
Algebraic Topology

The Fundamental Group

Homotopy

Given two maps f1, f2 : X → Y , a homotopy from f1 to f2 is a map F : [0, 1] × X → Y such
that F (0, x) = f1(x) and F (1, x) = f2(x). If there is a homotopy from f1 to f2 then we say that
f1 and f2 are homotopic and we write f1 ∼ f2. Homotopy is an equivalence relation, although
to prove transitivity we need the following lemma:

The ‘Gluing Lemma’

If a space X is a union of two closed subsets A and B then for any two continuous maps
f : A → Y and g : B → Y which agree on the intersection A ∩ B we get a continuous map
f ∪ g : X → Y .

This is easy to prove. The set of homotopy classes of maps X → Y is written [X, Y ].

Relative homotopy

Given two maps f1, f2 : X → Y which agree on a subset A ⊂ X, we say that they are homotopic
relative to A if there is a map F : [0, 1] × X → Y such that F (0, x) = f1(x), F (1, x) = f2(x)
and F (x, t) = f0(x) for all x ∈ A.

The fundamental group

The fundamental group of X based at x, written π1(X, x), is the group of homotopy classes
relative to {0, 1} of loops in X based at x, with the natural multiplication given by composition
of loops. It is easy to show that the multiplication is well-defined and satisfies the group axioms.

Note that for loops p, q, we write pq to mean the loop which goes round p first and then q.

Induced homomorphisms of fundamental groups

If we have a map f : X → Y then we get an induced homomorphism f∗ : π1(X,x) → π1(Y, f(x))
between the fundamental groups of X and Y , by mapping a loop p in X to the loop fp in Y . It
is easy to check that this is a group homomorphism.

Also, if we have the identity map 1X : X → X then (1X)∗ is the identity homomorphism, and
for any two maps f : X → Y and g : Y → Z then we have (g ◦ f)∗ = g∗ ◦ f∗. Thus if f is a
homeomorphism X → Y then the induced homomorphism f∗ is an isomorphism, and hence the
fundamental group is a topological invariant.

If two maps f, g : X → Y are homotopic relative to {x} then the induced homomorphisms f∗
and g∗ are the same, since the homotopy F from f to g determines a homotopy F (α(s), t) from
f(α) to g(α) for any loop α in X based at x. This is a special case of a result below.

Change of base point

If x, y ∈ X, then π1(X,x) and π1(X, y) are unrelated if x and y are in different path-components,
but isomorphic if they are in the same path component. For any path α from x to y we get a
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group isomorphism α∗ : π1(X, x) → π1(X, y). Note that in general different paths α may lead
to different isomorphisms.

Contractible spaces

A non-empty space X is said to be simply connected if it is path-connected and has trivial
fundamental group. X is said to be contractible if the identity map X → X is homotopic to a
constant map. For example, any convex subset of Rn is contractible.

A contractible space is simply connected. Note that the converse is not true — S2 is simply
connected but not contractible.

To prove this, we need to show that any loop in X is homotopic, relative to {0, 1}, to the
constant loop. Observe that the homotopy F from the identity on X to the constant map at
x ∈ X gives us a homotopy G(s, t) = F (α(s), t) from any loop α based at x to the constant loop
at x — but this homotopy is not necessarily relative to {0, 1}.
To get around this difficulty we use the fact that the square [0, 1] × [0, 1] is convex, so there is
a straight line homotopy H between any two paths from a to b in [0, 1]× [0, 1], and so any two
such paths are homotopic relative to {0, 1}. Using this, we see that the path along the left edge
of the square is homotopic, relative to {0, 1}, to the path along the bottom edge, up the right
edge and back along the top edge of the square. Composing the homotopies H and G gives us
the result.

Homotopy equivalence

Two spaces X and Y are homotopy equivalent if there is a map f : X → Y and a map g : Y → X
such that f ◦ g ∼ 1Y and g ◦ f ∼ 1X . Such an f is called a homotopy equivalence. We also say
that X and Y have the same homotopy type, and we write X ' Y . The relation X ' Y is an
equivalence relation.

Any homeomorphism is clearly a homotopy equivalence. It is also very easy to prove that a
space is contractible if and only if it is homotopy equivalent to a point.

Two homotopy equivalent spaces have the same number of path-components. Furthermore, two
homotopy equivalent spaces have isomorphic fundamental groups.

To prove this, we first show that if f and g are homotopic maps from X to Y and x ∈ X, then
g∗ = α∗ ◦ f∗ as maps from π1(X,x) to π1(Y, g(x)), where α is the path in Y from f(x) to g(x)
given by the homotopy F between f and g. This follows by using the homotopy F to show that
for any loop α in X based at x, the loops g∗(α) and (α∗ ◦ f∗)(α) in Y are homotopic.

It then follows that the map f∗ is an isomorphism of fundamental groups if and only if g∗ is.
Therefore, if f is a homotopy equivalence with homotopy inverse h, then f ◦ h ' 1X and so
(f ◦ h)∗ = f∗ ◦ h∗ is an isomorphism. Thus f∗ is injective. Working the other way we see that
f∗ is surjective. Hence f∗ gives an isomorphism between the fundamental groups of X and Y .

The fundamental group of the n-sphere

If X is a space which can be written as the union of two simply connected open subsets A and
B in such a way that A ∩ B is path-connected, then X is simply connected. To prove this we
show that every loop in X starting at a point p in A ∩ B is homotopic to a (finite) product of
loops, each of which is either in A or in B.

Using this result, we see that the fundamental group of Sn is trivial for n ≥ 2.
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Covering Spaces

Fundamental group of the circle

To determine the fundamental group of the circle we first define the map π : R → S1 by
π(x) = e2πix. π is a covering map as defined below. We then apply the path-lifting and
homotopy-lifting lemmas related to this covering map.

We define a homomorphism σ : π1(S1, 1) → Z as follows. Let α be a loop in S1 based at 1. This
lifts uniquely to a path in R starting at 0, whose endpoint must be an integer, and we define
σ(α) to be this value.

To show that σ gives a well-defined map on π1(S1, 1) we use the homotopy-lifting property. For
if β ∼ α is another loop in S1 based at 1 then the homotopy from α to β gives us a homotopy
from the lift of α to the lift of β, and we then see that σ(α) = σ(β).

It is easy to see that σ is a homomorphism. Furthermore, σ is injective, for if σ(α) = 0 then
there is a straight line homotopy, relative to {0, 1}, from the lift of α to the constant loop at 0
in R, and this projects to show that α is homotopic to the constant loop in π1(S1, 1). Finally,
σ is surjective, for the loop s 7→ e2πins in S1 lifts to a path in R from 0 to n.

Therefore we have shown that the fundamental group of the circle is isomorphic to Z.

The fundamental theorem of algebra

Let f be a polynomial of degree n ≥ 1, and suppose that f has no roots in C. Then f is
a continuous map C → C \ {0}. Since C \ {0} and S1 are homotopy equivalent, they have
isomorphic fundamental groups. In particular, loops in C \ {0} have a well-defined winding
number, which is invariant under homotopy of loops (even if you change the base point).

Now let Cr be the circle of radius r around 0 in C, and consider the image of Cr under f as
r varies. These circles are obviously all homotopic, and a homotopy from Cr1 to Cr2 gives a
homotopy from f ◦ Cr1 to f ◦ Cr2 . Now the circle C0 clearly projects to a single point, with
winding number 0, but for sufficiently large R the image f ◦ CR is homotopic to (anxn) ◦ CR,
which has winding number n. This contradicts the homotopy invariance of the winding number.

Covering maps and covering spaces

A covering map π : X → Y is a continuous map such that every y ∈ Y has an open neighbour-
hood U such that π−1(U) is a disjoint union of open subsets Uα such that the restriction of π to
each set Uα is a homeomorphism from Uα to U . We then say that X is a covering space of Y .

The path-lifting property

For any covering space X → Y and any point x ∈ X, any path in Y starting at π(x) lifts to a
unique path in X starting at x.

The path-lifting property is a special case of the homotopy-lifting property below, where the
space A is a point.

The homotopy-lifting property

For any covering space X → Y , any other space A and any continuous map f ′ : A → X, any
homotopy from f = πf ′ : A → Y to some other map g : A → Y lifts uniquely to a homotopy
from f ′ to some other map g′ : A → X.
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Computing fundamental groups using covering spaces

For any covering space π : X → Y and any point x ∈ X, the induced group homomorphism
π∗ : π1(X, x) → π1(Y, π(x)) is injective. This is proved using the homotopy-lifting property.

If we have a covering space π : X → Y , then π1(Y, y) acts naturally on the fibre π−1(y).
Furthermore, if X is path-connected then this action is transitive. In this case, the stabilizer of
a point x ∈ π−1(y) is precisely the fundamental group π1(X,x) of X, and we have a bijection
from the set of cosets of π1(X, x) in π1(Y, y) to the fibre π−1(y) given by

π1(X, x) σ 7−→ xσ.

Therefore we can compute the order of the fundamental group of Y if we know the order of the
fundamental group of X. To determine the structure we need the following theorem:

Let X be a simply connected space. Let G be a group of homeomorphisms which acts freely on
X in the sense that every point x ∈ X has an open neighbourhood U such that U ∩ g(U) = ∅
for all g 6= 1 ∈ G. Let Y = X/G be the space of orbits. Then the map X → Y is a covering
map and the fundamental group of Y at any base point is isomorphic to G.

Fundamental group of the torus

The n-torus (S1)n has fundamental group Zn. We can prove this in two ways. Firstly, we can
use the fact that

π1(X × Y, (x, y)) ∼= π1(X,x)× π1(Y, y).

Alternatively, we observe that (S1)n is the quotient of Rn by the free action of Zn acting by
translation, and that Rn is simply connected, so the result follows by the theorem above.

Fundamental group of real projective space

The real projective space RPn can be thought of as the quotient of Sn by the free action of the
group Z/2, mapping each point in Sn to its antipode. Therefore, if n = 0 then RP0 consists of
just one point, and hence is simply connected. If n = 1 then RP1 is isomorphic to S1 and so has
fundamental group Z. If n ≥ 2 then Sn is simply connected, and so the fundamental group of
RPn is Z/2.

The universal covering

A space is locally contractible if every point has an open neighbourhood which is contractible.
Also, we say that two covering spaces X1 and X2 of the same space Y are isomorphic if there is
a homeomorphism from X1 to X2 such that the composition X1 → X2 → Y is the map X1 → Y .
Then we have the following theorem:

Every connected, locally contractible space Y has a unique simply connected covering space X,
called the universal covering of Y . Moreover, the fundamental group of Y acts freely on X,
with Y = X/π1(Y, y).

Therefore, the fundamental group of any reasonable space Y may be computed by finding a
simply connected covering space of Y and applying this theorem. Finally, the following theorem
classifies the connected covering spaces of a space Y .

Let Y be a connected, locally contractible space. Then there is a bijection between isomorphism
classes of connected covering spaces of Y and conjugacy classes of subgroups H of the group
G = π1(Y, y). The correspondence is defined by viewing Y as X/G, where X is the universal
cover of Y , and, for each subgroup H of G, forming the new covering space X/H of Y .
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Simplicial Complexes

Simplices and simplicial complexes

We say that n + 1 points in RN are in general position if the smallest affine-linear subspace
containing them has dimension n. An n-simplex ∆ in RN is the convex hull of any n + 1 points
x0, . . . , xn ∈ RN in general position, that is

∆ = {a0x0 + · · ·+ anxn | ai ∈ R, ai ≥ 0,
∑

ai = 1}.

We call x0, . . . , xn the vertices of the simplex. A face of the simplex is the convex hull of a
non-empty subset of the vertices.

A simplicial complex in RN is a finite collection of simplices in RN , such that whenever a
simplex belongs to the collection then so do all of its faces, and whenever any two simplices in
the collection have a non-empty intersection, their intersection is a face of both simplices.

If X is a simplicial complex we write |X| to mean the geometric realisation of X, that is the
topological space which is the union of all the simplices in X. |X| is always a compact, metrizable
space.

Triangulations

For a topological space A, a triangulation of A is a simplicial complex X together with a
homeomorphism from A to |X|. We say that A is triangulable if it has some triangulation.

Barycentric subdivision

We define the barycentre of the simplex [x0, . . . , xn] to be

1
n + 1

(x0 + · · ·+ xn).

Starting with a simplex ∆ in RN we obtain a simplicial complex ∆1 by the following process,
called barycentric subdivision. First we add a vertex Â at the barycentre of each face A of
∆. Then we have a simplex through each set of vertices Â0, . . . , Âk if and only if after some
reordering of these vertices we have

A0 ⊂ A1 ⊂ · · · ⊂ Ak.

The barycentric subdivision of a simplicial complex X is defined to be the complex obtained by
the barycentric subdivision of all the simplices in X. Clearly the geometric realisation of the
barycentric subdivision of X is the same as that of X.

The mesh of a simplicial complex in RN is the maximum of the diameters of its simplices. For
any simplicial complex X, the mesh of the barycentric subdivision X1 is at most n/(n+1) times
the mesh of X. Thus by repeatedly subdividing any simplicial complex we may make its mesh
arbitrarily small.
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Simplicial maps and simplicial approximations

For simplicial complexes X and Y , A simplicial map s : X → Y is a function from |X| to |Y |
which takes simplices of X linearly onto simplices of Y . Any simplicial map is continuous (by
the gluing lemma) and is completely determined by the images of the vertices in X, which are
vertices in Y .

Each point x ∈ |X| lies in the interior of a unique simplex in X, called the carrier of x. A
simplicial map s : X → Y is a simplicial approximation of a continuous map f : |X| → |Y | if
s(x) lies in the carrier of f(x) for each point x ∈ |X|. Note that if s is a simplicial approximation
for f then s and f are homotopic, by a straight line homotopy.

The simplicial approximation theorem

For any continuous map f : |X| → |Y | there is an m ≥ 0 such that there exists a simplicial
approximation s : Xm → Y of f .

Proof

Let x be a vertex in X. Define the open star of x to be the union of the interiors of all the
simplices in X which contain x. It is easy to prove that vertices x0, . . . , xk of X span a simplex
if and only if the intersection of their open stars is non-empty.

First we prove the theorem in a special case. Suppose that for every vertex x in X there exists
a vertex y in Y such that the open star of x is mapped by f into the open star of y. Then for
every vertex x in X, choose such a y and define s(x) = y. By the above observation it follows
that for any simplex [x0, . . . , xk] in X, the images s(x0), . . . , s(xk) span a simplex in Y , and
hence we can extend our definition of s linearly over X to get a simplicial map X → Y .

Now suppose that x ∈ |X|. We need to show that s(x) lies in the carrier of f(x). Let [x0, . . . , xk]
be the carrier of x. Then x is in the intersection of the open stars of the xi and so, by our
assumption, f(x) is in the intersection of the open stars of the s(xi). Therefore s(x0), . . . , s(xk)
span a face of the carrier of f(x), so the carrier of f(x) contains each of the s(xi), and so it
contains s(x). Thus s is a simplicial approximation to f .

Now let f be an arbitrary map from X to Y . We shall show that for some m ≥ 0, Xm satisfies
the above condition. Now |Y | is the union of the open stars Uy of its vertices, so the sets
f−1(Uy) form an open cover of |X|. Since X is a compact metric space, by Lebesgue’s lemma
there exists ε > 0 such that any open subset of |X| of diameter less than ε is contained in one of
the sets f−1(Uy). But for m sufficiently large, Xm has mesh less that ε — and so Xm satisfies
the required condition.

6



Simplicial Homology

Orientations

Let ∆ be an n-simplex with vertices x1, . . . , xn+1. If n ≥ 0 then an orientation of ∆ is an
equivalence class of orderings of the xi, where the orderings x1, . . . , xn+1 and xσ(1), . . . , xσ(n+1)

are equivalent if and only if σ ∈ An+1. If n = 0 then an orientation of ∆ is either 1 or −1.

An oriented simplex σ is a simplex together with a choice of orientation. We write −σ to mean
the simplex with the opposite choice of orientation. We shall write [x0, . . . , xn] to mean the
oriented simplex with the orientation corresponding to the given ordering of the vertices.

An oriented simplex induces an orientation on each of its codimension-one faces in the following
manner:

• if i is even, the induced orientation of [x0, . . . , x̂i, . . . , xn] is the one corresponding to this
ordering of the vertices, and

• if i is odd, the induced orientation is the opposite to the one corresponding to this ordering.

We can check that this is well-defined.

Chains and boundaries

Let X be a simplicial complex. We define the group Ck(X) of k-chains on X to be the free
abelian group generated by the oriented k-simplices in X, modulo the relation that (−1)σ = −σ
for any oriented k-simplex σ.

For any oriented k-simplex σ in X, we define the boundary ∂σ of σ to be the sum of the
codimension-one faces of σ, with the orientations induced from σ. So ∂σ ∈ Ck−1(X). We can
extend this definition to get a group homomorphism ∂ : Ck(X) → Ck−1 in the obvious manner.

So we get the sequence

· · · ∂−−→ Ck+1(X) ∂−−→ Ck(X) ∂−−→ Ck−1(X) ∂−−→ · · ·

In fact, the composition of any two of the consecutive homomorphisms is the zero homomor-
phism, or in other words, ∂2 = 0. It suffices to prove that ∂2σ = 0 for any oriented (k+1)-simplex
σ. We have

∂2[x0, . . . , xk+1] = ∂
k+1∑

i=0

(−1)i[x0, . . . , x̂i, . . . , xk+1]

=
k+1∑

i=0

(−1)i
i−1∑

j=0

(−1)j [x0, . . . , x̂j , . . . , x̂i, . . . , xk+1]

+
k+1∑

i=0

(−1)i
k+1∑

j=i+1

(−1)j−1[x0, . . . , x̂i, . . . , x̂j , . . . , xk+1],

where the terms in the final expression cancel in pairs.
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Homology groups

Define the subgroup Zk(X) ≤ Ck(X) of k-chains in X to be the kernel of ∂, and define the
subgroup Bk(X) ≤ Ck(X) of k-boundaries to be the image of ∂. Then since ∂2 = 0, Bk(X) is
contained within Zk(X) and so we may define the kth homology group of X as the quotient

Hk(X) = Zk(X)/Bk(X).

It is easy to see that H0(X) is a free abelian group whose rank is the number of connected
components of X.

Homology groups of an n-simplex

If X is a point, then by considering the groups of k-chains on X we see immediately that
H0(X) = Z and Hi(X) = 0 for i ≥ 1.

To compute the homology groups of an n-simplex for n ≥ 2 we may use the following device. If
X ⊂ RN is a simplicial complex, define the cone on X to be the simplicial complex CX formed
by embedding RN in RN+1, choosing a point v ∈ RN+1 \RN and then taking the union of all the
line segments from v to each of the points in X. Then we see that CX is a simplicial complex,
whose simplices are those in X, those formed as the convex hull of v and a simplex in X, and
the point v itself.

The homology groups of any cone are the same as those of a point. To prove this we define the
homomorphism d : Cq(CX) → Cq+1(CX) which sends an oriented q-simplex σ = [v0, . . . , vq]
in CX to [v, v0, . . . , vq] if σ is contained in X, or 0 otherwise. We can check that this is a
well-defined homomorphism. Then we show that

(∂ ◦ d)(σ) = σ − (d ◦ ∂)(σ)

for any oriented q-simplex σ with q ≥ 1. But then if z is any q-cycle in CX with q ≥ 1,

∂(d(z)) = z − d(∂(z)) = z − d(0) = z

and so z is a boundary. Hence Hq(CX) = 0.

Now since an (n + 1)-simplex is just the cone on an n-simplex, we have that for any simplex X,
H0(X) = Z and Hi(X) = 0 for i ≥ 1.

Homology groups of Sn

If n = 0 then the homology groups of Sn are clearly H0(S0) = Z2, Hi(S0) = 0 for i ≥ 1.

If n ≥ 1 then we may triangulate Sn is a simple way. Let ∆ denote the simplicial complex
which is the union of all the faces of an (n + 1)-simplex, and let Σ denote the same simplicial
complex but without the single (n + 1)-dimensional face. Then Σ is a triangulation of Sn. Now
the chain complex of Σ is exactly the same as that of ∆, except that we have Cn+1(Σ) = 0,
whereas Cn+1(∆) ∼= Z, generated by the single (n + 1)-dimensional face.

Therefore, for i ≤ (n − 1) the homology groups Hi(∆) and Hi(Σ) are the same. But then we
see that Hn(Σ) is the kernel of the map ∂ : Cn(Σ) → Cn−1(Σ), which is also the kernel of
∂ : Cn(∆) → Cn−1(∆). But by the exactness of the sequence for ∆, this is just the image of
∂ : Cn+1(∆) → Cn(∆), which is isomorphic to Cn+1(∆) ∼= Z as ∂ is injective.
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We will show that the homology groups of a space are independent of its triangulation, and
hence we may conlude that

Hi(Sn) =





Z2 if n = 0 and i = 0
Z if n ≥ 1 and i = 0 or n

0 otherwise.

Induced homomorphisms

Let f : X → Y be a simplicial map. Then f determines a homomorphism

f∗ : Ci(X) −→ Ci(Y )

by

f∗([x0, . . . , xi]) =

{
[f(x0), . . . , f(xi)] if f(x0), . . . , f(xi) are all distinct
0 otherwise.

We can check that f∗ is a chain map, that is, that

∂ ◦ f∗ = f∗ ◦ ∂

and so the following diagram commutes:

· · · ∂
// Ci+1(X) ∂

//

f∗
��

Ci(X) ∂
//

f∗
��

Ci−1(X) ∂
//

f∗
��

· · ·

· · · ∂
// Ci+1(Y ) ∂

// Ci(Y ) ∂
// Ci−1(Y ) ∂

// · · ·

It follows that f∗ maps Zi(X) into Zi(Y ), and Bi(X) into Bi(Y ), and so f∗ gives rise to a
homomorphism, also denoted f∗, from Hi(X) to Hi(Y ).

Now it can be shown that barycentric subdivision of a complex does not change the homology
groups (proof omitted — see Armstrong pp. 185–188). Thus if f : |X| → |Y | is any continuous
map then we may define a homomorphism

f∗ : Hi(X) → Hi(Y )

as the composition
Hi(X) ∼= Hi(Xm) s∗−−→ Hi(Y ),

where s : X → Y is some simplicial approximation to f . It can be shown that this is well-
defined, independent of the choice of s, by showing that any two “close” simplicial maps give
rise to the same homomorphisms of homology groups.

Functorial properties. Thus homology groups are invariant under homotopy equivalence.

Applications

Sm and Sn are not homotopy equivalent and thus Rm and Rn are not homeomorphic if m 6= n.
The Brouwer fixed-point theorem.
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The Mayer–Vietoris Sequence

Let X be a simplicial complex which is the union A ∪B of two subcomplexes. Then

· · · −→ Hi(A ∩B) −→ Hi(A)⊕Hi(B) −→ Hi(X) −→ Hi−1(A ∩B) −→ · · ·

is a long exact sequence. What are the three homomorphisms?

• The homomorphism Hi(A ∩B) → Hi(A)⊕Hi(B) is the obvious pair of inclusions.

• The homomorphism Hi(A)⊕Hi(B) → Hi(X) is given by (x, y) 7→ x− y.

• The homomorphism Hi(X) → Hi−1(A∩B) is the “boundary map” constructed as follows.

0 // Ci(A ∩B) //

∂
��

Ci(A)⊕ Ci(B) //

∂
��

Ci(X) //

∂
��

0

0 // Ci−1(A ∩B) // Ci−1(A)⊕ Ci(B) // Ci−1(X) // 0

For any element of Hi(X), take a representative cycle z ∈ Zi(X) and choose an element
d ∈ Ci(A)⊕Ci(B) which maps to z. Then the equivalence class of z maps to the equivalence
class of the (unique) inverse image c ∈ Zi−1(A ∩B) for ∂(d).
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