

‖x− z‖

= inf
z∈X, g(z)≤0

{
‖y − x‖+ ‖x− z‖

}
≥ inf

z∈X, g(z)≤0
‖y − z‖,

which is a contradiction. Thus Eq. (7) implies that we have

d(y) ≤ ‖y − x‖+ c
∥∥(g(x)

)+∥∥, ∀ x ∈ X, ∀ y ∈ X.

Using Prop. 7.3.1, this implies that there exists a geometric multiplier µ∗(y) such
that

u′µ∗(y) ≤ c‖u+‖, ∀ u ∈ <r, ∀ y ∈ X.

This in turn implies the boundedness of the set
{
µ∗(y) | y ∈ X

}
.
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