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3.2.1
(a) First consider the problem
minx; + o
subject to x] + 73 = 2.

Note that Vh(x) = 2x # 0 for all feasible . Thus any feasible x is regular, and we can apply
the Lagrange Multiplier Theorem. We have

L(z*, \*) =} + @} + X ((#})” + (25)* — 2).

If x* is a local minimum,
* *\ 1 * 2I1 o
V.L(z*,\*)=0 or (1)+)\<2x2)_0’

VaL(z*, \*) =0 or (27)?+ (23)*=2.
Combining these two equations, we see that the only possible candidates for being a local
minimum are (1,1) with A* = —1/2 and (-1, —1) with \* = 1/2.
We also have

and

V2 L(z*, \*) = 2\*1.
From the second order necessary conditions, it follows that (1,1) cannot be a local minimum,
while (—1,—1) is a strict local minimum. Since f(x) is continuous over the constraint set,
which is compact, a global minimum exists. Thus (—1, —1) is the unique global minimum.
Now consider the problem
min —(x; + z2)

subject to o7 + 73 = 2.

Using an argument analogous to that above, we obtain that (1,1) is the unique global mini-
mum for this new problem or, equivalently, that (1,1) is the unique global maximum of the
original problem.

(b) Consider the problem
min x; +

1



subject to a7 + 23 — 2 = u.

The only change from part (a) is
VaL(z*,A*) =0 or (27)*+ (23)* —2=u.

Combining the preceding relation with V,L(z*, A*) = 0, we have for u > —2

z(u) = (V(2+u)/2,V/(2+u)/2) with Mu)=—1/(+/2(2+u))

or

2(u) = (= (2+u)/2, =/ (2 +u)/2) with Au) =1/(v/2(2 +u)).
Using the second order necessary conditions, we see that the first point is not a local minimum,

while the second point is a strict local minimum. Substituting the second solution z(u) into
the cost function, we obtain

p(u) = f(z(u) = =2/ (2+u)/2 = =/2(2 + u),

and )
Vp(u) = ——= = —A\(u), u>-2.
plt) = o = AW
If we let S be the set {u €] |u| < 2} (an open sphere centered at u = 0), then Vp(u) = —I(u)
for all u € S. Hence the gradient of the primal function is related to the Lagrange multiplier

as specified by the sensitivity theorem.
3.2.3

a) The problem is to maximize zyz subject to z + y + 2z = a, where a is a given positive
number. If (z*, y*, 2*) is an optimal solution, we clearly have 0 < z*, 0 < y*, 0 < z*, and that
(since all feasible points are regular) there exists A* such that

Y = 2y = o = — A
Thus z* = y* = 2* = a/3 is the only solution to the 1st order necessary conditions. Since the
problem is equivalent to maximizing xyz subject to the compact set constraints 0 < x < a,
0<y<a,0<z<a,and z+ y+ 2z = a, there exists a global maximum, which must be the
only positive solution (a/3,a/3,a/3) of the 1st order optimality conditions.

We may also check that the 2nd order sufficiency conditions for a local maximum are
satisfied at z* = y* = z* = a/3. The Hessian of the Lagrangian at that point is

0 —a/3 —a/3
—a/3 0 —a/3 |,
—a/3 —a/3 0

which is seen to satisfy the 2nd order sufficiency condition by using an argument that is
identical to the corresponding argument of Example 3.2.1 in Section 3.2.



(b) Similar to part (a), the optimal sides are z* = y* = z* = V/3 where V is the given
volume.
3.2.4

(a) Without loss of generality, assume that 7 = 1. We have

Vf(z*) + A Vhi(z —|—Z)\*Vh (1)

Y <V2f( )+ ANV2hy (2 +Z>\*Vh ) (2)

for all y # 0 with Vh;(z*)'y =0 for i = 1,...,m. Divide Eq. (1) by Aj. Then z* is feasible
for the new optimization problem

min hy ()
subject to f(z) = f(z¥), hi(x) =0, i=2,...,m

and 1/X\5, Af/AY, @ = 2,...,m are Lagrange multipliers corresponding, respectively, to the
equality constraints f(z) = f(z*), hi(x) =0, i =2,...,m. Using Eq. (1) and the fact that
A} # 0, it is easy to see that

{y| Vhi(z")y=0, Vi} ={y| Vf(@*)y=0, Vhi(z")y=0, i =2,...,m}. (3)

Dividing Eq. (2) by A} and using Eq. (3), we have

/ 2 2 2
y(Vin( DR v +Z/\*V >y>0,

for all y # 0 with Vf(2*)y =0, Vh;(2*)y =0 fori =2,... m. Since z* and 1/A], A\f/A], i =
2, ..., m satisfy the sufficiency conditions for the new problem, we have that z* is a local min-
imum of hy(z) subject to the given constraints.

(b) Here the only difference is that we divide Eq. (1) and Eq. (2) by —1/A}. Therefore z*
and vy = —1/X}, vf = —=Af/A}, i =2,...,m, satisfy

—Vhi(z*) + ViV f(z +ZV Vhi(z

y (—v%(x*) + V() + ) VfVth'(w*)> y >0,
=2

for all y # 0 with V f(2*)'y = 0, h;(z*)'y = 0 for i = 2, ..., m. Therefore z* is a local minimum
of —hy(x) [i.e. a local maximum for h(x)] subject to the given constraints.

3.3.1



Since V2 f(x,y) is positive definite and the constraints are linear, the necessary conditions
for optimality are also sufficient. We have

vien = (32517 )

Let gl(xay) =T, 92($ay) =T — 17 gg(ﬂf,y) =Y g4<l’,y) =Y—- 1 and; fOl"j = 1727374 be
corresponding Lagrangian multipliers. Then the necessary and sufficient condition for (z*, y*)

to be optimal is
2(%*—a)+y*) (ué—/ﬁ) (0)
* * + * * = ) 1
(2(y —b)+u 1y — 15 0 S
for some Lagrange multipliers p; > 0.

Case (i): Let Vf(z*,y*) =0 with 0 < 2* < 1 and 0 < y* < 1. Then the optimal solution
isa* =2(2a—b), y* = 2(2b—a) for 0 < 2a—b < 2,0 < 2b—a < 3. In this case the optimality
conditions are satisfied with all p7 = 0.

Case (ii): For 0 < b < 1, b —2a > 0, the point (z*,y*) = (0,b) together with uj = b — 2a,
s = ps = p; = 0 satisfies the optimality conditions. For a < 0, b < 0 the optimal point is
(0,0) and a possible choice for Lagrange multipliers can be u} = —2a, p§ = —2b, pus = uj = 0.
For b > 1 and 1 — 2a > 0 the point (0,1) is optimal. In this case, we can take Lagrange
multipliers in (1) to be uj =2(b—1), uj =1 — 2a, pi = pi = 0.

Case (iit): For 0 < b — % <1, 2a—0b-— % > 0 the optimal point is (1,b — %), which
satisfies the optimality conditions with 5 = 2a — b — %, i = ps =py =0. When 20 —1 <0
and a > 1, the point (1,0) together with uy = 2(a — 1), pi = 1 —2b, uj = p; = 0 satisfies
condition (1). Therefore, it is optimal. If 2b —3 > 0, 2a — 3 > 0, then (z*,y*) = (1,1) and
Wy =2a—3, i = 20—3, ui = pi = 0 satisfy the condition (1), i.e., the point (1, 1) is a solution.

Case (iw): When 0 < a < 1 and b < 0, the point (a,0) with pu} = ps = p; =0, pg = —2b
satisfies the condition (1). Hence, it is an optimal point.

Case (v): For 0 <a—3 <1and 2b—a— 3 > 0, the point (a — 3, 1) is optimal, because it

satisfies the condition (1) with pf = 3 = 5 =0and pf =2b—a — 2.

3.3.2

Let us convert the given problem to the minimization problem
minimize f(z) = —y'z
subject to g(z) = 2'Qx — 1 <0.

The constraint set is compact and the cost function is continuous. Thus a global minimum
exists.

First consider the case where y = 0. Then f(x) = 0 for any z satisfying g(z) < 0, and the
desired result holds.



Now consider the case where y # 0. We have

Vi) =-y,  Vg(z)=2Qx.

Since ( is positive definite, any feasible point is regular. Assume that x* is a local minimum.
Then from the Kuhn-Tucker necessary conditions, there exists p©* > 0 such that

—y 4 p2Qz* =0, and upf=0if 2¥Qx* < 1.
]

Since y # 0, we must have u* > 0 and thus z*'Qz* = 1. Pre-multiplying y = p*2Qz* by x*
yields

We thus have

. Q7 QY
a’,‘ = =
2#’* x*/y
or , 1
L. YQ Ty
yfl? _ */
'y
or

My = £VyQ7y.
The optimal value of the minimization problem is —+/4/Q~'y, and so the optimal value of the

original problem is \/4/Q~1y.
Now, for any x # 0, let z = z/1/2’Qx. We have ’Qx = 1, and so from above
(@'y)* <y'Q7'y,

or equivalently

(2'y)* < (2'Qz)(y'Q'y).



