Solutions Chapter 4

SECTION 4.2

4.2.4 www

<u>Problem correction</u>: Assume that Q is symmetric and invertible. (This correction has been made in the 2nd printing.)

Solution: We have

minimize
$$f(x) = \frac{1}{2}x'Qx$$

subject to Ax = b.

Since x^* is an optimal solution of this problem with associated Lagrange multiplier λ^* , we have

$$Ax^* = b \qquad \text{and} \qquad Qx^* + A'\lambda^* = 0. \tag{1}$$

We also have

$$q_c(\lambda) = \min L_c(x,\lambda),$$

where

$$L_{c}(x,\lambda) = \frac{1}{2}x'Qx + \lambda'(Ax - b) + \frac{c}{2}||Ax - b||^{2}.$$

One way of showing that $q_c(\lambda)$ has the given form is to view $q_c(\lambda)$ as the dual of the penalized problem:

minimize
$$\frac{1}{2}x'Qx + \frac{c}{2}||Ax - b||^2$$

subject to $Ax = b$,

which is a quadratic programming problem. Note that x^* is also a solution of this problem, so that the optimal value of the problem is f^* . Furthermore, by expanding the term $||Ax - b||^2$, the preceding problem is equivalent to

minimize
$$\frac{1}{2}x'(Q+cA'A)x+cb'Ax+\frac{1}{2}cb'b$$

subject to $Ax=b$.

Because x^* is the unique solution of the original problem, Q must be positive definite over the null space of A

$$y'Qy > 0, \quad \forall y \neq 0, \ Ay = 0.$$

Then, similar to the proof of Lemma 3.2.1, it can be seen that there exists some positive scalar \bar{c} such that Q + cA'A is positive definite for all $c \geq \bar{c}$, i.e.,

$$Q + cA'A > 0, \qquad \forall \ c \ge \bar{c}. \tag{2}$$

[this can be shown similar to the proof of Lemma 3.2.1, pg. 298]. By duality theory, there is no duality gap for the preceding problem $[q_c(\lambda^*) = f^*]$, and according to Example 3.4.3 from Section 3.4, the function $q_c(\lambda)$ is quadratic in λ , so that the second order Taylor's expansion is exact for all λ , i.e.,

$$q_c(\lambda) = f^* + \nabla q_c(\lambda^*)'(\lambda - \lambda^*) + \frac{1}{2}(\lambda - \lambda^*)'\nabla^2 q_c(\lambda^*)'(\lambda - \lambda^*), \qquad \forall \ \lambda \in \Re^m.$$
(3)

We now need to calculate $\nabla q_c(\lambda^*)$ and $\nabla^2 q_c(\lambda^*)$. We have

$$\nabla q_c(\lambda) = h\big(x(\lambda, c)\big)$$
$$\nabla^2 q_c(\lambda) = -\nabla h\big(x(\lambda, c)\big)' \Big\{\nabla^2_{xx} L_c\big(x(\lambda, c), \lambda\big)\Big\}^{-1} \nabla h\big(x(\lambda, c)\big),$$

where $x(\lambda, c)$ minimizes $L_c(x, \lambda)$. To find $x(\lambda, c)$, we can solve $\nabla L_c(x, \lambda) = 0$, which yields

$$Qx+A'\lambda+cA'(Ax-b)=0\Leftrightarrow (Q+cA'A)x=cA'b-A'\lambda,$$

so that

$$x(\lambda,c) = (Q + cA'A)^{-1}(cA'b - A'\lambda), \qquad \forall \ c \geq \bar{c}$$

 $[(Q + cA'A)^{-1}$ exists as implied by Eq. (2)]. Therefore

$$\nabla q_c(\lambda) = h(x(\lambda, c)) = A(Q + cA'A)^{-1}(cA'b - A'\lambda) - b, \qquad \forall \ c \ge \bar{c}, \tag{4}$$

from which by using Eq. (1), it can be seen that

$$\nabla q_c(\lambda^*) = 0. \tag{5}$$

Moreover, we have

$$\nabla^2 q_c(\lambda) = -A(Q + cA'A)^{-1}A', \qquad \forall \ \lambda \in \Re^m, \tag{6}$$

so that by using the preceding two relations in Eq. (3), we obtain

$$q_c(\lambda) = f^* - \frac{1}{2}(\lambda - \lambda^*)' A(Q + cA'A)^{-1} A'(\lambda - \lambda^*), \qquad \forall \ \lambda \in \Re^m, \quad \forall \ c \ge \bar{c}$$

(a) We have

$$\lambda^{k+1} = \lambda^k + c^k \nabla q_{c^k}(\lambda^k),$$

so that

$$\lambda^{k+1} - \lambda^* = \lambda^k - \lambda^* + c^k \nabla q_{c^k}(\lambda^k).$$

We now express $\nabla q_{c^k}(\lambda^k)$ in an equivalent form. In what follows, we assume that $c^k \geq \bar{c}$ for all k, so that $\nabla q_{c^k}(\lambda)$ is linear for all k [cf. Eq. (4)]. By using the first order Taylor's expansion, we obtain

$$\nabla q_c(\lambda) = \nabla q_c(\lambda^*) + \nabla^2 q_c(\lambda^*)'(\lambda - \lambda^*), \qquad \forall \ \lambda \in \Re^m,$$

and by using Eqs. (5) and (6), we have

$$\nabla q_c(\lambda) = -A(Q + cA'A)^{-1}A'(\lambda - \lambda^*), \qquad \forall \ \lambda \in \Re^m,$$

Therefore

$$\lambda^{k+1} - \lambda^* = \lambda^k - \lambda^* - c^k A(Q + c^k A'A)^{-1} A'(\lambda^k - \lambda^*)$$

$$= (I - c^k A(Q + c^k A'A)^{-1}A')(\lambda^k - \lambda^*),$$

and by applying the results of Section 1.3, we obtain

$$\|\lambda^{k+1} - \lambda^*\| \le r^k ||\lambda^k - \lambda^*||,$$

where

$$r^{k} = \max\{|1 - c^{k}E_{c^{k}}|, |1 - c^{k}e_{c^{k}}|\}, |1 - c^{k}e_{c^{k}}|\}, |1 - c^{k}e_{c^{k}}|\}, |1 - c^{k}e_{c^{k}}|\}$$

and E_c and e_c are the maximum and minimum eigenvalues of $A(Q + cA'A)^{-1}A'$.

(b) The matrix identity of Appendix A

$$(A + CBC')^{-1} = A^{-1} - A^{-1}C(B^{-1} + C'A^{-1}C)^{-1}C'A^{-1}$$

applied to $(Q + c_k A' A)^{-1}$ yields

$$(Q + c_k A'A)^{-1} = Q^{-1} - Q^{-1}A' \left(\frac{1}{c_k}I + AQ^{-1}A'\right)^{-1}AQ^{-1}$$

and so

$$A(Q + c_k A'A)^{-1}A' = AQ^{-1}A' - AQ^{-1}A' \left(\frac{1}{c_k}I + AQ^{-1}A'\right)^{-1}AQ^{-1}A'.$$

Let γ be an eigenvalue of $(AQ^{-1}A')^{-1}$. Using the facts that

$$\lambda = \{ \text{eigenvalue of } A \} \Leftrightarrow \frac{1}{\lambda} = \{ \text{eigenvalue of } A^{-1} \},$$

$$\lambda = \{ \text{eigenvalue of } A \} \Leftrightarrow \lambda + c = \{ \text{eigenvalue of } cI + A \},\$$

we can see that

$$\frac{1}{\gamma} - \frac{1}{\gamma} \left(\frac{1}{c} + \frac{1}{\gamma}\right)^{-1} \frac{1}{\gamma} = \frac{1}{c+\gamma}$$

is an eigenvalue of

$$A(Q + cAA')^{-1}A'.$$

Thus

$$r^k = \max_{1 \le i \le m} \left\{ \left| 1 - \frac{c^k}{\gamma_i + c^k} \right| \right\}.$$

(c) First, for the method to be defined we need $c^k \ge \bar{c}$ for all k sufficiently large. Second, for the method to converge, we need $r^k < 1$ for all k sufficiently large. Thus

$$\left|1 - \frac{c}{\gamma_i + c}\right| < 1, \quad \forall \ i,$$

which is equivalent to

$$-2 < -\frac{c}{\gamma_i + c} < 0 \quad \text{or} \quad 0 < \frac{c}{\gamma_i + c} < 2.$$

Since c > 0, we must have $\gamma_i + c > 0$. Then solving the above inequality yields the threshold value

$$\hat{c} = \max\left\{0, \max_{1 \le i \le m} \{-2\gamma_i\}\right\}.$$

Hence, the overall threshold value is

$$c = \max\{\bar{c}, \hat{c}\}.$$

4.2.5 www

Using the results of Exercise 4.2.4, updating the multipliers with

$$\lambda^{k+1} = \lambda^k + \alpha^k (Ax^k - b)$$

implies

$$\|\lambda^{k+1} - \lambda^*\| \le \max_i \left\{ \left| 1 - \frac{\alpha^k}{\gamma_i + c^k} \right| \right\} \|\lambda^k - \lambda^*\|.$$

For the method to converge, we need for $k > \bar{k}$,

$$\left|1 - \frac{\alpha^k}{\gamma_i + c^k}\right| \le 1 - \epsilon, \quad \forall \ i,$$

or

$$\epsilon \le \frac{\alpha^k}{\gamma_i + c^k} \le 2 - \epsilon \tag{1}$$

for some $\epsilon > 0$. If Q is positive definite and $c^k = c$ for all k, we have $\gamma_i > 0$ for all i, and if $\delta \le \alpha^k \le 2c$, the condition (1) is satisfied for $\epsilon \le \min\{\delta, 2\gamma_i\}/(c+\gamma_i)$ for all i.

4.2.9 www

In the logarithmic barrier method we have

$$x^{k} = \arg\min_{x \in S} \{f(x) + \epsilon^{k} B(x)\},\$$

where $S = \{x \in X \mid g_j(x) < 0, j = 1, ..., r\}$ and $B(x) = -\sum_{j=1}^r \ln(-g_j(x))$. Assuming that f and g_j are continuously differentiable, x^k satisfies

$$\nabla f(x^k) + \epsilon^k \nabla B(x^k) = 0$$

or equivalently

$$\nabla f(x^k) - \sum_{j=1}^r \frac{\epsilon^k}{g_j(x^k)} \nabla g_j(x^k) = 0.$$

Define $\mu_j^k = -\frac{\epsilon^k}{g_j(x^k)}$ for all j and k. Then we have

$$\mu_j^k > 0, \qquad \forall \ j = 1, \dots, r, \quad \forall k, \tag{1}$$

$$\nabla f(x^k) + \sum_{j=1}^r \mu_j^k \nabla g_j(x^k) = 0, \quad \forall \ k.$$
⁽²⁾

Suppose that x^* is a limit point of the sequence $\{x^k\}$. Let $\{x^k\}_{k\in\mathcal{K}}$ be a subsequence of $\{x^k\}$ converging to x^* , and let $A(x^*)$ be the index set of active constraints at x^* . Furthermore, for any x, let $\nabla g_A(x)$ be a matrix with columns $\nabla g_j(x)$ for $j \in A(x^*)$ and $\nabla g_R(x)$ be a matrix with columns $\nabla g_j(x)$ for $j \notin A(x^*)$. Similarly, we partition a vector μ : μ_A is a vector with coordinates μ_j for $j \notin A(x^*)$ and μ_R is a vector with coordinates μ_j for $j \notin A(x^*)$. Then Eq. (2) is equivalent to

$$\nabla f(x^k) + \nabla g_A(x^k)\mu_A^k + \nabla g_R(x^k)\mu_R^k = 0, \qquad \forall \ k.$$
(3)

If $j \notin A(x^*)$, then $g_j(x^k) < -\delta$ for some positive scalar δ and for all large enough $k \in \mathcal{K}$, which guarantees the boundedness of the sequence $\{-1/g_j(x^k)\}_{\mathcal{K}}$. Since $\epsilon^k \to 0$, we have

$$\lim_{k \to \infty, \ k \in \mathcal{K}} \ \mu_j^k = -\lim_{k \to \infty, \ k \in \mathcal{K}} \ \frac{\epsilon^k}{g_j(x^k)} = 0, \qquad \forall \ j \notin A(x^*),$$

i.e., $\{\mu_R^k \to 0\}_{\mathcal{K}}$. Therefore, by continuity of ∇g_j , we have

$$\lim_{k \to \infty, \ k \in \mathcal{K}} \nabla g_R(x^k) \mu_R^k = 0.$$
(4)

Suppose now that x^* is a regular point, i.e., the gradients $\nabla g_j(x^*)$ for $j \in A(x^*)$ are linearly independent, so that the matrix $\nabla g_A(x^*)' \nabla g_A(x^*)$ is invertible. Then, by continuity of ∇g_j , the matrix $\nabla g_A(x^k)' \nabla g_A(x^k)$ is invertible for all sufficiently large $k \in \mathcal{K}$. Premultiplying Eq. (3) by $\left(\nabla g_A(x^k)' \nabla g_A(x^k)\right)^{-1} \nabla g_A(x^k)'$ gives

$$\mu_A^k = -\left(\nabla g_A(x^k)' \nabla g_A(x^k)\right)^{-1} \nabla g_A(x^k)' \left(\nabla f(x^k) + \nabla g_R(x^k) \mu_R^k\right).$$

By letting $k \to \infty$ over $k \in \mathcal{K}$, and by using the continuity of ∇f and ∇g_j and the relation (4), we obtain

$$\lim_{k \to \infty, \ k \in \mathcal{K}} \ \mu_A^k = - \left(\nabla g_A(x^*)' \nabla g_A(x^*) \right)^{-1} \nabla g_A(x^*)' \nabla f(x^*).$$

Define μ^* by $\mu^*_R = 0$ and

$$\mu_A^* = \lim_{k \to \infty, \ k \in \mathcal{K}} \ \mu_A^k,$$

so that by letting $k \to \infty$ with $k \in \mathcal{K}$, from Eq. (3) we have

$$\nabla f(x^*) + \nabla g_A(x^*)\mu_A^* + \nabla g_R(x^*)\mu_R^* = \nabla f(x^*) + \nabla g(x^*)\mu^* = 0.$$

In view of Eq. (1), μ^* must be nonnegative, so that μ^* is a Lagrange multiplier. Furthermore, assuming that x^* is a limit point of the sequence $\{x^k\}$, the regularity of x^* is sufficient to ensure the convergence of $\{\mu_j^k\}$ to corresponding Lagrange multipliers.

By Prop. 4.1.1, every limit point of $\{x^k\}$ is a global minimum of the original problem. Hence, for the convergence of $\{\mu_j^k\}$ to corresponding Lagrange multipliers, it is sufficient that every global minimum of the original problem is regular.

4.2.11 www

Consider first the case where f is quadratic, $f(x) = \frac{1}{2}x'Qx$ with Q positive definite and symmetric, and h is linear, h(x) = Ax - b, with A having full rank. Following the hint, the iteration $\lambda^{k+1} = \lambda^k + \alpha h(x^k)$ can be viewed as the method of multipliers for the problem

minimize
$$\frac{1}{2}x'Qx - \frac{\alpha}{2}||Ax - b||^2$$

subject to $Ax - b = 0$.

According to Exercise 4.2.4(c), this method converges if $\alpha > \overline{\alpha}$, where the threshold value $\overline{\alpha}$ is

$$\overline{\alpha} = 0 \quad \text{if} \quad \overline{\zeta} \ge 0, \tag{1}$$

$$\overline{\alpha} = -2\zeta \qquad \text{if} \qquad \overline{\zeta} < 0, \tag{2}$$

where $\overline{\zeta}$ is the minimum eigenvalue of the matrix

$$\left(A(Q - \alpha A'A)^{-1}A'\right)^{-1}.$$

To calculate $\overline{\zeta}$, we use the matrix identity

$$\alpha A(Q - \alpha A'A)^{-1}A' = (I - \alpha AQ^{-1}A')^{-1} - I$$

of Section A.3 in Appendix A. If ζ_1, \ldots, ζ_m are the eigenvalues of $(A(Q - \alpha A'A)^{-1}A')^{-1}$, we have

$$\frac{\alpha}{\zeta_i} = \frac{1}{1 - \alpha \xi_i^{-1}} - 1.$$

where ξ_i are the eigenvalues of $(AQ^{-1}A')^{-1}$. This equation can be written as

$$\frac{\alpha}{\zeta_i} = \frac{\alpha}{\xi_i - \alpha},$$

from which

or

$$\zeta_i = \xi_i - \alpha.$$

Let $\overline{\xi} = \min\{\xi_1, \ldots, \xi_m\}$. Then the condition (1) is written as

$$0 < \alpha \le \overline{\xi}.\tag{3}$$

The condition (2) is written as

$$\alpha > 2(\alpha - \overline{\xi}) \quad \text{with} \quad \alpha > \overline{\xi},$$

$$\overline{\xi} < \alpha < 2\overline{\xi}. \tag{4}$$

Convergence is obtained under either condition (3) or (4), so we see that convergence is obtained for

$$0 < \alpha < 2\overline{\xi}.$$

In the case where f is nonquadratic and/or h is nonlinear, a local version of the above analysis applies.