
Convex Analysis and Optimization 

Preface: 

 

This book focuses on the theory of convex sets and functions, and its connections with a number 
of topics that span a broad range from continuous to discrete optimization. These topics include 

Lagrange multiplier theory, Lagrangian and conjugate/Fenchel duality, minimax theory, and 

nondifferentiable optimization. 

The book evolved from a set of lecture notes for a graduate course at M.I.T. It is widely 

recognized that, aside from being an eminently useful subject in engineering, operations 
research, and economics, convexity is an excellent vehicle for assimilating some of the basic 

concepts of real analysis within an intuitive geometrical setting. Unfortunately, the subject's 

coverage in academic curricula is scant and incidental. We believe that at least part of the reason 
is the shortage of textbooks that are suitable for classroom instruction, particularly for 

nonmathematics majors. We have therefore tried to make convex analysis accessible to a 

broader audience by emphasizing its geometrical character, while maintaining mathematical 
rigor. We have included as many insightful illustrations as possible, and we have used 

geometric visualization as a principal tool for maintaining the students' interest in mathematical 

proofs. 

Our treatment of convexity theory is quite comprehensive, with all major aspects of the subject 

receiving substantial treatment. The mathematical prerequisites are a course in linear algebra 
and a course in real analysis in finite dimensional spaces (which is the exclusive setting of the 

book). A summary of this material, without proofs, is provided in Section 1.1. The coverage of 

the theory has been significantly extended in the exercises, which represent a major component 
of the book. Detailed solutions of all the exercises (nearly 200 pages) are internet-posted in the 

book's www page 

Some of the exercises may be attempted by the reader without looking at the solutions, while 

others are challenging but may be solved by the advanced reader with the assistance of hints. 

Still other exercises represent substantial theoretical results, and in some cases include new and 
unpublished research. Readers and instructors should decide for themselves how to make best 

use of the internet-posted solutions. 

An important part of our approach has been to maintain a close link between the theoretical 

treatment of convexity and its application to optimization. For example, in Chapter 2, after the 
development of some of the basic facts about convexity, we discuss some of their applications 

to optimization and saddle point theory; in Chapter 3, after the discussion of polyhedral 

convexity, we discuss its application in linear and integer programming; and in Chapter 4, after 

the discussion of subgradients, we discuss their use in optimality conditions. We follow this 
style in the remaining chapters, although having developed in Chapters 1-4 most of the needed 

convexity theory, the discussion in the subsequent chapters is more heavily weighted towards 

optimization. 

The chart of the opposite page illustrates the main topics covered in the book, and their 
interrelations. At the top level, we have the most basic concepts of convexity theory, which are 

covered in Chapter 1. At the middle level, we have fundamental topics of optimization, such as 

existence and characterization of solutions, and minimax theory, together with some supporting 

convexity concepts such as hyperplane separation, polyhedral sets, and subdifferentiability 



(Chapters 2-4). At the lowest level, we have the core issues of convex optimization: Lagrange 

multipliers, Lagrange and Fenchel duality, and numerical dual optimization (Chapters 5-8). 

An instructor who wishes to teach a course from the book has a choice between several different 

plans. One possibility is to cover in detail just the first four chapters, perhaps augmented with 
some selected sections from the remainder of the book, such as the first section of Chapter 7, 

which deals with conjugate convex functions. The idea here is to concentrate on convex analysis 

and illustrate its application to minimax theory through the minimax theorems of Chapters 2 and 
3, and to constrained optimization theory through the Nonlinear Farkas' Lemma of Chapter 3 

and the optimality conditions of Chapter 4. An alternative plan is to cover Chapters 1-4 in less 

detail in order to allow some time for Lagrange multiplier theory and computational methods. 

Other plans may also be devised, possibly including some applications or some additional 

theoretical topics of the instructor's choice. 

While the subject of the book is classical, the treatment of several of its important topics is new 

and in some cases relies on new research. In particular, our new lines of analysis include: 

{(a)} A unified development of minimax theory and constrained optimization duality as special 

cases of the duality between two simple geometrical problems: the min common point problem 
and the max crossing point problem. Here, by minimax theory, we mean the analysis relating to 

the minimax equality 

\inf_{x\in X}\sup_{z\in Z}\phi(x,z)=\sup_{z\in Z}\inf_{x\in X}\phi(x,z), 

and the attainment of the "inf" and the "sup." By constrained optimization theory, we mean the 

analysis of problems such as 

minimize f(x) 

subject to x\in X, g_j(x)<= 0, j=1,...,r, 

and issues such as the existence of optimal solutions and Lagrange multipliers, and the absence 

of a duality gap [equality of the optimal value of the above problem and the optimal value of an 
associated dual problem, obtained by assigning multipliers to the inequality constraints 

g_j(x)<=0]. 

(b) A unification of conditions for existence of solutions of convex optimization problems, 

conditions for the minimax equality to hold, and conditions for the absence of a duality gap in 

constrained optimization. This unification is based on conditions guaranteeing that a nested 

family of closed convex sets has a nonempty intersection. 

(c) A unification of the major constraint qualifications that guarantee the existence of Lagrange 

multipliers for nonconvex constrained optimization. This unification is achieved through the 

notion of constraint pseudonormality, which is motivated by an enhanced form of the Fritz John 

necessary optimality conditions. 

(d) The development of incremental subgradient methods for dual optimization, and the analysis 

of their advantages over classical subgradient methods. 

We provide some orientation by informally summarizing the main ideas of each of the above 

topics. 

 



Min Common/Max Crossing Duality 

In this book, duality theory is captured in two easily visualized problems: the min common 

point problem and the max crossing point problem, introduced in Chapter 2. Fundamentally, 

these problems revolve around the existence of nonvertical supporting hyperplanes to convex 
sets that are unbounded from above along the vertical axis. When properly specialized, this 

turns out to be the critical issue in constrained optimization duality and saddle point/minimax 

theory, under standard convexity and/or concavity assumptions. 

The salient feature of the min common/max crossing framework is its simple geometry, in the 

context of which the fundamental constraint qualifications needed for strong duality theorems 
are visually apparent, and admit straightforward proofs. This allows the development of duality 

theory in a unified way: first within the min common/max crossing framework in Chapters 2 

and 3, and then by specialization, to saddle point and minimax theory in Chapters 2 and 3, and 
to optimization duality in Chapter 6. All of the major duality theorems discussed in this book 

are derived in this way, including the principal Lagrange multiplier and Fenchel duality 

theorems for convex programming, and the von Neuman Theorem for zero sum games. 

From an instructional point of view, it is particularly desirable to unify constrained optimization 
duality and saddle point/minimax theory (under convexity/concavity assumptions). Their 

connection is well known, but it is hard to understand beyond a superficial level, because there 

is not enough overlap between the two theories to develop one in terms of the other. In our 

approach, rather than trying to build a closer connection between constrained optimization 
duality and saddle point/minimax theory, we show how they both stem from a common 

geometrical root: the min common/max crossing duality. 

We note that the constructions involved in the min common and max crossing problems arise in 

the theories of subgradients, conjugate convex functions, and duality. As such they are implicit 
in several earlier analyses; in fact they have been employed for visualization purposes in the 

first author's nonlinear programming textbook [Ber99]. However, the two problems have not 

been used as a unifying theoretical framework for constrained optimization duality, saddle point 

theory, or other contexts, except implicitly through the theory of conjugate convex functions, 
and the complicated and specialized machinery of conjugate saddle functions. Pedagogically, it 

appears desirable to postpone the introduction of conjugacy theory until it is needed for the 

limited purposes of Fenchel duality (Chapter 7), and to bypass altogether conjugate saddle 

function theory, which is what we have done. 

Existence of Solutions and Strong Duality 

We show that under convexity assumptions, several fundamental issues in optimization are 

intimately related. In particular, we give a unified analysis of conditions for optimal solutions to 

exist, for the minimax equality to hold, and for the absence of a duality gap in constrained 

optimization. 

To provide a sense of the main idea, we note that given a constrained optimization problem, 
lower semicontinuity of the cost function and compactness of the constraint set guarantee the 

existence of an optimal solution (the Weierstrass Theorem). On the other hand, the same 

conditions plus convexity of the cost and constraint functions guarantee not only the existence 
of an optimal solution, but also the absence of a duality gap. This is not a coincidence, because 

as it turns out, the conditions for both cases critically rely on the same fundamental properties of 

compact sets, namely that the intersection of a nested family of nonempty compact sets is 

nonempty and compact, and that the projections of compact sets on any subspace are compact. 



In our analysis, we extend this line of reasoning under a variety of assumptions relating to 

convexity, directions of recession, polyhedral sets, and special types of sets specified by 

quadratic and other types of inequalities. The assumptions are used to establish results asserting 
that the intersection of a nested family of closed convex sets is nonempty, and that the function 

$f(x)=\inf_zF(x,z)$, obtained by partial minimization of a convex function $F$, is lower 

semicontinuous. These results are translated in turn to a broad variety of conditions that 
guarantee the existence of optimal solutions, the minimax equality, and the absence of a duality 

gap. 

Pseudonormality and Lagrange Multipliers 

In Chapter 5, we discuss Lagrange multiplier theory in the context of optimization of a smooth 

cost function, subject to smooth equality and inequality constraints, as well as an additional set 

constraint. Our treatment of Lagrange multipliers is new, and aims to generalize, unify, and 

streamline the theory of constraint qualifications. 

The starting point for our development is an enhanced set of necessary conditions of the Fritz 

John type, that are sharper than the classical Karush-Kuhn-Tucker conditions (they include extra 

conditions, which may narrow down the field of candidate local minima). They are also more 
general in that they apply when there is an abstract (possibly nonconvex) set constraint, in 

addition to the equality and inequality constraints. To achieve this level of generality, we bring 

to bear notions of nonsmooth analysis, and we find that the notion of regularity of the abstract 

constraint set provides the critical distinction between problems that do and do not admit a 

satisfactory theory. 

Fundamentally, Lagrange multiplier theory should aim to identify the essential constraint 

structure that guarantees the existence of Lagrange multipliers. For smooth problems with 

equality and inequality constraints, but no abstract set constraint, this essential structure is 
captured by the classical notion of quasiregularity (the tangent cone at a given feasible point is 

equal to the cone of first order feasible variations). However, in the presence of an additional set 

constraint, the notion of quasiregularity breaks down as a viable unification vehicle. Our 

development introduces the notion of pseudonormality as a substitute for quasiregularity for the 
case of an abstract set constraint. Pseudonormality unifies and expands the major constraint 

qualifications, and simplifies the proofs of Lagrange multiplier theorems. In the case of equality 

constraints only, pseudonormality is implied by either one of two alternative constraint 
qualifications: the linear independendence of the constraint gradients and the linearity of the 

constraint functions. In fact, in this case, pseudonormality is not much different than the union 

of these two constraint qualifications. However, pseudonormality is a meaningful unifying 
property even in the case of an additional set constraint, where the classical proof arguments 

based on quasiregularity fail. Pseudonormality also provides the connecting link between 

constraint qualifications and the theory of exact penalty functions. 

An interesting byproduct of our analysis is a taxonomy of different types of Lagrange 

multipliers for problems with nonunique Lagrange multipliers. Under some convexity 
assumptions, we show that if there exists at least one Lagrange multiplier vector, there exists at 

least one of a special type, called informative, which has nice sensitivity properties. The 

nonzero components of such a multiplier vector identify the constraints that need to be violated 
in order to improve the optimal cost function value. Furthermore, a particular informative 

Lagrange multiplier vector characterizes the direction of steepest rate of improvement of the 

cost function for a given level of the norm of the constraint violation. Along that direction, the 

equality and inequality constraints are violated consistently with the signs of the corresponding 

multipliers. 



The theory of enhanced Fritz John conditions and pseudonormality are extended in Chapter 6 to 

the case of a convex programming problem, without assuming the existence of an optimal 

solution or the absence of a duality gap. They form the basis for a new line of analysis for 

asserting the existence of informative multipliers under the standard constraint qualifications. 

Incremental Subgradient Methods 

In Chapter 8, we discuss one of the most important uses of duality: the numerical solution of 

dual problems, often in the context of discrete optimization and the method of branch-and-

bound. These dual problems are often nondifferentiable and have special structure. Subgradient 

methods have been among the most popular for the solution of these problems, but they often 

suffer from slow convergence. 

We introduce incremental subgradient methods, which aim to accelerate the convergence by 

exploiting the additive structure that a dual problem often inherits from properties of its primal 

problem, such as separability. In particular, for the common case where the dual function is the 
sum of a large number of component functions, incremental methods consist of a sequence of 

incremental steps, each involving a single component of the dual function, rather than the sum 

of all components. 

Our analysis aims to identify effective variants of incremental methods, and to quantify their 

advantages over the standard subgradient methods. An important question is the selection of the 
order in which the components are selected for iteration. A particularly interesting variant uses 

randomization of the order to resolve a worst-case complexity bottleneck associated with the 

natural deterministic order. According to both analysis and experiment, this randomized variant 
performs substantially better than the standard subgradient methods for large scale problems 

that typically arise in the context of duality. The randomized variant is also particularly well-

suited for parallel, possibly asynchronous, implementation, and is the only available method, to 

our knowledge, that can be used efficiently within this context. 
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several research topics, including the Fritz John theory of Sections 5.7 and 6.6. We would also 
like to thank Xin Chen and Janey Yu, who gave us valuable feedback and some specific 

suggestions. Finally, we wish to express our appreciation for the stimulating environment at 

M.I.T., which provided an excellent setting for this work. 

 


