Topologia da Reta e do Plano

A RETA REAL

O conjunto dos números reais, designado por \mathbf{R} , desempenha papel preponderante na Matemática e, em particular, na análise. De fato, inúmeros conceitos da Topologia são abstrações de propriedades do conjunto dos números reais. O conjunto \mathbf{R} pode caracterizar-se pela afirmação

"R é um corpo arquimediano ordenado, completo". (Estas noções vêm explicadas no Apêndice.)

Usaremos aqui a relação de ordem em ${\bf R}$ para definir a "topologia usual" para ${\bf R}.$

Supomos o leitor familiarizado com a representação geométrica de **R** por meio de pontos de uma reta. Tal como na fig. 4-1, escolhe-se um ponto, chamado *origem*, para representar o 0 (zero), e outro ponto, usualmente à direita do 0, para representar o número 1. Estabelece-se, então, uma correspondência natural entre os pontos da reta e os números reais, i. e., cada ponto da reta representa um único número real, e cada número real é representado por um único ponto da reta. Por esta razão, referimo-nos à reta como *reta real* ou *eixo real*. Além disso, usaremos indistintamente as palavras *ponto* e *número*.

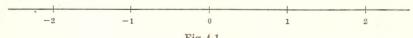


Fig. 4-1

CONJUNTOS ABERTOS EM R

Seja A um conjunto de números reais. Um ponto $p \in A$ é chamado ponto interior de A se e sòmente se p pertence a algum intervalo aberto S_p contido em A:

$$p \in S_p \subset A$$

O conjunto A é dito aberto (ou \mathscr{U} -aberto) se, e só se, cada um dos seus pontos é ponto interior. (A significação da letra \mathscr{U} se tornará evidente no próximo capítulo.)

Exemplo 1.1: Um intervalo aberto A=(a,b) é um conjunto aberto, pois podemos escolher $S_p=A$ para cada $p\in A$.

Exemplo 1.2: A reta real R é um conjunto aberto, pois qualquer intervalo aberto S_p deve ser subconjunto de R, i. e., $p \in S_p \subset R$.

Observe que um conjunto não é aberto desde que exista um ponto seu que não seja ponto interior.

Exemplo 1.3: O intervalo fechado B = [a, b] não é um conjunto aberto, pois qualquer intervalo aberto que contenha a ou b conterá necessàriamente pontos que não pertencem a B. Os extremos a e b não são pontos interiores de B.

Exemplo 1.4: O conjunto vazio \varnothing é aberto, pois não há ponto em \varnothing que não seja ponto interior.

Exemplo 1.5: Os intervalos abertos infinitos, i. e., os subconjuntos de ${\bf R}$ definidos e representados por

$${x : x \in \mathbb{R}, \ x > a} = (a, \infty), \quad {x : x \in \mathbb{R}, x < a} = (-\infty, a)$$

 ${x : x \in \mathbb{R}} = \mathbb{R} = (-\infty, \infty)$

são conjuntos abertos. Por outro lado, os intervalos infinitos fechados, i. e., os subconjuntos de ${\bf R}$ definidos e representados por

$$\{x : x \in \mathbb{R}, x \ge a\} = [a, \infty), \{x : x \in \mathbb{R}, x \le a\} = (-\infty, a]$$

não são conjuntos abertos, pois $a \in \mathbf{R}$ não é ponto interior nem de $[a, \infty)$ nem de $(-\infty, a]$. São fundamentais os teoremas seguintes sôbre conjuntos abertos.

Teorema 4.1: A união de um número qualquer de conjuntos abertos em R é aberta.

Teorema 4.2: A intersecção de um número finito qualquer de conjuntos abertos em ${\bf R}$ é aberta.

O exemplo que segue justifica a necessidade da condição de finitude no último teorema acima.

Exemplo 1.6: Consideremos a classe de intervalos abertos (e, portanto, de conjuntos abertos)

$$\{A_n = (-1/n, 1/n) : n \in \mathbb{N}\}, i. e., \{(-1, 1), (-\frac{1}{2}, \frac{1}{2}), (-\frac{1}{3}, \frac{1}{3}), \ldots\}$$

Observe que a intersecção

$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$

dos intervalos abertos consiste no único ponto 0, que não é um conjunto aberto. Em outras palavras, uma intersecção arbitrária de abertos não é necessàriamente um aberto.

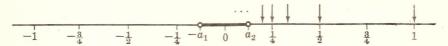
PONTOS DE ACUMULAÇÃO

Seja A um subconjunto de \mathbf{R} , i. e., um conjunto de números reais. Um ponto $p \in \mathbf{R}$ chama-se ponto de acumulação, ou ponto limite de A, se e sòmente se, todo conjunto aberto G que contém p contém um ponto de A diferente de p; i. e.,

$$G$$
 aberto, $p \in G \Longrightarrow A \cap (G \setminus \{p\}) \neq \emptyset$.

O conjunto de pontos de acumulação de A, representado por A', é chamado o conjunto derivado de A.

Exemplo 2.1: Seja $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. O ponto 0 (zero) é ponto de acumulação de A, pois qualquer conjunto aberto G com $0 \in G$ contém um intervalo aberto $(-a_1, a_2) \subseteq G$ com $-a_1 < 0 < a_2$ que contém pontos de A.



Observe que o ponto limite 0 de A não pertence a A. Note também que A não tem qualquer outro ponto de acumulação; então, o conjunto derivado de A é o conjunto unitário $\{0\}$, i. e., $A' = \{0\}$.

Exemplo 2.2: Considere-se o conjunto $\mathbf Q$ dos números racionais. Todo real $p \in \mathbf R$ é ponto limite de $\mathbf Q$, pois todo conjunto aberto contém números racionais, i. e., pontos de $\mathbf Q$.

Exemplo 2.3: O conjunto dos inteiros $\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ não tem ponto de acumulação. O conjunto derivado de \mathbf{Z} é o conjunto vazio \emptyset .

Observação: O leitor não deve confundir o conceito de "ponto de acumulação de um conjunto" com o conceito diverso (embora correlato) de "limite de uma sequência". Alguns dos problemas resolvidos e propostos elucidarão a relação que há entre êsses dois conceitos.

TEOREMA DE BOLZANO-WEIERSTRASS

A existência, ou não-existência, de pontos de acumulação de um conjunto é uma questão de importância para a Topologia. Nem todo conjunto (mesmo infinito, como no exemplo 2.3) possui um ponto de acumulação.

Existe, entretanto, um caso geral importante que admite resposta positiva.

Teorema (Bolzano-Weierstrass) 4.3: Seja A um conjunto infinito, cotado, de reais. Então A tem ao menos um ponto de acumulação.

CONJUNTOS FECHADOS

Um subconjunto A de \mathbb{R} , i. e., um conjunto de números reais, é fechado se, e sòmente se, seu complementar A^c é aberto. Um conjunto fechado pode definir-se também em têrmos de seus pontos de acumulação.

Teorema 4.4: Um subconjunto A de \mathbf{R} é fechado se, e sòmente se, A contém cada um dos seus pontos de acumulação.

Exemplo 3.1: O intervalo fechado [a, b] é um conjunto fechado, pois, seu complementar $(-\infty, a) \cup (b, \infty)$, que é a união de dois intervalos abertos infinitos, é aberto.

Exemplo 3.2: O conjunto $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ não é fechado, pois, conforme o exemplo 2.1, 0 é ponto de acumulação de A, mas não pertence a A.

Exemplo 3.3: O conjunto vazio \varnothing e a reta real R são conjuntos fechados, pois seus complementares R e \varnothing , respectivamente, são abertos.

Há conjuntos que não são nem abertos nem fechados, como se vê no exemplo a seguir.

Exemplo 3.4: Considere-se o intervalo semi-aberto A=(a,b]. A não é aberto, pois $b\in A$ não é ponto interior de A, nem é fechado, pois $a\notin A$ mas a é ponto de acumulação de A.

TEOREMA DE HEINE-BOREL

O teorema que segue dá uma das propriedades mais importantes de um intervalo fechado e limitado. Diremos aqui que uma classe de conjuntos, $\mathscr{A} = \{A_i\}$ cobre um conjunto A, ou que é cobertura de A, se A está contido na união dos elementos de \mathscr{A} , i. e., $A \subset \bigcup_i A_i$.

Teorema (Heine-Borel) 4.5: Seja A = [c, d] um intervalo fechado e limitado, e $\mathscr{G} = \{G_i | i \in I\}$ uma classe de intervalos abertos que cobre A, i. e., $A \subset \bigcup_i G_i$. Então, \mathscr{G} contém uma subclasse finita, digamos $\{G_{i_1}, \ldots, G_{i_m}\}$, que também cobre A, i. e.,

$$A \subset G_{i_1} \cup G_{i_2} \cup \ldots \cup G_{i_m}$$
.

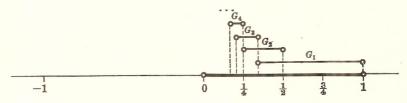
Ambas as condições, "fechado" e "limitado", devem ser satisfeitas por A para que o teorema seja válido, conforme o demonstram os dois exemplos seguintes.

Exemplo 4.1: Considere o intervalo unitário aberto, limitado, A=(0,1). Observe que a classe

$$\mathscr{G} = \left\{ G_n = \left(\frac{1}{n+2}, \frac{1}{n} \right) : n \in \mathbb{N} \right\}$$

de intervalos abertos cobre A, i. e.,

$$A \subset \left(\frac{1}{3}, 1\right) \cup \left(\frac{1}{4}, \frac{1}{2}\right) \cup \left(\frac{1}{5}, \frac{1}{3}\right) \cup \ldots$$

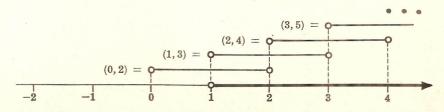


mas não há união de subclasses finitas de g que contenha A.

Exemplo 4.2: Considere o intervalo fechado infinito $A = [1, \infty)$. A classe e

$$\mathcal{G} = \{(0, 2), (1, 3), (2, 4), \ldots\}$$

de intervalos abertos cobre A, mas nenhuma subclasse finita o faz.



SEQÜÊNCIAS

Uma seqüência, denotada por

$$\langle s_1, s_2, \ldots \rangle$$
, $\langle s_n | n \in \mathbb{N} \rangle$ ou $\langle s_n \rangle$

é uma função cujo domínio é o conjunto $\mathbf{N} = \{1, 2, 3, \ldots\}$ dos inteiros positivos, i. e., uma sequência faz corresponder a cada inteiro positivo $n \in \mathbf{N}$ um ponto s_n . A imagem s_n , ou s(n), de $n \in \mathbf{N}$ é chamada o *enésimo têrmo* da sequência

Exemplo 5.1: As sequências

$$\langle s_n \rangle = \langle 1, 3, 5, \ldots \rangle, \ \langle t_n \rangle = \langle -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8!}, \frac{1}{16}, \ldots \rangle, \quad \langle u_n \rangle = \langle 1, 0, 1, 0, \ldots \rangle$$

podem definir-se, respectivamente, pelas fórmulas

$$s(n) = 2n - 1$$
, $t(n) = (-1)^n/2^n$, $u(n) = \frac{1}{2}(1 + (-1)^{n+1}) = \begin{cases} 1 & \text{se } n \text{ \'e impar} \\ 0 & \text{se } n \text{ \'e par} \end{cases}$

Diz-se que uma seqüência $\langle s_n | n \in \mathbb{N} \rangle$ é limitada se seu contradomínio $\{s_n | n \in \mathbb{N}\}$ é um conjunto limitado.

Exemplo 5.2: Considere as três sequências do exemplo 5.1. O contradomínio de $\langle s_n \rangle$ é $\{1, 3, 5, \ldots\}$; logo, $\langle s_n \rangle$ não é uma sequência limitada. O contradomínio de $\langle t_n \rangle$ é $\left\{-\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \ldots\right\}$, que é um conjunto limitado; logo, $\langle t_n \rangle$ é uma sequência limitada. O contradomínio de $\langle u_n \rangle$ é o conjunto finito $\{0, 1\}$; então, $\langle u_n \rangle$ também é uma sequência limitada.

Observe-se o seguinte: $\langle s_n | n \in \mathbb{N} \rangle$ representa uma seqüência e é uma função. Por outro lado, $\{s_n | n \in \mathbb{N}\}$ representa o contradomínio da seqüência e é uma função.

SEQÜÊNCIAS CONVERGENTES

É a seguinte a definição usual de seqüência convergente:

Definição: A sequência de números reais $\langle a_1, a_2, \ldots \rangle$ converge para $b \in R$ ou, equivalentemente, o número real b é o limite da sequência $\langle a_n | n \in \mathbb{N} \rangle$ — o que se representa por

$$\lim_{n \to \infty} a_n = b, \quad \lim a_n = b \quad \text{ou} \quad a_n \to b - b$$

se para cada $\epsilon > 0$ existe um inteiro positivo n_0 tal que

$$n > n_0 \Longrightarrow |a_n - b| < \epsilon$$
.

Observe-se que $|a_n - b| < \epsilon$ significa que $b - \epsilon < a_n < b + \epsilon$ ou, equivalentemente, que a_n pertence ao intervalo aberto $(b - \epsilon, b + \epsilon)$, que contém b. Além disso, como cada têrmo após o n_0 é interior ao intervalo $(b - \epsilon, b + \epsilon)$, sòmente os têrmos anteriores a a_{n_0} (e há apenas um número finito dêles), podem ser exteriores ao intervalo $(b - \epsilon, b + \epsilon)$. Então, podemos reformular nossa definição como segue:

Definição: A sequência $\langle a_n | n \in \mathbb{N} \rangle$ converge para b se todo conjunto aberto que contém b contém quase todos (i. e., todos menos um número finito) os têrmos da sequência.

Exemplo 6.1: Uma seqüência constante $\langle a_0, a_0, a_0, \ldots \rangle$, tal como $\langle 1, 1, 1, \ldots \rangle$ cu $\langle -3, -3, -3, \ldots \rangle$, converge para a_0 , pois cada conjunto aberto que contém a_0 contém todos os têrmos da seqüência.

Exemplo 6.2: Cada uma das sequências

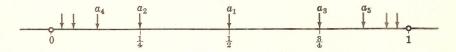
$$\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$$
, $\langle 1, 0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, 0, \ldots \rangle$, $\langle 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots \rangle$

converge para 0, pois qualquer intervalo aberto que contém 0 contém $quase\ todos$ os têrmos da sequência.

Exemplo 6.3: Considere a sequência $\langle \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}, \frac{1}{16}, \frac{15}{16}, \ldots \rangle$, i. e., a sequência

$$a_n = \begin{cases} \frac{1}{2^{n/2}} & \text{se } n \text{ \'e par} \\ \\ 1 - \frac{1}{2^{(n-1)/2}} & \text{se } n \text{ \'e impar.} \end{cases}$$

Os pontos dispõem-se como segue:



Observe-se que qualquer intervalo aberto que contenha 0 ou 1 contém um número infinito de têrmos da sequência. Entretanto, nem 0 nem 1 é limite da sequência. Note-se, todavia, que 0 e 1 são pontos de acumulação do contradomínio da sequência, i. e., do conjunto $\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}, \ldots\right\}$.

SUBSEQÜÊNCIAS

Seja uma seqüência $\langle a_1,a_2,a_3,\ldots\rangle$. Se $\langle i_n\rangle$ é uma seqüência de inteiros positivos tais que $i_1< i_2<\ldots$, então

$$\langle a_{i_1}, a_{i_2}, a_{i_3}, \ldots \rangle$$

é uma subseqüência de $\langle a_n | n \in \mathbb{N} \rangle$

Exemplo 7.1: Considere a sequência $\langle a_n \rangle = \langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$. $\langle 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \rangle$ é uma subsequência de $\langle a_n \rangle$, mas $\langle \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \ldots \rangle$ não o é, pois o elemento 1 antecede o elemento $\frac{1}{2}$ na sequência original.

Exemplo 7.2: Conquanto a seqüência $\langle \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}, \ldots \rangle$ não convirja, tem subseqüências convergentes, como $\langle \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \rangle$ e $\langle \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \ldots \rangle$. Por outro lado, a seqüência $\langle 1, 3, 5, \ldots \rangle$ não tem nenhuma subseqüência convergente.

Como acabamos de ver, as seqüências podem ter ou não subseqüências convergentes.

Há, todavia, um caso geral muito importante que admite resposta positiva.

Teorema 4.6: Tôda seqüência limitada de números reais contém uma subseqüência convergente.

SEQÜÊNCIAS DE CAUCHY

Uma seqüência $\langle a_n | n \in \mathbb{N} \rangle$ de números reais é dita seqüência de Cauchy se, e sòmente se, para cada $\epsilon > 0$ existe um inteiro positivo n_0 tal que

$$n, m > n_0 \Longrightarrow |a_n - a_m| < \epsilon.$$

Em outras palavras, uma seqüência é de Cauchy se, e só se, seus têrmos se tornam arbitràriamente próximos uns dos outros na medida em que n aumenta.

Exemplo 8.1: Seja $\langle a_n | n \in \mathbb{N} \rangle$ uma seqüência de Cauchy de inteiros, i. e., cada têrmo da seqüência pertence a $\mathbf{Z} = \{\ldots, -1, 0, 1, \ldots\}$. Então, a seqüência deve ser da forma

$$\langle a_1, a_2, \ldots a_{n_0}, b, b, b, \ldots \rangle$$
,

i. e., a seqüência deve ser constante, após um certo têrmo de ordem n_0 . Pois, se escolhermos $\epsilon=\frac{1}{2}$, então

$$a_n, a_m \in \mathbf{Z} \in |a_n - a_m| < \frac{1}{2} \Longrightarrow a_n = a_m$$

Exemplo 8.2: Mostremos que tôda seqüência convergente é uma seqüência de Cauchy. Seja $a_n \rightarrow b$ e $\epsilon > 0$. Então, $\exists n_0 \in \mathbb{N}$ suficientemente grande, tal que

$$n > n_0 \Longrightarrow |a_n - b| < \frac{1}{2} \epsilon$$
 e $m > n_0 \Longrightarrow |a_m - b| < \frac{1}{2} \epsilon$

Consequentemente, $n, m > n_0 \Longrightarrow$

$$|a_n - a_m| = |a_n - b + b - a_m| \le |a_n - b| + |b - a_m| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon.$$

Logo, $\langle a_n \rangle$ é uma sequência de Cauchy.

CONJUNTO COMPLETO

Um conjunto A de números reais diz-se completo se tôda seqüência de Cauchy $\langle a_n \in A \mid n \in \mathbb{N} \rangle$ contida em A converge para um ponto de A.

Exemplo 9.1: O conjunto $\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ de inteiros é completo, pois, como vimos no exemplo 8.1, uma seqüência de Cauchy $\langle a_n | n \in \mathbf{N}$ de pontos de \mathbf{Z} é da forma $\langle a_1, a_2, \ldots, a_{n_0}, b, b, b, \ldots \rangle$ que converge para $b \in \mathbf{Z}$.

Exemplo 9.2: O conjunto Q dos números racionais não é completo. Com efeito, podemos escolher uma sequência de números racionais, tal como (1, 1,4, 1,41, 1,412,...) que converge para o número real $\sqrt{2}$, que não pertence a Q.

Uma propriedade fundamental do conjunto ${\bf R}$ dos números reais é que ${\bf R}$ é completo. Isto é,

Teorema (Cauchy) 4.7: Tôda seqüência de Cauchy de números reais converge para um número real.

FUNÇÕES CONTÍNUAS

É a seguinte a definição usual de função contínua em têrmos de ϵ e δ :

Definição: Uma função $f: \mathbf{R} \to \mathbf{R}$ é contínua no ponto x_0 se para cada $\epsilon>0$ existe um $\delta>0$ tal que

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \epsilon.$$

A função f é contínua se o é em cada ponto do seu domínio.

Observe-se que $|x - x_0| < \delta$ significa que $x_0 - \delta < x < x_0 + \delta$ ou, equivalentemente, que x pertence ao intervalo aberto $(x_0 - \delta, x_0 + \delta)$.

Anàlogamente $|f(x)-f(x_0)|<\epsilon$ significa que f(x) pertence ao intervalo aberto $(f(x_0)-\epsilon,f(x_0)+\epsilon)$. Então, a afirmação

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \epsilon$$

é equivalente à afirmação

$$x \in (x_0 - \delta, x_0 + \delta) \Longrightarrow f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon),$$

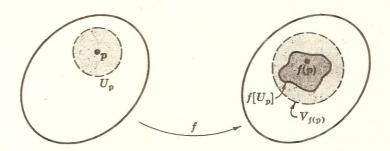
que, por seu turno, equivale a

$$f[(x_0 - \delta, x_0 + \delta)]$$
 está contido em $(f(x_0) - \epsilon, f(x_0) + \epsilon)$

Podemos, então, reformular como segue a definição prévia:

Definição: Uma função $f: \mathbf{R} \to \mathbf{R}$ é contínua num ponto $p \in \mathbf{R}$ se para qualquer conjunto aberto $V_{f(p)}$ que contenha f(p) existe um conjunto aberto U_p tal que $f[U_p] \subset V_{f(p)}$. A função f será contínua se o fôr em todo ponto do seu domínio.

O diagrama de Venn abaixo facilita a compreensão da definição supra.



Uma função contínua pode caracterizar-se completamente em têrmos de conjuntos abertos como segue:

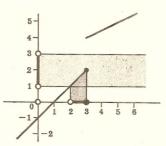
Teorema 4.8: Uma função é contínua se, e sòmente se, a imagem inversa de cada conjunto aberto é aberta.

Observe também que o teorema afirma igualmente que uma função não é contínua se, e só se, existe um conjunto aberto cuja imagem inversa não é aberta.

Exemplo 10.1: Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x - 1 & \text{se } x \le 3 \\ \frac{1}{2}(x + 5) & \text{se } x > 3 \end{cases}$$

e ilustrada no diagrama ao lado. O inverso do intervalo aberto (1, 3) é o intervalo semi-aberto (2, 3], que não é um conjunto aberto. Logo, f não é contínua.



Passemos, agora, a uma importante propriedade das funções contínuas, a que nos referiremos mais adiante.

Teorema 4.9: Seja $f: \mathbf{R} \to \mathbf{R}$ contínua no intervalo fechado [a, b]. Então, f toma aí todos os valôres compreendidos entre f(a) e f(b).

Em outras palavras, se y_0 é um número real tal que $f(a) \le y_0 \le f(b)$, ou $f(b) \le y_0 \le f(a)$, então

$$\exists x_0 \in \mathbf{R} \mid a \le x_0 \le b \text{ e } f(x_0) = y_0.$$

É o teorema de Weierstrass para as funções contínuas, ou teorema do valor intermediário de Weierstrass.

Observação: Uma função $f: \mathbb{R} \to \mathbb{R}$ é contínua num subconjunto D de \mathbb{R} se é contínua em cada ponto de D.

TOPOLOGIA DO PLANO

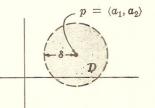
Um disco aberto no plano \mathbb{R}^2 é o conjunto de pontos interiores a um círculo de centro, digamos, $p = \langle a_1, a_2 \rangle$ e raio $\delta > 0$, i. e.,

$$D = \{ \langle x, y \rangle : (x - a_1)^2 + (y - a_2)^2 < \delta^2 \} = \{ q \in \mathbb{R}^2 : d(p, q) < \delta \}$$

Aqui, d(p, q) representa a distância usual entre dois pontos $p = \langle a_1, a_2 \rangle$ e $q = \langle b_1, b_2 \rangle$ em \mathbb{R}^2 :

$$d(p,q) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

O disco aberto desempenha, na topologia do plano \mathbb{R}^2 , papel análogo ao do intervalo aberto na topologia da reta \mathbb{R} .



Seja A um subconjunto de \mathbb{R}^2 . Um ponto $p \in A$ é ponto interior de A se, e só se, p pertence a algum disco aberto D_p contido em A.

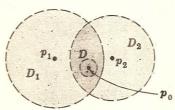
O conjunto A é aberto (ou \mathcal{U} -aberto) se, e sòmente se, cada um de seus pontos é ponto interior.

Exemplo 11.1: Òbviamente, um disco aberto, todo o plano \mathbb{R}^2 e o conjunto vazio \emptyset são subconjuntos abertos de \mathbb{R}^2 . Mostremos, agora, que a intersecção de dois discos abertos, digamos

$$D_1 = \{q \in \mathbb{R}^2 : d(p_1, q) < \delta_1\}$$
 e $D_2 = \{q \in \mathbb{R}^2 : d(p_2, q) < \delta_2\}$

é também um aberto. Seja $p_0 \in D_1 \cap D_2$ de modo que

 $d(p_1, p_0) < \delta_1$ e $d(p_2, p_0) < \delta_2$



Façamos e seja

$$r = \min \{ \delta_1 - d(p_1, p_0), \quad \delta_2 - d(p_2, p_0) \} > 0$$
$$D = \{ q \in \mathbb{R}^2 : d(p_0, q) < \frac{1}{2} r \}$$

Então, $p_0 \in D \subset D_1 \cap D_2$ ou p_0 é ponto interior de $D_1 \cap D_2$.

Um ponto $p \in \mathbb{R}^2$ é ponto de acumulação ou ponto limite de um subconjunto A de \mathbb{R}^2 se, e sòmente se, todo conjunto aberto G que contém p contém um ponto de A diferente de p, i. e.,

$$G \subset \mathbb{R}^2$$
 aberto, $p \in G \implies A \cap (G \setminus \{p\}) \neq \emptyset$

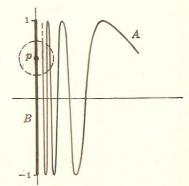
Exemplo 11.2. Considere o seguinte subconjunto de R2:

$$A = \left\{ \langle x, y \rangle : y = \operatorname{sen} \frac{1}{x}, x > 0 \right\}$$

O diagrama ao lado ilustra o conjunto A. Note que a curva, caminhando da direita para a esquerda, oscila cada vez mais ràpidamente, i. e., os pontos em que ela corta o eixo dos xx são cada vez mais próximos uns dos outros. O ponto $p = \langle 0, \frac{1}{2} \rangle$ é ponto de acumulação de A, pois A passará eventualmente por qualquer disco aberto que contenha p. De fato, cada ponto do eixo dos yy entre -1 e 1, i. e., cada ponto do conjunto

$$B = \{\langle x, y \rangle | x = 0, -1 \le y \le 1\}$$

é ponto de acumulação de A.



Um subconjunto A de \mathbb{R}^2 é fechado se, e só se, seu complemento A^c é um subconjunto aberto de \mathbb{R}^2 .

Uma seqüência $\langle p_1, p_2, \ldots \rangle$ de pontos de \mathbf{R}^2 converge para o ponto $q \in \mathbf{R}^2$ se, e só se, todo conjunto aberto que contém q contém quase todos os têrmos da seqüência.

A convergência em \mathbb{R}^2 pode caracterizar-se em têrmos da convergência em \mathbb{R} , como segue:

Proposição 4.10: Seja a sequência

$$\langle p_1 = \langle a_1, b_1 \rangle, p_2 = \langle a_2, b_2 \rangle, \ldots \rangle$$

de pontos do \mathbb{R}^2 e o ponto $q = \langle a, b \rangle \in \mathbb{R}^2$. Então,

$$p_n \to q$$
 se, e só se, $a_n \to a$ e $b_n \to b$

Uma função $f: \mathbb{R}^2 \to \mathbb{R}^2$ é contínua em $p \in \mathbb{R}^2$ se, e só se, para qualquer aberto $V_{f(p)}$ contendo f(p) existe um aberto U_p contendo p e tal que $f[U_p] \subset V_{f(p)}$.

Enunciamos, a seguir, teoremas para o \mathbf{R}^2 análogos aos já enunciados para a reta \mathbf{R} .

Teorema 4.1*: A união de um número qualquer de abertos de \mathbb{R}^2 é aberta.

Teorema 4.2*: A intersecção de um número finito qualquer de abertos de \mathbb{R}^2 é aberta.

Teorema 4.4*: Um subconjunto A de \mathbb{R}^2 é fechado se, e só se, A contém cada um dos seus pontos de acumulação.

Teorema 4.8*: Uma função $f: \mathbb{R}^2 \to \mathbb{R}^2$ é contínua se, e só se, a imagem inversa de todo aberto é aberta.

Problemas Resolvidos

CONJUNTOS ABERTOS, PONTOS DE ACUMULAÇÃO

- 1. Determine os pontos de acumulação de cada um dos seguintes conjuntos de números reais:
 - (i) N; (ii) (a, b]; (iii) \mathbb{Q}^c , conjunto dos irracionais.

Solução:

- (i) N, o conjunto dos inteiros positivos, não tem ponto de acumulação, pois, se a é um número real qualquer, podemos achar um δ > 0 suficientemente pequeno para que o intervalo aberto (a δ, a + δ) não contenha nenhum ponto de N a não ser a.
- (ii) Todo ponto p do intervalo fechado [a,b] é ponto de acumulação do intervalo (a,b], pois todo intervalo aberto que contenha $p \in [a,b]$ conterá também outros pontos de (a,b] que não p.
- (iii) Todo número real $p \in \mathbf{R}$ é ponto de acumulação de \mathbf{Q}^c , pois todo intervalo aberto contendo $p \in \mathbf{R}$ conterá pontos de \mathbf{Q}^c (isto é, irracionais) que não p.

2. Recordemos que A' representa o conjunto derivado de A, i. e., o conjunto de pontos de acumulação de A. Determine conjuntos A tais que (i) A e A' sejam disjuntos, (ii) A seja subconjunto próprio de A', (iii) A' seja subconjunto próprio de A, (iv) A = A'.

Solução:

- (i) O conjunto $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ tem 0 (zero) como único ponto de acumulação. Logo, $A' = \{0\}$ e A e A' são disjuntos.
- (ii) Seja A = (a, b]. Como vimos no problema anterior, A' = [a, b]. Logo, $A \subseteq A'$.
- (iii) Seja $A = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$. Então, 0, que pertence a A, é seu único ponto de acumulação. Logo, $A' = \{0\}$ e $A' \subseteq A$.
- (iv) Se A = [a, b], cada ponto de A é ponto de acumulação seu, e nenhum outro ponto é ponto de acumulação de A. Então, A = A' = [a, b].
- 3. Demonstre o teorema 4.1*: A união de um número qualquer de abertos de \mathbb{R}^2 é aberto.

Solução: Seja \mathscr{A} uma classe de subconjuntos abertos de \mathbb{R}^2 , $H = \bigcup \{G | G \in \mathscr{A}\}$, e $p \in H$. O teorema estará provado desde que mostremos que p é ponto interior de H, i. e., que existe um disco aberto D_p contendo p tal que D_p esteja contido em H.

Como $p \in H = \bigcup \{G : G \in \mathscr{A}\},\$

$$\exists G_0 \in \mathscr{A}$$
 tal que $p \in G_0$

Mas G_0 é aberto; logo, existe um disco aberto D_p contendo p tal que

$$p \in D_p \subset G_0$$

Como G_0 é subconjunto de $H = \bigcup \{G : G \in \mathscr{A}\}$, D_p também é subconjunto de H. Logo, H é aberto.

4. Prove que todo subconjunto aberto G de \mathbb{R}^2 é a união de discos abertos.

Solução: Como G é aberto, para cada $p \in G$ existe um disco aberto D_p tal que $p \in D_p \subset G$. Então, $G = \bigcup \{D_p | p \in G\}$.

5. Prove o teorema 4.2^* : A intersecção de um número finito qualquer de abertos de \mathbb{R}^2 é aberta.

Solução: Demonstraremos o teorema para o caso de dois abertos de ${\bf R}^2$. O caso geral decorrerá por indução.

Sejam G e H abertos de \mathbf{R}^2 e $p \in G \cap H$; então, $p \in G$ e $p \in H$. Logo, existem discos abertos D_1 e D_2 tais que

$$p \in D_1 \subset G$$
 e $p \in D_2 \subset H$.

Então, $p \in D_1 \cap D_2 \subset G \cap H$. Pelo exemplo 11.1, a intersecção de dois discos abertos quaisquer é aberta; por conseguinte, existe um disco aberto D tal que

$$p \in D \subset D_1 \cap D_2 \subset G \cap H$$
.

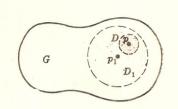
Logo, p é ponto interior de $G \cap H$ e $G \cap H$ é aberto.

6. Seja $p \in G$, aberto de \mathbb{R}^2 . Prove que existe um disco aberto D, com centro em p, tal que $p \in D \subset G$.

Solução: Pela definição de ponto interior, existe um disco aberto $D_1 = \{q \in \mathbf{R}^2 | d\ (p_1, q) < \delta\}$, com centro em p_1 e raio δ , tal que $p \in D_1 \subset G$. Então, $d\ (p_1, p) < \delta$. Ponhamos

$$r=\delta-d\left(p_{1},\,p\right)>0$$

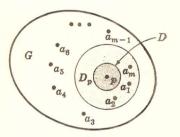
e seja $D=\{q\in\mathbf{R}^2|d\ (p,q)<\frac{1}{2}r\}$. Então, como mostra o diagrama, $p\in D\subset D_1\subset G$, onde D é um disco aberto com centro em p.



7. Seja p um ponto de acumulação de um subconjunto A de \mathbb{R}^2 . Prove que todo aberto que contém p contém infinitos pontos de A.

Solução: Seja G um aberto que contém p e sòmente um número finito de pontos de A diferentes de p (digamos a_1, a_2, \ldots, a_m). De acôrdo com o problema anterior, existe um disco aberto D_p com centro em p e raio δ , tal que $p \in D_p$ $\subset G$. Escolhamos r > 0 menor do que δ e menor do que a distância de p a qualquer dos pontos a_1, \ldots, a_m ; e seja

$$D = \{ q \in \mathbb{R}^2 | d(p, q) < \frac{1}{2} r \}.$$



Então, o disco aberto D que contém p não contém $a_1, \ldots a_m$; e, como $D \subset D_p \subset G$, D não contém quaisquer outros pontos de A diferentes de p.

Esta última circunstância contradiz o fato de que p é ponto de acumulação de A. Logo, todo aberto que contém p contém um número infinito de pontos de A.

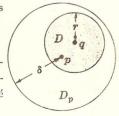
Observação: Propriedade análoga vale para a reta real \mathbf{R} , i. e., se $a \in \mathbf{R}$ é ponto de acumulação de $A \subset \mathbf{R}$, então todo aberto de \mathbf{R} que contém a contém infinitos pontos de A.

8. Seja um disco aberto D_p com centro em $p \in \mathbb{R}^2$ e raio δ . Prove que existe um disco aberto D tal que (i) o centro D tem coordenadas racionais, (ii) o raio de D é racional, (iii) $p \in D \subset D_p$.

Solução: Suponhamos $p = \langle a, b \rangle$. Então, existem números racionais c e d tais que

$$a < c < a + \frac{1}{6}\delta$$
 e $b < d < b + \frac{1}{6}\delta$.

Seja $q=\langle c,d\rangle$. Note que $d(p,q)<\frac{1}{3}\delta$. Escolhamos, agora, um racional r tal que $\frac{1}{3}\delta< r<\frac{2}{3}\delta$ e seja D o disco aberto com centro q, que tem coordenadas racionais, e raio r que é racional. Então, como indica o diagrama, $p\in D\subset D_p$.



9. Prove que todo aberto G do plano \mathbb{R}^2 é a união de um conjunto contável de discos abertos.

Solução: Como G é aberto, para cada ponto $p \in G$ existe um disco aberto D_p com centro em p tal que $p \in D_p \subset G$. Mas, pelo problema precedente, para cada disco

 D_p existe um disco aberto E_p tal que (i) o centro de E_p tem coordenadas racionais, (ii) o raio de E_p é racional e (iii) $p \in E_p \subset D_p$. Então,

$$p \in E_p \subset D_p \subset G$$
,

e, consequentemente, $G = \mathbf{U} \{E_p : p \in G\}$.

O teorema decorre, agora, de que há sòmente um conjunto contável de discos abertos cujo centro tem coordenadas racionais e cujo raio é racional.

10. Demonstre o teorema 4.3, de Bolzano-Weierstrass: Se A é um conjunto limitado infinito de números reais, então A contém, ao menos, um ponto de acumulação.

Solução: Como A é limitado, A é subconjunto de um intervalo fechado $I_1 = [a_1, b_1]$, Bisseccionemos I_1 em $\frac{1}{2}$ $(a_1 + b_1)$ e notemos que ambos os subintervalos fechados de I_1 .

$$\left[a_{1}, \frac{1}{2}(a_{1} + b_{1})\right] \in \left[\frac{1}{2}(a_{1} + b_{1}), b_{1}\right],$$
 (1)

não podem conter um número finito de pontos de A, pois A é infinito. Seja $I_2 = [a_2, b_2]$ um dos intervalos em, (1), que contém infinitos pontos de A.

Bisseccionemos I_2 . Como no caso anterior, um dos dois intervalos fechados

$$\left[a_2, \frac{1}{2}(a_2 + b_2)\right]$$
 e $\left[\frac{1}{2}(a_2 + b_2), b_2\right]$

deve conter infinitos pontos de A. Seja I3 êsse intervalo.

Prosseguindo dessa maneira, obtemos uma seqüência de intervalos fechados encaixados

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

tais que cada I_n contém infinitos pontos de A e

$$\lim |I_n| = 0,$$

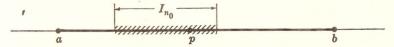
onde $|I_n|$ denota a amplitude do intervalo I_n .

Pelo Princípio dos Intervalos Encaixados dos números reais (v. apêndice A), existe um ponto p em cada intervalo I_n . Se mostrarmos que p é ponto de acumulação de A, teremos estabelecido o teorema.

Seja $S_p = (a, b)$ um intervalo aberto contendo p. Como lim $|I_n| = 0$,

$$\exists n_0 \in \mathbb{N} \text{ tal que } |I_{n_0}| < \min(p-a, b-p).$$

Então, o intervalo I_{n_0} é um subconjunto do intervalo aberto $S_p = (a, b)$, conforme indicado no diagrama abaixo.



Como I_{n_0} contém um número infinito de pontos de A, o mesmo ocorre com S_p . Então, cada intervalo aberto que contém p contém pontos de A diferentes de p, isto é, p é ponto de acumulação de A.

INTERVALOS FECHADOS

Prove que um conjunto F é fechado se, e sòmente se, seu complementar F^c é aberto.

Solução: $(F^c)^c = F$, i. e, F é complemento de F^c . Logo, por definição, F é fechado se, e sòmente se, F^c é aberto.

12. Prove que a união de um número finito de conjuntos fechados é fechada.

Solução: Sejam F_1, \ldots, F_m conjuntos fechados e $F = F_1 \cup \ldots \cup F_m$. Pela Lei de De Morgan,

$$F^c = (F_1 \cup \ldots \cup F_m)^c = F_1^c \cap F_2^c \cap \ldots \cap F_m^c$$

Então F^c é a intersecção de um número finito de abertos F^c_i , e, assim, F^c é também aberto. Logo, seu complemento $F^{cc} = F$ é fechado.

13. Prove que a intersecção de um número qualquer de conjuntos fechados é fechada.

Solução: Seja $\{F_i\}$ a classe de conjuntos fechados e $F = \bigcap_i F_i$. Pela Lei de De Morgan,

$$F^c = (\bigcap_i F_i)^c = \bigcup_i F_i^c$$

Então, F^{c} , união de abertos, é também aberto. Consequentemente, $F^{cc}=F$ é fechado.

14. Demonstre o teorema 4.4^* : Um subconjunto do \mathbb{R}^2 é fechado se, e sòmente se, contém cada um de seus pontos de acumulação.

Solução: Seja p ponto de acumulação de um conjunto fechado F. Então, todo disco aberto que contém p contém pontos outros de F que não p. Logo, não pode haver um disco aberto D_p contendo p que esteja completamente contido no complemento de F. Em outras palavras, p não é ponto interior de F^c . Mas F^c é aberto, pois F é fechado; logo, p não pertence a F^c , i. e, $p \in F$.

Por outro lado, suponhamos que A contém cada um dos seus pontos de acumulação. Afirmamos que A é fechado, ou, equivalentemente, que A^c é aberto. Seja $p \in A^c$. Como A contém cada um dos seus pontos de acumulação, p não é ponto de acumulação de A. Logo, existe, ao menos, um disco aberto D_p , contendo p, tal que D_p não contém qualquer ponto de A, isto é, $D_p \subseteq A^c$ e, portanto, p é ponto interior de A^c . Como cada ponto $p \in A^c$ é ponto interior, A^c é aberto e, consequentemente, A é fechado.

15. Prove que o conjunto A', derivado de um subconjunto A do \mathbb{R}^2 , é fechado.

Solução: Seja p ponto de acumulação de A'. Pelo teorema 4.4*, teremos demonstrado nosso teorema se mostrarmos que $p \in A'$, i. e., que p também é ponto de acumulação de A.

Seja G_p um aberto contendo p. Como p é ponto de acumulação de A', G_p contém, ao menos, um ponto $q \in A'$ diferente de p. Mas G_p é um aberto que contém $q \in A'$; logo, G_p contém (infinitos) pontos de A. Logo,

$$\exists a \in A$$
 tal que $a \neq p$, $a \neq q$, e $a \in G_p$.

Isto é, cada aberto que contém p contém pontos de A outros que não p; logo $p \in A'$.

16. Prove que, se A é um conjunto fechado e limitado de reais e sup (A) = p, então $p \in A$.

Solução: Suponhamos que $p \notin A$ e seja G um aberto contendo p. Então, G contém um intervalo aberto (b,c) ao qual p pertence, i. e., tal que b . Como sup <math>(A) = p e $p \notin A$,

$$\exists a \in A \text{ tal que } b < a < p < c,$$

pois, doutra forma, b seria cota superior de A. Então, $a \in (b,c) \subset G$. Assim, cada aberto que contém p contém um ponto de A diferente de p; logo, p é ponto de acumulação de A. Mas A é fechado; logo, pelo teorema 4.4^* , $p \in A$.

17. Demonstre o teorema 4.5, de Heine-Borel: Se $I_1 = [c_1, d_1]$ é coberto por uma classe $\mathscr{G} = \{(a_i, b_i) \mid i \in I\}$ de intervalos abertos, então \mathscr{G} contém uma subclasse finita que também cobre I_1 .

Solução: Suponhamos que não haja nenhuma subclasse finita de \mathscr{G} que cubra I_1 . Bisseccionemos $I_1 = [c_1, d_1]$ em $\frac{1}{2}(c_1 + d_1)$ e consideremos os dois intervalos fechados

$$\left[c_{1}, \frac{1}{2}(c_{1}+d_{1})\right] \in \left[\frac{1}{2}(c_{1}+d_{1}), d_{1}\right]...$$
 (1)

Pelo menos um dêsses dois intervalos não pode ser coberto por uma subclasse finita de \mathscr{G} , pois, do contrário, todo o intervalo I_1 seria coberto por uma subclasse finita de \mathscr{G} . Seja, então, $I_2 = [c_2, d_2]$ um dos dois intervalos de (1), que não admite essa cobertura. Bisseccionemos I_2 . Como anteriormente, um dos dois intervalos fechados

$$\left[c_2, \frac{1}{2}(c_2 + d_2)\right]$$
 e $\left[\frac{1}{2}(c_2 + d_2), d_2\right]$

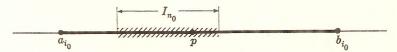
não pode ser coberto por uma subclasse finita de G. Seja êle I3.

Continuando o processo, obteremos uma seqüência de intervalos fechados encaixados $I_1 \supset I_2 \supset I_3 \supset \ldots$ tais que cada I_n não pode ser coberto por uma subclasse finita de $\mathscr G$ e lim $|I_n|=0$, $|I_n|$ representando a amplitude do intervalo I_n .

Pela propriedade dos intervalos encaixados (V. apêndice), existe um ponto p em cada I_n . Em particular, $p \in I_1$. Como $\mathscr G$ é cobertura de I_1 , existe um intervalo aberto (a_{i_0}, b_{i_0}) em $\mathscr G$ que contém p. Logo, $a_{i_0} . E, como lim <math>|I_n| = 0$,

$$\exists n_0 \in N \text{ tal que } |I_{n_0}| < \min(p - a_{i_0}, b_{i_0} - p)$$

Então, conforme indicado no diagrama abaixo, o intervalo I_{n_0} é um subconjunto do intervalo (a_{i_0},b_{i_0}) em \mathcal{G} .



Mas isso contradiz nossa escolha de I_{n_0} . Assim, a hipótese inicial de que não existe subclasse finita de \mathscr{G} que cubra I_1 é falsa; logo, o teorema é verdadeiro.

SEQÜÊNCIAS

18. Escreva os seis primeiros têrmos de cada uma das seqüências:

(i)
$$s(n) = \begin{cases} n-1 & \text{se } n \text{ \'e impar} \\ n^2 & \text{se } n \text{ \'e par} \end{cases}$$

(ii) $t(n) = \begin{cases} 1 & \text{se } n=1 \\ 2 & \text{se } n=2 \\ t(n-1)+t(n+2) & \text{se } n>2. \end{cases}$

Solução:

- (i) Duas fórmulas são utilizadas para definir esta função. Substituamos 1, 3 e 5 em s(n) = n 1, obtendo $s_1 = 0$, $s_3 = 2$, $s_5 = 4$. Substituamos, em seguida, 2, 4 e 6 em $s(n) = n^2$, obtendo $s_2 = 4$, $s_4 = 16$, $s_6 = 36$. Temos, então, $\langle 0, 4, 2, 16, 4, 36, \ldots \rangle$.
- (ii) Aqui, a função é definida por meio de recorrência. Cada têrmo após o segundo é obtido por adição dos dois têrmos anteriores. Assim:

$$t_1 = 1$$
 $t_4 = t_3 + t_2 = 3 + 2 = 5$
 $t_2 = 2$ $t_5 = t_4 + t_3 = 5 + 3 = 8$
 $t_3 = t_2 + t_1 = 2 + 1 = 3$ $t_6 = t_5 + t_4 = 8 + 5 = 13$

Temos, então, (1, 2, 3, 5, 8, 13, ...).

19. Considere a sequência $\langle a_n = (-1)^{n-1} (2n-1) \rangle$:

$$\langle 1, -3, 5, -7, 9, -11, 13, -15, \ldots \rangle$$

Determine se cada uma das seqüências abaixo é ou não subseqüência de $\langle a_n \rangle$.

- (i) $\langle b_n \rangle = \langle 1, 5, -3, -7, 9, 13, -11, -15, \ldots \rangle$
- (ii) $\langle c_n \rangle = \langle 1, 3, 5, 7, 9, 11, 13, \ldots \rangle$
- (iii) $\langle d_n \rangle = \langle -3, -7, -11, -15, -19, -23, \ldots \rangle$.

Solução:

- (i) Note que 5 vem antes de -3 em $\langle b_n \rangle$, mas -3 vem antes de 5 em $\langle a_n \rangle$. Logo, $\langle b_n \rangle$ não é subsequência de $\langle a_n \rangle$.
- (ii) Os têrmos 3, 7 e 11 não comparecem em $\langle a_n \rangle$; logo, $\langle c_n \rangle$ não é subsequência de $\langle a_n \rangle$.
- (iii) A sequência $\langle d_n \rangle$ é subsequência de $\langle a_n \rangle$, pois $\langle i_n = 2n \rangle = \langle 2, 4, 6, \ldots \rangle$ é uma sequência de inteiros positivos tal que $i_1 < i_2 < i_3 < \ldots$; logo,

$$\langle ai_1, ai_2, \ldots \rangle = \langle a_2, a_4, a_6, \ldots \rangle = \langle -3, -7, -11, \ldots \rangle$$

é subsequência de $\langle a_n \rangle$.

- 20. Determine o contradomínio de cada uma das seqüências
 - (i) $\langle 1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, \ldots \rangle$
 - (ii) $\langle 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, \ldots \rangle$
 - (iii) (2, 4, 6, 8, 10, ...)

Solução: O contradomínio de uma sequência é o conjunto dos pontos imagem. Logo, os contradomínios das sequências dadas são:

(i)
$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$$
, (ii) $\left\{1, 0, -1\right\}$, (iii) $\left\{2, 4, 6, 8, \ldots\right\}$

21. Prove que, se o contradomínio de uma sequência $\langle a_n \rangle$ é finito, então a sequência tem uma subsequência convergente.

Solução: Se o contradomínio $\{a_n\}$ de $\langle a_n \rangle$ é finito, então um dos pontos imagem, digamos b, aparece um número infinito de vêzes na seqüência. Logo, $\langle b, b, b, \ldots \rangle$ é subsequência convergente de $\langle a_n \rangle$.

22. Prove que, se lim $a_n = b$ e lim $a_n = c$, então b = c.

Solução: Suponhamos b e c distintos, e seja $\delta = |b-c| > 0$. Então, os intervalos abertos $B = \left(b - \frac{1}{2}\,\delta, \ b + \frac{1}{2}\,\delta\right)$ e $C = \left(c - \frac{1}{2}\,\delta, \ c + \frac{1}{2}\,\delta\right)$, que contêm b e c, respectivamente, são disjuntos. Como $\langle a_n \rangle$ converge para b, B deve conter todos os têrmos da seqüência, exceto um número finito. Logo, C só pode conter um número finito dêsses têrmos. Mas isso contradiz o fato de que $\langle a_n \rangle$ converge para c. Logo, b e c não podem ser distintos.

23. Prove que, se o contradomínio $\{a_n\}$ de uma seqüência $\langle a_n \rangle$ contém um ponto de acumulação b, então $\langle a_n \rangle$ contém uma subseqüência $\langle a_{i_n} \rangle$ que converge para b.

Solução: Como b é ponto de acumulação de $\{a_n\}$, cada um dos intervalos abertos $S_1 = (b-1, b+1)$, $S_2 = \left(b-\frac{1}{2}, b+\frac{1}{2}\right)$, $S_3 = \left(b-\frac{1}{3}, b+\frac{1}{3}\right)$, ...

contém um número infinito de elementos do conjunto $\{a_n\}$; logo, um número infinito de têrmos da sequência $\langle a_n \rangle$. Escolhamos uma sequência $\langle a_{i_n} \rangle$ como segue: a_{i_1} ponto de S_1 ;

 a_{i_2} ponto de S_2 tal que $i_2 \ge -i_1$, i. e., tal que a_{i_2} venha após a_{i_1} na sequência $\langle a_n \rangle$; a_{i_3} ponto de S_3 tal que $i_3 \ge i_2$, etc.

Notemos que é sempre possível escolher o próximo têrmo na sequência $\langle a_{i_n} \rangle$, pois há um número infinito de têrmos da sequência original $\langle a_n \rangle$ em cada intervalo S_n .

Afirmamos que $\langle ai_n \rangle$ satisfaz as condições do teorema. Lembremos que os têrmos da seqüência $\langle ai_n \rangle$ foram escolhidos de modo que $i_1 < i_2 < i_3 < \ldots$; logo $\langle ai_n \rangle$ é subseqüência de $\langle an \rangle$. Devemos mostrar que lim $ai_n = b$. Seja G um conjunto aberto contendo b. Então, G contém um intervalo aberto (d_1, d_2) ao qual b pertence; logo, $d_1 < b < d_2$. Seja $\delta = \min (b - d_1, d_2 - b) > 0$; então

$$\exists n_0 \in N \text{ tal que } 1/n_0 < \delta$$

Logo, $S_{n_0} \subset (d_1, d_2) \subset G$, e

$$n > n_0 \implies a_{i_n} \in S_n \subset S_{n_0} \subset (d_1, d_2) \subset G$$

Assim, G contém quase todos os têrmos da sequência $\langle a_{i_n} \rangle$; isto é, $\lim a_{i_n} = b$.

24. Prove que tôda sequência limitada de números reais contém uma subsequência convergente.

Solução: Consideremos o contradomínio $\{a_n\}$ de $\langle a_n \rangle$. Se o contradomínio é finito, então (probl. 21), a seqüência contém uma subseqüência convergente. E, se o contradomínio é infinito, então, pelo teorema de Bolzano-Weierstrass, o conjunto infinito limitado $\{a_n\}$ contém um ponto de acumulação. Mas, então, também neste caso, a seqüência contém uma subseqüência convergente.

25. Prove que tôda seqüência de Cauchy, $\langle a_n \rangle$, de números reais é cotada.

Solução: Seja $\epsilon=1$. Então, pela definição de sequência de Cauchy,

$$\exists n_0 \in \mathbb{N}$$
 tal que $n, m \ge n_0 \Longrightarrow |a_n - a_m| < 1$

Em particular, $m \ge n_0 \Longrightarrow |a_{n_0} - a_m| < 1$, ou, $a_{n_0} - 1 < a_m < a_{n_0} + 1$

Seja

$$\alpha = \max (a_1, a_2, \dots, a_{n_0}, a_{n_0} + 1)$$

 $\beta = \min (a_1, a_2, \dots, a_{n_0}, a_{n_0} - 1).$

Então, α é cota superior do contradomínio $\{a_n\}$ da sequência $\langle a_n \rangle$ e β é cota inferior. Logo, $\langle a_n \rangle$ é uma sequência cotada.

26. Seja $\langle a_n \rangle$ uma seqüência de Cauchy. Se uma subseqüência $\{a_n\}$ de $\langle a_n \rangle$ converge para um ponto b, então a seqüência de Cauchy também converge para b.

Solução: Seja $\epsilon > 0$. Devemos achar um inteiro positivo n_0 tal que

$$n > n_0 \implies |a_n - b| < \epsilon$$

Como $\langle a_n \rangle$ é uma sequência de Cauchy,

$$\exists n_0 \in \mathbb{N}$$
 tal que $n, m > n_0 \Longrightarrow |a_n - a_m| < \frac{1}{2} \epsilon$

Também como a subsequência $\langle a_{i_n} \rangle$ converge para b,

$$\exists i_m \in \mathbb{N}$$
 tal que $|a_{i_m} - b| < \frac{1}{2} \epsilon$

Observe que podemos escolher i_m tal que $i_m > n_0$. Logo,

$$|a_n - b| = |a_n - a_{i_m} + a_{i_m} - b|$$

$$\leq |a_n - a_{i_m}| + |a_{i_m} - b|$$

$$\leq \frac{1}{2} \epsilon + \frac{1}{2} \epsilon = \epsilon$$

Logo $\langle a_n \rangle$ converge para b.

Observe que deve ser $i_m > n_0$ para podermos afirmar: $n > n_0 \Longrightarrow |a_n - a_{i_m}| < \frac{1}{2} \epsilon$.

27. Prove o teorema (Cauchy) 4.9: Tôda sequência de Cauchy $\langle a_n \rangle$ de números reais converge para um número real.

Solução: Pelo problema 25, a seqüência de Cauchy $\langle a_n \rangle$ é cotada. Logo, pelo teor. 4-6, a seqüência cotada $\langle a_n \rangle$ contém uma subseqüência convergente. Mas, pelo problema precedente, a seqüência de Cauchy $\langle a_n \rangle$ converge para o mesmo limite que sua subseqüência $\langle a_{i_n} \rangle$. Em outras palavras, a seqüência de Cauchy $\langle a_n \rangle$ converge para um número real.

28. Determine se cada um dos seguintes subconjuntos de R é ou não completo: (i) N conjunto dos inteiros positivos (ii) Q^c, conjunto dos irracionais.

Solução: (i) Seja $\langle a_n \rangle$ a sequência de Cauchy de inteiros positivos. Se $\epsilon = \frac{1}{2}$, então, $|a_n - a_m| < \epsilon = \frac{1}{2}$ \Longrightarrow $a_n = a_m$

Portanto, a sequência de Cauchy $\langle a_n \rangle$ é da forma $\langle a_1, a_2, \ldots, a_{n_0}, b, b, b, \ldots \rangle$ que converge para o inteiro positivo b. Logo, \mathbb{N} é completo.

(ii) Observe que cada um dos intervalos abertos

$$(-1, 1), (-\frac{1}{2}, \frac{1}{2}), (-\frac{1}{3}, \frac{1}{3}), \ldots$$

contém pontos irracionais. Logo, existe uma seqüência $\langle a_n \rangle$ de irracionais tal que a_n pertence ao intervalo aberto (-1/n, 1/n). A seqüência $\langle a_n \rangle$ será uma seqüência de Cauchy de pontos de \mathbf{Q}^c e convergirá para o racional 0. Logo, \mathbf{Q}^c não é completo.

CONTINUIDADE

29. Prove que, se a função $f: \mathbf{R} \to \mathbf{R}$ é constante, f(x) = a para todo $x \in \mathbf{R}$, então f é contínua.

Solução:

Método 1: A função f é contínua se, e sòmente se, a inversa $f^{-1}[G]$ de qualquer aberto G é aberta. Como f(x) = a para todo $x \in \mathbf{R}$.

$$f^{-1}[G] = \begin{cases} \emptyset & \text{se } a \notin G \\ \mathbf{R} & \text{se } a \in G \end{cases}$$

para qualquer aberto G. Em qualquer dos casos, $f^{-1}[G]$ é aberto, pois ${\bf R}$ e \varnothing são ambos abertos.

Método 2: Mostremos que f é contínua em qualquer ponto x_0 , usando a definição $\epsilon - \delta$ de continuidade. Seja $\epsilon > 0$. Então, para qualquer $\delta > 0$, digamos, $\delta = 1$,

$$|x-x_0| < 1 \implies |f(x)-f(x_0)| = |a-a| = 0 < \epsilon.$$

Logo, f é contínua.

30. Prove que a função identidade $f: \mathbf{R} \to \mathbf{R}$, i. e., a função definida por f(x) = x, é contínua.

Solução:

Método 1: Seja G aberto. Então $f^{-1}[G]$ também é aberto. Logo, f é contínua. Método 2: Mostremos que f é contínua num ponto qualquer x_0 usando a definição $\epsilon - \delta$ de continuidade. Seja $\epsilon > 0$. Então, escolhendo $\epsilon = \delta$,

$$|x-x_0| < \delta \implies |f(x)-f(x_0)| = |x-x_0| < \delta = \epsilon.$$

Logo, f é contínua.

31. Sejam as funções $f: \mathbf{R} \to \mathbf{R}$ e $g: \mathbf{R} \to \mathbf{R}$ contínuas. Então, a composta $g \circ f: \mathbf{R} \to \mathbf{R}$ também é contínua.

Solução: Mostremos que a inversa $(g \circ f)^{-1}[G]$ de qualquer aberto G é também um aberto. Como g é contínua, a inversa $g^{-1}[G]$ é também um conjunto aberto. Mas como f é contínua, a inversa $f^{-1}[g^{-1}[G]]$ de $g^{-1}[G]$ é também um aberto. Lembremos que

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Logo,
$$(g \circ f)^{-1} \, [G] \, = \, (f^{-1} \circ g^{-1}) \, [G] \, = f^{-1} \, [g^{-1} \, [G]]$$

é um aberto. Assim, a composta g $\circ f: \mathbf{R} \to \mathbf{R}$ é contínua.

32. Seja $f: \mathbf{R} \to \mathbf{R}$ contínua, e f(q) = 0 para todo racional $q \in \mathbf{Q}$. Então, f(x) = 0 para todo real $x \in \mathbf{R}$.

Solução: Suponhamos f(p) diferente de zero para algum real $p \in \mathbb{R}$, i. e.,

$$\exists p \in \mathbf{R}$$
 tal que $f(p) = \gamma$, $|\gamma| > 0$

Escolhamos $\epsilon = \frac{1}{2} |\gamma|$. Como f é contínua,

$$\exists \delta > 0 \text{ tal que } |x - p| < \delta \implies |f(x) - f(p)| < \epsilon = \frac{1}{2} |\gamma|.$$

Ora, há pontos racionais em todo intervalo aberto. Em particular,

$$\exists q \in \mathbf{Q}$$
 tal que $q \in \{x : |x - p| < \delta\}$

o que implica

$$|f(q) - f(p)| = |f(p)| = |\gamma| < \epsilon = \frac{1}{2}|\gamma|$$

uma impossibilidade. Logo, f(x) = 0 para todo $x \in \mathbb{R}$.

33. Prove o teorema 4.8: Uma função $f: \mathbb{R}^2 \to \mathbb{R}^2$ é contínua se, e sòmente se, a imagem inversa de todo aberto é também um aberto.

Solução: Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ contínua, e V um subconjunto aberto de \mathbb{R}^2 . Devemos mostrar que $f^{-1}[V]$ é também um aberto. Seja $p \in f^{-1}[V]$. Então, $f(p) \in V$. Pela definição de continuidade, existe um aberto U_p contendo p, tal que $f[U_p] \subset V$. Então, conforme indicado no diagrama abaixo,

$$U_p \subset f^{-1} [f[U_p]] \subset f^{-1} [V]$$

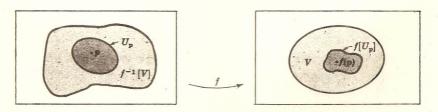
Mostramos, assim, que, para todo $p \in f^{-1}[V]$, existe um aberto U_p tal que

$$p \in U_p \subset f^{-1}[V]$$

Então,

$$f^{-1}[V] = \mathbf{U}\{U_p; p \in f^{-1}[V]\},\$$

e $f^{-1}[V]$ é união de abertos, sendo, portanto, também aberto.



Por outro lado, suponhamos que a inversa de todo conjunto aberto seja também um aberto. Devemos mostrar que f é contínua em qualquer ponto $p \in \mathbf{R}$. Seja V um aberto contendo f(p), i. e., $f(p) \in V$. Então, $f^{-1}[V]$ é um aberto que contém p com a propriedade que $f[f^{-1}[V]] \subset V$. Logo, f é contínua em p.

34. Dê um exemplo de duas funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ tais que f e g sejam, separadamente, descontínuas (não contínuas) em cada ponto, mas que sua soma f+g seja contínua em cada ponto de \mathbb{R} .

Solução: Considere as funções f e g definidas por

$$f(x) = \begin{cases} 0 \text{ se } x \text{ \'e racional} \\ 1 \text{ se } x \text{ \'e irracional} \end{cases}, \qquad f(x) = \begin{cases} 1 \text{ se } x \text{ \'e racional} \\ 0 \text{ se } x \text{ \'e irracional.} \end{cases}$$

As funções f e g são descontínuas em cada ponto de \mathbf{R} , mas a soma f+g é a função constante (f+g)(x)=1, que é contínua.

- **35.** Seja a função $f: \mathbb{R} \to \mathbb{R}$ contínua num ponto $p \in \mathbb{R}$. Prove que:
 - (i) Se f(p) > 0, existe um intervalo aberto S contendo p, tal que f é positiva em todo ponto de S.

(ii) Se f(p) < 0, existe um intervalo aberto S contendo p, tal que f é negativa em todo ponto de S.

Solução: Provaremos (i). A demonstração de (ii) é análoga.

Suponhamos $f(p) = \epsilon > 0$. Como f é contínua em p,

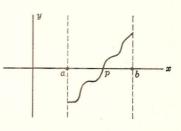
$$\exists \delta > 0$$
 tal que $|x-p| < \delta \implies |f(x)-f(p)| < \epsilon$

ou, equivalentemente,

$$x \in (p-\delta, p+\delta) \implies f(x) \in (f(p)-\epsilon, f(p)+\epsilon) = (0, 2\epsilon)$$

Assim, para todo ponto x no intervalo $(p - \delta, p + \delta)$, f(x) é positiva.

36. Seja f: R → R contínua em todo ponto de um intervalo fechado [a, b], e f(a) < 0 < f(b). Então, existe um ponto p∈ [a,b] tal que f(p) = 0. (Em outras palavras, o gráfico de uma função contínua num intervalo fechado, que está aí acima e abaixo do eixo dos xx, deve cortar êsse eixo em, ao menos, um ponto, conforme indica a figura ao lado.)</p>



Solução: Seja A o conjunto de pontos de [a, b] em que f é negativa, i. e.,

$$A = \{x \mid x \in [a, b], f(x) < 0\}$$

Note que A não é vazio, pois, p. ex., $a \in A$. Seja $p = \sup(A)$. Como $a \in A$, $a \le p$; e como b é cota superior de A, $p \le b$. Então, $p \in [a, b]$.

Afirmamos que f(p) = 0. Se f(p) < 0, então, pelo problema precedente, existe um intervalo aberto $(p - \delta, p + \delta)$ no qual f é negativa, i. e.,

$$(p-\delta, p+\delta) \subset A$$
.

Então p não pode ser cota superior de A. Por outro lado, se f(p) > 0, existe um intervalo $(p - \delta, p + \delta)$ em que f é positiva; i. e.,

$$(p-\delta, p+\delta) \cap A = \emptyset,$$

o que implica que p não pode ser supremo de A.

Assim, f(p) só pode ser zero, i. e., f(p) = 0.

Observação: O teorema é válido e se demonstra de maneira análoga, no caso em que f(b) < 0 < f(a).

37. Demonstre o teorema 4.9 (de Weierstrass): Se $f: \mathbb{R} \to \mathbb{R}$ é contínua num intervalo fechado [a, b], então f toma todos os valôres empreendidos entre f(a) e f(b).

Solução: Suponhamos f(a) < f(b) e seja y_0 com número real tal que $f(a) < y_0 < f(b)$. Devemos provar que existe um ponto p tal que $f(p) = y_0$. Consideremos a função $g(x) = f(x) - y_0$, que támbém é contínua, e observemos que g(a) < 0 < g(b).

Pelo problema precedente, existe um ponto p tal que $g(p) = f(p) - y_0 = 0$. Logo, $f(p) = y_0$.

Demonstra-se anàlogamente o caso em que f(b) < f(a).

Problemas Propostos

CONJUNTOS ABERTOS, CONJUNTOS FECHADOS, PONTOS DE ACUMULAÇÃO

- 38. Prove: Se A é subconjunto finito de R, o derivado A' de A é vazio, i. e., $A' = \emptyset$.
- 39. Prove: Todo subconjunto finito de R é fechado.
- **40.** Prove: Se $A \subseteq B$, então, $A' \subseteq B'$.
- **41.** Prove: Um subconjunto B de \mathbb{R}^2 é fechado se, e só se, $d(p,B) = 0 \Longrightarrow p \in B$, onde $d(p,B) = \inf \{d(p,q) : q \in B\}$.
- **42.** Prove: $A \cup A'$ é fechado para qualquer conjunto A.
- **43.** Prove: $A \cup A'$ é o menor conjunto fechado que contém A, i. e., se F é fechado e $A \subset F \subset A \cup A'$, então $F = A \cup A'$.
- 44. Prove: O conjunto de pontos interiores de qualquer conjunto A, que se representa por int (A), é aberto.
- **45.** Prove: O conjunto de pontos interiores de A é o maior conjunto aberto contido em A, i. e., se G é aberto e int $(A) \subset G \subset A$, então int (A) = G.
- 46. Prove: Os únicos subconjuntos de R simultâneamente abertos e fechados são Ø e R.

SEQÜÊNCIAS

- 47. Prove: Se a seqüência $\langle a_n \rangle$ converge para $b \in \mathbb{R}$, então a seqüência $\langle |a_n b| \rangle$ converge para 0.
- 48. Prove: Se a sequência $\langle a_n \rangle$ converge para 0, e a sequência $\langle b_n \rangle$ é limitada, então a sequência $\langle a_n b_n \rangle$ também converge para 0.
- **49.** Prove: Se $a_n \to a$ e $b_n \to b$, então a seqüência $(a_n + b_n)$ converge para a + b.
- **50.** Prove: Se $a_n \rightarrow a$ e $b_n \rightarrow b$, então a sequência $\langle a_n b_n \rangle$ converge para ab.
- 51. Prove: Se $a_n \to a$ e $b_n \to b$, com $b_n \neq 0$ e $b \neq 0$, então a sequência $\langle a_n/b_n \rangle$ converge para a/b.
- **52.** Prove: Se a sequência $\langle a_n \rangle$ converge para b, então tôda subsequência $\langle a_{i_n} \rangle$ de $\langle a_n \rangle$ também converge para b.
- 53. Prove: Se a sequência $\langle a_n \rangle$ converge para b, então ou o contradomínio $\{a_n\}$ da sequência $\langle a_n \rangle$ é finito, ou b é ponto de acumulação do contradomínio $\{a_n\}$.
- 54. Prove: Se a seqüência $\langle a_n \rangle$ é limitada e o contradomínio $\{a_n\}$ de $\langle a_n \rangle$ tem exatamente um ponto de acumulação b, então a seqüência $\langle a_n \rangle$ converge para b.
- (Observação: A sequência $\langle 1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, 4, \ldots \rangle$ mostra que não podemos prescindir neste teorema da condição de ser a sequência limitada.)

CONTINUIDADE

- 55. Prove: Uma função $f: \mathbf{R} \to \mathbf{R}$ é contínua em $a \in \mathbf{R}$ se, e só se, para tôda seqüência $\langle a_n \rangle$ que converge para a, a seqüência $\langle f(a_n) \rangle$ converge para f(a).
- 56. Prove: Se $f: \mathbb{R} \to \mathbb{R}$ é contínua em $p \in \mathbb{R}$, então existe um intervalo aberto S contendo p, tal que f é cotada em S.
- 57. Dê um exemplo de função $f: \mathbb{R} \to \mathbb{R}$ contínua em todo ponto de um intervalo aberto S = (a, b), mas não cotada em S.

- 58. Prove: Se f: R → R é continua em todo ponto de um intervalo fechado [a, b], f é aí cotada. [Observação: Pelo problema anterior, vê-se que o teorema não é válido se A não é fechado.]
- 59. Prove: Sejam $f: \mathbf{R} \to \mathbf{R}$ e $g: \mathbf{R} \to \mathbf{R}$ contínuas. Então, a soma f+g é contínua, sendo f+g definida por $(f+g)(x) \equiv f(x)+g(x)$.
- 60. Prove: Seja $f: \mathbf{R} \to \mathbf{R}$ contínua, e k um número real qualquer. Então, a função $(kf): \mathbf{R} \to \mathbf{R}$ é contínua, kf sendo definida por (kf)(x) = k(f(x)).
- **61.** Prove: Se $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ são contínuas, o conjunto $\{x \in \mathbb{R} : f(x) = g(x)\}$ é fechado.
- 62. Prove que a projeção $\pi_x: \mathbb{R}^2 \to \mathbb{R}$ é contínua, π_x sendo definida por $\pi_x(\langle a, b \rangle) = a$.
- 63. Considere as funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) = \begin{cases} \operatorname{sen} (1/x) & \operatorname{se} x \neq 0, \\ 0 & \operatorname{se} x = 0 \end{cases} \qquad g(x) = \begin{cases} x \operatorname{sen} (1/x) & \operatorname{se} x \neq 0, \\ 0 & \operatorname{se} x = 0 \end{cases}$$

Prove que g é contínua em 0 mas f não o é aí.

64. Lembremos que todo racional q ∈ Q pode escrever-se de maneira única sob a forma q = a/b, a ∈ Z, b ∈ N, e a e b primos entre si. Isto pôsto, consideremos a função f: R → R definida por

$$f(x) \ = \ \begin{cases} 0 & \text{se } x \notin \text{irracional} \\ 1/b & \text{se } x \notin \text{racional e } x = a/b \text{ como acima.} \end{cases}$$

Prove que f é contínua em todo ponto irracional, mas é descontínua em todo ponto racional.

Respostas dos Problemas Propostos

57. Consideremos a função

$$f(x) = \begin{cases} -x & \text{para } x \le 0 \\ 1/x & \text{para } x > 0. \end{cases}$$

f é contínua em todo ponto de **R**, exceto 0. Então f é contínua em todo ponto do intervalo aberto (0, 1), mas não é aí cotada. (Ver gráfico ao lado.)

