

PORQUE AS ABELHAS CONSTROEM FAVOS HEXAGONAIS?

Neste artigo teremos a oportunidade de entender um dos resultados mais fascinantes encontrados na Natureza. É sabido que as abelhas constroem suas colméias e, nelas, paredes de cera que é moldada para armazenar mel. A forma dos favos é bem conhecida: são incrivelmente bem aproximados por hexágonos regulares, ao longo de filas e filas, que se juntam perfeitamente numa rede de favos perfeitamente situados. Porquê esta forma?

Usando idéias básicas de Geometria, é possível mostrar que as abelhas são mais inteligentes do que o que podemos imaginar. Elas simplesmente usam um resultado de Geometria Plana: a rede de figuras geométricas que cobre o maior espaço com a menor área é uma rede de hexágonos

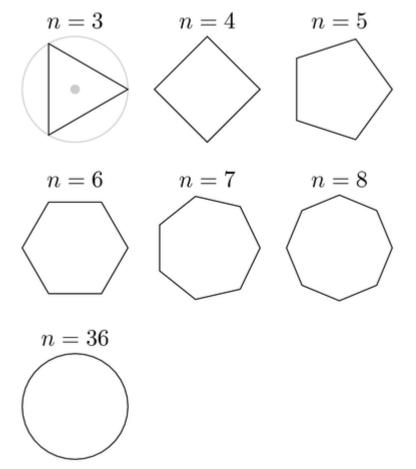
regulares!

construção

de

alvéolos em colméias é um processo fascinantemente simétrico e engenhoso.

Relembra-te que um polígono regular de n lados é uma figura geométrica fechada, em que todos os segmentos de reta do seu perímetro têm o mesmo comprimento e que os ângulos formados por entre eles são $\alpha = \frac{360^{\circ}}{n}$. O triângulo equilátero, o quadrado, o pentágono regular, etc... são os exemplos canônicos.

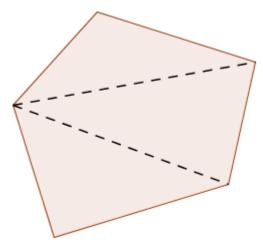


Os polígonos regulares para n=3,4,5,6,7,8,36. Repara que a figura tende a um círculo para $n=\infty$.

Que tipo de polígono esperar?

Uma argumento simples para uma pergunta difícil.

Se pensarmos atentamente, é fácil encontrar uma condição que limite o tipo de polígono que pode ser a solução para o problema. Ou seja, mesmo não sabendo *qual* polígono é o mais eficiente, é possível saber rapidamente aqueles que *podem ser*.

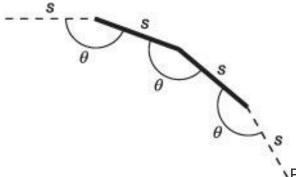


Para saber qual a soma de todos os ângulos num polígono regular, soma-se simplesmente triângulos formados por todos os segmentos que podem ser desenhados de um vértice a todos os outros.

Ângulo Interno

Primeiro, calculemos ângulo interno α função do número lados em de Pensa no polígono regular de n lados e fixa um vértice. Podes sempre decompor a soma total dos ângulos internos desta maneira: do vértice que escolheste, liga-o a todos os outros vértices sobre a figura. Acabaste de criar n-2 triângulos, foram ligados a todos os lados n menos a 2, que são aqueles que não resultam em triângulo algum: os vértices adjacentes ao que foram escolhidos. É um fato que cada triângulo tem sempre soma interna de ângulos de 180 graus. Então o ângulo interno de um polígono regular é simplesmente a média da soma dos ângulos dos n-2 triângulos, S.

Ou seja
$$\alpha = \frac{S}{n} = \frac{180(n-2)}{n}$$
.



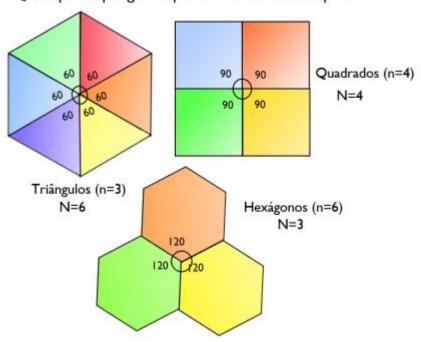
NPara um polígono regular com n lados iguais,

qual é o seu ângulo interno θ ?

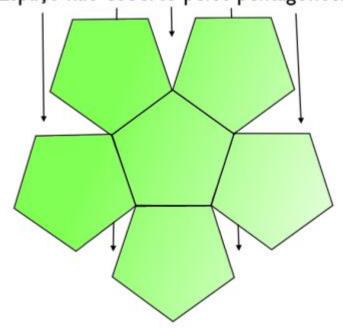
O argumento agora é facilmente exposto: quer-se que exista um polígono regular de N lados tal que a soma dos seus ângulos internos seja exatamente o máximo: 360° . Sendo assim, temos que impor que $N\alpha=360$. Então $N(\frac{180(n-2)}{n}=360)$. Daqui se deduz que apenas certos polígonos podem conter o ângulo total nesse vértice, visto que $N=\frac{2n}{n-2}$ tem de ser um número natural.

Observemos que esta fórmula não funciona para n=1 (ponto) nem n=2 (segmento de reta). O truque agora : As soluções desta equação são fáceis e não muitas -n=3,4,6 – qualquer natural n>6 vai resultar em N não natural. O valor n=5 (pentágono) não é solução, pois N não é natural. A razão é facilmente explicada por um diagrama. Então sabemos que, deve haver uma forma perfeita de cobrir o plano, ela terá de ser obrigatoriamente um triângulo equilátero, um quadrado ou um hexágono regular.

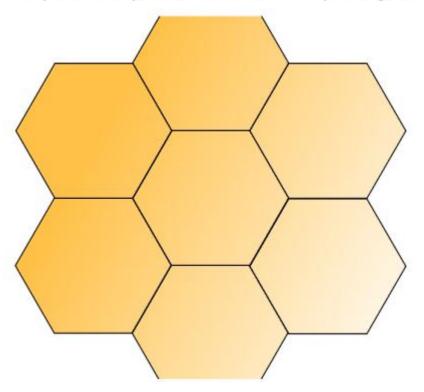
Que tipo de polígonos podem cobrir todo o plano?



Espaço não coberto pelos pentágonos.



Espaço completamente utilizado pela figura



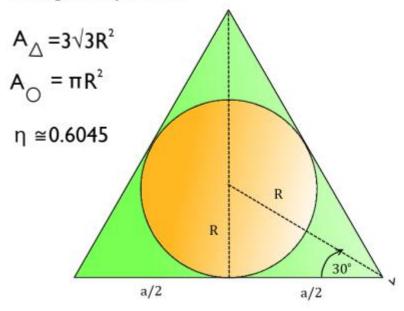
Quase lá!

Calculando Eficiência de Usabilidade de Área

Para saber qual é então o polígono mais eficiente, calculemos agora qual é a figura que consegue conter mais área com um círculo inscrito nela. A idéia é esta: para um círculo de raio r e para um polígono regular de lado a, que relação se pode construir entre a área do círculo A_{\circ} e a área do triângulo A_{\triangle} . Daí, constrói-se um coeficiente que dê a idéia de quão maior a área do polígono é em relação à área do círculo: $\eta = \frac{A_{\circ}}{A_{\triangle}}$. Assim, o menor valor encontrado de η nos dará a solução desejada. Caso a caso:

1. Se N=3, a figura é um triângulo equilátero, de lado a, então usando Trigonometria, deduz-se que $sin(30)=\frac{R}{X}$ onde X é a hipotenusa do triângulo da figura. Então X=2R. Com isto em mente e usando o Teorema de Pitágoras, sabe-se que $(2R)^2=(\frac{a}{2})^2+R^2$, o que implica que $a=2\sqrt{3}R$. Então a área do triângulo é simplesmente $A_{\triangle}=2\frac{\frac{a}{2}3R}{2}=3\sqrt{3}R^2$. Assim, o coeficiente $\eta=\frac{\pi R^2}{3\sqrt{3}R^2}\approx 0.6045$.

Triângulo Equilátero



• Para n=4, a figura é um quadrado. Então é-se facilmente calculado $R=\frac{a}{2}$. Então $A_{\square}=a^2=4R^2$. η é então $\eta=\frac{\pi}{4}\approx 0.7854$,

Quadrado

$$A_{\square} = 4R^{2}$$

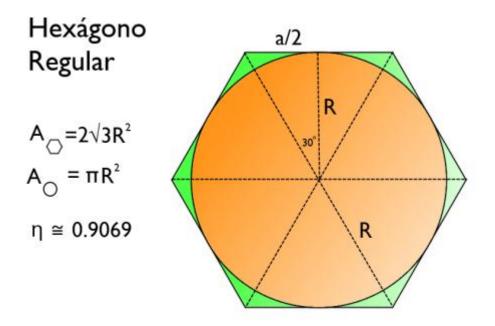
$$A_{\bigcirc} = \pi R^{2}$$

$$\eta \cong 0.7854$$

$$R$$

$$a/2$$

• Para n=6, a figura é um hexágono regular. Usando Trigonometria no triângulo formado na figura, estabelece-se que $sin(30)=\frac{\frac{a}{2}}{X}$, sendo X a hipotenusa. Daqui resulta que X=a. Aplicando de novo o Teorema de Pitágoras, tem-se que $R^2+(\frac{a}{2})^2=a^2$, o que resulta que $a=\frac{2}{\sqrt{3}}R$. Então a área do hexágono $A=12\frac{R\frac{a}{2}}{2}=2\sqrt{3}R^2$. Então $\eta=\frac{\pi}{2\sqrt{3}}\approx 0.9069$.



Em termos de área, o hexágono é o polígono que "menos espaço desperdiça" para conter um círculo.

Não obstante, tanto a área como o perímetro da figura – que corresponde a uma medida de material de construção necessário – é minimizado. Repara que o perímetro do triângulo, quadrado e hexágono é respectivamente dado por $6\sqrt{3}R$, 8R, $4\sqrt{3}R$. Novamente, o mínimo!

As abelhas são mais espertas do que se pensava!