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CHAPTER 4: SOLUTION MANUAL

4.1 (Directional Derivative of Extended Real-Valued Functions)

Let f : <n 7→ (−∞,∞] be a convex function, and let x be a vector in dom(f).
Define

f ′(x; y) = inf
α>0

f(x + αy)− f(x)

α
, y ∈ <n.

Show the following:

(a) f ′(x; λy) = λf ′(x; y) for all λ ≥ 0 and y ∈ <n.

(b) f ′(x; ·) is a convex function.

(c) −f ′(x;−y) ≤ f ′(x; y) for all y ∈ <n.

(d) If dom(f) = <n, then the level set
{
y | f ′(x; y) ≤ 0

}
is a closed convex

cone and its polar is given by({
y | f ′(x; y) ≤ 0

})∗
= cl

(
cone

(
∂f(x)

))
.

Solution: (a) Since f ′(x; 0) = 0, the relation f ′(x; λy) = λf ′(x; y) clearly holds
for λ = 0 and all y ∈ <n. Choose λ > 0 and y ∈ <n. By the definition of
directional derivative, we have

f ′(x; λy) = inf
α>0

f
(
x + α(λy)

)
− f(x)

α
= λ inf

α>0

f
(
x + (αλ)y

)
− f(x)

αλ
.

By setting β = λα in the preceding relation, we obtain

f ′(x; λy) = λ inf
β>0

f(x + βy)− f(x)

β
= λf ′(x; y).

(b) Let (y1, w1) and (y2, w2) be two points in epi
(
f ′(x; ·)

)
, and let γ be a scalar

with γ ∈ (0, 1). Consider a point (yγ , wγ) given by

yγ = γy1 + (1− γ)y2, wγ = γw1 + (1− γ)w2.

Since for all y ∈ <n, the ratio

f(x + αy)− f(x)

α

is monotonically nonincreasing as α ↓ 0, we have

f(x + αy1)− f(x)

α
≤ f(x + α1y1)− f(x)

α1
, ∀ α, α1, with 0 < α ≤ α1,
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f(x + αy2)− f(x)

α
≤ f(x + α2y2)− f(x)

α2
, ∀ α, α2, with 0 < α ≤ α2.

Multiplying the first relation by γ and the second relation by 1− γ, and adding,
we have for all α with 0 < α ≤ α1 and 0 < α ≤ α2,

γf(x + αy1) + (1− γ)f(x + αy2)− f(x)

α
≤ γ

f(x + α1y1)− f(x)

α1

+ (1− γ)
f(x + α2y2)− f(x)

α2
.

From the convexity of f and the definition of yγ , it follows that

f(x + αyγ) ≤ γf(x + αγy1) + (1− γ)f(x + αy2).

Combining the preceding two relations, we see that for all α ≤ α1 and α ≤ α2,

f(x + αyγ)− f(x)

α
≤ γ

f(x + α1y1)− f(x)

α1
+ (1− γ)

f(x + α2y2)− f(x)

α2
.

By taking the infimum over α, and then over α1 and α2, we obtain

f ′(x; yγ) ≤ γf ′(x; y1) + (1− γ)f ′(x; y2) ≤ γw1 + (1− γ)w2 = wγ ,

where in the last inequality we use the fact (y1, w1), (y2, w2) ∈ epi
(
f ′(x; ·)

)
Hence

the point (yγ , wγ) belongs to epi
(
f ′(x; ·)

)
, implying that f ′(x; ·) is a convex

function.

(c) Since f ′(x; 0) = 0 and (1/2)y + (1/2)(−y) = 0, it follows that

f ′
(
x; (1/2)y + (1/2)(−y)

)
= 0, ∀ y ∈ <n.

By part (b), the function f ′(x; ·) is convex, so that

0 ≤ (1/2)f ′(x; y) + (1/2)f ′(x;−y),

and

−f ′(x;−y) ≤ f ′(x; y).

(d) Let a vector y be in the level set
{
y | f ′(x; y) ≤ 0

}
, and let λ > 0. By part

(a),

f ′(x; λy) = λf ′(x; y) ≤ 0,

so that λy also belongs to this level set, which is therefore a cone. By part (b),
the function f ′(x; ·) is convex, implying that the level set

{
y | f ′(x; y) ≤ 0

}
is

convex.
Since dom(f) = <n, f ′(x; ·) is a real-valued function, and since it is convex,

by Prop. 1.4.6, it is also continuous over <n. Therefore the level set
{
y | f ′(x; y) ≤

0
}

is closed.
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We now show that({
y | f ′(x; y) ≤ 0

})∗
= cl

(
cone

(
∂f(x)

))
.

By Prop. 4.2.2, we have
f ′(x; y) = max

d∈∂f(x)
y′d,

implying that f ′(x; y) ≤ 0 if and only if maxd∈∂f(x) y′d ≤ 0. Equivalently,
f ′(x; y) ≤ 0 if and only if

y′d ≤ 0, ∀ d ∈ ∂f(x).

Since

y′d ≤ 0, ∀ d ∈ ∂f(x) ⇐⇒ y′d ≤ 0, ∀ d ∈ cone
(
∂f(x)

)
,

it follows from Prop. 3.1.1(a) that f ′(x; y) ≤ 0 if and only if

y′d ≤ 0, ∀ d ∈ cone
(
∂f(x)

)
.

Therefore {
y | f ′(x; y) ≤ 0

}
=

(
cone

(
∂f(x)

))∗
,

and the desired relation follows by the Polar Cone Theorem [Prop. 3.1.1(b)].

4.2 (Chain Rule for Directional Derivatives)

Let f : <n 7→ <m and g : <m 7→ < be some functions, and let x be a vector in
<n. Suppose that all the components of f and g are directionally differentiable
at x, and that g is such that for all w ∈ <m,

g′(y; w) = lim
α↓0, z→w

g(y + αz
)
− g(y)

α
.

Then, the composite function F (x) = g
(
f(x)

)
is directionally differentiable at x

and the following chain rule holds:

F ′(x; d) = g′
(
f(x); f ′(x; d)

)
, ∀ d ∈ <n.

Solution: For any d ∈ <n, by using the directional differentiability of f at x, we
have

F (x + αd)− F (x) = g
(
f(x + αd)

)
− g

(
f(x)

)
= g

(
f(x) + αf ′(x; d) + o(α)

)
− g

(
f(x)

)
.

Let zα = f ′(x; d) + o(α)/α and note that zα → f ′(x; d) as α ↓ 0. By using this
and the assumed property of g, we obtain

lim
α↓0

F (x + αd)− F (x)

α
= lim

α↓0

g
(
f(x) + αzα

)
− g

(
f(x)

)
α

= g′
(
f(x); f ′(x; d)

)
,

showing that F is directionally differentiable at x and that the given chain rule
holds.
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4.3

Let f : <n 7→ < be a convex function. Show that a vector d ∈ <n is a subgradient
of f at x if and only if the function d′y − f(y) attains its maximum at y = x.

Solution: By definition, a vector d ∈ <n is a subgradient of f at x if and only if

f(y) ≥ f(x) + d′(y − x), ∀ y ∈ <n,

or equivalently
d′x− f(x) ≥ d′y − f(y), ∀ y ∈ <n.

Therefore, d ∈ <n is a subgradient of f at x if and only if

d′x− f(x) = max
y

{
d′y − f(y)

}
.

4.4

Show that:

(a) For the function f(x) = ‖x‖, we have

∂f(x) =

{{
x/‖x‖

}
if x 6= 0,{

d | ‖d‖ ≤ 1
}

if x = 0.

(b) For a nonempty convex subset C of <n and the function f : <n 7→ (−∞,∞]
given by

f(x) =
{

0 if x ∈ C,
∞ if x 6∈ C,

we have

∂f(x) =
{

NC(x) if x ∈ C,
Ø if x 6∈ C.

Solution: (a) For x 6= 0, the function f(x) = ‖x‖ is differentiable with ∇f(x) =
x/‖x‖, so that ∂f(x) =

{
∇f(x)

}
=

{
x/‖x‖

}
. Consider now the case x = 0. If a

vector d is a subgradient of f at x = 0, then f(z) ≥ f(0) + d′z for all z, implying
that

‖z‖ ≥ d′z, ∀ z ∈ <n.

By letting z = d in this relation, we obtain ‖d‖ ≤ 1, showing that ∂f(0) ⊂
{
d |

‖d‖ ≤ 1
}
.

On the other hand, for any d ∈ <n with ‖d‖ ≤ 1, we have

d′z ≤ ‖d‖ · ‖z‖ ≤ ‖z‖, ∀ z ∈ <n,

which is equivalent to f(0)+d′z ≤ f(z) for all z, so that d ∈ ∂f(0), and therefore{
d | ‖d‖ ≤ 1

}
⊂ ∂f(0).
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Note that an alternative proof is obtained by writing

‖x‖ = max
‖z‖≤1

x′z,

and by using Danskin’s Theorem (Prop. 4.5.1).

(b) By convention ∂f(x) = Ø when x 6∈ dom(f), and since here dom(f) = C, we
see that ∂f(x) = Ø when x 6∈ C. Let now x ∈ C. A vector d is a subgradient of
f at x if and only if

d′(z − x) ≤ f(z), ∀ z ∈ <n.

Because f(z) = ∞ for all z 6∈ C, the preceding relation always holds when z 6∈ C,
so the points z 6∈ C can be ignored. Thus, d ∈ ∂f(x) if and only if

d′(z − x) ≤ 0, ∀ z ∈ C.

Since C is convex, by Prop. 4.6.3, the preceding relation is equivalent to d ∈
NC(x), implying that ∂f(x) = NC(x) for all x ∈ C.

4.5

Show that for a scalar convex function f : < 7→ <, we have

∂f(x) =
{
d | f−(x) ≤ d ≤ f+(x)

}
, ∀ x ∈ <.

Solution: When f is defined on the real line, by Prop. 4.2.1, ∂f(x) is a compact
interval of the form

∂f(x) = [α, β].

By Prop. 4.2.2, we have

f ′(x; y) = max
d∈∂f(x)

y′d, ∀ y ∈ <n,

from which we see that

f ′(x; 1) = α, f ′(x;−1) = β.

Since

f ′(x; 1) = f+(x), f ′(x;−1) = f−(x),

we have

∂f(x) = [f−(x), f+(x)].
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4.6

Let f : <n 7→ < be a convex function, and let x and y be given vectors in <n.
Consider the scalar function ϕ : < 7→ < defined by ϕ(t) = f

(
tx + (1− t)y

)
for all

t ∈ <, and show that

∂ϕ(t) =
{
(x− y)′d

∣∣ d ∈ ∂f
(
tx + (1− t)y

)}
, ∀ t ∈ <.

Hint : Apply the Chain Rule [Prop. 4.2.5(a)].

Solution: We can view the function

ϕ(t) = f
(
tx + (1− t)y

)
, t ∈ <

as the composition of the form

ϕ(t) = f
(
g(t)

)
, t ∈ <,

where g(t) : < 7→ <n is an affine function given by

g(t) = y + t(x− y), t ∈ <.

By using the Chain Rule [Prop. 4.2.5(a)], where A = (x− y), we obtain

∂ϕ(t) = A′ ∂f
(
g(t)

)
, ∀ t ∈ <,

or equivalently

∂ϕ(t) =
{
(x− y)′d | d ∈ ∂f

(
tx + (1− t)y

)}
, ∀ t ∈ <.

4.7

Let f : <n 7→ < be a convex function, and let X be a nonempty bounded subset
of <n. Show that f is Lipschitz continuous over X, i.e., that there exists a scalar
L such that ∣∣f(x)− f(y)

∣∣ ≤ L ‖x− y‖, ∀ x, y ∈ X.

Show also that

f ′(x; y) ≤ L ‖y‖, ∀ x ∈ X, ∀ y ∈ <n.

Hint: Use the boundedness property of the subdifferential (Prop. 4.2.3).

Solution: Let x and y be any two points in the set X. Since ∂f(x) is nonempty,
by using the subgradient inequality, it follows that

f(x) + d′(x− y) ≤ f(y), ∀ d ∈ ∂f(x),
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implying that

f(x)− f(y) ≤ ‖d‖ · ‖x− y‖, ∀ d ∈ ∂f(x).

According to Prop. 4.2.3, the set ∪x∈X∂f(x) is bounded, so that for some con-
stant L > 0, we have

‖d‖ ≤ L, ∀ d ∈ ∂f(x), ∀ x ∈ X, (4.1)

and therefore,
f(x)− f(y) ≤ L ‖x− y‖.

By exchanging the roles of x and y, we similarly obtain

f(y)− f(x) ≤ L ‖x− y‖,

and by combining the preceding two relations, we see that∣∣f(x)− f(y)
∣∣ ≤ L ‖x− y‖,

showing that f is Lipschitz continuous over X.
Also, by using Prop. 4.2.2(b) and the subgradient boundedness [Eq. (4.1)],

we obtain

f ′(x; y) = max
d∈∂f(x)

d′y ≤ max
d∈∂f(x)

‖d‖ · ‖y‖ ≤ L ‖y‖, ∀ x ∈ X, ∀ y ∈ <n.

4.8 (Nonemptiness of Subdifferential)

Let f : <n 7→ (−∞,∞] be a proper convex function, and let x be a vector in
dom(f). Show that ∂f(x) is nonempty if and only if f ′(x; z − x) is finite for all
z ∈ dom(f).

Solution: Suppose that ∂f(x) is nonempty, and let z ∈ dom(f). By the defini-
tion of subgradient, for any d ∈ ∂f(x), we have

f
(
x + α(z − x)

)
− f(x)

α
≥ d′(z − x), ∀ α > 0,

implying that

f ′(x; z − x) = inf
α>0

f
(
x + α(z − x)

)
− f(x)

α
≥ d′(z − x) > −∞.

Furthermore, for all α ∈ (0, 1), and x, z ∈ dom(f), the vector x+α(z−x) belongs
to dom(f). Therefore, for all α ∈ (0, 1),

f
(
x + α(z − x)

)
− f(x)

α
< ∞,
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implying that
f ′(x; z − x) < ∞.

Hence, f ′(x; z − x) is finite.
Converseley, suppose that f ′(x; z − x) is finite for all z ∈ dom(f). Fix a

vector x in the relative interior of dom(f). Consider the set

C =
{
(z, ν) | z ∈ dom(f), f(x) + f ′(x; z − x) < ν

}
,

and the halfline

P =
{
(u, ζ) | u = x + β(x− x), ζ = f(x) + βf ′(x; x− x), β ≥ 0

}
.

By Exercise 4.1(b), the directional derivative function f ′(x; ·) is convex, implying
that f ′(x; z − x) is convex in z. Therefore, the set C is convex. Furthermore,
being a halfline, the set P is polyhedral.

Suppose that C and P have a point (z, ν) in common, so that we have

z ∈ dom(f), f(x) + f ′(x; z − x) < ν, (4.2)

z = x + β(x− x), ν = f(x) + βf ′(x; x− x),

for some scalar β ≥ 0. Because βf ′(x; y) = f ′(x; βy) for all β ≥ 0 and y ∈ <n

[see Exercise 4.1(a)], it follows that

ν = f(x) + f ′
(
x; β(x− x)

)
= f(x) + f ′

(
x; z − x),

contradicting Eq. (4.2), and thus showing that C and P do not have any common
point. Hence, ri(C) and P do not have any common point, so by the Polyhedral
Proper Separation Theorem (Prop. 3.5.1), the polyhedral set P and the convex
set C can be properly separated by a hyperplane that does not contain C, i.e.,
there exists a vector (a, γ) ∈ <n+1 such that

a′z + γν ≥ a′
(
x + β(x− x)

)
+ γ

(
f(x) + βf ′(x; x− x)

)
, ∀ (z, ν) ∈ C, ∀ β ≥ 0,

(4.3)
inf

(z,ν)∈C

{
a′z + γν

}
< sup

(z,ν)∈C

{
a′z + γν

}
, (4.4)

We cannot have γ < 0 since then the left-hand side of Eq. (4.3) could be made
arbitrarily small by choosing ν sufficiently large. Also if γ = 0, then for β = 1,
from Eq. (4.3) we obtain

a′(z − x) ≥ 0, ∀ z ∈ dom(f).

Since x ∈ ri
(
dom(f)

)
, we have that the linear function a′z attains its minimum

over dom(f) at a point in the relative interior of dom(f). By Prop. 1.4.2, it
follows that a′z is constant over dom(f), i.e., a′z = a′x for all z ∈ dom(f),
contradicting Eq. (4.4). Hence, we must have γ > 0 and by dividing with γ in
Eq. (4.3), we obtain

a′z + ν ≥ a′
(
x + β(x− x)

)
+ f(x) + βf ′(x; x− x), ∀ (z, ν) ∈ C, ∀ β ≥ 0,
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where a = a/γ. By letting β = 0 and ν ↓ f(x) + f ′(x; z − x) in this relation, and
by rearranging terms, we have

f ′(x; z − x) ≥ (−a)′(z − x), ∀ z ∈ dom(f).

Because

f(z)−f(x) = f
(
x+(z−x)

)
−f(x) ≥ inf

λ>0

f
(
x + λ(z − x)

)
− f(x)

λ
= f ′(x; z−x),

it follows that

f(z)− f(x) ≥ (−a)′(z − x), ∀ z ∈ dom(f).

Finally, by using the fact f(z) = ∞ for all z 6∈ dom(f), we see that

f(z)− f(x) ≥ (−a)′(z − x), ∀ z ∈ <n,

showing that −a is a subgradient of f at x and that ∂f(x) is nonempty.

4.9 (Subdifferential of Sum of Extended Real-Valued Functions)

This exercise is a refinement of Prop. 4.2.4. Let fi : <n 7→ (−∞,∞], i = 1, . . . , m,
be convex functions, and let f = f1 + · · ·+ fm. Show that

∂f1(x) + · · ·+ ∂fm(x) ⊂ ∂f(x), ∀ x ∈ <n.

Furthermore, if
∩m

1=1ri
(
dom(fi)

)
6= Ø,

then
∂f1(x) + · · ·+ ∂fm(x) = ∂f(x), ∀ x ∈ <n.

In addition, if the functions fi, i = r + 1, . . . , m, are polyhedral, the preceding
relation holds under the weaker assumption that(

∩r
i=1 ri

(
dom(fi)

))
∩

(
∩m

i=r+1 dom(fi)
)
6= Ø, ∀ x ∈ <n.

Solution: It will suffice to prove the result for the case where f = f1 + f2. If
d1 ∈ ∂f1(x) and d2 ∈ ∂f2(x), then by the subgradient inequality, it follows that

f1(z) ≥ f1(x) + (z − x)′d1, ∀ z,

f2(z) ≥ f2(x) + (z − x)′d2, ∀ z,

so by adding these inequalities, we obtain

f(z) ≥ f(x) + (z − x)′(d1 + d2), ∀ z.
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Hence, d1 + d2 ∈ ∂f(x), implying that ∂f1(x) + ∂f2(x) ⊂ ∂f(x).
Assuming that ri

(
dom(f1)

)
and ri

(
dom(f1)

)
have a point in common, we

will prove the reverse inclusion. Let d ∈ ∂f(x), and define the functions

g1(y) = f1(x + y)− f1(x)− d′y, ∀ y,

g2(y) = f2(x + y)− f2(x), ∀ y.

Then, for the function g = g1 + g2, we have g(0) = 0 and by using d ∈ ∂f(x), we
obtain

g(y) = f(x + y)− f(x)− d′y ≥ 0, ∀ y. (4.5)

Consider the convex sets

C1 =
{
(y, µ) ∈ <n+1 | y ∈ dom(g1), µ ≥ g1(y)

}
,

C2 =
{
(u, ν) ∈ <n+1 | u ∈ dom(g2), ν ≤ −g2(y)

}
,

and note that

ri(C1) =
{
(y, µ) ∈ <n+1 | y ∈ ri

(
dom(g1)

)
, µ > g1(y)

}
,

ri(C2) =
{
(u, ν) ∈ <n+1 | u ∈ ri

(
dom(g2)

)
, ν < −g2(y)

}
.

Suppose that there exists a vector (ŷ, µ̂) ∈ ri(C1) ∩ ri(C2). Then,

g1(ŷ) < µ̂ < −g2(ŷ),

yielding
g(ŷ) = g1(ŷ) + g2(ŷ) < 0,

which contradicts Eq. (4.5). Therefore, the sets ri(C1) and ri(C2) are disjoint,
and by the Proper Separation (Prop. 2.4.6), the two convex sets C1 and C2 can
be properly separated, i.e., there exists a vector (w, γ) ∈ <n+1 such that

inf
(y,µ)∈C1

{w′y + γµ} ≥ sup
(u,ν)∈C2

{w′u + γν}, (4.6)

sup
(y,µ)∈C1

{w′y + γµ} > inf
(u,ν)∈C2

{w′u + γν}.

We cannot have γ < 0, because by letting µ → ∞ in Eq. (4.6), we will obtain a
contradiction. Thus, we must have γ ≥ 0. If γ = 0, then the preceding relations
reduce to

inf
y∈dom(g1)

w′y ≥ sup
u∈dom(g2)

w′u,

sup
y∈dom(g1)

w′y > inf
u∈dom(g2)

w′u,

which in view of the fact

dom(g1) = dom(f1)− x, dom(g2) = dom(f2)− x,
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imply that dom(f1) and dom(f2) are properly separated. But this is impossible
since ri

(
dom(f1)

)
and ri

(
dom(f1)

)
have a point in common. Hence γ > 0, and

by dividing in Eq. (4.6) with γ and by setting b = w/γ, we obtain

inf
(y,µ)∈C1

{
b′y + µ

}
≥ sup

(u,ν)∈C2

{
b′u + ν

}
.

Since g1(0) = 0 and g2(0) = 0, we have (0, 0) ∈ C1 ∩ C2, implying that

b′y + µ ≥ 0 ≥ b′u + ν, ∀ (y, µ) ∈ C1, ∀ (u, ν) ∈ C2.

Therefore, for µ = g1(y) and ν = −g2(u), we obtain

g1(y) ≥ −b′y, ∀ y ∈ dom(g1),

g2(u) ≥ b′ν, ∀ u ∈ dom(g2),

and by using the definitions of g1 and g2, we see that

f1(x + y) ≥ f1(x) + (d− b)′y, for all y with x + y ∈ dom(f1),

f2(x + u) ≥ f2(x) + b′u, for all u with x + u ∈ dom(f2).

Hence,

f1(z) ≥ f1(x) + (d− b)′(z − x), ∀ z,

f2(z) ≥ f2(x) + b′(z − x), ∀ z,

so that d − b ∈ ∂f1(x) and b ∈ ∂f2(x), showing that d ∈ ∂f1(x) + ∂f2(x) and
∂f(x) ⊂ ∂f1(x) + ∂f2(x).

When some of the functions are polyhedral, we use a different separation
argument for C1 and C2. In particular, since the sum of polyhedral functions is
a polyhedral function (see Exercise 3.12), it will still suffice to consider the case
m = 2. Thus, let f1 be a convex function, and let f2 be a polyhedral function
such that

ri
(
dom(f1)

)
∩ dom(f2) 6= Ø.

Then, in the preceding proof, g2 is a polyhedral function and C2 is a polyhedral
set. Furthermore, ri(C1) and C2 are disjoint, for otherwise we would have for
some (ŷ, µ̂) ∈ ri(C1) ∩ C2,

g1(ŷ) < µ̂ ≤ −g2(ŷ),

implying that g(ŷ) = g1(ŷ) + g2(ŷ) < 0 and contradicting Eq. (4.5). Therefore,
by the Polyhedral Proper Separation Theorem (Prop. 3.5.1), the convex set C1

and the polyhedral set C2 can be properly separated by a hyperplane that does
not contain C1, i.e., there exists a vector (w, γ) ∈ <n+1 such that

inf
(y,µ)∈C1

{
w′y + γµ

}
≥ sup

(u,ν)∈C2

{
w′u + γν

}
,
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inf
(y,µ)∈C1

{
w′y + γµ

}
< sup

(y,µ)∈C1

{
w′y + γµ

}
.

We cannot have γ < 0, because by letting µ → ∞ in the first of the preceding
relations, we will obtain a contradiction. Thus, we must have γ ≥ 0. If γ = 0,
then the preceding relations reduce to

inf
y∈dom(g1)

w′y ≥ sup
u∈dom(g2)

w′u,

inf
y∈dom(g1)

w′y < sup
y∈dom(g1)

w′y.

In view of the fact

dom(g1) = dom(f1)− x, dom(g2) = dom(f2)− x,

it follows that dom(f1) and dom(f2) are properly separated by a hyperplane that
does not contain dom(f1), while dom(f2) is polyhedral since f2 is polyhedral [see
Prop. 3.2.3). Therefore, by the Polyhedral Proper Separation Theorem (Prop.
3.5.1), we have that ri

(
dom(f1)

)
∩dom(f2) = Ø, which is a contradiction. Hence

γ > 0, and the remainder of the proof is similar to the preceding one.

4.10 (Chain Rule for Extended Real-Valued Functions)

This exercise is a refinement of Prop. 4.2.5(a). Let f : <m 7→ (−∞,∞] be a
convex function, and let A be an m × n matrix. Assume that the range of A
contains a point in the relative interior of dom(f). Then, the subdifferential of
the function F , defined by

F (x) = f(Ax),

is given by
∂F (x) = A′∂f(Ax).

Solution: We note that dom(F ) is nonempty since in contains the inverse image
under A of the common point of the range of A and the relative interior of dom(f).
In particular, F is proper. We fix an x in dom(F ). If d ∈ A′∂f(Ax), there exists
a g ∈ ∂f(Ax) such that d = A′g. We have for all z ∈ <m,

F (z)− F (x)− (z − x)′d = f(Az)− f(Ax)− (z − x)′A′g

= f(Az)− f(Ax)− (Az −Ax)′g

≥ 0,

where the inequality follows from the fact g ∈ ∂f(Ax). Hence, d ∈ ∂F (x), and
we have A′∂f(Ax) ⊂ ∂F (x).

We next show the reverse inclusion. By using a translation argument if
necessary, we may assume that x = 0 and F (0) = 0. Let d ∈ ∂F (0). Then we
have

F (z)− z′d ≥ 0, ∀ z ∈ <n,

13



or

f(Az)− z′d ≥ 0, ∀ z ∈ <n,

or

f(y)− z′d ≥ 0, ∀ z ∈ <n, y = Az,

or

H(y, z) ≥ 0, ∀ z ∈ <n, y = Az,

where the function H : <m ×<n 7→ (−∞,∞] has the form

H(y, z) = f(y)− z′d.

Since the range of A contains a point in ri
(
dom(f)

)
, and dom(H) = dom(f)×<n,

we see that the set
{
(y, z) ∈ dom(H) | y = Az

}
contains a point in the relative

interior of dom(H). Hence, we can apply the Nonlinear Farkas’ Lemma [part (b)]
with the following identification:

x = (y, z), C = dom(H), g1(y, z) = Az − y, g2(y, z) = y −Az.

In this case, we have{
x ∈ C | g1(x) ≤ 0, g2(x) ≤ 0

}
=

{
(y, z) ∈ dom(H) | Az − y = 0

}
.

As asserted earlier, this set contains a relative interior point of C, thus implying
that the set

Q∗ =
{
µ ≥ 0 | H(y, z) + µ′1g1(y, z) + µ′2g2(y, z) ≥ 0, ∀ (y, z) ∈ dom(H)

}
is nonempty. Hence, there exists (µ1, µ2) such that

f(y)− z′d + (µ1 − µ2)
′(Az − y) ≥ 0, ∀ (y, z) ∈ dom(H).

Since dom(H) = <m ×<n, by letting λ = µ1 − µ2, we obtain

f(y)− z′d + λ′(Az − y) ≥ 0, ∀ y ∈ <m, z ∈ <n,

or equivalently

f(y) ≥ λ′y + z′(d−A′λ), ∀ y ∈ <m, z ∈ <n.

Because this relation holds for all z, we have d = A′λ implying that

f(y) ≥ λ′y, ∀ y ∈ <m,

which shows that λ ∈ ∂f(0). Hence d ∈ A′∂f(0), thus completing the proof.
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4.11

Let f : <n 7→ < be a convex function, and let X be a bounded subset of <n.
Show that for all ε > 0, the set ∪x∈X∂εf(x) is bounded.

Solution: Suppose that the set ∪x∈X∂εf(x) is unbounded for some ε > 0. Then,
there exist a sequence {xk} ⊂ X, and a sequence {dk} such that dk ∈ ∂εf(xk) for
all k and ‖dk‖ → ∞. Without loss of generality, we may assume that dk 6= 0 for
all k, and we denote yk = dk/‖dk‖. Since both {xk} and {yk} are bounded, they
must contain convergent subsequences, and without loss of generality, we may
assume that xk converges to some x and yk converges to some y with ‖y‖ = 1.
Since dk ∈ ∂εf(xk) for all k, it follows that

f(xk + yk) ≥ f(xk) + d′kyk − ε = f(xk) + ‖dk‖ − ε.

By letting k → ∞ and by using the continuity of f , we obtain f(x + y) = ∞, a
contradiction. Hence, the set ∪x∈X∂εf(x) must be bounded for all ε > 0.

4.12

Let f : <n 7→ < be a convex function. Show that for all x ∈ <n, we have

∩ε>0∂εf(x) = ∂f(x).

Solution: Let d ∈ ∂f(x). Then, by the definitions of subgradient and ε-
subgradient, it follows that for any ε > 0,

f(y) ≥ f(x) + d′(y − x) ≥ f(x) + d′(y − x)− ε, ∀ y ∈ <n,

implying that d ∈ ∂εf(x) for all ε > 0. Therefore d ∈ ∩ε>0∂εf(x), showing that
∂f(x) ⊂ ∩ε>0∂εf(x).

Conversely, let d ∈ ∂εf(x) for all ε > 0, so that

f(y) ≥ f(x) + d′(y − x)− ε, ∀ y ∈ <n, ∀ ε > 0.

By letting ε ↓ 0, we obtain

f(y) ≥ f(x) + d′(y − x), ∀ y ∈ <n,

implying that d ∈ ∂f(x), and showing that ∩ε>0∂εf(x) ⊂ ∂f(x).
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4.13 (Continuity Properties of ε-Subdifferential [Nur77])

Let f : <n 7→ < be a convex function and let ε be a positive scalar. Show that
for every x ∈ <n, the following hold:

(a) If a sequence {xk} converges to x and dk ∈ ∂εf(xk) for all k, then the
sequence {dk} is bounded and each of its limit points is an ε-subgradient
of f at x.

(b) If d ∈ ∂εf(x), then for every sequence {xk} converging to x, there exists a
subsequence {dk}K converging to d with dk ∈ ∂εf(xk) for all k ∈ K.

Solution: (a) By the ε-subgradient definition, we have for all k,

f(y) ≥ f(x) + d′k(y − x)− ε, ∀ y ∈ <n.

Since the sequence {xk} is bounded, by Exercise 4.11, the sequence {dk} is also
bounded and therefore, it has a limit point d. Taking the limit in the preceding
relation along a subsequence of {dk} converging to d, we obtain

f(y) ≥ f(x) + d′(y − x)− ε, ∀ y ∈ <n,

showing that d ∈ ∂εf(x).

(b) First we show that

cl
(
∪0<δ<ε∂δf(x)

)
= ∂εf(x). (4.7)

Let d ∈ ∂δf(x) for some scalar δ satisfying 0 < δ < ε. Then, by the definition of
ε-subgradient, we have

f(y) ≥ f(x)− d′(y − x)− δ ≥ f(x)− d′(y − x)− ε, ∀ y ∈ <n,

showing that d ∈ ∂εf(x). Therefore,

∂δf(x) ⊂ ∂εf(x), ∀ δ ∈ (0, ε), (4.8)

implying that
∪0<δ<ε∂δf(x) ⊂ ∂εf(x).

Since ∂εf(x) is closed, by taking the closures of both sides in the preceding
relation, we obtain

cl
(
∪0<δ<ε∂δf(x)

)
⊂ ∂εf(x).

Conversely, assume to arrive at a contradiction that there is a vector d ∈
∂εf(x) with d 6∈ cl

(
∪0<δ<ε∂δf(x)

)
. Note that the set ∪0<δ<ε∂δf(x) is bounded

since it is contained in the compact set ∂εf(x). Furthermore, we claim that
∪0<δ<ε∂δf(x) is convex. Indeed if d1 and d2 belong to this set, then d1 ∈ ∂δ1f(x)
and d2 ∈ ∂δ2f(x) for some positive scalars δ1 and δ2. Without loss of generality,
let δ1 ≤ δ2. Then, by Eq. (4.8), it follows that d1, d2 ∈ ∂δ2f(x), which is a convex
set by Prop. 4.3.1(a). Hence, λd1 +(1−λ)d2 ∈ ∂δ2f(x) for all λ ∈ [0, 1], implying
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that λd1 + (1− λ)d2 ∈ ∪0<δ<ε∂δf(x) for all λ ∈ [0, 1], and showing that the set
∪0<δ<ε∂δf(x) is convex.

The vector d and the convex and compact set cl
(
∪0<δ<ε∂δf(x)

)
can be

strongly separated (see Exercise 2.17), i.e., there exists a vector b ∈ <n such that

b′d > max
g∈cl

(
∪0<δ<ε∂δf(x)

) b′g.

This relation implies that for some positive scalar β,

b′d > max
g∈∂δf(x)

b′g + 2β, ∀ δ ∈ (0, ε).

By Prop. 4.3.1(a), we have

inf
α>0

f(x + αb)− f(x) + δ

α
= max

g∈∂δf(x)
b′g,

so that

b′d > inf
α>0

f(x + αb)− f(x) + δ

α
+ 2β, ∀ δ, 0 < δ < ε.

Let {δk} be a positive scalar sequence converging to ε. In view of the preceding
relation, for each δk, there exists a small enough αk > 0 such that

αkb′d ≥ f(x + αkb)− f(x) + δk + β. (4.9)

Without loss of generality, we may assume that {αk} is bounded, so that it
has a limit point α ≥ 0. By taking the limit in Eq. (4.9) along an appropriate
subsequence, and by using δk → ε, we obtain

αb′d ≥ f(x + αb)− f(x) + ε + β.

If α = 0, we would have 0 ≥ ε + β, which is a contradiction. If α > 0, we would
have

αb′d + f(x)− ε > f(x + αb),

which cannot hold since d ∈ ∂εf(x). Hence, we must have

∂εf(x) ⊂ cl
(
∪0<δ<ε∂δf(x)

)
,

thus completing the proof of Eq. (4.7).
We now prove the statement of the exercise. Let {xk} be a sequence con-

verging to x. By Prop. 4.3.1(a), the ε-subdifferential ∂εf(x) is bounded, so that
there exists a constant L > 0 such that

‖g‖ ≤ L, ∀ g ∈ ∂εf(x).

Let
γk =

∣∣f(xk)− f(x)
∣∣ + L ‖xk − x‖, ∀ k. (4.10)
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Since xk → x, by continuity of f , it follows that γk → 0 as k → ∞, so that
εk = ε− γk converges to ε. Let {ki} ⊂ {0, 1, . . .} be an index sequence such that
{εki} is positive and monotonically increasing to ε, i.e.,

εki ↑ ε with εki = ε− γki > 0, εki < εki+1 , ∀ i.

In view of relation (4.7), we have

cl
(
∪i≥0 ∂εki

f(x)
)

= ∂εf(x), (4.11)

implying that for a given vector d ∈ ∂εf(x), there exists a sequence {dki} such
that

dki → d with dki ∈ ∂εki
f(x), ∀ i. (4.12)

There remains to show that dki ∈ ∂εf(xki) for all i. Since dki ∈ ∂εki
f(x),

it follows that for all i and y ∈ <n,

f(y) ≥ f(x) + d′ki
(y − x)− εki

= f(xki) +
(
f(x)− f(xki)

)
+ d′ki

(y − xki) + d′ki
(xki − x)− εki

≥ f(xki) + d′ki
(y − xki)−

(∣∣f(x)− f(xki)
∣∣+∣∣d′ki

(xki − x)
∣∣ + εki

)
.

(4.13)
Because dki ∈ ∂εf(x) [cf. Eqs. (4.11) and (4.12)] and ∂εf(x) is bounded, there
holds ∣∣d′ki

(xki − x)
∣∣ ≤ L ‖xki − x‖.

Using this relation, the definition of γk [cf. Eq. (4.10)], and the fact εk = ε− γk

for all k, from Eq. (4.13) we obtain for all i and y ∈ <n,

f(y) ≥ f(xki) + d′ki
(y − xki)− (γki + εki) = f(xki) + d′ki

(y − xki)− ε.

Hence dki ∈ ∂εf(xki) for all i, thus completing the proof.

4.14 (Subgradient Mean Value Theorem)

(a) Scalar Case: Let ϕ : < 7→ < be a scalar convex function, and let a and b
be scalars with a < b. Show that there exists a scalar t∗ ∈ (a, b) such that

ϕ(b)− ϕ(a)

b− a
∈ ∂ϕ(t∗).

Hint : Show that the scalar convex function

g(t) = ϕ(t)− ϕ(a)− ϕ(b)− ϕ(a)

b− a
(t− a)

has a minimum t∗ ∈ (a, b), and use the optimality condition 0 ∈ ∂g(t∗).
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(b) Vector Case: Let f : <n 7→ < be a convex function, and let x and y be
vectors in <n. Show that there exist a scalar α ∈ (0, 1) and a subgradient
d ∈ ∂f

(
αx + (1− α)y

)
such that

f(y) = f(x) + d′(y − x).

Hint : Apply part (a) to the scalar function ϕ(t) = f
(
tx + (1− t)y

)
, t ∈ <.

Solution: (a) Scalar Case: Define the scalar function g : < 7→ < by

g(t) = ϕ(t)− ϕ(a)− ϕ(b)− ϕ(a)

b− a
(t− a),

and note that g is convex and g(a) = g(b) = 0. We first show that g attains its
minimum over < at some point t∗ ∈ [a, b]. For t < a, we have

a =
b− a

b− t
t +

a− t

b− t
b,

and by using convexity of g and g(a) = g(b) = 0, we obtain

0 = g(a) ≤ b− a

b− t
g(t) +

a− t

b− t
g(b) =

b− a

b− t
g(t),

implying that g(t) ≥ 0 for t < a. Similarly, for t > b, we have

b =
b− a

t− a
t +

t− b

t− a
a,

and by using convexity of g and g(a) = g(b) = 0, we obtain

0 = g(b) ≤ b− a

t− a
g(t) +

t− b

t− a
g(a) =

t− b

t− a
g(t),

implying that g(t) ≥ 0 for t > b. Therefore g(t) ≥ 0 for t 6∈ (a, b), while
g(a) = g(b) = 0. Hence

min
t∈<

g(t) = min
t∈[a,b]

g(t). (4.14)

Because g is convex over <, it is also continuous over <, and since [a, b] is compact,
the set of minimizers of g over [a, b] is nonempty. Thus, in view of Eq. (4.14),
there exists a scalar t∗ ∈ [a, b] such that g(t∗) = mint∈< g(t). If t∗ ∈ (a, b), then
we are done. If t∗ = a or t∗ = b, then since g(a) = g(b) = 0, it follows that
every t ∈ [a, b] attains the minimum of g over <, so that we can replace t∗ by a
point in the interval (a, b). Thus, in any case, there exists t∗ ∈ (a, b) such that
g(t∗) = mint∈< g(t).

We next show that

ϕ(b)− ϕ(a)

b− a
∈ ∂ϕ(t∗).
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The function g is the sum of the convex function ϕ and the linear (and therefore

smooth) function −ϕ(b)−ϕ(a)
b−a

(t−a). Thus the subdifferential of ∂g(t∗) is the sum

of the sudifferential of ∂ϕ(t∗) and the gradient −ϕ(b)−ϕ(a)
b−a

(see Prop. 4.2.4),

∂g(t∗) = ∂ϕ(t∗)− ϕ(b)− ϕ(a)

b− a
.

Since t∗ minimizes g over <, by the optimality condition, we have 0 ∈ ∂g(t∗).
This and the preceding relation imply that

ϕ(b)− ϕ(a)

b− a
∈ ∂ϕ(t∗).

(b) Vector Case: Let x and y be any two vectors in <n. If x = y, then
f(y) = f(x) + d′(y − x) trivially holds for any d ∈ ∂f(x), and we are done. So
assume that x 6= y, and consider the scalar function ϕ given by

ϕ(t) = f(xt), xt = tx + (1− t)y, t ∈ <.

By part (a), where a = 0 and b = 1, there exists α ∈ (0, 1) such that

ϕ(1)− ϕ(0) ∈ ∂ϕ(α),

while by Exercise 4.6, we have

∂ϕ(α) =
{
d′(x− y) | d ∈ ∂f(xα)

}
.

Since ϕ(1) = f(x) and ϕ(0) = f(y), we see that

f(x)− f(y) ∈
{
d′(x− y) | d ∈ ∂f(xα)

}
.

Therefore, there exists d ∈ ∂f(xα) such that f(y)− f(x) = d′(y − x).

4.15 (Steepest Descent Direction of a Convex Function)

Let f : <n 7→ < be a convex function and let x be a vector in <n. Show that a
vector d is the vector of minimum norm in ∂f(x) if and only if either d = 0 or
else d/‖d‖ minimizes f ′(x; d) over all d with ‖d‖ ≤ 1.

Solution: Note that the problem statement in the book contains a typo: d̄/‖d̄‖
should be replaced by −d̄/‖d̄‖.

The sets
{
d | ‖d‖ ≤ 1

}
and ∂f(x) are compact, and the function φ(d, g) =

d′g is linear in each variable when the other variable is fixed, so that φ(·, g) is
convex and closed for all g, while the function −φ(d, ·) is convex and closed for
all d. Thus, by Prop. 2.6.9, the order of min and max can be interchanged,

min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g,
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and there exist associated saddle points.
By Prop. 4.2.2, we have f ′(x; d) = maxg∈∂f(x) d′g, so

min
‖d‖≤1

max
g∈∂f(x)

d′g = min
‖d‖≤1

f ′(x; d). (4.15)

We also have for all g,

min
‖d‖≤1

d′g = −‖g‖,

and the minimum is attained for d = −g/‖g‖. Thus

max
g∈∂f(x)

min
‖d‖≤1

d′g = max
g∈∂f(x)

(
−‖g‖

)
= − min

g∈∂f(x)
‖g‖. (4.16)

From the generic characterization of a saddle point (cf. Prop. 2.6.1), it follows
that the set of saddle points of d′g is D∗ × G∗, where D∗ is the set of minima
of f ′(x; d) subject to ‖d‖ ≤ 1 [cf. Eq. (4.15)], and G∗ is the set of minima of
‖g‖ subject to g ∈ ∂f(x) [cf. Eq. (4.16)], i.e., G∗ consists of the unique vector g∗

of minimum norm on ∂f(x). Furthermore, again by Prop. 2.6.1, every d∗ ∈ D∗

must minimize d′g∗ subject to ‖d‖ ≤ 1, so it must satisfy d∗ = −g∗/‖g∗‖.

4.16 (Generating Descent Directions of Convex Functions)

This exercise provides a method for generating a descent direction in circum-
stances where obtaining a single subgradient is relatively easy.

Let f : <n 7→ < be a convex function, and let x be a fixed vector in <n.
A vector d ∈ <n is said to be a descent direction of f at x if the corresponding
directional derivative of f satisfies

f ′(x; d) < 0.

Assume that x does not minimize f , and let g1 be a subgradient of f at
x. For k = 2, 3, . . ., let wk be the vector of minimum norm in the convex hull of
g1, . . . , gk−1,

wk = arg min
g∈conv{g1,...,gk−1}

‖g‖.

If −wk is a descent direction of f at x, then stop; else let gk be a vector in ∂f(x)
such that

gk
′wk = min

g∈∂f(x)
g′wk.

Show that this process terminates in a finite number of steps with a descent
direction of f at x. Hint : If −wk is not a descent direction, then gi

′wk ≥
‖wk‖2 ≥ ‖g∗‖2 > 0 for all i = 1, . . . , k − 1, where g∗ is the subgradient of f at x
with minimum norm, while at the same time gk

′wk ≤ 0. Consider a limit point
of

{
(wk, gk)

}
.

Solution: Suppose that the process does not terminate in a finite number of
steps, and let

{
(wk, gk)

}
be the sequence generated by the algorithm. Since wk
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is the projection of the origin on the set conv{g1, . . . , gk−1}, by the Projection
Theorem (Prop. 2.2.1), we have

(g − wk)′wk ≥ 0, ∀ g ∈ conv{g1, . . . , gk−1},

implying that

g′iwk ≥ ‖wk‖2 ≥ ‖g∗‖2 > 0, ∀ i = 1, . . . , k − 1, ∀ k ≥ 1, (4.17)

where g∗ ∈ ∂f(x) is the vector with minimum norm in ∂f(x). Note that ‖g∗‖ > 0
because x does not minimize f . The sequences {wk} and {gk} are contained in
∂f(x), and since ∂f(x) is compact, {wk} and {gk} have limit points in ∂f(x).
Without loss of generality, we may assume that these sequences converge, so that
for some ŵ, ĝ ∈ ∂f(x), we have

lim
k→∞

wk = ŵ, lim
k→∞

gk = ĝ,

which in view of Eq. (4.17) implies that ĝ′ŵ > 0. On the other hand, because
none of the vectors (−wk) is a descent direction of f at x, we have f ′(x;−wk) ≥ 0,
so that

g′k(−wk) = max
g∈∂f(x)

g′(−wk) = f ′(x;−wk) ≥ 0.

By letting k → ∞, we obtain ĝ′ŵ ≤ 0, thus contradicting ĝ′ŵ > 0. Therefore,
the process must terminate in a finite number of steps with a descent direction.

4.17 (Generating ε-Descent Directions of Convex Functions [Lem74])

This exercise shows how the procedure of Exercise 4.16 can be modified so that
it generates an ε-descent direction.

Let f : <n 7→ < be a convex function, and let x be a fixed vector in <n.
Assume that x is not an ε-minimizer of the function f , i.e., f(x) > infz∈<n f(z)+
ε, and let g1 be an ε-subgradient of f at x. For k = 2, 3, . . ., let wk be the vector
of minimum norm in the convex hull of g1, . . . , gk−1,

wk = arg min
g∈conv{g1,...,gk−1}

‖g‖.

By a search along the direction −wk, determine whether there exists a scalar α
such that f(x − αwk) < f(x) − ε. If such an α exists, then stop (−wk is an
ε-descent direction of f at x); otherwise, let gk be a vector in ∂εf(x) such that

gk
′wk = min

g∈∂εf(x)
g′wk.

Show that this process will terminate in a finite number of steps with an ε-descent
direction of f at x.

Solution: Suppose that the process does not terminate in a finite number of
steps, and let

{
(wk, gk)

}
be the sequence generated by the algorithm. Since wk
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is the projection of the origin on the set conv{g1, . . . , gk−1}, by the Projection
Theorem (Prop. 2.2.1), we have

(g − wk)′wk ≥ 0, ∀ g ∈ conv{g1, . . . , gk−1},

implying that

g′iwk ≥ ‖wk‖2 ≥ ‖g∗‖2 > 0, ∀ i = 1, . . . , k − 1, ∀ k ≥ 1, (4.18)

where g∗ ∈ ∂εf(x) is the vector with minimum norm in ∂εf(x). Note that
‖g∗‖ > 0 because x is not an ε-optimal solution, i.e., f(x) > infz∈<n f(z)+ ε [see
Prop. 4.3.1(b)]. The sequences {wk} and {gk} are contained in ∂εf(x), and since
∂εf(x) is compact [Prop. 4.3.1(a)], {wk} and {gk} have limit points in ∂εf(x).
Without loss of generality, we may assume that these sequences converge, so that
for some ŵ, ĝ ∈ ∂εf(x), we have

lim
k→∞

wk = ŵ, lim
k→∞

gk = ĝ,

which in view of Eq. (4.18) implies that ĝ′ŵ > 0. On the other hand, because
none of the vectors (−wk) is an ε-descent direction of f at x, by Prop. 4.3.1(a),
we have

g′k(−wk) = max
g∈∂f(x)

g′(−wk) = inf
α>0

f(x− αwk)− f(x) + ε

α
≥ 0.

By letting k → ∞, we obtain ĝ′ŵ ≤ 0, thus contradicting ĝ′ŵ > 0. Hence, the
process must terminate in a finite number of steps with an ε-descent direction.

4.18

For the following subsets C of <n, specify the tangent cone and the normal cone
at every point of C.

(a) C is the unit ball.

(b) C is a subspace.

(c) C is a closed halfspace, i.e., C = {x | a′x ≤ b} for a nonzero vector a ∈ <n

and a scalar b.

(d) C = {x | xi ≥ 0, i ∈ I} with I ⊂ {1, . . . , n}.

Solution: (a) For x ∈ int(C), we clearly have FC(x) = <n, implying that

TC(x) = <n.

Since C is convex, by Prop. 4.6.3, we have

NC(x) = TC(x)∗ = {0}.
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For x ∈ C with x 6∈ int(C), we have ‖x‖ = 1. By the definition of the set
FC(x) of feasible directions at x, we have y ∈ FC(x) if and only if x + αy ∈ C
for all sufficiently small positive scalars α. Thus, y ∈ FC(x) if and only if there
exists α > 0 such that ‖x + αy‖2 ≤ 1 for all α with 0 < α ≤ α, or equivalently

‖x‖2 + 2αx′y + α2‖y‖2 ≤ 1, ∀ α, 0 < α ≤ α.

Since ‖x‖ = 1, the preceding relation reduces to

2x′y + α‖y‖2 ≤ 0. ∀ α, 0 < α ≤ α.

This relation holds if and only if y = 0, or x′y < 0 and α ≤ −2x′y/‖y‖2 (i.e.,
α = −2x′y/‖y‖2). Therefore,

FC(x) =
{
y | x′y < 0

}
∪ {0}.

Because C is convex, by Prop. 4.6.2(c), we have TC(x) = cl
(
FC(x)

)
, implying

that
TC(x) =

{
y | x′y ≤ 0

}
.

Furthermore, by Prop. 4.6.3, we have NC(x) = TC(x)∗, while by the Farkas’
Lemma [Prop. 3.2.1(b)], TC(x)∗ = cone

(
{x}

)
, implying that

NC(x) = cone
(
{x}

)
.

(b) If C is a subspace, then clearly FC(x) = C for all x ∈ C. Because C is convex,
by Props. 4.6.2(a) and 4.6.3, we have

TC(x) = cl
(
FC(x)

)
= C, NC(x) = TC(x)∗ = C⊥, ∀ x ∈ C.

(c) Let C be a closed halfspace given by C =
{
x | a′x ≤ b

}
with a nonzero vector

a ∈ <n and a scalar b. For x ∈ int(C), i.e., a′x < b, we have FC(x) = <n and
since C is convex, by Props. 4.6.2(a) and 4.6.3, we have

TC(x) = cl
(
FC(x)

)
= <n, NC(x) = TC(x)∗ = {0}.

For x ∈ C with x 6∈ int(C), we have a′x = b, so that x + αy ∈ C for some
y ∈ <n and α > 0 if and only if a′y ≤ 0, implying that

FC(x) =
{
y | a′y ≤ 0

}
.

By Prop. 4.6.2(a), it follows that

TC(x) = cl
(
FC(x)

)
=

{
y | a′y ≤ 0

}
,

while by Prop. 4.6.3 and the Farkas’ Lemma [Prop. 3.2.1(b)], it follows that

NC(x) = TC(x)∗ = cone
(
{a}

)
.
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(d) For x ∈ C with x ∈ int(C), i.e., xi > 0 for all i ∈ I, we have FC(x) = <n.
Then, by using Props. 4.6.2(a) and 4.6.3, we obtain

TC(x) = cl
(
FC(x)

)
= <n, NC(x) = TC(x)∗ = {0}.

For x ∈ C with x 6∈ int(C), the set Ax = {i ∈ I | xi = 0} is nonempty.
Then, x + αy ∈ C for some y ∈ <n and α > 0 if and only if yi ≤ 0 for all i ∈ Ax,
implying that

FC(x) = {y | yi ≤ 0, ∀ i ∈ Ax}.

Because C is convex, by Prop. 4.6.2(a), we have that

TC(x) = cl
(
FC(x)

)
= {y | yi ≤ 0, ∀ i ∈ Ax},

or equivalently
TC(x) =

{
y | y′ei ≤ 0, ∀ i ∈ Ax

}
,

where ei ∈ <n is the vector whose ith component is 1 and all other components
are 0. By Prop. 4.6.3, we further have NC(x) = TC(x)∗, while by the Farkas’
Lemma [Prop. propforea(b)], we see that TC(x)∗ = cone

(
{ei | i ∈ Ax}

)
, implying

that
NC(x) = cone

(
{ei | i ∈ Ax}

)
.

4.19

Let C be a convex subset of <n, and let x be a vector in C. Show that the
following properties are equivalent:

(a) x lies in the relative interior of C.

(b) TC(x) is a subspace.

(c) NC(x) is a subspace.

Solution: (a) ⇒ (b) Let x ∈ ri(C) and let S be the subspace that is parallel to
aff(C). Then, for every y ∈ S, x + αy ∈ ri(C) for all sufficiently small positive
scalars α, implying that y ∈ FC(x) and showing that S ⊂ FC(x). Furthermore,
by the definition of the set of feasible directions, it follows that if y ∈ FC(x), then
there exists α > 0 such that x + αy ∈ C for all α ∈ (0, α]. Hence y ∈ S, implying
that FC(x) ⊂ S. This and the relation S ⊂ FC(x) show that FC(x) = S. Since
C is convex, by Prop. 4.6.2(a), it follows that

TC(x) = cl
(
FC(x)

)
= S,

thus proving that TC(x) is a subspace.

(b) ⇒ (c) Let TC(x) be a subspace. Then, because C is convex, from Prop. 4.6.3
it follows that

NC(x) = TC(x)∗ = TC(x)⊥,

showing that NC(x) is a subspace.
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(c) ⇒ (a) Let NC(x) be a subspace, and to arrive at a contradiction suppose that
x is not a point in the relative interior of C. Then, by the Proper Separation
Theorem (Prop. 2.4.5), the point x and the relative interior of C can be properly
separated, i.e., there exists a vector a ∈ <n such that

sup
y∈C

a′y ≤ a′x, (4.19)

inf
y∈C

a′y < sup
y∈C

a′y. (4.20)

The relation (4.19) implies that

(−a)′(x− y) ≤ 0, ∀ y ∈ C. (4.21)

Since C is convex, by Prop. 4.6.3, the preceding relation is equivalent to −a ∈
TC(x)∗. By the same proposition, there holds NC(x) = TC(x)∗, implying that
−a ∈ NC(x). Because NC(x) is a subspace, we must also have a ∈ NC(x), and
by using

NC(x) = TC(x)∗ =
{
z | z′(x− y) ≤ 0, ∀ y ∈ C

}
(cf. Prop. 4.6.3), we see that

a′(x− y) ≤ 0, ∀ y ∈ C.

This relation and Eq. (4.21) yield

a′(x− y) = 0, ∀ y ∈ C,

contradicting Eq. (4.20). Hence, x must be in the relative interior of C.

4.20 (Tangent and Normal Cones of Affine Sets)

Let A be an m× n matrix and b be a vector in <m. Show that the tangent cone
and the normal cone of the set {x | Ax = b} at any of its points are the null
space of A and the range space of A′, respectively.

Solution: Let C = {x | Ax = b} and let x ∈ C be arbitrary. We then have

FC(x) = {y | Ay = 0} = N(A),

and by using Prop. 4.6.2(a), we obtain

TC(x) = cl
(
FC(x)

)
= N(A).

Since C is convex, by Prop. 4.6.3, it follows that

NC(x) = TC(x)∗ = N(A)⊥ = R(A′).

26



4.21 (Tangent and Normal Cones of Level Sets)

Let f : <n 7→ < be a convex function, and let x be a vector in <n such that
the level set

{
z | f(z) ≤ f(x)

}
is nonempty. Show that the tangent cone and

the normal cone of the level set
{
z | f(z) ≤ f(x)

}
at the point x coincide with{

y | f ′(x; y) ≤ 0
}

and cl
(
cone

(
∂f(x)

))
, respectively. Furthermore, if x does not

minimize f over <n, the closure operation is unnecessary.

Solution: Let
C =

{
z | f(z) ≤ f(x)

}
,

and consider FC(x), the cone of feasible directions of C at x. We first show that

cl
(
FC(x)

)
=

{
y | f ′(x; y) ≤ 0

}
.

Let y ∈ FC(x) be arbitrary. Then, by the definition of FC(x), there exists a
scalar α such that x + αy ∈ C for all α ∈ (0, α]. By the definition of C, it follows
that f(x + αy) ≤ f(x) for all α ∈ (0, α], implying that

f ′(x; y) = inf
α>0

f(x + αy)− f(x)

α
≤ 0.

Therefore y ∈
{
y | f ′(x; y) ≤ 0

}
, thus showing that

FC(x) ⊂
{
y | f ′(x; y) ≤ 0

}
.

By Exercise 4.1(d), the set
{
y | f ′(x; y) ≤ 0

}
is closed, so that by taking closures

in the preceding relation, we obtain

cl
(
FC(x)

)
⊂

{
y | f ′(x; y) ≤ 0

}
.

To show the converse inclusion, let y be such that f ′(x; y) < 0, so that for all
small enough α ≥ 0, we have

f(x + αy)− f(x) < 0.

Therefore x + αy ∈ C for all small enough α ≥ 0, implying that y ∈ FC(x) and
showing that {

y | f ′(x; y) < 0
}
⊂ FC(x).

By taking the closures of the sets in the preceding relation, we obtain{
y | f ′(x; y) ≤ 0

}
= cl

({
y | f ′(x; y) < 0

})
⊂ cl

(
FC(x)

)
.

Hence
cl

(
FC(x)

)
=

{
y | f ′(x; y) ≤ 0

}
.

Since C is convex, by Prop. 4.6.2(c), we have cl
(
FC(x)

)
= TC(x). This and

the preceding relation imply that

TC(x) =
{
y | f ′(x; y) ≤ 0

}
.
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Since by Prop. 4.6.3, NC(x) = TC(x)∗, it follows that

NC(x) =
({

y | f ′(x; y) ≤ 0
})∗

.

Furthermore, by Exercise 4.1(d), we have that({
y | f ′(x; y) ≤ 0

})∗
= cl

(
cone

(
∂f(x)

))
,

implying that

NC(x) = cl
(
cone

(
∂f(x)

))
.

If x does not minimize f over <n, then the subdifferential ∂f(x) does not
contain the origin. Furthermore, by Prop. 4.2.1, ∂f(x) is nonempty and compact,
implying by Exercise 1.32(a) that the cone generated by ∂f(x) is closed. There-
fore, in this case, the closure operation in the preceding relation is unnecessary,
i.e.,

NC(x) = cone
(
∂f(x)

)
.

4.22

Let Ci ⊂ <ni , i = 1, . . . , m, be convex sets and let xi ∈ Ci for all i. Show that

TC1×···×Cm(x1, . . . , xm) = TC1(x1)× · · · × TCm(xm),

NC1×···×Cm(x1, . . . , xm) = NC1(x1)× · · · ×NCm(xm).

Solution: It suffices to consider the case m = 2. From the definition of the cone
of feasible directions, it can be seen that

FC1×C2(x1, x2) = FC1(x1)× FC2(x2).

By taking the closure of both sides in the preceding relation, and by using the fact
that the closure of the Cartesian product of two sets coincides with the Cartesian
product of their closures (see Exercise 1.37), we obtain

cl
(
FC1×C2(x1, x2)

)
= cl

(
FC1(x1)

)
× cl

(
FC2(x2)

)
.

Since C1 and C2 are convex, by Prop. 4.6.2(c), we have

TC1(x1) = cl
(
FC1(x1)

)
, TC2(x2) = cl

(
FC2(x2)

)
.

Furthermore, the Cartesian product C1×C2 is also convex, and by Prop. 4.6.2(c),
we also have

TC1×C2(x1, x2) = cl
(
FC1×C2(x1, x2)

)
.
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By combining the preceding three relations, we obtain

TC1×C2(x1, x2) = TC1(x1)× TC2(x2).

By taking polars in the preceding relation, we obtain

TC1×C2(x1, x2)
∗ =

(
TC1(x1)× TC2(x2)

)∗
,

and because the polar of the Cartesian product of two cones coincides with the
Cartesian product of their polar cones (see Exercise 3.4), it follows that

TC1×C2(x1, x2)
∗ = TC1(x1)

∗ × TC2(x2)
∗.

Since the sets C1, C2, and C1 × C2 are convex, by Prop. 4.6.3, we have

TC1×C2(x1, x2)
∗ = NC1×C2(x1, x2),

TC1(x1)
∗ = NC1(x1), TC2(x2)

∗ = NC2(x2),

so that
NC1×C2(x1, x2) = NC1(x1)×NC2(x2).

4.23 (Tangent and Normal Cone Relations)

Let C1, C2, and C be nonempty convex subsets of <n. Show the following
properties:

(a) We have

NC1∩C2(x) ⊃ NC1(x) + NC2(x), ∀ x ∈ C1 ∩ C2,

TC1∩C2(x) ⊂ TC1(x) ∩ TC2(x), ∀ x ∈ C1 ∩ C2.

Furthermore, if ri(C1) ∩ ri(C2) is nonempty, the preceding relations hold
with equality. This is also true if ri(C1) ∩ C2 is nonempty and the set C2

is polyhedral.

(b) For x1 ∈ C1 and x2 ∈ C2, we have

NC1+C2(x1 + x2) = NC1(x1) ∩NC2(x2),

TC1+C2(x1 + x2) = cl
(
TC1(x1) + TC2(x2)

)
.

(c) For an m× n matrix A and any x ∈ C, we have

NAC(Ax) = (A′)−1 ·NC(x), TAC(Ax) = cl
(
A · TC(x)

)
.

Solution: (a) We first show that

NC1(x) + NC2(x) ⊂ NC1∩C2(x), ∀ x ∈ C1 ∩ C2.
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For i = 1, 2, let fi(x) = 0 when x ∈ C and fi(x) = ∞ otherwise, so that for
f = f1 + f2, we have

f(x) =
{

0 if x ∈ C1 ∩ C2,
∞ otherwise.

By Exercise 4.4(d), we have

∂f1(x) = NC1(x), ∀ x ∈ C1,

∂f2(x) = NC2(x), ∀ x ∈ C2,

∂f(x) = NC1∩C2(x), ∀ x ∈ C1 ∩ C2,

while by Exercise 4.9, we have

∂f1(x) + ∂f2(x) ⊂ ∂f(x), ∀ x.

In particular, this relation holds for every x ∈ dom(f) and since dom(f) =
C1 ∩ C2, we obtain

NC1(x) + NC2(x) ⊂ NC1∩C2(x), ∀ x ∈ C1 ∩ C2. (4.22)

If ri(C1) ∩ ri(C2) is nonempty, then by Exercise 4.9, we have

∂f(x) = ∂f1(x) + ∂f2(x), ∀ x,

implying that

NC1∩C2(x) = NC1(x) + NC2(x), ∀ x ∈ C1 ∩ C2. (4.23)

Furthermore, by Exercise 4.9, this relation also holds if C2 is polyhedral and
ri(C1) ∩ C2 is nonempty.

By taking polars in Eq. (4.22), it follows that

NC1∩C2(x)∗ ⊂
(
NC1(x) + NC2(x)

)∗
,

and since (
NC1(x) + NC2(x)

)∗
= NC1(x)∗ ∩NC2(x)∗

(see Exercise 3.4), we obtain

NC1∩C2(x)∗ ⊂ NC1(x)∗ ∩NC2(x)∗. (4.24)

Because C1 and C2 are convex, their intersection C1 ∩ C2 is also convex, and by
Prop. 4.6.3, we have

NC1∩C2(x)∗ = TC1∩C2(x),

NC1(x)∗ = TC1(x), NC2(x)∗ = TC2(x).

In view of Eq. (4.24), it follows that

TC1∩C2(x) ⊂ TC1(x) ∩ TC2(x).
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When ri(C1) ∩ ri(C2) is nonempty, or when ri(C1) ∩ C2 is nonempty and C2 is
polyhedral, by taking the polars in both sides of Eq. (4.23), it can be similarly
seen that

TC1∩C2(x) = TC1(x) ∩ TC2(x).

(b) Let x1 ∈ C1 and x2 ∈ C2 be arbitrary. Since C1 and C2 are convex, the sum
C1 + C2 is also convex, so that by Prop. 4.6.3, we have

z ∈ NC1+C2(x1 +x2) ⇐⇒ z′
(
(y1 +y2)− (x1 +x2)

)
≤ 0, ∀ y1 ∈ C1, ∀ y2 ∈ C2,

(4.25)
z1 ∈ NC1(x1) ⇐⇒ z′1(y1 − x1) ≤ 0, ∀ y1 ∈ C1, (4.26)

z2 ∈ NC2(x2) ⇐⇒ z′2(y2 − x2) ≤ 0, ∀ y2 ∈ C2. (4.27)

If z ∈ NC1+C2(x1 + x2), then by using y2 = x2 in Eq. (4.25), we obtain

z′(y1 − x1) ≤ 0, ∀ y1 ∈ C1,

implying that z ∈ NC1(x1). Similarly, by using y1 = x1 in Eq. (4.25), we see that
z ∈ NC2(x2). Hence z ∈ NC1(x1) ∩NC2(x2) implying that

NC1+C2(x1 + x2) ⊂ NC1(x1) ∩NC2(x2).

Conversely, let z ∈ NC1(x1)∩NC2(x2), so that both Eqs. (4.26) and (4.27)
hold, and by adding them, we obtain

z′
(
(y1 + y2)− (x1 + x2)

)
≤ 0, ∀ y1 ∈ C1, ∀ y2 ∈ C2.

Therefore, in view of Eq. (4.25), we have z ∈ NC1+C2(x1 + x2), showing that

NC1(x1) ∩NC2(x2) ⊂ NC1+C2(x1 + x2).

Hence
NC1+C2(x1 + x2) = NC1(x1) ∩NC2(x2).

By taking polars in this relation, we obtain

NC1+C2(x1 + x2)
∗ =

(
NC1(x1) ∩NC2(x2)

)∗
.

Since NC1(x1) and NC2(x2) are closed convex cones, by Exercise 3.4, it follows
that

NC1+C2(x1 + x2)
∗ = cl

(
NC1(x1)

∗ + NC2(x2)
∗).

The sets C1, C2, and C1 + C2 are convex, so that by Prop. 4.6.3, we have

NC1(x1)
∗ = TC1(x1), NC2(x2)

∗ = TC2(x2),

NC1+C2(x1 + x2)
∗ = TC1+C2(x1 + x2),

implying that
TC1+C2(x1 + x2) = cl

(
TC1(x1) + TC2(x2)

)
.
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(c) Let x ∈ C be arbitrary. Since C is convex, its image AC under the linear
transformation A is also convex, so by Prop. 4.6.3, we have

z ∈ NAC(Ax) ⇐⇒ z′(y −Ax) ≤ 0, ∀ y ∈ AC,

which is equivalent to

z ∈ NAC(Ax) ⇐⇒ z′(Av −Ax) ≤ 0, ∀ v ∈ C.

Furthermore, the condition

z′(Av −Ax) ≤ 0, ∀ v ∈ C

is the same as

(A′z)′(v − x) ≤ 0, ∀ v ∈ C,

and since C is convex, by Prop. 4.6.3, this is equivalent to A′z ∈ NC(x). Thus,

z ∈ NAC(Ax) ⇐⇒ A′z ∈ NC(x),

which together with the fact A′z ∈ NC(x) if and only if z ∈ (A′)−1 ·NC(x) yields

NAC(Ax) = (A′)−1 ·NC(x).

By taking polars in the preceding relation, we obtain

NAC(Ax)∗ =
(
(A′)−1 ·NC(x)

)∗
. (4.28)

Because AC is convex, by Prop. 4.6.3, we have

NAC(Ax)∗ = TAC(Ax). (4.29)

Since C is convex, by the same proposition, we have NC(x) = TC(x)∗, so that
NC(x) is a closed convex cone and by using Exercise 3.5, we obtain(

(A′)−1 ·NC(x)
)∗

= cl
(
A ·NC(x)∗

)
.

Furthermore, by convexity of C, we also have NC(x)∗ = TC(x), implying that(
(A′)−1 ·NC(x)

)∗
= cl

(
A · TC(x)

)
. (4.30)

Combining Eqs. (4.28), (4.29), and (4.30), we obtain

TAC(Ax) = cl
(
A · TC(x)

)
.
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4.24 [GoT71], [RoW98]

Let C be a subset of <n and let x∗ ∈ C. Show that for every y ∈ TC(x∗)∗ there
is a smooth function f with −∇f(x∗) = y, and such that x∗ is the unique global
minimum of f over C.

Solution: We assume for simplicity that all the constraints are inequalities.
Consider the scalar function θ0 : [0,∞) 7→ < defined by

θ0(r) = sup
x∈C, ‖x−x∗‖≤r

y′(x− x∗), r ≥ 0.

Clearly θ0(r) is nondecreasing and satisfies

0 = θ0(0) ≤ θ0(r), ∀ r ≥ 0.

Furthermore, since y ∈ TC(x∗)∗, we have y′(x− x∗) ≤ o(‖x− x∗‖) for x ∈ C, so
that θ0(r) = o(r), which implies that θ0 is differentiable at r = 0 with∇θ0(0) = 0.
Thus, the function F0 defined by

F0(x) = θ0(‖x− x∗‖)− y′(x− x∗)

is differentiable at x∗, attains a global minimum over C at x∗, and satisfies

−∇F0(x
∗) = y.

If F0 were smooth we would be done, but since it need not even be contin-
uous, we will successively perturb it into a smooth function. We first define the
function θ1 : [0,∞) 7→ < by

θ1(r) =

{
1
r

∫ 2r

r
θ0(s)ds if r > 0,

0 if r = 0,

(the integral above is well-defined since the function θ0 is nondecreasing). The
function θ1 is seen to be nondecreasing and continuous, and satisfies

0 ≤ θ0(r) ≤ θ1(r), ∀ r ≥ 0,

θ1(0) = 0, and ∇θ1(0) = 0. Thus the function

F1(x) = θ1(‖x− x∗‖)− y′(x− x∗)

has the same significant properties for our purposes as F0 [attains a global mini-
mum over C at x∗, and has −∇F1(x

∗) = y], and is in addition continuous.
We next define the function θ2 : [0,∞) 7→ < by

θ2(r) =

{
1
r

∫ 2r

r
θ1(s)ds if r > 0,

0 if r = 0.
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Again θ2 is seen to be nondecreasing, and satisfies

0 ≤ θ1(r) ≤ θ2(r), ∀ r ≥ 0,

θ2(0) = 0, and ∇θ2(0) = 0. Also, because θ1 is continuous, θ2 is smooth, and so
is the function F2 given by

F2(x) = θ2(‖x− x∗‖)− y′(x− x∗).

The function F2 fulfills all the requirements of the proposition, except that it may
have global minima other than x∗. To ensure the uniqueness of x∗ we modify F2

as follows:
F (x) = F2(x) + ‖x− x∗‖2.

The function F is smooth, attains a strict global minimum over C at x∗, and
satisfies −∇F (x∗) = y.

4.25

Let C1, C2, and C3 be nonempty closed subsets of <n. Consider the problem of
finding a triangle with minimum perimeter that has one vertex on each of the
sets, i.e., the problem of minimizing ‖x1 − x2‖ + ‖x2 − x3‖ + ‖x3 − x1‖ subject
to xi ∈ Ci, i = 1, 2, 3, and the additional condition that x1, x2, and x3 do not
lie on the same line. Show that if (x∗1, x

∗
2, x

∗
3) defines an optimal triangle, there

exists a vector z∗ in the triangle such that

(z∗ − x∗i ) ∈ TCi(x
∗
i )
∗, i = 1, 2, 3.

Solution: We consider the problem

minimize ‖x1 − x2‖+ ‖x2 − x3‖+ ‖x3 − x1‖

subject to xi ∈ Ci, i = 1, 2, 3,

with the additional condition that x1, x2 and x3 do not lie on the same line.
Suppose that (x∗1, x

∗
2, x

∗
3) defines an optimal triangle. Then, x∗1 solves the problem

minimize ‖x1 − x∗2‖+ ‖x∗2 − x∗3‖+ ‖x∗3 − x1‖

subject to x1 ∈ C1,

for which we have the following necessary optimality condition

d1 =
x∗2 − x∗1
‖x∗2 − x∗1‖

+
x∗3 − x∗1
‖x∗3 − x∗1‖

∈ TC1(x∗1)
∗.

The half-line {x | x = x∗1 + αd1, α ≥ 0} is one of the bisectors of the optimal
triangle. Similarly, there exist d2 ∈ TC2(x∗2)

∗ and d3 ∈ TC3(x∗3)
∗ which define the

remaining bisectors of the optimal triangle. By elementary geometry, there exists
a unique point z∗ at which all three bisectors intersect (z∗ is the center of the
circle that is inscribed in the optimal triangle). From the necessary optimality
conditions we have

z∗ − x∗i = αidi ∈ TCi(x
∗
i )
∗, i = 1, 2, 3.
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4.26

Consider the problem of minimizing a convex function f : <n 7→ < over the
polyhedral set

X = {x | a′jx ≤ bj , j = 1, . . . , r}.

Show that x∗ is an optimal solution if and only if there exist scalars µ∗1, . . . , µ
∗
r

such that

(i) µ∗j ≥ 0 for all j, and µ∗j = 0 for all j such that a′jx
∗ < bj .

(ii) 0 ∈ ∂f(x∗) +
∑r

j=1
µ∗j aj .

Hint : Characterize the cone TX(x∗)∗, and use Prop. 4.7.2 and Farkas’ Lemma.

Solution: Let us characterize the cone TX(x∗)∗. Define

A(x∗) =
{
j | a′jx∗ = bj

}
.

Since X is convex, by Prop. 4.6.2, we have

TX(x∗) = cl
(
FX(x∗)

)
,

while from definition of X, we have

FX(x∗) =
{
y | a′jy ≤ 0, ∀ j ∈ A(x∗)

}
,

and since this set is closed, it follows that

TX(x∗) =
{
y | a′jy ≤ 0, ∀ j ∈ A(x∗)

}
.

By taking polars in this relation and by using the Farkas’ Lemma [Prop. 3.2.1(b)],
we obtain

TX(x∗)∗ =

 ∑
j∈A(x∗)

µjaj

∣∣∣ µj ≥ 0, ∀ j ∈ A(x∗)

 ,

and by letting µj = 0 for all j /∈ A(x∗), we can write

TX(x∗)∗ =

{
r∑

j=1

µjaj

∣∣∣ µj ≥ 0, ∀ j, µj = 0, ∀ j /∈ A(x∗)

}
. (4.31)

By Prop. 4.7.2, the vector x∗ minimizes f over X if and only if

0 ∈ ∂f(x∗) + TX(x∗)∗.

In view of Eq. (4.31) and the definition of A(x∗), it follows that x∗ minimizes f
over X if and only if there exist µ∗1, . . . , µ

∗
r such that

(i) µ∗j ≥ 0 for all j = 1, . . . , r, and µ∗j = 0 for all j such that a′jx
∗ < bj .

(ii) 0 ∈ ∂f(x∗) +
∑r

j=1
µ∗j aj .
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4.27 (Quasiregularity)

Let f : <n 7→ < be a smooth function, let X be a subset of <n, and let x∗ be a
local minimum of f over X. Denote D(x) =

{
y | ∇f(x)′y < 0

}
.

(a) Show that D(x∗) ∩ TX(x∗) = Ø.

(b) Suppose that X has the form

X =
{
x | h1(x) = 0, . . . , hm(x) = 0, g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
,

where the functions hi : <n 7→ <, i = 1, . . . , m, and gj : <n 7→ <, j =
1, . . . , r, are smooth. For any x ∈ X consider the cone

V (x) =
{
y | ∇hi(x)′y = 0, i = 1, . . . , m, ∇gj(x)′y ≤ 0, j ∈ A(x)

}
,

where A(x) =
{
j | gj(x) = 0

}
. Show that TX(x) ⊂ V (x).

(c) Use Farkas’ Lemma and part (a) to show that if TX(x∗) = V (x∗), then
there exist scalars λ∗1, . . . , λ

∗
m and µ∗1, . . . , µ

∗
r , satisfying

∇f(x∗) +

m∑
i=1

λ∗i∇hi(x
∗) +

r∑
j=1

µ∗j∇gj(x
∗) = 0,

µ∗j ≥ 0, ∀ j = 1, . . . , r, µ∗j = 0, ∀ j ∈ A(x∗).

Note: The condition TX(x∗) = V (x∗) is called quasiregularity at x∗, and
will be discussed further in Chapter 5.

Solution: (a) Let y be a nonzero tangent of X at x∗. Then there exists a
sequence {ξk} and a sequence {xk} ⊂ X such that xk 6= x∗ for all k,

ξk → 0, xk → x∗,

and
xk − x∗

‖xk − x∗‖ =
y

‖y‖ + ξk. (4.32)

By the mean value theorem, we have for all k

f(xk) = f(x∗) +∇f(x̃k)′(xk − x∗),

where x̃k is a vector that lies on the line segment joining xk and x∗. Using Eq.
(4.32), the last relation can be written as

f(xk) = f(x∗) +
‖xk − x∗‖

‖y‖ ∇f(x̃k)′yk, (4.33)

where
yk = y + ‖y‖ξk.
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If the tangent y satsifies ∇f(x∗)′y < 0, then, since x̃k → x∗ and yk → y, we
obtain for all sufficiently large k, ∇f(x̃k)′yk < 0 and [from Eq. (4.33)] f(xk) <
f(x∗). This contradicts the local optimality of x∗.

(b) Assume first that there are no equality constraints. Let x ∈ X and let y be
a nonzero tangent of X at x. Then there exists a sequence {ξk} and a sequence
{xk} ⊂ X such that xk 6= x for all k,

ξk → 0, xk → x,

and
xk − x

‖xk − x‖ =
y

‖y‖ + ξk.

By the mean value theorem, we have for all j and k

0 ≥ gj(x
k) = gj(x) +∇gj(x̃

k)′(xk − x) = ∇gj(x̃
k)′(xk − x),

where x̃k is a vector that lies on the line segment joining xk and x. This relation
can be written as

‖xk − x‖
‖y‖ ∇gj(x̃

k)′yk ≤ 0,

where yk = y + ξk‖y‖, or equivalently

∇gj(x̃
k)′yk ≤ 0, yk = y + ξk‖y‖.

Taking the limit as k → ∞, we obtain ∇gj(x)′y ≤ 0 for all j, thus proving that
y ∈ V (x), and TX(x) ⊂ V (x). If there are some equality constraints hi(x) = 0,
they can be converted to the two inequality constraints hi(x) ≤ 0 and −hi(x) ≤ 0,
and the result follows similarly.

(c) Assume first that there are no equality constraints. From part (a), we have
D(x∗) ∩ V (x∗) = Ø, which is equivalent to having ∇f(x∗)′y ≥ 0 for all y with
∇gj(x

∗)′y ≤ 0 for all j ∈ A(x∗). By Farkas’ Lemma, this is equivalent to the
existence of Lagrange multipliers µ∗j with the properties stated in the exercise. If
there are some equality constraints hi(x) = 0, they can be converted to the two
inequality constraints hi(x) ≤ 0 and −hi(x) ≤ 0, and the result follows similarly.
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