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What is Homotopy Continuation?

An approach to solving a system of equations, S, by tracking
the solutions of “nearby” systems of equations.

To solve S:

I Introduce an index t, 0 ≤ t ≤ 1

I For each t, construct a new system, St .

I Starting with t = 0 and increasing t by a small step size, we
solve each St in turn until we arrive at t = 1.

I S0 should be easy to solve and S1 is identical to S, the
original system.
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A Bivariate Example

f1(x , y) = 3x3 − 4x2y + y2 + 2y3

f2(x , y) = −6x3 + 2xy − 5y3

I Problem: Solve the system of equations

f1(x , y) = 0, f2(x , y) = 0

I How many (complex) roots are there?

I Every solution is of the form x = y = 0 or x , y 6= 0.

I Algebraic Geometry: The study of roots of systems of
polynomial equations.

I Bezout’s Theorem: The number of non-zero roots is
at most deg(f1) · deg(f2) = 3× 3 = 9.

I Bernstein’s Theorem: The number of non-zero roots is
exactly 4.

Computational Algorithms for Astrostatistics Homotopy Continuation



The HC Approach

I Introduce an index parameter t, 0 ≤ t ≤ 1

I Construct a system St : Let

g1(x , y) = x3 − 1, g2(x , y) = y3 − 8

I Define

h1(x , y ; t) = tf1(x , y) + (1− t)g1(x , y)

h2(x , y ; t) = tf2(x , y) + (1− t)g2(x , y)

I St : h1(x , y ; t) = 0, h2(x , y ; t) = 0

I S0: g1(x , y) = 0, g2(x , y) = 0

I S0 is easily solved.

I S1: f1(x , y) = 0, f2(x , y) = 0

I S1 is the original system.
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The Bivariate Example, cont.

f1(x , y) = 3x3 − 4x2y + y2 + 2y3

f2(x , y) = −6x3 + 2xy − 5y3

I Problem: Solve the equations

f1(x , y) = 0, f2(x , y) = 0

I By Bernstein’s theorem, there are exactly 4 non-zero roots.

I Verschelde (1999), “Algorithm 795: PHCPack: A
general-purpose solver for polynomial systems by homotopy
continuation,” ACM Trans. Math. Software, 25 (1999),
251–276. www2.math.uic.edu/∼jan/PHCpack/phcpack.html

I Let us now use PHCPack to find the roots. (Demo)
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PHCpack Results

solution 2 :
x : -3.16950027102798E-02 1.81213765826737E-01
y : -1.10462903286809E-01 -2.04565439823804E-01
solution 7 :
x : -3.16950027102798E-02 -1.81213765826737E-01
y : -1.10462903286809E-01 2.04565439823804E-01
solution 8 :
x : 4.11875744374350E-01 -1.20485325502200E-01
y : 1.67490014536420E-01 -3.32145613080015E-01
solution 9 :
x : 4.11875744374350E-01 1.20485325502200E-01
y : 1.67490014536420E-01 3.32145613080015E-01
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Advantages of HC

I Applicable to optimization problems which can be reduced to
systems of equations.

I Are numerical stable.

I Can be globally convergent, rather than only locally
convergent.

I Can locate multiple solutions to F (x) = 0.

I Can provide insight into properties of the solutions.

I Can be modified to located real solutions only.

I Newton-type methods can be used to find solutions of the
deformed system at various t−increments.
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History and References

I Poincaré (1881-1886), Klein (1892-1883)

I Bernstein (1910), Leray and Schauder (1934)

I Zangwill and Garcia (1981), Pathways to Solutions, Fixed
Points, and Equilibria, Prentice-Hall.

I Morgan (1987), Solving Polynomial Systems Using
Continuation for Engineering and Scientific Problems,
Prentice Hall.

I Allgower and Georg (1990), Numerical Continuation Methods:
An Introduction, Springer.
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The General Case

I Variables x = (x1, . . . , xm)

I Polynomials f1(x), . . . , fm(x)

I Problem: Solve the system of equations

fi (x) = 0, i = 1, . . . ,m.

I Let

F (x) =


f1(x)
f2(x)

...
fm(x)

 , G (x) =


g1(x)
g2(x)

...
gm(x)


I The solutions to gi are known.
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General Case, cont.

I Construct the homotopy map

H(x; t) = tF (x) + (1− t)G (x)

I To solve F (x) = 0, we track the solution paths of H(x; t) = 0
from t = 0 to t = 1.

? Homotopy continuation: The process of path-tracking.
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General Case, etc.

I There are many other homotopies (or deformations).
The global homotopy:

H(x; t) = F (x)− (1− t)F (x0)

where x0 is a starting point.

I A general homotopy:

H(x; t) = φ(t)F (x) + ψ(t)G (x)

where:
φ(0) = ψ(1) = 0, φ(1) = ψ(0) = 1, and
φ(t) > 0 and ψ(t) > 0 whenever 0 < t < 1
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General Case, etc.

t0 1

x

(x*, 1)

(x_0, 0)

I x∗: A solution of the system F (x) = 0

I x0 is a starting point for the homotopy continuation process

I The zero set of the homotopy:

H0 = {x : H(x; t) = 0 for some t ∈ [0, 1]}

I In homotopy continuation, we need to find a curve c in H0

which runs from (x0, 0) to (x∗, 1)
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Questions

1. When does such a curve exist and is smooth?
2. Will its length be finite?

Let h1, . . . , hm be the functions comprising H(x; t). Construct the
Jacobian matrix,

JH(x; t) =


∂h1
∂x1

· · · ∂h1
∂xm

∂h1
∂t

∂h2
∂x1

· · · ∂h2
∂xm

∂h2
∂t

...
...

...
...

∂hm
∂x1

· · · ∂hm
∂xm

∂hm
∂t
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The Existence and Solution of Paths

The existence of c is a consequence of the Implicit Function
Theorem:

1. If JH(x; t) has full rank n at (x0; 0) then there exists (at least
locally) a smooth curve c which starts at (x0; 0).

If JH(x; t) has full rank n at all points in H then c is
“diffeomorphic” to a circle or line.

2. For the curve c to have finite length, we impose boundary
conditions to prevent the curve from going to infinity before
going to (x∗; 1) or from returning to (x0; 0).
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LF Data

Globular cluster luminosity functions in the Galaxy

A table from Secker 1992, AJ 104, 1472:
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Milky Way LF Example, Revisited

In the “maximum likelihood estimation” lecture of last week, we
discussed a t-distribution model (Secker 1992, AJ 104, 1472) for
LF data:

g(x ;µ, σ, δ) =
Γ( δ+1

2 )
√
πδ σ Γ( δ

2)

[
1 +

(x − µ)2

δσ2

]− δ+1
2

−∞ < µ <∞, σ > 0, δ > 0

I Given a random sample x1, . . . , xn of LF values, we wish to
calculate the MLEs of µ, σ, and δ.

I There are no explicit formulas for these MLEs; we must use
numerical methods to maximize the likelihood function.
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Milky Way LF Example, cont.

I For simplicity, we assume that δ = 3.55, the value of the MLE
given by Secker for the Milky Way data.

I We now have a two-parameter likelihood function:

L(µ, σ2) = g(x1;µ, σ
2) · · · g(xn;µ, σ

2)

=
n∏

i=1

Γ( δ+1
2 )

√
πδ σ Γ( δ

2)

[
1 +

(xi − µ)2

δσ2

]− δ+1
2

ln L = n ln
Γ( δ+1

2 )
√
πδ Γ( δ

2)
− 1

2 lnσ2

− δ+1
2

n∑
i=1

ln
[
1 +

(xi − µ)2

δσ2

]− δ+1
2
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Milky Way LF Example, cont.

I Maximum likelihood equations:

∂ ln L

∂µ
= 0,

∂ ln L

∂(σ2)
= 0.

I Reduce each equation to polynomial form.
I The corresponding score equations are:

n∑
i=1

(xi − µ)
n∏

j=1
j 6=i

[3.55σ2 + (xi − µ)2] = 0

and
n∑

i=1

(xi−µ)2
n∏

j=1
j 6=i

[3.55σ2 +(xi−µ)2]− n

4.55

n∏
j=1

[3.55σ2 +(xi−µ)2] = 0

respectively.

I We have two equations in two variables, µ and σ2.
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PHCpack: Milky Way LF Example

I For the sake of simplicity, let n = 6

I Data points: −3.88,−5.52,−7.03,−7.77,−8.29,−9.25

I PHCpack finds two admissible solutions (among 26 total)

I solution 66 :
a : -3.88384638288804E+00 6.57457755788503E-26
b : 6.58244300380849E-04 4.46858148371494E-26
solution 72 :
a : -7.21052837109880E+00 8.36412639400878E-25
b : 2.24221225822324E+00 3.84173364494972E-24

I The solution at the end of path 72 is the MLE.
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Return to bivariate example on slide 3.

The fact that the system has exactly 4 non-zero roots is a consequence
of Bernstein’s Theorem (see Cox, et. al., 2000).

To apply Bernstein’s Theorem,

(1) We find the monomials which appear in each polynomial. For
example, the monomials in f1 are (3, 0), (0, 2), (0, 3), (2, 1).

(2) We calculate the convex hulls of each set of monomials. Denote
these convex hulls by C1 and C2, respectively.

(3) We calculate the “Minkowski Sum” of these two convex hulls,
denoted C1 + C2.

(4) Finally, calculate the areas of the convex hulls C1, C2, and C1 + C2.
Denote these areas by A1, A2, and A12, respectively.

(5) Finally, Bernstein’s Theorem states that the number of non-zero
roots is A12 − A1 − A2.

Computational Algorithms for Astrostatistics Homotopy Continuation



Convex Polytopes and Bernstein’s Theorem

The convex hulls of f1 and f2 on slide 3:

Convex Hull of f1 Convex Hull of f2

(2,1)

(0,3)

(0,2)

(3,0) x

y y

x

(0,3)

(3,0)

(1,1)

(area = 3/2) (area = 3/2)
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The Minkowski Sum

Convex Hull of f1 + Convex Hull of f2
To find this, add the vertices of the convex hulls on
the previous page, then take the convex hull.

x

y

(area = 7)
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