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From Prop. 2.1.2(a), if x∗ is a local minimum, then

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ X,

or
n∑

i=1

∂f(x∗)
∂xi

(xi − x∗
i ) ≥ 0.

If x∗
i = αi, then xi ≥ x∗

i ,∀ xi. Letting xj = x∗
j , for j �= i, we have

∂f(x∗)
∂xi

≥ 0.

Similarly, if x∗
i = βi, then xi ≤ x∗

i , for all xi. Letting xj = x∗
j , for j �= i, we have

∂f(x∗)
∂xi

≤ 0.

If αi < x∗
i < βi, let xj = x∗

j for j �= i. Letting xi = αi, we obtain

∂f(x∗)
∂xi

≤ 0,

and letting xi = βi, we obtain
∂f(x∗)

∂xi
≥ 0.

Combining these inequalities, we see that we must have

∂f(x∗)
∂xi

= 0.

Assume that f is convex. To show that Eqs. (1.6)-(1.8) are sufficient for x∗ to be a global

minimum, let I1 = {i | x∗
i = αi}, I2 = {i | x∗

i = βi}, I3 = {i | αi < x∗
i < βi}. Then

∇f(x∗)′(x − x∗) =
n∑

i=1

∂f(x∗)
∂xi

(xi − x∗
i )

=
∑
i∈I1

∂f(x∗)
∂xi

(xi − αi) +
∑
i∈I2

∂f(x∗)
∂xi

(xi − βi) +
∑
i∈I3

∂f(x∗)
∂xi

(xi − x∗
i ).
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Since ∂f(x∗)
∂xi

≥ 0 for i ∈ I1, ∂f(x∗)
∂xi

≤ 0 for i ∈ I2, and ∂f(x∗)
∂xi

= 0 for i ∈ I3, each term in the

above equation is greater than or equal to zero. Therefore

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ X.

From Prop. 2.1.2(b), it follows that x∗ is a global minimum.

2.1.10 www

For any x ∈ X such that ∇f(x∗)′(x − x∗) = 0, we have by the second order expansion of Prop.

A.23, for all α ∈ [0, 1] and some α̃ ∈ [0, α],

f
(
x∗ + α(x − x∗)

)
− f(x∗) = 1

2α2(x − x∗)′∇2f
(
x∗ + α̃(x − x∗)

)
(x − x∗).

For all sufficiently small α, the left-hand side is nonnegative, since x∗ is a local minimum. Hence

the same is true for the right-hand side, and by taking the limit as α → 0 (and also α̃ → 0), we

obtain

(x − x∗)′∇2f(x∗)(x − x∗) ≥ 0.

2.1.11 www

Proof under condition (1): Assume, to arrive at a contradiction, that x∗ is not a local

minimum. Then there exists a sequence {xk} ⊆ X converging to x∗ such that f(xk) < f(x∗) for

all k. We have

f(xk) = f(x∗) + ∇f(x∗)′(xk − x∗) +
1
2
(xk − x∗)′∇2f(x∗)(xk − x∗) + o(‖xk − x∗‖2).

Introducing the vector

pk =
xk − x∗

‖xk − x∗‖ ,

and using the relation f(xk) < f(x∗), we obtain

∇f(x∗)′pk +
1
2
pk′∇2f(x∗)pk‖xk − x∗‖ +

o(‖xk − x∗‖2)
‖xk − x∗‖ < 0. (1)

This together with the hypothesis ∇f(x∗)′pk ≥ 0 implies

1
2
pk′∇2f(x∗)pk‖xk − x∗‖ +

o(‖xk − x∗‖2)
‖xk − x∗‖ < 0. (2)

Let us call feasible direction at x∗ any vector p of the form α(x − x∗), where α > 0 and

x ∈ X, x �= x∗ (see also Section 2.2). The sequence {pk} is a sequence of feasible directions at
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x∗ that lie on the surface of the unit sphere. Therefore, a subsequence {pk}K converges to a

vector p, which because X is polyhedral, must be a feasible direction at x∗ (this is easily seen by

expressing the polyhedral set X in terms of linear equalities and inequalities). Therefore, by the

hypothesis of the exercise, we have ∇f(x∗)′p ≥ 0. By letting k → ∞, k ∈ K in (1), we have

∇f(x∗)′p = 0.

The hypothesis of the exercise implies that

p′∇2f(x∗)p > 0. (3)

Dividing by ‖xk − x∗‖ and taking the limit in Eq. (2) as k → ∞, k ∈ K, we obtain

1
2
p′∇2f(x∗)p + lim

k→∞, k∈K

o(‖xk − x∗‖2)
‖xk − x∗‖2

≤ 0.

This contradicts Eq. (3).

Proof under condition (2): Here we argue in the similar way as in part (1). Suppose that all

the given assumptions hold and x∗ is not a local minimum. Then there is a sequence {xk} ⊆ X

converging to x∗ such that f(xk) < f(x∗) for all k. By using the second order expansion of f at

x∗ and introducing the vector pk = xk−x∗
‖xk−x∗‖ , we have that both Eq. (1) and (2) hold for all k.

Since {pk} consists of feasible directions at x∗ that lie on the surface of the unit sphere, there

is a subsequence {pk}K converging to a vector p with ||p|| = 1. By the assumption given in the

exercise, we have that

∇f(x∗)pk ≥ 0, ∀ k.

Hence ∇f(x∗)p ≥ 0. By letting k → ∞, k ∈ K in (1), we obtain ∇f(x∗)p ≤ 0. Consequently

∇f(x∗)p = 0. Since the vector p is in the closure of the set of the feasible directions at x∗, the

condition given in part (2) implies that p′∇2f(x∗)p > 0. Dividing by ‖xk − x∗‖ and taking the

limit in Eq. (2) as k → ∞, k ∈ K, we obtain p′∇2f(x∗)p ≤ 0, which is a contradiction. Therefore,

x∗ must be a local minimum.

Proof under condition (3): We have

f(x) = f(x∗) + ∇f(x∗)′(x − x∗) +
1
2
(x − x∗)′∇2f(x∗)(x − x∗) + o(‖x − x∗‖2),

so that by using the hypotheses ∇f(x∗)′(x−x∗) ≥ 0 and (x−x∗)′∇2f(x∗)(x−x∗) ≥ γ‖x−x∗‖2,

f(x) − f(x∗) ≥ γ

2
‖x − x∗‖2 + o(‖x − x∗‖2).

The expression in the right-hand side is nonnegative for x ∈ X close enough to x∗, and it is

strictly positive if in addition x �= x∗. Hence x∗ is a strict local minimum.
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Example: [Why the assumption that X is a polyhedral set was important under

condition (1)] A polyhedral set X has the property that for any point x ∈ X, the set V (x) of

the feasible directions at x is closed. This was crucial for proving that the conditions

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ X, (1)

(x − x∗)∇2f(x∗)(x − x∗) > 0, ∀ x ∈ X, x �= x∗, for which ∇f(x∗)′(x − x∗) = 0, (2)

are sufficient for local optimality of x∗.

Consider the set X = {(x1, x2) | (x1)2 ≤ x2} and the point (0, 0) ∈ X. Let the cost function

be f(x1, x2) = −2(x1)2 + x2. Note that the gradient of f at 0 is [0, 1]′. It is easy to see that

∇f(0)′(x − 0) = x2 > 0, ∀ x ∈ X, x �= 0.

Thus the point x∗ = 0 satisfies conditions (1) and (2) (condition 2 is trivially satisfied since in

our example ∇f(0)′(x − 0) = 0 simply never occurs for x ∈ X, x �= 0). On the other hand,

x∗ = 0 is not a local minimum of f in X. Consider the points xn = ( 1
n , 1

n2 ) ∈ X for n ≥ 1.

Since xn → x∗ as n → ∞, for any δ > 0 there is an index nδ such that ||xn − x∗|| < δ for all

n ≥ nδ. By evaluating the cost function, we have f(xn) = − 1
n2 < 0 = f(x∗). Hence, in any δ

neighborhood of x∗ = 0, there are points xn ∈ X with the better objective value, i.e. x∗ is not a

local minimum.

This is happening because the set V (x∗) of the feasible directions at point x∗ is not closed

in this case. The set V (x∗) is given by

V (x∗) = {d = (d1, d2) | d2 > 0, ||d|| = 1},

and is open. The vectors (
1

0

)
and

(
−1

0

)

belong to the closure of V (x∗) but they are not in the set V (x∗).

2.1.18 www

The assumption on ∇2f(x) guarantees that f is strictly convex and coercive, so it has a unique

global minimum over any closed convex set (using Weierstrass’ theorem, Prop. A.8). By the

second order expansion of Prop. A.23, we have for all x and y in �n

f(y) = f(x) + ∇f(x)′(y − x) + 1
2 (y − x)∇f(ỹ)(y − x)
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for some ỹ in the line segment connecting x and y. It follows, using the hypothesis, that

∇f(x)′(y − x) +
M

2
‖y − x‖2 ≥ f(y) − f(x) ≥ ∇f(x)′(y − x) +

m

2
‖y − x‖2.

Taking the minimum in this inequality over y ∈ X, and changing sign, we obtain

−min
y∈X

{
∇f(x)′(y − x) +

M

2
‖y − x‖2

}
≤ f(x) − f(x∗) ≤ −min

y∈X

{
∇f(x)′(y − x) +

m

2
‖y − x‖2

}
,

which is the desired relation.

2.1.19 of 2nd Printing (Existence of Solutions of Nonconvex Quadratic

Programming Problems) www

Let {γk} be a decreasing sequence with γk ↓ f∗, and denote

Sk = {x ∈ X | x′Qx + c′x ≤ γk}.

Then the set of optimal solutions of the problem is ∩∞
k=0 Sk, so by Prop. 2.1.4, it will suffice

to show that for each asymptotic direction of {Sk}, all corresponding asymptotic sequences are

retractive. Let d be an asymptotic direction and let {xk} be a corresponding asymptotic sequence.

Similar to the proof of Prop. 2.1.5, we have d′Qd ≤ 0. Also, in case (i), similar to the proof of

Prop. 2.1.5, we have a′
jd ≤ 0 for all j, while in case (ii) it is seen that d ∈ N , where X = B + N

and B is compact and N is a polyhedral cone. For any x ∈ X, consider the vectors x̃k = x + kd.

Then, in both cases (i) and (ii), it can be seen that x̃k ∈ X [in case (i) by using the argument

in the proof of Prop. 2.1.5, and in case (ii) by using the definition X = B + N ]. Thus, the cost

function value corresponding to x̃k satisfies

f∗ ≤ (x + kd)′Q(x + kd) + c′(x + kd)

= x′Qx + c′x + k2d′Qd + k(c + 2Qx)′d

≤ x′Qx + c′x + k(c + 2Qx)′d,

where the last inequality follows from the fact d′Qd ≤ 0. From the finiteness of f∗, it follows

that

(c + 2Qx)′d ≥ 0, ∀ x ∈ X.

We now show that {xk} is retractive, so that we can use Prop. 2.1.4. Indeed for any α > 0, since

‖xk‖ → ∞, it follows that for k sufficiently large, we have xk − αd ∈ X [this follows similar to

the proof of Prop. 2.1.5 in case (i), and because d ∈ N in case (ii)]. Furthermore, we have

f(xk − αd) = (xk − αd)′Q(xk − αd) + c′(xk − αd)

= xk′Qxk + c′xk − α(c + 2Qxk)′d + α2d′Qd

≤ xk′Qxk + c′xk

≤ γk,
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where the first inequality follows from the facts d′Qd ≤ 0 and (c + 2Qxk)′d ≥ 0 shown earlier.

Thus for sufficiently large k, we have xk − αd ∈ Sk, so that {xk} is retractive. The existence of

an optimal solution now follows from Prop. 2.1.4.

2.1.20 of 2nd Printing www

We proceed as in the proof of Prop. 2.1.5. By using a decomposition of dk as the sum of a vector

in the nullspace of A and its orthogonal complement, and an argument like the one in the proof

of Prop. 2.1.5, we can show that

Ad = 0, c′d ≤ 0.

Similarly, we can show that

a′
jd ≤ 0, j = 1, . . . , r.

Using the finiteness of f∗, we can also show that c′d = 0, and we can conclude the proof similar

to the proof of Prop. 2.1.5.

2.1.21 of 2nd Printing www

Note that the cone N in this exercise must be assumed polyhedral (see the errata sheet). Let

Sk =
{
x ∈ X | f(x) ≤ γk

}
, and let d be an asymptotic direction of {Sk}, and let {xk} be a

corresponding asymptotic sequence. We will show that {xk} is retractive, so by applying Prop.

2.1.4, it follows that the intersection of {Sk}, the set of minima of f over X, is nonempty.

Since d is an asymptotic direction of {Sk}, d is also an asymptotic direction of
{
x | f(x) ≤

γk
}
, and by hypothesis for some bounded positive sequence {αk} and some positive integer k,

we have f(xk − αkd) ≤ γk for all k ≥ k.

Let X = X + N , where X is compact, and N is the polyhedral cone

N = {y | a′
jy ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors. We can represent xk as

xk = xk + yk, ∀ k = 0, 1, . . . ,

where xk ∈ X and yk ∈ N , so that

a′
jx

k = a′
j(x

k + yk), ∀ k = 0, 1, . . . , j = 1, . . . , r.

Dividing both sides with ‖xk‖ and taking the limit as k → ∞, we obtain

a′
jd = lim

k→∞

a′
jy

k

‖xk‖ .
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Since a′
jy

k ≤ 0 for all k and j, we obtain that a′
jd ≤ 0 for all j, so that d ∈ N .

For each j, we consider two cases:

(1) a′
jd = 0. In this case, a′

j(yk − αd) ≤ 0 for all k, since yk ∈ N and a′
jy

k ≤ 0.

(2) a′
jd < 0. In this case, we have

1
‖xk‖a′

j(yk − αd) =
1

‖xk‖a′
j(xk − xk − αd),

so that since xk

‖xk‖ → d, {xk} is unbounded, and {xk} is bounded, we obtain

lim
k→∞

1
‖xk‖a′

j(yk − αd) = a′
jd < 0.

Hence a′
j(yk − αd) < 0 for k greater than some k.

Thus, for k ≥ k and α ∈ (0, α], we have a′
j(yk − αd) ≤ a′

j(yk − αd) ≤ 0 for all j, so that

yk − αd ∈ N and xk − αd ∈ X.

Thus {xk} is retractive, and by applying Prop. 2.1.4, we have that {Sk} has nonempty

intersection.

2.1.22 of 2nd Printing www

We follow the hint. Let {yk} be a sequence of points in A S converging to some y ∈ �n. We will

prove that A S is closed by showing that y ∈ A S.

We introduce the sets

Wk =
{
z | ‖z − y‖ ≤ ‖yk − y‖

}
,

and

Sk = {x ∈ S | Ax ∈ Wk}.

To show that y ∈ A S, it is sufficient to prove that the intersection ∩∞
k=0Sk is nonempty, since

every x ∈ ∩∞
k=0Sk satisfies x ∈ S and Ax = y (because yk → y). The asymptotic directions of

{Sk} are asymptotic directions of S that are also in the nullspace of A, and it can be seen that

every corresponding asymptotic sequence is retractive for {Sk}. Hence, by Prop. 2.1.4, ∩∞
k=0Sk

is nonempty.

2. SECTION 2.2

7



Section 2.3

2.2.7 www

Since the number of extreme points of f is finite, some extreme point must be repeated within a

finite number of iterations, i.e., for some k and i ∈ {0, 1, . . . , k − 1}, we have

xi = arg min
x∈X

∇f(xk)′(x − xk).

Since xk minimizes f(x) over Xk−1, we must have

∇f(xk)′(xi − xk) ≥ 0, ∀ i = 0, 1, . . . , k − 1.

Combining the above two equations, we see that

∇f(xk)′(x − xk) ≥ 0, ∀ x ∈ X,

which implies that xk is a stationary point of f over X.

3. SECTION 2.3

2.3.4 www

We assume here that the unscaled version of the method (Hk = I) is used and that the stepsize

sk is a constant s > 0.

(a) If xk is nonstationary, there exists a feasible descent direction x̂k−xk for the original problem,

where x̂k ∈ X. Since x̂k ∈ Xk, we have

∇f(xk)′(x̃k − xk) +
1
2s

‖x̃k − xk‖2 ≤ ∇f(xk)′(x̂k − xk) +
1
2s

‖x̂k − xk‖2 < 0,

where x̃k is defined by the algorithm. Thus,

∇f(xk)′(x̃k − xk) ≤ − 1
2s

‖x̃k − xk‖2 < 0,

so that x̃k − xk is a descent direction at xk. It is also a feasible direction, since a′
j(x̃k − xk) ≤ 0

for all j such that ajxk = bj .

(b) As in the proof of Prop. 2.3.1, we will show that the direction sequence {xk −xk} is gradient-

related, where

xk = γkx̃k + (1 − γk)xk
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and

γk = max
{

γ ∈ [0, 1] | γx̃k + (1 − γ)xk ∈ X
}

.

Indeed, suppose that {xk}k∈K converges to a nonstationary point x̃. We must prove that

lim sup
k→∞, k∈K

‖xk − xk‖ < ∞, (*)

lim sup
k→∞, k∈K

∇f(xk)′(xk − xk) < 0. (**)

Since ‖xk − xk‖ ≤ ‖x̃k − xk‖ ≤ s‖∇f(xk)‖, Eq. (*) clearly holds, so we concentrate on proving

(**). The key to this is showing that γk is bounded away from 0, so that the inner product

∇f(xk)′(xk − xk) is bounded away from 0 when ∇f(xk)′(x̃k − xk) is.

For each k, we either have γk = 1, or else we must have for some j with a′
jx

k < bj − ε,

a′
j

(
γkx̃k + (1 − γk)xk

)
= bj

so that

γka′
j(x̃k − xk) = bj − a′

jx
k > ε,

from which

γk >
ε

‖aj‖ · ‖x̃k − xk‖ .

It follows that for all k, we have

min
{

1, min
j

ε

‖aj‖ · ‖x̃k − xk‖

}
≤ γk ≤ 1.

Since the subsequence {xk}K converges, the subsequence {x̃k − xk}K is bounded implying also

that the subsequence {γk}K is bounded away from 0.

For sufficiently large k, the set

Xk =
{
x | a′

jx ≤ bj , for all j with bj − ε ≤ a′
jx

k ≤ bj

}
,

is equal to the set

X̃ =
{
x | a′

jx ≤ bj , for all j with bj − ε ≤ a′
j x̃ ≤ bj

}
,

so proceeding as in the proof of Prop. 2.3.1, we obtain

lim sup
k→∞, k∈K

∇f(xk)′(x̃k − xk) ≤ −1
s

∥∥x̃ −
[
x̃ − s∇f(x̃)

]+∥∥2
,

where [·]+ denotes projection on the set X̃. Since x̃ is nonstationary, the right-hand side of the

above inequality is negative, so that

lim sup
k→∞, k∈K

∇f(xk)′(x̃k − xk) < 0.

9
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We have xk − xk = γk(x̃k − xk), and since γk is bounded away from 0, it follows that

lim sup
k→∞, k∈K

∇f(xk)′(xk − xk) < 0,

proving Eq. (**).

(c) Here we consider the variant of the method that uses a constant stepsize, which however, is

reduced if necessary to ensure that xk is feasible. If the stepsize is sufficiently small to ensure

convergence to the unique local minimum x∗ of the positive definite quadratic cost function, then

xk will be arbitrarily close to x∗ for sufficiently large k, so that xk = x̃k. Thus the convergence

rate estimate of the text applies.

2.3.7 www

The key idea is to show that xk stays in the bounded set

A =
{
x ∈ X | f(x) ≤ f(x0)

}
and to use a constant stepsize sk = s that depends on the constant L corresponding to this

bounded set. Let

R = max{‖x‖ | x ∈ A},

G = max{‖∇f(x)‖ | x ∈ A},

and

B = {x | ‖x‖ ≤ R + 2G}.

Using condition (i) in the exercise, there exists some constant L such that ‖∇f(x) −∇f(y)‖ ≤
L‖x − y‖, for all x, y ∈ B. Suppose the stepsize s satisfies 0 < s < 2 min{1, 1/L}. We will, show

by induction on k that with this stepsize, we have xk ∈ A and

f
(
xk+1

)
≤ f(xk) −

(
L

2
− 1

s

)
‖xk+1 − xk‖2 ≤ f(xk), (*)

for all k ≥ 0.

To start the induction, we note that x0 ∈ A, by the definition of A. Suppose that xk ∈ A.

We have xk+1 =
[
xk − s∇f(xk)

]+, so by using the nonexpansiveness of the projection mapping,

‖xk+1 − xk‖ ≤ ‖(xk − s∇f(xk)) − xk‖ ≤ s‖∇f(xk)‖ ≤ 2G.

Thus,

‖xk+1‖ ≤ ‖xk‖ + 2G ≤ R + 2G,

10
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implying that xk+1 ∈ B. Since B is convex, we conclude that the entire line segment connecting

xk and xk+1 belongs to B. In order to prove Eq. (*), we now proceed as in the proof of Prop. 2.3.2.

A difficulty arises because Prop. A.24 assumes that the inequality ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
holds for all x, y, whereas in this exercise this inequality holds only for x, y ∈ B. However, using

the fact that the Lipschitz condition holds along the line segment connecting xk and xk+1 (which

belongs to B as argued earlier), the proof of Prop. A.24 can be repeated to obtain

f(xk+1) − f(xk) ≤ ∇f(xk)′(xk+1 − xk) +
L

2
‖xk+1 − xk‖2.

Using this relation, and the relation

∇f(xk)′(xk+1 − xk) ≤ −1
s
‖xk+1 − xk‖2,

[which is Eq. (3.27) of the text], we obtain Eq. (*) [as in the text, cf. Eq. (3.29)]. It follows that

xk+1 ∈ A, completing the induction. The remainder of the proof is the same as in Prop. 2.3.2.

2.3.8 www

(a) The expression for f given in the hint is verified by straightforward calculation. Based on

this expression, the method takes the form

xk+1 = arg min
x∈X

{
∇f(xk)′(x − xk) + 1

2 (x − xk)′Q(x − xk) +
1

2ck
‖x − xk‖2

}
,

or

xk+1 = arg min
x∈X

{
∇f(xk)′(x − xk) + 1

2 (x − xk)′
(

Q +
1
ck

I

)
(x − xk)

}
.

This is recognized as the scaled gradient projection method with scaling matrix Hk = Q+(1/ck)I

and stepsizes sk = 1, αk = 1.

(b) Similar to part (a), we have

xk = arg min
x∈X

{∇f(xk)′(x − xk) + 1
2 (x − xk)′(Q + Mk)(x − xk)} ,

and xk − xk is recognized as the direction of the scaled gradient projection method with scaling

matrix Hk = Q + Mk and stepsize sk = 1.

(c) If X = �n and Mk = Q, we have

xk = xk − (Q + Mk)−1∇f(xk) = xk − 1
2Q−1∇f(xk),

so for a stepsize αk = 2, we have

xk+1 = xk + αk(xk − xk) = xk − Q−1∇f(xk).

Thus the method reduces to the pure form of Newton’s method for unconstrained minimization

of f , which for a quadratic function converges in a single step to the optimal solution.
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