Problem Set 6 Solutions

March 31, 2005

3.2.1

(a) First consider the problem

$$
\begin{gathered}
\min x_{1}+x_{2} \\
\text { subject to } x_{1}^{2}+x_{2}^{2}=2 .
\end{gathered}
$$

Note that $\nabla h(x)=2 x \neq 0$ for all feasible x. Thus any feasible x is regular, and we can apply the Lagrange Multiplier Theorem. We have

$$
L\left(x^{*}, \lambda^{*}\right)=x_{1}^{*}+x_{2}^{*}+\lambda^{*}\left(\left(x_{1}^{*}\right)^{2}+\left(x_{2}^{*}\right)^{2}-2\right) .
$$

If x^{*} is a local minimum,

$$
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 \quad \text { or } \quad\binom{1}{1}+\lambda^{*}\binom{2 x_{1}}{2 x_{2}}=0
$$

and

$$
\nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0 \quad \text { or } \quad\left(x_{1}^{*}\right)^{2}+\left(x_{2}^{*}\right)^{2}=2
$$

Combining these two equations, we see that the only possible candidates for being a local minimum are $(1,1)$ with $\lambda^{*}=-1 / 2$ and $(-1,-1)$ with $\lambda^{*}=1 / 2$.

We also have

$$
\nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right)=2 \lambda^{*} I
$$

From the second order necessary conditions, it follows that $(1,1)$ cannot be a local minimum, while $(-1,-1)$ is a strict local minimum. Since $f(x)$ is continuous over the constraint set, which is compact, a global minimum exists. Thus $(-1,-1)$ is the unique global minimum. Now consider the problem

$$
\begin{gathered}
\min -\left(x_{1}+x_{2}\right) \\
\text { subject to } x_{1}^{2}+x_{2}^{2}=2
\end{gathered}
$$

Using an argument analogous to that above, we obtain that $(1,1)$ is the unique global minimum for this new problem or, equivalently, that $(1,1)$ is the unique global maximum of the original problem.
(b) Consider the problem

$$
\min x_{1}+x_{2}
$$

$$
\text { subject to } x_{1}^{2}+x_{2}^{2}-2=u \text {. }
$$

The only change from part (a) is

$$
\nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0 \quad \text { or } \quad\left(x_{1}^{*}\right)^{2}+\left(x_{2}^{*}\right)^{2}-2=u
$$

Combining the preceding relation with $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$, we have for $u>-2$

$$
x(u)=(\sqrt{(2+u) / 2}, \sqrt{(2+u) / 2}) \text { with } \lambda(u)=-1 /(\sqrt{2(2+u)})
$$

or

$$
x(u)=(-\sqrt{(2+u) / 2},-\sqrt{(2+u) / 2}) \text { with } \lambda(u)=1 /(\sqrt{2(2+u)}) .
$$

Using the second order necessary conditions, we see that the first point is not a local minimum, while the second point is a strict local minimum. Substituting the second solution $x(u)$ into the cost function, we obtain

$$
p(u)=f(x(u))=-2 \sqrt{(2+u) / 2}=-\sqrt{2(2+u)},
$$

and

$$
\nabla p(u)=-\frac{1}{\sqrt{2(2+u)}}=-\lambda(u), \quad u>-2
$$

If we let S be the set $\{u \in||u|<2\}$ (an open sphere centered at $u=0$), then $\nabla p(u)=-l(u)$ for all $u \in S$. Hence the gradient of the primal function is related to the Lagrange multiplier as specified by the sensitivity theorem.

3.2.3

a) The problem is to maximize $x y z$ subject to $x+y+z=a$, where a is a given positive number. If $\left(x^{*}, y^{*}, z^{*}\right)$ is an optimal solution, we clearly have $0<x^{*}, 0<y^{*}, 0<z^{*}$, and that (since all feasible points are regular) there exists λ^{*} such that

$$
x^{*} y^{*}=z^{*} y^{*}=x^{*} z^{*}=-\lambda^{*}
$$

Thus $x^{*}=y^{*}=z^{*}=a / 3$ is the only solution to the 1 st order necessary conditions. Since the problem is equivalent to maximizing $x y z$ subject to the compact set constraints $0 \leq x \leq a$, $0 \leq y \leq a, 0 \leq z \leq a$, and $x+y+z=a$, there exists a global maximum, which must be the only positive solution $(a / 3, a / 3, a / 3)$ of the 1st order optimality conditions.

We may also check that the 2nd order sufficiency conditions for a local maximum are satisfied at $x^{*}=y^{*}=z^{*}=a / 3$. The Hessian of the Lagrangian at that point is

$$
\left(\begin{array}{ccc}
0 & -a / 3 & -a / 3 \\
-a / 3 & 0 & -a / 3 \\
-a / 3 & -a / 3 & 0
\end{array}\right)
$$

which is seen to satisfy the 2 nd order sufficiency condition by using an argument that is identical to the corresponding argument of Example 3.2.1 in Section 3.2.
(b) Similar to part (a), the optimal sides are $x^{*}=y^{*}=z^{*}=V^{1 / 3}$ where V is the given volume.
3.2.4
(a) Without loss of generality, assume that $j=1$. We have

$$
\begin{gather*}
\nabla f\left(x^{*}\right)+\lambda_{1}^{*} \nabla h_{1}\left(x^{*}\right)+\sum_{i=2}^{m} \lambda_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0 \tag{1}\\
y^{\prime}\left(\nabla^{2} f\left(x^{*}\right)+\lambda_{1}^{*} \nabla^{2} h_{1}\left(x^{*}\right)+\sum_{i=2}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(x^{*}\right)\right) y>0 \tag{2}
\end{gather*}
$$

for all $y \neq 0$ with $\nabla h_{i}\left(x^{*}\right)^{\prime} y=0$ for $i=1, \ldots, m$. Divide Eq. (1) by λ_{1}^{*}. Then x^{*} is feasible for the new optimization problem

$$
\begin{gathered}
\min h_{1}(x) \\
\text { subject to } f(x)=f\left(x^{*}\right), h_{i}(x)=0, i=2, \ldots, m
\end{gathered}
$$

and $1 / \lambda_{1}^{*}, \lambda_{i}^{*} / \lambda_{1}^{*}, i=2, \ldots, m$ are Lagrange multipliers corresponding, respectively, to the equality constraints $f(x)=f\left(x^{*}\right), h_{i}(x)=0, i=2, \ldots, m$. Using Eq. (1) and the fact that $\lambda_{1}^{*} \neq 0$, it is easy to see that

$$
\begin{equation*}
\left\{y \mid \nabla h_{i}\left(x^{*}\right)^{\prime} y=0, \quad \forall i\right\}=\left\{y \mid \nabla f\left(x^{*}\right)^{\prime} y=0, \quad \nabla h_{i}\left(x^{*}\right)^{\prime} y=0, i=2, \ldots, m\right\} \tag{3}
\end{equation*}
$$

Dividing Eq. (2) by λ_{1}^{*} and using Eq. (3), we have

$$
y^{\prime}\left(\nabla^{2} h_{1}\left(x^{*}\right)+\frac{1}{\lambda_{1}^{*}} \nabla^{2} f\left(x^{*}\right)+\sum_{i=2}^{m} \frac{\lambda_{i}^{*}}{\lambda_{1}^{*}} \nabla^{2} h_{i}\left(x^{*}\right)\right) y>0
$$

for all $y \neq 0$ with $\nabla f\left(x^{*}\right)^{\prime} y=0, \nabla h_{i}\left(x^{*}\right)^{\prime} y=0$ for $i=2, \ldots, m$. Since x^{*} and $1 / \lambda_{1}^{*}, \lambda_{i}^{*} / \lambda_{1}^{*}, i=$ $2, \ldots, m$ satisfy the sufficiency conditions for the new problem, we have that x^{*} is a local minimum of $h_{1}(x)$ subject to the given constraints.
(b) Here the only difference is that we divide Eq. (1) and Eq. (2) by $-1 / \lambda_{1}^{*}$. Therefore x^{*} and $\nu_{1}^{*}=-1 / \lambda_{1}^{*}, \nu_{i}^{*}=-\lambda_{i}^{*} / \lambda_{1}^{*}, i=2, \ldots, m$, satisfy

$$
\begin{gathered}
-\nabla h_{1}\left(x^{*}\right)+\nu_{1}^{*} \nabla f\left(x^{*}\right)+\sum_{i=2}^{m} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0, \\
y^{\prime}\left(-\nabla^{2} h_{1}\left(x^{*}\right)+\nu_{1}^{*} \nabla^{2} f\left(x^{*}\right)+\sum_{i=2}^{m} \nu_{i}^{*} \nabla^{2} h_{i}\left(x^{*}\right)\right) y>0,
\end{gathered}
$$

for all $y \neq 0$ with $\nabla f\left(x^{*}\right)^{\prime} y=0, h_{i}\left(x^{*}\right)^{\prime} y=0$ for $i=2, \ldots, m$. Therefore x^{*} is a local minimum of $-h_{1}(x)$ [i.e. a local maximum for $h_{1}(x)$] subject to the given constraints.

3.3.1

Since $\nabla^{2} f(x, y)$ is positive definite and the constraints are linear, the necessary conditions for optimality are also sufficient. We have

$$
\nabla f(x, y)=\binom{2(x-a)+y}{2(y-b)+x}
$$

Let $g_{1}(x, y)=-x, g_{2}(x, y)=x-1, g_{3}(x, y)=-y, g_{4}(x, y)=y-1$ and ${ }_{j}^{*}$ for $j=1,2,3,4$ be corresponding Lagrangian multipliers. Then the necessary and sufficient condition for (x^{*}, y^{*}) to be optimal is

$$
\begin{equation*}
\binom{2\left(x^{*}-a\right)+y^{*}}{2\left(y^{*}-b\right)+x^{*}}+\binom{\mu_{2}^{*}-\mu_{1}^{*}}{\mu_{4}^{*}-\mu_{3}^{*}}=\binom{0}{0} \tag{1}
\end{equation*}
$$

for some Lagrange multipliers $\mu_{i}^{*} \geq 0$.
Case (i): Let $\nabla f\left(x^{*}, y^{*}\right)=0$ with $0<x^{*}<1$ and $0<y^{*}<1$. Then the optimal solution is $x^{*}=\frac{2}{3}(2 a-b), y^{*}=\frac{2}{3}(2 b-a)$ for $0<2 a-b<\frac{3}{2}, 0<2 b-a<\frac{3}{2}$. In this case the optimality conditions are satisfied with all $\mu_{j}^{*}=0$.

Case (ii): For $0<b<1, b-2 a>0$, the point $\left(x^{*}, y^{*}\right)=(0, b)$ together with $\mu_{1}^{*}=b-2 a$, $\mu_{2}^{*}=\mu_{3}^{*}=\mu_{4}^{*}=0$ satisfies the optimality conditions. For $a<0, b<0$ the optimal point is $(0,0)$ and a possible choice for Lagrange multipliers can be $\mu_{1}^{*}=-2 a, \mu_{3}^{*}=-2 b, \mu_{2}^{*}=\mu_{4}^{*}=0$. For $b>1$ and $1-2 a>0$ the point $(0,1)$ is optimal. In this case, we can take Lagrange multipliers in (1) to be $\mu_{4}^{*}=2(b-1), \mu_{1}^{*}=1-2 a, \mu_{2}^{*}=\mu_{3}^{*}=0$.

Case (iii): For $0<b-\frac{1}{2}<1,2 a-b-\frac{3}{2}>0$ the optimal point is $\left(1, b-\frac{1}{2}\right)$, which satisfies the optimality conditions with ${ }_{2}^{*}=2 a-b-\frac{3}{2}, \mu_{1}^{*}=\mu_{3}^{*}=\mu_{4}^{*}=0$. When $2 b-1<0$ and $a>1$, the point $(1,0)$ together with $\mu_{2}^{*}=2(a-1), \mu_{3}^{*}=1-2 b, \mu_{1}^{*}=\mu_{4}^{*}=0$ satisfies condition (1). Therefore, it is optimal. If $2 b-3>0,2 a-3>0$, then $\left(x^{*}, y^{*}\right)=(1,1)$ and $\mu_{2}^{*}=2 a-3, \mu_{4}^{*}=2 b-3, \mu_{1}^{*}=\mu_{3}^{*}=0$ satisfy the condition (1), i.e., the point $(1,1)$ is a solution.

Case (iv): When $0<a<1$ and $b<0$, the point ($a, 0$) with $\mu_{1}^{*}=\mu_{2}^{*}=\mu_{4}^{*}=0, \mu_{3}=-2 b$ satisfies the condition (1). Hence, it is an optimal point.

Case (v): For $0<a-\frac{1}{2}<1$ and $2 b-a-\frac{3}{2}>0$, the point $\left(a-\frac{1}{2}, 1\right)$ is optimal, because it satisfies the condition (1) with $\mu_{1}^{*}=\mu_{2}^{*}=\mu_{3}^{*}=0$ and $\mu_{4}^{*}=2 b-a-\frac{3}{2}$.

3.3.2

Let us convert the given problem to the minimization problem

$$
\begin{gathered}
\text { minimize } f(x)=-y^{\prime} x \\
\text { subject to } g(x)=x^{\prime} Q x-1 \leq 0
\end{gathered}
$$

The constraint set is compact and the cost function is continuous. Thus a global minimum exists.

First consider the case where $y=0$. Then $f(x)=0$ for any x satisfying $g(x) \leq 0$, and the desired result holds.

Now consider the case where $y \neq 0$. We have

$$
\nabla f(x)=-y, \quad \nabla g(x)=2 Q x
$$

Since Q is positive definite, any feasible point is regular. Assume that x^{*} is a local minimum. Then from the Kuhn-Tucker necessary conditions, there exists $\mu^{*} \geq 0$ such that

$$
-y+\mu^{*} 2 Q x^{*}=0, \quad \text { and } \quad \mu^{*}=0 \text { if } x^{* \prime} Q x^{*}<1
$$

Since $y \neq 0$, we must have $\mu^{*}>0$ and thus $x^{* \prime} Q x^{*}=1$. Pre-multiplying $y=\mu^{*} 2 Q x^{*}$ by $x^{* \prime}$ yields

$$
x^{* \prime} y=2 \mu^{*} x^{* \prime} Q x^{*}=2 \mu^{*}
$$

We thus have

$$
x^{*}=\frac{Q^{-1} y}{2 \mu^{*}}=\frac{Q^{-1} y}{x^{* \prime} y}
$$

or

$$
y^{\prime} x^{*}=\frac{y^{\prime} Q^{-1} y}{x^{* \prime} y}
$$

or

$$
x^{* \prime} y= \pm \sqrt{y^{\prime} Q^{-1} y}
$$

The optimal value of the minimization problem is $-\sqrt{y^{\prime} Q^{-1} y}$, and so the optimal value of the original problem is $\sqrt{y^{\prime} Q^{-1} y}$.

Now, for any $x \neq 0$, let $\bar{x}=x / \sqrt{x^{\prime} Q x}$. We have $\bar{x}^{\prime} Q \bar{x}=1$, and so from above

$$
\left(\bar{x}^{\prime} y\right)^{2} \leq y^{\prime} Q^{-1} y
$$

or equivalently

$$
\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} Q x\right)\left(y^{\prime} Q^{-1} y\right)
$$

