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Preface

The lectures on which the following notes are based were given in various

forms in University College, London, from about 1964 to 1969. GeneralIy

they were an optional undergraduate course, containing the substance of

Chapters .1-6, and part of Chapter 8. Once or twice they were given to

graduate students in geometry, and then included also the bulk of Chapters

9-13. Chapter 7, with the part of Chapter 11 which depends on this, and

the cubic transformations in Chapter 8, never figured in the course, but

it seemed to me very desirable to add them to the published notes. There

is of course much more that I would have liked to include (such as trans-

formations at least of order 5, some study of the connexion between modu-

lar relations and the subgroups of finite index in the modular gr oup, a

general examination of rectification problems, and the parametrisation

of confocal quadrics and of the tetrahedroid and wave surfaces); but a

limit aí length is laíd down for this series of publications, which I fear I

have already strained to the utmost.

In my treatment of el.líptic functions I have tried above all to pre-

sent a unified view of the subject as a whole, developing natur ally out of

the Weierstrass function; and to give the essential rudiments of every

aspect of the subject, while unable to enter in very great detail into any

one of these. In particular I have been concerned to emphasize the depen-

dence of the properties of the functions on the shape aí the lattice; it is

for this reason that the modular function is introduced at such an early

stage, and that equal prominence is given thr oughout (except in the con-

text of the Jacobi functions) to the rhombic and the rectangular lattices.

The treatment of the theta functions will be seen to be rather slight.

They are in themselves a large subject, of which our study is in a con-

siderable measure independent, since our approach (based on Neville's) to

the Jacobi functions obviates any need for the theta functions as a pre-

Iírnínary, except for the expression of invariants such as k, K, J in

iv



terms of T or q, i. e. in terms of the lattice shape.

1 have kept the analytíc apparatus required to a minimum, largely

because 1 am no expert analyst myself; all that 1 assume ought, 1 think,

to be familiar to any graduate or third-year honours student, and is to be

found in any such general textbook as Whittaker and Watson [43] or Copson

[5]. For the study of elliptic curves 1 have of course had to assume some

knowledge of algebraic geometry. The general theory sketched in Section

85 can be read up in detail in such works as van der Waerden [38] or Hodge

and Pedoe [21]; and the properties of the genus used in Section 89 in any

book on algebraíc curves, such as Walker [40] or Semple and Kneebone

[35]. For any aasumed properties of the plane cubic and twisted quartic,

probably the best sources are still the two ela ssics of Salmon [32, 33],

now available in modern reprints; and for the finite groups Y.., 1:, O etc.

perhaps the easiest reference is my own monograph [10].

ln conclusion, 1 would like to express my gratitude to the London

Mathematical Society for makíng this publication possible; to the general

editor of the series, Professor G. C. Shephard, for his patience; to

Dr D. G. Larman for assistance with the bibliography; and particularly

to my wife for her help in reading the proofs.

Istanbul, 1971 Patrick Du VaI
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1. Introductory

1.

For any complex number z = x + iy (x, y real, i2 = -1) we

I I
2 2.!.-

define Re(z) = x, Im(z) = y, z = (x + Y ) 2, Z = x - iy. li Y = O

(i. e. if z = z), z is real, if s » O, z is ímagínary, if x = O, z is

pure írnagínary (note that O is pure ímagínary without being ímagínary)

and if Iz I = 1, z is unimodular. The real and pure imaginary axes in

the Argand plane are horizontal and vertical respectively.

Lattices. A lattice Q of complex numbers is an aggregate of

complex numbers with the two properties: (i) Q is a group with respect

to addition; (ii) the absolute magnitudes of the non-zero elements are

bounded below, i. e. there is a real number k > O such that Iw I 2: k

for all w"* O in Q. Every lattice is either (i) trivial, consisting of O

only; (ií) simple, consisting of all integer multiples of a single generating

element, which is unique except for sign; or (ítí) double, consisting of

all linear combinations with integer coefficients of two generating elements

w1' w
2
' whose ratio is imaginary. These are not unique; if w1' w2

generate Q, so do

w' = rw + sw ,
2 1 2

where p, q, r, sare any integers satisfying ps - qr = ±1. It is usual

however to require w
1
' w to be so ordered that Im(w jw ) shall be221

positive; and if w~' w; are to be similarly ordered, this requires
ps - qr = +1.
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2. Latiice shapes

li n is any lattice, and m any non zero complex number, mn

denotes the aggregate of complex numbers mw for all w in n. This is

also a lattíce, which is said to be similar to n; similarity is an equiva-

lence r elatíon between lattices, an equívalence class being a lattíce shape.

All s impl e lattices are similar, i. e. constitute one lattice shape. The

lattíce points (i. e. elements of the lattíce, represented as points in the

Argand plane) are (for a simple lattice) at equal intervals along one line

through the origin, but in general (for a double lattice) are the vertices

of a pattern of parallelograms filling the whole plane, whose sides can be

taken to be any paír of generators. The lattice point patterns for similar

lattíces are similar in the elementary sense.

TI denotes the aggregate of complex numbers w for all w in n;

TI is also a lattice. li TI = n, n is called real. This is the case if and

only if either: (i) n is simple, its generator (and hence all íts elements)

being either real or pure ímagínary; (Ií) generators can be so chosen

that w is real and w pure írnagínary, in which case n is called rect-
1 2

angular, the lattice points being the vertices of a pattern of rectangles,

whose sides are horizontal and vertical, i. e. parallel to the real and

ímagínary axes; or (Lii)generators can be chosen which are conjugate

complex, in which case n is called r hombíc, the Iattic e points being the

vertices of a pattern of rhombi, whose díagonals are horizontal and verti-

cal. Any lattice similar to a rectangular or rhombic lattice is also rect-

angular or rhombic, but is only real if the sides of the rectangles (díagonals

of the rhombí) are horizontal and vertical. The real rectangular or rhom-

bic lattice will be called horizontal or vertical, according as the longer

sides of the rectangles (Ionger diagonals of the rhombi) are horizontal

or vertical.

Besides the simple lattíce, there are two speciallattice shapes:

(i) square (ordínary squared paper pattern); this is both rectangular and

rhombic, and may be saíd to be in the rectangular or rhombic position if

the sides or diagonals respectively of the squares are horizontal and

vertical (it is real ín both cases); (Ii) triangular (pattern of equilateral

triangles filling the plane); this is rhombic in three ways, a rhombus
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(with diagonals in the ratio .; 3:1) consisting of any two triangles with a

common side. Every lattice satisfies n = -n; the only cases in which

n = kn, with k *- ±l, are the squar e lattice (n = in) and the triangular

lattice (n = E n, where E is a primitive cube root of unity; we shall

throughout denote these cube roots by E, E 2 instead of the more usual

w, w2
, to avoid confusion with the use of w for an element of a lattice).

3. Residue classes

li z is any value of a complex variable, z + n denotes the aggre-

gate of values z + w for al l w in the lattice n. This aggregate is cal led

a residue class (mod n). The residue classes (mod n) form a continuous

group under addition, defined in the obvious way, namely

(z + n) + (w + n) = (z + w) + n. n itself is a residue class (mod n),
the zero element of the group.

By a fundamental region of n we mean a simply connected region

of the Argand plane which contains exactly one member of each residue

class (mod n). li n is the triviallattice, each residue class consists

only of a single value of z, and the only fundamental region is the whole

plane. li n is the simple lattice generated by w, a fundamental region

is an infinite str íp, bounded by two parallel lines, one of which is the locus

of z + w for al l z on the other; these bounding lines need not be per-

pendicular to w, nor straight, though it is usually convenient to take them

so; but they must not intersect. One of the two lines is included in the

fundamental region, and the other is not, i. e. the strip is closed on one

side and open on the other. li n is a double lattice, a fundamental region

can be chosen in many ways; the simplest, and usually the most convenient,

is what is calIed a unit cell, i. e. a paralIelogram with sides w ,w (any1 2
pair of generators), including one of each pair of par all el sides, and one

vertex, but excluding the rest of the boundary.

We obtain a topological model of the residue class group by identi-

fying the points congruent (mod n) on the boundary of the fundamental

region, i. e. joining up the open edges to the corresponding closed edges.

For the simple lattice, identifying the points z, z + w throughout the

bounding lines of the strip, we obtain an infinite cylinder, with generators

3



perpendicular to w. This ís topologically equivalent to a sphere with two

pinholes, corresponding to the open ends of the cylinder (compare the

Mercator map of the sphere, rolled up thus into a cylinder, on which every

point of the sphere is mapped uníquely , except the two poles). For the

double lattice, identifying points z, z + W 2 on the sides of the unit cell

parallel to w we obtain a finite cylinder of length I w I with ends per-
1 1

pendicular to íts generators; to identify corresponding points on these

two ends, the cylinder must be bent round (and also twisted, unless the

sides of the unít cell are perpendicular, i. e. unless Q is rectangular) to

form a ring surface or torus.

In particular, the torus

x = (a + b cos cp)cos e, y = (a + b cos cp)sin e, z = b sin cp,
(x2 + / + z2 + a2 _ b2)2 = 4a2(x2 + y2)

(a2 > b2 > O), obtained by rotating the circle

2 2 2
(x - a) + z = b, Y = °

about the z axis, is not only a topological model of the residue class

gr oup, but a conformal model of the fundamental region, for a rectangular

lattice whose generators satisfy

This means that the angle between the transverse common tangents of the

two circles (x ± a)2 + z2 = b2, which are the section of the torus by the

meridian plane y = 0, is equal to that between the diagonals of the rect-

angular unit cell of Q.

Proof. The element of arc on the surface is given by

2 2222 222ds = (a + b cos cp) de + b dcp = (a + b cos cp) (di; + d1] ) ,

where i; = e and

f bdcp
1]= a + b cos cp

2b -1 a- b 1tan (-./(a+b) tan 2CP) ,
-J(a2 _ b2)
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so that the mapping of the point (e, 1/» of the torus on the point with

cartesian coordinates (~, 7]) thus defined in a plane is conformal; and

the torus, cut open along the meridian e = ±7Tand the parallel I/> = ±7T,

is mapped (1, 1) on the rectangle between the lines

2 2~= ±7T, 7] = ±b7T;../(a - b ) ,

the fundamental region in questiono Ii
No surface is known in three-dimensional Euclidean space, on

which the residue class group modulo a non-rectangular lattice can be

mapped in this way, so as to give at the same time a conformal map of

the fundamental region. (Such a surface exists in eight-dimensional

Euclidean space, but this is beyond our scope. )

4. Summationover a lattice

If Q is any lattíce and f(z) any function of a complex variable,

we shall denote by L f(w) the sum of f(w) over all elements w of Q,
Q

and by L 'f(w) the sum over all non-zero elements, i. e. the same sum
Q

with the term for w = O omitted.

Theorem 1.1. For any lattice Q and any integer n '> 2,

S (Q) = L'W-n converges absolutely.
n Q

00

Proof. It is well known that for n '> 1, L r-n converges
r=l

absolutely ; denote this sum by s (ít is in fact the Riemann zeta functionn
~(n); but the use of the letter ~ here is unacceptable, since in the context

of elliptic functions this letter has a quite different but equal ly well estab-

lished meaníng, to which we shall come later). If Q is simple with

generator w, for even n, S (Q) = 2w-ns , and for odd n, S (Q) = O,n n n
as the terms (rwfn, (_rú.,)-n cancel. If Q is a double lattice, the

lattíce points can be distributed into sets lying on the perimeters of a

sequence of concentric parallelograms, similar to the unit cell, those

ontherthperimeterbeingoftheform pW
1

+qw
2
, where /p/, /q/ both

:'S r, and at least one of them = r. Denote by L f(w) the sum of terms
r

5



00

with w on the rth perimeter; then L If(w) = L L f(w). Now if h is the
n r=l r

lesser diameter of the unit cell perpendicular to an edge, every w on the

rth perimeter satisfies I w I ~ rh, the inequality being strict for most of

them; and they are 8r in number. Thus L Iw I-n < 8r(rhfn, so that the
00 r
'" '" Iwl-nseries iJ iJ is majorised by the absolutely convergent series

r=l r
00

-n '" 1-n8h iJ r ,and is thus itself absolutely convergent. Ii
r=l

The quantities 8 (Q) thus defined clearly satisfy the homogeneityn-nproperty 8 (kn) = k 8 (n), for all complex numbers k"* O and alln n
integers n > 2, since every term in the series on the left is k - n times

the corresponding term in that on the right. It follows that if n is odd,

8 (n) = O, for every lattíce n, since n = -n, 8 (n) = 8 (-n) = -8 (n).n n n n
Simi lar ly, if n is square, as n = in, 8 (n) = O for all n not divisiblen
by 4, and if n is triangular, as n = E n, 8 (n) = O for all n notn
divisible by 6. li n is real, 8 (n) is real for all n, conjugate complexn
elements of the lattice giving rise to conjugate complex terms in the sum,

and real elements to real terms; and in general 8 (TI) = ~n n
The simple lattice generated by w can be regarded as the limit

of a double lattice, of which one generator w = w remains constant, and
1

the other w varies continuously in such a way that Im(w Iw ) tends to221
infinity, as all the lattice points except the integer multiples of w recede

to infinity, leaving the plane empty of lattice points except those of the

simple lattice. The simple lattice will therefore be called a degenerate

double lattice.

Theorem 1. 2. When a double lattice n, varying contínuously,

tends to the degenerate limit, with generator w, 8 (n) tends, uniformlyn
in Re(w Iw ), to the limit 2w-ns , its value for the simple lattice.2 1 n

Proof. Denote w/w
1

by T; on account of the homogeneity, ít

is sufficient to prove the theorem for the lattice n , generated by 1, T.
T

Now for any even n, paír íng off the equal terms for w, -w, we can write

00 00

8 (n ) = 2s + 2 L L. (p + qTrn .
n T n 1q= P=- 00

6
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Now let k be any integer. For each value of q, we can divide the values

of pinto sets of kq consecutive integers, according as Re(p + qT) lies

between consecutive multiples of kq. li Im(T) > k, whatever Re(T) may

be, for the two such sets of values of p defined by

rkq :s Re(p + q rjkq, < (r + Llkq, -(r + l)kq :s Re(p + qT) < -rkq

we have Ip + qTI > kq.J(l + r2), so that for each value of q,

I
00 I 00 1L (p + qTfn < 2(kq)1-n L (1 + /r"2n

p=_oo r=O

< 2(kq)1-n(1 + 2- ~n + s ) ,
n

1

r eplacing (1 + r2f"2n by (r - 1fn, in all but the first two terms, since

(r - 1)2 < 1 + r2. Hence

irrespective of the value of Re(T). Thus by taking Im(T) greater than a

sufficiently large integer k, we can make

18 (Q ) -2s 1n T n

as small as we like, uniformly in Re(T); the theorem is thus proved for

QT' and follows immediately for any Q = w Q . Ii
1 T

5. Functions and periods

We recall that a function f(u) of a complex var íable u is analytic
00

at u = a if ít has an expansion as a power series f(u) = L c (u - a)r,
r=O r

with constant coefficients c , c , ... , converging absolutely and uniform-o 1

Iy in some circle 1 u - ai < k, where k > O. f(u) is meromorphic at

u = a if for some integer n, (u - a)nf(u) is analytic at u = a; if n > O

is the least integer for which this holds, f(u) has an expansion

n 00

f(u) = L b (u - afr + L c (u _ a)r ,
r=l r r=O r

7



with b "* O; in this case u = a is a pole of f(u), of order n; the terms
n r
"f b (u - afr are called the infinite part of the function f(u), b its

r=l r n
leading coefficient, and b

1
its residue, at u = a. (This well established

use of the word residue has of course nothing to do with residue classes,

to which unfortunately we occasionally have to refer in the same contexts. )

Similarly u = a is a zero of order n of f(u) if f(u) is analytíc at u= a,

f(a) = O, and n is the greatest integer such that (u - afnf(u) is analytíc

at u = a, i. e. c is the first non-zero coefficient in the expansion of
n ~

f(u) at u = a, which is accordingly of the form f(u) = l: c (u _ a)r.
rr=n

A function is said to be analytic or meromorphic in a given region,

or in the whole plane, if it is so at every point of the region or of the

plane. li f(u) is analytíc and non-zero at any point, in any region, or in

the whole plane, so is nb ; if f(u) is meromorphic, so is f~U)' the
poles of each being the zeros of the other, and of the same order. The

poles of a function meromorphic in any region are a discrete set, i. e.

for each pole, the distances of other poles from it are bounded below;

and if f(u) is meromorphic in any finite region, including its boundary,

f(u) can only have a finite number of poles in the region. As f(~) is

also meromorphic, f(u) can only have a finite number of zeros in the

region; and as f(u) - c is meromorphic (for any constant c) f(u) can

only assume a given value c in a finite set of poínts in the region.

A period w of a function f(u) is a constant such that

f(u + w) = f(u) for all u. The sum of two periods is also trivially a

period, and if w is a period, so is -w. Thus the periods of any function

form a group with respect to addition. On the other hand, unless the

absolute magnitude of non-zero periods is bounded below, the function

must be constant in any region in which it is differentiable, since
f(U+~ - f(u) = O for some arbitrarily smal l but non-zero valuss of h.

Thus the periods of a non-constant meromorphic function must be a lattice.

Zero is of cour:se a period of every function; if it is the only one,the

lattice of periods is the trivial lattice, and the function is call ed non-

periodic. li a function has a simple or double lattice of periods, it is

called simply or doubly periodic. Familiar examples of simply periodic

functions are sin u, tan u, eU, with simple lattices of periods generated

8



by 21T, 1T, 2i1T respectively.

6. Definition

An elliptic function is a function of a complex variable, which is

meromorphic in the whole plane, and doubly periodic. Since it has the

same value in all points of any residue class (mod Q), where Q is its

lattíce of periods, it can be thought of as a function of the residue class,

rather than of the individual value of u, i. e. a function of position on the

torus model of the residue class group rather than of position in the plane.

Before proving (by construction) the existence of some functions with

these properties, it is convenient to prove some elementary consequences

of the definition, assuming that such functions existo

7. Liouville's theorem

This states that any function which is analytic and bounded in the
._----- ---

whole plane is a constant. Also, a function which is analytic in any finite

region (including its boundary) is bounded in that region. Hence, an

elliptic function which has no residue classes of poles is bounded in the

fundamental region, and so in the whole plane, and is accordingly a con-

stant. This principIe is applied in two main ways to elliptic functions:

Theorem 1. 3. If two elliptic functions have the same lattíce of

periods, the same residue classes of poles, and the same residue classes

of zeros, of the same order in each case, the ratio of the two functions is

a non-zero constant.

Pr-oof, If f(u), g(u) have either zeros or poles of the same order

at u = a, ~ is analytíc and non-zero at u = a. Iig,u,

Theorem 1. 4. If two elliptic functions have the same lattice of

periods, and the same residue classes of poles, with the same infinite

part in each pole, the functions differ by a constant.

9



Proof. li f(u), g(u) have the same infinite part at u = a,

f(u) - g(u) is analytíc there, i. e. has no pole. Ii

8. Contour integration theorems

For any function meromorphic in a simply connected region R

bounded by a closed contour C, we recall the three classical theorems

on integration round the contour C: Let f(u) be meromorphic in R,

with zeros of orders m , ... , mh at u = a , ... , ah and poles of
--------------- I - I

order n
l
, ... , nk at u = b

l
, ... , bk, with residues rI' ... , rk res-

pectively, all these zeros and poles being in R but none on C. Then

k
fC f(u)du = 21Ti l r ..

. 1 JJ=

f f'(u)du - 2 '( ~ ~)C ~ - 1Tl !J m. - !J n. .
l\U, j=1 J j=1 J

h k
fC uf;((~))dU= 21Ti( L m.a. - l n.b.) .

j=1 J J j=1 J J

1.

II.

III.

From this we deduce

Theorem 1. 5. Let f(u) be an elliptic function with the lattice n
of periods, zeros of order mI, ... , mh in the residue classes

aI +n, , ~ +n, and poles of order n
l
, ... , nk in the residue classes

bI +n, , bk+n, with residues rI' ... , rk respectively. Then

k
I. lr.=O;

j=1 J
h k

II. l m. = L n.
j=l J j=1 J
h k

III. L m.a. "" L n.b. (mod n)
j=1 J J j=1 J J

Proof. Take the contour C to be the boundary of a unit cell,

starting from a chosen point u = c, and travelling along straight lines to

u = c + w , c + w + w , c + w , and back to u = c in turn, c being
I I 2 2

chosen so that the path does not pass through any zero or pole. li cf>(u)

is any function of u

10



c+w ~+wfC</>(u)du= f 1(</>(U)- </>(U+W))du + f 2(</>(U+W) - </>(u))du.c 2 C 1

(8.1)

li f(u) is an elliptic function with period lattice n, generated by w ,

W 2' so is ~, and in both the íntsgr als l, II, the integrand in bot~ terms

on the right in -(8.1) is identically zero, which gives the results I, II of

the theorem. As for integral lII, 1t~)u) is not of course an elliptic

function; but as in this case </>(u)- </>(u+ w ) = -w f'(u)/f(u), the first2 2
term on the right in (8. 1) becomes

C+Wl-w f d log f(u) = w (log f(c) - log f(c + w ))2 C 2 1

and as f(c + w
1
) = f(c), the difference between their logarithms as

obtained from the integral must be an integer multiple of 21fi, say -2q1fi;

thus the first term in (8. 1) reduces to 21fi.qw ; and similarly the other
2

term reduces to 21fi.P"'\ . Thus the integral lII is equal to 21fi times an

element pW
1

+ qW2 of n, which proves the result III of the theorem. Ii

9. Order of an elliptic function

Just as an s-ple zero of a polynomial f(x) is commonly and con-

veniently regarded as being s coincident zeros of f(x), or roots of the

equation f(x) = 0, and this convention enables us to say that an equation

of degree n has exactly n roots, when we make due allowance for

coincidences; so an s-ple zero or pole of any meromorphic function is

conventionally to be regarded as s coincident zeros or poles; and in

the case of elliptic functions, with period lattice n, if u = a is an s-ple

zero or pole, so is every member of the residue class a + n, which is

regarded as s coincident residue classes of zeros or poles. With this

convention the results II, III of Theorem 1. 5 can be restated as

Theorem L 6. An elliptic function f(u) assumes any value c

in a number n of residue classes which is independent of c and charac-

teristic of f(u), making due allowance for coincidences among these n

residue classes for some values of c; moreover, the sum of these n

residue classes is independent of c.

11



Proof. Results II, III of Theorem 1. 5 mean that, making due

a.llowance for coíncídences , the number of residue classes of zeros is

equal to that of residue classes of poles, and that the sum of the former

residue classes is equal to that of the latter. Moreover, the residue

classes in which f(u) = c are those which are zeros of the function

f'(u) - c, which is an elliptic function with the same lattice of periods and

the same poles as f(u); thus the number and sum of the residue classes

in which f(u) = c are equal to the number and sum of the poles. Ii
The integer n of Theorem 1. 6 is called the order of f'(u), We

may compare the order of a rational function ~, where f(x), g(x) areg\x,
polynomials; the order is the greater of the degrees of f'(x), g(x), and

is the number of solutions of the equation ~ = c, for any c, when we

make due allowance for coincident roots (and for infinite roots) of the

polynomial equation f(x) - cg(x) = O. Rather s imí.lar-ly, most important

simply periodic functions have a definite order in this sense; sin x, for

instance, assumes any given value c in precisely two residue classes

(mod 27T), which coincide for c = I and for c = -1.

No elliptic function can have order 1.

Proof. Any function of order 1 would have just one residue class

of simple poles, whose residue cannot be zero, since the infinite part of

the function at a simple pole u = a must consist of a single term

b(u - a)" 1, b"4 O; and this contradicts result I of Theorem 1. 5. Even

more simply however, if f(u) were an elliptic function of order 1, the

relation z = f(u) would define a one- one continuous mapping of the torus,

model of the residue class gr oup, onto the z sphere, which is manifestly

impossible topologically. Ii
An elliptic function of order 2 must have either one residue class

of double poles, with residue O(i. e. at which the infinite part consists

of a single term in (u - af 2, and none in (u - a)" 1), or two residue

classes of simple poles with equal and opposite residues.

For any elliptic function f(u) of order n, there can only be a

finite number of values c for which the n residue classes in which

f(u) = c are not all distinct. For apart from any multiple poles (c = ao),

the places in which f(u) = c has a multiple root for any finite c are

12



the stationary points of f(u), i. e. the zeros of f'(u), which is also an

elliptic function, and vanishes in only a finite number of residue classes. Ii
ln fact

Theorem 1. 7. Let f(u) be an elliptic function of order n, ~nd the

sum of the n residue classes in which f(u) assumes any given value be

w + Q; and let f(u) = c. in s. coincident residue classes a. + Q
--- 1 1 1

(i = 1, 2, ... ). Then

~(s. - 1) = 2n, ~(s. - l)a. == 2w (mod Q) ,
111

the summation being over all residue classes a. + Q for which s. > 1.
1 1

Proaf. The result is clearly unaltered if we include in the

summation any further residue classes a. + Q for which s. = 1. We
1 1

therefore specifically include all the poles of f(u), whether simple or

multiple; let the poles (c. = 00) be given by i = 1, ... , h, and other
1

(Iíníte) multiple values c. by i = h+ 1, ... , k; then
1

h
I s. = n,

i=l 1

h
L. s.a, == w (mod Q) .

i=l 1 1

As an s.-pIe pole of any meromorphic function is an (s.+l)-ple pole of
1 h 1

its derivative, f'(u) is of order L. (s. + 1), and the sum of its residue
h i=l 1

classes of poles is I (s, + l)a. + Q. The remaining residue classes
i=l 1 1

a. + Q (i = h+1, ... , k) are the zeros of f'(u), a. being an s.-pIe zero
1 1 1

of f(u) - c., and hence an (s.-l)-ple zero of f'(u). Thus
1 1

k h h
L (s. - 1) = I (s. + 1) = 2n - I (s, - 1) ,

i=h+1 1 i=l 1 i=l 1

k h h
I (s. - l )a, == I (s. + 1) == 2w - I (s. - Lja, (mod Q) ,

i=h+ 1 1 1 i=l 1 i=l 1 1

k k
i. e. I (s. - 1) = 2n, I (s, - l)a. == 2w (mod Q) ,

i=l 1 i=l 1 1

which proves the theorem. Ii
ln particular, if n = 2, there are four values of c (necessarily

all distinct, and possibly including infinity) for which the two residue

13



classes in which f(u) = c coincide. li a + n, b + n are two of these,

2a '" 2b (mod n); thus the four are

a + n, a + ~w + n, a + ~w + n, a + !.w + ~w + n ,
1 2 2 1 2

for some a, and the union of all four is a residue class (mod ~n).

14



---------------------------------~

2 . The Weierstrass functions

10. The Weierstrass function @u

Largely for historical reasons, it is usual to denote a pai r of

generators of the period lattice of an elliptic function by 2w , 2w ; we1 2
shall therefore denote the lattice itself by 2Q, where Q is generated by

w , w. When it is desirable to specify the period lattice with which a
1 2

given elliptic function f(u) has been constructed we shall write it

f(u 12Q), but where only one lattice is under consideration we shall write

simply f(u), or even in some cases fu.

In the first place, we define for any integer n 2: 3

I -nP (u 2Q) = L (u - 2w) .
n Q

This series converges absolutely and uniformly in every finite region

which finitely excludes all lattice points, such as I u I < K, lu- 2w 1 > k,

where K, k are positive constants which can be taken as large and as

small as we like.

Proof. For all u in the region, and for all w such that I w I > K

(i. e. for all but a finite number of terms in the series) Iu- 2w I > /w I, so

that the series is majorized by that for S (Q). Ii By taking K large enoughn
and k small enough, the region of convergence can be made to include

any chosen point of the plane, except a lattice point u = 2w; thus P (u)n
is analytic except at the lattice points. These are poles of order n, with

infinite par t (u - 2wfn, since by omitting this one term from the series,

the point u = 2w can be included in the region of convergence. li w iso
any element of Q, 2wo ís a period of P n(u), since the substitution of

u + 2w for u merely permutes the terms of the series amongst them-o
selves, as the aggregates Q, Q - Wo are the same; and (the convergene e

being absolute) does not affect the sumo Thus P (u /2Q) is an ellipticn
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function of order n, with period lattice 2Q. Further, diff er entiating the

series term by term, we have P~(u) = -nP n+I (u).

For n = 2 however, the corresponding series does not converge,

as that which might be expected to define 8
2

(2Q) does not converge. To

obtain an elliptic functí on of order 2 ín this sequence we define

I -2 '\' { -2 -2 }(lUu= (lU(u W) = u + f..,' (u - 2w) - (2w) .
Q

This series converges absolutely and uniformly in the same type of region

(Iul < K, lu - 2wl > k for al.l w ín Q) as that in which the series

defining P (u) (n 2: 3) converges.n

Proof. As

-2 -2 1 -3 u U-2
(u - 2w) - (2w) = -uw (1- -)(1 --)

4 4w 2w '

and íf Iu I < K and Iw I > K, then 11 - 4u I < ~ and 11 - 2u I > ~, wew 4 w
have for all u ín the region, and all but a finite number of terms ín the

series

I -2 -21 5 -3(u - 2w) - (2w) < -Kw
4

(lU"(u + 2w) = (lU'u

so that the series ís majorised by that for ~KS (Q). Ii Thus @u ís4 3
analytíc in the whole plane, except for the lattice points 2Q, where ít has

poles of order 2, wíth infinite part (u - 2wf2. It is an even íunctíon,

i. e. (lU(-u) = (lUu, since the substitution of -u for u ín the series

merely interchanges each pai r of terms given by elements ±w in Q,

and the one unpaired term u-2 is unchanged.

Differentiating the series term by term, (lU'u = -2P 3 (u). From

the fact that (lU'u ís an elliptic function, ít does not at once follow that

(lU u is one; integrating the ídentíty

for any w ín SI; we have only

(lU(u + 2w) = @ u + c ,

for some constant c; but putting u = -w in this,

16



rJl W = rJl (-W) + c = rJl W + c

since rJl u is even; thus c = O, and

rJl (u + 2w) = rJl u

for all W in n. Thus rJl u is an elliptic function of order 2 with period

lattíce 2n, and double poles in the zero residue class.

11. The differential equation satisfied by rJl u, and its expansion at
the origin

-2 1 -2 U-2The binomial expansion of (u - 2w) = - W (1 - -2) converges4 W
absolutelyfor lul < 21wl; thusfor lul < 2k, where k= mín Íco ] for

al I w *- O in n, we can substitute this expansion (omitting the first

term, cancelled by the term -(2wr2
) in each term of the series for

rJl u, and, the convergence still being absolute, collect the terms con-

taining like powers of u, obtaining the series

00

- 2 \' 2nrJl u = u + L (2n + 1)82n+2(2n)u
n=l

as the expansion of rJl u in its circle of convergence I u I < 2k, the qdd

powers of u being all absent (as we expect for an even function) since the

coeff ící ent of u2n-1 has the facto r 82n+ 1(2n) = O. Differentiating this

term by term we have

00

-3 \' 2n-1
@ 'u = -2u + f., 2n(2n + 1)82n+2(2n)u .

n=l

For brevity writing 8 for 8 (2n), the first few terms of these are
n n

-2 2 4 6 8
@ U = U + 38 u + 58 u + 78 u + 98 u +... ,

4 6 8 10
-3 3 5' 7rJl 'u = -2u + 68 u + 208 u + 428 u + 728 u + ...4 6 8 10

from which we have
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3 -6 -2 . 2 2 4@ u= U + 98 u + 158 + (278 +218 )u + (1208 8 +278 )u + ...
4 6 4 8 4 6 10

@ ,2u=4u-6_248 u-2_808 +(3682-1688 )u2+(2408 8 -2888 )U4+ ...
4 6 4 8 4 6 10

so that

@,2U _ 4 @3u + 608 @u + 1408
4 6

= (10882 - 2528 )u2 + (6608 8 - 3968 )u4 + ...
4 8 4 6 10

(11. 1)

The left hand member of (ll. 1) is an elliptic function with period lattice

2Q, and is analytic except possibly at the lattíce points, the zero residue

class, which are the only poles of the individual terms. The right hand

member is the expansion of this same function in the neighbourhood

Iu I < k of the origin, and shows that the íunctíon is analytic and equal to

zero there. 8ince then the function has no pole at the origin, it has none

at any of the other lattice points, and by Liouville's theorem is a constant,

and equal to O, its value at the origino Thus identically in u,

2 3@ , U = 4 @ u - 608 (2m @u - 1408 (2Q) ,
4 6

ar defining g = g (2m = 608 (2Q), g = g (2Q) = 1408 (2Q)
2 2 4 3 3 6

2 3@'u=4@ u-g @u-g;2 3 (1l.2)

and x = @ u is a solution of the differential equation

dx 2 3(-d) = 4x - g x - g .
U 2 3

(11. 3)

Note that all the coefficients in the series which is the right-hand
2member of (11. 1) must be zero; thus 78 = 38 ,38 = 58 8 , ... , and

8 4 10 4 6

each 82n(2Q) in turn can be expressed as a polynomial, with rational

coefficients independent of Q, in those for lower values of n, and hence

by recursion as a polynomial in 8 (2m, 8 (2Q), i. e. in g , g. In terms
4 6 2 3

of these the expansion of @ u in íts circle of convergence Iu I < k is

2
1 g2 2 g3 4 g2 6 g2g3 8

@U = 2 + 20 u + 28 u + 1200u + 560 u + ...
u

(1l.4)

in which each coefficient is a polynomial in g , g , with rational co-
2 3

efficients, independent of Q; thus if the constants g ,g are given, the
2 3
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whole expansion is uniquely determined.

Now as any point u = a, except the lattice points 2Q, the poles

of <pu, can be reached from the origin by a continuous path in the u

plane which is nowhere (except at the origin) at a distance < d (for

some d > O)from any lattice point, the expansion of the function at u = a

is completely determined by analytic continuation from that at the origin,

i. e. by the values of g , g. Hence if lattices Q, Q' satisfy
2 3

g (2Q') = g (2Q) and g (2Q') = g (2Q), then also <p (u 12Q')= <p(u 12Q)
2 2 3 3

at every point at which either is analytic, and hence in fact everywhere,
so that Q' = Q. Moreover, if g3(2Q,)jg2(2Q') = g3(2Q)jg2(2Q), then

2 3 2 3
Q', Q are similar, for in this case there exists a constant m v O such

that g (2Q') = m-4g (2n) = g (2mQ), g (2Q') = m- 6g (2Q) = g (2mn),
2 2 2 3 3 3

by the homogeneity of S (2n), S (2n), and hence Q' = mQ. We recall
4 6

also that if Q is squar e, S (Q) = O unless n is a multiple of 4, and ifn
Q is triangular, S (n) = O unless n is a multiple of 6; thus g = O forn 2
the triangular and g = O for the square lattice. There cannot be a pro-

3

per double lattice for which g = g = O, since in this case the equation
2 3

(11. 3) would reduce to (:)2 = 4x3, whose complete solution is x=(u-cf 2,

c being a constant of integration, and this is certainly not an elliptic

function.

12. Stationaryvalues of @ u

As @ u has double poles in the zero residue class, the sum of

the two residue classes in which it assumes any given value is zero. This

follows also from the fact that it is even, @ (-u) = @ u. From this and

the periodic property @ (u + 2w) = @ u, it follows that <p(2w - u)= @ u,

i. e. 1Si) u is an even function, not only of u, but of u - w, for all w in

Q. If one residue class in which @ u = e is w + 2Q, -wher e w is in Q

but not in 2Q, i. e. is a half period of @ u; the other residue class for

the same value coincides with it, i. e. every point of this residue class

is a double zero of @ u - e, and a statíonary point of <p u, hence also

a zero of @ 'u. There are three such residue classes of half periods,

namely w. + 2Q (i = 1, 2, 3), where w ,w are any pair of generators
1 1 2

of Q, and w = - (w + w ); the union of these three residue classes with
3 1 2
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the null residue class is the lattice n. These are the three residue

classes of zeros of c5" 'u, which as we have seen is of order 3, íts only

poles being triple, in the zero residue class.

The stationary values e. = @ w. (i = 1, 2, 3) of c5" u are all
1 1

distinct; for if e. = e. = e say (j"* i), c5" u - e would have two residue
1 J

classes of double zeros, whereas it is of order 2 only, its poles being

those of c5" u. The stationary values e , e , e are the roots of the
1 2 3

cubic equation 4x3 - g x - g = O, since from (11. 2) c5" 'u = O if and2 3
only if c5" u is a root of this equation. Hence

1 1e +e +e = O, e e +e e +e e = --g, e e e --g123 233112 42 123-43' (12. 1)

Moreover, as the discriminant of the cubic 4x3 - g X - g is
2 3

~ = g3 _ 27g2, and we have just seen that e , e , e are all distinct,
2 3 2 1 2 3

~ "*O, i. e. g3"* 27g , for any proper lattice 2n.
2 3

13. Homogeneity of ((~u, c5" 'u

From the definition of c5" u, P (u) as double series it is clearn
that for any m v O,

c5" (muI2mn)=m-2 c5" (uI2n), c5" '(muI2mn)=m-3 c5" '(uI2n), (13.1)

and in general

since on substituting simultaneously mu for u and mw for every w in

n, each term in the series is multiplied by m" 2, m-no In particular, as

the square lattice satisfies in = n, for this lattice we have <JU (íu) = - ((J u,

<JU "(íu) = i c5" 'u. Similarly for the triangular lattice E: n = n,

c5" ( E: u) = E: c5" U, c5'" ( E: u) = c5" 'u.

14. Translation formula and quarter period values

2 1e. <JU u+(2e. --g )
+ e. = 1 1 4 2

1 IJ> u - ei
(14. 1)
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Proof. The function @ u - e. has double poles in the zero resi-
1

due class 2n and double zeros in w. + 2n; @ (u - w.) - e. on the other
1 1 1

hand has double poles in w. + 2n, and double zeros in 2n; thus the
1

product ( @u - e.)( @(u - w.) - e.) has no poles, those of each factor
1 1 1

being cancelled by the zeros of the other, and is accordingly a constant,

by Liouville's theorem. The value of the constant product can be found

by substituting either of the other half periods wj' wk for u, when one

facto r becomes e. - e. and the other ek - e.. Thus
J 1 1

(14. 2)

where we define

221d. = (e. - e.)(e. - ek) = 3e. --g
1 1 J 1 l42

(14. 3)

by (12.1). Thus

which is equivalent to the theorem, by (14. 3); obviously from the period-

icity of @u, @(u + w.) = @(u - w.). Ii
1 1

Further, if -u '" u - w. (mod 2n), i. e. if u '" %w. (mod n), we have
1 1

( @u - e.)2 = d~, i. e. @u = e. ± d.. There are four residue classes
1 1 1 1

(mod 2n) satisfying this condition, namely ± % w. + 2n,
1

±(%w. ± w.) + 2n, where j '* i; it does not matter which of the two suff-
1 J

ixes other than i is used here, as %w. ± W. '" -%w. ± wk (mod 2Q). We
1 J 1

define the squar e root d. so that
1

@ (%w.) = e. + d., @ (%w. + w.) = e. - d.
1 1 1 1 J 1 1

(14.4)

15. Addition and duplication formulae

Theorem 2. 2.

1 @'v - @'w 2
tfi) (v + w) = - ( ) - @ v - @ w
\j- 4 @v-@w (15. 1)

21



1 <Y',,2
@(2v)=---V-2<Y'V

4 (j> ,2V
(15.2)

(Of these two, (15.1) is known as the addition theorem or formula, (15.2)

as the duplication formula. (15. 1) is an algebraic addition formula, like

for instance those for the trigonometric functions, in that it expresses

<Y'(v + w) as an algebraic, though not of course a ratíonal , íunctíon of

<Y'v, <Y'w only.)

Proof. For any constants A, B, f(u) = @'u - A <Y'u - B is an

elliptic function of order 3 with triple poles in the zero residue class.

The constants A, B can be so chosen that f(u) shall vanish in two ass-

igned residue classes v + 2n, w + 2n, or so that f(u) shall have double

zeros in an assigned residue class v + 2n:

<Y"v-A c'P v-B= O } _<Y''v- "" 'w=> A= - ,,-
<Y"w-A@w-B= O @ v- <Y'w

B= ~~v(f'w-(j)W@'V (15.3)
I.P v- (pw

(p 'v-A IS" v-B= O } ,(l> "v=> A=_U"_
<Y'"v-A (p 'v= O (p 'v ' B=

2(p' v- (p v (p "v
<Y''v

(15. 4)

2 3(f(u) + A <Y'u + B) = 4 @ u - g <Y'u - g ,2 3

Since <Y''u = f(u) + A @u + B, f(u) and @ u satisfy the identity

which on putting f(u) = O gives

Thus the roots of the equation

3 2 2 24x - A x - (2AB + g )x - (B + g ) = O
2 3

are the values of <Y'u in the three residue classes of zeros of f(u),

namely @v, <Y'w, <Y'(v + w) if f(v) = f(w) = O, or @v, <Y'v, <Y'(2v)

if f(v) = f '{v) = O. Hence, as the sum of the three roots is ~A 2
, taking

the value of A from (15. 3), (15.4) in the two cases, we obtain (15.1),

(15.2) r espectívely, and the theorem is proved. Ii
Writing for brevity <Y'(v + w) = x, @ v = y, <Y'w = z in (15.1),
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3 1- 3 1-
substituting (4y - g Y - g )2, (4z - g z - g)2 for (J' 'v, ~D 'w,

2 3 2 3

rationalising and clearing of fractions, we have after trivial simplification

222222 1 12Y z +z x +x Y -Zxyíx+y+z I+j g (yz+zx+xy)+g (x+y+z) +-g = O. (15.5)
2 3 16 2

This is satisfied by x = (J' u, y = é:P v, z = (J' w if and only if u±v±w=O.

Taking it as a quadratic equation for x whose roots are @ (v + w),

(J' (v - w), we have (still writing y, z for (J' v, @ w)

(y+z)(2yz- ~g )-g
2 3

(jõ (v+w) + 60 (v-w) = 2
(y-z)

y2z2+~g yz+g (y+z)+2..-g2
( +) () 2 3 16 2

(J' V w. @ v-w = 2
(y-z)

(15. 6)

(15.7)

Another form of the condition that u + v + W = O is

@u
@v
(J'w

(J"u 1
60 'v 1
@'w 1

= O (15. S)

since li and only if u + v + W = O, @ 'u-A @u-B= (jl 'v-A @ v-B=

@ 'w-A (J' w- B = O for some constants A, B.

The duplication formula (15.2) expresses (J' (2v) not only as an

algebraic but as a ratíonal function of @ v; differentiating (ll. 2) on both

sides we have @ "u = 6 (J' 2u_ ~g ; thus substituting 4y3-g y-g ,
2 2 3

6y2_~g2 for (J' ,2v, r;) "v (stíll writing y for CiJ v),

1 2 1 2
+ 2"g2Y + 2g3y + T6g2

3
4y - g2Y - g3

By repeated application of the addition and duplication formulae, expres-

sions for (J' (nu) for all positive integers n can be found recursively,

4
Y

(jD (2v) = (15. 9)

as rational functions of (J' u.

Since 2u '" -u (mod 2Q) if and only if u is in the zero residue

class, or in one or other of the four pairs of residue classes

±~W ±~w ±~W
3 i ' 3 2' 3 3'

2±-W
3 4

(where w = w - w ), the values of (J' (-32wl.)(i = 1, 2, 3, 4) are the
4 1 2
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roots of the quartic equation

(15. 10)

obtained by writing x for y, equating <I"(2v) also to x, and clearing of

fractions, from (15.9). Similarly for any integer n, by repetition of the

addition and duplication formulae, we can obtain an algebraic equation

whose roots are the values of @ u for all u such that nu is in 2n,

but ru is not for any positive integer r < n; such values of u we may

call primitive nth periods; they clearly form n2
- 1 residue classes if

n is prime, and fewer than this if n is not prime.

16. Functions of order 2

Theorem 2. 3. Every elIiptic function of order 2 can be expressed

in the form

a @ (u - u ) + b
f(u) _ o

- c ú':l (u - U ) + do

where uo' a, b, c, d are constants, and ad - bc * O.

(16. 1)

Proof. If f(u) has a double pole, let this be in the residue class

u + 2n; then f(u) vanishes in a paí r of residue classes u ±k + 2n, faro o ••
some k (coincident if k is in n). @ (u- u ) -@ k is an elliptic functiono
with the same zeros and the same poles as f(u), and of the same multipli-

cities, so that their quotient is an elIiptic íunctíon without poles, and

hence a constant A, i. e. f(u) = A( @ (u-u ) - @ k), which is of the formo
(16.1) wíth c = O. On the other hand, if f(u) has two residue classes of

simple poles, let these be v + 2n, w + 2n; they can be taken to be

u ±h+2n, where 2u =v+w, 2h=v-w (rnod 2n), which determineso o
u + 2n as any one of four residue classes (mod 2n) whose union is ao
residue class (mod n), the difference of any two being a half period w.

1

(mod 2n). The zeros are again of the form u ±k + 2n, for some k;o
thus the function

(lu (u - u ) - @ ko
@ (u - u ) - @ ho
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k and complementary modulus k' by

e -e
k2 __ 3_2

- e -e '
1 2

e -e
k,2 __ 1__ 3

- e -e '
1 2

2 2so that k + k' = 1, (16. 2)

but of course which these are, out of the twelve square roots of the six

cross-ratios, depends on the choice of generators W
1
' w

2
for n, and

on an arbitrary choice of each square root. The twelve possible values

of the modulus for a given lattice are

(16. 3)

and it is sometimes convenient to define the modular angle B, such that

k = sin B, k' = cos B, so that the same twelve values are

±sinB, ±cosB, ±cscB, ±secB, + i tan ê, ±icote.

We note also that the moduli are the same for all lattices similar to a

given one, i. e. depend only on the lattice shape, since replacing n by
-2 -2 -2mn merely replaces e , e ,e by me, me, me.

1 2 3 1 2 3

17. The elliptic functionfield for a given latlice

Since the sum, difference, and product of any two ell íptíc functions

with a given period lattice 2n, and the reciprocal of any such function

except the zero constant, is again an elliptic function with the period

lattíce 2n, and since of course the addition and multiplication of these

functions is subject to all the usual laws (commutative, associative, and

distributive), the aggregate of elliptic functions with the period lattice

2n constitutes a field, which we shall denote by E (2n). (In the same

way of course, the aggregate of functions meromorphic in the whole plane

constitutes a field, of which E (2m is a subfield, for every lattice

2n.) E (2n) contains the field C of complex numbers, the con-

stant functions, i. e. it is an extension of C The algebraic properties

of this extension are contained in the following theorems:

Theorem 2. 5. Every even elliptic function is identically expres-

sible as a rational function (with complex coefficients) of the function
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~pu with the same period lattice.

Proof. Let the function f(u), satisfying f(-u) = f(u), have zeros

of order m. in the residue classes ±a. + 2Q (i = 1, ... , h), and poles
1 1

of order n. in the residue classes ± b. + 2Q (i = 1, ... , k), apart from
1 1

any zero or pole there may be in the null residue class 2Q. li any of

these residue classes is a half period, i. e. a. or b. = W say is in Q
1 1

but not in 2Q, its order must be even, since f(u) is an even function not

only of u but of u - w; and we count zeros or poles of order 2m in this

residue class as two superimposed sets of order m, one in w + 2Q, and

the other in - w + 2Q, which is the same residue class. The zero residue

class 2Q consists of 2s-ple poles, (-2s)-ple zeros, or neither, according

as the düference

h k
s = L m. - L: n.

i=l 1 i=l 1

is positive, negative, or zero. Now the Iuncti on

h m. k n.
F(u)= rr (@u- @a.) 1 I rr ((\õu- (pb.) 1

i=l 1 i=l 1

has clearly the same zeros and poles, and of the same order, as f(u);

hence by Liouville's theorem ~(~) is a constant K say, i. e.

h m. k n.
f(u) = K rr ( @u - G~a.) 1 I rr ( (\ilu- @bi) 1

i=l 1 i=l

which is the required expression. Ii

Theorem 2. 6. Every elliptic function with the given period lattice

2Q can be expressed as P( @ u) + @ 'uQ( @ u), where P(x), Q(x) are

rational functions with complex coefficients.

Proof. li f(u) is any function of u, f(u) + f(-u) is an even func-

tion, and f(u) - f(-u) is an odd one; and as @ 'u is also an odd function,
(f(u) ~ f(-u)) is an even one. Thus by Theorem 2.5, if f(u) is any ellip-@ u
tic function wíth the period lattice 2Q,

t(f(u) + f(-u)) = P( (ÍiJ u), t(f(~,~ f(-u)) = Q( @u) , (17. 1)
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where P(x), Q(x) are ratíonal functions over C; and from (17.1) the

expression f(u) = P(\<lu) + @'uQ(\<lu) follows. Ii

Theorem 2. 7. Every elliptic function f(u) with period lattice

zn satisfies identically a quadratic equation, whose coefficients are

rational functions of (\<lu over C.

Proof. Let f(u) = P(\<lu) + (\<l'uQ(\<lu),then

(\<l'u= (f(u) - P(\<lu))IQ(\<lu) , and

2 2 3(f(u) - P(\<lu)) = Q (\<lu).(4(\<lu - g (\<lu- g ) ,
2 3

which is the required equation. Ii Multiplying this by the squar e of the

least common denominator of the rational functions P(\<lu), Q(\<lu), it

becomes a polynomial equation in f(u), (\<lu,quadratic in the former,

with coefficients in C.

Theorem Z. 8. Any two elliptic functions with the same period

lattíce zn satisfy identically an algebraic equation with coefficients in

C.

Proof. f(u), g(u) satísfy identically

F(f(u), (\<lu)= O, G(g(u), (\<lu)= O ,

where F(x, z ), G(y, z) are polynomials with coefficients in C; and

hence also H(f(u), g(u)) = O, where H(x, y) is the resultant of F(x, z),

G(y, z) as polynomials in z, a polynomial in x, y with coefficients in

C; this proves the theorem. II
'In algebraic terms, these results mean that

E (Zn) = C (\<l(uIzn), (\<l'(uIzn)); that the transcendence of E (W) over

C is uníty ; and that it is a quadratic extension of C (\<l(uIzm), which

itself is a transcendental extension of C.

18. The Weierstrass function for a reallatlice

For any lattíc e zn we have, somewhat analogo~sly to the homo-

geneity of (\<lu,the relation (\<l(i.ilzTI)= (\<l(ulzn); for simultaneously re-
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placing u by u and each w by w in the series defining {\Ou,merely

replaces every term in the series by its complex conjugate. In particular

if the lattice 2Q is real, (\O(u12Q) is a real function, i. e. one which

assumes conjugate complex (possibly real and coincident) values for con-

jugate complex values of the variable, and, in particular, real values for

real values of the variable. {\Ouis real, not only for real values of u,

but for all values such that u ± u '" O (mod 2Q), since for all such values

{\Ou= (\Ou. This will be the case whenever either Re(u) or iIm(u) is

in Q. Thus in the u plane, the vertical lines cutting the real axis in all

real periods and half periods, and the horizontallines cuttíng the pure

imaginary axis in all pure imaginary periods and half periods, are loci on

which {\Ouhas real values.

We have seen also that for real Q, S (2Q) is real for all n, son
that in particular g ,g are real, and hence also all coefficients in the

2 3
series (Ll . 4) are real, being ratíonal functions of g ,g with rational2 3
coefficients. In this series, for small values of u, the term ~ domi-

u
nates all the rest; thus when u is small and real, {\Ouis large, real,

and positive; when u is small and pure ímagínary, {\Ou,is large, real,

and negative. Put slightly differently, when u tends to zero through

real or pure imaginary values, {\Outends through real values to +00 or

- 00 respectively.

19. Q Rectangular

Take w real, w pure imaginary. {\Ouis real on all the sides1 2
of the rectangles forming the lattice Q of half periods. As u describes

continuously the perimeter of such a rectangle, say from u = O to u = W i '

then to u = w + w = -w , then to u = w , and finally back to u = O,
1 2 3 2

c u varies continuously through exclusively real values, from + 00 to

- 00; it must therefore assume every real value at least once in the course

the variation, and none more than once, since the path contaíns no two

distínct values u, u ' satisfying u ± U' '" O (mod 2Q). The variation is

- us a steady decrease of {\Outhrough real values. As the contour round

hich u varies passes successively through the values u = %W
1
' w

1
'

+ 1 1 1 h
, "2W

2, -w3' "2W
1 + w2' w2' "2W2, we ave
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e +d > e> e -d > e> e -d > e> e +d ,11122311222

these values being all real. (As e > e > e , d2, d2 are both positive,1 3 212
the squar e roots d ,d as defined being positive and negative respec-

1 2
tively; d2 on the other hand is negative, so that @(~w +~w ) = e + d ,3 1 2 3 3
@(~w -~w ) = e - d are as we expect conjugate imaginary.) A

1 2 3 3

further curious result is that if Re(u) is half an odd multiple of w ,
1

1@U-eI = d ; for if u - ~kw is pure imagínary, where k is an odd1 1 1
integer, u + u = kw , i. e. u=w -u (mod 2n), and

1 1

l@u-elI2 = (@u-e1)(@u-e1) = d~. Similarly if u-~kw2 is real, where

again k is an odd integer, I@u-e I = -d , since -u=w -u (mod 2n).
2 2 Z

The loci of real values of @u in the u plane are the horizontal

and vertical lines through all the lattice points 2n, and also the hori-

zontal and vertical lines half way between these. On the former horizon-

tal lines the values of @u oscillate between + 00 and the minimum e
1
,

and on the latter horizontal lines they oscillate between the maxírnum e
3

and minimum e ; on the former vertical lines the oscillation is between
Z

- 00 and the maximum e , and on the latter between the maximum eZ 1
and the minimum e. It is to be noted that each stationary value is a

3
maximum real value on either the horizontal or the vertical line through

the statí onary point, and a minimum on the other. Half way again between

the loci of real values of @u are the vertical lines on which l@u-e
1

I=d1 '

and the horizontal lines on which I@u-e I = -d. These two families of
Z Z

lines intersect in the four residue classes ±~w ±~w +2n, in which
1 Z

@u= e3±d3; e1, ez, e3 being real and d3 pure imagínary,

le ±d -e I=-d
3 3 2 Z

Z Z Zreduce to the easily verified identity d. +d. = (e.-e.) , where i, are
1 J 1 J

any two of 1, 2, 3.

20. n Rhombic

Take w ,w conjugate ímagínary, w real and positive, and
1 Z 3

define as before w = w - w. @u is real on the sides of the pattern
4 1 Z

of rectangles, with sides w
3
' w , diagonals 2w , 2w , and vertices in

4 1 Z
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the two residue classes 2n, w3 + 2n, whose mid-points are the residue

classes w + 2n, w + 2n. The loci of real values are thus the horizon-1 2
tal and vertical lines through all the lattice points 2n, but not as in the

rectangular case the lines half way between these. As u varies from

u = O along the horizontal line to u = w , and then along the vertical to
3

u = -2w (downwar ds) or to u = -2w (upwards), @u passes through1 2
all real values, decreasing steadily from +00 to - 00, through the value

e (which is accordingly real) at u = w ; thus on the horizontal loci of3 3
real values, @u oscillates between + 00 and the minimum e , and on

3
the vertical loci ít oscillates between - 00 and the maximum e. As e

3 3
is real and e ,e conjugate ímaginary, d2 is real and positive, and as

1 2 3

U = ~w is in the horizontal part and either u = ~w -w or u = ~w -w
3 3 1 3 2

in the vertical part of the path described, d is the positive square root.
3

li either u - ~kw is pure ímagínary, or u - ~kw real, for any odd
3 4

ínteger k, an exactly similar argument to that in the r ectangular case

shows that I @u-e I = d. The loci on which this is the case are, as
3 3

before, the horizontal and vertical lines half way between those on which

6>u is real; these intersect in the residue classes w
1

+ 2n, w
2

+ 2n,
where @u= e , e ; and in fact, as e ,e are conjugate imaginary and

1 2 1 2

e
3

real, le
1
-e

3
1 = le

2
-e

3
1 = d

3
.

It may be noted that wher eas in the rectangular case we almost

always take w real and w pure Imagínary, Re(w jw ) = O, in the
1 2 2 1

rhombic case the choice of w ,w conjugate ímaginary, w real,
1 2 3

W jw I = 1, is not the only one that is sometimes useful. For instance2 1
~ real and w ,w conjugate ímagínary makes Re(w jw ) = -~; or

: 2 3 2 1
• ,-w conjugate imaginary makes w pure imaginary, w real, and
_ 2 3 4

W jw I = 1 as before.2 1

21. The square and triangular lattices

We noted in Section 4 that li n is square S (n) = O unless n isn
divisible by 4, and if n is triangular S (n) = O unless n is divisiblen
by 6. Thus for the square lattice g= O and for the triangular lattice

3

=>2 = O. These conditions are mutually exclusive, as we have seen that

,g cannot both vanish for any proper double lattíce, and from the
2 3
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homogeneity of g2' g3 they are not only necessary but sufficient for the

lattice to be square or triangular respectively.

For the squar e lattice e , e , e , being the roots of 4x3-g x=O,
1 2 3 2

are one zero and the other two equal and opposite; in fact if w ==iw ,
2 1

w ==ic..'(mod 2Q), so that as iQ == Q, @(iw ) == -@w , @(iw ) == -@w ,3 3 1 1 3 3
i. e. e = -e , e = -e == O. As ao, e = ° separate e , e = -e har-2133 3 121
monically, the double values of any function of order 2 are a harmonic

set; and for this reason the elliptic functions with a square lattice of

periods are known as harmonic. In the rectangular position w is real
1

and w == iw ; in the rhombic position w is real and w , w =~(-1±i)w .
2 1 3 11 2 3

li Q is the square lattice in either of these positions, i"2Q is in the
1 1

other position, and @(i"2uI2i"2Q) == -i@(uI2Q). Thus as in the rectangular

position @u is real on the sides of the squar es whose vertices are the

lattíce points Q, in the rhombic position @u is pure imaginary on these

Iínes ; similarly, as in the rhombic position @u is real on one díagonal

of each of these squares (that through the one vertex in the residue class

2Q), in the rectangular position @u is pure ímagínary on these díagonals.

Finallyas e1, e2, the non-zero roots of 4x3 - g2x == 0, are real for the

rectangular and conjugate ímagínary for the rhombic position, g is
2

positive for the former and negative for the latter, agreeing, incidentally,
1

with the homogeneity r elatíon g (i"2Q) = -g (Q).2 2
For the triangular lattice we take w :w :w == 1:E:E2. li two123

of these are conjugate imaginary and the third real, the lattice is in the

vertical position; in the horizontal position, w ,-w are conjugate1 2
ímagínary, w pure ímagínary, and w real. e:e:e = 1:E:E2, both

3 4 1 2 3
as being the roots of 4x3 - g = 0, and also because @(EU)= E@U. As

3
(1-E)(1- E2) = 3, d~ = 3e~ (i = 1, 2, 3). Since ao, 1, E, E2 are an equi-

1 1

anharmonic tetrad, so are the four double values of any function of order

2; and the elliptic functions with triangular lattice of periods are known

as equianharmonic. The rhombus conststs of two equilateral triangles

with a common side, the shorter díagonal w of the rhombus being equal
3

in length to its sides w i ' W 2' The centres of these triangles are in the

residue classes ±~ w + 2Q; and we note that as (w - w )- (w - w )=3w ,
234.22 223122

W ==EW ==E W (mod 3Q), 1. e. -w ==-EW ==EW (mod 2Q), and44 4 34344
@(~w ) = E@~W ) = 0, i. e. the zeros of @u are the centres of the two

3 4 3 4
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sets of triangles. These are also statíonary points of (\'l'u, at which

(\'l"u= (\'l"'u= O, since they are zeros of P (u) except when n is díví-
n

sible by 3, by the same argument as for (\'lu. In fact the three residue

classes in which (\'l'u assumes any given value are of the form v + 2n,

EV + 2n, E
2

V + 2n; if two of these coincide, all three do, and this occurs

in the three residue classes v = O, ±~ ú)
3 4

22. Invariants of the reallattice

We have seen that g ,g are both real for a reallattice (more2 3
generally g.(TI)= g.(n), i = 2, 3). Conversely, if g ,g are both real,

1 1 2 3

SO is the lattice, since (ll. 4) defines a real function, and if w is a period

of this, so is w. The discriminant of the equation 4x3 - g2x - g3 = O is
.ó. = g3 _ 27g2. This means in the first place that two roots (at least) of2 3
the equation coincide if and only if g3 = 27g2; but also, for real g , g ,

2 3 2 3

that the roots are all real ar one real and two conjugate imaginary, accor-

ding as g3 > ar < 27g2. Thus for real g , g , g3 > 27g2 is the neces-2 3 2 3 2 3
sary and sufficient condition for a rectangular, and g3 < 27g2 that for a2 3
rhombic lattice; and g3 * 27g2 for any proper double lattice, since we

2 3
have seen that in all cases e , e ,e are all distinct.

1 2 3
It is convenient to classify rhombic lattice shapes (other than the

square and the triangular) into extreme and medium, according as the

shorter díagonal of the rhombus is shorter or longer than its sides, i. e.

according as the ratio of the lengths of the diagonals is greater than -J 3,

or between -J 3 and 1; the limiting values -J 3, 1 of this ratio correspon-

ding evidently to the triangular and square shapes.

Theorem 2. 9. For the real lattice, whether rectangular ar

rhombic, g is positive ar negative according as the lattice is vertical
3 .

or horizontal. g is positive for all real rectangular lattices, and for
2

the real rhombic lattice g is positive ar negative according as the
2

laUice is extreme ar medium.

Proof. Consider a variable lattice n, generated by w
1

(con-

stant and real) and variable W = TW. We obtain one sample of every2 1
rectangular lattice shape, in the vertical position, by keeping Re(T) = O
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constant, and letting Im(r) increase steadily from 1 (square lattice) to

+00 (the degenerate limiting shape). In the same way we obtain one

sample of every rhombic lattice shape, in the vertical pos ition, by keeping

Re( r) = - ~ constant, and letting Im( r) increase steadily from ~

(square lattice), through ~J3 (triangular lattice), to +00 (agaín the

degenerate limiting shape) , so that ~ < Imf r) < ~J3 gives the medium

and Im(r) > ~,j 3 the extreme rhombic shapes. By Theorem 1. 2, as

Imf r) tends to infinity, g ,g (for the period lattice 2ri.)tend, indepen-
2 3

dently of Ret r), to the limits g* = ~s w-4, g* = 22s w-6, both obvious-2241 3861
ly positive. Thus in both the prescribed variation processes, with

Re( r) = O and with Re( r) = - ~,g starts from the value O for the square
3

lattice, and varies continuously remaining real and not passing again

through the value O, and tending ultimately to the positive limit g;; it

thus remains positive throughout the process; i. e. g3 is positive for

all vertical real lattices, whether rectangular or rhombic; and since if

n is vertical m is horizontal, and g (m) = -g (n), g is negative for3 3 3
all horizontallattices, rectangular or rhombic. As for g2' it is the

same for the vertical and horizontal lattices, as g2(m) = g2(n); it is

positive for all rectangular lattices, since g3 > 27g2 > O; and for the
2 3

rhombic lattices, as Imf r) varies from ~ through !J3 to +00, with

Re(r) = -~, g starts from a negative value (for the squar e lattice in
2

the rhombic position), passes through the value O onlyat Imf r) = ~,j3

(for the triangular lattíce), and tends ultimately to the positive limit g;;

it is thus negative for ~ < Imf r) < ~,j3, the medium rhombic shapes,

and positive for Im( r) > ~J 3, the extreme rhombic shapes; and the

theorem is proved. Ii
A simple corollary from this is that the zeros of @u are in the

longer symmetry axis of the fundamental unit cell, whether this is rect-

angular or rhombic. For the real rectangular lattice n, as e > e > e
1 3 2

and e1 + e2 + e3 = O, e1 > O> e
2

, and the sign of e3 is opposite to

that of g = 4e e e ; thus according as n is vertical or horizontal, O
3 1 2 3

is between e ,e or between e , e. Similarly, for the real rhombic
1 3 2 3

lattice n, as e1, e
2

are conjugate imaginary, e3 has the same sign as

g , i. e. O is < e or > e according as n is vertical or horizontal.333
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Theorem 2.10. The limiting values g*, g* of the invariants,2 3
corresponding to the simple lattice with real generator w as degener-

1
ate limit of a variable double lattíce, satisfy g*3 = 27g*2.2 3

Proof. In the variation process with Re(T) = O described in the

proof of the last theorem, g3 > 27g2 at all stages; hence in the limit2 3
g*3 2:: 27g*2. Similarly in the variation with Re(T) = _~, g3 < 27g2 at

a:l stages~ so that g*3 :5 27g*2. Ii 2 3
2 3

This means that there is a positive real number e* such that

g~ = 3e*2, g; = e*3, and 4x3 - g;x - g; = (2x+e*)2(x-e*); thus the limits

of e , e ,e are e*, -~e*, -~e*. Similarly for the limiting form of
123

the horizontallattice (rectangular or rhombic), the simple lattice genera-
. 1 1 2 2 4ted by lW , theyare ze*, ze*, -e*. We have also s = -e* W ,

1 4 5 1
S = ~e*3w6; and we may round off this result by anticipating what will

6 35 1
be proved when we come to study the Jacobi functions, that for v) = ~ 1T,

2 7T4 7T6 1
e* ="3; thus the actual values of S4' s6 are S4 = 90' s6 = 945. These
values are also known of course from the theory of the Riemann zeta

function.

23. Properties of @'u for the reallattice

Evidently @'u is real on all horizontallines in the u plane on

which @u is real, and pure imagínary on all vertical lines on which

@u is real; put crudely, d@u is real, and du real and pure imaginary

respectively. But there are other loci of real values of @'u in the u

plane, which meet the horizontallines at angles of ±~ in the triple poles
3

(the lattice points 2Q), and cross them orthogonally in any real statíonary

points of @'u. As @"u = 6@2u- ~g , @'u is statíonary in the four resi-

due classes in which @2u= ~~ (onl/ when Q is triangular, these coin-

cide by paír s in the zeros of @u, the residue classes ±~w). The
3 4

corresponding statíonary values are obtained by eliminating x = @u

between 4x3 - g x - (@,2u+g ) = O and 12x2 - g = O; but this simply232
gives the discriminant of 4x3 - g x - (@,2u+g ) = O, namely2 3
g~ - 27(@,2u+g3)2= O, so that the stationary values of @'u are

g j. 1
± {_g ± (~)3/2}Z

3 3
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For the r ectangular lattice, the roots of

being all real, those of its derivative 12x2
- g =

2

e ,e and one between e , e. Thus the statíonary points of @'u are
1 3 2 3

two in each symmetry axis of the rectangular unit cell, those in the hori-

zontal axis giving real and those in the other pure imaginary stationary

values. As the values of @u on this horizontal line oscillate between the

34x - g x - g = O
2 3

O are real, one between

maximum e and minimum e , those of @'u likewise oscillate between
3 2

a real maximum and minimum, which occur alternately between consecu-

tive zeros of @'u, the maxima and minima of @u.

For the extreme rhombic lattice g > O, so that the stationary
2

points of @'u al.l occur at points where @u is real, i. e. in the díagonals

of the rhombic unit cell. As 1g31 > 1;213/2, the statíonary values are

all real or all pure ímagínary, according as g < or > O, i. e. the
3

statí onary points are in the longer diagonal of the rhombus, and are real

if the lattice is horizontal. Thus for the horizontal extreme rhombic

lattice (and no other) @'u, instead of increasing steadily along the real

axis from - 00 at u = O to + 00 at u = 2w , reaches a negative maxímum,
1

decreases to a negative minimum, increases again through Oat u = w
1

to

a positive maximum, decreases to a positive minimum, and then incr eas es

again. The graph of @u over the same range, instead of being (as in

other cases) everywhere concave upwards, has on each side of its vertical

symmetry axis at u = W a pair of points of inflexion, the ar c between
1

which is concave downwards; in the triangular limiting case each of these

paír s coincides, at u = ~w , ~ú) , @u= O, in a point of undulation of the
3 3 3 3

graph, i. e. one where the tangent meets it in four consecutive points.

For the medium rhombic lattice the roots of 12x2
- g = O are

2
ímagínary , so that the stationary points of @'u are two equal and oppo-

site pairs of conjugate imaginary residue classes, i. e. of the form

±a±ib+2Q; and the stationary values are likewise two equal and opposite

pairs of conjugate imaginaries.

36

24.

Figures 1, ... , 6 show a ~nit cell, with one vertex at the origin,

for a typical r ectangular lattice, the square lattice in the rectangular and



rhombie positions, a medium rhombie, the triangular, and an extreme

rhombie lattiee. In the left hand half of each, the loei of real values of

@u are shown as eontinuous and those of its pure ímagínary values as

broken lines, and in the right hand half the same loei for @'u. Note

that at the double poles of @u (and at its double zeros in the square

case) two loei of real and two of pure írnagínary values interseet sym-

metrieally, and at the triple poles of @'u three of eaeh. At a stationary

point where the value is real or pure irnaginary , two loei of real or pure

ímagínary values interseet orthogonally, and at the real triple values of

@'u in the triangular case three loei of real values intersect at equal

angles. Other statíonary points, where the value is neither real nor pure

ímaginary, are shown as ringed dots.

These loei divide the plane into regions, eaeh of whieh is a map of

one quadrant of the x plane, where x = @u or @'u. These are numbered

1, 2, 3, 4, with the usual eonvention for the quadrants: 1, 0< e<;; 2,
~ 3~ 3~"2<e<~; 3, n«. e<T; 4, T< e<2~; where e = lm(log x). Every value

of x in the quadrant is assumed onee in the region, exeept that where a

statíonary point is interior to the region, every value in the quadrant is

assumed at two points in the region, whieh are (preeisely in the case of

@u, roughly in that of @'u) symmetrieally plaeed on either side of the

statíonary point.

The reetangular lattiee in Figure 1 is that for whieh the zeros of

@u are the residue classes ±~ w +w +2n, so that d = e. From1 2 1 1
e2 = (e -e )(e -e ), e + e + e = O, we trivially obtain11213123 2
e :e :e = 1:~(-1-v'5):~(-l+v'5), k' = ~(3-v'5), g23= 32g3.

1 2 3
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Historical Note

What are now called elliptic integr al.s began to be studied ín the

mid seventeenth century, in connexion with the rectification of the ellipse

and other curves; but what was described by Jacobi as the birthday of

the subject was Euler's discovery in 1751 of Fagnano's work [13], which

stimulated him to a sequence of papers that fill two volumes of his Omnia

Opera [12]. This study of the íntegrals culminated in Legendre's two

great works [26, 27]. Gauss, as early as 1797, had inverted an integral,

i. e. defined the upper limit as a function of the value of the integral ín-

stead of the other way about, and so produced the first true elliptic func-

tions, though only for the square lattice; but his work [15] remained

unpublished and unknown till long afterwards.

The inversion of the integral as a general process, and the

definition of elliptic functions for any modulus, is due to Abel [1] and

Jacobi [22] in 1827, independently but soon in cooperation, just in time

to be referred to enthusiastically by Legendre in the final volume of [27];

this culminated in Jacobi's Fundamenta Nova [23] in 1829, in which he

also introduced the first theta functions eu, Hu, Ris later notatíon for

the theta functions, together with the use of these to define the elliptic

functions, was introduced in a lecture [24] in 1838.

In the next half century countless papers and some substantial

books were published, elaborating and multiplying the identities and other

formulae, but adding comparatively little to the basic theory ; though

Liouville's lectures [28] in 1847 added the powerful tool of his theorem;

Riemann's introduction about 1855 [29, 31] of the multiple surfaces named

after him greatly clarified the process of integration; and significant

improvements in notation (as well as much else) were introduced by

Rermite [20] (the classification of theta functions by their characteristic)

in 1858, and by Gudermann [18] in 1838 and Glaisher [16] in 1881 (cf.

Section 31). The text books of this period, such as Verhulst [39], Br iot
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and Bouquet [3], and Enneper [11], mostly used the theta functions to

define the elliptic functions; but Cayley [4] in 1876 went back to the

Fundamenta Nova, defining the functions by inverting the íntegr als, and

using no theta functions except eu, Hu, (This is far the most valuable

account of the classical theory for English readers; the chapters on the

addition theorem, and on transformations, are well worth some study, if

only to make us realise the vast difference between the classical and

modern approaches to the whole subject. )

Weierstrass in lectures from 1862 onwards [42, 34] defined the

functions @ u, ~u, ou, o .u (j = 1, 2, 3); but the use of the theta functions
J

as the logical startíng point stiU seems to have had such a hold on every-

one's mind, that both he and the major text book writers who followed him,

such as Weber [41] in 1891, Tannery and Molk [37] in 1893, and Appel and

Lacour [2] in 1896, defined ou directly, and obtained ~u, @u by differ-

entiating log ou, and the Jacobi functions as quotients of sigma functions;

and Copson [5] as late as 1935 uses substantial ly the same approach.

Greenhill [17] on the other hand, in 1893, followed Cayley in general

treatment, but brought in the Weierstrass functions rather as a sideline,

defining @u, like the other functíons, by inverting the appr opr íate inte-

gral. (This book is rich in formulae of all kinds, and also in geometrical

and mechanical applications of the theory. )

A fuller account of the history of the subject, down to about this

point, together with a much fuller bibliography, is to be found in Fricke's

article [14] in the Encyklopadie der Mathematischen Wissenschaften.

Expressians for the invariants, such as k, K, and later J, in

terms of q ar T, and some study of the effect on these of the transforma-

tions of the modular group, are of course to be found in many of the above

authors; but the whole theory of the modular pattern, the modular group

and its subgroups of finite index, and the application of these to the modular

relations for transformations of various orders, at any rate in anything

like its modern form, is essentially the creation of Klein, whose monu-

mental work [25] appeared in 1890. (At an earlier date the term modular

function seems to have been applied to the elliptic functions themselves,,
to judge from the title of Gudermann's paper [18).) I may add that I have

myself devoted some study to the singularities that occur in the modular

relations of low orders [7, 8].
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The direct definition of @u as a double series, as the starting

point of the whole subject, is found for the first time, as far as I can

discover, in Whittaker and Watson [43] in 1902; their treatment of the

Weierstrass functions has been followed in essence in these notes, though

with many shifts in emphasis. They still, however, thought it necessary

to deal with the theta functions before the Jacobi functions, and to define

the latler in terms of the former; with the result that the Weierstrass

and Jacobi functions appear as two almost unrelated topics. It is to be

added that their work is illustrated by a great wealth of examples and

exercises, of every degree of difficulty.

The definition of the Jacobi functions as root functions, from the

Weierstrass function, which is the basis of our treatment of them, and of

our whole approach to the classical theory, is due to Neville [30] in 1944,

though of course the expressions for the squares of the Jacobi functions

in terms of the Weierstrass function were familiar. His 600k is imagina-

tive, and extremely valuable, though rather diffuse, and not altogether

easy to r ead; and he seems to have missed the easy derivation of the

addition theor ern for the Jacobi functions, by elementary algebra, from

that for the Weierstrass function.

The only other substantial work on elliptic functions that has ap-

pear ed, so far as I know, since early this century, is that of Eagle [10]

in 1958. He defines all the functions he uses by trigonometric series,

with the result that his fundamental latlice is Q throughout; and as he
1T

gives new names and notation to everythíng, it is not always easy to com-

pare his work with that of other writers. In spite of this, and of some

elementary blunders, his book is not without interest.

The ternary functions are, so far as I know, my own invention,

and first saw print, very much as they appear here, in 1964 [6].

The only useful tables of elliptic functions known to me are the

Smithsonian Tables [36], which give to 12 places of decímals the values

of sn u, cn u, dn u, E(u), for real values of u at intervals of ~, for all

moduli k = sin e, where e is a whole number of degrees.
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Index

Definitions and notation introduced ad hoc for a particular context

only are not indexed, but it is hoped that all those which, once introduced,

are reused later, have been included. Greek letters are listed separately,

after the Latin-alphabet index.

aI' a
2

, a
3

, a
4

(constants), 124

absolute invariant (of quartic
equation, of lattice), 41

abstract curve, 185

addition theorems: Weierstrass
function, 21; root functions,
65; Jacobi functions, 67;
(quas í) ~u, 97; (quasi) E(u).
104; ternary functions, 127

am u (amplitude of u), 57, 89

analytíc function, 7

b
l
, b

2
, b

3
, b

4
(constants), 121

bicircular quartic, 234

bínary functions, 119

bipartite real curve, 192

birational equivalence, map-
píng, 184

branching of square roots, 53

branch point of Riemann surf'ace,
85

C (comptex number field), 26

c
l
' c

2
' c

3
' c

4
(constante}, 120

cartesian curve, oval, 234

cassíman curve, oval, 241

char acter ístic of theta func-
tion, 162

244

cilinder as map of residue class
gr oup, 4

complementary modulus, 26

complete integral, 89

complete linear system, 98; series,
189

complex point of elliptic curve, 186

confocal cones, 222; spheroconics,
222; cartesians, 227

conformal map, 4

conjoint involution on bipartite curve,
211-12

contour integration theorems, 10

coresidual sets, 189

cross ratío property of cubic, 212;

of quartic, 215

crossing line of Riemann surface, 85

cubic identity for ternary functions,
123

cubic transformation, see transforma-
tion

dI' d
2

, d
3

(constants), 21
derivatives of Weierstrass functions,

16; of root functions, 54; of Jacobi
functions, 63; of g u, g u, g u, 72

1 2 3

differential equation satisfied by @u,
18; by Jacobi functions, 64; by



glu, g2u, g3u, 74
discriminant of cubic, 20; of

quartic, 41

disjoint involution on bipartite
curve, 211-12

double lattice, 1

doubly periodic function, 8;
(quasí), 94

dupl ication formula for @u, 22;
for Jacobi functions, 69; for
ternary functions, 128

E (W)= E (u !2Q) (f ield}, 26,
185

E(u)=E(u, k)=E(u 12Q"') (class ícal
integral. of second kínd), 103

E, E' (complete integr al s), 103

e , e ,e (constants), 20
1 2 3

elliptic curve, 185

elliptic function, 9

elliptic function field, 26

elliptic integral, 118

elliptic involution, 196

equianhar moníc elliptic function,
32

even circuit of real curve, 192

extreme rhombic lattice, 33

f u, f u, f u (root functtons), 53123
f u, f u, f u, f u (ternary root1 2 3 4

íunctíons), 129

focal line of cone, 221

focus of plane curve, 221; of
curve on sphere, 222

fundamental region of J.attice, 3;
of r, 43; of r*, 45

G , G (ínvar íants of quartic
2 3
equation) , 40

,..

G , G (invariants of plane cubic), 200
4 6

G ,G (groups of plane homo--18 -216
graphies), 207

g =s (2D), g =g (2Q) (Weierstrass2 2 ·33
ínvar íants), 18

g;, g;, 34

g2(T)=g2(2QT)' g3(T)=g3(2QT)' 48
g u, g u, g u (bínar y functions), 72

1 2 3

9 u, 9 u, 9 u, 9 u (ternary functions),1 234
119

generators (generating elements) of
lattice, 1

Glaisher's notation for Jacobi func-
tions, 57

Gudermann's notation for Jacobi
functions, 57

H (Iattice), Hu (functíon), see under
Greek Eta.

h u, h u, h u (Iunctíons), 75
1 2 3

half lattíces Q , Q , n , 52123
half period translation, see translation

half period values of @u, 20; of Jacobi
functions, 60-1; of ~u, 94; of ~"'u,
Z (u), 111; of theta functions, 170

har rnonic eEiptic functions, 31

hessian penei!, 207

homogeneity of S (Q), 6; of @u, @'u,
n

Pn(u), 20; of g2' g3' 19; of e1, e2,
e3, 26; of f1u, f2u, f3u, 54; of

gl U, g2u, g3u, 72; of ~u, 93; of

ou, "i u, a
2
u, a

3
u, 110; of o+u, aru,

o=u o+u 112,' of 9 u, 9 u, 9 u,
2' 3' 1 2 3·

g4u, 119
homographic relation between functions

of order 2, 24; between h1u, h2U,

h u, 75; between ternary functions,
3

125; between m1, m2, m3, m4, 126
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1=1(2Q) (absolute tnvartant), 41

1(T) (modular function), 49

i (equation ideal of curve), 184

Im(z) (imaginary part), 1

infinite part of function at pole, 8

integral of first kind, 87; of
second kind, 100 (classical,
102); of third kíng, 114
(classtcal, 116); complete, 89

integration theorem, 117

interchange of argument and
parameter, 115

invariant, absolute, 41

ínvartants of quartic equation,
40; of plane cubic, 200

invar iants , Weierstrass, 18

ínvar íants of real lattice, 33

invariants, other, see modulus
and individual syrnbols

involution, r-atíonal , 185; in
general, 194; elliptic, 196;
real (quadratíc), 211; conjoint,
disjoint, 211-12; residual, 214

J (absolute invariant), 41; as
power series in q, 180

Jacobi functions, and Jacobi's
notation for them, 57

Jacobi-Glaisher functions, 56

Jacobi's ímagínary and real trans-
formations, 69

Jacobi's zeta functíon, 111

Jacobi's two notations for theta
functions, 167

K, K' as generators of Q*, 55;
as complete íntegr als, 90; in
terms of theta functions, 177

K (r ational function field on
curve), 184
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k, k' (rnodul í), 26; in terms of theta
functions, 176

Landen's transformation, 137

lattice: trivial, simple, double, 1;
similar, real, rectangular, rhombic,
square, triangular, 2; degenerate,
6; normal, 55; underlying (of root
functions etc.), 54; symbols for
particular lattices, see Q, 11, H

lattíce shape, 2

lattice points, 2

Legendre-Weierstrass relation, 94;
Legendre's original form, 104

limits of functions for degenerate
lattice, 91

Liouville's theorem, 9

linear series, 187; complete, 189

linear system, 98; complete, 98

m
1
, m

2
, m

3
, m

4
(constants), 123

m' m' m' m' (constants) 131l' 2' 3' 4 '
medium rhombic lattice, 33

meromorphic function, 7

model of abstract curve, 185

model, projective, of linear series,
187

modular angle, 26

modular function, 49

modular group r, 42; (extended) r*,
44; (subgroups) r6' r24' 71

modular relation, 135; order 2, 139
(cíasstcal, 136); order 3, 141
(classtcal, 151)

modulus, 26; complementary, 26

normal curve, 189

normal lattice, 55

normal parametrisation, 190



2 (octahedral group), 75

odd circuit of real curve, 192

order of elliptic function, 12

P (u), 15
n

@u, @'u, 16

parametrisation of curve, 184

period of function; simply, doubly
periodic functions, 8

period constants, 94

pole, 8
. ití th . d 24pr imi ive n peno,
. ltí th 1 ttí 1-3prarm rve n a Ice, j;
number of, 133

principal theta functions, 165

q, ql/4, (constants), 113

quadratic transformation, see
transf ormation

quarter period values of Weier-
strass tunctíon, 21; of
Jacobi functions, 62

quasi addition theorem for Çu,
97; for E(u), 104

quasi period, quasi periodic,
quasi elliptic function, 94

R (real number field), 191

ratíonal curve, 185

rattonal function field on curve,
184

ratíonal involution, 189

Re(z) (real part), 1

real curve, 191; real type of
curve, 192

r eal Iattíce, 2; values of @u,
@'u for, 28; invariants of, 33

real quadratic involution, 211

rectangular lattice, 2

residue class (mod lattíce), residue
class gr oup, 3; map of (on cylinder
or torus), 4

residue of function at pole, 8; of
Jacobi functions, 64

retroflex curve, 202

Riemann surface, 84

rhombic lattice, 2

root of function in linear system, 99

root functions f u, f u, f u, 52
1 2 3

root functions, ternary, f u, f u,
1 2

f 3u, f4u, 130

s (n), s , 5n n
sigma functions, 105; simply periodic,

111

simple lattice, 1

simply periodic tunctíon, 8

simply periodic zeta and sigms func-
tíons, 111

spheroconic, 222; confocal, 222

square lattíce, 2

standard expressions for elliptic
functions: in terms of @u, @'u, 27;
of Çu and derivatives, 98; of ou, 108

statíonary values of @u, 19; of @'u, 35;
of Jacobi functions, 58; of h u, h u,

1 2
h3 u, etc. 75

sublattice, 52; primitive, 133

.'! (tetrahedral gr oup), 127

ternary functions, 119; ternary root
functions, 129

theta type series, theta functions, 162;
principal, 165; Jacobi's earlier and
Iater notation for, 167

third lattices n1
, n2

, Q3, n4
, 128

torus, as map of residue class group,
4
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ou (sigma function), 106); a u, a u,1 2
a3u, 11 O; (simply periodic) o+u,

111· o+u o=u o+u 112, l' 2' 3'

T = W /W , 62 1
~lu, ~2u, ~3u, ~4u, 129

Q (general lattice) , 1; Q, 2; QT' 6;

Ql' Q2' Q3' 52; Q*, 55; Ql, Q2,

Q3, Q4, 128; Q1T' 153

w
1
' w2 (generators of Q), 1; w

3
' 19;

r (modular gr oup), 42); (extended) W 4' 23
r*, 44; (subgroups) r ,r ,71

6 24
Do (discriminant of cubic), 20; (of

quarttc), 41

Z(u) (Jacobi's zeta function), 111

~u (Weierstrass zeta functíon), 93;
(simply periodic) ~*u, 111

H (Iattíce), 94

transformation, 134; quadratic,
of Weierstrass functions, 135;
of Jacobi functions, 137; cubic,
of Weierstrass functions, 143;
of ternary functions, 146; of
Jacobi functions, 149- 50

translation formulae: for (\<>u,20;
for Jacobi functions, 59; for
glu, g2u, g3u, 72; for ~u, 94;

for ou, 107; for a1u, a2u,
a u, 110; for ~*u, 111; for

3
a*u a*u a*u a*u 112· for

, i " 2' 3' ,

glu, g2u, g3u, g4u, 119, 122;

for theta functions, 164, 169

triangular lattice, 2

trivial lattice, 1

underlying lattice (of root func-
tíons etc. ), 54

unipartite real curve, 192

untratíonal mappíng, 193

y. (vierer group), 74

Weierstrass elliptic functions, 16;
invariants, 18; zeta function,
93; sigma function, 106

Z, see Greek Zeta

zero (of order n) of function, 8

zeta tunctíon u, 93; (Jacobi's)
Z(u), 111
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Hu (theta functíon), 167

7], 7]i ' 1)2 (period constants), 94

eu (theta function), 167

[a, b](z I T) = [a..J:iliz-,-ClL 163;
(z I T), (z, q), z, 163

z, 1Z, 2z, 3z (Jacobi's later
notation), 167

sZ, cZ, nZ, dZ' (principal theta
functions), 168

lic' lin, lid, (constants), 169; li~, 170

À (modular invariant), 139

J.L (modular invariant), 141

TI (lattíce), 91

TI' (product over lattíce), 106
Q

TIab (integral of the third kind) , 115;vw
(classtcal) TI(u, v), 116

L I', (summatíon over lattice), 5
Q
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