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In this chaptcr wc dcvclop thc Kuhn -Tuckcr conditions for problcrns with
incquality constraints and problems with both equality and inequality con-
straints. This is done directly by imposing a suitable constraint qualification, as
opposcd to first developing the Fritz JOÍln conditions and then the Kuhn-
Tucker conditions.

The Kuhn- Tucker optimality conditions were originally developed by impos-
ing the constraint qualifieation that for every direetion vector d in the cone G',
there is a fcasible are that points along d. Sinec then, many authors have
developed the Kuhn- Tuckcr conditions under different constraint qualifica-
tions. For a thorough study of this subject rcfer to the works of Abadic [1967b],
Arrcw.Hurwicz, and Uzawa [1961], Canon, Cullum, and Polak [1966], Cottle
[1963a], Evans [1970], Evans and Gould [1970], Guignard [1969J, Mangasarian
[1969aJ, Mangasarian and Fromovitz [1967], and Zangwill [1969J. For a com-
parison and further study of thcse constraint qualifications, see the survey
articles of Bazaraa, Goode, and Shetty [1972J, Gould and Tolle [1972J, and
Peterson [J 973].

Gould and Tolle [1971] showed that the constraint qualification of Guignard
[1969] is the weakest possible in the sense that it is both necessary and
sufficient for thc validation of the Kuhn- Tucker conditions.
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Lagrangian Duality and
Saddle Point Optirnalitv
Conditions

Given a nonlinear programming problern, there is another nonlinear prograrn-
ming problem cJosely associated with it. The former is cal!ed the prim al
problem, and the latter is ealled the Lagrangian dual problem. Under certain
eonvexity assurnptions, the primal and dual problems have equal optimal
objective values, and hence it is possible to solve the primal problem indirectly
by solving the dual problem.

Severa I properties of the dual problem are dcvelopcd in this chaptcr. They
are used to provide general solution strategies ior solving lhe prirnal and dual
problems. As a by-product of onc of thc duality thcorerns, we obtain saddle
point necessary optimality conditions without any difíercntiability assumptions.

The folIowing is an outline of the chapter.

SECTION 6.1: The Lagrangian Dual Problem We introduce the Lagrangian
dual problem, give its geometric interpretation, and iJlustrate it by severa!
numerieal examples.

SECTION 6.2: DuaHty Theorems and Saddle-Point Optimality V/c prove
the wcak and strong duality thcorcrns. Thc latter shows that the primal and
dual objectivcs are equal under suitable convcxity assumptions.

SECT!ON 6.3: Properties 01 lhe Dual Function We study several important
properties of the duaJ Iunction, sueh as, concavity, difíerentiability, and sub-
differentiability. We then give necessary and sufficient characterizations of
ascent and steepest ascent directions.
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SECTION 6.4: Solving the Dual Problern Severa I procedurcs for solving the
dual problem are discusscd. In particular, we discuss the gradient mcthod, the
asccnt procedure, and the cutting plane algorithm.

SECTION 6.5: Getting thc Primal Solution We show that the points gcner-
ated during the course of solving thc dual problern yield optirnal solutions to
perturbations of the primal problem. For convex prograrns, we show how to
obtain primal feasible solutions that are near-optimal.

SECTION 6.6: Linear and Quadratic Programs We give the Lagrangian dual
formulation for linear and quadratic programming.

incquality constraint gi(X):5 O is nonncgative, whereas the multiplier Vi as-
sociatcd with the equality eonstraint hi(x) = O is unrestrictcd in signo

Since the dual problcrn consists oí maximizing the infimurn (grearest lower
bound) of the funetion f(x) + 2::;'~I Uigi(X) + 2:::~I Vihi(X), it is sornctimes referred
to as the max-min dual problem.

The primal and Lagrangian dual problcms could be written in the following
form using vector notation, where f: E; -)- El> g : E,,"""" Em is a vector function
whose ith component is gi' and h: E" -)- E[ is a vector function whose ith
cornponent is h; For the sake of eonvenienee, we will use this fonn throughout
the rernainder of this chapter.

Primal Problem P
6.1 The lagrangian Dual Problem

Minirnize f(x)
g(x):5 O
h(x) = O

XEX

Consider the foIlowing nonlinear programming problern P, whieh is caIled the
primal problem.

subject to

Primal Problem P

Minimize

subject to

f(x)
gi(X) :5 O
hi(~í) = O

XEX

fori=l, ,m

for i= 1, , I

Lagrangian Dual Problem D

Several problerns, closely related to the above prirnal problern, have been
proposed in the literature and are called dual problems. Among the various
duality formulations, the Lagrangian duality formulation has perhaps attracted
the most attention. lt has led to severa! algorithms for solving large-scale linear
probiems, as well as convex and nonconvex nonlinear problerns. More recently,
it has proved useful in discrete optirnization where ali or some of the variable-
are further restrieted to be integers. The Lagrangian dual problem D is
presented below.

Maxirnize 8(u, v)
subject to u 2: O

where 8(u, v) = inf {f(x) + u'g(x) + v'h(x): x E X}.

Given a nonlinear programming problern, several Lagrangian dual problerns
ean be devised, depending on which constraints are handlcd as g(x):5 O and
h(x) = O and which constraints are treated by the sct X. Thc choice would affect
the cffort expe nded in evaluating anel updating the dual function O during the
course of solving the dual problern. Hence, an appropiate selection of the set X
would depend on the structure of thc problem.

Lagrangian Oual Problem O

Maximize e(u, v)
subje ct to u 2: O

wherc O(u, v) == inf (f(x) + L:'~~1U,gi(X) + 2:::=1 V,ll, (x) :XE X}

Note that the Lagrangian âual [unction e may assume the value of -00 for
some vector (u, v). In the expression for e(u, v), the constraints gi(X):5 O anel
hi(x) = O have becn incorporatcd in the objcctive function using the Lagrangian
multipliers ui anel Vi' Also note that the multipliér ui associated with thc

Geometric Interpretation of the Dual Problem

We now briefly discuss the gcornetric interpretation of the dual problcrn. For
the sake of simplicity, we will consider only one incquality constraint anel
assume that no equalityconstraints exist. Thcn, lhe prima! problem is to
minimize f(x.) subject to x E X and g(x):5 O.

111 the (z ,, Z2) plane, lhe sct {(ZI> Z2): z,:= g(x), Z2 =Iex) for SOITle XE X} is
denoted by G in Figure 6.1. Then, G is the image of X under the (g, f) map.
The primal problem asks us to find a point in G to the left of the Z2 axis with
minimurn ordinatc. Obviously, this point is (i:, Z2) in Figure 6.1.

Now suppose that u:::: O is given. To determine 8(u), wc nccd to minimize
f(x) + ug(x) over ali x E X. Letting Z I = g(x) and Z2 = f(x) for x E:: X, w(; want to
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Figure 6.1 Geometric interpretation of Lagrangian duality.

minimize Z2+UZj over points in G. Note that Z2+uzl=a is ao equatiori of a
straight linc with slope -u and intereept a on the Z2 axis. ln order to minimize
Z2 + UZ I over G, we need to move the line Z2 + UZ I = a parallel to itself as far
down as possible so that it supports G. ln other words, the set G is above the
line and touches it. Then the intercept on thc Z2 axis gives 8(u), as seen in
Figure 6.1. The dual problem is therefore equivalent to finding the slope of the
supporting hyperplane such that its intercept on the Z2 axis is maximal. In
Figure 6.1, sueh a hyperplane has slope - u and supports the set G at the point
(ij, Z2). Thus the optimal dual solution is U, and the optimal dual objeetive
value is Z2· Furthermore, the optimal prima I and dual objeetives are equal.

6.1.1 Example
Consider the following primal problcm:

Minimize

subject to

X12+ x/
-xj-x2+4::s0

XI' X2?0

Note that the optimal solution occurs at the point (x,, x2) = (2, 2), whose
objective is equal to 8.

Letting g(x) = - XI - X2 + 4 and X = {(XI> X2): XI' X2? O}, the dual function is
given by

(J ( u) = inf {x I 2 + x/ + u (- X I - x2 + 4) : x 11 X2 ? O}

= inf {x 1
2

- UXI : x I? O}-I- inf {x/ - ÚX2: x2? O}+ 4u

Note that the abovc infima are achicved at XI = X2 = u/2 if u? O and at

~
~
•
!.

~
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XI = X2 = O if u <O. Hence,

{

_I 2

8(u) = 'lU +4u
4u

for u? O

for u <O

Note that 8 is a concave funetion, and its maximum over u 2:: O oecurs at ü = 4.
Note also that the optimal primal anel dual objectivcs are both equal to 8.

Now let us consider the problern in the (ZI, Z2) plane, whcre ZI := g(x) and
Z2 = f(x). We are interested in finding G, the image of X =

{(x I' X2): XI? O, x2? O}, under the (g, f) map. We do this by deriving explieit
expressions for the lower and upper envelopes of G, denoted, respcctively, by
a and (3.

Given ZI> note that a(zl) and (3(ZI) are the optimal objcctive values of the
following problems PI and P2, respectively.

Problem P1 Problem P2

Minimize

subject to

x/+x/

-X1-X2+4=Zl

XI>X2?O

Xl
2 + X2

2

- X 1- x2 + 4 =: Z I

x., x2? O

Maximize
subjcet to

The reader can verify that a(zl)=(4-zl)2/2 and {3(zl)=(4--zl? for Z;::54.

The set G is illustrated in Figure 6.2. Note that x E X implies that x I, ~2? 0, so
that -Xl -x2+4:s;;4. Thus, every point XE X corresponds to ZI ::54.

Z2

o

·1 ~ 11 ----%,
Figure 6.2 Geometric illustration of Example 6.1.1.
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Note that thc optirnal dual solution is ü = 4, which is the negativo of the
slope of lhe supporting hypcrplane shown in Figure 6.2. The optimal dual
objective is 0'(0) = 8 and is equal to the optimal primal objective.

6.2 Duality Theorems and Saddle Point Optimaiity

In this section we investiga te the relationships betwcen the primal and dual
problerns and develop saddle point optimality conditions for the primal
problem.

Theorem 6.2.1 below, referred to as the weak duality theorem, shows that
the objective value of any feasible solution to the dual problem yields a lower
bound on the objective value of any feasible solution to the primal problem.
Several important results follow as corollaries.

6.2.1 Theorem (Weak Duality Theorem)
Let x be a feasible solution to Problem P, that is x E X, g(x):$ O, and h(x) = O.
Also let (u, v) be a feasible solution to Problem D, that is, u > O. Then
f(x)?: O(u, v).

Proof
By definition of e, and since x E X, we have

O(u, v) = inf {f(y) + u'g(y) + v'h(y): YE X}
:$ f(x) +u'g(x) + v'h(x):$ f(x)

since u?: O, g(x):$ O, and h(x) = O. This completes theproof.

Corollary 1
inf {f(x):x E X, g(x):$ O, h(x) = O}?: sup {8(11, v): u?: O}

Corollary 2

If f(x):$ O(ü, li), where ü?: O and i E {x E X: g(x):s O, h(x) = O}, then i and (ü, li)
solve the primal and dual problems, respectively.

Corollary 3
li inf {f(x): x E X, g(x):s O, h(x) = O}= -00, then O(u, v) = -00 for each u?: O.

Corollary 4
If sup {O(u, v): u?: O}= 00, then the primal problem has no íeasible solution.

6.2 Duality Theorems and Saddle Point Optimality 181

Duality Gap
From Corollary 1 to Theorem 1).2.1 above, the optimal objective value of the
primal problern is greater than or equal to the optimal objective value of the
dual problern, If strict inequality holds true then a âuality gap is said to exist.
Figure 6.3 illustrates thc case of a duality gap for a problem with a single
inequality constraint and no equality constraints.

1Du;;t-; ;p -- -- ---

---------
ÜPti.mal primal objective'/ /'.

Optirnal dual objective/.J
. -~.
~------I

I, Figure6.3 IIlustrationof a duality gap.

F

6.2.2 Example
Consider the following problern:

Minimize -2x) + X2

subject to XI + X2 - 3 = °
(Xl> X2) E X

where X = {(O, O), (0,4), (4,4), (4, O), (1,2), (2, l)}.
It is easy to verify that (2, 1) is the optirnal solution to the prima! problem

with objective value equal to -3. The duai objective Iunction O is givcn by

O(v) = minimum {(-2x) + x2) + V(Xl + X2 - 3): (Xl> X2) E X}

The reader may verifythat the cxplicit cxprcssion for O is givcn by

f
-4+5V for v:s-l

8(v)= -8+v for-l:Sv:$2

l -3 v for v ?: 2
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i V 6.2.3 Lemma

uop+u'q+v'r?:O for each (p, q, r) E cl Â (6.1)

(2, -6)

Let X be a nonempty convex sct in EII" Let a: E; ---.El and g: E; -) Em be
convcx, and let h: En ---.E, be affine; that is, h is of the form h(x) =- Ax _.b. If
System 1 below has no solution x, then System 2 has a solution (un, u, v). The
converse holds if uo> O.(-1,-9)

System 1:
System 2:

ce(x) < O, g(x) 5 O, b(x) = O
uoa (x) + u' g(x) +v'híx) 2: O

(Uo, u) 2: O, (uo, u, v) ~ O

for some XE X

for all XE X

o(v)

Figure 6.4 Dual function for Example 6.2.2. Proof

The dual function is shown in Figure 6.4, and the optimal solution is v = 2 with
objective value -6. Note, in this exarnplc, that there exists a duality gap.

In this case the set G consists of finitc number of points, each corresponding
to a point in X. This is shown in Figure 6.5. The supporting hyperplane, whose
intercept on the vertical axis is maximal, is shown in the figure. Note that the
intercept is cqual to -6 and that the slope is equal to -2. Thus the optimal
dual solution is v = 2 with objcctive value -6. Furthermore, note that the
points in thc set G on the vertical axis correspond to the primal feasible points,
and hence the minimal primal objective value is equal to -3.

Conditions that guarantee the absence of a duality gap are given in Theorem
6.2.4. First, however, the following lemma is needed.

Suppose that System 1 has no solution, and consider the folIowing set:

Â= {(p, q, r): p > a(x), q 2: g(x), r = h(x) for some x E X}

Noting that X, a, and g are convex and that h is affine, it can easily be shown
that /\ is convexo Sincc System 1 has no solution, thcn «0,0, O)E I\. By lhe
corollary to Theorem 2.3.7, there exists a nonzero (un, U, v) such that

• (1, 4)

Now, fix an XEX. Since p and q can be made arbitrarily !arge, (6.1) holds truc
only if Uo 2: O and u 2: O. Furtherrnore, (p, q, r) = [a(x), g(x), h(x)] belongs to
cI I\. Therefore, from (6.1), we get

uoa(x) + u'g(x) +v'h(x):?: O

Since the above inequality is true for each x E X, System 2 has a solution.
To prove the converse, assume that System 2 has a solution (u(J, u, v) such

that uo> O and u 2: 0, satisfying

(~m h~ +
uoa (x) +u' g(x) + v'híx) 2: O for each XE X

(5, -4)

•

Now let x E X be such that g(x) 5 G and b(x) = O. Frorn thc above inequa!ity,
since li 2: 0, we conclude that u()a (x) 2: O. Since uo> 0, a (x)? 0, and hcnce
System 1 has no solution. This completes the proof.

Theorem 6.2.4 bclow, referred 10 as the strong dualit» theorem, shows that
under suitable convexity assumptions and undcr a constraint qualification, the
optirnal objective Iunction values of the primal and dual problerns are equal.

Supporting hyperplane with
slope -2 6.2.4 Theorem (Strong Duality Theorem)

Figure 6.5 Geornetric interpretation of Example 6.2.2.

Let X be a nonempty convex set ir. En, let f: EIl ---.EI and g: E; ---.Em be
convex, and let h: E; -> E, be affine; that is, h is of lhe form h(:l:) = Ax - b.
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Suppose that the following constraint qualification holds true. There exists an
XE X such that g(x) <O and b(x) = 0, and O E int h(X), where h(X) =

{h(x): X E X}. Then

inf {[(x): X E X, g(x):s 0, h(x) = O}= sup {8(u, v): u ~ O} (6.2)

Furthermore, if the inf is finite, then sup {8(u, v): u ~ O} is achieved at (ü, v)
with ü ~ O. If the inf is achieved at X, then ü'g(i) = O.

otherwise any redundant constraints could be deleted. Now, any y E Em could
be represented as y = Ax -b, where x = A'(AA'rl(y+ b). Thus, h(X) = Em, and
in particular, OE int b(X).

In the above theorern, lhe assurnption OE int h(X) and that there exists an
X E X such that g;(x) < O and h(x) = O can bc vicwcd as a gcncralization of the
Slatcr constraint qualificarion of Chapter 5. In particular, if X = En, then
OE int h(X) autornatically holds [rue, so that the constraint qualification asserts
the existancc of a pcint x such that g(x) < O and h(i) = O. To see this, suppose
that h(x) = Ax - b. Without loss 1)[ gcncrality, assume that rank A = m, bccausc

f(i) = f(i) + ü' g(x) + v'h(x)

= Ct~(x, Ü, v)

:s </>(x,ü, v)

= f(x) + ü'g(x) + v'h(x) (6.6)

Proof
Let y = inf {[(x): x E X, g(x):s O, h(x) = O}. If y = -00, then by Corollary 3 to
Theorem 6.2.1, sup {8(u, v): u ~ O}= -00, and hence (6.2) holds true. Now
suppose that y is finite, and consider the following system:

f(x) - y < O, g(x):s O, b(x) = O, x E X

By definition of y, this system has no solution. Hence, from Lemma 6.2.3,
there exists a nonzero vector (u(), u, v) with (u/h u) ~ O such that

Saddle Point Criteria

As a consequence of Theorem 6.2.4, we develop the well-known saddle point
optimality criteria. Note that the necessary part of the criteria requires convex-
ity plus a constraint qualification, whereas the sufficiency part of the theorern
needs no such assumptions.

u()[f(x) - y] + u'g(x) + v'hfx) ~ O for ali XE X (6.3)

6.2".5 Theorem (Saddle Point Theorem)

Let X be a nonempty set in E,,, and let f: E; ~ El> g: E,.~ Em, and h : E; ~ E;
Suppose that there exist i E X and (ii, V) with ü ~ 0, such that

</>(i, u, v):s <I> (x, ü, v):S <I> (x, ü, V) (6.5)

for alI x E X and all (u, v) with u ~ O, where <I> (x, u, v) = f(x.) + u' g(x) + v'btx).
Then i and (ü, v) solve the primal Problem P and the dual Problem D,
respectively. Conversely, suppose that X, J, and g are convex and that h is
affine; that is, h is of the form h(x) = Ax- b. Further, suppose that OE int b(X)
and that there exists an i E X with g(i) <O and hei) == o. If X is an optirnal
solution to the primal Problem P, then there exists (ii, v) with ü ~ 0,50 that (6.5)
holds true.

We firstshow that u{) > o. By contradiction, suppose that Uo = O. By assurnp-
tion, there exists an i E X such that g(x) < O and hei) = O. Substituting in (6.3), it
follows that u'g(i) ~ o. Since g(i) < O and u ~ 0, u'g(i) ~ O is only possible if
u = o. But from (6.3), u() = O and u = 0, which implies that v'híx) ~ O for all
x E X. But since OE int h(X), we can pick an x E X such that h(x) = - À v, where
À> o. Therefore, O:s v'h(x) = - À Ilv112

, which implies that v = O. Thus, we have
shown that Uo = O implies that (u(), u, v) = 0, which is impossible. Hence, Uo >O.
Dividing (6.3) by Uo and denoting ujuo and vl u., by ü and V, respectively, we
get

Proof

f(x)+ii'g(x)+v'h(x)~y for ali XEX (6.4)

This shows that e(ü, v) = inf {[(x) +- ü'g(x) +- v'b(x): x E X}:2: y. In view of
Theorern 6.2.1, it is then clcar that 8(ü, v) = y, and (ü, v) solves the dual
problem.

To complete the proof, suppose that i is an optimal so!ution to the primal
problem, that is, x E X, g(x):s 0, hei) = O, and f(i) = y. From (6.4), letting x = X,
we get ii'g(i)::::: O. Since ü ~ O and g(x):s O, ü'g(i) = O, and the proof is complete.

Suppose that there exist i E X and (fi, v) with li ~ ° such that (6.5) holds truc.
Since

f(x) + u'g(i) + y'h(i) = (p(x, U, '1):s q)(x, ü, v)

for alI u ~ O and ali y E Ef> it Iollows that g(x):s (} anel h(i) =: O. Thcref'ore, X is a
feasible solution to Problem P. Also by lctting u =., O in thc above inequality, it
Iollows that ü'g(i) ~ O. Since ü ~ O and g(i):S 0, then ü'g(i) = O. Noting (6.5),
then for each x E X, we get

Since (6.6) holds true for each x.E X, it then íollows that f(x) ~ e(u, v). Noting
that X is feasible to the primal Problem P and that ü ~ 0, frorn Corollary 2 to
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Thcorcrn ().2.1, it thcn follows that X and (ü, v) are optirnal to the prirnal and
dUJI problcms, rcspectively.

Convcrscly, suppose that i is an optimal solution to the primal Problem P. By
Thcorem 6.2.4, thcre cxists (ü, v) with ü?: O such that f(i) = e(ü, v) and
ü'g(i) = O. By definition of e, wc must have

Converscly, supposc that (x, íi, v) with x E int X and Ü 2' o satisfy lhe sad-
dlcpoint conditions (6.8). Then x is ícasib!c to Problem P and Iurthcrmore,
(x, ü, v) satisfy the Kuhn-Tucker conditions spccified by (6.7).

f(i) = e(ü, v) ~ f(x) + ii'g(x) + v'h(x) = <p(x, íi, v)

But since ü'g(x) = v'h(x) = O,

</>(x, ii, v) = f(x) + ü' g(x) + v'h(x) -s (p(x, ü, v)

for each XE X

Proof
Suppose that (i, ü, v) with x E S and ii 2: O satisfy the Kuhn- Tucker conditions
specified by (6.7). By convexity at x of f and g. for iE 1, and since h, is affine for
Vi i: O, we get

for ali XE X f(x)?: f(x) + V f(x)' (x - x)

gi(x) ?: gi(x) + V gi(x)' (x - x)

hi(x) = hi(x)+Vhi(x)'(x-x)

for iE I

for i=- 1, ... , I, Vi i: O

(6.9)

(6.10)

(6.11 )
which is the second inequality in (6.5). The first inequality in (6.5) holds true
trivialIy by noting that ii'g(x) = 9, h(i) = O, g(x) ~ O, and u > O. This completes
the proof.

Minimize

for ali x E X. Multiplying (6.10) by fii?: O, (6.11) by Vi, adding (ó .9) a nd noting
(6.7), it follows from the definition of <p that </>(x, ü, v)?: </J(x, li, v) for al! XE X.
Also, since g(x) ~ O, h(x) = O and ü'g(i:) = O, it Iollows that </>(i, 11,v)::S <f;(i, íi, v)
for ali u > O. Hence (x, íi, v) satisfy the saddlcpoint conditions given by (fi.8) .

To prove the converse, supposc that (i, ü, v) with i E int X and Ü?: O satisfy
(6.8). Since </>(x, D, v)::S </>(x, íi, v) for ali D?: O and ali v, lhe reader ean easily
verify that g(i)::S O, h(x) = O and ü'g(x) = O. This shows that x is feasible to
Problem P. Since </J(x, ü, v)::s cf>(x, ü, \i) for all x E X, thc n X solves lhe problern
to minimize cf>(x, Ü, v) subjeet to XE X. Sinee XE int X, thcn V~(PCX, Ü, v) = 0,
that is V {(x) + Vg(i)ii + Vh(x)v = O, and hence (6.7) holds. This completes the
proof.

Theorem 6.2.6 above shows that if x is a Kuhn -Tuckcr point, under ccrtain
convexity assumptions, the Lagrangian multipliers in the Kuhn- Tucker condi-
tions also serve as the multipliers in the saddlcpoint criteria. Conversely, the
multipliers in the saddlepoint eonditions are lhe Lagrangian multiplicrs of the
Kuhn-Tuckcr conditions. Moreover, in view of Theorcms 6.2.4, 6.2.5 and
6.2.6 the optimal dual variables for the Lagrangiun dual problem are prccisely
the Lagrangian multipliers for the Kuhn-Tucker conditions anel also the
multipliers for the saddlepoint conditions,

Relationship Between the Saddlepoint Criteria and the Kuhn- Tucker
...Conditions

In Chapters 4 anel 5 we discussed the Kuhn- Tucker optimality conditions for
Problem P defined below.

f(x)

g(x) ::S O

h(x) = O

XEX

Furthermore, in Theorern 6.2.5 above, we developed the saddle-point optimal-
ity conditions for lhe same problem. Theorem 6.2.6 below gives the relation-
ship between these two types of optimality eonditions.

subjeet to

6.2.6 Theorem
Let S = {x E X: g(x)::s O, h(x) = O}, and consider Problem P to minimize {(x)
subject to x E S. Suppose that x E S satisfies the Kuhn- Tucker conditions, that
is, therc exist ü ~O and v such that

6.3 Properties 01 the nual Function
V f(x) + V g(x)ü + Vh(x)v = O

ü'g(x) = O

Supposc that [, gj for iE1 are eonvcx at x, where I={i:gj(i)=O}. Further
suppose that ir õ, i: O, then h, is affine. Then, (x, ii, v) satisfy the saddle point
conditions

(6.7) In Seetion 6.2 we studied the relationships betwce n lhe prirnal and dual
problems. Under eertain conditions, Thcorern 6.2.4 showcd that the optirnal
objcctives of the primal and dual problcrns are cqual and, hcncc, it would be
possible to solve the primal problem indircetly by solving the dual problcrn. 10
order to faeilitate the solution of the dual problem, we necd to examine the
properties of the dual function. In particular, we show that e is concave, discuss
its differentiability and subdifferentiability properties, and eharacterize its
ascent and steepest ascent directions.

</>(i, u, v)::s </>(i, ü, v)::s 4>(x, ü, v) (6.8)

for alI "E X and for al1 (u, v) with u?: O, where </>(x, u, v) = f(x) + u'g(x) + v'htx).
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Throughout the rest of this chaptcr, we will assume that the sct X is
compact. This wiIl simplify the proofs of several of the theorems. Note that this
assumption is not unduly restrictive, since if X were not bounded, one could
add suitable lower and upper bounds on the variables such that the feasible

j region would not be affected. For convenicnce, we wil! also combine the
7' vectors u and v as W and the functions g and b as ~. Theorem 6.3.1 below

shows that8 is concave. .

The ditíerentiability of 8 at any given point w dcpends on the elernents of
X(W). In particular, if the set X(w) is a singleton, then Theorem 6.3.3 below
shows that 8 is differentiable at w. First, however, the fallowing lemma is
needed.

{ Diffe.rentiabmw 01 G

We now address the question of differcntiability of 8 defined by 8(w) =
inf {f(x) +w'B(x}: x ~ X}. It will be convenient to introduce the following set:

X(w) = {J:y rninirnizcs I(x) + w' ~(x)()vl:r x cX}

Since f and ~ are continuous and X is compact, then for any given w, there
exists an x., E X(w). From the definition of 8, the following two inequalitics
hold true:

8(w) - 8(w):5 f(x) + w'~(x) - f(x) - w' ~(i) == (w - w)' ~(x) (6.12)

8(w) - 8(w):5 f(xw) + w' ~(xw) - f(xw) - w' P(xJ = (iV - w)'(l(x,J (6.13)

From (6.12) and (6.13) and the Schwartz inequality, it follows that

°~8(w) - 8(w) - (w - w)' !l(x) ~ (w - w)'[~(xw) - ~(x)]

~ -llw-wll!li3(x)-~(x)!1

6.3.1 Theorem

6.3.2 Lemma
Let X be a nonempty cornpact set in EIl and let f: EIl ~ El and ~: EIl ~ Em+'
be continuous. Let w E Em+" and suppose that X(w) is the singleton {i}.
Suppose that Wk~W, and let XkEX(Wk) for each k. Then xk~i.

Let X be a nonempty compact set in Em and let f: E" ~ El> and ~: E" ~ Em+'
be continuous. TheII 8, defined by

8(w) = inf {f(x) +w'jl(x) :XE X}

0[Aw1 +(1- A)w2] = inf {f(x) +[Aw1 +(1- A)w2]'~(x) :XE X}

= inf {A[f(x) + WHl(X)] + (1- A)[j(x) + w~jl(x)]: X E X}
~ A inf {f(x) + w\~(x): X E X}
+ (1- A) inf {f(x) +w~~(x) :XE X}
== A8(w1) + (1- A)0(w2)

I
I

Proof

By contradiction, suppose that Wk ~ w, xk E X(wk), and Ilxk- xii> E > ° for k E 'J{

where 'JC is some index set. Since X is compact, then the sequence {xd:J( has a
convergent subsequence {xkhc·, with limit y in X. Note that Ily-xii ~ E > 0, and
hence y and x are distinct. Furthermore, for each w, with k: E 'JC' we have

f(Xk) + W~~(Xk):5 f(i) + w~~(x)

Taking the limit as k in 'JC' approaches 00, and noting that Xk ~y, Wk ~w, and
that f and ~ are continuous, it follows that

f(y) + w' ~(y):5 f(x) + W' ~(i)

Thereíore yE X(w), contradicting the assumption that X(W) is a singlcton, This
completes the proof.

L concave over Em+"

Proof

Since f and ~ are continuous and X is compact, 8 is finite everywhere on
Em+" Let WJ, Wz E Em+h and let A E (0, 1). We then have

6.3.3 Theorem
Thus 8 is concave, and the proof is complete.

Since 8 is concave, by Theorem 3.4.2, a local optim al of O is also a global
optimal. This makes the maxirnization of e an attractive proposition. However,
the main difficulty in solving the dual problem is that the dual function is not
explicitly available, since 8 could be evaluated at a point only after a minimiza-
tion subproblem is salved. In the remainder of this section, we study differen-
tiability and subdiffcrentiability propertics of the dual function. These proper-
ties will aid us in rnaximizingthe dual function.

Let X be a nonempty compact set in E,,, and let f: E; -~ E1' and ~: E" ~ Em+'
be continuous. Let w E Em+', and suppose that X(W) is the singleton {i}. Then,
8 is differentiable at w with gradient V 8(w) = jl(x).

Proof
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This furthcr implics that

02: 8(w) - e(~) - (w:.-w)' ~(i) 2: - I/(l(xJ - (l(i)// (6.14)

As w~w, then by Lernrna 6.3.2, xw~i, and by continuity of (l, (3(xw)~(l(i).
Therefore, from (6.14), wc get

. O(w) - 8(w) - (w - w)' (l(i)
11m . =0
••.~w /Iw-wll

Hence (J is diflerentiable at w with gradient (l(i). This completes the proof.

Subgradients of 6

We have shown in Theorem 6.3.1 that 8 is concave, and hence, by Theorem
3.2.5, (J is subdiffcrentiabJe; that is, it has subgradients, As will be seen later,

, subgradients play an important role in the maximization of the dua! function,

,_.since they lead naturally to the characterization of the directions of ascent.
Theorem 6.3.4 below shows that each x E X(W) yields a subgradient of e at W.

6.3.4 Theorem
Let X be a nonempty compact set in E", and let f:En~EI> and (l:E,,~Em+1
be continuous so that for any wEEm+z, X(W) is not empty. If iEX(W), then
~(i) is a subgradient of O at w.
Proof

Since f and (3 are continuous and X is compact, X(w) f; 0 for any W E Em+l'

Now, let wEEm+z, and let XEX(W). Then

O(w) = inf {f(x) +w' (l(x) :x E X}
:s; f(x) + w' (l(i)
= f(x) + (w-w)'(l(i) +w'(l(i)

=8(w) + (w - w)'(l(i)

Therelore (l(i) is a subgradient of (J at w and the proof is complete.

6.3.5 Example
Considcr the following primal problem:

Minimize

subject to

-XI - X2

. Xl +2x2-3:s;O
x"x2=O,1,2,or3
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Letting g(XI>X2)=XI+2x2-3 and X={(XI'X2):xj,x2=O,1,2,or3} the dual
function is given by

O(u) = inf {-XI-X2+ U(XI +2x2-3): XI' X2 = 0,1,2, or 3}

={=~+6U

-3u

if o s u:s;~
in:s; u :s;1

if u 2: 1

Let ü = 1. In order to find a subgradient of 8 at ü; consider the foliowing
subproblern:

Minimize

subject to

-XI-X2+~(XI +2X2-3)
Xl> X2 = 0,1,2, or 3

Note that the set X(ü) of optimal solutions of the above problem is {(3, O),
(3, 1), (3,2), (3, 3)}. Thus, from Theorem 6.3.4, g(3, O)= 0, g(3, 1) = 2, g(3. 2) =
4, and g(3, 3) = 6 are subgradients of 8 at ü. Note, however, that ~ is a150 a
subgradient of () at ü, but ~ cannot be represented as g(x) for any XE X(ü).

From the above example, it is clear that Theorem 6.3.4 gives only a sufficient
characterization of subgradients. A nccessary and sufficient characterization of
subgradients is given in Theorem 6.3.7 below. First, however, the following
important result is needed.

6.3.6 Theorem

Let X be a nonempty compact set in En, and let f: E; ~ E, and 13: E" -> Em+l

be continuous. Let W, dE Em+l' Then

O'(W; d) 2: d' (l(i) for some XE X(w)

Proof
Consider W+Àkd, where À,,~O+. For each k, there exists an XkEX(W+Àkd),
and since X is compact, there is a convergent subsequcnce {xdx with limit i in
X. Given an x E X, note that

f(x) + (w + Àkd)' (3(x) 2: f(Xk) + (w + AkC.)' (3(xd

. for each k E X. Taking the limit as k ~oo, it follows that

f(x) + w'(l(x) 2: f(i) + w' ~(i)

that is, i E X(W). Furthermore, by definition of 8(w+ Àkd) and O(w), we get

8(w+ Àkd)- 8(w) = f(Xk) + (w+ Àkd)'P(xd - 8(w)

2: Àkd'Il(X,")
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The above inequality holds true for cach k E 'JC. Noting that x, -+i as k E 'J{

approachcs 00, wc get
which is a contradiction. Therefore ~' E H(I\), and a8(w) ==H(j\J This com-
pletes the proof.

8(w + Àk d) - 8(w) 2: d'(3(i)lim À
keX k
k->'"

e'(w; d) = inf {d'~: ~ E aO(w)}

6.3.8 Example
Consider the folIowing primal problem:

Minimize -(Xt-4?-(X2-4?

subject to Xl - 3:s °
- Xl + X2 - 2:S °

XI+x2-4:s0

Xl>X2 2: °
In this example, we let gt(Xl>X2)==xt-3, g2(Xl>X2)==-xt+X2-2, and X==
{(Xj,X2):XI+x2-4:S0;XI'X22:0}. Thus the dual function is given by

8(ul, U2) ==inf {-(Xl - 4]2- (X2 -4)2+ UI(Xt - 3) + U2(-XI + X2 - 2): XE X}

We utilize Theorem 6.3.7 above to determine the set of subgradients of O at
Ü ==(1, 5)'. In order to find the set X(ü), we need to solve the folIowing
problem:

Minimize -(xl-4)2_(X2-4)2_4xI +5x2-13
subjectto X1+X2-4:sO

XI' X22:0

The above objective function is concave, and by Theorcrn 3.4.6, it assumes its
minimum over a compact polyhedral set at one of lhe extremo points. The
polyhedral set X has three extreme points, namely (ü, O), (4, O), and (0,4).
Noting that [(0, O) ==[(4, O) = -45 and [(0,4) == -9, ir is evident that the optimal
solutions of the above subproblem are (0, O) and (4, O), that is, X(Ü) =
{(O, O), (4, O)}. By Theorem 6.3.7, the subgradients of e at ); are thus given by
the convex combinations of g(O, O) and g(4, O), that is, by convex cornbinations
of the two vectors (- 3, - 2)' and (1, - 6)'. Figure 6.6 illustrates the set of
subgradients.

_ . O(W+ Ad) - 8(w). .
By Lemma 3.1.5, 8'(w; d) == lim, exists. In view of the above

A->O A
inequality, the proof is complete.

j Corollary
/' Let a8(w) be lhe collection of subgradients of 8 at w, and suppose that the

assumptions of the theorem hold true. Then,

(-3,-2)

(1. -6)

Proof
Let X be as specified in lhe theorem. By Theorern 6.3.4 (3(i) E a8(w), and hence
Theorem 6.3.6 implies that 8'(w; d) 2: inf {d'~: ~ E ao(w)}. Now let ~E aO(w).
Since 8 is concave, 8(w+Ad)-8(w):SAd'~. Dividing by A>O and taking the
limit as A -+ 0+, it follows that O'(W; d):S dIgo Since this is true for each
~ E aO(w), O'(W; d):S inf {d'~: ~ E aO(w)}, and the proof is complete.

6.3.7 Theorem
Let X be a nonempty compact set in En, and let [: E; -+ EI, and (3:E; -+ E"'+l
be continuous. Then ~ is a subgradient of O at W E Em+l if and only if.~ belongs
to the convex hull of {(3(y): YE X(w)}.

Proof
Denote the set {13(y): YE X(w)} by f\ and its convex hull by H(f\). By Theorem
6.3.4, f\ c a8(w), and since a8(w) is convex, H(f\) c aO(w). Using the facts that
X is compact and 13 is continuous, it can be verified that f\ is compact.
Furthermore, the convex hull of a compact set is closed. Therefore H(f\) is a
cIosed convex set.

We shall now show that H(/\)::::> ae(w). By contradiction, suppose that there
is a ~' E ae(w) but not in H(f\). By Theorem 2.3.4, there exist a scalar a and a
nonzero vector d such that

d'I3(Y)? a for each YE X(W) (6.15)
d'~'< a: (6.16)

By Theorcrn 6.3.6, thcrc exists a y E X(W) such that fi'(w; d) 2: d'(3(y), and by
(6.15) above, we must have 8'(-w; d) 2: a. But by the corollary to Theorern 6.3.6
and (6.16), we get

(o. O)

O'(w; d) =-=inf {d' g: ~ E aO(w)}:s d'f < a Figure 6.6 IlIustration of subgradients.
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Ascentand Steepest Ascent Directions Since O is to be maximized, we are interested not or.ly in an ascent direction
but also in thc direetion along which O increases the most.

The dual problem is concerned with the maxirnization of O subject to the
constraint u ~ O. Given a point w' = (u', Vi), we would like to investigare the
directions along which O increases. For the sake of clarity, first consider the
following definition of an ascent direction.

16.3.10 Defiuition
A vector li is called a direction of steepest ascent of O at w if

y 6.3.9 Definition

A vector d is called an ascent direction of O at w if there exists a o> ° such that

O'(w; d) = maximum O'(w; d)
IIdllsl

O(w + Ad) > O(w) for each A E (0, o)

Theorem 6.3.11 below shows that the direction of stcepest asccnt of the
Lagrangian duaI function is given by the subgradient with the smalfest Eucli-
dean norm.

Note that if O is concave, a vector d is an ascent direction of O at w if and
onIy if O'(w; d) > O. Furthermore, O assumes its maximum at w if and onIy if it
has no ascent directions at w, that is, if and cnly if O'(w; d)::; O for each d.

Using the corollary to Theorem 6.3.6, it follows that a vector d is an ascent
direction of O at w if and only if inf {di~ E aO(w)} > 0, that is, if and only if the
following inequality holds for some e> O.

6.3.11 Theorem

Let X be a nonempty compact set in En, and let f: E; -" EI> and 13: E,,-"
Em+l be continuous. The direction of steepest ascent d of a at w is given below,
where t is the subgradient in aO(w) with the smallest Euclidean norrn.

d'~~e>O for each ; E aO(w) {
O

d= ~
\.II~II

if ~ = O

if t te O
To ilIustrate, consider Example 6.3.8. The colIectioo of subgradieots of O at

the point (1,5) is illustrated in Figure 6.6. A vector d is an ascent direction of O
if and only if d' ~~ e for each subgradieot ~, where e> O. In other words, d is
an ascent dircctioo if it makes ao anglc strictly less than 90° with each
subgradicnt. The cone of ascent dircctions for this example is given in Figure
6.7. In this case, oote that cach subgradient is ao ascent directioo. However,
this is not necessarily thc case in general.

Proof

By Definition 6.3.10 and by the corollary to Theorem 6.3.6, the stecpest ascent
direction can be obtaioed from the followiog expression:

----
maximum O'(w; d) = maximum infimum d'~

/Jdlls 1 . I:d/J""I l;E,)Q(W)

The reader cao easiIy verify that

(-3, -2) 1'- \ \ Shortest
\ subgradient
\
\
\
\
\

(1,-6) \

~

maximum O'(w; d) = maximum infimum d' ~
/Jdll'" 1 IIdllSI ;;EôIJ1w)

::; infimum maximum il'~
1;€<10( w ) IídilsI

Cone of asccnt
directions

= infimum II~II
4;e<lO(w) .

Figure 6.7 The cone of ascent directions
in Example 6.3.8.

=IItl! (6.17)
If we construct a direction d such that O'(w; d) = "~II,then by (6.17) d is the
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steepest ascent dircction. If t = 0, then for li = 0, we obviously have O'(w; d) =
IIU Now suppose that ~ -I O, and let d = t/II~!I· Note that

O'(w; d) = inf {d'~: ~ E élO(w)}

= inf {~i~:t E élO(W)}

1 - - - .
= Iltll inf {11~112+~'(~-~): ~E élO(w)}

- 1 - -
= II~II+ 1'-11 inf {~' (~-~): ~ E élO(w)}

,I~

Since t is the shortest vector in aO(w), then by Theorem 2.3.1, t'(~-t)2:0 for
each ~EélO(w). Hence, inf{t'(~- t):~Ea8(w)}=O is achievcd at t· From
(6.18), it then follows that e'(w; d) = IIU Thus, we have shown that the vector d
specified in the theorem is the direction of steepest ascent both when t = O and
when § -I O.

Thc following theorem shows that [g(x), h(i)] is a Ieasible asccnt dircction of e
at (i, v). Furthermore, [g(i), h(x)] is zero only whcn the dual maximumis
reachcd.

6.4.1 Theorem

6.4 Solving the Dual Problem
We have described several properties of the dual function in the previous
section. In this section, we utilize these properties to develop various schemes
for maximizing the dual function e over the region {(n, v) :u 2: O}. In particular
we discuss some ascent procedures, as well as the cutting plane method for
solving the dual problem.

g(i):5 O and ú'g(i)=O (6.20)

Let (fi, v) E Em+l' where fi 2: O. Suppose that e is differentiable at (ii, v) with
gradient [g(i), hei)]. If [g(i), hei)] -I (O, O) then [g(i), h(x)] is a feasible ascent
direction of e at (ü,v). If [g(x), hei)] = (O, O), then e achievcs its maximurn over
the region {(u, v) : u 2: O} at (ü, v).

(6.18)

Proof

Let d' = [g(i)', hei)']. By construction of g, d is a Ieasible direction. Further-
more, if d -I O, then 'ile(ü, v)'d >O and by Theorem 4.1.2, d is an ascent
direction. Now, suppose that [g(i), hei)] = (0, O). Since fUi) = O for each i, ir
follows that gj(i):5 O and üjgj(i) = O for each i. In other words

Now consider the Lagrangian duaI probJem to rnaxrrmze O(u, v) subject to
u 2: O. The Kuhn- Tucker conditions hold true at (ü, v) if there exists a vector
b:5 O such that 'ile(ü, v) = (b, O) and ii'b = O. Noting (6.20), these conditions
cIearly hold true by !etting b = g(i). Since e is concave, by Theorem 4.2.11, the
Kuhn- Tucker conditions are sufficient for optimality, and (ü, v) is an optimal
solution. This completes the proof.

Minirnize f(x) +ü'g(x) + v'h(x)
subject to x E X

Suppose that i is the optimal soJution. Then by Theorem 6.3.3, Ve(ü, v)t =
[g(i)', h(x)']. lf V e(ü, v) f O, then by Theorem 4.1.2, it is an ascent direction
and fJ will increase by moving fram (u, v) aJong V e(ü, v). However, if some
components of ii are equal to zero, and any of the corresponding components
of g(x) is nega tive, then Ü + À g(x) t O for À 2: 0, thus vioJating the nonnegativity
restriction. In order to handle this difficulty, we use the modified direction
[g(i), hei)], where g(i) is defined beiow as

. (-) _fg;(i). x -
g, maximum [O, gj(i)]

'/ Summary of the Gradient Method

If the assumptions of Theorerns 6.3.3 hold true, then e is diflerentiuble, and
the following scheme could be used to maxirnize o over the region {(u, v): u 2:
O}.

In step 2 of the algorithm, a one-dimensionaI problem in the variable ,\ is to
be solved. For simplicity of presentation,wc assumed that a finite optimal
solution Àk exists. If this were not the case, either the optirnal objectivc value is
unbounded, or else the optimal objective value is boundcd but not achieved at
any particular À. In the first case, we stop with the conclusion that the dual
problern is unbounded and the prirnal is inf'casiblc. In the lattcr case, Ak could
be taken as a sufficiently large number.

Gradient Method
Given (ii, v), the dual function can be evaluated by solving the following

subproblern:

if üj >0

if üi = O
(6.19)

Initialization Step Choose a vector (UI> VI) with u, 2: O, let k;: 1, and go to
the main step.
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Main Step 1. Givcn (Uk' Vk), solve the following subproblem:

Minimize f(x)+u~g(x)+v~h(x)

subject to x E X
Let x, be the unique optimal solution and form the vector [g(Xk)' b(Xk)] using
(6.19). lf this vector is zero, then stop; (Uk>Vk) is an optimal solution. Other-

wise, go to step 2.
2. Considcr the following problem:

Maxirnize 8[(Uk' v k) + A (g(Xk), b(xk))]

subject to \ak + Ag(Xk) 2: O
A 2: O.

Let Ak be an optimal solution, and let (Uk+1> Vk+1) = (uk, Vk)+ Ak[g(Xk), b(xk)]'

replace k by k + 1, and repeat step 1. .

We shall now illustrate the gradient method for maximizing the dual function

by the following example:

Hencc, the optimal solution to the problcrn to rnaximizc e(4A, O) subjcct to
A 2: 01" is achievcd at '\1 = 1, so that

U2 = U1+ A1g(X1) = (O, O)' + 1(4, O)' = (4, O)'

For u2=(4,0)', O(u2)=minimumxI>x2{x12+X22+4(-X1-X2+4)}=8, and is
achieved at the unique opiimal point X2 == (2, 2)'. From Theorem 6.3.3,
\70(U2) = g(x2) = (0, -2)'. ln this case g(x2) == (0, O)', and hence U2 = (4, O)' is an
optimal solution to the Lagrangian dual problcm.

Ascent Method for a Nondifferentiabie Dual Function

In Section 6.3 we showed that d is an ascent direction of O at (u, v) if d:~ 2: E >°
for each ~ E aO(u, v). The following problern could be used for finding such a
direction.

d'~j 2: E for j = 1, ... , 'Y

6.4.2 Example
Consider the following problem

Minimize X1
2 + x/

subject to -X1-X2+4::50

x, + 2X2 - 8 ::5 °
Note that the optimal solution occurs at the point (2,2) where the objective

function value is equal to 8. The Langrangian dual problem is to maximize

0(u1, U2) subject to UI' U22: 0, where

0(u
1
, U2) = minimum {x/ + x/ + Uj(-x1 - X2 +4) + U2(XI +2X

2 - 8)}
x r, X2

We shall solve the dual problem by the gradient method described above
starting from DI = (0, O)'. Note that the function O is differentiable by Theorem

6.3.3.
For U

1
= (0, O)', O(Ul) = minimumy., X2 {x/ + X2

2
} = 0, and is achieved at the

uni que optimal point x, = (O, O)'. From Theorem 6.3.3, VO (O) =--= g(XI) = (4, -8)'.
1n this case g(xj) == (4, O)'. Note that

0(4A, O)= minimum {XI2- 4Ax1}+ rninimum {X22_4Ax2}+ 16A
XI Xl

=_4A2-4A2+16'\

=-8,\2+16A

Maximize E

subjeet to d' ~ 2: E

di 2: °
-1 ::5 di ::5 1

for ~ E aO(u, v)

if Ui = O
for i= 1, ... , m + I

Note that the constraints di 2: O if uj = O ensure that the vector d is a íeasible
direction, and the normalization constraints -1 ::5 di ::5 1will guarantee a finite
solution to the problem.

The reader may note the following difficultics associated with the above
direction finding problem.

1. The set aO(u, v) and, hence, the constraints of the problem are not
explicitly known in advance. However, Theorem 6.3.7, which Iully charac-
terizes the subgradient set, could be of use.

2. The set aO(u, v) usually admits an infinite nurnber of subgradients, so that
we have a linear program with an infinite number of constraints, However,
if aO(u, v) is a compact polyhedral set, then the constraints d'~;?: E for
~E aO(u, v) could be replaced by the constraints

where ~1,"" ~y are the extreme points of (Ja(u, v). Thus, in this case
the problem reduces to a finite linear programo

t In general, an explicit expression for O(uj + ,\g(xj)) = O(4A, O) is not available. Howcvcr, for any
givcn À, O can be evaluated by solvingan unconstrained optirnization problcrn. To find the optima!
À" a suitable line scarch procedure could be uscd. In Chapter H, boto line search rncthods and
unconstrained optimization methods will be discusseo in dctail.
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We present below an ascent procedure for maximizing 8 overthe region
{(u, v): u 2: O}. The method applies whether aO(u, v) is polyhedral or noto Step 1
attempts to generate an ascent direction by solving a linear program with finite
number of constraints. Step 2 verifies whether the direction obtained from step
1 is indeed an ascent direction.

In view of Theorem 6.3.7, the implementation of step 2 requires the
knowledge of ali optimal solutions to the problem to minimize f(x) + u~g(x) +
v~h(x) subject to x E X, which may not be readily available. Step 3 maximizes 8
along the ascent direction found in steps 1 and 2. At this step a one-
dimensional problem in the variable À is to be solved. For simplicity of
presentation, we assumed that a finite optimal solution Àk exists. If this were
not the case, either the optima! objective value is unbounded, or else the
optima! objective value is bounded but not achieved at any particular À. In the
first case, we stop with the conclusion that the dual problem is unbounded and
the prima! is infeasible. In the latter case, Àk could be taken as a sufficient1y
large number.

The procedure is summarized below. It is assumed that f, g, and h are
continuous and that X is compact, so that the set X(u, v) is not empty for each
(u, v).

Let ~y+l be an optimal solution. lf d~gy+J> 0, then d, is an ascent direction,
and procced to step 3. lf d~g'Y+I:5 O, then replace l' by y + 1 and go to step 1.

3. Let d, = d.; ando solve the following problem:

Summary of the Ascent Procedure

Maximize

subject to

8(Wk +Àdk)

(wk + Àdk)i 2: °
À2:0

for i = 1, ... , m

where (Wk + Àdk)i is the ith component of wk + Àdk• Let Àk be an optimal
solution, and let Wk+J = Wk + Àkdk and go to step 4.

4. Let Xk+1 be an optimal solution to the problem to rninimize f(x) +
U~+lg(X)+V~+lh(x) subject to XEX, where (u~+l>V~+I)=W~~). Let ~~=
[g(Xk+l)" h(Xk+1)']. Replace k by k + 1, let y = 1, and go to step 1.

We shall now illustrate the ascent procedure discussed above by the fol!ow-
ing example.

6.4.3 Example

Consider the following problem.

Initialization Step Choose a vector w~ = (u~, vD with u, 2: O. Solve the
problem to minimíze f(x) + u~g(x) + v')h(x) subject to x E X. Let x) be an
optimal solution, and let ~i= [g(x)', h(X1)']' Let k = y = 1, and go to the main
step.

Minimize XI-4x2

subject to -Xl- X2 +2:5 O

x2 -1:5 O

0:5 Xl' X2:5 3
Main Step

Max.imize
1. Given ~)' ... , ~'Y' solve the following problem:

E

subject to d'~i 2: c

di 2: O
-1:5 di:51

for j = 1, ... , Y
if ith component of u, is °
for i= 1, ... , m + l

Here the Lagrangian dual problem is to maximize 8(uh u2) subject to ul>
U22:: O, where

8(Ul> U2) = minimum {(Xl - 4X2) + Ul (- XI - X2 + 2) + U2(XZ -1): 0:5 XI' x2:5 3}

Let (dy, E'Y) bc an optimal solution. If E'Y = 0, srop; there existsno ascent
direction and wt = (u~, v~) is an optimal solution. Otherwise, E'Y >O; go to
step 2.

2. Solve the following subproblem:

= minimum x.f l > u1) + minimum x2(-4 --u) + u2) + 2u) - u2
O=:iXts3 O'::;X2s3

Minimize . d~ç
subjcct to ~E aO(Uk' vk)

We shall solve the dual problem by the ascent procedure starting with
UI = (0, 4)'.

For u, = (0, 4)', 8(ul) = -4 and is achieved at points of the form (0, a) for
0:5 a :5 3. Choosing a = O, we get an optima! solution x = (0, O)' and the
associated subgradient ~1 = g(x) = (2, -1)'. At step 1 of the procedure, we
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Maxirnize é

Thc optimal solution is .11 = (1, -1)' and é == 3> O. By Theorcrn 6.:'.7, 00(u2) is
lhe corivcx cornbination of the points P1 = g(O, O) = (2, -1)', ()2 = g(O, 3) =-
(-I, 2)', ~3 = g(3, O)= (-1, -1)', and 114 = g(3, 3) = (-4,2)'. Noting that thc opti-
maior thc problern in step 2 is achieved ut onc of the abovc cxtreme points,
the optimurn ís equal to minimum {d't!31, d;!l2, d\!33' d'lI34} = minímum {3,
- 3, 0, -6} = -6. Therefore, the optimal solution ~2 to the problern at srcp 2 is
given by 134= (-4, 2)'.

Repeating step 1 with a new constraint corresponding to §2' wc gct the
following problem:

Maxímize e
subject to 2dj - d2"2: é

-4d1 + 2d2"2: é

-1 :S â j, d2:s 1

The optimal objcctive vaJue of this problern ís cqual to zero and hencc thcre
exists no ascent direction. Thus the optimal solution to the dual problern is
u2 = (1, 5)'.

consíder the problern

2dj- d2"2: é

0:Sdl:S1.
-1:S d2:s 1

The optimaJ soJutíon to this problern ís dI = (1, -1)' and é = 3. Sínce é> 0,
we solve the problern ín step 2. By Theorern 6.3.7, aO(u1) =
{~=(-a+2,a-1)t:0:::;a:::;3}. Thus the objectíve function of the probIem in
step 2 ís fdj=(-a+2)1+(a-l)(-1)=-2a+3. Henee, the probIem is to
minimize -2a + 3 subject to O:::;a:::;3. The optímal soJution is a = 3 with
optímaI objective value of -3 < o. The associated optimum subgradient ~2 =
(-1,2)'.

Returning to step 1, we solve the problem

Maximize e
subject to Zd, - d2"2: é

-di + 2d2"2: é

O:::; dI:::; 1

-1:::; d2:::; 1
The optirnum objective value ís 1 and is achieved at d2 = (1, 1)'. Since é> 0, we
solve lhe problern in step 2. The objective function is ~'d2 =
( - a + 2) 1 + (a _. 1) 1 = 1. Since the objectíve function is greater than O for each ~,
then d2 = (1, 1)' ís an ascent direction,

We now maximize the dual function along the ascent direction (1,1); that is,
solve the problern to maximize 0«0,4) + A(1, 1)) subject to A "2: O. The reader
ran verify that

subject to

{
A -4

0«O,4)+A(1,1))= -2A-l
for O:::; A :::; 1

for A "2: 1

'f The Cutting Plane Mei:hod
The methods discussed above for solving the dual problem gcncratc at each
iteration a feasíble direction along whích thc Lagrangian dual íunction in-
creases, We now discuss another stratcgy forsolving lhe: dual problcrn , in
whích at each iteratíon, a Iunction that approxímates thc dual function is
optirnízed.

Recall that the duaI function O is defined by

O(u, v) = inf {f(x) + u'g(x) + v'htx): x E X}

Letting z = 8(u, v), the inequality z :::;f(x)+u'g(x)+v'h(x) rnust hold true for
each x E X. Hence the dual problem of rnaximizing O(U, v) over u ~~() is
equivaIent to the following problern:

Maxímíze z
subject to Z:5f(x)+u'g(x)+v'h(x) íor x e X (6.21)

0"2:0

Note that the above prob!em is a linear prograrn in the variables z, u, and v.
Unfortunately, however, the constraints are infinito and are not known exp-
Iicitly. Suppose that we have the points XJ, ••• , Xk-I in X, and considcr lhe
following probIem:

Maximize z
subjectto z:::;f(Ji)+u'g(xj)+v'h(Xj) forj=l, ... ,k-l (ó.22)

U"2:(}

The optimurn solutíon is AI = 1, and hence U2 = (1,5)'.
We now repcat lhe proccss to find an asccnt direction at u2• For U2 =

(1,5)', 8(u2) = -3 and is achieved at any point of the íorm (aI' a2), where
O:::;ai' a2:5 3. That is an optim al solution is a convex cornbination of the extrerne
points (0, O), (0,3), (3, O), and (3,3). Chocsing the optimal solution x = (O, O)',
we get lhe associatcd subgradient ~I =~g(x) = (2, --1)'. At step 1 of the proce-
dure wc solve the problcrn

Maximize é

subject to 2d1 - d2"2: E

-1:::; âl> d·vs 1
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Minimize
subjeet to

f(x) +u~g(x) +v~h(x)

XEX

At cach iteration, a eut (eonstraint) is added to the master problcrn, and
hence the sizc of the master problem increases monotonieally. If the size of the
master problem becomes excessively large, all eonstraints that are not binding
may bc thrown away. Also note that the optimal solutions of the master
problem form a nonincreasing sequenee {z.}. Since each Zk is an upper bound
on the optimal value of the dual problem, we may stop if Zk-

maximumlSjSk O(uj, Vj)< e, where e is a small positive number.

The above problem is a linear program with a finite nurnber of constraints and
ean be solved by the sirnplcx method. Lct (Zb ub vd be an optimal solution. If
this solution satisfies (6.21), then it is an optirnal solution to the Lagrangian
dual problem. To check whether (6.21) is satisfied, consider the folJowing
subproblem:

Let x, be an optimal solution of the above problem, so that O(Uk> Vk)=
f(Xk)+U~g(Xk)+v~h(Xk)' If ZkSO(Uk,Vk), then (UbVk) is an optimal solution
to the Lagrangian dual problem. Otherwise, for (u, v) = (Ub Vk) the inequality
(6.21) is not satisfied for x = Xk' Thus, we add the eonstraint

Z S f(Xk) + U'g(Xk) + V'h(Xk)

to the eonstraints in (6.22), and resolve the linear programo Obviously the
eurrent optimal point (Zk> Uk' Vk) eontradicts this added eonstraint. Thus, this
point is eut away and hence the name, cutting plane algorithm.

Interpretation as a Tangential Approximation Technique

The cutting plane algorithm for maximizing the dual funetion ean be inter-
preted as a tangential approximation teehnique. By definition of O, we must
have

O(U,v) S t(x) + u'g(x) + v'h(x) for XEX

Summary 01 the Cutting Plane Method

The cutting plane method is summarized below. It is assumed that i. g, and h
are eontinuous, and that X is eompact, so that the set X(u, v) is not empty for
eaeh (u, v).

Thus, for any fixed x E X, the hyperplane

{eu, v, z): U E Em, V E E" Z = t(x) + u'g(x) + v'h(x)}

bounds the funetion O from above.
The master problem at iteration k is equivalent to solving the following

problem.

Maximize ê(u, v)

subjeet to for j = 0, ... , k - 1

subjeet to u 2: O

where ê(u, v) = minimum {f(xj) +u'g(xj)+v'h(xj): j = 1, ... , k -l}. Note tha; ê
is a piecewise linear funetion that approximates O by considering only k -1 of
the bounding hyperplanes.

Let the optimal so!ution to the master problem be (Zk. Uk' Vk)' Now, the
subproblem is solved yielding 8(uk>vk) and X/:. If z, > 8(ub v.). then the new
eonstraint Z S f(Xk) + u'g(xd + V'h(Xk) is added to the master problem, giving a
new and tighter piecewise linear approximation to O. Sinee 8(uk>Vk)=
f(Xk) + U~g(Xk)+ v{h(xk), the hyperplane {(Z, u, v): Z = f(Xk) + u 'g(Xk) + V'h(Xk)} is
tangential to the graph of O at (Zk> uk, \'k).

We now present an example of the cutting plane method and the interpreta-
tion given above.

Initialization Step Find a point Xo E X sueh that g(xo) S O and h(xo) = O. Let
k = 1, and go to the main step.

Ma.;n Step 1. Solve the foJlowing problem, which is usuaJly referred to as
the mas ter problem.

Maximize Z
Z sf(xj)+u'g(xj)+v'b(xj)
U2:0

Let (Zk> Uk>'ik) be an optimal solution and go to step 2.
2. Solve the following subproblem.

Minirnize f(x) + u~g(x)'-I-v~h(x) 6.4.4 Example
Minimize (x, - 2)2 +:!x2 2

subject to Xl - ~X2 - 1 s O
2xI +3X2 =4

subject to x E X

Let x, be an optimal point, and let e(u" v.r= f(Xk) + U~g(Xk)+ V~h(Xk)' If
z, = O(Uk> v/e>, thcn stop; (u •• v.) is an optimal dual solution. Otherwise, if
Zk> e(u" Vk), then rcplacc k by k + 1, and rcpeat step 1.
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TABLE 6.1 Summary 01 Computations for Example.6.4.4

Step 1 Solution Step 2 Solution

Iteration Constraint
k Added (Zk, uk) x~ O(uk)

1 Z ::::;~-~u (~, O) (2, O) O
2 z::::;O+u (lJ) (~}J) 3

32

3 Z ::::;3~-*U (*, *) m,k) 11
12H

4 z::::; li,,+âu (i!4, lG) m,fõ) 51
5i2

We let X == {(XI, X2): 2xI + 3X2 == 4}, so that the Lagrangian dual function is
given by

8(u) == minimum {(Xl - 2? +!x/ + u(Xt -~X2 -1): 2xI + 3X2 = 4} (6.23)

The cutting plane method is initiated with a feasible solution Xo = ct ~)t. At
step 1 of the first iteration, we solve the following probJem:

Maximize z
subject to Z ::::;~-~u

u~O

Ô(u)

C})

(2')

'3' (4)

.Y l!! I', ====== u
3
16 1

4
1
8

Figure 6.8 Tangential approximation of O.

/
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Thc optima! so!ution is (ZI, uI) = (~, O). At stcp 2, we solve (6.23) for U = UI =

O, yielding an optimal solution x, = (2, O)' with 8(u1) = 0< Zl' Hence, more
iterations are needed. The summary of the first four iterations are given in
Table 6.1.

Thc approximating íunction ê at the end of the fourth iteration is shown in
darkened lines in Figure 6.8. The reader can easily verify that the Langrangian
dual function for this problern is given by 8(u) = - ~U2 + u and that the
hyperplanes added at iteration 2 onward are indeed tangential to thc graph of 8
at the point (Zk> ud. Incidentally, the dual objective function is maxirnized at
Ü =! with e(ü) == -to. Note that the sequence {uk} converges to the optimal point
ü =!.j

6.5 Getting the Primal Solution
So far, we have studied several properties of the dual function and described
some proccdures for solving the dual problem. Howcver, our main concern is
finding an optimal solution to the prirnal problem.

In this section we develop some theorems that will aid us in finding a
solution to the primal problern, as well as solutions to perturbations of the
primal problern. However, for nonconvex prograrns, as a result of lhe possible
presence of a duality gap, additional work is usually needed to find an optirnal
primal solution.

Solutions to Perturbed Primal Problerns

During the course of solving lhe dual problern, the following problcm, which is
used to evaluate the function O at (o, v), is solved frequently.

Minimize f(x) + u'g(x) +v'hix)
subjcct to X E X

Theorern 6.5.1 below shows that an optimal solution x to the above problern is
also an optimal solution to a problem that is similar to the primal problern, in
which some of the constraints are perturbed.

6.5.1 Theorem
Let (o, v) be a given vector with u ~ O. Consider the problem to rrururmze
f(x) +u'g(x) + v'h(x) subject to X E X. Let i be an optimal solution. Then i is an
optirnal solution to the foi1owing problcm, wherc I = {i: u, >O}.

Minimize f(x)
subject to gj (x)::::; gj (i)

hj(x) = hj(i)
for iE I
fori=l, ... ,l

x s X
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Proof

Let x E X be such that h. (X) = Il;(i) for i= 1, ... , l, and gj(x)::5 gj(i) for iE 1.
Note that

solution to the primal Problem P. Then, by definition af O(u, v), .
I I

t(i) + L ujgj (i) + L vjhj (i) ::5t(i) + L ujgj (i) + L vjhj (x) :.:;;f(i)
iel i=l iEI ;=J

t(x) + u'g(x) + v'h(x) ~ t(i) + u'g(i) + v'h(i) (6.24)

But since h(x:) = hei), and u'gfx) = LiEI Uigi(X)::5LiEl Uigi(i) = urg(i), from (6.24).
we get

since hi(x) = 0, g;(X)::5 O. and u, ~ O. The above incquality ihus implics that

f(x)::5f(x)+ e[~ u,+ it1 Ivil]

t(x) + u'g(i) ~ t(x) + urg(x) ~ t(i) + u' g(i)

which shows that t(x) ~ t(i). and the proof is complete.

Corollary

U nder the assumptions of the theorern, suppose that g(i)::5 O. hei) = O,
u'g(i) = O. Then, x is an optimal solution to the foIlowing problem:

and

Thus, if e is sufficiently smaIl so that €[LiEI Uj + Li=l Iv;/] is small enough, then
we have a near-optimal solution. In many practical problerns, such a solution is
acceptable.

In the absence of a duality gap, Theorem 6.5.2 below shows that the
complementary slackness condition is necessary for optimality.

6.5.2 Theorem

Minimize
subject to

t(x)

gi(X)::5°
hi(x) = °

for i E I

fori=l •...• /

Suppose that i and (ü, v) are optimal solutions of thc primal and dual
problems, respectively, and suppose that f(i) = e(ô. v). Then ü'g(i) = O and
XEX(ü, v); that is, i solves the problem to minimize t(x)+ü'g(x)+v'h(x)
subject to x E X.

XEX

In particular. i is an optimal solution to the original primal problem, and (u, v)
is an optimal solution to the dual problem.

Proof
Note. by definition of O(Ô, v). that

Proof

Note that u'g(i) = O implies that gj(i) = O for iE I, and from the theorem, it
foIlows that i solves the stated probIem. Also, since the feasible region of the
primal problem is contained in that of the above problern, and since x is a
feasible solution to the primal problem, then i is an optimal solution to the
primal problem. Furthermore, f(i) = I(i) + u'g(i) + v'h(i) = O(u, v) so that (u, v)
solves the dual problem.

From the above theorern, as the dual function () is evaluated at a given point
(u, v), we obtain a point i that is an optimal solution to a problem closely
rclatcd to thc origina! problcrn, in which thc constraints are pcrturbed from
h(x) = O and gj(x)::5 O for i= 1, ... , m to h(x) = h(;~) and gi(x) ::5gj(i) for iE I.

During the COUíSC of solving the dual problem, suppose that for a given (u, v)
with u ~ 0, we have i E Xíu, v). Furtherrnore, for some e > 0, suppose that
Igj(i)l::5 e for iE I, g. (x) ::5e for ie l, and Ih;Ci)l::5 e for i = 1•... , l. Note that if
s is sufficiently small, then i is near-jeasible. Now suppose i is an optima!

t(x) + ü'g(i) + v'h(i) ~ inf {f(x) + ô'g(x) + v'h(x): x E X}

= O(ô, v) = t(x)

Thus, ü'g(x)+v'h(i)~O, and since h(x)=O, then ü'g(x)~O. Since ü?:O and
g(i)::5 O, ü' g(x) = O. Thus, from (6.25), it foIlows rhat x E XCii, li), anel the proof
is complete.

It may be noted that in the abscnce of a duality gap, the above theorcm also
shows that there exists an optimal solution to the primal prablem among points
in the set X(ô, v). where (íi, v) is an optimal solution to the dual problem.

(6.25)

Generating Prima! Feasible Solutionn in the Convex Case

Under suitable convexity assumptions, we could e asily obtain prirnal feasible
salutions at cach iteration of toe dual problem by solving a linear programo In
particular, suppose that we are given a point Xo which is feasible to lhe original
problern, and let the points Xi E X(Uj, v) for j = 1, ... , k be generatcd. This is
done during the process of maximizing the dual function by using an)' of the
algorithms discussed in Section 6.4. Theorem 6.5.3 below shows that a Ieasible



210 lagrangian Duality and Saddle Point Optimality Conditions

solution to the primal problem could be obtained by solving the following
linear programming problem P',

k

L \!(Xj)
j~O

kL Àjg(Xj)~O
j~O

kL Àjh(Xj) = O
j~O

k

L Àj= 1
j~O

Problem r, Minimize

subject to

•

\ 2:: O for j = O, ... , k

6.5.3 Theorem

Let X be a nonempty convex set in E", let f: E" ~ EI and g: E; ~ Em be
convex, and let h: E" ~ E( be affine; that is, h is of the form h(x) = Ax- b.
Let Xo be an initial feasible solution to Problem P, and suppose that Xj E

X(Uj, V) for j = 1, ... , k are gcnerated by any of the algorithms for solving the
dual problem. Furthermore, let Xj for j = O, ... , k be an optimal solution to
Problem P', and let Xk == 2:~=0 ÃjXj• Then Xk is a feasible solution to the primal
Problem P. Furtherrnore, if Zk - O(u, v) ~ e for some (u, v) with u 2:: O, then
f(Xk) ~ Y + ê, where Zk = 2:7=0 ÃJ(Xj), andy = inf {f(x): x E X, g(x) ~ O, h(x) = O}.

Proof

Since X is convex and Xj E X for each j, then Xk E X. Since gis convex and h is
affine, and noting the constraints of Problem P', g(xd ~ O and h(Xk) = O. Thus,
xk is a feasible solution to the primal problem. Now suppose that Zk - O(u, v) -s
e for some (u, v) with u2:: O. Noting the convexity of f and Theorem 6.2.1, we
get

k

f(Xk)~ L ÃJ(X)=Zk~O(U,V)+ê~Y+ê
j=O

and the proof is complete.

At each iteration of the dual maximization problem, we thus can obtain a
primal Icasiblc solution by solving the linear programming problem P', Even
though the primal objcctive values {f(xk)} of the generated primal feasibJe
points are not ncccssarily dccrcasing, they form a sequence that is bounded
from above by thc nonincreasing sequence {Zk}.

Note that if z, is dose cnough to the dual objective value evaluated at any
dual feasible point (u, v), whcre u 2:: O, thcn xk is a near-optimal prima] fcasible
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solution. Also note that we need not solve problem P' in lhe case of the cutting
plane algorithm, since it is precisely the linear programming dual of the master
problern stated in step 1 of the cutting plane algorithm. Thus the optimal
variables Ão, ... , Ãk could be retrieved easily from the solution to the master
problem and Xk computed as 2:~~0 ÃjXj• lt is also worth mentioning that the
termination criterion Zk = e(uk, vd in the cutting plane algorithm could be
interpreted as letting (u, v) = (ub Vk) and e = O in the above theorem.

To illustrate the above procedure, consider Example 6.4.4. At the end of
iteration k = 1, we have the points Xo= (5/4,1/2)' and XI = (2, O)'. The as-
sociated primal point Xl could be obtained by solving the following linear
programming problem

Minimize iÀo

subjectto -~ÀO+ÀI~O

Ào+À1=1
Ào, 1.12::0

The optimal solution to this problem is given by Ão == 2/5 and ÃI == 3/5. This
yields a primal feasible solution

~

- _ 2(5 I)' + 3(2 O·)' _ (17 2)'X - 5 4, '2 5, - Tõ, 10

As pointed out earlicr, the above linear program need not be solved
separately to find the values of Ão and X I since its dual has already been solved
during the course of the cutting plane algorithm.

6.6 linear and Ouadratic Programs
In this section we discuss some special cases of Lagrangian duality. In particu-
lar, we briefly discuss duality in linear and quadratic programming.

Linear Programming

Consider the following primal linear program:

Minimize

subject to

c'x
Ax=!>

X 2:: O

Letting X = {x: X 2:: O}, the Lagrangian dual of this problem is to maximize
O(v), where

O(v) = inf {c'x+ v'(b - Ax): x 2:: O}= v'b + inf {(c' -v' A)x: x;::: O}
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Clcarly,

O(v) ={~! if (e/-v/A)2:0
otherwise

Hence, the dual problem can be stated as follows:

Maximize v'b
subject to A/v:5 C

Thus, in the case of linear prograrns, the dual problem does not involve the
primal variab!es. Furthermore, the dual problem itself is a linear program, and
the reader could verify that the dual of the dual problem is the original primal
programo Theorern 6.6.1 below summarizes the relationships between the
primal and dual problems.

6.6.1 Theorem

Consider the primal and dual linear problems stated above. One of the
following mutually exc1usive cases will occur.

1. The primal problem adrnits a feasible solution and has an unbounded
optimum objective value, in which case the dual problem is infeasible.

2. The dua! problem admits a feasible solution and has an unbounded
optimum objective value, in which case the primal prob!em is infeasible.

3. Both problems admit feasible solutions, in which case both problems have
optimal solutions i and v such that c/i = v/b and (c' - v' A)i = O.

4. Both problems are infeasible.

Proof
Let x and v be such that Ax = b, x 2: 0, and A/v:5 e. Then, v'b = v' Ax:5 c'x.
Therefore

inf {c'x: Ax = b, x 2: O} 2: sup {v'b : A'v:5 c} (6.26)

If the primal problem has an unboundcd objective value, then from (6.26) the
dual problem is infeasibJe. Similarly, from (6.26), if the dual problem has an
unbounded objective value, then the primal is infeasible. Now suppose that
both problems adrnit fcasible solutions. Again from (6.26), inf {c'x: Ax= b, x2:

O} is finite, and hence the primal problem must have an optimal solution, say x.
From the Kuhn- Tucker conditions, there must exist a vector v E Em such that

c-A/V2:0
(e' -V' A)i = O

(6.27)
(6.28)
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From (6.27), we see that v is a feasible solution to the dual problem.
Furthermore, from (6.28), we have

e/i = v/Ai = v/h

In view of (6.26), then, v is an optimal solution to the dual problem. The last
possible case is for both problems to be infeasible, and the proof is complete.

We now show how the optimal dual variables can be obtained if the sirnplex
method is used for solving the primal problcm. Let the optima! basic solution
be x' = (x~,x~), where iN = O and ia = R-Ib. The matrix A and vector c are
also partitioned to give A = [B, N] and c' = (e~, c~).

The Kuhn-Tucker condition (6.28) can be writtcn as (c~-v/B)iB +
(e~-v'N)X-N = O. Since iN = O, this condition is satisficd by letting e~l-v/B = O
or

v' = C~B-I (6.29)

The Kuhn-Tucker condition (6.27) can be written as c~-v/B2:0 and
e~-v'N:2::0. Letting v' = C~B-l, the first inequality is satisficd, and thc latter
becornes

e~B-IN-C~:50

which is prccisely the optimality condition for the sirnplex method.
Recall that at each iteration of the simplex method, row O displays thc vector .

ehB-1A-e/. Suppose that the matrix A contains an idcntity subrnatrix, and
suppose that the cost coefficients of the corresponding variables are given by
the vector eI' Then from (6.29), ê} = ehB-l- c~= v' - c; is given in row O in
the updated tableau under the original identity matrix. Adding c~ to ê~ in the
final tableau yields the optimal values of the dual variablcs,

Quadratic Programming

Consider the fo\1owing quadratic prograrnming problem:

Minimize !x'Hx + d'x

subject to Ax s.b

where H is symmetric and positive definite, so that the objective function is
strict1y convexo The Lagrangian dual problem is to maximize 8(u) over u 2: O,
where

0(0) = inf {!x/Hx +d'x +u'(Ax --b) :XE EII} (6.30)

Note that for a given u, the function !x/Hx + d'x + u' (Ax - h) is strictly convex
and achieves its minimum at a point satisfying

Hx+A'u+d=O (6.31)
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Thus the dual problem could be written as follows:

Maxirnize !xtHx+dtx+ut(Ax-b)

subject to Hx +A'u = - d

u~O
We now develop an alternative form of the Lagrangian dual problem. Since

H is positive definire, then H-I exists, ànd the unique solution to (6.31) is given
by

x= -H-1(d+A'u)

Substituting in (6.30), it follows that

O(u)= !u'Du +u'c-!d'H-Id

where D=-AH-IA', and c=-b-AH-1d. The dual problem is thus given
by:

Maximize ~urDu +u'c-~d'H-ld

subject to u~O
The dual problem can be solved relatively easily by the following scheme.
Given u, let VO(u)= Du + c = g. Consider g as defined below:

if uj > O or gj ~ O
if uj = O and gj < O

By Theorem 6.4.1, if g = O, then u is an optimal solution. Otherwise g IS an
improving feasible direction. Optimizing O starting from :1 along the direction g
without violating the nonnegativity rcstriction leads to a new point. The
prccess is then repeatcd.

{
gj

gj = O

Exarcises

6.1 Co nsidcr thc problcrn to rninirnizc x I subjcct to x 1
2 + x/ == 1. Derive cxplicitly the

dual function, and verify its concavity. Find thc optimal solutions to both the
primal and dual problerns, and compare their objective vaiues.

6.2 Consider the following problem:

Maximize 2xl+3x2+X3

subject to x I + X2 - X3 :5 1.

Xl + Xz :54

x):5 2

Xl> X2, X3 2: O

J 6.3

a. Find explicitly the dual function, where X = {(XI, X2, XJ): Xl + X2 - x):51;
x., xz, X32:Q}.

b. Repeat part a for X == {(Xl> Xz, x)): XI + .':z:5 4; x., Xz, x] 2: Q}
c. In parts a and b, note that the difficulty in evaluating lhe dual function at a

given point depends on which constraints are handled via the set X. Propose
some general guidelines that could be used in sclccting the set X to make the
solution easier.

Consider the problem to minimize e -x subject to -x:5 O.
a. Solve the above primal problern.
b. Letting X," El> find the explicit form of the Lagrangian dual function, and

solve the dual problem.
Consider the prirnal problem P discussed in Seetion 6.1. Intrcducing lhe slack
vcctor s, the problem ean be formulated as follows:

,( 6.4

Minimize f(x)

g(x) +s = O

h(x) = O

(x, S)E X'

subject to

6.5
6.6

where X' = {(x, s): x E X, S 2: O}. Formulare the dual of the above problcrn and
show that it is equivalent to the dual problcrn discusscd in Scction 6.1.
In the proof of Lemma 6.2.3, show that the sct Â is convexo
Under the assumptions of Thcorem 6.2.5, supposc that i is an optirnal solution to
the primal problem, and that f and g are differentiable at x. Show that there
exists a vector (ü, v) such that

[

no , ]'
Vf(x)+;~1 ü;Vg;(X)+;L

I

v,Vh;(x) (X-X)2:Q for each XE X

u;g;(x) = Q for i= I, ... ,m

ii2:0

Show that these ccnditions reduce 10 the Kuhn-Tucker conditions if X is open.
6.7 Prove the following saddle point optimality condition. Let X be a nonernpty

eonvex set in En, and let f: E; -'> Eh g: E, -'> E,n be convex, and h: E. -'> E, be
affine. If x is an optimal solution to the problern to rninimize f(x) subject to
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g(x):s O, htx) = 0, li: E X, the n thcre cxist (ü", ii, v);,! 0, (ü", ü) 2: O such that:

.-jJ(Ü", D, V, X) $ <f>(ü", Ü, v, X) $ .-jJ(Ü(I, Ü, V, X)

for ali D 2: 0, V E E" and X E X, where <f> (U(I, D, v, X) = u"f(x) + D' g(x) +v'híx).
Consider lhe problem 10 minimize f(x) subjcct 10 g(x) -s 0, XE X. Theorem 6.2.4
shows that lhe primal and dual objective values are equal at optimality under the
assurnptions that f, g, and X are convex and the constraint qualification that
g(i) < O for some i E X. Suppose that the convexity assumptions on f and g are
replaced by continuity of f and g and that X is assumed to be convex and compacto
Does the result of the theorern hold? Prove or give a counterexamp!e.
Consider lhe following problem:

Minimize -2xI + 2X2 + X3 - 3x4

6.8

f( 6.9

subjeet to X I+ X2 + x) + X4 $ 8
XI -2X3+4x4$2

XI+ X2 $8

X3 +2X4$ 6

6.10

XI' X2, X), X42:0

Let X"" {(Xl> X2, X3, X4): XI + X2 $ 8, X3 + 2X4 $ 6; Xl> X2, X), X42: O}.
a. Find the function 8 explicitly.
b. Verify that 8 is differentiablc at (4, O), and find V 8(4, O).
c. Verify that V8(4, O) is an ínfeasible direction, and find an improving feasible

direction.
d. Starting from (4, O) maximize 8 in the direction obtained in part c.
Consider the problem 10 minimize x/+x/ subject to XI+X2-4$0, and XII

X22: O.
a. Verify tha: the optimal solution is x = (2, 2)' with f(x) = 8.
b. Letting X = {(Xl> x2): XI 2: O, X22: O}, write the Lagrangian duaJ problem. Show

that the dual function is 8(u) = -u2/2-4u. Verify that there is no duality gap
for this problcm.

c. Solve the dual problem by the cutting plane algorithm of Section 6.4. Start
with x = (1, 1)'.

d. Show that (J" is differentiable everywhere, and solve the problem using the
gradient method of Section 6.4.

Consider lhe following problem:

Minirnize Xl + X2

6.11

subject to 2xl+ x2$8

3xl+2x]$10

Xl> X22: O

x., X2 intcgcrs

Let X =: {(Xl> x2): 3xl + 2x::s i0, Xl> X22: O and integcr}. At u = 2, is 8 differenti-
able? lf not charactcrize its ascent directions.
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'6.12 Considcr the following problern .

Minirnize (XI - 3)2 + (x2 - 5)2

"r 6.13

-( 6.14

subject to X/- X2$ O

-XI $ 1

Xl +2X2$ 10

XII X22:0

a. Find the optimal solution geometrically, and verify it by using the Kuhn-
Tuckcr conditions.

b. Formulate the dual problem in which X = {(x I, X2): Xl + 2X2 $ 10; x., X2 2: O}.
c. Perform three iterations of the gradient maximization tcchnique described in

Section 6.4, starting with (ulI U2) = (O, O). Describe lhe perturbed optimization
problems corresponding to the generated primal inícasible points.

In reference to Exercise 6.12 abovc, pcrforrn three itcrations of the cutting plane
algorithm and compare the results with those obtaincd by gradient maximization.
AIso identify the primal feasible solutions generated by the algorithm.
Consider the following problem.

Maximize 3XI+6x2+2x3+4x4

subject to x, + X2 + X3 + X4:S 12

-XI + X2 +2x4:::;4

XI + X2 $ 12

X2 $4

X3 + x4:$ 6

XII X2, X3l X4 2: O

6.15

a. Formulate the dual prob!em in which X = {(Xl' X2, X" X,,): x 11.X2 $ 12, X2 -s 4,
X3 +x4$6; x" Xl, X), x42: O}.

b. Starting from the point (0, O), solve lhe Lagrangian dual problem by optimiz-
ing along the direction of stccpcst asccnt discusscd in Section 6.4.

c. At optirnality of the dual, find lhe optimal prirnal solution.
Consider the problem to minirnizc X subject to g(x):5 O and x E X = {X : X 2: O}.
Derive the explicit forms of the Lagrangian dual Iunction, and determine the
collection of subgradients at u = O for each of the following cases.

{
-I/X

a. g(x) = O •

{
-l/X

b. g(x) =
-1

{
l/X

c. g(x) = 1

for x! O

for X =' O

forxt-O

for X = O

for x t- O

for x = fi
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6.16 Suppose that 8: Em ~ EI is concave.
a. Show that 8 achieves its maximum at ü if and only if

maximum {8'(ii; d): Ildll$1} = O

b. Show that 8 achieves its maximurn over the region U = {u: u 2: O} at ü if and
only if

maximum {8'(ü; d):dE D, Ildll$1}= O

16.17

where D is thc cone of Ieasible directions of U at ü.
(Note that lhe above rcsults could be uscd as stopping criteria for maximizing
the Lagrangian dual function.)

Consider the folJowing problem, in which X is a compact polyhedral set and f is a
concave íunction.

Minimize f(x)

Ax=b

XEX

subject to

6.18

a. Formulate the Lagrangian dual problem.
b. Show that the dual function is concavc and piecewise linear.
e. Characterize the subgr adients, the ascent directions, and the steepest aseent

direction for the dual function.
d. Generalize the result in part b to the case where X is not cornpact.
Construct a numerical problcrn in which a subgradient of the dual function is not
an ascent dircction. Is it possiblc that lhe collection of subgradients and the cone
of ascent directions are disjoint?
(Hint: Consider the shortest subgradient.)
In Section 6.3 we showed that thc shortest subgradient ~ of 8 at ü is the steepest
ascent direction, The following modification of ~ is proposed to maintain
íeasibility:

6.19

- (maximum (O, ç.)
Çi =~

lç,
if Üi = O
if Ü, 2: O

Is ~ an ascent direction? Is it the direction of steepest ascent with the added
nonnegativity rcstriction? Prove or give a counterexample,
Consider the following problcrn , in which X is a cornpact polyhedral set.6.20

Minimize c'x

subject to Ax=b

XEX

For a givcn vcctor v, suppose that XI> ••• , x, are the extreme points in X that
bclong to XCv). Show that thc extrcme points of éJ8(v) are contained in the se!
1\ = {Ax, - b : j = 1, ... , k}. Give an examplc wherc lhe cxtrerne points of iJ()(v)
form a propcr subsct oí 1\.

Exercises 2'19

6.21 Suppose that the shortest subgradient t of 8 at (ü, v) is not equal to zero. Show
that therc exists an E> O such that II~- til < E implies that ~ is an ascent direction
of 8 at (ii, v).
(Frorn the above exercisc, if an iterative procedurc is uscd to find ~, then it would
find an ascent direction after a sufficient number of iterations.)
Considcr the primal and Lagrangian dual problerns discussed in Section 6.1. Let
(ü, v) be an optimal solution to the dual problem. Give n (u, v), supposc that
XE X(u, v). Show that there exists a D >O such that II(ü,v) - (11, v) - A[g(i), h(x»)11 is
a nonincreasing function of A over the interval [0,8]. Interpret lhe result
geometrically, and illustrate by the foliowing problem, in which (u!> uz) = (3,1)
are the dual variables corresponding to the first two constraints.

Minimize -2XI-2xZ-5x3

subject to XI + X2+ X3 $10

6.22

XI +2X3 2: 6

XI> Xz, x)$3

XI> X2, X32:0

'" 6.23 From Exercise 6.22 above, it is clear that moving a small stcp in thc direction of
any subgradient Jeads us closer to an optimal dual solution. Consider the
following algorithm for maximizing the dual of the problem to rninirnizc {(x)
subjcct to h(x) = O, XE X.

Main Step
Givenv., let XkEX(V,J. Let Vk+l=Vk+Ab(Xk), where A>O is a small scalar.
Replace k by k + 1 and repeat the main step.

a. Discuss some possible ways of choosing a suitablc step size À. Do you see any
advantagcs in reducing the step size during latcr iterations? If 50, propose a
scherne for doing that. .

b. Does the dual Iunction necessarily incrcase from onc itcration to anothcr?
Discuss.

c. Devisc a suitable termination criterion.
d. Apply the above algorithrn, starting from v = (1,2)' to solve the following

problcm:

Minimize x/+ X/+2X3
xI+ x2+x)=6

- X I + Xz + x3 = 4

subject to

(This procedure is rcferrcd to as a subgradient opúmizution tcchnique.)
6.24 Consider the problern to minimize {(x) subjcct to g(r.:) $ O, ;;(E X.

a. In Exercise 6.23 above, a subgradient optimization technique was discussed
for the equality case. Modify the procedure for the above incquality COI1-

strained problcm,
Hint: Given u, let XEX(U). Replace gi(X) by rnaxirnurn [O, g,(x)] for each i
with Uj = O.
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6.25

b. Illustrutc lhe proccdurc givc n in part a by solving the problcrn in Excrcise
6.14 starting from u = (0, O)'.

c. Extend the subgradient optimization technique to handle both equality and
incquality constraints.

Consider the following warehouse location problem. We are given destinations
1, ... , k, where the known demand for a certain product at destination j is dj'
We are also given m possible sites for building warehouses. If we decide to build
a warchouse at site i, its capacity has to be k, and incurs a fixed cost fi' The uni!
shipping cost from warehouse i to destination j is cii' The problem is to determine
how many warehouses to build, where to locate them, and what shipping patterns
to use so that the dernand is satisfied and the total cost is minimized.
The problern can be stated mathematically as follows:

Minimize
rn k '"I I CiiXii + I[;Yi

i"'" I j-I i-I

subject to
k

I xij:;;:kiYi
j=-l

for i = 1, ... , m

rn

IXij 2: di
j"'l

for j = 1, ... , k

Xij 2: ° for j = 1, ... , m; j = 1, ... , k

Yi=Oorl fori=I, ... ,m

a. Formulate a suitable Lagrangian dual problem.
b. Makc use of the results of this chapter to devise a special scheme for

maximizing the dual of the warehouse location problem.
c. Illustrate by a small numerical example.
A company wants to plan its produttion rate of a certain item over the planning
period [O, T] such that the sum of its production and inventory costs is
minimized. In addition, the known dcrnand must be met, the production rate
must fali in the acceptable interval [I, u], the inventory must not exceed d, and it
must be at least equal to b at the end of the planning period. The problem can be
formulated as follows:

Minimize lT

[CIX(I) + C2l(I)] dI

subject to x(t) = x,,+ l' [y(r)- z(r)] dr
/I

x(T) 2: b
o:;;: X(I):;;: d

I:;;: y(I):;;: u

1

6
•
25

for tE [0, T]

for tE (0, T)
for I E (0, T)

where X(I) = inventory at lime I
y(r) = production rate at time t
z(t) = known dcruand ratc at time I

x" = known initial inventory
CI> C2 = known coefficicnts
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a. Make the above control problem discrete, as done in Section 1.2, and
formulate a suitable Lagrangian dual problem.

b. Make use of lhe resu1ts of this chapter to develop a schernc of solving lhe
primal and dual problems.

C. Apply your algorithm to the following data:
T=6, x()=O, b=4, cl=l, c2=2, 1=2, u=5, d=6, and z(I)=4 over [0,4]
and Z(I) = 3 over (4,6].

6.26 Consider the primal and dual linear programming problems discussed in Section
6.6. Show directly that:
a. If the primal is inconsistent and the dual admits a feasible solution, then the

dual has an unbounded cptirnal objeciive value.
b. If the dual is inconsistent and the primal adrnits a feasible solution, then the

primal has an unbounded optimal objective value.
iHint: Use Farkas' theorem.)

6.27 Consider the linear program to minimize c'x subjeet to Ax = b, x 2: O. Write the
dual problem. Show that the dual of lhe dual problem is equivalent to the primal
problem.

6.28 Consider the following problem:

Minimize -XI-2x2- X3

subject to XI + X2+ X3:;;: 16

XI- X2+3x3:;;: 12

Xl + X2 :;;:4

XI> X2, X3 2= °

'" 6.29

Solve the primal problem by the simplex rnethod. At each itcration idcntify the
dual variables from the simplex tableau. Show that lhe dual variables satisfy the
complementary slackness conditions but violate the dual constraints. Verify that
dual Ieasibility is reached at terrnination.
Consider the following quadratie 'programming problem:

Minimize 2X12+ X22_2x,X2-4xl-6x2

subject to XI + x2:;;:8

-XI + 2x2:;;: 10

6.30

XI> X22=°
Solve the Lagrangian dual problem by the method of Section 6.6. At each
iteration, identify the corresponding primal infeasible point as wel! as lhe primal
feasible point. Develop a suitable measure of infeasibility and check its progresso
Can you draw any general conclusions?
Consider the problern to finá

minimum maxirnum <I> (x, y)
xe X XE Y

maxirnurn minirnum </>(x,y)
yr: Y xcX

and

where X and Y are nonempty compact convex setsin E; and E,n, respectively,
and <I> is convex in x for any given y, and concave in y for any givcn X.
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a. Show that minimurn rnaximum c/>(x, y) "" maximum minimum cf>(x,y) without
Jl' x yr Y yFY Jl'~X

any convcxity assumptions.

h. Show that rnaximum cf>(.,y) is a convex function in x and that rninimum cf>(x,.)
"y uX

is a concave Iunction in y.
c. Show that

minimum maximurn cf>(x, y) = masirnum minirnum cf>(x, y)
xe.X yeY ye.Y xe X

6.31
(Hint: Use part b and the necessary optimality conditions of Section 3.4.)

Let X and Y be nonempty sets in E,,, and let f, g: B; ~ EI' Consider the
conjugate [unctions r and s" defined as follows:

[*(u) = inf {[(x)-U'X:XE X}

g*(u)=sup{g(x)-U'X:XE Y}

a. lnterpret t: and g*geometrically.
b. Show that f* is concave over X* and g* is convex over Y*, where X* =

{u: f*(u) > -<Xl} and y* = {u: g*(u) <=}.
c. Prove the following canjl/gate weak duality theorem:

inf {[(x) - g(x): x E X n Y} 2: sup {f*(u) - g*(ll): u E X* n Y*}.

d. Now suppose that f is convex, g is concave, int X n int Y;é 0, and that
inf {[(x) - g(x): x E X n Y} is finite. Show that equality in part c above holds
true and that sup {f*(u) - g*(u): u E X* n Y*} is achieved.

e. By suitable choices of f, g, X, and Y, formulate a nonlinear programming
problern as follows:

t

Minimize f(x) - g(x)

xEXnYsubject to

I 6.32

What is the form of the conjugate dual problem? Devise some strategies for
solving lhe dual problem.

Considcr a single constrained problern to minimize [(x) subject to g(x):s ° and
x E X, where X is a compact set. The Lagrangian dual problem is to rnaximize
8(u) subjcct to u 2: O, where 8(u) = inf {[(x) + ug(x): x E X}
a. Let Q;:,-O, and let XEX(U). Show that if g(i»q then ü>u, and if g(i)<O

then ü < U, where ü is an optimal solution to the Lagrangian dual.
b. Use the result of part a to find an interval [a, b] that contains ali the optimal

soJutions to lhe dual problem or else concludes that the dual problem is
unbounded.

c. Now consider lhe problem to maxirnize O(u) subject to a:S u:s b, The follow-
ing schcrnc is used to solve the problem.

Let ü = (a + b)/2, and let i E X(ü). If g(i) >° then replace a by ü, and
repeat the processo li g(i) <O, replace b by ü, and repeat the processo
If g(i) == O. stop; ü is an optimal dual solution,

Exercises 2.23

Show that the procedurc converges to an optirnal solution, and illustrate by
solving the dual of the following problem.

Minimize XI2+X/

- x I - X2 + 1 :$ °subject to

d. An alternativo approach to solving lhe problem to m aximizc 8(/./) subjcct to
a:S u:s b is to spccialize the tangential approxirnation rnethod discussed in
Section 6.4. Show that at cach iteration only two supporting hyperplanes need
be considered, and that the rnethod could be stated as follows.

Let x, E X(a) and x, E X(b). Let ü = (f(x,.)- f(xó»)/(g(Xb)- g(x.»). lf
ü = a or ü = b, stop; ü is an optimal solution to lhe dual problem.
Otherwise, let i E X(ü). If g(i) > 0, replace a by ü, and repcat the
processo If g(x) < 0, replace b by ü, and repeat the processo If g(i) = 0,
stop; ü is an optima! dual solution,

Show that the procedure converges to an optirnal solution, and illustrate by
solving the problem in part (c).



procedures for so!ving the dual problem. One cutting plane method discussed in
Section 6.4 is a row generation procedure. In its dual form, it is prccisely the
column generation generalized programming mcthod of Wolfe, see Dantzig
[1963]. Another procedure is the subgradient optirnization which is briefiy
introduced in Exercises 6.22, 6.23, and 6.24. See Held, Wolfe, and Crowder
[1974] and Polyak [1967] for validation of subgradient optimizaticn, For other
related work, see Bazaraa and Goode [1977], Fisher, Northrup, and Shapiro
[1975], and Held and Karp [1970].

One of the pioneering works for using the Lagrangian formulation to
develop computational schemes is credited to Everett [1963]. Under certain
conditions, he showed how the prima! solution could be retrieved. The result
and its extensions are given in Section 6.5.

Notes and Beíerences
The powcrful rcsults ar duality in linear programming and thc saddlc point
optirnaliry crireria for convcx programming sparkcd a grcat dcal of intcrest in
duality in nonlinear programming. Early results in this area include lhe work of
Dom [1960], Hanson [1961], Mangasarian [1962], Stoér [1963], and
Wolfe [1961].

More reccntly, several duality formuJations that enjoy many of the proper-
ties of linear dual programs have evolved. These include the Lagrangian dual
problem, the conjugate dual problem, and the surrogate dual problem. In this
chapter we concentrated on the Lagrangian dual formulation because, in our
judgment, it is the most promising formulation from a computational stand-
point and also because the results of this chapter give the general f1avor of the
results that one would obtain using other duality formulations. Those in-
terested in studying the subject of conjugate duality may refer to Fenche!
[1949], Rockafellar [1964,1966, 1968, 1969, 1970], and Whinston [1967]. For
the subject of surrogate duality, where the constraints are grouped into a single
constraint by the use of Lagrangian multipliers, refer to Greenberg and
Pierskalla [1970b]. Severa 1 authors have developed duality formulations that
retain the symmetry between the primal and dual problems. The works of
Dantzig, Eisenberg, and Cottle [1965], Mangasarian and Ponstein [1965], and
Stoêr [1963J are in this class.

The reader will find the work of Geoffrion [1971 b] and Kararnardian [1967]
as excellent references on various duality formulations and their interrelation-
ships. See Everett [1963], Falk [1967, 1969J, and Lasdon [1968] for further
study on duality. The relationship between the Lagrangian duality formulation
and other duality formulations is examined in Bazaraa, Goode, and Shetty
[1971J, Magnanti [1974], and Whinston [1967]. The economic interpretation
of duality is covered by Balinski and Baurnol [1968], Beckman and Kapur
[1972], Peterson [19701, and Williams [1970].

In Sections 6.1 and 6.2, the dual problem is presented, and some of its
properties are developed. As a by-product of the main duality theorern, we
develop the saddle point optimality cri teria for convex programs. These criteria
were first developcd by Kuhn and Tucker [1951]. For the related concept of
min-rnax duality, see Mangasarian and Ponstein [1965], Ponstein [1965],
Rockafellar (1968J, and Stoêr [1963].

In Section 6.3, we examine severa I properties of the dual function. We
characterize the collection of subgradients at any given point, and use that to
determine both ascerit directions and the steepest ascent direction, We show
that the stcepest asccnt dircction is the shortest subgradient. This rcsult is
esscntially givcn by Dcrnyanov [196tl]. In Section 6.4, we use thcsc propcrties
to devclop severa! schcrncs for maxirnizing thc dual function. In particular, we
describe the gradient method and a decomposition method for generating
ascent directions. For further study of this subject sce Demyanov [1968, 1971],
Fisher, Northrup and Shapiro [1975], and Lasdon [1970]. There are other
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