Problem Set 8 Solutions

April 26, 2005

4.2.1

We consider the problem

$$
\begin{gathered}
\operatorname{minimize} \quad f(x)=\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)-3 x_{2} \\
\text { subject to } x_{2}=0
\end{gathered}
$$

(a) We have

$$
L(x, \lambda)=\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)-3 x_{2}+\lambda x_{2}
$$

so

$$
\nabla_{x} L(x, l)=\binom{x_{1}}{x_{2}-3+\lambda}=\binom{0}{0}, \quad \nabla_{\lambda} L(x, l)=x_{2}=0
$$

The only candidate for optimality is $\left(x_{1}^{*}, x_{2}^{*}\right)=(0,0)$ with the corresponding Lagrange multiplier $\lambda^{*}=3$. Since $f(x)$ is convex over the constraint set, the point $(0,0)$ is the optimal solution.
(b) The augmented Lagrangian is

$$
\begin{aligned}
L_{c}(x, \lambda) & =\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)-3 x_{2}+l x_{2}+\frac{c}{2} x_{2}^{2} \\
& =\frac{1}{2} x_{1}^{2}+\frac{c-1}{2} x_{2}^{2}+(l-3) x_{2} \\
& =\frac{1}{2} x_{1}^{2}+\left(\frac{c-1}{2} x_{2}+l-3\right) x_{2} .
\end{aligned}
$$

This function has a minimum for $c^{k}>1$:

$$
\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right)=\binom{x_{1}^{k}}{\left.c^{k}-1\right) x_{2}^{k}+\lambda^{k}-3}=\binom{0}{0}
$$

so that

$$
\begin{equation*}
x_{1}^{k}=0, \quad x_{2}^{k}=\frac{3-\lambda^{k}}{c^{k}-1} \tag{1}
\end{equation*}
$$

and the corresponding optimal value $L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$ is

$$
\begin{equation*}
L_{c^{k}}\left(x^{k}, \lambda^{k}\right)=\left(\frac{c^{k}-1}{2} x_{2}^{k}+\lambda^{k}-3\right) x_{2}^{k}=\frac{\lambda^{k}-3}{2} \cdot \frac{3-\lambda^{k}}{c^{k}-1}=-\frac{1}{2} \cdot \frac{\left(3-\lambda^{k}\right)^{2}}{c^{k}-1} \tag{2}
\end{equation*}
$$

The results for the Quadratic penalty method with $\lambda^{k}=0$ for all k are given in the following table:

k	x_{1}^{k}	x_{2}^{k}	$L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$
0	0	0.3333333	-0.5000000
1	0	0.0303030	-0.0454545
2	0	0.0030030	0.0045045

For the method of multipliers, the optimal point of the augmented Lagrangian $L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$ and the optimal value of the augmented Lagrangian are still given by Eqs. (1) and (2). The only difference here is that λ^{k} in these equations is updated according to

$$
\lambda^{k+1}=\lambda^{k}+c^{k} h\left(x^{k}\right)=\lambda^{k}+c^{k} x_{2}^{k}, \quad k=0,1,2,
$$

where λ^{0} is an initial multiplier value. The results for the Multiplier method with $\lambda^{0}=0$ are given in the following table:

k	λ	x_{1}^{k}	x_{2}^{k}	$L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$
0	0	0	0.3333333	-0.5000000
1	3.3333333	0	-0.0033670	-0.0005611
2	2.9966329	0	0.0000033	-5.67×10^{-9}

By comparing the values of $L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$, from the above results we see that the convergence of the multiplier method is significantly faster than that of the quadratic penalty method. (c) See attached plots. We have

$$
p(u)=\min _{x_{2}=u} \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)-3 x_{2}=-\frac{1}{2} u^{2}-3 u .
$$

(d) For the augmented Lagrangian to have a minimum, we need $c+\nabla^{2} p(0)=c-1$ to be positive, so that $c>1$. For the multiplier method with the constant c, we have

$$
\lambda^{k+1}=\lambda^{k}+\operatorname{ch}\left(x^{k}\right)=\frac{-\lambda^{k}+3 c}{c-1}
$$

For $\left\{\lambda^{k}\right\}$ to converge to λ^{*}, we require that

$$
\frac{\left|\lambda^{k+1}-\lambda^{*}\right|}{\left|\lambda^{k}-\lambda^{*}\right|}<1
$$

Since $l^{*}=3$, it follows that

$$
\frac{\left|\lambda^{k+1}-\lambda^{*}\right|}{\left|\lambda^{k}-\lambda^{*}\right|}=\frac{\left|\frac{-\lambda^{k}+3 c}{c-1}-3\right|}{\left|\lambda^{k}-3\right|}=\frac{1}{|c-1|}
$$

and the convergence takes place when

$$
\frac{1}{|c-1|}<1
$$

Because $c>1$, this relation reduces to $c>2$.

5.1.1

Consider the problem

$$
\begin{gathered}
\text { minimize } x_{1} \\
\text { subject to }\left|x_{1}\right|+\left|x_{2}\right| \leq 1, \quad x \in X=\Re^{2}
\end{gathered}
$$

(cf. Figure 1).
We have

$$
L(x, \mu)=x_{1}+\mu\left(\left|x_{1}\right|+\left|x_{2}\right|-1\right)
$$

and so

$$
q(\mu)=\inf _{x \in \Re^{2}} L(x, \mu)=\inf _{x \in \Re^{2}}\left\{-\mu+x_{1}+\mu\left|x_{1}\right|+\mu\left|x_{2}\right|\right\} .
$$

If $0 \leq \mu<1$, then $q(\mu)$ can be made arbitrarily small by making x_{1} small. Otherwise, $q(\mu)$ is minimized by setting x_{1} and x_{2} to 0 . Thus

$$
q(\mu)= \begin{cases}-\infty & \text { if } 0 \leq \mu<1 \\ -\mu & \text { if } 1 \leq,\end{cases}
$$

and

$$
q^{*}=\max _{\mu \geq 0} q(\mu)=-1
$$

is attained at $\mu^{*}=1$. Thus the only optimal solution is $x^{*}=(-1,0)$ and the only Lagrange multiplier is $\mu^{*}=1$. The dual function is given in Figure 2.

Consider the problem

$$
\begin{gathered}
\text { minimize } x_{1} \\
\text { subject to }\left|x_{1}\right|+\left|x_{2}\right| \leq 1, \quad x \in X=\left\{x| | x_{1}\left|\leq 1,\left|x_{2}\right| \leq 1\right\}\right.
\end{gathered}
$$

(cf. Figure 3).
We have the same Lagrangian function as before and so

$$
q(\mu)=\inf _{-1 \leq x_{1}, x_{2} \leq 1} L(x, \mu)= \begin{cases}-1 & \text { if } 0 \leq \mu \leq 1 \\ -\mu & \text { if } 1 \leq \mu\end{cases}
$$

Thus the dual optimal value is $q^{*}=-1$, and every $\mu^{*} \in[0,1]$ is a dual optimal solution. From Figure 3, the only optimal solution is $x^{*}=(-1,0)$ and corresponding Lagrange multipliers are $\mu^{*} \in[0,1]$. The dual function is given in Figure 4.

5.1.2

(a) The problem is

$$
\operatorname{minimize} 10 x_{1}+3 x_{2}
$$

$$
\text { subject to } 5 x_{1}+x_{2} \geq 4, \quad x_{1}, x_{2}=0 \text { or } 1 .
$$

(b) The Lagrangian function is

$$
L(x, \mu)=10 x_{1}+3 x_{2}+\mu\left(4-5 x_{1}-x_{2}\right)
$$

and the dual function is

$$
q(\mu)=\inf _{x_{1}, x_{2} \in\{0,1\}}\left\{4 \mu+(10-5 \mu) x_{1}+(3-\mu) x_{2}\right\}= \begin{cases}4 \mu & \text { if } 0 \leq \mu \leq 2 \\ 10-\mu & \text { if } 2 \leq \mu \leq 3 \\ 13-2 \mu & \text { if } 3 \leq \mu\end{cases}
$$

(c) From (a), we see that $x^{*}=(1,0)$ and $f^{*}=10$. From (b), we see that $q^{*}=8$. Thus there is a duality gap of $f^{*}-q^{*}=2$ and there is no Lagrange multiplier.

5.1.3

A straightforward calculation yields the dual function as

$$
q(\lambda)=\min _{x \in}\left\{\|z-x\|^{2}+\lambda^{\prime} A x\right\}=-\frac{\left\|A^{\prime} \lambda\right\|^{2}}{4}+\lambda^{\prime} A z
$$

Thus the dual problem is equivalent to

$$
\min _{\lambda \in^{m}}\left\{\frac{\left\|A^{\prime} \lambda\right\|^{2}}{4}-\lambda^{\prime} A z+\|z\|^{2}\right\}
$$

or

$$
\min _{\lambda \in \boldsymbol{m}^{m}}\left\|z-\frac{A^{\prime} \lambda}{2}\right\|^{2}
$$

This is the problem of projecting z on the subspace spanned by the rows of A.

5.1.5

Obviously the primal LP is infeasible since we simultaneously require $x_{1} \geq 0$ and $x_{1} \leq-1$. We write the Lagrangian as
$L(x, \mu)=x_{1}-x_{2}+\mu_{1}\left(x_{1}+1\right)+\mu_{2}\left(1-x_{1}-x_{2}\right)=\left(1+\mu_{1}-\mu_{2}\right) x_{1}+\left(-1-\mu_{2}\right) x_{2}+\mu_{1}+\mu_{2}$.
Now the dual function is computed as

$$
q(\mu)= \begin{cases}\mu_{1}+\mu_{2} & \text { if } 1+\mu_{1}-\mu_{2} \geq 0,-1-\mu_{2} \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

We then maximize $q(\mu)$ over all $\mu_{1} \geq 0, \mu_{2} \geq 0$, which gives the dual LP specified. Again this is clearly infeasible since we simultaneously require $\mu_{2} \geq 0$ and $\mu_{2} \leq-1$.

