
6.252 NONLINEAR PROGRAMMING

LECTURE 6

NEWTON AND GAUSS-NEWTON METHODS

LECTURE OUTLINE

• Newton’s Method

• Convergence Rate of the Pure Form

• Global Convergence

• Variants of Newton’s Method

• Least Squares Problems

• The Gauss-Newton Method



NEWTON’S METHOD

xk+1 = xk − αk
(
∇2f(xk)

)−1∇f(xk)

assuming that the Newton direction is defined and
is a direction of descent

• Pure form of Newton’s method (stepsize = 1)

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk)

− Very fast when it converges (how fast?)

− May not converge (or worse, it may not be
defined) when started far from a nonsingular
local min

− Issue: How to modify the method so that
it converges globally, while maintaining the
fast convergence rate



CONVERGENCE RATE OF PURE FORM

• Consider solution of nonlinear system g(x) = 0
where g : �n �→ �n, with method

xk+1 = xk −
(
∇g(xk)′

)−1
g(xk)

− If g(x) = ∇f(x), we get pure form of Newton

• Quick derivation: Suppose xk → x∗ with
g(x∗) = 0 and ∇g(x∗) is invertible. By Taylor

0 = g(x∗) = g(xk)+∇g(xk)′(x∗−xk)+o
(
‖xk−x∗‖

)
.

Multiply with
(
∇g(xk)′

)−1
:

xk − x∗ −
(
∇g(xk)′

)−1
g(xk) = o

(
‖xk − x∗‖

)
,

so
xk+1 − x∗ = o

(
‖xk − x∗‖

)
,

implying superlinear convergence and capture.



CONVERGENCE BEHAVIOR OF PURE FORM

x0 = -1 x2 x1

x

k          xk       g(xk)

0   - 1.00000 - 0.63212
1   0.71828   1.05091
2   0.20587   0.22859
3   0.01981   0.02000
4   0.00019   0.00019
5   0.00000   0.00000
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MODIFICATIONS FOR GLOBAL CONVERGENCE

• Use a stepsize

• Modify the Newton direction when:

− Hessian is not positive definite

− When Hessian is nearly singular (needed to
improve performance)

• Use

dk = −
(
∇2f(xk) + ∆k

)−1∇f(xk),

whenever the Newton direction does not exist or
is not a descent direction. Here ∆k is a diagonal
matrix such that

∇2f(xk) + ∆k > 0

− Modified Cholesky factorization

− Trust region methods



LEAST-SQUARES PROBLEMS

minimize f(x) = 1
2‖g(x)‖2 = 1

2

m∑
i=1

‖gi(x)‖2

subject to x ∈ �n,

where g = (g1, . . . , gm), gi : �n → �ri .

• Many applications:

− Solution of systems of n nonlinear equations
with n unknowns

− Model Construction – Curve Fitting

− Neural Networks

− Pattern Classification



PURE FORM OF THE GAUSS-NEWTON METHOD

• Idea: Linearize around the current point xk

g̃(x, xk) = g(xk) + ∇g(xk)′(x − xk)

and minimize the norm of the linearized function
g̃:

xk+1 = arg min
x∈�n

1
2‖g̃(x, xk)‖2

= xk−
(
∇g(xk)∇g(xk)′

)−1∇g(xk)g(xk)

• The direction

−
(
∇g(xk)∇g(xk)′

)−1∇g(xk)g(xk)

is a descent direction since

∇g(xk)g(xk) = ∇
(
(1/2)‖g(x)‖2

)

∇g(xk)∇g(xk)′ > 0



MODIFICATIONS OF THE GAUSS-NEWTON

• Similar to those for Newton’s method:

xk+1 = xk−αk
(
∇g(xk)∇g(xk)′+∆k

)−1∇g(xk)g(xk)

where αk is a stepsize and ∆k is a diagonal matrix
such that

∇g(xk)∇g(xk)′ + ∆k > 0

• Incremental version of the Gauss-Newton method:

− Operate in cycles

− Start a cycle with ψ0 (an estimate of x)

− Update ψ using a single component of g

ψi = arg min
x∈�n

i∑
j=1

‖g̃j(x, ψj−1)‖2, i = 1, . . . , m,

where g̃j are the linearized functions

g̃j(x, ψj−1) = gj(ψj−1)+∇gj(ψj−1)′(x−ψj−1)



MODEL CONSTRUCTION

• Given set of m input-output data pairs (yi, zi),
i = 1, . . . , m, from the physical system

• Hypothesize an input/output relation z = h(x, y),
where x is a vector of unknown parameters, and
h is known

• Find x that matches best the data in the sense
that it minimizes the sum of squared errors

1
2

m∑
i=1

‖zi − h(x, yi)‖2

• Example of a linear model: Fit the data pairs by
a cubic polynomial approximation. Take

h(x, y) = x3y3 + x2y2 + x1y + x0,

where x = (x0, x1, x2, x3) is the vector of unknown
coefficients of the cubic polynomial.



NEURAL NETS

• Nonlinear model construction with multilayer
perceptrons

• x of the vector of weights

• Universal approximation property



PATTERN CLASSIFICATION

• Objects are presented to us, and we wish to
classify them in one of s categories 1, . . . , s, based
on a vector y of their features.

• Classical maximum posterior probability ap-
proach: Assume we know

p(j|y) = P (object w/ feature vector y is of category j)

Assign object with feature vector y to category

j∗(y) = arg max
j=1,...,s

p(j|y).

• If p(j|y) are unknown, we can estimate them
using functions hj(xj , y) parameterized by vectors
xj . Obtain xj by minimizing

1
2

m∑
i=1

(
zi
j − hj(xj , yi)

)2
,

where

zi
j =

{
1 if yi is of category j,
0 otherwise.


