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4.2.1

We consider the problem

minimize f(x) =
1

2
(x2

1 − x2
2)− 3x2

subject to x2 = 0.

(a) We have

L(x, λ) =
1

2
(x2

1 − x2
2)− 3x2 + λx2,

so

∇xL(x, l) =

(
x1

x2 − 3 + λ

)
=

(
0
0

)
, ∇λL(x, l) = x2 = 0.

The only candidate for optimality is (x∗1, x
∗
2) = (0, 0) with the corresponding Lagrange mul-

tiplier λ∗ = 3. Since f(x) is convex over the constraint set, the point (0, 0) is the optimal
solution.
(b) The augmented Lagrangian is

Lc(x, λ) =
1

2
(x2

1 − x2
2)− 3x2 + lx2 +

c

2
x2

2

=
1

2
x2

1 +
c− 1

2
x2

2 + (l − 3)x2

=
1

2
x2

1 + (
c− 1

2
x2 + l − 3)x2.

This function has a minimum for ck > 1:

∇xLck(xk, λk) =

(
xk

1

ck − 1)xk
2 + λk − 3

)
=

(
0
0

)
,

so that

xk
1 = 0, xk

2 =
3− λk

ck − 1
(1)

1



and the corresponding optimal value Lck(xk, λk) is

Lck(xk, λk) = (
ck − 1

2
xk

2 + λk − 3)xk
2 =

λk − 3

2
· 3− λk

ck − 1
= −1

2
· (3− λk)2

ck − 1
. (2)

The results for the Quadratic penalty method with λk = 0 for all k are given in the following
table:

k xk
1 xk

2 Lck(xk, λk)
0 0 0.3333333 -0.5000000
1 0 0.0303030 -0.0454545
2 0 0.0030030 0.0045045

For the method of multipliers, the optimal point of the augmented Lagrangian Lck(xk, λk)
and the optimal value of the augmented Lagrangian are still given by Eqs. (1) and (2). The
only difference here is that λk in these equations is updated according to

λk+1 = λk + ckh(xk) = λk + ckxk
2, k = 0, 1, 2,

where λ0 is an initial multiplier value. The results for the Multiplier method with λ0 = 0 are
given in the following table:

k λ xk
1 xk

2 Lck(xk, λk)
0 0 0 0.3333333 -0.5000000
1 3.3333333 0 -0.0033670 -0.0005611
2 2.9966329 0 0.0000033 -5.67×10−9

By comparing the values of Lck(xk, λk), from the above results we see that the convergence
of the multiplier method is significantly faster than that of the quadratic penalty method. (c)
See attached plots. We have

p(u) = min
x2=u

1

2
(x2

1 + x2
2)− 3x2 = −1

2
u2 − 3u.

(d) For the augmented Lagrangian to have a minimum, we need c + ∇2p(0) = c − 1 to be
positive, so that c > 1. For the multiplier method with the constant c, we have

λk+1 = λk + ch(xk) =
−λk + 3c

c− 1
.

For {λk} to converge to λ∗, we require that

|λk+1 − λ∗|
|λk − λ∗| < 1.

Since l∗ = 3, it follows that

|λk+1 − λ∗|
|λk − λ∗| =

|−λk+3c
c−1

− 3|
|λk − 3| =

1

|c− 1| ,

2



and the convergence takes place when

1

|c− 1| < 1.

Because c > 1, this relation reduces to c > 2.

5.1.1

Consider the problem
minimize x1

subject to |x1|+ |x2| ≤ 1, x ∈ X = <2

(cf. Figure 1).
We have

L(x, µ) = x1 + µ(|x1|+ |x2| − 1)

and so
q(µ) = inf

x∈<2
L(x, µ) = inf

x∈<2
{−µ + x1 + µ|x1|+ µ|x2|}.

If 0 ≤ µ < 1, then q(µ) can be made arbitrarily small by making x1 small. Otherwise, q(µ) is
minimized by setting x1 and x2 to 0. Thus

q(µ) =
{−∞ if 0 ≤ µ < 1,
−µ if 1 ≤,

and
q∗ = max

µ≥0
q(µ) = −1

is attained at µ∗ = 1. Thus the only optimal solution is x∗ = (−1, 0) and the only Lagrange
multiplier is µ∗ = 1. The dual function is given in Figure 2.

Consider the problem
minimize x1

subject to |x1|+ |x2| ≤ 1, x ∈ X = {x | |x1| ≤ 1, |x2| ≤ 1}
(cf. Figure 3).

We have the same Lagrangian function as before and so

q(µ) = inf
−1≤x1,x2≤1

L(x, µ) =
{−1 if 0 ≤ µ ≤ 1,
−µ if 1 ≤ µ.

Thus the dual optimal value is q∗ = −1, and every µ∗ ∈ [0, 1] is a dual optimal solution. From
Figure 3, the only optimal solution is x∗ = (−1, 0) and corresponding Lagrange multipliers
are µ∗ ∈ [0, 1]. The dual function is given in Figure 4.

5.1.2

(a) The problem is
minimize 10x1 + 3x2
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subject to 5x1 + x2 ≥ 4, x1, x2 = 0 or 1.

(b) The Lagrangian function is

L(x, µ) = 10x1 + 3x2 + µ(4− 5x1 − x2)

and the dual function is

q(µ) = inf
x1,x2∈{0,1}

{4µ + (10− 5µ)x1 + (3− µ)x2} =





4µ if 0 ≤ µ ≤ 2,
10− µ if 2 ≤ µ ≤ 3,
13− 2µ if 3 ≤ µ,

.
(c) From (a), we see that x∗ = (1, 0) and f ∗ = 10. From (b), we see that q∗ = 8. Thus

there is a duality gap of f ∗ − q∗ = 2 and there is no Lagrange multiplier.

5.1.3

A straightforward calculation yields the dual function as

q(λ) = min
x∈ {‖z − x‖2 + λ′Ax} = −‖A

′λ‖2

4
+ λ′Az.

Thus the dual problem is equivalent to

min
λ∈m

{‖A
′λ‖2

4
− λ′Az + ‖z‖2}

or

min
λ∈m

‖z − A′λ
2
‖2.

This is the problem of projecting z on the subspace spanned by the rows of A.

5.1.5

Obviously the primal LP is infeasible since we simultaneously require x1 ≥ 0 and x1 ≤ −1.
We write the Lagrangian as

L(x, µ) = x1 − x2 + µ1(x1 + 1) + µ2(1− x1 − x2) = (1 + µ1 − µ2)x1 + (−1− µ2)x2 + µ1 + µ2.

Now the dual function is computed as

q(µ) =
{

µ1 + µ2 if 1 + µ1 − µ2 ≥ 0, −1− µ2 ≥ 0
−∞ otherwise

.

We then maximize q(µ) over all µ1 ≥ 0, µ2 ≥ 0, which gives the dual LP specified. Again this
is clearly infeasible since we simultaneously require µ2 ≥ 0 and µ2 ≤ −1.
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