Solutions Chapter 2

1. SECTION 2.1

2.1.9 www

From Prop. 2.1.2(a), if x^* is a local minimum, then

$$\nabla f(x^*)'(x-x^*) \ge 0, \qquad \forall \ x \in X,$$

or

$$\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \ge 0.$$

If $x_i^* = \alpha_i$, then $x_i \ge x_i^*, \forall x_i$. Letting $x_j = x_j^*$, for $j \ne i$, we have

$$\frac{\partial f(x^*)}{\partial x_i} \ge 0$$

Similarly, if $x_i^* = \beta_i$, then $x_i \leq x_i^*$, for all x_i . Letting $x_j = x_j^*$, for $j \neq i$, we have

$$\frac{\partial f(x^*)}{\partial x_i} \le 0$$

If $\alpha_i < x_i^* < \beta_i$, let $x_j = x_j^*$ for $j \neq i$. Letting $x_i = \alpha_i$, we obtain

$$\frac{\partial f(x^*)}{\partial x_i} \le 0,$$

and letting $x_i = \beta_i$, we obtain

$$\frac{\partial f(x^*)}{\partial x_i} \ge 0.$$

Combining these inequalities, we see that we must have

$$\frac{\partial f(x^*)}{\partial x_i} = 0.$$

Assume that f is convex. To show that Eqs. (1.6)-(1.8) are sufficient for x^* to be a global minimum, let $I_1 = \{i \mid x_i^* = \alpha_i\}, I_2 = \{i \mid x_i^* = \beta_i\}, I_3 = \{i \mid \alpha_i < x_i^* < \beta_i\}$. Then

$$\nabla f(x^*)'(x-x^*) = \sum_{i=1}^n \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*)$$
$$= \sum_{i \in I_1} \frac{\partial f(x^*)}{\partial x_i} (x_i - \alpha_i) + \sum_{i \in I_2} \frac{\partial f(x^*)}{\partial x_i} (x_i - \beta_i) + \sum_{i \in I_3} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*).$$

Since $\frac{\partial f(x^*)}{\partial x_i} \ge 0$ for $i \in I_1$, $\frac{\partial f(x^*)}{\partial x_i} \le 0$ for $i \in I_2$, and $\frac{\partial f(x^*)}{\partial x_i} = 0$ for $i \in I_3$, each term in the above equation is greater than or equal to zero. Therefore

$$\nabla f(x^*)'(x-x^*) \ge 0, \quad \forall \ x \in X.$$

From Prop. 2.1.2(b), it follows that x^* is a global minimum.

2.1.10 www

For any $x \in X$ such that $\nabla f(x^*)'(x-x^*) = 0$, we have by the second order expansion of Prop. A.23, for all $\alpha \in [0, 1]$ and some $\tilde{\alpha} \in [0, \alpha]$,

$$f(x^* + \alpha(x - x^*)) - f(x^*) = \frac{1}{2}\alpha^2(x - x^*)'\nabla^2 f(x^* + \tilde{\alpha}(x - x^*))(x - x^*).$$

For all sufficiently small α , the left-hand side is nonnegative, since x^* is a local minimum. Hence the same is true for the right-hand side, and by taking the limit as $\alpha \to 0$ (and also $\tilde{\alpha} \to 0$), we obtain

$$(x - x^*)' \nabla^2 f(x^*)(x - x^*) \ge 0.$$

2.1.11 www

Proof under condition (1): Assume, to arrive at a contradiction, that x^* is not a local minimum. Then there exists a sequence $\{x^k\} \subseteq X$ converging to x^* such that $f(x^k) < f(x^*)$ for all k. We have

$$f(x^{k}) = f(x^{*}) + \nabla f(x^{*})'(x^{k} - x^{*}) + \frac{1}{2}(x^{k} - x^{*})'\nabla^{2}f(x^{*})(x^{k} - x^{*}) + o(||x^{k} - x^{*}||^{2}).$$

Introducing the vector

$$p^k = \frac{x^k - x^*}{\|x^k - x^*\|},$$

and using the relation $f(x^k) < f(x^*)$, we obtain

$$\nabla f(x^*)'p^k + \frac{1}{2}p^{k'}\nabla^2 f(x^*)p^k \|x^k - x^*\| + \frac{o(\|x^k - x^*\|^2)}{\|x^k - x^*\|} < 0.$$
(1)

This together with the hypothesis $\nabla f(x^*)' p^k \ge 0$ implies

$$\frac{1}{2}p^{k'}\nabla^2 f(x^*)p^k \|x^k - x^*\| + \frac{o(\|x^k - x^*\|^2)}{\|x^k - x^*\|} < 0.$$
⁽²⁾

Let us call *feasible direction at* x^* any vector p of the form $\alpha(x - x^*)$, where $\alpha > 0$ and $x \in X, x \neq x^*$ (see also Section 2.2). The sequence $\{p^k\}$ is a sequence of feasible directions at

 x^* that lie on the surface of the unit sphere. Therefore, a subsequence $\{p^k\}_K$ converges to a vector \overline{p} , which because X is polyhedral, must be a feasible direction at x^* (this is easily seen by expressing the polyhedral set X in terms of linear equalities and inequalities). Therefore, by the hypothesis of the exercise, we have $\nabla f(x^*)'\overline{p} \ge 0$. By letting $k \to \infty$, $k \in K$ in (1), we have

$$\nabla f(x^*)'\overline{p} = 0$$

The hypothesis of the exercise implies that

$$\overline{p}'\nabla^2 f(x^*)\overline{p} > 0. \tag{3}$$

Dividing by $||x^k - x^*||$ and taking the limit in Eq. (2) as $k \to \infty, k \in K$, we obtain

$$\frac{1}{2}\overline{p}'\nabla^2 f(x^*)\overline{p} + \lim_{k \to \infty, \ k \in K} \frac{o(\|x^k - x^*\|^2)}{\|x^k - x^*\|^2} \le 0.$$

This contradicts Eq. (3).

Proof under condition (2): Here we argue in the similar way as in part (1). Suppose that all the given assumptions hold and x^* is not a local minimum. Then there is a sequence $\{x^k\} \subseteq X$ converging to x^* such that $f(x^k) < f(x^*)$ for all k. By using the second order expansion of f at x^* and introducing the vector $p^k = \frac{x^k - x^*}{\|x^k - x^*\|}$, we have that both Eq. (1) and (2) hold for all k. Since $\{p^k\}$ consists of feasible directions at x^* that lie on the surface of the unit sphere, there is a subsequence $\{p^k\}_K$ converging to a vector \overline{p} with $||\overline{p}|| = 1$. By the assumption given in the exercise, we have that

$$\nabla f(x^*)p^k \ge 0, \qquad \forall \ k.$$

Hence $\nabla f(x^*)\overline{p} \geq 0$. By letting $k \to \infty$, $k \in K$ in (1), we obtain $\nabla f(x^*)\overline{p} \leq 0$. Consequently $\nabla f(x^*)\overline{p} = 0$. Since the vector \overline{p} is in the closure of the set of the feasible directions at x^* , the condition given in part (2) implies that $\overline{p}'\nabla^2 f(x^*)\overline{p} > 0$. Dividing by $||x^k - x^*||$ and taking the limit in Eq. (2) as $k \to \infty$, $k \in K$, we obtain $\overline{p}'\nabla^2 f(x^*)\overline{p} \leq 0$, which is a contradiction. Therefore, x^* must be a local minimum.

Proof under condition (3): We have

$$f(x) = f(x^*) + \nabla f(x^*)'(x - x^*) + \frac{1}{2}(x - x^*)'\nabla^2 f(x^*)(x - x^*) + o(||x - x^*||^2),$$

so that by using the hypotheses $\nabla f(x^*)'(x-x^*) \ge 0$ and $(x-x^*)'\nabla^2 f(x^*)(x-x^*) \ge \gamma ||x-x^*||^2$,

$$f(x) - f(x^*) \ge \frac{\gamma}{2} ||x - x^*||^2 + o(||x - x^*||^2).$$

The expression in the right-hand side is nonnegative for $x \in X$ close enough to x^* , and it is strictly positive if in addition $x \neq x^*$. Hence x^* is a strict local minimum.

Example: [Why the assumption that X is a polyhedral set was important under condition (1)] A polyhedral set X has the property that for any point $x \in X$, the set V(x) of the feasible directions at x is closed. This was crucial for proving that the conditions

$$\nabla f(x^*)'(x - x^*) \ge 0, \qquad \forall \ x \in X,\tag{1}$$

$$(x - x^*)\nabla^2 f(x^*)(x - x^*) > 0, \quad \forall \ x \in X, \ x \neq x^*, \text{ for which } \nabla f(x^*)'(x - x^*) = 0,$$
 (2)

are sufficient for local optimality of x^* .

Consider the set $X = \{(x_1, x_2) \mid (x_1)^2 \le x_2\}$ and the point $(0, 0) \in X$. Let the cost function be $f(x_1, x_2) = -2(x_1)^2 + x_2$. Note that the gradient of f at 0 is [0, 1]'. It is easy to see that

$$\nabla f(0)'(x-0) = x_2 > 0, \quad \forall x \in X, x \neq 0.$$

Thus the point $x^* = 0$ satisfies conditions (1) and (2) (condition 2 is trivially satisfied since in our example $\nabla f(0)'(x-0) = 0$ simply never occurs for $x \in X$, $x \neq 0$). On the other hand, $x^* = 0$ is not a local minimum of f in X. Consider the points $x^n = (\frac{1}{n}, \frac{1}{n^2}) \in X$ for $n \geq 1$. Since $x^n \to x^*$ as $n \to \infty$, for any $\delta > 0$ there is an index n_{δ} such that $||x^n - x^*|| < \delta$ for all $n \geq n_{\delta}$. By evaluating the cost function, we have $f(x^n) = -\frac{1}{n^2} < 0 = f(x^*)$. Hence, in any δ neighborhood of $x^* = 0$, there are points $x^n \in X$ with the better objective value, i.e. x^* is not a local minimum.

This is happening because the set $V(x^*)$ of the feasible directions at point x^* is not closed in this case. The set $V(x^*)$ is given by

$$V(x^*) = \{ d = (d_1, d_2) \mid d_2 > 0, ||d|| = 1 \},\$$

and is open. The vectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

belong to the closure of $V(x^*)$ but they are not in the set $V(x^*)$.

2.1.18 (www)

The assumption on $\nabla^2 f(x)$ guarantees that f is strictly convex and coercive, so it has a unique global minimum over any closed convex set (using Weierstrass' theorem, Prop. A.8). By the second order expansion of Prop. A.23, we have for all x and y in \Re^n

$$f(y) = f(x) + \nabla f(x)'(y - x) + \frac{1}{2}(y - x)\nabla f(\tilde{y})(y - x)$$

for some \tilde{y} in the line segment connecting x and y. It follows, using the hypothesis, that

$$\nabla f(x)'(y-x) + \frac{M}{2} \|y-x\|^2 \ge f(y) - f(x) \ge \nabla f(x)'(y-x) + \frac{m}{2} \|y-x\|^2.$$

Taking the minimum in this inequality over $y \in X$, and changing sign, we obtain

$$-\min_{y \in X} \left\{ \nabla f(x)'(y-x) + \frac{M}{2} \|y-x\|^2 \right\} \le f(x) - f(x^*) \le -\min_{y \in X} \left\{ \nabla f(x)'(y-x) + \frac{m}{2} \|y-x\|^2 \right\},$$
 which is the desired velocitien

which is the desired relation.

2.1.19 of 2nd Printing (Existence of Solutions of Nonconvex Quadratic Programming Problems) (www)

Let $\{\gamma^k\}$ be a decreasing sequence with $\gamma^k \downarrow f^*$, and denote

$$S^k = \{ x \in X \mid x'Qx + c'x \le \gamma^k \}$$

Then the set of optimal solutions of the problem is $\bigcap_{k=0}^{\infty} S^k$, so by Prop. 2.1.4, it will suffice to show that for each asymptotic direction of $\{S^k\}$, all corresponding asymptotic sequences are retractive. Let d be an asymptotic direction and let $\{x^k\}$ be a corresponding asymptotic sequence. Similar to the proof of Prop. 2.1.5, we have $d'Qd \leq 0$. Also, in case (i), similar to the proof of Prop. 2.1.5, we have $a'_j d \leq 0$ for all j, while in case (ii) it is seen that $d \in N$, where X = B + Nand B is compact and N is a polyhedral cone. For any $x \in X$, consider the vectors $\tilde{x}^k = x + kd$. Then, in both cases (i) and (ii), it can be seen that $\tilde{x}^k \in X$ [in case (i) by using the argument in the proof of Prop. 2.1.5, and in case (ii) by using the definition X = B + N]. Thus, the cost function value corresponding to \tilde{x}^k satisfies

$$f^* \leq (x+kd)'Q(x+kd) + c'(x+kd)$$
$$= x'Qx + c'x + k^2d'Qd + k(c+2Qx)'d$$
$$\leq x'Qx + c'x + k(c+2Qx)'d,$$

where the last inequality follows from the fact $d'Qd \leq 0$. From the finiteness of f^* , it follows that

$$(c+2Qx)'d \ge 0, \qquad \forall \ x \in X.$$

We now show that $\{x^k\}$ is retractive, so that we can use Prop. 2.1.4. Indeed for any $\alpha > 0$, since $||x^k|| \to \infty$, it follows that for k sufficiently large, we have $x^k - \alpha d \in X$ [this follows similar to the proof of Prop. 2.1.5 in case (i), and because $d \in N$ in case (ii)]. Furthermore, we have

$$\begin{split} f(x^k - \alpha d) &= (x^k - \alpha d)'Q(x^k - \alpha d) + c'(x^k - \alpha d) \\ &= x^{k'}Qx^k + c'x^k - \alpha (c + 2Qx^k)'d + \alpha^2 d'Qd \\ &\leq x^{k'}Qx^k + c'x^k \\ &\leq \gamma^k, \end{split}$$

where the first inequality follows from the facts $d'Qd \leq 0$ and $(c + 2Qx^k)'d \geq 0$ shown earlier. Thus for sufficiently large k, we have $x^k - \alpha d \in S^k$, so that $\{x^k\}$ is retractive. The existence of an optimal solution now follows from Prop. 2.1.4.

2.1.20 of 2nd Printing (www)

We proceed as in the proof of Prop. 2.1.5. By using a decomposition of d^k as the sum of a vector in the nullspace of A and its orthogonal complement, and an argument like the one in the proof of Prop. 2.1.5, we can show that

$$Ad = 0, \qquad c'd \le 0.$$

Similarly, we can show that

$$a'_j d \le 0, \qquad j = 1, \dots, r.$$

Using the finiteness of f^* , we can also show that c'd = 0, and we can conclude the proof similar to the proof of Prop. 2.1.5.

2.1.21 of 2nd Printing (www)

Note that the cone N in this exercise must be assumed polyhedral (see the errata sheet). Let $S^k = \{x \in X \mid f(x) \leq \gamma^k\}$, and let d be an asymptotic direction of $\{S^k\}$, and let $\{x^k\}$ be a corresponding asymptotic sequence. We will show that $\{x^k\}$ is retractive, so by applying Prop. 2.1.4, it follows that the intersection of $\{S^k\}$, the set of minima of f over X, is nonempty.

Since d is an asymptotic direction of $\{S^k\}$, d is also an asymptotic direction of $\{x \mid f(x) \leq \gamma^k\}$, and by hypothesis for some bounded positive sequence $\{\alpha^k\}$ and some positive integer \overline{k} , we have $f(x^k - \alpha^k d) \leq \gamma^k$ for all $k \geq \overline{k}$.

Let $X = \overline{X} + N$, where \overline{X} is compact, and N is the polyhedral cone

$$N = \{ y \mid a'_{i} y \le 0, \, j = 1, \dots, r \},\$$

where a_1, \ldots, a_r are some vectors. We can represent x^k as

$$x^k = \overline{x}^k + y^k, \qquad \forall \ k = 0, 1, \dots$$

where $\overline{x}^k \in \overline{X}$ and $y^k \in N$, so that

$$a'_j x^k = a'_j (\overline{x}^k + y^k), \qquad \forall \ k = 0, 1, \dots, \ j = 1, \dots, r.$$

Dividing both sides with $||x^k||$ and taking the limit as $k \to \infty$, we obtain

$$a'_j d = \lim_{k \to \infty} \frac{a'_j y^k}{\|x^k\|}.$$

Section 2.2

Since $a'_j y^k \leq 0$ for all k and j, we obtain that $a'_j d \leq 0$ for all j, so that $d \in N$.

For each j, we consider two cases:

(1) $a'_i d = 0$. In this case, $a'_i (y^k - \overline{\alpha} d) \leq 0$ for all k, since $y^k \in N$ and $a'_i y^k \leq 0$.

(2) $a'_i d < 0$. In this case, we have

$$\frac{1}{\|x^k\|}a_j'(y^k-\overline{\alpha}d) = \frac{1}{\|x^k\|}a_j'(x^k-\overline{x}^k-\overline{\alpha}d),$$

so that since $\frac{x^k}{\|x^k\|} \to d$, $\{x^k\}$ is unbounded, and $\{\overline{x}^k\}$ is bounded, we obtain

$$\lim_{k \to \infty} \frac{1}{\|x^k\|} a'_j (y^k - \overline{\alpha} d) = a'_j d < 0.$$

Hence $a'_j(y^k - \overline{\alpha}d) < 0$ for k greater than some \overline{k} .

Thus, for $k \geq \overline{k}$ and $\alpha \in (0, \overline{\alpha}]$, we have $a'_j(y^k - \alpha d) \leq a'_j(y^k - \overline{\alpha} d) \leq 0$ for all j, so that $y^k - \alpha d \in N$ and $x^k - \alpha d \in X$.

Thus $\{x^k\}$ is retractive, and by applying Prop. 2.1.4, we have that $\{S^k\}$ has nonempty intersection.

2.1.22 of 2nd Printing www

We follow the hint. Let $\{y_k\}$ be a sequence of points in AS converging to some $\overline{y} \in \Re^n$. We will prove that AS is closed by showing that $\overline{y} \in AS$.

We introduce the sets

$$W_k = \left\{ z \mid \|z - \overline{y}\| \le \|y_k - \overline{y}\| \right\},\$$

and

$$S_k = \{ x \in S \mid Ax \in W_k \}.$$

To show that $\overline{y} \in AS$, it is sufficient to prove that the intersection $\bigcap_{k=0}^{\infty} S_k$ is nonempty, since every $\overline{x} \in \bigcap_{k=0}^{\infty} S_k$ satisfies $\overline{x} \in S$ and $A\overline{x} = \overline{y}$ (because $y_k \to \overline{y}$). The asymptotic directions of $\{S_k\}$ are asymptotic directions of S that are also in the nullspace of A, and it can be seen that every corresponding asymptotic sequence is retractive for $\{S_k\}$. Hence, by Prop. 2.1.4, $\bigcap_{k=0}^{\infty} S_k$ is nonempty.

2. SECTION 2.2

2.2.7 www

Since the number of extreme points of f is finite, some extreme point must be repeated within a finite number of iterations, i.e., for some k and $i \in \{0, 1, ..., k-1\}$, we have

$$\overline{x}^i = \arg\min_{x \in X} \nabla f(x^k)'(x - x^k).$$

Since x^k minimizes f(x) over X^{k-1} , we must have

$$\nabla f(x^k)'(\overline{x}^i - x^k) \ge 0, \qquad \forall \ i = 0, 1, \dots, k - 1.$$

Combining the above two equations, we see that

$$\nabla f(x^k)'(x-x^k) \ge 0, \qquad \forall \ x \in X,$$

which implies that x^k is a stationary point of f over X.

3. SECTION 2.3

2.3.4 (www)

We assume here that the unscaled version of the method $(H^k = I)$ is used and that the stepsize s^k is a constant s > 0.

(a) If x^k is nonstationary, there exists a feasible descent direction $\hat{x}^k - x^k$ for the original problem, where $\hat{x}^k \in X$. Since $\hat{x}^k \in X^k$, we have

$$\nabla f(x^k)'(\tilde{x}^k - x^k) + \frac{1}{2s} \|\tilde{x}^k - x^k\|^2 \le \nabla f(x^k)'(\hat{x}^k - x^k) + \frac{1}{2s} \|\hat{x}^k - x^k\|^2 < 0,$$

where \tilde{x}^k is defined by the algorithm. Thus,

$$\nabla f(x^k)'(\tilde{x}^k - x^k) \le -\frac{1}{2s} \|\tilde{x}^k - x^k\|^2 < 0,$$

so that $\tilde{x}^k - x^k$ is a descent direction at x^k . It is also a feasible direction, since $a'_j(\tilde{x}^k - x^k) \leq 0$ for all j such that $a_j x^k = b_j$.

(b) As in the proof of Prop. 2.3.1, we will show that the direction sequence $\{\overline{x}^k - x^k\}$ is gradient-related, where

$$\overline{x}^k = \gamma^k \tilde{x}^k + (1 - \gamma^k) x^k$$

and

$$\gamma^k = \max\left\{\gamma \in [0,1] \mid \gamma \tilde{x}^k + (1-\gamma)x^k \in X\right\}.$$

Indeed, suppose that $\{x^k\}_{k \in K}$ converges to a nonstationary point \tilde{x} . We must prove that

$$\limsup_{k \to \infty, \, k \in K} \|\overline{x}^k - x^k\| < \infty, \tag{*}$$

$$\limsup_{k \to \infty, \, k \in K} \nabla f(x^k)'(\overline{x}^k - x^k) < 0. \tag{**}$$

Since $\|\overline{x}^k - x^k\| \leq \|\tilde{x}^k - x^k\| \leq s \|\nabla f(x^k)\|$, Eq. (*) clearly holds, so we concentrate on proving (**). The key to this is showing that γ^k is bounded away from 0, so that the inner product $\nabla f(x^k)'(\overline{x}^k - x^k)$ is bounded away from 0 when $\nabla f(x^k)'(\tilde{x}^k - x^k)$ is.

For each k, we either have $\gamma^k = 1$, or else we must have for some j with $a'_j x^k < b_j - \epsilon$,

$$a_j'(\gamma^k \tilde{x}^k + (1 - \gamma^k)x^k) = b_j$$

so that

$$\gamma^k a'_j(\tilde{x}^k - x^k) = b_j - a'_j x^k > \epsilon,$$

from which

$$\gamma^k > \frac{\epsilon}{\|a_j\| \cdot \|\tilde{x}^k - x^k\|}.$$

It follows that for all k, we have

$$\min\left\{1, \min_{j} \frac{\epsilon}{\|a_{j}\| \cdot \|\tilde{x}^{k} - x^{k}\|}\right\} \leq \gamma^{k} \leq 1.$$

Since the subsequence $\{x^k\}_K$ converges, the subsequence $\{\tilde{x}^k - x^k\}_K$ is bounded implying also that the subsequence $\{\gamma^k\}_K$ is bounded away from 0.

For sufficiently large k, the set

$$X^{k} = \left\{ x \mid a_{j}' x \leq b_{j}, \text{ for all } j \text{ with } b_{j} - \epsilon \leq a_{j}' x^{k} \leq b_{j} \right\},\$$

is equal to the set

$$\tilde{X} = \left\{ x \mid a'_j x \le b_j, \text{ for all } j \text{ with } b_j - \epsilon \le a'_j \tilde{x} \le b_j \right\},\$$

so proceeding as in the proof of Prop. 2.3.1, we obtain

$$\limsup_{k \to \infty, k \in K} \nabla f(x^k)'(\tilde{x}^k - x^k) \le -\frac{1}{s} \left\| \tilde{x} - \left[\tilde{x} - s \nabla f(\tilde{x}) \right]^+ \right\|^2,$$

where $[\cdot]^+$ denotes projection on the set \tilde{X} . Since \tilde{x} is nonstationary, the right-hand side of the above inequality is negative, so that

$$\limsup_{k \to \infty, \, k \in K} \nabla f(x^k)'(\tilde{x}^k - x^k) < 0$$

We have $\overline{x}^k - x^k = \gamma^k (\tilde{x}^k - x^k)$, and since γ^k is bounded away from 0, it follows that

$$\limsup_{k \to \infty, \ k \in K} \nabla f(x^k)'(\overline{x}^k - x^k) < 0,$$

proving Eq. (**).

(c) Here we consider the variant of the method that uses a constant stepsize, which however, is reduced if necessary to ensure that \overline{x}^k is feasible. If the stepsize is sufficiently small to ensure convergence to the unique local minimum x^* of the positive definite quadratic cost function, then \overline{x}^k will be arbitrarily close to x^* for sufficiently large k, so that $\overline{x}^k = \tilde{x}^k$. Thus the convergence rate estimate of the text applies.

2.3.7 www

The key idea is to show that x^k stays in the bounded set

$$A = \left\{ x \in X \mid f(x) \le f(x^0) \right\}$$

and to use a constant stepsize $s^k = s$ that depends on the constant L corresponding to this bounded set. Let

$$R = \max\{\|x\| \mid x \in A\},\$$
$$G = \max\{\|\nabla f(x)\| \mid x \in A\},\$$

and

$$B = \{x \mid ||x|| \le R + 2G\}.$$

Using condition (i) in the exercise, there exists some constant L such that $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$, for all $x, y \in B$. Suppose the stepsize s satisfies $0 < s < 2\min\{1, 1/L\}$. We will, show by induction on k that with this stepsize, we have $x^k \in A$ and

$$f(x^{k+1}) \le f(x^k) - \left(\frac{L}{2} - \frac{1}{s}\right) \|x^{k+1} - x^k\|^2 \le f(x^k), \tag{*}$$

for all $k \ge 0$.

To start the induction, we note that $x^0 \in A$, by the definition of A. Suppose that $x^k \in A$. We have $x^{k+1} = [x^k - s\nabla f(x^k)]^+$, so by using the nonexpansiveness of the projection mapping,

$$||x^{k+1} - x^k|| \le ||(x^k - s\nabla f(x^k)) - x^k|| \le s ||\nabla f(x^k)|| \le 2G.$$

Thus,

$$||x^{k+1}|| \le ||x^k|| + 2G \le R + 2G$$

implying that $x^{k+1} \in B$. Since B is convex, we conclude that the entire line segment connecting x^k and x^{k+1} belongs to B. In order to prove Eq. (*), we now proceed as in the proof of Prop. 2.3.2. A difficulty arises because Prop. A.24 assumes that the inequality $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$ holds for all x, y, whereas in this exercise this inequality holds only for $x, y \in B$. However, using the fact that the Lipschitz condition holds along the line segment connecting x^k and x^{k+1} (which belongs to B as argued earlier), the proof of Prop. A.24 can be repeated to obtain

$$f(x^{k+1}) - f(x^k) \le \nabla f(x^k)'(x^{k+1} - x^k) + \frac{L}{2} \|x^{k+1} - x^k\|^2.$$

Using this relation, and the relation

$$\nabla f(x^k)'(x^{k+1} - x^k) \le -\frac{1}{s} \|x^{k+1} - x^k\|^2,$$

[which is Eq. (3.27) of the text], we obtain Eq. (*) [as in the text, cf. Eq. (3.29)]. It follows that $x^{k+1} \in A$, completing the induction. The remainder of the proof is the same as in Prop. 2.3.2.

2.3.8 www

(a) The expression for f given in the hint is verified by straightforward calculation. Based on this expression, the method takes the form

$$x^{k+1} = \arg\min_{x \in X} \left\{ \nabla f(x^k)'(x - x^k) + \frac{1}{2}(x - x^k)'Q(x - x^k) + \frac{1}{2c^k} \|x - x^k\|^2 \right\},\$$

or

$$x^{k+1} = \arg\min_{x \in X} \left\{ \nabla f(x^k)'(x - x^k) + \frac{1}{2}(x - x^k)'\left(Q + \frac{1}{c^k}I\right)(x - x^k) \right\}.$$

This is recognized as the scaled gradient projection method with scaling matrix $H^k = Q + (1/c^k)I$ and stepsizes $s^k = 1$, $\alpha^k = 1$.

(b) Similar to part (a), we have

$$\overline{x}^{k} = \arg\min_{x \in X} \left\{ \nabla f(x^{k})'(x - x^{k}) + \frac{1}{2}(x - x^{k})'(Q + M^{k})(x - x^{k}) \right\},\$$

and $\overline{x}^k - x^k$ is recognized as the direction of the scaled gradient projection method with scaling matrix $H^k = Q + M^k$ and stepsize $s^k = 1$.

(c) If $X = \Re^n$ and $M^k = Q$, we have

$$\overline{x}^{k} = x^{k} - (Q + M^{k})^{-1} \nabla f(x^{k}) = x^{k} - \frac{1}{2} Q^{-1} \nabla f(x^{k}),$$

so for a stepsize $\alpha^k = 2$, we have

$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k) = x^k - Q^{-1} \nabla f(x^k).$$

Thus the method reduces to the pure form of Newton's method for unconstrained minimization of f, which for a quadratic function converges in a single step to the optimal solution.