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SECTION 2.1

2.1.9 (www)

From Prop. 2.1.2(a), if 2* is a local minimum, then
Vf(x*) (x —a*) >0, VaoelX,

or

> a‘g(;*) (zi —a7) 2 0.
i=1 v

If 7 = «j, then z; > 27,V ;. Letting z; = z7, for j # i, we have

Of (%)
a.’L'i

> 0.

Similarly, if @7 = (;, then z; < 7, for all ;. Letting z; = x7, for j # i, we have

Of(z¥)
3$i

<0.

If a; <@} < B, let z; =z for j #i. Letting x; = a;, we obtain

Of (x¥)
85&‘

<0,

and letting z; = 3;, we obtain
of (z*)
&ri

Combining these inequalities, we see that we must have

Of(x) _
al’i

> 0.

Assume that f is convex. To show that Eqs. (1.6)-(1.8) are sufficient for z* to be a global

minimum, let [1 = {i | 2} =}, L ={i |z} =6}, I3 = {i | ;s <z < B;}. Then

Vi - =30 T
-y 82(5*)(% )t Y aJ;(f:*)(xi S 8.];(;“*) (2 — a7).
iely ¢ icly ¢ i€l ¢
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Section 2.1

Since %ﬂz*) >0 forie I, %&_*) < 0 for i € I, and %f:) = 0 for ¢ € I3, each term in the

above equation is greater than or equal to zero. Therefore
Vi) (z—2*)>0, VaelX.

From Prop. 2.1.2(b), it follows that x* is a global minimum.

2.1.10 (www)

For any z € X such that V f(z*)'(z — 2*) = 0, we have by the second order expansion of Prop.

A .23, for all « € [0, 1] and some & € [0, o,
[z + oz —a¥)) — f(a*) = a2(x — 2*)' V2 f (2* + a(x — 2%)) (z — x*).

For all sufficiently small «, the left-hand side is nonnegative, since x* is a local minimum. Hence
the same is true for the right-hand side, and by taking the limit as & — 0 (and also & — 0), we
obtain

(x — 2*)V2f(z*)(x — x*) > 0.

2.1.11 (www)

Proof under condition (1): Assume, to arrive at a contradiction, that z* is not a local
minimum. Then there exists a sequence {x*} C X converging to z* such that f(z*) < f(z*) for

all k. We have
Flak) = Fa) + V(@) (@ - a0) + 5ok — 2y V2 f )k — 2) + ol ok — *[2).

Introducing the vector
xk — *
ph=
[ — x|

and using the relation f(xz*F) < f(z*), we obtain

1 o(||lxk — x*|)2
Vf(z*)pk + §Z>’“/V2f(9’7*)17’“||9’7’c — || + H <0. (1)
This together with the hypothesis V f(z*)’pF > 0 implies
1 of[[z* — z*[|?)
—pkTV2 k|| pk — p* B e | 0. 2
2p f(z*)pk||x || + ka _x*ll < (2)

Let us call feasible direction at x* any vector p of the form a(x — x*), where o > 0 and

x € X, x # x* (see also Section 2.2). The sequence {p¥} is a sequence of feasible directions at
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x* that lie on the surface of the unit sphere. Therefore, a subsequence {pF}x converges to a
vector P, which because X is polyhedral, must be a feasible direction at x* (this is easily seen by
expressing the polyhedral set X in terms of linear equalities and inequalities). Therefore, by the

hypothesis of the exercise, we have V f(z*)'p > 0. By letting k — oo, k € K in (1), we have
Vf(z*)p=0.
The hypothesis of the exercise implies that
pV2f(z*)p > 0. 3)
Dividing by ||z¥ — 2*|| and taking the limit in Eq. (2) as k — o0, k € K, we obtain

1_ _ : of[lz* — z=|2)
—_n'\V2 * 1 — — 2 <0.
5P’V f(z )p+kHOé%GK o E S 0

This contradicts Eq. (3).

Proof under condition (2): Here we argue in the similar way as in part (1). Suppose that all
the given assumptions hold and z* is not a local minimum. Then there is a sequence {z¥} C X
converging to x* such that f(x*) < f(z*) for all k. By using the second order expansion of f at
x* and introducing the vector p*¥ = %, we have that both Eq. (1) and (2) hold for all k.
Since {pF} consists of feasible directions at z* that lie on the surface of the unit sphere, there
is a subsequence {pk¥}k converging to a vector p with ||p|| = 1. By the assumption given in the

exercise, we have that

Vi@ )ph >0, Yk

Hence Vf(z*)p > 0. By letting k — oo, k € K in (1), we obtain V f(z*)p < 0. Consequently
Vf(x*)p = 0. Since the vector p is in the closure of the set of the feasible directions at z*, the
condition given in part (2) implies that p'V2f(z*)p > 0. Dividing by ||z* — z*|| and taking the
limit in Eq. (2) as kK — o0, k € K, we obtain p'V2 f(x*)p < 0, which is a contradiction. Therefore,

x* must be a local minimum.
Proof under condition (3): We have
f@) = fla*) + V[f(z*)(z — ) + %(z — @) V2 f (%) (x — 2*) + o[z — a*|]?),
so that by using the hypotheses V f(2*) (x —a*) > 0 and (x —2*)/'V2f(z*)(z —x*) > 7|z —2*||2,
F@) = f(@) = Tlla = a2 + ol — 2.

The expression in the right-hand side is nonnegative for x € X close enough to z*, and it is

strictly positive if in addition x # x*. Hence z* is a strict local minimum.
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Example: [Why the assumption that X is a polyhedral set was important under
condition (1)] A polyhedral set X has the property that for any point « € X, the set V' (z) of

the feasible directions at z is closed. This was crucial for proving that the conditions
Vi@ )(z—2) >0, VaeeXx, (1)

(x —2*)V2f(a*)(x —x*) >0, VzeX, x#ua* for which Vf(z*)(z—2*)=0, (2)

are sufficient for local optimality of x*.

Consider the set X = {(z1,x2) | (x1)2 < 22} and the point (0,0) € X. Let the cost function
be f(z1,x2) = —2(x1)? + x2. Note that the gradient of f at 0is [0,1]. It is easy to see that

Vf(0)(x—0)=x2 >0, VeeX, z#0.

Thus the point x* = 0 satisfies conditions (1) and (2) (condition 2 is trivially satisfied since in
our example Vf(0)(x — 0) = 0 simply never occurs for z € X, = # 0). On the other hand,
z* = 0 is not a local minimum of f in X. Consider the points 2" = (1, n—lg) € X forn > 1.
Since z" — z* as n — oo, for any § > 0 there is an index ns such that ||z — z*|| < § for all
n > ng. By evaluating the cost function, we have f(x") = 7# < 0 = f(z*). Hence, in any ¢
neighborhood of z* = 0, there are points 2 € X with the better objective value, i.e. z* is not a

local minimum.

This is happening because the set V(z*) of the feasible directions at point * is not closed

in this case. The set V(x*) is given by

V(er) = {d = (d,d2) | d2 > 0, [|d|| = 1},

(o) = ()

belong to the closure of V(z*) but they are not in the set V(z*).

and is open. The vectors

2.1.18 (www)

The assumption on V2 f(x) guarantees that f is strictly convex and coercive, so it has a unique
global minimum over any closed convex set (using Weierstrass’ theorem, Prop. A.8). By the

second order expansion of Prop. A.23, we have for all  and y in R”

f)=f@)+Vf(@)(y—x)+ 3y —2)VIG)(y—x)
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for some g in the line segment connecting = and y. It follows, using the hypothesis, that

V@) o)+ oy all? > F) ~ F@) > Vi) — )+ Dy - a2

Taking the minimum in this inequality over y € X, and changing sign, we obtain

yeX yeX

— min {Vf(w)’(y —a)+ %Hy - x|2} < f(@) = f(@) < —min {VF@)(y —2) + Ty — ]2},

which is the desired relation.

2.1.19 of 2nd Printing (Existence of Solutions of Nonconvex Quadratic

Programming Problems) (www)

Let {7y*} be a decreasing sequence with v* | f*, and denote
Sk={ze X |2Qr+ dx <~k}.

Then the set of optimal solutions of the problem is NP S*, so by Prop. 2.1.4, it will suffice
to show that for each asymptotic direction of {S*}, all corresponding asymptotic sequences are
retractive. Let d be an asymptotic direction and let {25} be a corresponding asymptotic sequence.
Similar to the proof of Prop. 2.1.5, we have d’Qd < 0. Also, in case (i), similar to the proof of
Prop. 2.1.5, we have a;d < 0 for all j, while in case (ii) it is seen that d € N, where X = B+ N
and B is compact and N is a polyhedral cone. For any = € X, consider the vectors % = x + kd.
Then, in both cases (i) and (ii), it can be seen that &% € X [in case (i) by using the argument
in the proof of Prop. 2.1.5, and in case (ii) by using the definition X = B + N]|. Thus, the cost
function value corresponding to Z* satisfies
f*<(x+kd)Q(x + kd) + ¢/(x + kd)

=2'Qr + dx + k2d'Qd + k(c + 2Qx)'d

<2'Qx + dx + k(c+ 2Qx)'d,
where the last inequality follows from the fact d’Qd < 0. From the finiteness of f*, it follows
that

(c+2Qz)'d >0, VaoelX.

We now show that {z*} is retractive, so that we can use Prop. 2.1.4. Indeed for any o > 0, since
||[z®|| — oo, it follows that for k sufficiently large, we have ¥ — ad € X [this follows similar to

the proof of Prop. 2.1.5 in case (i), and because d € N in case (ii)]. Furthermore, we have
f(zk — ad) = (x% — ad)'Q(x* — ad) + ¢/ (z*F — ad)
= zh' Qb 4 c/xk — a(c+2Qzk)'d + a2d'Qd
< zh'Quk + /xk

<k,
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where the first inequality follows from the facts d’Qd < 0 and (¢ + 2Qz*)’d > 0 shown earlier.
Thus for sufficiently large k, we have ¥ — ad € S*, so that {z*} is retractive. The existence of

an optimal solution now follows from Prop. 2.1.4.

2.1.20 of 2nd Printing (www)

We proceed as in the proof of Prop. 2.1.5. By using a decomposition of d* as the sum of a vector
in the nullspace of A and its orthogonal complement, and an argument like the one in the proof
of Prop. 2.1.5, we can show that
Ad =0, cdd <0.
Similarly, we can show that
ajd <0, j=1,...,r
Using the finiteness of f*, we can also show that ¢/d = 0, and we can conclude the proof similar

to the proof of Prop. 2.1.5.

2.1.21 of 2nd Printing (www)

Note that the cone N in this exercise must be assumed polyhedral (see the errata sheet). Let
Sk ={z € X | f(z) <~+*}, and let d be an asymptotic direction of {S*}, and let {z*} be a
corresponding asymptotic sequence. We will show that {x*} is retractive, so by applying Prop.

2.1.4, it follows that the intersection of {S*}, the set of minima of f over X, is nonempty.

Since d is an asymptotic direction of {S*}, d is also an asymptotic direction of {z | f(z) <
7’9}, and by hypothesis for some bounded positive sequence {a*} and some positive integer k,

we have f(zF — akd) <~ for all k > k.

Let X = X 4+ N, where X is compact, and N is the polyhedral cone
N={yldiy<0,j=1,...,r},
where a1, ...,a, are some vectors. We can represent x* as
xk =7k 4 yk, VEk=01,...,
where 78 € X and y* € N, so that
a}xk:a;(fkwLyk), Vk=0,1,...,j=1,...
Dividing both sides with ||z*|| and taking the limit as k — oo, we obtain
a’yk

'd= lim L.
G e
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Section 2.2
Since afy* < 0 for all k and j, we obtain that a’d <0 for all j, so that d € N.
For each j, we consider two cases:
(1) ajd =0. In this case, a}(y* —ad) < 0 for all k, since y* € N and ajy* < 0.

(2) ajd < 0. In this case, we have

1 1
- k_md) — _— o (rk _ 7k _ =
”zk”aj(y ad) = ”Ik”aj(x ¥ —ad),

k
so that since ni—kn — d, {x*} is unbounded, and {Z*} is bounded, we obtain

kli_)rréo ”xk”a;(yk —ad) = ajd <0.

Hence a/;(y* —@d) < 0 for k greater than some k.
Thus, for £ > k and a € (0,a@l, we have aj(y* — ad) < aj(y* —ad) < 0 for all j, so that
y* —ad € N and zF — ad € X.

Thus {z*} is retractive, and by applying Prop. 2.1.4, we have that {S*¥} has nonempty

intersection.

2.1.22 of 2nd Printing (www)

We follow the hint. Let {yx} be a sequence of points in A.S converging to some 7 € f". We will
prove that A S is closed by showing that 7 € A S.

We introduce the sets
Wi = {z Iz =9l < llux — 7ll},
and

Sk={$€S|ACL‘€Wk}.

To show that i € AS, it is sufficient to prove that the intersection Ng° Sy is nonempty, since
every T € M2 ,Sk satisfies T € S and AT = 7 (because yp — 7). The asymptotic directions of
{S} are asymptotic directions of S that are also in the nullspace of A, and it can be seen that
every corresponding asymptotic sequence is retractive for {Si}. Hence, by Prop. 2.1.4, N3 Sk

is nonempty.

SECTION 2.2
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2.2.7 (www)

Since the number of extreme points of f is finite, some extreme point must be repeated within a

finite number of iterations, i.e., for some k and i € {0,1,...,k — 1}, we have
7l = argarjréi)r(l Vf(ak) (x — xk).
Since z* minimizes f(x) over X*~1, we must have
Vf(xk) (T — k) >0, Vi=0,1,....,k—1.
Combining the above two equations, we see that
Vf(ak) (x —ak) >0, VzxelX,

which implies that x* is a stationary point of f over X.

3. SECTION 2.3

2.3.4 (www)

We assume here that the unscaled version of the method (H* = I) is used and that the stepsize

sk is a constant s > 0.

(a) If z* is nonstationary, there exists a feasible descent direction &% —x* for the original problem,

where #¥ € X. Since ¥ € X*, we have
- 1. . 1.
VAR (5 — ) 4 o B a2 < V(R (85— a¥) 8k k2 <0,
s s
where zF is defined by the algorithm. Thus,
N 1 .
V(R (@ k) < L3k — k|2 <0,
s

so that % — z* is a descent direction at x*. It is also a feasible direction, since a;-(i'k —zk) <0

for all j such that ajzk = b;.

(b) As in the proof of Prop. 2.3.1, we will show that the direction sequence {Z* — 2*} is gradient-
related, where

TH = ykgk + (1 — yF)zk

8
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and

'yk:max{vé [0,1] | vZF 4+ (1 — ~)zF GX}.

Indeed, suppose that {z*}rcx converges to a nonstationary point Z. We must prove that

limsup [|Z* — 2*| < oo, )
k—oo, keK
limsup Vf(zk)(z" — 2F) < 0. (**)
k—oo, ke K

Since ||Z% — xk|| < |2k — 2| < s||Vf(2z*)], Eq. (*) clearly holds, so we concentrate on proving
(**). The key to this is showing that ¥ is bounded away from 0, so that the inner product

V f(xk) (" — x*) is bounded away from 0 when V f(xk)/ (7% — xk) is.
For each k, we either have vk = 1, or else we must have for some j with a’zk < b; —e¢,
a (YrREk + (1 — yF)ak) = b,
so that
ykal(zk — xk) = b; — alak >,

from which
€

k>
llasll - [|2F — k||
It follows that for all k, we have

€

min{l7 min } <~k < 1.
J

lajl - 2% — =]
Since the subsequence {«*}k converges, the subsequence {Z*¥ — z*} g is bounded implying also

that the subsequence {v*¥}k is bounded away from 0.

For sufficiently large k, the set
Xk ={z|alx <b, forall j with b — e < ajak < b},
is equal to the set
X ={z|djz <bj, for all j with b; — e < a}@ < b},

so proceeding as in the proof of Prop. 2.3.1, we obtain

limsup Vf(zk)/ (it — zk) < _1“56 —[&-sVF@] |,
k—oo, keK S

where [-]t denotes projection on the set X. Since # is nonstationary, the right-hand side of the

above inequality is negative, so that

limsup Vf(zk)(zk — zF) < 0.
k—oo, ke K
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We have ZF — 2% = vk (&k — z*), and since v* is bounded away from 0, it follows that

limsup Vf(zk)(z" — 2F) <0,
k—oo, ke K

proving Eq. (**).

(¢) Here we consider the variant of the method that uses a constant stepsize, which however, is
reduced if necessary to ensure that Z* is feasible. If the stepsize is sufficiently small to ensure
convergence to the unique local minimum x* of the positive definite quadratic cost function, then

7" will be arbitrarily close to * for sufficiently large k, so that Z¥ = Z*. Thus the convergence

rate estimate of the text applies.

2.3.7 (www)

The key idea is to show that z* stays in the bounded set

A={zeX|f(z) < f(a%)}

and to use a constant stepsize s = s that depends on the constant L corresponding to this
bounded set. Let
R = max{||z| | z € A},

G = max{|[Vf(z)| | = € A},
and
B={z]||z|| < R+2G}.

Using condition (i) in the exercise, there exists some constant L such that ||V f(z) — Vf(y)| <
L||x — y||, for all z,y € B. Suppose the stepsize s satisfies 0 < s < 2min{1,1/L}. We will, show

by induction on k that with this stepsize, we have z¥ € A and

L 1

Flat+) < flat) = (5 = 5 ) b+t = e < £, )

for all £ > 0.

To start the induction, we note that x0 € A, by the definition of A. Suppose that zF € A.

We have zh+1 = [k — sV f(2F)] " 50 by using the nonexpansiveness of the projection mapping,
[wh+t — zk| < [[(aF — sV f(aF)) — ab]| < ||V ()] < 2G.

Thus,
k41 < [lo¥ ] +2G < R+ 26,
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implying that x*+1 € B. Since B is convex, we conclude that the entire line segment connecting
a2k and xF+1 belongs to B. In order to prove Eq. (*), we now proceed as in the proof of Prop. 2.3.2.
A difficulty arises because Prop. A.24 assumes that the inequality ||V f(z) — V()| < L]z — v
holds for all z,y, whereas in this exercise this inequality holds only for x,y € B. However, using
the fact that the Lipschitz condition holds along the line segment connecting x* and x*+1 (which
belongs to B as argued earlier), the proof of Prop. A.24 can be repeated to obtain
L
Flk+1) = (aR) < V@R (b = ab) + ke — a2

Using this relation, and the relation

1

V(@) (k= k) < [kt — k]2
s

[which is Eq. (3.27) of the text], we obtain Eq. (*) [as in the text, cf. Eq. (3.29)]. It follows that

zk+1 € A, completing the induction. The remainder of the proof is the same as in Prop. 2.3.2.

2.3.8 (www)

(a) The expression for f given in the hint is verified by straightforward calculation. Based on

this expression, the method takes the form
1
k+1 — ; k _ ok _ 7k k) o |l — k|2
ah+l —arg;nelg{vf(fﬁ )'(@ —ak) + §(z = 2h)Qz — a) + gz lle — z*| }

or
xhtl = argiréi)r(l {Vf(xk)’(x — k) + 3 (x — xk) (Q + cikl> (x— xk)} .
This is recognized as the scaled gradient projection method with scaling matrix H* = Q+(1/c*)I
and stepsizes sk =1, ok = 1.
(b) Similar to part (a), we have
7" = argmin {Vf(zk) (¢ — a*) + §(z - 2¥)(Q + M¥)(w — M)},
and Z¥ — ¥ is recognized as the direction of the scaled gradient projection method with scaling
matrix H* = Q + M¥* and stepsize sk = 1.
(¢) If X =R" and M* = Q, we have
T = ok~ (Q + MN)TIVf(ah) = ok — JQ-IV (o)
so for a stepsize af = 2, we have
wkhtl = gk 4+ ok (T* — 2k) = 2k — Q-1V f(ak).

Thus the method reduces to the pure form of Newton’s method for unconstrained minimization

of f, which for a quadratic function converges in a single step to the optimal solution.
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