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Motes and References

in this chapter we develop the Kuhn-Tucker conditions for problems with
incquality constraints and probiems with both equality and inequality con-
straints. This is done directly by imposing a suitable constraint qualification, as
opposed to first developing the Fritz John conditions and then the Kuhn-
Tucker conditions.

The Kuhn-Tucker optimality conditions were originally developed by impos-
ing the constraint qualification that for every direction vector d in the conc G/,
there is a feasible arc that points along d. Since then, many authors have
developed the Kuhn-Tucker conditions under different constraint qualifica-
tions. For a thorough study of this subject refer to the works of Abadie [1967b],
Arrow, Hurwicz, and Uzawa [1961], Canon, Cullum, and Polak [1966], Cottle
[1963a], Evans [1970], Evans and Gould [1970], Guignard [1969], Mangasarian
[1969a], Mangasarian and Fromovitz [1967], and Zangwill [1969]. For a2 com-
parison and further study of these constraint qualifications, see the survey
articles of Bazaraa, Goode, and Shetty [1972], Gould and Tolle [1972], and
Peterson [1973].

Gould and Tolle [1971] showed that the constraint qualification of Guignard
[1969] is the weakest possible in the sense that it is both necessary and
sufficient for the validation of the Kuhn-Tucker conditions.

e A PR M PO TS

Lagrangian Duality and
Saddle Point Optimality
Conditions

Given a nonlinear programming problem, there is another nonlinear program-
ming problem closely associated with it. The former is cailed the primal
problem, and the latter is called the Lagrangian dual problem. Under certain
convexity assumptions, the primal and dual problems have equal optimal
objective values, and hence it is possible to solve the primal problem indirectly
by solving the dual problem.

Several properties of the dual problem are developed in this chapter. They
are used to provide general solution strategies for solving the primal and dual
problems. As a by-product of one of the duality theorems, we obtain saddle
point necessary optimality conditions without any differentiability assumptions.

The following is an outline of the chapter.

SECTION 6.1: The Lagrangian Dual Problem We introduce the Lagrangian
dual problem, give its geometric interpretation, and illustrate it by several
numerical examples.

SECTION 6.2: Duality Theorems and Saddle-Point Optimality We prove
the weak and strong duality theorems. The latter shows that the primal and
dual objectives are equal under suitable convexity assumptions.

SECTION 6.3: Properties of the Dual Function We study several important
properties of the dual function, such as, concavity, differentiability, and sub-
differentiability. We then give necessary and sufficient characterizations of
ascent and steepest ascent directions.
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SECTION 6.4: Solving the Dual Problem Several procedures for solving the
dual problem are discussed. In particular, we discuss the gradient method, the
ascent procedure, and the cutting plane algorithm.

SECTION 6.5: Getting the Primal Solution We show that the points gener-
_ated during the course of solving the dual problem yicld optimal solutions to
perturbations of the primal problem. For convex programs, we show how to
obtain primal feasible solutions that are near-optimal.

SECTION 6.6: Linear and Quadratic Programs We give the Lagrangian dual
formulation for linear and quadratic programming.

6.1 The Lagrangian Dual Problem

Consider the following nonlinear programming problem P, which is called the
primal problem.

Primal Problem P
Minimize f(x).
subject to g(x)=0 fori=1,...,m
hx)=0 fori=1,...,1
xe X ‘

Several problems, closely related to the above primal problem, have been
proposed in the literature and are called dual problems. Among the various
duality formulations, the Lagrangian duality formulation has perhaps attracted
the most attention. It has led to several algorithms for solving large-scale linear
problems, as well as convex and nonconvex nonlinear problems. More recently,
it has proved useful in discrete optimization where all or some of the variables
are further restricted to be integers. The Lagrangian dual problem D is
presented below.

Lagrangian Dual Problem D

Maximize 6(g, V)
subject to =0 ‘
where 0(u, v) = inf {fx)+ Y™, ugx)+Li-, vh(x):xe X}

Note that the Lagrangian dual function 6 may assume the value of — for
some vector (w,v). In the expression for 6(u,v), the constraints g (x)=0 and
h,(x) = 0 have been incorporated in the objective function using the Lagrangian
multipliers v; and v. Also note that the multiplier u; associated with the
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incquality constraint g(x)=0 is nonnecgative, whereas the multiplier v; as-
sociated with the equality constraint h;(x) =0 is unrestricted in sign.

Since the dual problem consists of maximizing the infimum (greatest lower
bound) of the function f(x)+ Y/, wg(x)+Yi_, v;h(x), it is sometimes referred
to as the max-min dual problem.

The primal and Lagrangian dual problems could be written in the following
form using vector notation, where f: E,—E,, g:E,— E,, is a vector function
whose ith component is g, and h:E,—E, is a vector function whose ith
component is h;. For the sake of convenience, we will use this form throughout
the remainder of this chapter.

Primal Problem P
Minimize f(x)
subject to g(x)=<0

h(x)=0
xe X

Lagrangian Dual Problem D

Maximize 60, v)
subject to =0
where 6(u, v) =inf {f(x) +u'g(x)+v'h(x):xe X}.

Given a nonlinear programming problem, several Lagrangian dual problems
can be devised, depending on which constraints are handled as g(x)<9 and
h(x) = 0 and which constraints are treated by the set X. The choice would affect
the cffort expended in evaluating and updating the dual function 6 during the
course of solving the dual problem. Hence, an appropiate selection of the set X
would depend on the structure of the problem.

Geometric Interpretation of the Dual Problem

We now briefly discuss the geometric interpretation of the dual problem. For
the sake of simplicity, we will consider only cne inequality constraint and
assume that no equality constraints exist. Then, the primal problem is to
minimize f(x) subject to xe X and g(x)=0.

In the (z,, z;) plane, the set {(z,, z2): 2, = g(x), z,=.f(x) for some xe X} is
denoted by G in Figure 6.1. Then, G is the image of X under the (g, f) map.
The primal problem asks us to find a point in G to the left of the z, axis with
minimum ordinate. Obviously, this point is (Z,, Z,) in Figure 6.1.

Now suppose that u =0 is given. To determine 8(u), we need te minimize
f(x)+ ug(x) over all xe X. Letting z; = g(x) and z, = f(x) for xe X, we want to
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Figure 8.1 Geometric interpretation of Lagrangian duality.

minimize z,+ uz,; over points in G. Note that z,+ uz, = « is an equation of a
straight line with slope —u and intercept « on the z, axis. In order to minimize
zy+uz, over G, we need to move the line z,+uz, = « parallei to itself as far
down as possible so that it supports G. In other words, the set G is above the
line and touches it. Then the intercept on the z, axis gives 6(u), as scen in
Figure 6.1. The dual problem is therefore equivalent to finding the slope of the
supporting hyperplane such that its intercept on the z, axis is maximal. In
Figure 6.1, such a hyperplane has slope —i and supports the set G at the point
(21, Z,). Thus the optimal dual solution is @ and the optimal dual objective
value is Z,. Furthermore, the optimal primal and dual objectives are equal.

6.1.1 Example

Consider the following primal problem:

Minimize X 3"
subject to —X;—X,+4=<0
X, X =0

Note that the optimal solution occurs at the point (x1, x5) =(2,2), whose
objective is equal to 8.
Letting g(x)= —x;—x,+4 and X ={(x,, x,): x,, X, =0}, the dual function is
given by
9(u) =inf {x,* + X, + u(—x,— x,+4): x,, x, = 0}
=inf{x,®~ ux,:x,2 0} +inf {x,2 - tix,: x, = 0} + 4u

Note that the above infima are achieved at x,=x,=u/2 if u=0 and at

.
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X, =x,=0 if u<<0. Hence,

{—%u2+4u foru=0
o(u)=
(u) 4u for u<0

Note that 6 is a concave function, and its maximum over u =0 occurs at i = 4.
Note also that the optimal primal and dual objectives are both equal to 8.

Now let us consider the problem in the (z,, z,) plane, where z, = g(x) and
z,=f(x). We are interested in finding G, tbc imag.c. of (=
{(xy, x5) : x, =0, x,=0}, under the (g, f) map. We do this by derxvxng explicit
expressions for the lower and upper envelopes of G, denoted, respectively, by
a and B.

Given z,, note that a(z;) and B{z;) are the optimal objective values of the
following problems P; and P,, respectively.

Problem P, Problem P,
Minimize X2+ x,° Maximize X2+ x,?
subject to —X;— X, T4 =2, subject to —-X =X, +4 =2z,
Xy, X3 =0 Xy, X2 =0

The reader can verify that a(z;)=(4-2,)*/2 and [3(‘:,)=.(4?,-—::,)2 for z;,=4.
The set G is illustrated in Figure 6.2. Note that x € X implies that x;, x,=0, so
that —x; —x,+4=4. Thus, every point xe€ X corresponds to z,=4.

g Zq
A

N

. N (
~X
Supporting hyperplane

with slope —4 PN

Optimal primal and dual
objective value e

%

0 4
Figure 6.2 Geometric iliustration of Example 6.3.1.
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Note that the optimal dual solution is @ =4, which is the negative of the
slope of the supporting hyperplane shown in Figure 6.2. The optimal dual
objective is «(0) =8 and is equal to the optimal primal objective.

6.2 Duality Theorems and Saddie Point Optimality

In this section we investigate the relationships between the primal and dual
problems and develop saddle point optimality conditions for the primal
problem.

Theorem 6.2.1 below, referred to as the weak duality theorem, shows that
the objective value of any feasible solution to the dual problem yields a lower
bound on the objective value of any feasible solution to the primal problem.
Several important results follow as corollaries.

6.2.1 Theorem (Weak Duality Theorem)

Let x be a feasible solution to Problem P, that is x€ X, g(x) =0, and hk(x)=0.
Also let (u,v) be a feasible solution to Problem D, that is, u=0. Then

f(x) = 0(u, v).

Proof
By definition of 8, and since x € X, we have

(u, v) =inf {f(y) +u'g(y) + v'h(y): ye X}
= f(x) +u'g(x) + v'h(x) = f(x)

since u=0, g(x) =<0, and h(x) = 0. This completes the proof.

Corollary 1
inf {f(x):xe X, g(x) =0, h(x) =0} =sup {6(u, v): u=0}

Corollary 2

If f(x)=6(a, V), where 1 =0 and Xe{xe X:g(x)=0, h(x) =0}, then X and (&, V)
solve the primal and dual problems, respectively.

Corollary 3
If inf {f(x):xe X, g(x) =0, h(x) =0} = —c, then 6(u, v) =~ for each u=0.

Corollary 4

If sup {6{u, v):u =8} = =, then the primal problem has no feasible solution.
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Duality Gap

From Corollary 1 to Theorem 6.2.1 above, the optimal objective value of the
primal problem is greater than or equal to the optimal objective value of the
dual problem. If strict inequality holds true then a duality gap is said to exist.
Figure 6.3 illustrates the case of a duality gap for a problem with a single
inequality constraint and no equality constraints.

Optimal dual objective

Figure 6.3 lllustration of a duality gap.

6.2.2 Example
Consider the following problem:
Minimize =2%,+ X,
subject to X, +x,—3=0
(x5, x)e X

where X ={(0, 0), (0,4), (4,4), (4,0), (1,2), (2, D}.
It is easy to verify that (2, 1) is the optimal solution to the primal problem
with objective value equal to —3. The dual objective function 6 is given by

0(v) = minimum {(-2x; + x,) + v{x; + x,— 3) : (x,, x,) € X}
The reader may verify that the explicit expression for 6 is given by
j—4+51) for  v=-1
6(v)=) -8+v for-1=v=2

—-3v for v=2
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(2, -6)

(-1,-9)

0{v)

Figure 6.4 Dual function for Example 6.2.2.

The dual function is shown in Figure 6.4, and the optimal solution is ¥ =2 with
objective value —6. Note, in this example, that there exists a duality gap.

In this case the set G consists of finitc number of points, each corresponding
to a point in X. This is shown in Figure 6.5. The supporting hyperplane, whose
intercept on the vertical axis is maximal, is shown in the figure. Note that the
intercept is equal to —6 and that the slope is equal to —2. Thus the optimal
dual solution is o =2 with objective value —6. Furthermore, note that the
points in the set G on the vertical axis correspond to the primal feasible points,
and hence the minimal primal objective value is equal to —3.

Conditions that guarantee the absence of a duality gap are given in Theorem
6.2.4. First, however, the following lemma is needed.

f

®{1,4)
\ (0, 0}
- h
(=3,0)
4 (0,-'3) (5' _4)
Optimal primal ®
objective = ~3
Optimal dual _/
objective = -6 (1, -8)
Supgorting hyperplane with
slope ~2

Figure 6.5 Geometric interpretation of Example 6.2.2.
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6.2.3 Lemma

Let X be a nonempty convex set in E,. Let «:E,—E, and g: E,— E,, be

convex, and let h: E,— E, be affine; that is, & is of the form h(x)= Ax—b. If

System 1 below has no sclution x, then System 2 has a solution (u,, 4, v). The

converse holds if uy>>0.

System 1:  a(x)<0, g(x)=0, h(x)=0 for some xe X

System 2:  uga(x)+u'gx)+vh(x)=0
(u07 U)ZO, (u07 u, V) ?é 0

foralixe X

Proof
Suppose that System 1 has no solution, and consider the following set:
A={p,q,x):p>a(x), q=g(x), r=h(x) for some xe X}

Noting that X, «, and g are convex and that h is affine, it can easily be shown
that A is convex. Since System 1 has no solution, then ((0,0,0)£ A. By the
corollary to Theorem 2.3.7, there exists a nonzero (u,, u, v) such that

uop +u'g+vr=0 for each (p, g, r)ecl A (6.1)

Now, fix an x€ X. Since p and g can be made arbitrarily large, (6.1) holds true
only if u,=0 and w=9. Furthermore, {p, ¢, r)=[a{x), g(x), h{x)] belongs to .
cl A. Therefore, from (6.1), we get

uoa(x) +u'g(x)+v'h(x) =0

Since the above inequality is true for each x€ X, System Z has a solution.
To prove the converse, assume that System 2 has a solution (uy, &, v) such
that u,>0 and u=0, satisfying '

upa{x) +u'g(x)+v'h(x)=0 for each xe X

Now let xe X be such that g(x)=6 and h(i)=0. From the above inequality,
since u=0, we conclude that u,c(x)=0. Since uy>0, a(x)=0, and hence
System 1 has no solution. This completes the proof.

Theorem 6.2.4 below, referred to as the strong duality theorem, shows that
under suitable convexity assumptions and under a constraint qualification, the
optimal objective function values of the primal and dual problems are equal.

6.2.4 Theorem (Strong Duality Theorem)

Let X be a nonempty convex set in E,, let f:E,—FE, and g:E,—E,, be
convex, and let h: E,— E, be affine; that is, h is of the form k{(x}= Ax-b.
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Suppose that the following constraint qualification holds true. There exists an
x€ X such that gx)<0 and h(X)=0, and Oeinth(X), where h(X)=
{h(x):xe X}. Then

inf {f(x):xe X, g(x)=0,h(x) =0} =sup {0(u, v):e=0} - 6.2)

Furthermore, if the inf is finite, then sup {6(u, v):w=0} is achieved at (@, V)
with @=0. If the inf is achieved at X, then @'g(X)=0.

Proof

Let y=inf{f(x):xe X, g(x)=0,h(x)=6}. If v=—0, then by Corollary 3 to
Theorem 6.2.1, sup{6(w,v):u=0}=—co, and hence (6.2) holds true. Now
suppose that vy is finite, and consider the following system:

fx)—y<0, gx)=0, hx=0, xeX

By definition of v, this system has no solution. Hence, from Lemma 6.2.3,
there exists a nonzero vector (ug, u, v) with (u,, a) =0 such that

ulf(x) - y]+u'gx)+vh(x)=0 for all xe X (6.3)

We first show that u,> 0. By contradiction, suppose that u,= 0. By assump-
tion, there exists an X € X such that g(x) <0 and k() = 0. Substituting in (6.3), it
follows that w'g(%)=0. Since g(X)<0 and u=0, u'g(X)=0 is only possible if
u=490. But from (6.3), u,=0 and u=0, which implies that v'h(x)=0 for all
x € X. But since § eint h(X), we can pick an x€ X such that h(x) = —Av, where
A >0. Therefore, 0=v'h(x)=—A ||v|*, which implies that v=0. Thus, we have
shown that u, =0 implies that (u,, u, v) = ¢, which is impossible. Hence, u,> 0.
Dividing (6.3) by u, and denoting u/u, and v/u, by @ and ¥, respectively, we
get

flx)+8'g(x) + {/’h(ﬁ) =y for all xe X (6.4)

This shows that 6(F,v)=inf{f(x)+&'g(x)+V'h(x):xe X}=v. In view of

Theorem '6.2.1, it is then clear that 6{6,¥)=1, and (&, V) solves the dual

problem.

To complete the proof, suppose that X is an optimal solution to the primal
problem, that is, Xe X, g(X)=0, h(x) =0, and f(X) = v. From (6.4), letting x =X,
we get @'g(%) = 0. Since & =0 and g(x) =9, &'g(X) = 0, and the proof is complete.

In the above theorem, the assumption §eintb(X) and that there exists an
%€ X such that g{X)<<0 and h(&)=0 can be viewed as a gencralization of the
Slater constraint qualification of Chapter 5. In particular, if X=E,, then
0 e int h(X) automatically holds true, so that the constraint qualification asserts
the existance of a point & such that g(%) <@ and k(%) = 6. To see this, suppose
that k(x) = Ax—b. Without loss of gencrality, assume that rank A = m, because
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otherwise any redundant constraints could be deleted. Now, any ye E,, could
be represented as y = Ax—b, where x= A'(AA") '(y+b). Thus, h(X)=E,, and
in particular, ¢ € int h(X).

Saddle Point Criteria

As a consequence of Theorem 6.2.4, we develop the well-known saddle point
optimality criteria. Note that the necessary part of the criteria requires convex-
ity plus a constraint qualification, whereas the sufficiency part of the theorem
needs no such assumptions.

6.2.5 Theorem (Saddie Point Theorem)

Let X be a nonempty set in E,, and let f:E,—E,;, g:E,—E,,and h: E,—>E,
Suppose that there exist Xe X and (&, ¥) with §=0, such that

S, u,v)= X, 8,9)< P(x,4,v) (6.5)

for all xe X and all (u,v) with u=0, where ¢(x,u,v)=f(x)}+ua'g(x)+v'h{x).
Then X% and (&,¥) solve the primal Problem 72 and the dual Problem D,
respectively. Conversely, suppose that X, f, and g are convex and that h is
affine; that is, h is of the form h(x) = Ax—b. Further, suppose that O €int h(X)
and that there exists an € X with g(%)<0 and h(x)=0. If € is an optimal
solution to the primal Problem P, then there exists (&, V) with i =8, so that (6.5)
holds true.

Proof

Suppose that there exist x€ X and (@, V) with #= 0 such that (6.5) holds true.
Since
f®) +u'g®) +v'h(x) = ¢, u,v)=¢(E, & V)
for all u=0 and 2ll ve E,, it follows that g(¥) =€ and h(X) = 0. Therefore, £ is a
feasible solution to Problem P. Also by letting u={ in the above inequality, it
follows that #‘g(x)=0. Since =0 and g(x)=0, then &'g(X) = 0. Noting (6.5),
then for each xe X, we get
&) = f&)+3'gR) + VR

=¢(%, &, )

=¢(x,a,v)

= f(x)+E'g(x) + 7'h(x) (6.6)

Since (6.6) holds true for each x€ X, it then follows that f{Z) = 6{&, ¥). Noting
that % is feasible to the primal Problem P and that 8 =9, from Coroliary 2 to
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Theorem 6.2.1, it then follows that & and (&, v) are optimal to the primal and
dual problems, respectively.

Conversely, suppose that X is an optimal solution to the primal Problem P. By
Theorem 6.2.4, there exists (4,V) with =0 such that f(X)=6(&,¥) and
a'g(x) = 0. By definition of 6, we must have

f(X)= 0@, v) = f(x) +t'g(x) + V'R(x) = ¢(x, §, V) for each xe X
But since @'g(x) =v'k(x) =0,
¢(X, 4, V)= f(X)+a'gX)+vh(x)= ¢(x, &, V) for all xe X
which is the second inequality in (6.5). The first inequality in (6.5) holds true

trivially by noting that @'g(X) =0, h(x)=0, g(X)=<0, and u= 0. This completes
the proof. :

Relationship Between the Saddlepoint Criteria and the Kuhn-Tucker
Conditions

In Chapters 4 and 5 we discussed the Kuhn-Tucker optimality conditions for
Problem P defined below. v

Minimize fx)
subject to gx)=0
h(x)=0
xeX

Furthermore, in Theorem 6.2.5 above, we developed the saddle-point optimal-
ity conditions for the same problem. Theorem 6.2.6 below gives the relation-
ship between these two types of optimality conditions.

6.2.6 Theorem

Let S={xe X:g(x)=0,h(x)=0}, and consider Problem P to minimize f(x)
subject to x€ S. Suppose that X€ S satisfies the Kuhn-Tucker conditions, that
is, there exist =0 and v such that

Vi(x)+VgEa+VhE)v=0

@'gx)=0

Suppose that f, g for iel are convex at X, where I={i:g(%)=0}. Further
suppose that if §;# 0, then h; is affine. Then, (%, @, ¥) satisfy the saddle point
conditions

(6.7)

X, u,v)= (X, 8, v)=d(x, i, V) (6.8)
for all xe X and for all (g, v) with u=0, where ¢(x, u, v) = fx) +u'gx)+ v'h(x).
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Conversely, suppose that (%, 8,V) with £€int X and &=90 satisfy the sad-

diepoint conditions (6.8). Then X is feasible to Problem P and furthermore,
(%, i, v) satisfy the Kuhn-Tucker conditions specified by (6.7).

Proof
Suppose that (%, #, ¥) with Xx€ S and i =9 satisfy the Kuhn-Tucker conditions
specified by (6.7). By convexity at £ of f and g for i € I, and since h, is affine for
0;# 0, we get
fx)= f®) + Vf(X)' (x—X) (6.9)
g(x)=g®) +Vg ) (x—x) for iel (6.10)
hi(x) = h.(x)+Vh(X) (x —X) fori=1,..., Lu#0 (6.11)

for all xe X. Multiplying (6.10) by &; =0, (6.11) by &, adding (6.9) and noting
(6.7), it follows from the definition of ¢ that ¢(x, &, V)= ¢ (X, 4, ¥) for all xe X.
Also, since g(x) =0, h(X) =0 and @'g(x) =0, it follows that ¢(%, u,v)=&(X, 4, V)
for all u=0. Hence (X, &, v) satisfy the saddlepoint conditions given by (6.8).

To prove the converse, supposc that (%, &, V) with Xeint X and = @ satisfy
(6.8). Since ¢(X,u,v)=¢(X,1,V) for all u=0 and all v, the reader can easily
verify that g(X)=0, h(X)=0 and @'g(X)=0. This shows that X is fcasible to
Problem P. Since ¢(X, &, V)= ¢(x, 4, v) for all xe X, then X solves the problem
to minimize ¢(x, G, V) subject to x€ X. Since Xeint X, then V,¢(X, 6, ) =6,
that is Vf(x)+VgX)a+VR(X)v =0, and hence (6.7) holds. This completes the
proof.

Theorem 6.2.6 above shows that if X is a Kuhn-Tucker point, under certain
convexity assumptions, the Lagrangian multipliers in the Kuhn-Tucker condi-
tions also serve as the multipliers in the saddlepoint criteria. Conversely, the
multiplicrs in the saddlepoint conditions are the Lagrangian multipliers of the
Kuhn-Tucker conditions. Morcover, in view of Theorems 6.2.4, 6.2.5 and
6.2.6 the optimal dual variables for the Lagrangian dual problem are precisely
the Lagrangian multipliers for the Kuhn-Tucker conditions and also the
multipliers for the saddlepoint conditions.

6.3 Properties of the Dual Function

In Section 6.2 we studied the relationships between the primal and dual
problems. Under certain conditions, Theorem 6.2.4 showed that the optimal
objectives of the primal and dual problems are cqual and, hence, it would be
possible to solve the primal problem indirectly by solving the dual problem. In
order to facilitate the solution of the dual problem, we necd tc ¢xamine the
properties of the dual function. In particular, we show that @ is concave, discuss
its differentiability and subdifferentiability properties, and characterize its
ascent and steepest ascent directions.
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Throughout the rest of this chapter, we will assume that the set X is
compact. This will simplify the proofs of several of the theorems. Note that this
assumption is not unduly restrictive, since if X were not bounded, one could
add suitable lower and upper bounds on the variables such that the feasible
region would not be affected. For convenience, we will also combine the
vectors u and v as w and the functions g and h as . Theorem 6.3.1 below
shows that 8 is concave. '

6.3.1 Theorem .

Let X be a nonempty compact set in E,, and let f: E,—~E;, and B:E,—E,, ,,
be continuous. Then 6, defined by

0(w) = inf {f(x) + w'B(x) : x € X}

iu concave over E,, ;.

Proof

Since f and B are continuous and X is compact, 8 is finite everywhere on
E,... Letw,, wy,eE, ., and let A €(0, 1). We then have

6[Aw,; +(1—A)w,]=inf {f(x) +[Aw, + (1 - )w,)'B(x) :xe X}
= inf {A[f(x) + wiB )]+ (1= A)[f(x) + WiB(x)]: x € X}
= A inf {f(x) + wiB(x) :x e X}
+(1=A)inf {f(x)+w, B(x):x e X}
= A8(wy)+(1 —A)6(w,)

Thus 6 is concave, and the proof is complete.

Since 8 is concave, by Theorem 3.4.2, a local optimal of 6 is also a global
optimal. This makes the maximization of & an attractive proposition. However,
the main difficulty in solving the dual problem is that the dual function is not
explicitly available, since 8 could be evaluated at a point only after a minimiza-
tion subproblem is solved. In the remainder of this section, we study differen-
tiability and subdifferentiability properties of the dual function. These proper-
ties will aid us in maximizing the dual function.

Differentiability ¢f 9

We now address the question of differentiability of 8 defined by 6(w)=
inf {f(x) +w'RB(x):x < X}. It will be convenient to introduce the following set:

X{w)={y:y minimizes f(x)+w'B(x) over xe X}
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The differentiability of 6 at any given point W depends on the elements of
X(W). In particular, if the set X(W) is a singleton, then Theorem 6.3.3 below
shows that @ is differentiable at w. First, however, the following lemma is
needed. :

6.3.2 Lemma

Let X be a nonempty compact set in E, and let f:E,—E,; and B:E,—E,.,,
be continuous. Let we E,,,;, and suppose that X(w) is the singleton {X}.
Suppose that w, —Ww, and let x, € X(w,) for each k. Then x,—X.

Proof

By contradiction, suppose that w, — W, x, € X(w,), and ||jx, —X|>e>0forke ¥
where % is some index set. Since X is compact, then the sequence {x,}4 has a
convergent subsequence {x,},, with limit y in X. Note that [ly—&|= & >0, and
hence y and % are distinct. Furthermore, for each w, with k € &' we have

Fx,) + WiB(x,) = f(R) + WiB(X)

Taking the limit as k in ¥’ approaches «, and noting that x, —y, w, —W, and
that f and B are continuous, it follows that

fy)+w'e(y)=f&)+wB(EX)

Therefore y € X(#), contradicting the assumption that X(W) is a singleton. This
completes the proof.

6.3.3 Theorem

Let X be a nonempty compact set in E,, and let [: E,->E,, and B:E,—~E,
be continuous. Let we E,,.,, and suppose that X(w) is the singleton {&}. Then,
0 is differentiable at w with gradient Vo(w) = ().

Proof

Since f and B are continuous and X is compact, then for any given w, there
exists an x,, € X(w). From the definition of 6, the following two inequalities
hold true:

O(w) — 0(W) = f(X) + w'B(X) — f(X) - W'B(X) = (w—w)'B(%) (6.12)

8(W) — 0(w) = f(x,) + W' B(x,) — f(x,) - w'B(x,) = (W—-w) B(x,) (6.13)
From (6.12) and (6.13) and the Schwartz inequélity, it follows that
0=6(w)— 6(W) — (w—W)' B(X) = (w—%)[B(x,) - (%]

= — w - Wi {B(x.) - BE)
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This further implies that
6(w)— 0(w) — (w—w)'B(X) -
0= - = —[IB(x,)— B(X) 6.14
As w—w, then by Lemma 6.3.2, x,,—X, and by continuity of B, B(x,,)— B(X).
Therefore, from (6.14), we get
i Blw) — 6(%) — (v — W) BE) _
A llw — w]|

0

Hence 6 is differentiable at w with gradient B(x). This completes the proof.

Subgradients of 6

' We have shown in Theorem 6.3.1 that @ is concave, and hence, by Theorem
3.2.5, 6 is subdifferentiable; that is, it has subgradients. As will be seen later,
subgradients play an important role in the maximization of the dual function,
‘since they lead naturally to the characterization of the directions of ascent.
Theorem 6.3.4 below shows that each X e X(W) yields a subgradient of 6 at W.

6.3.4 Theorem

Lef X be a nonempty compact set in E,, and let f:E,—E,, and 8:E,—E,
be continuous so that for any we E,,,;, X(W) is not empty. If Xe X (W), then
B(x) is a subgradient of 0 at Ww.,

- Proof

Since f and 8 are continuous and X is compact, X(w)# & for any We E, .
Now, let we E,,,,;, and let Xxe X(w). Then

6(w) = inf {f(x) +w'B(x) :x € X}
= f(%) + w'B(%)
= f(%) +(w—W)'B(%) + W' B(%)
= 6(W)+(w~w)'B(X)

Therefore B(X) is a subgradient of 6 at w and the proof is complete.

6.3.5 Example
Consider the following primal problem:
Minimize —X1= X
subject to X1 +2%,-3=0
X, %=0,1,2,0r3
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Letting g(x;, X,) = x; +2x,—3 and X ={(xy, X2):X;, x; =0, 1,2, 0r 3} the dual
function is given by '

0(u) =inf {—x; — x,+ u(x; +2x,—3): %3, x,=0, 1, 2, or 3}

—6+6u if0<su=3
= —~3 ifi=u=1
=3y ifu=1
Let @ =121 In order to find a subgradient of 6 at #, consider the foliowing
subproblem:
Minimize —x;— Xy +3(x, +2x,—3)
subject to X1, X,=0,1,2,0r3
Note that the set X(it) of optimal solutions of the above preblem is {(3, 0),
(3, 1), (3,2), (3, 3)}. Thus, from Theorem 6.3.4, g(3,0)=0, g(3,1)=2,g(3,2)=

4, and g(3,3)=6 are subgradients of 6 at & Note, however, that 3 is also a
subgradient of @ at &, but 3 cannot be represented as g(X) for any X € X(#).

From the above example, it is clear that Theorem 6.3.4 gives only a sufticient
characterization of subgradients. A necessary and sufficient characterization of
subgradients is given in Theorem 6.3.7 beiow. First, however, the following
important result is needed. '

6.3.6 Theorem

Let X be a nonempty compact set in E,, and let f: E,—>E, and B: E,— E,.
be continuous. Let w, de E,. ;. Then

6'(w; d)=d'B(x) for some ¥ e X(W)

Proof

Consider w+ A, d, where A, —0". For each k, there exists an x, € X(¥ + A, d),
and since X is compact, there is a convergent subsequence 1%} with limit X in
X. Given an x€ X, note that

fx) + (W + A d) Bx) = f(x) + (W + A, 8) Blx,)

.for each k e ¥. Taking the limit as k-—=oo, it follows that

f@)+ W B0 = f(R)+ ' BR)
that is, x € X(w). Furthermore, by definition of g(w+ A d) and 0(W), we get
O(w + A d) — 6(W) = f(x;)) + (W + A, @) B(x,.) — 6(W)
=0, d'8(x,)
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The above inequality holds true for cach ke . Noting that xk —X as ke.?[
approaches «, we get
lim 6(w + /\kd)-— 6(w)

ke Ay

k—»w0

= d'B®)

8+ Ad)— O(F)

= exists. In view of the above

By Lemma 3.1.5, 9'(W;d)=klin(}

inequality, the proof is complete.

Corollary

Let 96(W) be the collection of subgradients of 6 at W, and suppose that the
assumptions of the theorem hold true. Then, :

0'(w; d)=inf{d'E: £ 00(W)}

Proof

Let % be as specified in the theorem. By Theorem 6.3.4 B(X) € 90(#W), and hence
Theorem 6.3.6 implies that 6'(w;d)=inf{d'E:£c90(W)}. Now let §€abo(w).
Since 9 is concave, 6(w+Ad)— 6(w)=Ad'§. Dividing by A >0 and taking the
limit as A—0%, it follows that 6'(w;d)=<d'€ Since this is true for each
£ca6(w), 0'(w;d)=<inf{d'E:£€06(W)}, and the proof is complete.

6.3.7 Theorem

Let X be a nonempty compact set in E,, and let f: E, —-—>E,, and B:E,—E,.
be continuous. Then & is a subgradient of 6 at we E,, ; if and only if § belongs
to the convex hull of {B(y):ye X(W)}.

Proof
Denote the set {B(y):ye X(w)} by A and its convex hull by H(A\). By Theorem
6.3.4, A< 06(w), and since d6(w) is convex, H(A) < d6(w). Using the facts that
X is compact and B is continuous, it can be verified that A is compact.
Furthermore, the convex hull of a compact set is closed. Therefore H(A) is a
closed convex set.

- We shall now show that H(A) 2 d0(w). By contradiction, suppose that there
is a £ €90(W) but not in H(A). By Theorem 2.3.4, there exist a scalar a and a
nonzero vector d such that

d'B(y) =« for each ye X(w) (6.15)

't <a ' (6.16)
By Theorem 6.3.6, there exists a ye X(w) such that ¢'(w; d)=d'B(y), and by
(6.15) above, we must have 9'(w; d) = a. But by the corollary to Theorem 6.3.6
and (6.16), we get

"(W; d)=inf {d'E: Feae(w)}(d‘g <
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which is a contradiction. Therefore & € H(A), and 86(w)= H(A). This com-
pletes the proof.

6.3.8 Example

Consider the following primal problem:

Minimize —(x;—4)*—(x,—4)?
subject to x—3=0
—Xi+x,—2=0
X +x,—4=<0
T Xy, X, =0

In this example, we let g(x;, X;)=x;—3, g.(x;,X)=-x,+x,—2, and X =
{(x;, x3): x;+ x,—4=0; x;, x,=0}. Thus the dual function is given by

0(uy, uy) = inf {—(x; —4)* = (x,— 4)*+ u, (x; ~ 3) + up(—x; + x,— 2): xe X}

We utilize Theorem 6.3.7 above to determine the set of subgradients of 8 at
u=(1,5)" In order to find the set X(m), we need to solve the following
problem:

Minimize _(x] _4)2_ (X2_' 4)2—4x1 + 5x2 -13
subject to X, +x,—4=<0
X1, X2=0

The above objective function is concave, and by Theorem 3.4.6, it assumes its
minimum over a compact polyhedral set at one of the extremc points. The
polyhedral set X has three extreme points, namely (0, 0), (4,0), and (0, 4).
Noting that f(0, 0) = f(4, 0) = —45 and f(0, 4) = -9, it is evident that the optimal
solutions of the above subproblem are (0,0) and (4,0), that is, X(a)=
{(0, 0), (4, 0)}. By Theorem 6.3.7, the subgradients of 9 at & are thus given by
the convex combinations of g(0, 0) and g(4, 0), that is, by convex combinations
of the two vectors (—3, —2)" and (1, —6)". Figure 6.6 illustrates the set of
subgradients.
(0,0)

(-3,-2)

00(u)

(1, —6)

Figure 6.6 |llustration of subgradients.
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Ascent and Steepest Ascent Directions

The dual problem is concerned with the maximization of 6 subject to the
constraint u=0. Given a point w'= (u',v'), we would like to investigate the
directions along which 6 increases. For the sake of clarity, first consider the
following definition of an ascent direction.

Y. 639 Definition

A vector d is called an ascent direction of 6 at w if there exists a & > 0 such that
§(w+Ad)>0(w)  for each Ae(0,8)

Note that if 6 is concave, a vector d is an ascent direction of 6 at w if and
only if 6'(w;d)>0. Furthermore, 6 assumes its maximum at w if and only if it
has no ascent directions at w, that is, if and cnly if 8(w; d)=0 for each d.

Using the corollary to Theorem 6.3.6, it follows that a vector d is an ascent
direction of 8 at w if and only if inf {d'§€ d0(w)}> 0, that is, if and only if the
following inequality holds for some &> 0.

d'E=¢>0  for each £€a6(w)

To illustrate, consider Example 6.3.8. The collection of subgradients of 6 at
the point (1, 5) is illustrated in Figure 6.6. A vector d is an ascent direction of 6
if and only if d'€=¢ for each subgradient & where & >0. In other words, d is
an ascent direction if it makes an angle strictly less than 90° with each
subgradient. The cone of ascent directions for this example is given in Figure
6.7. In this case, note that each subgradient is an ascent direction. However,
this is not necessarily the case in general.

Shortest
subgradient

Cone of ascent
directions

Figure 6.7 The cone of ascent directions
in Exampie 6.3.8.
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Since 6 is to be maximized, we are interested not orly in an ascent direction
but also in the direction along which 0 increases the most.

><’ 6.3.10 Definition

A vector d is called a direction of steepest ascent of 9 at w if

6'(w; d) = maximum 0'(w; d)
lafj=1
Theorem 6.3.11 below shows that the direction of stecepest ascent of the

Lagrangian dual function is given by the subgradient with the smallest Eucli-
dean norm.

6.3.11 Theorem

Let X be a nonempty compact set in E,, and let f:Er_-—)El,‘ and B8: E, —
E, ., be continuous. The direction of steepest ascent d of ¢ at w s given below,
where § is the subgradient in 96(w) with the smallest Euciidean norm.

0 ifE=0
d=< £ =

= f

i e

Proof

B'y D;ﬁnition 6.3.10 and by the corollary to Theorem 6.3.6, the steepest ascent
direction can be obtained from the following expression:

maximum 0'(w; d) = maximum infimum d'g
)= 1 ldli=1 £ea0(w)

The reader can easily verify that

ma”)fﬂi]rﬂum 0'(w;d)= maximum infimum d'g
= 18]l

)= geob(w)

=infimum maximum d'¢
E€a0(w) figii=1 <

= infimum [|£]

E€a0(w)

= &l (6.17)
If we construct a direction d such that 0'(w; &) =[], then by (6.17)  is the
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ste'epest ascent direction. If ng G, then for §= 0, we obviously have 0'(w;d)=
|Ell. Now suppose that E#0, and let d=¢§/||§]. Note that

6'(w; d)=inf {d'E:£€36(W)}
= inf {g-g—:'ge BG(W)}

H
T%ﬂ inf {[EP+EE-B):Ec00(w)
=u§u+li—%ﬂinf{éf(g-i;):geae(w)} (6.18)

Since E is the shortest vector in ae(y), then by Theorgm 2.3_.1, g'(g—-g_)zo for
each £co6(w). Hence, inf{§'(€~ £):£e 30(w)}=0 is achieved at § From
(6.18), it then follows that 8'(w;d) = |E|l. Thus, we have shown that the vector d
specified in the theorem is the direction of steepest ascent both when §=10 and
when £#0. '

6.4 Solving the Dual Problem

We have described several properties of the dual function in 'the previous
section. In this section, we utilize these properties to develop various schgmes
for maximizing the dual function 6 over the region {(u, v') :u=0}. In particular
we discuss some ascent procedures, as well as the cutting plane method for

solving the dual problem.

Gradient Method

Given (@i, ¥), the dual function can be evaluated by solving the following

subproblem:

Minimize f(x)+@'g(x) +V'h(x)

subject to xe X e
Suppose that X is the optimal solution. Then by Thegr§m 6.3.3, VG(}l,v). =
[gx), h(x)'). U V4(g,v)#0, then by Theorem 4.1.2, i_t is an ascent d}rectlon
and 6 will increase by moving from (@i, ¥) along VO(i, ¥). ngever, if some
components of @ are equal to zero, and any of the cqrrespondmg componfzr}ts
of g(®) is negative, then B+ AgX) ¥ ¢ for A =0, thus violating the nonnegativity

8.4 Solving the Dual Problem 197

The following theorem shows that [§(%), h(X)] is a feasible ascent dircction of 8
at (%,v). Furthermore, [§(%), h(X)] is zero only when the dual maximum is
reached.

6.4.1 Theorem

Let (&,v)e E,,.;, where a=90. Suppose that 9 is differentiable at (@, v) with
gradient [g(x), h(x)]. If [g(X), h(X)]# (0, 0) then [§(X), h(X)] is a feasible ascent
direction of 6 at (@, ¥). If [§(%), k(X)]= (0, 0), then 6 achieves its maximum over
the region {(u, v):u=0} at (@, ¥).

Proof

Let d' = [g(%), h(X)']. By construction of g, d is a feasible direction. Further-
more, if d#0, then Vo(@,v)’d>0 and by Theorem 4.1.2, d is an ascent
direction. Now, suppose that [§(X), k(X)]= (0, 0). Since g(X)=0 for each i, it
follows that g (x)=0 and #g;(X) =0 for each i. In other words

gx)=0 and i'g(x)=0 (6.20)

Now consider the Lagrangian dual problem to maximize 0{a,v) subject to
u=0. The Kuhn-Tucker conditions hold true at (&, ¥) if there exists a vector
b=0 such that Vé(@,v)=(b,6) and @'b=0. Noting (6.20), these conditions
clearly hold true by letting b= g(%). Since 6 is concave, by Theorem 4.2.11, the
Kuhn-Tucker conditions are sufficient for optimality, and (&, ¥) is an optimal
solution. This completes the proof.

7{ Summary of the Gradient Method

If the assumptions of Theorems 6.3.3 hold true, then 8 is differentiuble, and
the following scheme could be used to maximize 6 over the region {(u,v):u=

- 0}

In step 2 of the algorithm, a one-dimensional problem in the variable A is to
be solved. For simplicity of presentation, we assumed that a finite optimal
solution A, exists. If this were not the case, either the optimal objective value is
unbounded, or else the optimal objective value is bounded but not achieved at
any particular A. In the first case, we stop with the conclusion that the dual
problem is unbounded and the primal is infeasible. In the latter case, A, could

: : ] be taken as a sufficiently large number.
 restriction. In order to handle this difficulty, we use the modified direction L y larg v

" [8(), h(¥)], where §(X) is defined beiow as ‘ |
®) ifa,>0 _Initialization Step Choose a vector (u,,v,) with u, =9, let k=1, and go to
&) = {g : (6.19)

_ o the main step.
maximum [0, g(&)] ifg=0 3
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Main Step 1. Given (g, Vi), solve the following subproblem:

Minimize f(x) +uig(x) +vih(x)

subject to  x€X . A .
Let x, be the unique optimal solution and form the vector [g(xk),l.a(xk)] using
(6.19). If this vector is zero, then stop; (u, Vi) is an optimal solution. Other-
wise, go to step 2.

2. Consider the following problem:

Maximize  0[(a,, Vi) + AB0), hxi))]

subject to  u, t Ag(x,)=0

A=0 )

Let A, be an optimal solution, and let (w1, Vir1) = (uk,vk)+)\k[g(xk),h(xk)],
replace k by k+1, and repeat step 1 .

We shall now illustrate the gradient method for maximizing the dual function
by the following example: -

6.4.2 Example
Consider the following problem
Minimize X2+ x,°
subject to —-x;—x,+4=0
x;+2x,~8 =0 .

Note that the optimal solution occurs at the point (2,2) wher.e the ob]e.ctl've
function value is equal to 8. The Langrangian dual problem is to maximize

6(u,, u,) subject to uy, u, =0, where

0(u;, uz) = minimum {x,*+ X2+ Ug(— X, — Xy +4) + up(xy 2%, — 8)}
We shall solve the dual problem by the gradier.xt r‘nethod‘ described above
starting from u; = (0, 0)". Note that the function 8 is differentiable by Theorem

3.3 -
° For u. = (0,0), 8(u;)=minimumy, {x,2+x,°}=0, and is achleveid 4at_§;f:
unique olptimal point x; = (0, 0)'. From Theorem 6.3.3, VO (0) = g(x,) = (4, .

In this case g(x;)= (4, 0). Note that

8(4 A, 0) = minimum {x,?— 4Ax,}+ minimum {x,7 —4hxo} + 164

= —47A%2—4A%2+16)
C=—8A%+16A
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Hence, the optimal solution to the problem to maximize €(44,0) subject to
A =0t is achieved at A, =1, so that

uw, =u, + A g(x,) = (0, 0)' +1(4, 0)' = (4, 0)*

For u,=(4,0)", 0(u,)=minimum,, , {x,>+x>+4(-x,—x,+4)}=8, and is
achieved at the unique opiimal point x,=(2,2). From Theorem 6.3.3,
Vo(u,) = g(x,) = (0, —2)". In this casc g(x,)=(0,0)', and hence u, = (4, 0)" is an
optimal solution to the Lagrangian dual problem. '

Ascent Method for a Nondifferentiabie Dual Function

In Section 6.3 we showed that d is an ascent direction of 6 at (u,v) if d§=¢>0

for each £€6(u,v). The following problem could be used for finding such a
direction.

Maximize €
subject to dé=¢ for £€06(u, v)
d;=0 if ;=0
-1=d;, =1 fori=1,...,m+!

Note that the constraints d; =0 if u; =0 ensure that the vector d is a feasible
direction, and the normalization constraints —1=d; =1 will guarantee a finite
solution to the problem.

The reader may note the following difficultics associated with the above
direction finding problem.

1. The set 90(w,v) and, hence, the constraints of the problem are not
explicitly known in advance. However, Theorem 6.3.7, which fully charac-
terizes the subgradient set, could be of use.

2. The set 90(u, v) usually admits an infinite number of subgradients, so that
we have a linear program with an infinite number of constraints. However,
if 060(u,v) is a compact polyhedral set, then the constraints d'E€=¢ for
£€06(u, v) could be replaced by the constraints

d§=¢ for j=1, 05 %

where §;,...,§, are the extreme points of 88(u,v). Thus, in this case
the problem reduces to a finite linear program.

1 In general, an explicit expression for @(u, + Ag(x,)) = 8(4A, 0) is not available. However, for any
given A, 6 can be evaluated by solving an unconstrained optimization problem. To find the optimal
Ay, a suitable line search procedure could be used. In Chapter 8, both line search methods and
unconstrained optimization methods will be discussed in detail.
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Summary of the Ascent Procedure

We present below an ascent procedure for maximizing 6 over the region
{(u, v):u=0}. The method applies whether 06(a, v) is polyhedral or not. Step 1
attempts to generate an ascent direction by solving a linear program with finite
number of constraints. Step 2 verifies whether the direction obtained from step
1 is indeed an ascent direction.

In view of Theorem 6.3.7, the implementation of step 2 requires the
knowledge of all optimal solutions to the problem to minimize f(x)-+u,g(x)+
vih(x) subject to x € X, which may not be readily available. Step 3 maximizes 6
along the ascent direction found in steps 1 and 2. At this step a one-
dimensional problem in the variable A is to be solved. For simplicity of
presentation, we assumed that a finite optimal solution A, exists. If this were
not the case, either the optimal objective value is unbounded, or else the
optimal objective value is bounded but not achieved at any particular A. In the
first case, we stop with the conclusion that the dual problem is unbounded and
the primal is infeasible. In the latter case, A, could be taken as a sufficiently
large number.

The procedure is summarized below. It is assumed that f, g, and h are
continuous and that X is compact, so that the set X(u, v) is not empty for each
(a, v). '

Initialization Step Choose a vector wj=(uj,v}) with u;=0. Solve the
problem to minimize f(x)+ujg(x)+vih(x) subject to xeX. Let x; be an
optimal solution, and let & = [g(x,), h(x;)']. Let k=y =1, and go to the main
step.

Main Step 1. Given §,,...,§&,, solve the following problem:

Maximize £

subject to d'g=¢ forj=1,...,y

d; =0 if ith component of u, is 0
~1=d,=1 fori=1,...,m+I

Let (d,, &,) be an optimal solution. If &, =0, stop; there exists no ascent
direction and w{ = (u}, vg) is an optimal solution. Otherwise, &,>0; go to
step 2.

2. Solve the following subproblem:

Minimize . 4§

subject to Eeab(uy, vyi)
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Let &,,; be an optimal solution. If d'£,,,>0, then d, is an ascent direction
and proceed to step 3. If d £, =0, then replace y by y+ 1 and go to step 1.
3. Let d, =d,, and solve the following problem:

|

Maximize o0(w, +Ad,)
subject to (w,+Ad,); =0 fori=1,...,m
A=0
where (w, +Ad,); is the ith component of w, +Ad,. Let A, be an optimal
solution, and let w,,; =w, + A, d, and go to step 4.
4. Let x,,, be an optimal solution to the problem to minimize f(x)+

ui i 18(x) +vih(x) subject to xeX, where (uj.q,Vi,)=Wi,;. Let & =
[g(xk+1)' B(xk41)']. Replace k by k+1, let y=1, and go to step 1.

We shall now illustrate the ascent procedure discussed above by the follow-
ing example.

6.4.3 Example

Consider the following problem.

Minimize X1—4x,
subject to —-X;—X3+2=0
x2 == 1 = 0

0=xq,x=3

Here the Lagrangian dual problem is to maximize 6(u,, u,) subject to u,,
u, =0, where

0(uy, up) = minimum {(x; —4x,) + u;(=x; = x,+2) + uy(x,— 1): 0=x,, x, =3}

= minimumx,(1— u;) + minimum x,(—4 - u; + u,) +2u, — u,

0=x;=3 0==x,53

We shall solve the dual problem by the ascent procedure starting with
;= (0,4)". . .

For uw;=(0,4)", 0(a;)=-4 and is achieved at points of the form (0, «) for
0=a=3. Choosing a=0, we get an optimal solution x=(0,0)" and the
associated subgradient &; =g(x)=(2,~-1)". At step 1 of the procedure, we
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consider the problem

Maximize €
subject to 2d,—d,=¢
0=d;=1.
~1=d,=1

The optimal solution to this problem is d,=(1,-1)" and ¢ =3. Since £€>0,
we solve the problem in step 2. By Theorem 6.3.7, a9(a,) =
{£=(-a+2,a—1):0=a =3} Thus the objective function of the problem in
step 2 is £'d;=(-a +2)1+(a—1)(=1)==2a+3. Hence, the problem is to
minimize —2a+3 subject to 0=a=3. The optimal solution is a=3 with
optimal objective value of ~3<0. The associated optimum subgradient & =
(—1,2).

Returning to step 1, we solve the problem

Maximize €
subject to 2d,—d,=¢
—-d,+2d,=¢
0=d,=1
-1=d,=1

The optimum objective value is 1 and is achieved at d,=(1, 1)". Since ¢ >0, we
solve the problem in step 2. The objective function is §&'d,=
(—a+2)1+(a—1)1=1. Since the objective function is greater than 0 for each §,
then d,=(1, 1)' is an ascent direction.

We now maximize the dual function along the ascent direction (1, 1); that is,
solve the problem to maximize 6((C, 4)+ A(1, 1)) subject to A =0. The reader
can verify that ‘

A—4 for0=aA=1

9((0,4)+/\(1,1))={~—,,\_1 foraz=1

The optimum solution is A, =1, and hence w; = (1, 5).

We now repeat the process to find an ascent direction at w,. For u,=
(1,5), 6(u,)=—3 and is achieved at any point of the form (a;, @), where
0=a;,, a,=3.Thatis an optimal solution is a convex combination of the extreme
points (0, 0), (0,3), (3, 0), and (3, 3). Choosing the optimal solution x = (0, 0)%,
we get the associated subgradient &; = g(x) = (2, ~1)". At step 1 of the proce-
dure we solve the problem

Maximize g

subject to 2d,—d,=¢

-1=d,,d,=1
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The optimal solution is d; = (1, —=1)" and £=3>0. By Theorem 6.3.7, 60{u,) is
the convex combination of the points 8,=g(0,0)=(2,-1), B,=¢(0,3)=
(-1,2), 85=¢(3,0)=(-1, - 1)} und.fid =g(3,3) = (-4, 2)". Noting that the opti-
mal of the problem in step 2 is achieved at one of the above cxtreme points,
the optimum is equal to minimum {diB,,d|B,, diB;, 4i8,}=minimum {3,
-3, 0, —6}=—6. Therefore, the optimal solution &, to the problem at step 2 is
given by B,=(-4,2)"

Repeating step 1 with a new constraint corresponding to §,, we get the
following problem:

Maximize €

subject to 2d,—d,=¢
—4d,+2d,=¢
-1=d,,dy,=1

The optimal objective value of this problem is equal to zero and hence there
exists no ascent direction. Thus the optimal solution to the dual problem is
u, = ('1 ’ 5)’~ '

The Cutting Plane Method

The methods discussed above for solving the dual problem generate at each
iteration a feasible direction along which the Lagrangian duai function in-
creases. We now discuss another strategy for solving the dual problem, in
which at each iteration, a function that approximates the dual function is
optimized.

Recall that the dual function 6 is defined by

0(a, v)=inf {f(x) +u'g(x) + v'h(x) :x e X}

Letting z = 8(u, v), the inequality z < f(x)+u'g(x)+v'R(x) must hold true for
each xe X. Hence the dual problem of maximizing 6{s,v) over u={ is
equivalent to the following problem:

Maximize z
subject to z = f(x)+u'g(x) + v'h(x) forxe X {6.21)
u=0

Note that the above problem is a linear program in the variables z, u, and v.
Unfortunately, however, the constraints are infinite and are not known exp-
licitly. Suppose that we have the points x,...,x,; in X, and consider the
following problem:

Maximize Z

subject to z = f(x;) +u'g(x;) +v'h(x;) forj=1,..., k-1 (6.22)
uz={
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The above problem is a lincar program with a finite number of constraints and
can be solved by the simplex method. Let (2, uy, vi) be an optimal solution. If
this solution satisfies (6.21), then it is an optimal solution to the Lagrangian
dual problem. To check whether (6.21) is satisfied, consider the following
subproblem:

Minimize f(x)+uigx) + vﬂh(x)
subject to xe X

Let x, be an optimal solution of the above problem, so that 6(u, vk?=
f(x) +uiglx;) +vih(x,). If z, < 0(uy, Vi), then (u,, v,) is an optima! solut1f>n
to the Lagrangian dual problem. Otherwise, for (u, v) = (u,, v;) the inequality
(6.21) is not satisfied for x=x,. Thus, we add the constraint

z = f(x,) +u'g(x,) +v'hix,)

to the constraints in (6.22), and resolve the linear program. Obviously the
current optimal point (2, @y, Vi) contradicts this added constraint. Thus, this
point is cut away and hence the name, cutting plane algorithm.

Summary of the Cutting Plane Method

The cutting plane method is summarized below. It is assumed that f, g, and b
are continuous, and that X is compact, so that the set X(u, v) is not empty for
each (u, v).

Initialization Step Find a point xo€ X such that g(x,) =0 and h(x,) = 0. Let
k=1, and go to the main step.

Main Step 1. Solve the following problem, which is usually referred to as
the master problem.

Maximize z
subject to ZSf(x,-)+u'g(x,-)+v‘h(xi) forj=0,.,.., k1
u=0

Let (z,, u,, ¥i) be an'optimal solution and go to step 2.
2. Solve the following subproblem.
Minimize Flx) +ul g(x) + vih(x)
subject to xe X

Let x, be an optimal point, and let o(uk,vk)r-f(xk)+u;(g(xk)+v§<h(x{<). I.f
z, = 6(u, vi), then stop; (U, vi) is an optimal dual solution. Otherwise, if
z, > 0wy, vi), then replace k by k+1, and repeat step 1. '
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At each iteration, a cut (constraint) is added to the master problem, and
hence the size of the master problem increases monotonically. If the size of the
master problem becomes excessively large, all constraints that are not binding
may be thrown away. Also note that the optimal solutions of the master
problem form a nonincreasing sequence {z,}. Since each z, is an upper bound
on the optimal value of the dual problem, we may stop if z —
maximum, ;- 6(u;, v;)<e, where € is a small positive number.

Interpretation as a Tangential Approximation Technique

The cutting plane algorithm for maximizing the dual function can be inter-

preted as a tangential approximation technique. By definition of 6, we must
have

0(u, v) < f(x)+u'g(x)+ v'h(x) for xe X
Thus, for any fixed xe X, the hyperplane
{(s,v, z):ue E,, ve E, z = f(x)+u'g(x) + v'h(x)}

bounds the function 6 from above.

The master problem at iteration k is equivalent to solving the following
problem.

Maximize 6(u, v)

subject to  u=0

where 6(u, v) = minimum {f(x;)+u'g(x;)+v'h(x;): j=1,..., k—1}. Note that 6
is a piecewise linear function that approximates § by considering only k —1 of
the bounding hyperplanes.

Let the optimal solution to the master problem be (z,u,, v,). Now, the
subproblem is solved yielding 6(uy, v,) and x,. If 2z, > 8(u,, v, ), then the new
constraint z = f(x, ) +u'g(x, ) +v'h(x,) is added to the master problem, giving a
new and tighter piecewise linear approximation to 6. Since 6{(u,,v,)=
fx,) +upg(x,) + vih(x, ), the hyperplane {(z,u, v): z = f(x, ) + u'g(x, )+ v'h(x,)} is
tangential to the graph of 6 at (z,,wu, v,). .

We now present an example of the cutting plane method and the interpreta-
tion given above. '

6.4.4 Example

Minimize (x;—2)*+1x,°
subject to  x;—Zx,—1=0
2x,+3x, =4
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TABLE 6.1 Summary of Computations for Example 6.4.4

Step 1 Solution

Step 2 Solution

lteration Constraint
k Added (z, Ui) X5 6(uy)
1 z=3-3u G, 0) (2,0) 0
2 z= 0+u (47 ry 181: % 337
3 Z"<‘35_2‘_%u (8’8 %2721( Ji%
4 z 51’;‘&""%” (()4, m) 327 16) ”551_1

We let X ={(x, x,): 2x; +3x, =4}, so that the Lagrangian dual function is

given by
6(u) =

minimum {(x; = 2)% + 3%, + u(x, —3x

,—1):2x,+3x, =4} (6.23)

The cutting plane method is initiated with a feasible solution x,= G, H. At
step 1 of the first iteration, we solve the following problem:

Maximize

subject to

4
—3u

&5
g
0

v

2=
u

(@)

=
L
>l
R e o

Figure 6.8 Tangential approximation of 0.
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6.5 Getting the Primat Sciution 207

The optimal solution is (z,, u;) = (3, 0). At step 2, we solve (6.23) for u=u, =
0, yiclding an optimal solution x;=(2,0)" with 6(u;)=0<z,. Hence, more
iterations are needed. The summary of the first four iterations are given in
Table 6.1. '

The approximating function 6 at the end of the fourth iteration is shown in
darkened lines in Figure 6.8. The reader can easily venfy that the Langrangian
dual function for this problem is given by 6(u)= —3u’+u and that the
hyperplanes added at iteration 2 onward are indeed tangential to the graph of 8
at the point (z,, uk). Incidentally, the dual objective function is maximized at
with 6(i7) = {5. Note that the sequence {u,} converges to the optimal point
|

=|
L[||—-4 m|—a

6.5 Getting the Primal Solution

So far, we have studied several properties of the dual function and described
some procedures for solving the dual problem. However, our main concern is
finding an optimal solution to the primal problem.

In this section we develop some theorems that will aid us in finding a
solution to the primal problem, as well as solutions to perturbations of the
primal problem. However, for nonconvex programs, as a result of the possibie
presence of a duality gap, additional work is usually needed to find an optimal
primal solution.

Solutions to Perturbed Primal Problems

During the course of solving the dual problem, the following problem, which is
used to evaluate the function 6 at (u,v), is solved frequently.

Minimize fx)+u'g(x) +vh(x)

subject to xe X
Theorem 6.5.1 below shows that an optimal solution % to the above problem is

also an optimal solution to a problem that is similar to the primal problem, in
which some of the constraints are perturbed.

6.5.1 Theorem

Let (u,v) be a given vector with u=0. Consider the problem to minimize
f(x) +u'g(x)+v'h(x) subject to xe X. Let X be an optimal solution. Then X is an
optimal solution to the foilowing problem, where [={i:u, > 0}.

Minimize f(x)
subject to z(x) =g foriel
hi(x) = (%) fori=1,...,1
xe X
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| Proof

[
|
|

Let xe X be such that hi(x)=h(X) for i=1,...,/, and g(x)=g(X) for iel

Note that
f(x)+u'g(x) +v'h(x) = f(X) +u'g(x) + v'h(x) (6.24)

But since h(x) =h(%), and u'g(x) = ¥;c; g (X) <Y, uig,(X) = u'g(x), from (6.24),
we get

f(x) +u'g(®) = f(x) +u'g(x) = f(%) +u'g(x)

which shows that f(x)= f(k), and the proof is complete.

Corollary

Under the assumptions of the theorem, suppose that g(%)=<0, h(x)=0, and

- u'g(x)=0. Then, X is an optimal solution to the following problem:

Minimize f(x)
subject to g(x)=0 foriel
- h(x)=0 fori=1,...,!
xeX

In particular, X is an optimal solution to the original primal problem, and (u, v)
is an optimal solution to the dual problem.

Proof

Note thét u'g(x) =0 implies that g(X)=0 for i;I, and frorr‘l the th.eorert;nih:
follows that X solves the stated problem. Also, since the feasible region o !
primal problem is contained in that of the ab_oYC problgm, an‘d sxpcetx 1;,h:
feasible solution to the primal problem, then_x is ?n _optxmal solutlohn't(z yv)
primal problem. Furthermore, f(%) = f(X) +u'g(X)+ v'k(X) = 6(u, v) so that (u,
solves the dual problem.

From the above theorem, as the dual function § is §valuated at a ngen}pi)ir]]t
(u, v), we obtain a point X that is an ()pti{nal solutlgn to a probler;x :(;:};
related to the original problem, in which the coxlstx"mms arc<p{,:rt;’1rfc ';(In
h(x)=0 and g(x)=0fori=1,...,m to h(x‘)rh(x) and g‘-(xf).f_g,-(ﬁ). 01;1 z(“ ‘.V)

During the course of solving the dual problem, suppose that for a give :;mt
with u=0, we have xe X(n,v). FurthermoAre., for soxpe >0, lsz;;ptcmtht !
lgX)|=¢ foriel, g(X) =¢ for i¢ I, and Ihigx)ISe fori=1, = oz tik;nal
¢ is sufficiently small, then % is near-feasible. Now suppose X is an op !
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solution to the primal Probiem P. Then, by definition of 0u, v),

f@&)+ _Ztuigf (%) + .Zl vl (R) = f@®)+ ) wg (@) + Y. vy (%) = (%)

= iel i=

since h;(X)=0, g (&) =0, and 4;=0. The above inequality thus implies that

L
M=+ e[ Tu+ 3, o]
iel i=1
Thus, if ¢ is sufficiently small so that eicru+Y!, |v;{] is small enough, then
we have a near-optimal solution. In many practical problems, such a solution is
acceptable.

In the absence of a duality gap, Theorem 6.5.2 below shows that the
complementary slackness condition is necessary for optimality.

6.5.2 Theorem

Suppose that X and (&,¥) are optimal solutions of the primal and dual
problems, respectively, and suppose that f(X)= 6(&i, ¥). Then G'g(X)=0 and
Xe X(u,v); that is, & solves the problem to minimize f&)+'g(x) + v'h(x)
subject to xe X.

Proof
Note, by definition of 6(a, v), that

f®)+8'g(X) + ¥'h(x) = inf {f{(x)+@'g(x)+¥'h(x):xe X}
=08, %)= ()
Thus, 8'g(%)+V'h(X)=0, and since h(%)=0, then @'g(X) = 0. Since §=0 and
gX)=0,u'g(x)=0. Thus, from (6.25), it follows that Xe X(&, v), and the proof
is complete.
It may be noted that in the absence of a duality gap, the above theorem also
shows that there exists an optimal solution to the primal problem among points
in the set X(ii, ¥), where (@, ¥) is an optimal solution to the dual problem.

(6.25)

Generating Primal Feasible Soiutions in the Convex Cass

Under suitable convexity assumptions, we could casily obtain primal feasible
solutions at cach iteration of the dual problem by solving a lincar program. In
particular, suppose that we are given a point x, which is feasible to the original
problem, and let the points x; € X(u, v;)for j=1,... k be generated. This is
done during the process of maximizing the dual function by using any of the
algorithms discussed in Section 6.4. Theorem 6.5.3 below shows that a feasible
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solution to the pnmal problem could be obtained by solving the following
linear programming problem P

Problem P': Minimize Z Aif (x;)
. =

&
subject to Z Agx;)=0
j=0

6.5.3 Theorem

Let X be a nonempty convex set in E,, let f: E,—E, and g:E,—E, be
convex, and let h: E,— E, be affine; that is, h is of the form h(x)= Ax—b.
Let x, be an initial feasible solution to Problem P, and suppose that x;e
X(u;,v;) for j=1,..., k are generated by any of the algorithms for solving the
dual problcm Furthermore let /\ for j=0,..., k be an optimal solution to
Problem P', and let %, = )_,, 0 A Then X, is a feasxble solution to the primal
Problem P. Furthermore, if zk—()(u v)=g¢ for some (u,v) with u=0, then
f&)=vy+e where z, =31, )\,f(x ), and «y = inf {f(x):x € X, g(x) <0, h(x) = 0}.

Proof

Since X is convex and x; € X for each j, then %, € X. Since g is convex and h is
affine, and noting the constraints of Problem P’, g(X,)=90 and h(x,)=0. Thus,
X, is a feasible solution to the primal problem. Now suppose that z, — 6(u, v) =<
¢ for some (u, v) with u= 0. Noting the convexity of f and Theorem 6.2.1, we
get

&)= Y Kf() =z =0, v) +s<y+e

and the proof is complete.

At each iteration of the dual maximization problem, we thus can obtain a
primal feasible solution by solving the lincar programming problem P'. Even
though the primal objective values {f(X,)} of the generated primal feasible
points are not necessarily decreasing, they form a sequence that is bounded
from above by the nonincreasing sequence {z,}.

Note that if z, is close enough to the dual objective value evaluated at any
dual feasible point (u, v), where u =0, then %, is a near-optimal primal feasible
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solution. Also note that we need not solve problem P' in the case of the cutting
plane algorithm, since it is precisely the linear programming dual of the master
problem stated in step 1 of the cutting plane algorithm. Thus the optimal
variables AU, ..., A, could be retrieved easil y from the solution to the master
problem and X, computcd as Z,=0 A, - It is also worth mentioning that the
termination criterion z, =6(w,, v,) in the cutting plane algorithm could be
interpreted as letting (u, v) = (u,, v,) and ¢ =0 in the above theorem.

To illustrate the above procedure, consider Example 6.4.4. At the end of
iteration k=1, we have the points x,=(5/4, 1/2)" and x,=(2,0)". The as-
sociated primal point X; could be obtained by solving the following linear
programming problem

Minimize 3o

subject to  —3Ao+ A, =0
Aot A =1
Aoy, A1 =0

The optimal solution to this problem is given by A,=2/5 and X, =3/5. This
yields a primal feasible solution

x=3G,2)'+3(2,0) = (i, )"

As pointed out earlier, the above linear program need not be solved
separately to find the values of A, and A, since its dual has already been solved
during the course of the cutting plane algorithm.

6.6 Linear and Quadratic Programs

In this section we discuss some special cases of Lagrangian duality. In particu-
lar, we briefly discuss duality in linear and quadratic programming.

Linear Programming
Consider the following primal linear program:
Minimize c'x
subject to  Ax=Db
X=

Letting X ={x:x=0}, the Lagrangian dual 6f this problem is to maximize
0(v), where

0(v) =inf {¢'x+v'(b— Ax): x=0} =v'b+inf {(¢' -~ v'A)x:x =0}
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Clearly,

‘ v'b if (¢'—v'A)=0
0(v) = .
—00 otherwise

Hence, the dual problem can be stated as follows:
Maximize v'b
subject to Alv=c

Thus, in the case of linear programs, the dual problem does not involve the
primal variables. Furthermore, the dual problem itself is a linear program, and
the reader could verify that the dual of the dual problem is the original primal
program. Theorem 6.6.1 below summarizes the relationships between the
primal and dual problems.

6.6.1 Theorem

Consider the primal and dual linear problems stated above. One of the
following mutually exclusive cases will occur.

1. The primal problem admits a feasible solution and has an unbounded
optimum objective value, in which case the dual problem is infeasible.

2. The dual problem admits a feasible solution and has an unbounded
optimum objective value, in which case the primal problem is infeasible.

3. Both problems admit feasible solutions, in which case both problems have
optimal solutions ¥ and ¥ such that ¢'¥=¥'b and (¢'-V'A)x=0.

4. Both problems are infeasible.

Procf

Let x and v be such that Ax=b, x=0, and A'v=c. Then, vb=v'Ax=c'x.
Therefore

inf {¢'x: Ax=b,x=0}=sup {v'b: A'v=c} (6.26)

If the primal problem has an unbounded objective value, then from (6.26) the
dual problem is infeasible. Similarly, from (6.26), if the dual problem has an
unbounded objective value, then the primal is infeasible. Now suppose that
both problems admit feasible solutions. Again from (6.26), inf {¢'x: Ax=Db, x=
0} is finite, and hence the primal problem must have an optimai solution, say .
From the Kuhn-Tucker conditions, there must exist a vector Ve E,, such that

c—A=0 (6.27)
(¢' =¥ A)E=0 (6.28)
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From (6.27), we see that v is a feasible solution to the dual problem.
Furthermore, from (6.28), we have

¢X=V'AX=¥'D

In view of (6.26), then, V is an optimal solution to the dual problem. The last
possible case is for both problems to be infeasible, and the proof is complete.

We now show how the optimal dual variables can be obtained if the simplex
method is used for solving the primal problem. Let the optimal basic solution
be k' = (x4, X4), where Xy =0 and X3 =B~'b. The matrix A and vector ¢ are
also partitioned to give A =[B,N] and ¢’ = (¢}, ci).

The Kuhn-Tucker condition (6.28) can be written as (¢;—V'B)Xg+
(ch—V'N)xy = 0. Since X5 =0, this condition is satisfied by letting ¢, —¥'B=0
or .
V' =cL,B! ' (6.29)

The Kuhn-Tucker condition (6.27) can be written as ¢gz—¥B=0 and
cny—VN=0. Letting ¥ =c¢;B™', the first inequality is satisfied, and the latter
becomes

ezB 'N-ch=0
which is precisely the optimality condition for the simplex method.

Recall that at each iteration of the simplex method, row 0 displays the vector
c;B 'A—c¢'. Suppose that the matrix A contains an identity submatrix, and
suppose that the cost coeflicients of the corresponding variables are given by
the vector ¢, Then from (6.29), &=cEzB ' —¢{=¥'—¢} is given in row 0 in
the updated tableau under the original identity matrix. Adding ¢ to &} in the
final tableau yields the optimal values of the dual variables.

Quadratic Programming

Consider the following quadratic programming problem:
Minimize Ix'Hx+d'x
subject to Ax=b
where H is symmetric and positive definite, so that the objective function is

strictly convex. The Lagrangian dual problem is to maximize 8{e) over u=0,
where '

O(u) = inf {ix'Hx+d's +u'(Ax—b):xc E, } (6.30)

Note that for a given w, the function 3x'Hx+d'x+u‘(Ax—b) is strictly convex
and achieves its minimum at a point satisfying

Hx+A'u+d=9 (6.31)
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Thus ihe dual probiem could be written as follows:

Maximize x'Hx+d'x+u'(Ax—b)
subject to Hxt+A'w =-d
u=0

We now develop an alternative form of the Lagrangian dual problem. Since
H is positive definite, then H™' exists, and the unique solution to (6.31) is given
by

x=-H(d+A")
Substituting in (6.30), it follows that
6(u)=1u'Du+u‘c—1d'H 'd

- where D=—-AH'A’, and ¢=-b—-AH'd. The dual problem is thus given

by:
Maximize lu'Du+u‘c—3id'H'd
subject to u=z0
The dual problem can be solved relatively easily by the following scheme.
Given u, let Vo(u)=Du+c=g. Consider g as defined below:
A_{gi if ;>0 or g =0
&0  ifw=0 and g<0
By Theorem 6.4.1, if §=0, then u is an optimal solution. Otherwise g is an
improving feasible direction. Optimizing 6 starting from wu along the direction g
without violating the nonnegativity restriction leads to a new point. The
prcceess is then repeated.

’ 6.3 Consider the problem to minimize e

Exercises

6.1 Consider the problem to minimize x, subject to x>+ x,* = 1. Derive cxplicitly the
dual function, and verify its concavity. Find the optimal solutions to both the
primal and dual problems, and compare their objective values.

6.2 Consider the following problem:

Maximize 2%+ 3x,+ x5

subject to 6t xSl
X+ x5 =4

X352

X1, X2 X3=0

a. Find explicitly the dual function, where X ={(x, X, X3):x;+X,—x3=1;
FysXas X3 = 0%

b. Repeat part a for X ={(x,, x5, X3): x; + X, =4; X1, X5, X3 = 0}

c. In parts a and b, note that the difficulty in evaluating the dual function at a
given point depends on which constraints are handled via the set X. Propose
some general guidelines that could be used in selecting the set X to make the
solution easier.

~ subject to —x =0.

a. Solve the above primal problem.

b. Letting X = E,, find the explicit form of the Lagrangian dual function, and

" solve the dual problem.

/ 6.4 Consider the primal problem P discussed in Section 6.1. Introducing the slack

~ vector s, the problem can be formulated as follows:

Minimize f(x)

subject to g(x)+s=0
h(x) =
(x,8)e X'

where X'={(x,s):x€ X,s=0}. Formulate the dual of the above problem and
show that it is equivalent to the dual problem discussed in Section 6.1.

6.5 In the proof of Lemma 6.2.3, show that the set A is convex.

6.6 Under the assumptions of Theorem 6.2.5, suppose that X is an optimal solution to
the primal problem, and that f and g are differentiable at X. Show that there
exists a vecior (8, V) such that

[Vf(i)+_i 7,V (%) + Z Vh(x)}

X)=0 for cach xe X

ug(x)=0 fori=1,...,m
=0

=1}

Show that these conditions reduce to the Kuhn-Tucker conditions if X is open.
6.7 Prove the following saddle point optimality condition. Let X be a nonempty

convex set in E,, and let f:E,—E,, g: E,— E,, be convex, and h:E,—E, be

affine. If ¥ is an optimal solution to the problem to minimize f(x) subject to
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6.8

(6.9

6.10

6.11

g(x) =0, h{x)=0, xe X, then there exist (a,, i, ¥) # 8, (i, @) = 0 such that:

b (i, u, v, X) =< $(dy, 0, V, X) = $ (i, 4, V, X)

“for all u=0, ve E, and xe X, where ¢(uy, v, v, x) = u,f(x) +u'g(x) + v'h(x).

Consider the problem to minimize f(x) subject to g(x) =0, xe X. Theorem 6.2.4
shows that the primal and dual objective values are equal at optimality under the
assumptions that f, g, and X arc convex and the constraint qualification that
g(%) <0 for some ke X. Suppose that the convexity assumptions on f and g are
replaced by continuity of f and g and that X is assumed to be convex and compact.
Does the result of the theorem hold? Prove or give a counterexample.
Consider the following problem:

Minimize ~2x,+2%,+ X3—3X,
subject to X+ X+ x3+ x,<8
X1 —2x3+4x,=<2
Xyt X3 =8
X3+2x,<6

X1, Xp, X3, X3=0

Let X ={(xy, X2, X3, X4): X, + X, < 8, X3+ 2%, = 6; Xy, X2, X3, Xs = 0}.

a. Find the function @ explicitly.

b. Verify that 6 is differentiable at (4, 0), and find V6(4, 0).

c. Verify that V8(4, 0) is an infeasible direction, and find an improving feasible
direction.

d. Starting from (4, 0) maximize @ in the direction obtained in part c.

Consider the problem to minimize x,°+x,” subject to x;+x,~4=<0, and x,,

xZZO.

a. Verify that the optimal solution is X = (2, 2)" with f(X)=

b. Letting X = {(x, x,): x, =0, x, =0}, write the Lagrangian dual problem. Show
that the dual function is 6(u)=—u?*/2—4u. Verify that there is no duality gap
for this problem.

c. Solve the dual problem by the cutting plane algorithm of Section 6.4. Start
with x=(1, 1)".

d. Show that @ is differentiable everywhere, and solve the problem using the
gradient met hod of Section 6.4.

Consider the following problem:

Minimize XiF X

2x,+ x,=8

3%, +2%,=<10

Xy, X2=0

subject to

X;, X, Integers

Let X ={{x;, x5):3x,+2x,= 10, x;, x,=0 and integer}. At u=2, is 9 differenti-
able? If not characterize its ascent directions.

" 6.12

6,13

¢ 6.14

6.15
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Consider the following problch’;.
Minimize (x,=3)*+(x,—5)

subject to x2—x%,=0
-X =1

X +2x,=<10
X, X=0

a. Find the optimal solution geometrically, and verify it by using the Kuhn-
Tucker conditions.

b. Formulate the dual problem in which X = {(x,, x;) :x, +2x,=10; x,, x,= 0}.

c. Perform three iterations of the gradient maximization technique described in
Section 6.4, starting with (u,, u;) = (0, 0). Describe the perturbed optimization
problems corresponding to the generated primal infeasible points.

In reference to Exercise 6.12 above, perform three iterations of the cutting piane

algorithm and compare the results with those obtained by gradient maximization.

Also identify the primal feasible solutions generated by the algorithin.

Consider the following problem.

Maximize 3%, +6x,+2x3+4x,
subject to Xi+ X+ x3+ x,=<12
—Xi+ X +2x, =4
X+ X, =12
X, =4
X3+ xX4=6

X, Xz, X3, X4=0

a. Formulate the dual problem in which X = {(x,, x,
X3+ X,=6;x,, X5, X3, X, =0}

b. Starting from the point (0, 0), solve the Lagrangian dual problem by optimiz-
ing along the direction of steepest ascent discussed in Section 6.4.

c. At optimality of the dual, find the optimal primal solution.

Consider the problem to minimize x subject to g(x)=0 and xe X ={x:x=0}.

Derive the cxplicit forms of the Lagrangian dual function, and determine the

collection of subgradients at u =0 for each of the following cases.

y Xy X)X+ x, =12, x4,

) -1/x for x#0
a. gx)=
B 0 for x=10
1/x for x# 0
b. g(x)=
¢ { 1 forx=0
) 1/x for x+0
c. g(x)=
& 1 for x=10
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- 6.16 Suppose that §:E,, — E, is concave.
|

617

6.18

6.19

a. Show that @ achieves its maximum at @ if and only if
maximum {6'(#; d):|d]|=1}=0

b. Show that 6 achieves its maximum over the region U = {u:u=0} at @ if and
only if

maximum {0'(i;d):de D, |[d|=1}=0

where D is the cone of feasible directions of U at u.

(Note that the above results could be used as stopping criteria for maximizing
the Lagrangian dual {unction.)

Consider the following problem, in which X is a compact polyhedral set and f is a
concave function.

Minimize f(x)
subject to Ax=b
xe X

a. Formulate the Lagrangian dual problem.

b. Show that the dual function is concave and piecewise linear.

c. Characterize the subgradients, the ascent directions, and the steepest ascent
direction for the dual function.

d. Generalize the result in part b to the case where X is not compact.

Construct a numerical problem in which a subgradient of the dual function is not

an ascent direction. Is it possible that the collection of subgradients and the cone

of ascent directions are disjoint?

(Hint: Consider the shortest subgradient.)

In Section 6.3 we showed that the shortest subgradient § of 6 at @ is the steepest

ascent direction. The following modification of § is proposed to maintain

feasibility:

%

~ {maximum (0, &) if i, =0
&= ip -

& if 4, =0
Is £ an ascent direction? Is it the direction of steepest ascent with the added
nonnegativity restriction? Prove or give a counterexample.
Consider the following problem, in which X is a compact polyhedral set.
Minimize ¢'x
subject to Ax=b

xeX .

For a given vector v, suppose that x,,...,%, are the extreme points in X that
belong to X(v). Show that the extreme points of d6{v) are contained in the sct
A={Ax, ~b:j=1,..., k}. Give an examplc where the extreme points of 39(v)
form a proper subsct of A.

6.21

6.22

1 623

6.24
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Suppose that the shortest subgradient £ of 0 at (@, V) is not equal to zero. Show
that there exists an & >0 such that £ — &< e implies that £ is an ascent direction
of 6 at (&, V).

(From the above exercise, if an iterative procedure is used to find E, then it would
find an ascent direction after a sufficient number of iterations.)

Consider the primal and Lagrangian dual problems discussed in Section 6.1. Let
(@, ¥v) be an optimal solution to the dual problem. Given (u,v), suppose that
%€ X(u,v). Show that there exists a § > 0 such that (&, ¥) — (@, v) — Alg(x), k(%)]| is
2 nonincreasing function of A over the interval [0, &]. Interpret the result
geometrically, and illustrate by the foliowing problem, in which (u;, uy=(3,1)
are the dual variables corresponding to the first two constraints.

.

Minimize ~2%; —2%5~5%5
subject to X1+ x4+ x3=10
Xy +2x;;26

Xy, Xz, X3=3
Xy, X2 X3=0

From Exercise 6.22 above, it is clear that moving a small step in the direction of
any subgradient leads us closer to an optimal dual scluticn. Consider the
following algorithm for maximizing the dual of the problem to minimize f(x)
subject to h(x) =0, xe X.

Main Step
Given v, let x, € X(v,). Let vy, =v,+Ah{x,), where A >0 is a small scalar.
Replace k by k+1 and repeat the main step.

a. Discuss some possible ways of choosing a suitable step size A. Do you see any
advantages in reducing the step size during later iterations? If so, propose a
scheme for doing that. ' ' '

b. Does the dual function necessarily increase from one iteration to another?
Discuss.

¢. Devise a suitable termination criterion.

d. Apply the above algorithm, starting from v=(1,2)" to solve the following
problem:

Minimize X2+ %2+ 2%,

subject to X+ Xt x3=6

—x;+ X+ x;=4

(This procedure is referred to as a subgradient optimization technique.)

Consider the problem to minimize f(x) subject to g{x) =&, xe X.

a. In Exercise 6.23 above, a subgradient optimization technigue was discussed
for the equality case. Modify the procedure for the above inequality con-
strained probicm.

Hint: Given wu, let xe X(u). Replace g(x) by maximum [0, g(x)] for each i
with u; = 0. ’
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b. Ilustrate the procedure given in part a by solving the problem in Exercise
6.14 starting from w= (0, 0)".

c. Extend the subgradient optimization technique to handle both equality and
inequality constraints.

Consider the following warehouse location problem. We are given destinations

1,..., k, where the known demand for a certain product at destination j is d,.

We are also given m possible sites for building warehouses. If we decide to build

a warchouse at site i, its capacity has to be k; and incurs a fixed cost f;. The unit

shipping cost from warehouse i to destination j is ¢;. The problem is to determine

how many warehouses to build, where to locate them, and what shipping patterns

to use so that the demand is satisfied and the total cost is minimized.

The problem can be stated mathematically as follows:

) Z Ciij T ’Zf:)’.-

Minimize
i=1j=1 i=1
k
subject to ZJ:,—,»Sk,-yi fori=1,...,m
i=1
Zx,»,-Zd,- forj=1,...,k
i=1
x;=0 fori=1;...omij=lu.us k
yi=0orl fori=1,...,m

a. Formulate a suitable Lagrangian dual problem. )

b. Make use of the results of this chapter to devise a special scheme for
maximizing the dual of the warehouse location problem.

c. Illustrate by a small numerical example.

A company wants to plan its production rate of a certain item over the planning

period [0, T] such that the sum of its production and inventory costs is

minimized. In addition, the known demand must be met, the production rate

must fall in the acceptable interval [I, u], the inventory must not exceed d, and it

must be at least equal to b at the end of the planning period. The problem can be

formulated as follows:

.
Minimize f [eix(8)+coy*(1)] dt
] )

subject to x(t) = xy+ JX [y(r)=z(7)] dr for te[0, T}

x(T)=b
0=x()=d for te(0, T)
I=y()=u for te (0, T)

where x(2) = inventory at time ¢
y{t) = production rate at time ¢
z(1)=known demand rate at time ¢
X, = known initial inventory
¢y, C; = known coefficients

6.26

6.27

6.28

X 6.29

6.30
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a. Make the above control problem discrete, as done in Section 1.2, and
formulate a suitable Lagrangian dual problem.

b. Make use of the resuits of this chapter to develop a scheme of solving the
primal and dual problems.

c. Apply your algorithm to the following data:
T=6,x=0,b=4,¢=1,¢=2,1=2, u=5d=6, and z(t)=4 over [0,4]
and z(t) =3 over (4, 6].

Consider the primal and dual linear programming problems discussed in Section

6.6. Show directly that:

a. If the primal is inconsistent and the dual admits a feasible solution, then the
dual has an unbounded optimal objective value.

b. If the dual is inconsistent and the primal admits a feasible solution, then the
primal has an unbounded optimal objective value.

(Hint: Use Farkas’ theorem.)

Consider the linear program to minimize ¢'x subject to Ax=b, x=0. Write the

dual problem. Show that the dual of the dual problem is equivalent to the primal

problem.

Consider the following problem:

Minimize —X1=2X,~ X3

subject to X+ 22+ x;3=<16
X;— X,+3x3<12
X+ X =4

X;, Xz, X3=0

Solve the primal problem by the simplex method. At each iteration identify the
dual variables from the simplex tableau. Show that the dual variables satisfy the
complementary slackness conditions but violate the dual constraints. Verify that
dual feasibility is reached at termination.
Consider the following quadratic programming problem:
Minimize 2%+ X2 =2x%,—4x,— 6%,
subject to X+ x,=<8

-x:+ 2x,=10

X1, X2 - 0
Solve the Lagrangian dual problem by the method of Section 6.6. At each
iteration, identify the corresponding primal infeasible point as well as the primal
feasible point. Develop a suitable measure of infeasibility and check its progress.
Can you draw any gencral conclusions?
Consider the problem to find
minimum maximum ¢ (x, y) and maximum minimum ¢$(x, y)
xe X xeY yeY x=X

where X and Y are nonempty compact convex sets in E, and E,,, respectively,
and ¢ is convex in x for any given y, and concave in y for any given x.
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6.31

6.32

a. Show that minimum maximum ¢(x, y) = maximum minimum ¢(x,y) without
xe X yeY yeY xe: X

any convexity assumptions.

b. Show that maximum ¢(.,y) is a convex function in x and that minimum ¢(x,.)
yeY ® xe X
is a concave function in y.

¢. Show that -

minimum maximum ¢(x, y) = ma¥imum minimum ¢(x, y)
xeX yevY yeyY xcX
(Hint: Use part b and the necessary optimality conditions of Section 3.4.)
Let X and Y be nonempty sets in E,, and let f, g:E,— E,. Consider the
conjugate functions f* and g* defined as follows:

X)) =inf {f(x) —u'x:xe X}
g*()=sup {g(x)-u'x:xe Y}

a. Interpret f* and g*geometrically.

b. Show that f* is concave over X* and g* is convex over Y*, where X*=
{a:f*()> -~} and Y*={u:g*(m) <=}

c. Prove the following conjugate weak duality theorem:

inf{f(x)— g(x):xe XN Y}=sup {f*(u)— g*(m):ue X*N Y*}.

d. Now suppose that f is convex, g is concave, int XNint Y# &, and that
inf {f(x)— g(x):x€ XN Y} is finite. Show that equality in part ¢ above holds
true and that sup {f*(u)— g*(u):we X*N Y*} is achieved.

e. By suitable choices of f, g, X, and Y, formulate a nonlinear programming
problem as follows:

Minimize f(x)—g(x)
subject to xeXNY

What is the form of the conjugate dual problem? Devise some strategies for
solving the dual problem.

Consider a single constrained problem to minimize f(x) subject to g(x)=0 and

x€ X, where X is a compact set. The Lagrangian dual problem is to maximize

6(u) subject to u=0, where 6(u)=inf {/(x)+ ug(x): xe X}

a. Let 2=0, and let %e X(4). Show that if g(%)>0 then @ >#, and if g(%)<0
then @ <a, where @ is an optimal solution to the Lagrangian dual.

b. Use the result of part a to find an interval [a, b] that contains all the optimal
solutions to the dual problem or else concludes that the dual problem is
unbounded.

c. Now consider the problem to maximize 6(u) subject to @ =u=b. The follow-
ing scheme is used to solve the problem.

Let a=(a+b)/2, and let Xe X (). If g(X)>0 then replace a by &, and
repeat the process. If g(x) <0, replace b by , and repeat the process.
If g(%)=0, stop; & is an optimal dual solution.

Exercises €23

Show that the procedure converges to an optimai solution, and illustrate by
solving the dual of the following problem.

Minimize X7+ x,°

subject to =Xi— X+1=0

. An alternative approach to solving the problem to maximize 6(u) subject to

a=u=b is to specialize the tangential approximation method discussed in
Section 6.4. Show that at cach iteration only two supporting hyperplanes need
be considered, and that the method could be stated as follows.
Let x, € X(a) and x, € X(b). Let = (f(x,)— fx,))/{g(x,)— g(x,)). 1f
u=a or &=b, stop; # is an optimal solution to the dual problem.
Otherwise, let Xe X(ir). If g(%)>0, replace « by &, and repeat the
process. If g(x) <0, replace b by @, and repeat the process. If g(%) =0,
stop; #@ is an optimal dual solution.
Show that the procedure converges to an optimal solution, and iilustrate by
solving the problem in part (c).
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The powerful results of duality in lincar programming and the saddle point
optimality criteria for convex programming sparked a great deal of interest in

- duality in nonlinear programming. Early results in this area include the work of

Dorn [1960], Hanson [1961], Mangasarian [1962], Stoér [1963], and
Wolfe [1961].

More recently, several duality formulations that enjoy many of the proper-
ties of linear dual programs have evolved. These include the Lagrangian dual
problem, the conjugate dual problem, and the surrogate dual problem. In this
chapter we concentrated on the Lagrangian dual formulation because, in our
judgment, it is the most promising formulation from a computational stand-
point and also because the results of this chapter give the general flavor of the
results that one would obtain using other duality formulations. Those in-
terested in studying the subject of conjugate duality may refer to Fenchel
[1949], Rockafellar [1964, 1966, 1968, 1969, 1970], and Whinston [1967]. For
the subject of surrogate duality, where the constraints are grouped into a single
constraint by the use of Lagrangian multipliers, refer to Greenberg and
Pierskalla [1970b]. Several authors have developed duality formulations that
retain the symmetry between the primal and dual problems. The works of
Dantzig, Eisenberg, and Cottle [1965], Mangasarian and Ponstein [1965], and
Stoér [1963] are in this class.

The reader will find the work of Geoffrion [1971b] and Karamardian [1967]
as excellent references on various duality formulations and their interrelation-
ships. See Everett [1963], Falk [1967, 1969], and Lasdon [1968] for further
study on duality. The relationship between the Lagrangian duality formulation
and other duality formulations is examined in Bazaraa, Goode, and Shetty
[1971], Magnanti [1974], and Whinston [1967]. The economic interpretation
of duality is covered by Balinski and Baumol [1968], Beckman and Kapur
[1972], Peterson [1970], and Williams [1970].

In Sections 6.1 and 6.2, the dual problem is presented, and some of its
properties are developed. As a by-product of the main duality theorem, we
develop the saddle point optimality criteria for convex programs. These criteria
were first developed by Kuhn and Tucker [1951]. For the related concept of
min-max duality, see Mangasarian and Ponstein [1965], Ponstein [1965],
Rockafellar [1968], and Stoér [1963].

In Section 6.3, we examine several properties of the dual function. We
characterize the collection of subgradients at any given point, and use that to
determine both ascent directions and the steepest ascent direction. We show
that the steepest ascent direction is the shortest subgradient. This result is
essentially given by Demyanov [1968]. In Section 6.4, we use these properties
to develop several schemes for maximizing the dual function. In particular, we

 describe the gradient method and a decomposition method for generating

ascent directions. For further study of this subject see Demyanov [1968, 1971],
Fisher, Northrup and Shapiro [1975], and Lasdon [1970]. There are other
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procedures for solving the dual problem. One cutting plane method discussed in
Section 6.4 is a row generation procedure. In its dual form, it is precisely the
column generation generalized programming method of Wolfe, see Dantzig
[1963]. Another procedure is the subgradient optimization which is briefiy
introduced in Exercises 6.22, 6.23, and 6.24. See Held, Wolfe, and Crowder
[1974] and Polyak [1967] for validation of subgradient optimizaticn. For other
related work, see Bazaraa and Goode [1977], Fisher, Northrup, and Shapiro
[1975], and Held and Karp [1970].

One of the pioneering works for using the Lagrangian formulation to
develop computational schemes is credited to Everett [1963]. Under certain
conditions, he showed how the primal solution could be retrieved. The resuit
and its extensions are given in Section 6.5.



