Solutions Chapter ${ }^{2}$

1. SECTION 2.1

2.1.9 www

From Prop. 2.1.2(a), if x^{*} is a local minimum, then

$$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X
$$

or

$$
\sum_{i=1}^{n} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right) \geq 0
$$

If $x_{i}^{*}=\alpha_{i}$, then $x_{i} \geq x_{i}^{*}, \forall x_{i}$. Letting $x_{j}=x_{j}^{*}$, for $j \neq i$, we have

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \geq 0
$$

Similarly, if $x_{i}^{*}=\beta_{i}$, then $x_{i} \leq x_{i}^{*}$, for all x_{i}. Letting $x_{j}=x_{j}^{*}$, for $j \neq i$, we have

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \leq 0
$$

If $\alpha_{i}<x_{i}^{*}<\beta_{i}$, let $x_{j}=x_{j}^{*}$ for $j \neq i$. Letting $x_{i}=\alpha_{i}$, we obtain

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \leq 0
$$

and letting $x_{i}=\beta_{i}$, we obtain

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \geq 0
$$

Combining these inequalities, we see that we must have

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0
$$

Assume that f is convex. To show that Eqs. (1.6)-(1.8) are sufficient for x^{*} to be a global minimum, let $I_{1}=\left\{i \mid x_{i}^{*}=\alpha_{i}\right\}, I_{2}=\left\{i \mid x_{i}^{*}=\beta_{i}\right\}, I_{3}=\left\{i \mid \alpha_{i}<x_{i}^{*}<\beta_{i}\right\}$. Then

$$
\begin{aligned}
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) & =\sum_{i=1}^{n} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right) \\
& =\sum_{i \in I_{1}} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-\alpha_{i}\right)+\sum_{i \in I_{2}} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-\beta_{i}\right)+\sum_{i \in I_{3}} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right)
\end{aligned}
$$

Since $\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \geq 0$ for $i \in I_{1}, \frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \leq 0$ for $i \in I_{2}$, and $\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0$ for $i \in I_{3}$, each term in the above equation is greater than or equal to zero. Therefore

$$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X
$$

From Prop. 2.1.2(b), it follows that x^{*} is a global minimum.

2.1.10 www

For any $x \in X$ such that $\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)=0$, we have by the second order expansion of Prop. A.23, for all $\alpha \in[0,1]$ and some $\tilde{\alpha} \in[0, \alpha]$,

$$
f\left(x^{*}+\alpha\left(x-x^{*}\right)\right)-f\left(x^{*}\right)=\frac{1}{2} \alpha^{2}\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}+\tilde{\alpha}\left(x-x^{*}\right)\right)\left(x-x^{*}\right)
$$

For all sufficiently small α, the left-hand side is nonnegative, since x^{*} is a local minimum. Hence the same is true for the right-hand side, and by taking the limit as $\alpha \rightarrow 0$ (and also $\tilde{\alpha} \rightarrow 0$), we obtain

$$
\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \geq 0
$$

2.1.11 *Ww

Proof under condition (1): Assume, to arrive at a contradiction, that x^{*} is not a local minimum. Then there exists a sequence $\left\{x^{k}\right\} \subseteq X$ converging to x^{*} such that $f\left(x^{k}\right)<f\left(x^{*}\right)$ for all k. We have

$$
f\left(x^{k}\right)=f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\prime}\left(x^{k}-x^{*}\right)+\frac{1}{2}\left(x^{k}-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}\right)\left(x^{k}-x^{*}\right)+o\left(\left\|x^{k}-x^{*}\right\|^{2}\right)
$$

Introducing the vector

$$
p^{k}=\frac{x^{k}-x^{*}}{\left\|x^{k}-x^{*}\right\|}
$$

and using the relation $f\left(x^{k}\right)<f\left(x^{*}\right)$, we obtain

$$
\begin{equation*}
\nabla f\left(x^{*}\right)^{\prime} p^{k}+\frac{1}{2} p^{k^{\prime}} \nabla^{2} f\left(x^{*}\right) p^{k}\left\|x^{k}-x^{*}\right\|+\frac{o\left(\left\|x^{k}-x^{*}\right\|^{2}\right)}{\left\|x^{k}-x^{*}\right\|}<0 \tag{1}
\end{equation*}
$$

This together with the hypothesis $\nabla f\left(x^{*}\right)^{\prime} p^{k} \geq 0$ implies

$$
\begin{equation*}
\frac{1}{2} p^{k^{\prime}} \nabla^{2} f\left(x^{*}\right) p^{k}\left\|x^{k}-x^{*}\right\|+\frac{o\left(\left\|x^{k}-x^{*}\right\|^{2}\right)}{\left\|x^{k}-x^{*}\right\|}<0 \tag{2}
\end{equation*}
$$

Let us call feasible direction at x^{*} any vector p of the form $\alpha\left(x-x^{*}\right)$, where $\alpha>0$ and $x \in X, x \neq x^{*}$ (see also Section 2.2). The sequence $\left\{p^{k}\right\}$ is a sequence of feasible directions at
x^{*} that lie on the surface of the unit sphere. Therefore, a subsequence $\left\{p^{k}\right\}_{K}$ converges to a vector \bar{p}, which because X is polyhedral, must be a feasible direction at x^{*} (this is easily seen by expressing the polyhedral set X in terms of linear equalities and inequalities). Therefore, by the hypothesis of the exercise, we have $\nabla f\left(x^{*}\right)^{\prime} \bar{p} \geq 0$. By letting $k \rightarrow \infty, k \in K$ in (1), we have

$$
\nabla f\left(x^{*}\right)^{\prime} \bar{p}=0
$$

The hypothesis of the exercise implies that

$$
\begin{equation*}
\bar{p}^{\prime} \nabla^{2} f\left(x^{*}\right) \bar{p}>0 \tag{3}
\end{equation*}
$$

Dividing by $\left\|x^{k}-x^{*}\right\|$ and taking the limit in Eq. (2) as $k \rightarrow \infty, k \in K$, we obtain

$$
\frac{1}{2} \bar{p}^{\prime} \nabla^{2} f\left(x^{*}\right) \bar{p}+\lim _{k \rightarrow \infty, k \in K} \frac{o\left(\left\|x^{k}-x^{*}\right\|^{2}\right)}{\left\|x^{k}-x^{*}\right\|^{2}} \leq 0
$$

This contradicts Eq. (3).
Proof under condition (2): Here we argue in the similar way as in part (1). Suppose that all the given assumptions hold and x^{*} is not a local minimum. Then there is a sequence $\left\{x^{k}\right\} \subseteq X$ converging to x^{*} such that $f\left(x^{k}\right)<f\left(x^{*}\right)$ for all k. By using the second order expansion of f at x^{*} and introducing the vector $p^{k}=\frac{x^{k}-x^{*}}{\left\|x^{k}-x^{*}\right\|}$, we have that both Eq. (1) and (2) hold for all k. Since $\left\{p^{k}\right\}$ consists of feasible directions at x^{*} that lie on the surface of the unit sphere, there is a subsequence $\left\{p^{k}\right\}_{K}$ converging to a vector \bar{p} with $\|\bar{p}\|=1$. By the assumption given in the exercise, we have that

$$
\nabla f\left(x^{*}\right) p^{k} \geq 0, \quad \forall k
$$

Hence $\nabla f\left(x^{*}\right) \bar{p} \geq 0$. By letting $k \rightarrow \infty, k \in K$ in (1), we obtain $\nabla f\left(x^{*}\right) \bar{p} \leq 0$. Consequently $\nabla f\left(x^{*}\right) \bar{p}=0$. Since the vector \bar{p} is in the closure of the set of the feasible directions at x^{*}, the condition given in part (2) implies that $\bar{p}^{\prime} \nabla^{2} f\left(x^{*}\right) \bar{p}>0$. Dividing by $\left\|x^{k}-x^{*}\right\|$ and taking the limit in Eq. (2) as $k \rightarrow \infty, k \in K$, we obtain $\bar{p}^{\prime} \nabla^{2} f\left(x^{*}\right) \bar{p} \leq 0$, which is a contradiction. Therefore, x^{*} must be a local minimum.

Proof under condition (3): We have

$$
f(x)=f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right)+o\left(\left\|x-x^{*}\right\|^{2}\right)
$$

so that by using the hypotheses $\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0$ and $\left(x-x^{*}\right)^{\prime} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \geq \gamma\left\|x-x^{*}\right\|^{2}$,

$$
f(x)-f\left(x^{*}\right) \geq \frac{\gamma}{2}\left\|x-x^{*}\right\|^{2}+o\left(\left\|x-x^{*}\right\|^{2}\right)
$$

The expression in the right-hand side is nonnegative for $x \in X$ close enough to x^{*}, and it is strictly positive if in addition $x \neq x^{*}$. Hence x^{*} is a strict local minimum.

Example: [Why the assumption that X is a polyhedral set was important under

 condition (1)] A polyhedral set X has the property that for any point $x \in X$, the set $V(x)$ of the feasible directions at x is closed. This was crucial for proving that the conditions$$
\begin{gather*}
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X, \tag{1}\\
\left(x-x^{*}\right) \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right)>0, \quad \forall x \in X, x \neq x^{*}, \text { for which } \nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)=0, \tag{2}
\end{gather*}
$$

are sufficient for local optimality of x^{*}.
Consider the set $X=\left\{\left(x_{1}, x_{2}\right) \mid\left(x_{1}\right)^{2} \leq x_{2}\right\}$ and the point $(0,0) \in X$. Let the cost function be $f\left(x_{1}, x_{2}\right)=-2\left(x_{1}\right)^{2}+x_{2}$. Note that the gradient of f at 0 is $[0,1]^{\prime}$. It is easy to see that

$$
\nabla f(0)^{\prime}(x-0)=x_{2}>0, \quad \forall x \in X, x \neq 0 .
$$

Thus the point $x^{*}=0$ satisfies conditions (1) and (2) (condition 2 is trivially satisfied since in our example $\nabla f(0)^{\prime}(x-0)=0$ simply never occurs for $\left.x \in X, x \neq 0\right)$. On the other hand, $x^{*}=0$ is not a local minimum of f in X. Consider the points $x^{n}=\left(\frac{1}{n}, \frac{1}{n^{2}}\right) \in X$ for $n \geq 1$. Since $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, for any $\delta>0$ there is an index n_{δ} such that $\left\|x^{n}-x^{*}\right\|<\delta$ for all $n \geq n_{\delta}$. By evaluating the cost function, we have $f\left(x^{n}\right)=-\frac{1}{n^{2}}<0=f\left(x^{*}\right)$. Hence, in any δ neighborhood of $x^{*}=0$, there are points $x^{n} \in X$ with the better objective value, i.e. x^{*} is not a local minimum.

This is happening because the set $V\left(x^{*}\right)$ of the feasible directions at point x^{*} is not closed in this case. The set $V\left(x^{*}\right)$ is given by

$$
V\left(x^{*}\right)=\left\{d=\left(d_{1}, d_{2}\right) \mid d_{2}>0,\|d\|=1\right\},
$$

and is open. The vectors

$$
\binom{1}{0} \text { and }\binom{-1}{0}
$$

belong to the closure of $V\left(x^{*}\right)$ but they are not in the set $V\left(x^{*}\right)$.

2.1.18 www

The assumption on $\nabla^{2} f(x)$ guarantees that f is strictly convex and coercive, so it has a unique global minimum over any closed convex set (using Weierstrass' theorem, Prop. A.8). By the second order expansion of Prop. A.23, we have for all x and y in \Re^{n}

$$
f(y)=f(x)+\nabla f(x)^{\prime}(y-x)+\frac{1}{2}(y-x) \nabla f(\tilde{y})(y-x)
$$

for some \tilde{y} in the line segment connecting x and y. It follows, using the hypothesis, that

$$
\nabla f(x)^{\prime}(y-x)+\frac{M}{2}\|y-x\|^{2} \geq f(y)-f(x) \geq \nabla f(x)^{\prime}(y-x)+\frac{m}{2}\|y-x\|^{2}
$$

Taking the minimum in this inequality over $y \in X$, and changing sign, we obtain

$$
-\min _{y \in X}\left\{\nabla f(x)^{\prime}(y-x)+\frac{M}{2}\|y-x\|^{2}\right\} \leq f(x)-f\left(x^{*}\right) \leq-\min _{y \in X}\left\{\nabla f(x)^{\prime}(y-x)+\frac{m}{2}\|y-x\|^{2}\right\}
$$

which is the desired relation.

2.1.19 of 2nd Printing (Existence of Solutions of Nonconvex Quadratic

Programming Problems) www

Let $\left\{\gamma^{k}\right\}$ be a decreasing sequence with $\gamma^{k} \downarrow f^{*}$, and denote

$$
S^{k}=\left\{x \in X \mid x^{\prime} Q x+c^{\prime} x \leq \gamma^{k}\right\}
$$

Then the set of optimal solutions of the problem is $\cap_{k=0}^{\infty} S^{k}$, so by Prop. 2.1.4, it will suffice to show that for each asymptotic direction of $\left\{S^{k}\right\}$, all corresponding asymptotic sequences are retractive. Let d be an asymptotic direction and let $\left\{x^{k}\right\}$ be a corresponding asymptotic sequence. Similar to the proof of Prop. 2.1.5, we have $d^{\prime} Q d \leq 0$. Also, in case (i), similar to the proof of Prop. 2.1.5, we have $a_{j}^{\prime} d \leq 0$ for all j, while in case (ii) it is seen that $d \in N$, where $X=B+N$ and B is compact and N is a polyhedral cone. For any $x \in X$, consider the vectors $\tilde{x}^{k}=x+k d$. Then, in both cases (i) and (ii), it can be seen that $\tilde{x}^{k} \in X$ [in case (i) by using the argument in the proof of Prop. 2.1.5, and in case (ii) by using the definition $X=B+N]$. Thus, the cost function value corresponding to \tilde{x}^{k} satisfies

$$
\begin{aligned}
f^{*} & \leq(x+k d)^{\prime} Q(x+k d)+c^{\prime}(x+k d) \\
& =x^{\prime} Q x+c^{\prime} x+k^{2} d^{\prime} Q d+k(c+2 Q x)^{\prime} d \\
& \leq x^{\prime} Q x+c^{\prime} x+k(c+2 Q x)^{\prime} d
\end{aligned}
$$

where the last inequality follows from the fact $d^{\prime} Q d \leq 0$. From the finiteness of f^{*}, it follows that

$$
(c+2 Q x)^{\prime} d \geq 0, \quad \forall x \in X
$$

We now show that $\left\{x^{k}\right\}$ is retractive, so that we can use Prop. 2.1.4. Indeed for any $\alpha>0$, since $\left\|x^{k}\right\| \rightarrow \infty$, it follows that for k sufficiently large, we have $x^{k}-\alpha d \in X$ [this follows similar to the proof of Prop. 2.1.5 in case (i), and because $d \in N$ in case (ii)]. Furthermore, we have

$$
\begin{aligned}
f\left(x^{k}-\alpha d\right) & =\left(x^{k}-\alpha d\right)^{\prime} Q\left(x^{k}-\alpha d\right)+c^{\prime}\left(x^{k}-\alpha d\right) \\
& =x^{k \prime} Q x^{k}+c^{\prime} x^{k}-\alpha\left(c+2 Q x^{k}\right)^{\prime} d+\alpha^{2} d^{\prime} Q d \\
& \leq x^{k \prime} Q x^{k}+c^{\prime} x^{k} \\
& \leq \gamma^{k}
\end{aligned}
$$

where the first inequality follows from the facts $d^{\prime} Q d \leq 0$ and $\left(c+2 Q x^{k}\right)^{\prime} d \geq 0$ shown earlier. Thus for sufficiently large k, we have $x^{k}-\alpha d \in S^{k}$, so that $\left\{x^{k}\right\}$ is retractive. The existence of an optimal solution now follows from Prop. 2.1.4.

2.1.20 of 2 nd Printing

We proceed as in the proof of Prop.2.1.5. By using a decomposition of d^{k} as the sum of a vector in the nullspace of A and its orthogonal complement, and an argument like the one in the proof of Prop. 2.1.5, we can show that

$$
A d=0, \quad c^{\prime} d \leq 0
$$

Similarly, we can show that

$$
a_{j}^{\prime} d \leq 0, \quad j=1, \ldots, r
$$

Using the finiteness of f^{*}, we can also show that $c^{\prime} d=0$, and we can conclude the proof similar to the proof of Prop. 2.1.5.

2.1.21 of 2 nd Printing www

Note that the cone N in this exercise must be assumed polyhedral (see the errata sheet). Let $S^{k}=\left\{x \in X \mid f(x) \leq \gamma^{k}\right\}$, and let d be an asymptotic direction of $\left\{S^{k}\right\}$, and let $\left\{x^{k}\right\}$ be a corresponding asymptotic sequence. We will show that $\left\{x^{k}\right\}$ is retractive, so by applying Prop. 2.1.4, it follows that the intersection of $\left\{S^{k}\right\}$, the set of minima of f over X, is nonempty.

Since d is an asymptotic direction of $\left\{S^{k}\right\}, d$ is also an asymptotic direction of $\{x \mid f(x) \leq$ $\left.\gamma^{k}\right\}$, and by hypothesis for some bounded positive sequence $\left\{\alpha^{k}\right\}$ and some positive integer \bar{k}, we have $f\left(x^{k}-\alpha^{k} d\right) \leq \gamma^{k}$ for all $k \geq \bar{k}$.

Let $X=\bar{X}+N$, where \bar{X} is compact, and N is the polyhedral cone

$$
N=\left\{y \mid a_{j}^{\prime} y \leq 0, j=1, \ldots, r\right\}
$$

where a_{1}, \ldots, a_{r} are some vectors. We can represent x^{k} as

$$
x^{k}=\bar{x}^{k}+y^{k}, \quad \forall k=0,1, \ldots
$$

where $\bar{x}^{k} \in \bar{X}$ and $y^{k} \in N$, so that

$$
a_{j}^{\prime} x^{k}=a_{j}^{\prime}\left(\bar{x}^{k}+y^{k}\right), \quad \forall k=0,1, \ldots, j=1, \ldots, r
$$

Dividing both sides with $\left\|x^{k}\right\|$ and taking the limit as $k \rightarrow \infty$, we obtain

$$
a_{j}^{\prime} d=\lim _{k \rightarrow \infty} \frac{a_{j}^{\prime} y^{k}}{\left\|x^{k}\right\|}
$$

Since $a_{j}^{\prime} y^{k} \leq 0$ for all k and j, we obtain that $a_{j}^{\prime} d \leq 0$ for all j, so that $d \in N$.
For each j, we consider two cases:
(1) $a_{j}^{\prime} d=0$. In this case, $a_{j}^{\prime}\left(y^{k}-\bar{\alpha} d\right) \leq 0$ for all k, since $y^{k} \in N$ and $a_{j}^{\prime} y^{k} \leq 0$.
(2) $a_{j}^{\prime} d<0$. In this case, we have

$$
\frac{1}{\left\|x^{k}\right\|} a_{j}^{\prime}\left(y^{k}-\bar{\alpha} d\right)=\frac{1}{\left\|x^{k}\right\|} a_{j}^{\prime}\left(x^{k}-\bar{x}^{k}-\bar{\alpha} d\right)
$$

so that since $\frac{x^{k}}{\left\|x^{k}\right\|} \rightarrow d,\left\{x^{k}\right\}$ is unbounded, and $\left\{\bar{x}^{k}\right\}$ is bounded, we obtain

$$
\lim _{k \rightarrow \infty} \frac{1}{\left\|x^{k}\right\|} a_{j}^{\prime}\left(y^{k}-\bar{\alpha} d\right)=a_{j}^{\prime} d<0
$$

Hence $a_{j}^{\prime}\left(y^{k}-\bar{\alpha} d\right)<0$ for k greater than some \bar{k}.
Thus, for $k \geq \bar{k}$ and $\alpha \in(0, \bar{\alpha}]$, we have $a_{j}^{\prime}\left(y^{k}-\alpha d\right) \leq a_{j}^{\prime}\left(y^{k}-\bar{\alpha} d\right) \leq 0$ for all j, so that $y^{k}-\alpha d \in N$ and $x^{k}-\alpha d \in X$.

Thus $\left\{x^{k}\right\}$ is retractive, and by applying Prop. 2.1.4, we have that $\left\{S^{k}\right\}$ has nonempty intersection.

2.1.22 of 2nd Printing www

We follow the hint. Let $\left\{y_{k}\right\}$ be a sequence of points in $A S$ converging to some $\bar{y} \in \Re^{n}$. We will prove that $A S$ is closed by showing that $\bar{y} \in A S$.

We introduce the sets

$$
W_{k}=\left\{z \mid\|z-\bar{y}\| \leq\left\|y_{k}-\bar{y}\right\|\right\}
$$

and

$$
S_{k}=\left\{x \in S \mid A x \in W_{k}\right\}
$$

To show that $\bar{y} \in A S$, it is sufficient to prove that the intersection $\cap_{k=0}^{\infty} S_{k}$ is nonempty, since every $\bar{x} \in \cap_{k=0}^{\infty} S_{k}$ satisfies $\bar{x} \in S$ and $A \bar{x}=\bar{y}$ (because $y_{k} \rightarrow \bar{y}$). The asymptotic directions of $\left\{S_{k}\right\}$ are asymptotic directions of S that are also in the nullspace of A, and it can be seen that every corresponding asymptotic sequence is retractive for $\left\{S_{k}\right\}$. Hence, by Prop. 2.1.4, $\cap_{k=0}^{\infty} S_{k}$ is nonempty.

2. SECTION 2.2

2.2.7 www

Since the number of extreme points of f is finite, some extreme point must be repeated within a finite number of iterations, i.e., for some k and $i \in\{0,1, \ldots, k-1\}$, we have

$$
\bar{x}^{i}=\arg \min _{x \in X} \nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)
$$

Since x^{k} minimizes $f(x)$ over X^{k-1}, we must have

$$
\nabla f\left(x^{k}\right)^{\prime}\left(\bar{x}^{i}-x^{k}\right) \geq 0, \quad \forall i=0,1, \ldots, k-1
$$

Combining the above two equations, we see that

$$
\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right) \geq 0, \quad \forall x \in X
$$

which implies that x^{k} is a stationary point of f over X.

3. SECTION 2.3

2.3.4 www

We assume here that the unscaled version of the method $\left(H^{k}=I\right)$ is used and that the stepsize s^{k} is a constant $s>0$.
(a) If x^{k} is nonstationary, there exists a feasible descent direction $\hat{x}^{k}-x^{k}$ for the original problem, where $\hat{x}^{k} \in X$. Since $\hat{x}^{k} \in X^{k}$, we have

$$
\nabla f\left(x^{k}\right)^{\prime}\left(\tilde{x}^{k}-x^{k}\right)+\frac{1}{2 s}\left\|\tilde{x}^{k}-x^{k}\right\|^{2} \leq \nabla f\left(x^{k}\right)^{\prime}\left(\hat{x}^{k}-x^{k}\right)+\frac{1}{2 s}\left\|\hat{x}^{k}-x^{k}\right\|^{2}<0
$$

where \tilde{x}^{k} is defined by the algorithm. Thus,

$$
\nabla f\left(x^{k}\right)^{\prime}\left(\tilde{x}^{k}-x^{k}\right) \leq-\frac{1}{2 s}\left\|\tilde{x}^{k}-x^{k}\right\|^{2}<0
$$

so that $\tilde{x}^{k}-x^{k}$ is a descent direction at x^{k}. It is also a feasible direction, since $a_{j}^{\prime}\left(\tilde{x}^{k}-x^{k}\right) \leq 0$ for all j such that $a_{j} x^{k}=b_{j}$.
(b) As in the proof of Prop. 2.3.1, we will show that the direction sequence $\left\{\bar{x}^{k}-x^{k}\right\}$ is gradientrelated, where

$$
\bar{x}^{k}=\gamma^{k} \tilde{x}^{k}+\left(1-\gamma^{k}\right) x^{k}
$$

and

$$
\gamma^{k}=\max \left\{\gamma \in[0,1] \mid \gamma \tilde{x}^{k}+(1-\gamma) x^{k} \in X\right\}
$$

Indeed, suppose that $\left\{x^{k}\right\}_{k \in K}$ converges to a nonstationary point \tilde{x}. We must prove that

$$
\begin{gather*}
\limsup _{k \rightarrow \infty, k \in K}\left\|\bar{x}^{k}-x^{k}\right\|<\infty \tag{*}\\
\limsup _{k \rightarrow \infty, k \in K} \nabla f\left(x^{k}\right)^{\prime}\left(\bar{x}^{k}-x^{k}\right)<0 \tag{**}
\end{gather*}
$$

Since $\left\|\bar{x}^{k}-x^{k}\right\| \leq\left\|\tilde{x}^{k}-x^{k}\right\| \leq s\left\|\nabla f\left(x^{k}\right)\right\|$, Eq. $\left(^{*}\right)$ clearly holds, so we concentrate on proving $\left(^{* *}\right)$. The key to this is showing that γ^{k} is bounded away from 0 , so that the inner product $\nabla f\left(x^{k}\right)^{\prime}\left(\bar{x}^{k}-x^{k}\right)$ is bounded away from 0 when $\nabla f\left(x^{k}\right)^{\prime}\left(\tilde{x}^{k}-x^{k}\right)$ is.

For each k, we either have $\gamma^{k}=1$, or else we must have for some j with $a_{j}^{\prime} x^{k}<b_{j}-\epsilon$,

$$
a_{j}^{\prime}\left(\gamma^{k} \tilde{x}^{k}+\left(1-\gamma^{k}\right) x^{k}\right)=b_{j}
$$

so that

$$
\gamma^{k} a_{j}^{\prime}\left(\tilde{x}^{k}-x^{k}\right)=b_{j}-a_{j}^{\prime} x^{k}>\epsilon
$$

from which

$$
\gamma^{k}>\frac{\epsilon}{\left\|a_{j}\right\| \cdot\left\|\tilde{x}^{k}-x^{k}\right\|}
$$

It follows that for all k, we have

$$
\min \left\{1, \min _{j} \frac{\epsilon}{\left\|a_{j}\right\| \cdot\left\|\tilde{x}^{k}-x^{k}\right\|}\right\} \leq \gamma^{k} \leq 1
$$

Since the subsequence $\left\{x^{k}\right\}_{K}$ converges, the subsequence $\left\{\tilde{x}^{k}-x^{k}\right\}_{K}$ is bounded implying also that the subsequence $\left\{\gamma^{k}\right\}_{K}$ is bounded away from 0 .

For sufficiently large k, the set

$$
X^{k}=\left\{x \mid a_{j}^{\prime} x \leq b_{j}, \text { for all } j \text { with } b_{j}-\epsilon \leq a_{j}^{\prime} x^{k} \leq b_{j}\right\}
$$

is equal to the set

$$
\tilde{X}=\left\{x \mid a_{j}^{\prime} x \leq b_{j}, \text { for all } j \text { with } b_{j}-\epsilon \leq a_{j}^{\prime} \tilde{x} \leq b_{j}\right\}
$$

so proceeding as in the proof of Prop. 2.3.1, we obtain

$$
\limsup _{k \rightarrow \infty, k \in K} \nabla f\left(x^{k}\right)^{\prime}\left(\tilde{x}^{k}-x^{k}\right) \leq-\frac{1}{s}\left\|\tilde{x}-[\tilde{x}-s \nabla f(\tilde{x})]^{+}\right\|^{2}
$$

where $[\cdot]+$ denotes projection on the set \tilde{X}. Since \tilde{x} is nonstationary, the right-hand side of the above inequality is negative, so that

$$
\limsup _{k \rightarrow \infty, k \in K} \nabla f\left(x^{k}\right)^{\prime}\left(\tilde{x}^{k}-x^{k}\right)<0
$$

We have $\bar{x}^{k}-x^{k}=\gamma^{k}\left(\tilde{x}^{k}-x^{k}\right)$, and since γ^{k} is bounded away from 0 , it follows that

$$
\limsup _{k \rightarrow \infty, k \in K} \nabla f\left(x^{k}\right)^{\prime}\left(\bar{x}^{k}-x^{k}\right)<0
$$

proving Eq. ${ }^{(* *)}$.
(c) Here we consider the variant of the method that uses a constant stepsize, which however, is reduced if necessary to ensure that \bar{x}^{k} is feasible. If the stepsize is sufficiently small to ensure convergence to the unique local minimum x^{*} of the positive definite quadratic cost function, then \bar{x}^{k} will be arbitrarily close to x^{*} for sufficiently large k, so that $\bar{x}^{k}=\tilde{x}^{k}$. Thus the convergence rate estimate of the text applies.

2.3.7 www

The key idea is to show that x^{k} stays in the bounded set

$$
A=\left\{x \in X \mid f(x) \leq f\left(x^{0}\right)\right\}
$$

and to use a constant stepsize $s^{k}=s$ that depends on the constant L corresponding to this bounded set. Let

$$
\begin{gathered}
R=\max \{\|x\| \mid x \in A\}, \\
G=\max \{\|\nabla f(x)\| \mid x \in A\}
\end{gathered}
$$

and

$$
B=\{x \mid\|x\| \leq R+2 G\}
$$

Using condition (i) in the exercise, there exists some constant L such that $\|\nabla f(x)-\nabla f(y)\| \leq$ $L\|x-y\|$, for all $x, y \in B$. Suppose the stepsize s satisfies $0<s<2 \min \{1,1 / L\}$. We will, show by induction on k that with this stepsize, we have $x^{k} \in A$ and

$$
\begin{equation*}
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\left(\frac{L}{2}-\frac{1}{s}\right)\left\|x^{k+1}-x^{k}\right\|^{2} \leq f\left(x^{k}\right) \tag{}
\end{equation*}
$$

for all $k \geq 0$.
To start the induction, we note that $x^{0} \in A$, by the definition of A. Suppose that $x^{k} \in A$. We have $x^{k+1}=\left[x^{k}-s \nabla f\left(x^{k}\right)\right]^{+}$, so by using the nonexpansiveness of the projection mapping,

$$
\left\|x^{k+1}-x^{k}\right\| \leq\left\|\left(x^{k}-s \nabla f\left(x^{k}\right)\right)-x^{k}\right\| \leq s\left\|\nabla f\left(x^{k}\right)\right\| \leq 2 G
$$

Thus,

$$
\left\|x^{k+1}\right\| \leq\left\|x^{k}\right\|+2 G \leq R+2 G
$$

implying that $x^{k+1} \in B$. Since B is convex, we conclude that the entire line segment connecting x^{k} and x^{k+1} belongs to B. In order to prove Eq. $\left(^{*}\right)$, we now proceed as in the proof of Prop. 2.3.2. A difficulty arises because Prop. A. 24 assumes that the inequality $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$ holds for all x, y, whereas in this exercise this inequality holds only for $x, y \in B$. However, using the fact that the Lipschitz condition holds along the line segment connecting x^{k} and x^{k+1} (which belongs to B as argued earlier), the proof of Prop. A. 24 can be repeated to obtain

$$
f\left(x^{k+1}\right)-f\left(x^{k}\right) \leq \nabla f\left(x^{k}\right)^{\prime}\left(x^{k+1}-x^{k}\right)+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|^{2}
$$

Using this relation, and the relation

$$
\nabla f\left(x^{k}\right)^{\prime}\left(x^{k+1}-x^{k}\right) \leq-\frac{1}{s}\left\|x^{k+1}-x^{k}\right\|^{2}
$$

[which is Eq. (3.27) of the text], we obtain Eq. $\left(^{*}\right)$ [as in the text, cf. Eq. (3.29)]. It follows that $x^{k+1} \in A$, completing the induction. The remainder of the proof is the same as in Prop. 2.3.2.

2.3.8 wWW

(a) The expression for f given in the hint is verified by straightforward calculation. Based on this expression, the method takes the form

$$
x^{k+1}=\arg \min _{x \in X}\left\{\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{\prime} Q\left(x-x^{k}\right)+\frac{1}{2 c^{k}}\left\|x-x^{k}\right\|^{2}\right\}
$$

or

$$
x^{k+1}=\arg \min _{x \in X}\left\{\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{\prime}\left(Q+\frac{1}{c^{k}} I\right)\left(x-x^{k}\right)\right\}
$$

This is recognized as the scaled gradient projection method with scaling matrix $H^{k}=Q+\left(1 / c^{k}\right) I$ and stepsizes $s^{k}=1, \alpha^{k}=1$.
(b) Similar to part (a), we have

$$
\bar{x}^{k}=\arg \min _{x \in X}\left\{\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{\prime}\left(Q+M^{k}\right)\left(x-x^{k}\right)\right\}
$$

and $\bar{x}^{k}-x^{k}$ is recognized as the direction of the scaled gradient projection method with scaling $\operatorname{matrix} H^{k}=Q+M^{k}$ and stepsize $s^{k}=1$.
(c) If $X=\Re^{n}$ and $M^{k}=Q$, we have

$$
\bar{x}^{k}=x^{k}-\left(Q+M^{k}\right)^{-1} \nabla f\left(x^{k}\right)=x^{k}-\frac{1}{2} Q^{-1} \nabla f\left(x^{k}\right)
$$

so for a stepsize $\alpha^{k}=2$, we have

$$
x^{k+1}=x^{k}+\alpha^{k}\left(\bar{x}^{k}-x^{k}\right)=x^{k}-Q^{-1} \nabla f\left(x^{k}\right)
$$

Thus the method reduces to the pure form of Newton's method for unconstrained minimization of f, which for a quadratic function converges in a single step to the optimal solution.

