Solutions Chapter 4

SECTION 4.2

4.2.4 www

Problem correction: Assume that Q is symmetric and invertible. (This correction has been made in the 2 nd printing.)

Solution: We have

$$
\begin{aligned}
& \text { minimize } f(x)=\frac{1}{2} x^{\prime} Q x \\
& \text { subject to } A x=b
\end{aligned}
$$

Since x^{*} is an optimal solution of this problem with associated Lagrange multiplier λ^{*}, we have

$$
\begin{equation*}
A x^{*}=b \quad \text { and } \quad Q x^{*}+A^{\prime} \lambda^{*}=0 \tag{1}
\end{equation*}
$$

We also have

$$
q_{c}(\lambda)=\min L_{c}(x, \lambda)
$$

where

$$
L_{c}(x, \lambda)=\frac{1}{2} x^{\prime} Q x+\lambda^{\prime}(A x-b)+\frac{c}{2}\|A x-b\|^{2}
$$

One way of showing that $q_{c}(\lambda)$ has the given form is to view $q_{c}(\lambda)$ as the dual of the penalized problem:

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} x^{\prime} Q x+\frac{c}{2}\|A x-b\|^{2} \\
& \text { subject to } A x=b
\end{aligned}
$$

which is a quadratic programming problem. Note that x^{*} is also a solution of this problem, so that the optimal value of the problem is f^{*}. Furthermore, by expanding the term $\|A x-b\|^{2}$, the preceding problem is equivalent to

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} x^{\prime}\left(Q+c A^{\prime} A\right) x+c b^{\prime} A x+\frac{1}{2} c b^{\prime} b \\
& \text { subject to } A x=b
\end{aligned}
$$

Because x^{*} is the unique solution of the original problem, Q must be positive definite over the null space of A

$$
y^{\prime} Q y>0, \quad \forall y \neq 0, A y=0
$$

Then, similar to the proof of Lemma 3.2.1, it can be seen that there exists some positive scalar \bar{c} such that $Q+c A^{\prime} A$ is positive definite for all $c \geq \bar{c}$, i.e.,

$$
\begin{equation*}
Q+c A^{\prime} A>0, \quad \forall c \geq \bar{c} \tag{2}
\end{equation*}
$$

[this can be shown similar to the proof of Lemma 3.2.1, pg. 298]. By duality theory, there is no duality gap for the preceding problem $\left[q_{c}\left(\lambda^{*}\right)=f^{*}\right]$, and according to Example 3.4.3 from Section 3.4, the function $q_{c}(\lambda)$ is quadratic in λ, so that the second order Taylor's expansion is exact for all λ, i.e.,

$$
\begin{equation*}
q_{c}(\lambda)=f^{*}+\nabla q_{c}\left(\lambda^{*}\right)^{\prime}\left(\lambda-\lambda^{*}\right)+\frac{1}{2}\left(\lambda-\lambda^{*}\right)^{\prime} \nabla^{2} q_{c}\left(\lambda^{*}\right)^{\prime}\left(\lambda-\lambda^{*}\right), \quad \forall \lambda \in \Re^{m} . \tag{3}
\end{equation*}
$$

We now need to calculate $\nabla q_{c}\left(\lambda^{*}\right)$ and $\nabla^{2} q_{c}\left(\lambda^{*}\right)$. We have

$$
\begin{gathered}
\nabla q_{c}(\lambda)=h(x(\lambda, c)) \\
\nabla^{2} q_{c}(\lambda)=-\nabla h(x(\lambda, c))^{\prime}\left\{\nabla_{x x}^{2} L_{c}(x(\lambda, c), \lambda)\right\}^{-1} \nabla h(x(\lambda, c))
\end{gathered}
$$

where $x(\lambda, c)$ minimizes $L_{c}(x, \lambda)$. To find $x(\lambda, c)$, we can solve $\nabla L_{c}(x, \lambda)=0$, which yields

$$
Q x+A^{\prime} \lambda+c A^{\prime}(A x-b)=0 \Leftrightarrow\left(Q+c A^{\prime} A\right) x=c A^{\prime} b-A^{\prime} \lambda,
$$

so that

$$
x(\lambda, c)=\left(Q+c A^{\prime} A\right)^{-1}\left(c A^{\prime} b-A^{\prime} \lambda\right), \quad \forall c \geq \bar{c}
$$

$\left[\left(Q+c A^{\prime} A\right)^{-1}\right.$ exists as implied by Eq. (2)]. Therefore

$$
\begin{equation*}
\nabla q_{c}(\lambda)=h(x(\lambda, c))=A\left(Q+c A^{\prime} A\right)^{-1}\left(c A^{\prime} b-A^{\prime} \lambda\right)-b, \quad \forall c \geq \bar{c} \tag{4}
\end{equation*}
$$

from which by using Eq. (1), it can be seen that

$$
\begin{equation*}
\nabla q_{c}\left(\lambda^{*}\right)=0 \tag{5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\nabla^{2} q_{c}(\lambda)=-A\left(Q+c A^{\prime} A\right)^{-1} A^{\prime}, \quad \forall \lambda \in \Re^{m} \tag{6}
\end{equation*}
$$

so that by using the preceding two relations in Eq. (3), we obtain

$$
q_{c}(\lambda)=f^{*}-\frac{1}{2}\left(\lambda-\lambda^{*}\right)^{\prime} A\left(Q+c A^{\prime} A\right)^{-1} A^{\prime}\left(\lambda-\lambda^{*}\right), \quad \forall \lambda \in \Re^{m}, \quad \forall c \geq \bar{c} .
$$

(a) We have

$$
\lambda^{k+1}=\lambda^{k}+c^{k} \nabla q_{c^{k}}\left(\lambda^{k}\right)
$$

so that

$$
\lambda^{k+1}-\lambda^{*}=\lambda^{k}-\lambda^{*}+c^{k} \nabla q_{c^{k}}\left(\lambda^{k}\right)
$$

We now express $\nabla q_{c^{k}}\left(\lambda^{k}\right)$ in an equivalent form. In what follows, we assume that $c^{k} \geq \bar{c}$ for all k, so that $\nabla q_{c^{k}}(\lambda)$ is linear for all k [cf. Eq. (4)]. By using the first order Taylor's expansion, we obtain

$$
\nabla q_{c}(\lambda)=\nabla q_{c}\left(\lambda^{*}\right)+\nabla^{2} q_{c}\left(\lambda^{*}\right)^{\prime}\left(\lambda-\lambda^{*}\right), \quad \forall \lambda \in \Re^{m}
$$

and by using Eqs. (5) and (6), we have

$$
\nabla q_{c}(\lambda)=-A\left(Q+c A^{\prime} A\right)^{-1} A^{\prime}\left(\lambda-\lambda^{*}\right), \quad \forall \lambda \in \Re^{m}
$$

Therefore

$$
\begin{aligned}
\lambda^{k+1}-\lambda^{*} & =\lambda^{k}-\lambda^{*}-c^{k} A\left(Q+c^{k} A^{\prime} A\right)^{-1} A^{\prime}\left(\lambda^{k}-\lambda^{*}\right) \\
& =\left(I-c^{k} A\left(Q+c^{k} A^{\prime} A\right)^{-1} A^{\prime}\right)\left(\lambda^{k}-\lambda^{*}\right),
\end{aligned}
$$

and by applying the results of Section 1.3 , we obtain

$$
\left\|\lambda^{k+1}-\lambda^{*}\right\| \leq r^{k}\left\|\lambda^{k}-\lambda^{*}\right\|
$$

where

$$
r^{k}=\max \left\{\left|1-c^{k} E_{c^{k}}\right|,\left|1-c^{k} e_{c^{k}}\right|\right\}
$$

and E_{c} and e_{c} are the maximum and minimum eigenvalues of $A\left(Q+c A^{\prime} A\right)^{-1} A^{\prime}$.
(b) The matrix identity of Appendix A

$$
\left(A+C B C^{\prime}\right)^{-1}=A^{-1}-A^{-1} C\left(B^{-1}+C^{\prime} A^{-1} C\right)^{-1} C^{\prime} A^{-1}
$$

applied to $\left(Q+c_{k} A^{\prime} A\right)^{-1}$ yields

$$
\left(Q+c_{k} A^{\prime} A\right)^{-1}=Q^{-1}-Q^{-1} A^{\prime}\left(\frac{1}{c_{k}} I+A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1}
$$

and so

$$
A\left(Q+c_{k} A^{\prime} A\right)^{-1} A^{\prime}=A Q^{-1} A^{\prime}-A Q^{-1} A^{\prime}\left(\frac{1}{c_{k}} I+A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1} A^{\prime}
$$

Let γ be an eigenvalue of $\left(A Q^{-1} A^{\prime}\right)^{-1}$. Using the facts that

$$
\begin{gathered}
\lambda=\{\text { eigenvalue of } A\} \Leftrightarrow \frac{1}{\lambda}=\left\{\text { eigenvalue of } A^{-1}\right\}, \\
\lambda=\{\text { eigenvalue of } A\} \Leftrightarrow \lambda+c=\{\text { eigenvalue of } c I+A\},
\end{gathered}
$$

we can see that

$$
\frac{1}{\gamma}-\frac{1}{\gamma}\left(\frac{1}{c}+\frac{1}{\gamma}\right)^{-1} \frac{1}{\gamma}=\frac{1}{c+\gamma}
$$

is an eigenvalue of

$$
A\left(Q+c A A^{\prime}\right)^{-1} A^{\prime}
$$

Thus

$$
r^{k}=\max _{1 \leq i \leq m}\left\{\left|1-\frac{c^{k}}{\gamma_{i}+c^{k}}\right|\right\}
$$

(c) First, for the method to be defined we need $c^{k} \geq \bar{c}$ for all k sufficiently large. Second, for the method to converge, we need $r^{k}<1$ for all k sufficiently large. Thus

$$
\left|1-\frac{c}{\gamma_{i}+c}\right|<1, \quad \forall i
$$

which is equivalent to

$$
-2<-\frac{c}{\gamma_{i}+c}<0 \quad \text { or } \quad 0<\frac{c}{\gamma_{i}+c}<2
$$

Since $c>0$, we must have $\gamma_{i}+c>0$. Then solving the above inequality yields the threshold value

$$
\hat{c}=\max \left\{0, \max _{1 \leq i \leq m}\left\{-2 \gamma_{i}\right\}\right\}
$$

Hence, the overall threshold value is

$$
c=\max \{\bar{c}, \hat{c}\}
$$

4.2.5 www

Using the results of Exercise 4.2.4, updating the multipliers with

$$
\lambda^{k+1}=\lambda^{k}+\alpha^{k}\left(A x^{k}-b\right)
$$

implies

$$
\left\|\lambda^{k+1}-\lambda^{*}\right\| \leq \max _{i}\left\{\left|1-\frac{\alpha^{k}}{\gamma_{i}+c^{k}}\right|\right\}\left\|\lambda^{k}-\lambda^{*}\right\|
$$

For the method to converge, we need for $k>\bar{k}$,

$$
\left|1-\frac{\alpha^{k}}{\gamma_{i}+c^{k}}\right| \leq 1-\epsilon, \quad \forall i
$$

or

$$
\begin{equation*}
\epsilon \leq \frac{\alpha^{k}}{\gamma_{i}+c^{k}} \leq 2-\epsilon \tag{1}
\end{equation*}
$$

for some $\epsilon>0$. If Q is positive definite and $c^{k}=c$ for all k, we have $\gamma_{i}>0$ for all i, and if $\delta \leq \alpha^{k} \leq 2 c$, the condition (1) is satisfied for $\epsilon \leq \min \left\{\delta, 2 \gamma_{i}\right\} /\left(c+\gamma_{i}\right)$ for all i.

4.2.9 www

In the logarithmic barrier method we have

$$
x^{k}=\arg \min _{x \in S}\left\{f(x)+\epsilon^{k} B(x)\right\}
$$

where $S=\left\{x \in X \mid g_{j}(x)<0, j=1, \ldots, r\right\}$ and $B(x)=-\sum_{j=1}^{r} \ln \left(-g_{j}(x)\right)$. Assuming that f and g_{j} are continuously differentiable, x^{k} satisfies

$$
\nabla f\left(x^{k}\right)+\epsilon^{k} \nabla B\left(x^{k}\right)=0
$$

or equivalently

$$
\nabla f\left(x^{k}\right)-\sum_{j=1}^{r} \frac{\epsilon^{k}}{g_{j}\left(x^{k}\right)} \nabla g_{j}\left(x^{k}\right)=0
$$

Define $\mu_{j}^{k}=-\frac{\epsilon^{k}}{g_{j}\left(x^{k}\right)}$ for all j and k. Then we have

$$
\begin{gather*}
\mu_{j}^{k}>0, \quad \forall j=1, \ldots, r, \quad \forall k \tag{1}\\
\nabla f\left(x^{k}\right)+\sum_{j=1}^{r} \mu_{j}^{k} \nabla g_{j}\left(x^{k}\right)=0, \quad \forall k \tag{2}
\end{gather*}
$$

Suppose that x^{*} is a limit point of the sequence $\left\{x^{k}\right\}$. Let $\left\{x^{k}\right\}_{k \in \mathcal{K}}$ be a subsequence of $\left\{x^{k}\right\}$ converging to x^{*}, and let $A\left(x^{*}\right)$ be the index set of active constraints at x^{*}. Furthermore, for any x, let $\nabla g_{A}(x)$ be a matrix with columns $\nabla g_{j}(x)$ for $j \in A\left(x^{*}\right)$ and $\nabla g_{R}(x)$ be a matrix with columns $\nabla g_{j}(x)$ for $j \notin A\left(x^{*}\right)$. Similarly, we partition a vector μ : μ_{A} is a vector with coordinates μ_{j} for $j \in A\left(x^{*}\right)$ and μ_{R} is a vector with coordinates μ_{j} for $j \notin A\left(x^{*}\right)$. Then Eq. (2) is equivalent to

$$
\begin{equation*}
\nabla f\left(x^{k}\right)+\nabla g_{A}\left(x^{k}\right) \mu_{A}^{k}+\nabla g_{R}\left(x^{k}\right) \mu_{R}^{k}=0, \quad \forall k \tag{3}
\end{equation*}
$$

If $j \notin A\left(x^{*}\right)$, then $g_{j}\left(x^{k}\right)<-\delta$ for some positive scalar δ and for all large enough $k \in \mathcal{K}$, which guarantees the boundedness of the sequence $\left\{-1 / g_{j}\left(x^{k}\right)\right\}_{\mathcal{K}}$. Since $\epsilon^{k} \rightarrow 0$, we have

$$
\lim _{k \rightarrow \infty, k \in \mathcal{K}} \mu_{j}^{k}=-\lim _{k \rightarrow \infty, k \in \mathcal{K}} \frac{\epsilon^{k}}{g_{j}\left(x^{k}\right)}=0, \quad \forall j \notin A\left(x^{*}\right)
$$

i.e., $\left\{\mu_{R}^{k} \rightarrow 0\right\}_{\mathcal{K}}$. Therefore, by continuity of ∇g_{j}, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty, k \in \mathcal{K}} \nabla g_{R}\left(x^{k}\right) \mu_{R}^{k}=0 \tag{4}
\end{equation*}
$$

Suppose now that x^{*} is a regular point, i.e., the gradients $\nabla g_{j}\left(x^{*}\right)$ for $j \in A\left(x^{*}\right)$ are linearly independent, so that the matrix $\nabla g_{A}\left(x^{*}\right)^{\prime} \nabla g_{A}\left(x^{*}\right)$ is invertible. Then, by continuity of ∇g_{j}, the
matrix $\nabla g_{A}\left(x^{k}\right)^{\prime} \nabla g_{A}\left(x^{k}\right)$ is invertible for all sufficiently large $k \in \mathcal{K}$. Premultiplying Eq. (3) by $\left(\nabla g_{A}\left(x^{k}\right)^{\prime} \nabla g_{A}\left(x^{k}\right)\right)^{-1} \nabla g_{A}\left(x^{k}\right)^{\prime}$ gives

$$
\mu_{A}^{k}=-\left(\nabla g_{A}\left(x^{k}\right)^{\prime} \nabla g_{A}\left(x^{k}\right)\right)^{-1} \nabla g_{A}\left(x^{k}\right)^{\prime}\left(\nabla f\left(x^{k}\right)+\nabla g_{R}\left(x^{k}\right) \mu_{R}^{k}\right) .
$$

By letting $k \rightarrow \infty$ over $k \in \mathcal{K}$, and by using the continuity of ∇f and ∇g_{j} and the relation (4), we obtain

$$
\lim _{k \rightarrow \infty, k \in \mathcal{K}} \mu_{A}^{k}=-\left(\nabla g_{A}\left(x^{*}\right)^{\prime} \nabla g_{A}\left(x^{*}\right)\right)^{-1} \nabla g_{A}\left(x^{*}\right)^{\prime} \nabla f\left(x^{*}\right) .
$$

Define μ^{*} by $\mu_{R}^{*}=0$ and

$$
\mu_{A}^{*}=\lim _{k \rightarrow \infty, k \in \mathcal{K}} \mu_{A}^{k},
$$

so that by letting $k \rightarrow \infty$ with $k \in \mathcal{K}$, from Eq. (3) we have

$$
\nabla f\left(x^{*}\right)+\nabla g_{A}\left(x^{*}\right) \mu_{A}^{*}+\nabla g_{R}\left(x^{*}\right) \mu_{R}^{*}=\nabla f\left(x^{*}\right)+\nabla g\left(x^{*}\right) \mu^{*}=0 .
$$

In view of Eq. (1), μ^{*} must be nonnegative, so that μ^{*} is a Lagrange multiplier. Furthermore, assuming that x^{*} is a limit point of the sequence $\left\{x^{k}\right\}$, the regularity of x^{*} is sufficient to ensure the convergence of $\left\{\mu_{j}^{k}\right\}$ to corresponding Lagrange multipliers.

By Prop. 4.1.1, every limit point of $\left\{x^{k}\right\}$ is a global minimum of the original problem. Hence, for the convergence of $\left\{\mu_{j}^{k}\right\}$ to corresponding Lagrange multipliers, it is sufficient that every global minimum of the original problem is regular.

4.2.11 www

Consider first the case where f is quadratic, $f(x)=\frac{1}{2} x^{\prime} Q x$ with Q positive definite and symmetric, and h is linear, $h(x)=A x-b$, with A having full rank. Following the hint, the iteration $\lambda^{k+1}=\lambda^{k}+\alpha h\left(x^{k}\right)$ can be viewed as the method of multipliers for the problem

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} x^{\prime} Q x-\frac{\alpha}{2}\|A x-b\|^{2} \\
& \text { subject to } A x-b=0
\end{aligned}
$$

According to Exercise 4.2.4(c), this method converges if $\alpha>\bar{\alpha}$, where the threshold value $\bar{\alpha}$ is

$$
\begin{array}{cc}
\bar{\alpha}=0 & \text { if } \quad \bar{\zeta} \geq 0 \\
\bar{\alpha}=-2 \zeta & \text { if } \quad \bar{\zeta}<0, \tag{2}
\end{array}
$$

where $\bar{\zeta}$ is the minimum eigenvalue of the matrix

$$
\left(A\left(Q-\alpha A^{\prime} A\right)^{-1} A^{\prime}\right)^{-1}
$$

To calculate $\bar{\zeta}$, we use the matrix identity

$$
\alpha A\left(Q-\alpha A^{\prime} A\right)^{-1} A^{\prime}=\left(I-\alpha A Q^{-1} A^{\prime}\right)^{-1}-I
$$

of Section A. 3 in Appendix A. If $\zeta_{1}, \ldots, \zeta_{m}$ are the eigenvalues of $\left(A\left(Q-\alpha A^{\prime} A\right)^{-1} A^{\prime}\right)^{-1}$, we have

$$
\frac{\alpha}{\zeta_{i}}=\frac{1}{1-\alpha \xi_{i}^{-1}}-1
$$

where ξ_{i} are the eigenvalues of $\left(A Q^{-1} A^{\prime}\right)^{-1}$. This equation can be written as

$$
\frac{\alpha}{\zeta_{i}}=\frac{\alpha}{\xi_{i}-\alpha}
$$

from which

$$
\zeta_{i}=\xi_{i}-\alpha
$$

Let $\bar{\xi}=\min \left\{\xi_{1}, \ldots, \xi_{m}\right\}$. Then the condition (1) is written as

$$
\begin{equation*}
0<\alpha \leq \bar{\xi} \tag{3}
\end{equation*}
$$

The condition (2) is written as

$$
\alpha>2(\alpha-\bar{\xi}) \quad \text { with } \quad \alpha>\bar{\xi},
$$

or

$$
\begin{equation*}
\bar{\xi}<\alpha<2 \bar{\xi} . \tag{4}
\end{equation*}
$$

Convergence is obtained under either condition (3) or (4), so we see that convergence is obtained for

$$
0<\alpha<2 \bar{\xi}
$$

In the case where f is nonquadratic and/or h is nonlinear, a local version of the above analysis applies.

