Homotopy Continuation

Max Buot (CMU)
\&
Donald Richards (PSU)

Computational Algorithms for Astrostatistics Summer School in Statistics for Astronomers \& Physicists

16 June 2005

What is Homotopy Continuation?

An approach to solving a system of equations, \mathcal{S}, by tracking the solutions of "nearby" systems of equations.

To solve \mathcal{S} :

- Introduce an index $t, 0 \leq t \leq 1$
- For each t, construct a new system, \mathcal{S}_{t}.
- Starting with $t=0$ and increasing t by a small step size, we solve each \mathcal{S}_{t} in turn until we arrive at $t=1$.
- \mathcal{S}_{0} should be easy to solve and \mathcal{S}_{1} is identical to \mathcal{S}, the original system.

A Bivariate Example

$$
\begin{aligned}
& f_{1}(x, y)=3 x^{3}-4 x^{2} y+y^{2}+2 y^{3} \\
& f_{2}(x, y)=-6 x^{3}+2 x y-5 y^{3}
\end{aligned}
$$

- Problem: Solve the system of equations

$$
f_{1}(x, y)=0, \quad f_{2}(x, y)=0
$$

- How many (complex) roots are there?
- Every solution is of the form $x=y=0$ or $x, y \neq 0$.
- Algebraic Geometry: The study of roots of systems of polynomial equations.
- Bezout's Theorem: The number of non-zero roots is at most $\operatorname{deg}\left(f_{1}\right) \cdot \operatorname{deg}\left(f_{2}\right)=3 \times 3=9$.
- Bernstein's Theorem: The number of non-zero roots is exactly 4.

The HC Approach

- Introduce an index parameter $t, 0 \leq t \leq 1$
- Construct a system \mathcal{S}_{t} : Let

$$
g_{1}(x, y)=x^{3}-1, \quad g_{2}(x, y)=y^{3}-8
$$

- Define

$$
\begin{aligned}
& h_{1}(x, y ; t)=t f_{1}(x, y)+(1-t) g_{1}(x, y) \\
& h_{2}(x, y ; t)=t f_{2}(x, y)+(1-t) g_{2}(x, y)
\end{aligned}
$$

- $\mathcal{S}_{t}: \quad h_{1}(x, y ; t)=0, \quad h_{2}(x, y ; t)=0$
- $\mathcal{S}_{0}: \quad g_{1}(x, y)=0, \quad g_{2}(x, y)=0$
- \mathcal{S}_{0} is easily solved.
- $\mathcal{S}_{1}: \quad f_{1}(x, y)=0, \quad f_{2}(x, y)=0$
- \mathcal{S}_{1} is the original system.

The Bivariate Example, cont.

$$
\begin{aligned}
& f_{1}(x, y)=3 x^{3}-4 x^{2} y+y^{2}+2 y^{3} \\
& f_{2}(x, y)=-6 x^{3}+2 x y-5 y^{3}
\end{aligned}
$$

- Problem: Solve the equations

$$
f_{1}(x, y)=0, \quad f_{2}(x, y)=0
$$

- By Bernstein's theorem, there are exactly 4 non-zero roots.
- Verschelde (1999), "Algorithm 795: PHCPack: A general-purpose solver for polynomial systems by homotopy continuation," ACM Trans. Math. Software, 25 (1999), 251-276. www2.math.uic.edu/~jan/PHCpack/phcpack.html
- Let us now use PHCPack to find the roots. (Demo)

PHCpack Results

solution $2:$		
$\mathrm{x}:$	$-3.16950027102798 \mathrm{E}-02$	$1.81213765826737 \mathrm{E}-01$
$\mathrm{y}:$	$-1.10462903286809 \mathrm{E}-01$	$-2.04565439823804 \mathrm{E}-01$
solution $7:$		
$\mathrm{x}:$	$-3.16950027102798 \mathrm{E}-02$	$-1.81213765826737 \mathrm{E}-01$
$\mathrm{y}:$	$-1.10462903286809 \mathrm{E}-01$	$2.04565439823804 \mathrm{E}-01$
solution $8:$		
$\mathrm{x}:$	$4.11875744374350 \mathrm{E}-01$	$-1.20485325502200 \mathrm{E}-01$
$\mathrm{y}:$	$1.67490014536420 \mathrm{E}-01$	$-3.32145613080015 \mathrm{E}-01$
solution $9:$		
$\mathrm{x}:$	$4.11875744374350 \mathrm{E}-01$	$1.20485325502200 \mathrm{E}-01$
$\mathrm{y}:$	$1.67490014536420 \mathrm{E}-01$	$3.32145613080015 \mathrm{E}-01$

Advantages of HC

- Applicable to optimization problems which can be reduced to systems of equations.
- Are numerical stable.
- Can be globally convergent, rather than only locally convergent.
- Can locate multiple solutions to $F(\mathbf{x})=0$.
- Can provide insight into properties of the solutions.
- Can be modified to located real solutions only.
- Newton-type methods can be used to find solutions of the deformed system at various t-increments.

History and References

- Poincaré (1881-1886), Klein (1892-1883)
- Bernstein (1910), Leray and Schauder (1934)
- Zangwill and Garcia (1981), Pathways to Solutions, Fixed Points, and Equilibria, Prentice-Hall.
- Morgan (1987), Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, Prentice Hall.
- Allgower and Georg (1990), Numerical Continuation Methods: An Introduction, Springer.

The General Case

- Variables $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$
- Polynomials $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$
- Problem: Solve the system of equations

$$
f_{i}(\mathbf{x})=0, \quad i=1, \ldots, m
$$

- Let

$$
F(\mathbf{x})=\left(\begin{array}{c}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x}) \\
\vdots \\
f_{m}(\mathbf{x})
\end{array}\right), \quad G(\mathbf{x})=\left(\begin{array}{c}
g_{1}(\mathbf{x}) \\
g_{2}(\mathbf{x}) \\
\vdots \\
g_{m}(\mathbf{x})
\end{array}\right)
$$

- The solutions to g_{i} are known.

General Case, cont.

- Construct the homotopy map

$$
H(\mathbf{x} ; t)=t F(\mathbf{x})+(1-t) G(\mathbf{x})
$$

- To solve $F(\mathbf{x})=0$, we track the solution paths of $H(\mathbf{x} ; t)=0$ from $t=0$ to $t=1$.
\star Homotopy continuation: The process of path-tracking.

General Case, etc.

- There are many other homotopies (or deformations). The global homotopy:

$$
H(\mathbf{x} ; t)=F(\mathbf{x})-(1-t) F\left(\mathbf{x}_{0}\right)
$$

where x_{0} is a starting point.

- A general homotopy:

$$
H(\mathbf{x} ; t)=\phi(t) F(\mathbf{x})+\psi(t) G(\mathbf{x})
$$

where:
$\phi(0)=\psi(1)=0, \phi(1)=\psi(0)=1$, and
$\phi(t)>0$ and $\psi(t)>0$ whenever $0<t<1$

General Case, etc.

- \mathbf{x}^{*} : A solution of the system $F(\mathbf{x})=0$
- x_{0} is a starting point for the homotopy continuation process
- The zero set of the homotopy:

$$
\mathcal{H}_{0}=\{\mathbf{x}: H(\mathbf{x} ; t)=0 \text { for some } t \in[0,1]\}
$$

- In homotopy continuation, we need to find a curve c in \mathcal{H}_{0} which runs from $\left(x_{0}, 0\right)$ to $\left(x^{*}, 1\right)$

Questions

1. When does such a curve exist and is smooth?
2. Will its length be finite?

Let h_{1}, \ldots, h_{m} be the functions comprising $H(\mathbf{x} ; t)$. Construct the Jacobian matrix,

$$
J_{\mathcal{H}}(\mathbf{x} ; t)=\left(\begin{array}{cccc}
\frac{\partial h_{1}}{\partial x_{1}} & \cdots & \frac{\partial h_{1}}{\partial x_{m}} & \frac{\partial h_{1}}{\partial t} \\
\frac{\partial h_{2}}{\partial x_{1}} & \cdots & \frac{\partial h_{2}}{\partial x_{m}} & \frac{\partial h_{2}}{\partial t} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial h_{m}}{\partial x_{1}} & \cdots & \frac{\partial h_{m}}{\partial x_{m}} & \frac{\partial h_{m}}{\partial t}
\end{array}\right)
$$

The Existence and Solution of Paths

The existence of c is a consequence of the Implicit Function Theorem:

1. If $J_{\mathcal{H}}(\mathbf{x} ; t)$ has full rank n at $\left(\mathbf{x}_{0} ; 0\right)$ then there exists (at least locally) a smooth curve c which starts at $\left(x_{0} ; 0\right)$.

If $J_{\mathcal{H}}(\mathbf{x} ; t)$ has full rank n at all points in \mathcal{H} then c is "diffeomorphic" to a circle or line.
2. For the curve c to have finite length, we impose boundary conditions to prevent the curve from going to infinity before going to $\left(\mathbf{x}^{*} ; 1\right)$ or from returning to $\left(\mathrm{x}_{0} ; 0\right)$.

LF Data

Globular cluster luminosity functions in the Galaxy
A table from Secker 1992, AJ 104, 1472:

Milky Way LF Example, Revisited

In the "maximum likelihood estimation" lecture of last week, we discussed a t-distribution model (Secker 1992, AJ 104, 1472) for LF data:

$$
g(x ; \mu, \sigma, \delta)=\frac{\Gamma\left(\frac{\delta+1}{2}\right)}{\sqrt{\pi \delta} \sigma \Gamma\left(\frac{\delta}{2}\right)}\left[1+\frac{(x-\mu)^{2}}{\delta \sigma^{2}}\right]^{-\frac{\delta+1}{2}}
$$

$-\infty<\mu<\infty, \sigma>0, \delta>0$

- Given a random sample x_{1}, \ldots, x_{n} of LF values, we wish to calculate the MLEs of μ, σ, and δ.
- There are no explicit formulas for these MLEs; we must use numerical methods to maximize the likelihood function.

Milky Way LF Example, cont.

- For simplicity, we assume that $\delta=3.55$, the value of the MLE given by Secker for the Milky Way data.
- We now have a two-parameter likelihood function:

$$
\begin{aligned}
L\left(\mu, \sigma^{2}\right)= & g\left(x_{1} ; \mu, \sigma^{2}\right) \cdots g\left(x_{n} ; \mu, \sigma^{2}\right) \\
= & \prod_{i=1}^{n} \frac{\Gamma\left(\frac{\delta+1}{2}\right)}{\sqrt{\pi \delta} \sigma \Gamma\left(\frac{\delta}{2}\right)}\left[1+\frac{\left(x_{i}-\mu\right)^{2}}{\delta \sigma^{2}}\right]^{-\frac{\delta+1}{2}} \\
\ln L= & n \ln \frac{\Gamma\left(\frac{\delta+1}{2}\right)}{\sqrt{\pi \delta} \Gamma\left(\frac{\delta}{2}\right)}-\frac{1}{2} \ln \sigma^{2} \\
& -\frac{\delta+1}{2} \sum_{i=1}^{n} \ln \left[1+\frac{\left(x_{i}-\mu\right)^{2}}{\delta \sigma^{2}}\right]^{-\frac{\delta+1}{2}}
\end{aligned}
$$

Milky Way LF Example, cont.

- Maximum likelihood equations:

$$
\frac{\partial \ln L}{\partial \mu}=0, \quad \frac{\partial \ln L}{\partial\left(\sigma^{2}\right)}=0
$$

- Reduce each equation to polynomial form.
- The corresponding score equations are:

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right) \prod_{\substack{j=1 \\ j \neq i}}^{n}\left[3.55 \sigma^{2}+\left(x_{i}-\mu\right)^{2}\right]=0
$$

and

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left[3.55 \sigma^{2}+\left(x_{i}-\mu\right)^{2}\right]-\frac{n}{4.55} \prod_{j=1}^{n}\left[3.55 \sigma^{2}+\left(x_{i}-\mu\right)^{2}\right]=0
$$

respectively.

- We have two equations in two variables, μ and σ^{2}.

PHCpack: Milky Way LF Example

- For the sake of simplicity, let $n=6$
- Data points: $-3.88,-5.52,-7.03,-7.77,-8.29,-9.25$
- PHCpack finds two admissible solutions (among 26 total)
- solution 66 :
a : -3.88384638288804E+00 6.57457755788503E-26
b : 6.58244300380849E-04 4.46858148371494E-26
solution 72 :
a : -7.21052837109880E+00 8.36412639400878E-25
b : 2.24221225822324E+00
$3.84173364494972 \mathrm{E}-24$
- The solution at the end of path 72 is the MLE.

Return to bivariate example on slide 3.
The fact that the system has exactly 4 non-zero roots is a consequence of Bernstein's Theorem (see Cox, et. al., 2000).

To apply Bernstein's Theorem,
(1) We find the monomials which appear in each polynomial. For example, the monomials in f_{1} are $(3,0),(0,2),(0,3),(2,1)$.
(2) We calculate the convex hulls of each set of monomials. Denote these convex hulls by \mathcal{C}_{1} and \mathcal{C}_{2}, respectively.
(3) We calculate the "Minkowski Sum" of these two convex hulls, denoted $\mathcal{C}_{1}+\mathcal{C}_{2}$.
(4) Finally, calculate the areas of the convex hulls $\mathcal{C}_{1}, \mathcal{C}_{2}$, and $\mathcal{C}_{1}+\mathcal{C}_{2}$. Denote these areas by A_{1}, A_{2}, and A_{12}, respectively.
(5) Finally, Bernstein's Theorem states that the number of non-zero roots is $A_{12}-A_{1}-A_{2}$.

Convex Polytopes and Bernstein's Theorem

The convex hulls of f_{1} and f_{2} on slide 3 :

The Minkowski Sum

References

- Allgower, E. and Georg, K. (1990) Numerical continuation methods: an introduction, Springer-Verlag, New York.
- Buot, M. (2003) Genetic Algorithms and Maximum Likelihood Estimation. Ph.D. Dissertation, University of Virginia.
- Buot, M. and Richards, D. (2005) Counting and locating the solutions of polynomial systems of maximum likelihood equations, I. Journal of Symbolic Computation, to appear.
- Chow, J., Udpa, L., and Udpa, S.S. (1991) Homotopy continuation method for neural networks. IEEE Proc ISCAS Singapore.
- Coetzee F. M. and Stonick V. L. (1996) On a natural homotopy between linear and nonlinear single layer preceptron networks. IEEE Transactions on Neural Networks, 7, 307-317.
- Coetzee, F. M. (1995) Homotopy approaches for the anaylsis and solution of neural network and other nonlinear systems of equations. Ph.D. Dissertation, Carnegie Mellon University.
- Cox, D. A., Little, J., and O'Shea, D. Using algebraic geometry, Springer.
- Chu, M. T. (1984) A simple application of the homotopy method to symmetric eigenvalue problems. Linear Algebra and its Applications, 59, 85-90.
- Chu, M. T. (1988) A note on the homotopy method for linear algebraic eigenvalue problems. Linear Algebra and its Applications, 105, 225-236.
- Miller, W. D. (1992) Homotopy analysis of recurrent neural nets. Digital Signal Processing, 2, 33-38.
- Morgan, A. (1987) Solving polynomial systems using continuation for engineering and scientific problems, Prentice Hall, New Jersey.

