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Preface to first edition

The beauty of Nature is in its detail. If we are to understand different layers of sci-

entific phenomena, tedious computations are inevitable. In the last half-century,

computational approaches to many problems in science and engineering have

clearly evolved into a new branch of science, computational science. With the

increasing computing power of modern computers and the availability of new

numerical techniques, scientists in different disciplines have started to unfold

the mysteries of the so-called grand challenges, which are identified as scientific

problems that will remain significant for years to come and may require teraflop

computing power. These problems include, but are not limited to, global environ-

mental modeling, virus vaccine design, and new electronic materials simulation.

Computational physics, in my view, is the foundation of computational sci-

ence. It deals with basic computational problems in physics, which are closely

related to the equations and computational problems in other scientific and en-

gineering fields. For example, numerical schemes for Newton’s equation can be

implemented in the study of the dynamics of large molecules in chemistry and

biology; algorithms for solving the Schrödinger equation are necessary in the

study of electronic structures in materials science; the techniques used to solve

the diffusion equation can be applied to air pollution control problems; and nu-

merical simulations of hydrodynamic equations are needed in weather prediction

and oceanic dynamics.

Important as computational physics is, it has not yet become a standard course

in the curricula of many universities. But clearly its importance will increase

with the further development of computational science. Almost every college or

university now has some networked workstations available to students. Probably

many of them will have some closely linked parallel or distributed computing

systems in the near future. Students from many disciplines within science and

engineering now demand the basic knowledge of scientific computing, which

will certainly be important in their future careers. This book is written to fulfill

this need.

Some of the materials in this book come from my lecture notes for a com-

putational physics course I have been teaching at the University of Nevada, Las

Vegas. I usually have a combination of graduate and undergraduate students from

physics, engineering, and other majors. All of them have some access to the work-

stations or supercomputers on campus. The purpose of my lectures is to provide

xi



xii Preface to first edition

the students with some basic materials and necessary guidance so they can work

out the assigned problems and selected projects on the computers available to

them and in a programming language of their choice.

This book is made up of two parts. The first part (Chapter 1 through Chapter 6)

deals with the basics of computational physics. Enough detail is provided so that a

well-prepared upper division undergraduate student in science or engineering will

have no difficulty in following the material. The second part of the book (Chapter 7

through Chapter 12) introduces some currently used simulation techniques and

some of the newest developments in the field. The choice of subjects in the second

part is based on my judgment of the importance of the subjects in the future. This

part is specifically written for students or beginning researchers who want to know

the new directions in computational physics or plan to enter the research areas of

scientific computing. Many references are given there to help in further studies.

In order to make the course easy to digest and also to show some practical

aspects of the materials introduced in the text, I have selected quite a few exercises.

The exercises have different levels of difficulty and can be grouped into three

categories. Those in the first category are simple, short problems; a student with

little preparation can still work them out with some effort at filling in the gaps

they have in both physics and numerical analysis. The exercises in the second

category are more involved and aimed at well-prepared students. Those in the third

category are mostly selected from current research topics, which will certainly

benefit those students who are going to do research in computational science.

Programs for the examples discussed in the text are all written in standard

Fortran 77, with a few exceptions that are available on almost all Fortran compil-

ers. Some more advanced programming languages for data parallel or distributed

computing are also discussed in Chapter 12. I have tried to keep all programs in

the book structured and transparent, and I hope that anyone with knowledge of any

programming language will be able to understand the content without extra effort.

As a convention, all statements are written in upper case and all comments are

given in lower case. From my experience, this is the best way of presenting a clear

and concise Fortran program. Many sample programs in the text are explained

in sufficient detail with commentary statements. I find that the most efficient

approach to learning computational physics is to study well-prepared programs.

Related programs used in the book can be accessed via the World Wide Web at

the URL http://www.physics.unlv.edu/∼pang/cp.html. Corre-

sponding programs in C and Fortran 90 and other related materials will also be

available at this site in the future.

This book can be used as a textbook for a computational physics course.

If it is a one-semester course, my recommendation is to select materials from

Chapters 1 through 7 and Chapter 11. Some sections, such as 4.6 through 4.8,

5.6, and 7.8, are good for graduate students or beginning researchers but may

pose some challenges to most undergraduate students.

Tao Pang

Las Vegas, Nevada



Preface

Since the publication of the first edition of the book, I have received numerous

comments and suggestions on the book from all over the world and from a far

wider range of readers than anticipated. This is a firm testament of what I claimed

in the Preface to the first edition that computational physics is truly the foundation

of computational science.

The Internet, which connects all computerized parts of the world, has made it

possible to communicate with students who are striving to learn modern science in

distant places that I have never even heard of. The main drive for having a second

edition of the book is to provide a new generation of science and engineering

students with an up-to-date presentation to the subject.

In the last decade, we have witnessed steady progress in computational studies

of scientific problems. Many complex issues are now analyzed and solved on

computers. New paradigms of global-scale computing have emerged, such as the

Grid and web computing. Computers are faster and come with more functions

and capacity. There has never been a better time to study computational physics.

For this new edition, I have revised each chapter in the book thoroughly, incor-

porating many suggestions made by the readers of the first edition. There are more

examples given with more sample programs and figures to make the explanation

of the material easier to follow. More exercises are given to help students digest

the material. Each sample program has been completely rewritten to reflect what

I have learned in the last few years of teaching the subject. A lot of new material

has been added to this edition mainly in the areas in which computational physics

has made significant progress and a difference in the last decade, including one

chapter on genetic algorithm and programming. Some material in the first edition

has been removed mainly because there are more detailed books on those subjects

available or they appear to be out of date. The website for this new edition is at

http://www.physics.unlv.edu/˜pang/cp2.html.

References are cited for the sole purpose of providing more information for

further study on the relevant subjects. Therefore they may not be the most author-

itative or defining work. Most of them are given because of my familiarity with,

or my easy access to, the cited materials. I have also tried to limit the number of

references so the reader will not find them overwhelming. When I have had to

choose, I have always picked the ones that I think will benefit the readers most.

xiii



xiv Preface

Java is adopted as the instructional programming language in the book. The

source codes are made available at the website. Java, an object-oriented and

interpreted language, is the newest programming language that has made a major

impact in the last few years. The strength of Java is in its ability to work with web

browsers, its comprehensive API (application programming interface), and its

built-in security and network support. Both the source code and bytecode can run

on any computer that has Java with exactly the same result. There are many advan-

tages in Java, and its speed in scientific programming has steadily increased over

the last few years. At the moment, a carefully written Java program, combined

with static analysis, just-in-time compiling, and instruction-level optimization,

can deliver nearly the same raw speed as C or Fortran. More scientists, especially

those who are still in colleges or graduate schools, are expected to use Java as

their primary programming language. This is why Java is used as the instructional

language in this edition. Currently, many new applications in science and engi-

neering are being developed in Java worldwide to facilitate collaboration and to

reduce programming time. This book will do its part in teaching students how to

build their own programs appropriate for scientific computing. We do not know

what will be the dominant programming language for scientific computing in the

future, but we do know that scientific computing will continue playing a major

role in fundamental research, knowledge development, and emerging technology.
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Chapter 1

Introduction

Computing has become a necessary means of scientific study. Even in ancient

times, the quantification of gained knowledge played an essential role in the

further development of mankind. In this chapter, we will discuss the role of

computation in advancing scientific knowledge and outline the current status of

computational science. We will only provide a quick tour of the subject here.

A more detailed discussion on the development of computational science and

computers can be found in Moreau (1984) and Nash (1990). Progress in parallel

computing and global computing is elucidated in Koniges (2000), Foster and

Kesselman (2003), and Abbas (2004).

1.1 Computation and science

Modern societies are not the only ones to rely on computation. Ancient societies

also had to deal with quantifying their knowledge and events. It is interesting to see

how the ancient societies developed their knowledge of numbers and calculations

with different means and tools. There is evidence that carved bones and marked

rocks were among the early tools used for recording numbers and values and for

performing simple estimates more than 20 000 years ago.

The most commonly used number system today is the decimal system, which

was in existence in India at least 1500 years ago. It has a radix (base) of 10.

A number is represented by a string of figures, with each from the ten available

figures (0–9) occupying a different decimal level. The way a number is represented

in the decimal system is not unique. All other number systems have similar

structures, even though their radices are quite different, for example, the binary

system used on all digital computers has a radix of 2. During almost the same era

in which the Indians were using the decimal system, another number system using

dots (each worth one) and bars (each worth five) on a base of 20 was invented

by the Mayans. A symbol that looks like a closed eye was used for zero. It is

still under debate whether the Mayans used a base of 18 instead of 20 after the

first level of the hierarchy in their number formation. They applied these dots

and bars to record multiplication tables. With the availability of those tables, the

1
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Fig. 1.1 The Mayan

number system: (a)

examples of using dots

and bars to represent

numbers; (b) an example

of recording

multiplication.
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Fig. 1.2 A circle inscribed

and circumscribed by two

hexagons. The inside

polygon sets the lower

bound while the outside

polygon sets the upper

bound of the

circumference.

Mayans studied and calculated the period of lunar eclipses to a great accuracy.

An example of Mayan number system is shown in Fig. 1.1.

One of the most fascinating numbers ever calculated in human history is π ,

the ratio of the circumference to the diameter of the circle. One of the methods of

evaluating π was introduced by Chinese mathematician Liu Hui, who published

his result in a book in the third century. The circle was approached and bounded

by two sets of regular polygons, one from outside and another from inside of

the circle, as shown in Fig. 1.2. By evaluating the side lengths of two 192-sided

regular polygons, Liu found that 3.1410 < π < 3.1427, and later he improved

his result with a 3072-sided inscribed polygon to obtain π ≃ 3.1416. Two hun-

dred years later, Chinese mathematician and astronomer Zu Chongzhi and his son

Zu Gengzhi carried this type of calculation much further by evaluating the side

lengths of two 24 576-sided regular polygons. They concluded that 3.141 592 6 <

π < 3.141 592 7, and pointed out that a good approximation was given by
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π ≃ 355/113 = 3.141 592 9 . . . . This is extremely impressive considering the

limited mathematics and computing tools that existed then. Furthermore, no one

in the next 1000 years did a better job of evaluating π than the Zus.

The Zus could have done an even better job if they had had any additional help

in either mathematical knowledge or computing tools. Let us quickly demonstrate

this statement by considering a set of evaluations on polygons with a much smaller

number of sides. In general, if the side length of a regular k-sided polygon is

denoted as lk and the corresponding diameter is taken to be the unit of length,

then the approximation of π is given by

πk = klk . (1.1)

The exact value of π is the limit of πk as k → ∞. The value of πk obtained from

the calculations of the k-sided polygon can be formally written as

πk = π∞ +
c1

k
+

c2

k2
+

c3

k3
+ · · · , (1.2)

where π∞ = π and ci , for i = 1, 2, . . . ,∞, are the coefficients to be determined.

The expansion in Eq. (1.2) is truncated in practice in order to obtain an approxi-

mation of π . Then the task left is to solve the equation set

n
∑

j=1

ai j xj = bi , (1.3)

for i = 1, 2, . . . , n, if the expansion in Eq. (1.2) is truncated at the (n − 1)th

order of 1/k with ai j = 1/k
j−1
i , x1 = π∞, xj = c j−1 for j > 1, and bi = πki

. The

approximation of π is then given by the approximate π∞ obtained by solving the

equation set. For example, ifπ8 = 3.061 467,π16 = 3.121 445,π32 = 3.136 548,

andπ64 = 3.140 331 are given from the regular polygons inscribing the circle, we

can truncate the expansion at the third order of 1/k and then solve the equation

set (see Exercise 1.1) to obtain π∞, c1, c2, and c3 from the given πk . The approxi-

mation of π ≃ π∞ is 3.141 583, which has five digits of accuracy, in comparison

with the exact value π = 3.141 592 65 . . . . The values of πk for k = 8, 16, 32, 64

and the extrapolation π∞ are all plotted in Fig. 1.3. The evaluation can be further

improved if we use more πk or ones with higher values of k. For example, we

obtain π ≃ 3.141 592 62 if k = 32, 64, 128, 256 are used. Note that we are get-

ting the same accuracy here as the evaluation of the Zus with polygons of 24 576

sides.

In a modern society, we need to deal with a lot more computations daily.

Almost every event in science or technology requires quantification of the data in-

volved. For example, before a jet aircraft can actually be manufactured, extensive

computer simulations in different flight conditions must be performed to check

whether there is a design flaw. This is not only necessary economically, but may

help avoid loss of lives. A related use of computers is in the reconstruction of an

unexpectred flight accident. This is extremely important in preventing the same

accident from happening again. A more common example is found in the cars
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Fig. 1.3 The values of πk,
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plotted together with the

extrapolated π∞.

that we drive, which each have a computer that takes care of the brakes, steering

control, and other critical components. Almost any electronic device that we use

today is probably powered by a computer, for example, a digital thermometer,

a DVD (digital video disc) player, a pacemaker, a digital clock, or a microwave

oven. The list can go on and on. It is fair to say that sophisticated computations

delivered by computers every moment have become part of our lives, permanently.

1.2 The emergence of modern computers

The advantage of having a reliable, robust calculating device was realized a long

time ago. The early abacus, which was used for counting, was in existence with

the Babylonians 4000 years ago. The Chinese abacus, which appeared at least

3000 years ago, was perhaps the first comprehensive calculating device that was

actually used in performing addition, subtraction, multiplication, and division

and was employed for several thousand years. A traditional Chinese abacus is

made of a rectangular wooden frame and a bar going through the upper middle

of the frame horizontally. See Fig. 1.4. There are thirteen evenly spaced vertical

rods, each representing one decimal level. More rods were added to later versions.

On each rod, there are seven beads that can be slid up and down with five of them

held below the middle bar and two above. Zero on each rod is represented by the

beads below the middle bar at the very bottom and the beads above at the very

top. The numbers one to four are repsented by sliding one–four beads below the

middle bar up and five is given be sliding one bead above down. The numbers six

to nine are represented by one bead above the middle bar slid down and one–four

beads below slid up. The first and last beads on each rod are never used or are

only used cosmetically during a calculation. The Japanese abacus, which was

modeled on the Chinese abacus, in fact has twenty-one rods, with only five beads
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Fig. 1.4 A sketch of a

Chinese abacus with

the number 15 963.82

shown.

on each rod, one above and four below the middle bar. Dots are marked on the

middle bar for the decimal point and for every four orders (ten thousands) of

digits. The abacus had to be replaced by the slide rule or numerical tables when

a calcualtion went beyond the four basic operations even though later versions

of the Chinese abacus could also be used to evaluate square roots and cubic

roots.

The slide rule, which is considered to be the next major advance in calculat-

ing devices, was introduced by the Englishmen Edmund Gunter and Reverend

William Oughtred in the mid-seventeenth century based on the logarithmic table

published by Scottish mathematician John Napier in a book in the early seven-

teenth century. Over the next several hundred years, the slide rule was improved

and used worldwide to deliver the impressive computations needed, especially

during the Industrial Revolution. At about the same time as the introduction of the

slide rule, Frenchman Blaise Pascal invented the mechanical calculating machine

with gears of different sizes. The mechanical calculating machine was enhanced

and applied extensively in heavy-duty computing tasks before digital computers

came into existence.

The concept of an all-purpose, automatic, and programmable computing ma-

chine was introduced by British mathematician and astronomer Charles Babbage

in the early nineteenth century. After building part of a mechanical calculating

machine that he called a difference engine, Babbage proposed constructing a

computing machine, called an analytical engine, which could be programmed to

perform any type of computation. Unfortunately, the technology at the time was

not advanced enough to provide Babbage with the necessary machinery to realize

his dream. In the late nineteenth century, Spanish engineer Leonardo Torres y

Quevedo showed that it might be possible to construct the machine conceived

earlier by Babbage using the electromechanical technology that had just been

developed. However, he could not actually build the whole machine either, due

to lack of funds. American engineer and inventor Herman Hollerith built the

very first electromechanical counting machine, which was commisioned by the

US federal government for sorting the population in the 1890 American census.

Hollerith used the profit obtained from selling this machine to set up a com-

pany, the Tabulating Machine Company, the predecessor of IBM (International
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Business Machines Corporation). These developments continued in the early

twentieth century. In the 1930s, scientists and engineers at IBM built the first

difference tabulator, while researchers at Bell Laboratories built the first relay

calculator. These were among the very first electromechanical calculators built

during that time.

The real beginning of the computer era came with the advent of electronic

digital computers. John Vincent Atanasoff, a theoretical physicist at the Iowa

State University at Ames, invented the electronic digital computer between 1937

and 1939. The history regarding Atanasoff’s accomplishment is described in

Mackintosh (1987), Burks and Burks (1988), and Mollenhoff (1988). Atanasoff

introduced vacuum tubes (instead of the electromechanical devices used ear-

lier by other people) as basic elements, a separated memory unit, and a scheme

to keep the memory updated in his computer. With the assistance of Clifford

E. Berry, a graduate assistant, Atanasoff built the very first electronic computer

in 1939. Most computer history books have cited ENIAC (Electronic Numeri-

cal Integrator and Computer), built by John W. Mauchly and J. Presper Eckert

with their colleagues at the Moore School of the University of Pennsylvania in

1945, as the first electronic computer. ENIAC, with a total mass of more than

30 tons, consisited of 18 000 vacuum tubes, 15 000 relays, and several hundred

thousand resistors, capacitors, and inductors. It could complete about 5000 ad-

ditions or 400 multiplications in one second. Some very impressive scientific

computations were performed on ENIAC, including the study of nuclear fis-

sion with the liquid drop model by Metropolis and Frankel (1947). In the early

1950s, scientists at Los Alamos built another electronic digital computer, called

MANIAC I (Mathematical Analyzer, Numerator, Integrator, and Computer),

which was very similar to ENIAC. Many important numerical studies, includ-

ing Monte Carlo simulation of classical liquids (Metropolis et al., 1953), were

completed on MANIAC I.

All these research-intensive activities accomplished in the 1950s showed that

computation was no longer just a supporting tool for scientific research but rather

an actual means of probing scientific problems and predicting new scientific

phenomena. A new branch of science, computational science, was born. Since

then, the field of scientific computing has developed and grown rapidly.

The computational power of new computers has been increasing exponentially.

To be specific, the computing power of a single computer unit has doubled almost

every 2 years in the last 50 years. This growth followed the observation of Gordon

Moore, co-founder of Intel, that information stored on a given amount of silicon

surface had doubled and would continue to do so in about every 2 years since the

introduction of the silicon technology (nicknamed Moore’s law). Computers with

transistors replaced those with vacuum tubes in the late 1950s and early 1960s,

and computers with very-large-scale integrated circuits were built in the 1970s.

Microprocessors and vector processors were built in the mid-1970s to set the
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stage for personal computing and supercomputing. In the 1980s, microprocessor-

based personal computers and workstations appeared. Now they have penetrated

all aspects of our lives, as well as all scientific disciplines, because of their afford-

ability and low maintenance cost. With technological breakthroughs in the RISC

(Reduced Instruction Set Computer) architecture, cache memory, and multiple

instruction units, the capacity of each microprocessor is now larger than that of a

supercomputer 10 years ago. In the last few years, these fast microprocessors have

been combined to form parallel or distributed computers, which can easily deliver

a computing power of a few tens of gigaflops (109 floating-point operations per

second). New computing paradigms such as the Grid were introduced to utilize

computing resources on a global scale via the Internet (Foster and Kesselman,

2003; Abbas, 2004).

Teraflop (1012 floating-point operations per second) computers are now emerg-

ing. For example, Q, a newly installed computer at the Los Alamos National

Laboratory, has a capacity of 30 teraflops. With the availability of teraflop com-

puters, scientists can start unfolding the mysteries of the grand challenges, such as

the dynamics of the global environment; the mechanism of DNA (deoxyribonu-

cleic acid) sequencing; computer design of drugs to cope with deadly viruses;

and computer simulation of future electronic materials, structures, and devices.

Even though there are certain problems that computers cannot solve, as pointed

out by Harel (2000), and hardware and software failures can be fatal, the human

minds behind computers are nevertheless unlimited. Computers will never replace

human beings in this regard and the quest for a better understanding of Nature

will go on no matter how difficult the journey is. Computers will certainly help

to make that journey more colorful and pleasant.

1.3 Computer algorithms and languages

Before we can use a computer to solve a specific problem, we must instruct the

computer to follow certain procedures and to carry out the desired computational

task. The process involves two steps. First, we need to transform the problem,

typically in the form of an equation, into a set of logical steps that a computer

can follow; second, we need to inform the computer to complete these logical

steps.

Computer algorithms

The complete set of the logical steps for a specific computational problem is called

a computer or numerical algorithm. Some popular numerical algorithms can be

traced back over a 100 years. For example, Carl Friedrich Gauss (1866) pub-

lished an article on the FFT (fast Fourier transform) algorithm (Goldstine, 1977,
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pp. 249–53). Of course, Gauss could not have envisioned having his algorithm

realized on a computer.

Let us use a very simple and familiar example in physics to illustrate how a

typical numerical algorithm is constructed. Assume that a particle of mass m is

confined to move along the x axis under a force f (x). If we describe its motion

with Newton’s equation, we have

f = ma = m
dv

dt
, (1.4)

where a and v are the acceleration and velocity of the particle, respectively, and

t is the time. If we divide the time into small, equal intervals τ = ti+1 − ti , we

know from elementary physics that the velocity at time ti is approximately given

by the average velocity in the time interval [ti , ti+1],

vi ≃
xi+1 − xi

ti+1 − ti

=
xi+1 − xi

τ
; (1.5)

the corresponding acceleration is approximately given by the average acceleration

in the same time interval,

ai ≃
vi+1 − vi

ti+1 − ti

=
vi+1 − vi

τ
, (1.6)

as long as τ is small enough. The simplest algorithm for finding the position and

velocity of the particle at time ti+1 from the corresponding quantities at time ti

is obtained after combining Eqs. (1.4), (1.5), and (1.6), and we have

xi+1 = xi + τ vi , (1.7)

vi+1 = vi +
τ

m
fi , (1.8)

where fi = f (xi ). If the initial position and velocity of the particle are given and

the corresponding quantities at some later time are sought (the initial-value prob-

lem), we can obtain them recursively from the algorithm given in Eqs. (1.7) and

(1.8). This algorithm is commonly known as the Euler method for the initial-value

problem. This simple example illustrates how most algorithms are constructed.

First, physical equations are transformed into discrete forms, namely, difference

equations. Then the desired physical quantities or solutions of the equations at

different variable points are given in a recursive manner with the quantities at a

later point expressed in terms of the quantities from earlier points. In the above

example, the position and velocity of the particle at ti+1 are given by the position

and velocity at ti , provided that the force at any position is explicitly given by a

function of the position. Note that the above way of constructing an algorithm is

not limited to one-dimensional or single-particle problems. In fact, we can im-

mediately generalize this algorithm to two-dimensional and three-dimensional

problems, or to the problems involving more than one particle, such as the
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motion of a projectile or a system of three charged particles. The generalized

version of the above algorithm is

Ri+1 = Ri + τVi , (1.9)

Vi+1 = Vi + τAi , (1.10)

where R = (r1, r2, . . . , rn) is the position vector of all the n particles in the

system; V = (v1, v2, . . . , vn) and A = (a1, a2, . . . , an), with a j = f j/m j for j =
1, 2, . . . , n, are the corresponding velocity and acceleration vectors, respectively.

From a theoretical point of view, the Turing machine is an abstract represen-

tation of a universal computer and also a device to autopsy any algorithm. The

concept was introduced by Alan Turing (1936–7) with a description of the uni-

versal computer that consists of a read and write head and a tape with an infinite

number of units of binaries (0 or 1). The machine is in a specified state for a

given moment of operation and follows instructions prescribed by a finite table.

A computer algorithm is a set of logical steps that can be achieved by the Turing

machine. Logical steps that cannot be achieved by the Turing machine belong to

the class of problems that are not solvable by computers. Some such unsolvable

problems are discussed by Harel (2000).

The logical steps in an algorithm can be sequential, parallel, or iterative (im-

plicit). How to utilize the properties of a given problem in constructing a fast and

accurate algorithm is a very important issue in computational science. It is hoped

that the examples discussed in this book will help students learn how to establish

efficient and accurate algorithms as well as how to write clean and structured

computer programs for most problems encountered in physics and related fields.

Computer languages

Computer programs are the means through which we communicate with comput-

ers. The very first computer program was written by Ada Byron, the Countess of

Lovelace, and was intended for the analytical engine proposed by Babbage in the

mid-1840s. To honor her achievement, an object-oriented programming language

(Ada), initially developed by the US military, is named after her. A computer pro-

gram or code is a collection of statements, typically written in a well-defined com-

puter programming language. Programming languages can be divided into two

major categories: low-level languages designed to work with the given hardware,

and high-level languages that are not related to any specific hardware.

Simple machine languages and assembly languages were the only ones avail-

able before the development of high-level languages. A machine language is

typically in binary form and is designed to work with the unique hardware of a

computer. For example, a statement, such as adding or multiplying two integers,

is represented by one or several binary strings that the computer can recognize

and follow. This is very efficient from computer’s point of view, but extremely
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labor-intensive from that of a programmer. To remember all the binary strings

for all the statements is a nontrivial task and to debug a program in binaries is

a formidable task. Soon after the invention of the digital computer, assembly

languages were introduced to increase the efficiency of programming and debug-

ging. They are more advanced than machine languages because they have adopted

symbolic addresses. But they are still related to a certain architecture and wiring

of the system. A translating device called an assembler is needed to convert an

assembly code into a native machine code before a computer can recognize the

instructions. Machine languages and assembly languages do not have portability;

a program written for one kind of computers could never be used on others.

The solution to such a problem is clearly desirable. We need high-level lan-

guages that are not associated with the unique hardware of a computer and that can

work on all computers. Ideal programming languages would be those that are very

concise but also close to the logic of human languages. Many high-level program-

ming languages are now available, and the choice of using a specific programming

language on a given computer is more or less a matter of personal taste. Most

high-level languages function similarly. However, for a researcher who is working

at the cutting edge of scientific computing, the speed and capacity of a computing

system, including the efficiency of the language involved, become critical.

A modern computer program conveys the tasks of an algorithm for a compu-

tational problem to a computer. The program cannot be executed by the computer

before it is translated into the native machine code. A translator, a program called

a compiler, is used to translate (or compile) the program to produce an executable

file in binaries. Most compilers also have an option to produce an objective file

first and then link it with other objective files and library routines to produce a

combined executable file. The compiler is able to detect most errors introduced

during programming, that is, the process of writing a program in a high-level

language. After running the executable program, the computer will output the

result as instructed.

The newest programming language that has made a major impact in the last few

years is Java, an object-oriented, interpreted language. The strength of Java lies

in its ability to work with web browsers, its comprehensive GUI (graphical user

interface), and its built-in security and network support. Java is a truly universal

language because it is fully platform-independent: “write once, run everywhere”

is the motto that Sun Microsystems uses to qualify all the features in Java. Both

the source code and the compiled code can run on any computer that has Java

installed with exactly the same result. The Java compiler converts the source code

(file.java) into a bytecode (file.class), which contains instructions in

fixed-length byte strings and can be interpreted/executed on any computer under

the Java interpreter, called JVM (Java Virtual Machine).

There are many advantages in Java, and its speed in scientific programming

has been steadily increased over the last few years. At the moment, a carefully

written Java program, combined with static analysis, just-in-time compiling, and
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instruction-level optimization, can deliver nearly the same raw speed as the in-

cumbent C or Fortran (Boisvert et al., 2001).

Let us use the algorithm that we highlighted earlier for a particle moving

along the x axis to show how an algorithm is translated into a program in Java.

For simplicity, the force is taken to be an elastic force f (x) = −kx , where k is

the elastic constant. We will also use m = k = 1 for convenience. The following

Java program is an implementation of the algorithm given in Eqs. (1.7) and (1.8);

each statement in the program is almost self-explanatory.

// An example of studying the motion of a particle in

// one dimension under an elastic force.

import java.lang.*;
public class Motion {

static final int n = 100000, j = 500;
public static void main(String argv[]) {

double x[] = new double[n+1];
double v[] = new double[n+1];

// Assign time step and initial position and velocity
double dt = 2*Math.PI/n;
x[0] = 0;
v[0] = 1;

// Calculate other position and velocity recursively
for (int i=0; i<n; ++i) {

x[i+1] = x[i]+v[i]*dt;
v[i+1] = v[i]-x[i]*dt;

}

// Output the result in every j time steps
double t = 0;
double jdt = j*dt;
for (int i=0; i<=n; i+=j) {

System.out.println(t +" " + x[i] + " " + v[i]);
t += jdt;

}
}

}

The above program contains some key elements of a typical Java program. The

first line imports the Java language package that contains the major features and

mathematical functions in the language. The program starts with a public class

declaration with a main method under this class. Arrays are treated as objects.

For a good discussion on the Java programming language, see van der Linden

(2004), and for its relevance in scientific computing, see Davies (1999).

The file name of a program in Java must be the same as that of the only public

class in the code. In the above example, the file name is thereforeMotion.java.

After the program is compiled with the command javac Motion.java, a

bytecode is created under the file name Motion.class. The bytecode can then

be interpreted/executed with the command java Motion. Some of the newest

compilers create an executable file, native machine code in a binary form to speed
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up the computation. The executable file is then machine-dependent. Figure 1.5

is a plot of the output from the above program together with the analytical result.

The numerical result generated from the program agrees well with the analytical

result. Because the algorithm we have used here is a very simple one, we have to

use a very small time step in order to obtain the result with a reasonable accuracy.

In Chapter 4, we will introduce and discuss more efficient algorithms for solving

differential equations. With these more efficient algorithms, we can usually reach

the same accuracy with a very small number of mesh points in one period of the

motion, for example, 100 points instead of 100 000.

There are other high-level programming languages that are used in scien-

tific computing. The longest-running candidate is Fortran (Formula translation),

which was introduced in 1957 as one of the earliest high-level languages and

is still one of the primary languages in computational science. Of course, the

Fortran language has evolved from its very early version, known as Fortran 66, to

Fortran 77, which has been the most popular language for scientific computing in

the last 30 years. For a modern discussion on the Fortran language and its applica-

tions, see Edgar (1992). The newest version of Fortran, known as Fortran 90, has

absorbed many important features for parallel computing. Fortran 90 has many

extensions over the standard Fortran 77. Most of these extensions are established

based on the extensions already adopted by computer manufacturers to enhance

their computer performance. Efficient compilers with a full implementation of

Fortran 90 are available for all major computer systems. A complete discussion

on Fortran 90 can be found in Brainerd, Goldberg, and Adams (1996). Two new

variants of Fortran 90 have now been introduced, Fortran 95 and Fortran 2000

(Metcalf, Reid, and Cohen, 2004), which are still to be ratified. In the last 15 years,

there have been some other new developments in parallel and distributed com-

puting with new protocols and environments under various software packages,

which we will leave to the readers to discover and explore.
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The other popular programming language for scientific computing is the

C programming language. Most system programmers and software developers

prefer to use C in developing system and application software because of its

high flexibility (Kernighan and Ritchie, 1988). For example, the Unix operating

system (Kernighan and Pike, 1984) now used on almost all workstations and

supercomputers was initially written in C.

In the last 50 years of computer history, many programming languages have

appeared and then disappeared for one reason or another. Several languages have

made significant impact on how computing tasks are achieved today. Examples

include Cobol, Algol, Pascal, and Ada. Another object-oriented language is C++,

which is based on C and contains valuable extensions in several important aspects

(Stroustrup, 2000). At the moment, C++ has perhaps been the most popular

language for game developers.

Today, Fortran is still by far the dominant programming language in scien-

tific computing for two very important reasons: Many application packages are

available in Fortran, and the structure of Fortran is extremely powerful in deal-

ing with equations. However, the potential of Java and especially its ability to

work with the Internet through applets and servlets has positioned it ahead of

any other language. For example, Java is clearly the front runner for the newest

senario in high-performance computing of constructing global networks of com-

puters through the concept of the Grid (Foster and Kesselman, 2003; Abbas,

2004). More scientisits, especially those emerging from colleges or graduate

schools, are expected to use Java as their first, primary programming language.

So the choice of using Java as the instructional languge here has been made with

much thought. Readers who are familiar with any other high-level programming

language should have no difficulty in understanding the logical structures and

contents of the example programs in the book. The reason is very simple. The

logic in all high-level languages is similar to the logic of our own languages. All

the simple programs written in high-level languages should be self-explanatory,

as long as enough commentary lines are provided.

There have been some very exciting new developments in Java. The new

version of Java, Java 2 or JDK (Java Development Kit) 1.2, has introduced

BigInteger and BigDecimal classes that allow us to perform computations

with integers and floating-point numbers to any accuracy. This is an important

feature and has opened the door to better scientific programming styles and more

durable codes. JDK 1.4 has also implemented strictfp in order to relax the

restricition in regular floating-point data. Many existing classes have also been

improved to provide better performance or to eliminate the instability of some

earlier classes. Many vendors are developing new compilers for Java to implement

just-in-time compiling, static analysis, and instruction-level optimization to im-

prove the running speed of Java. Some of these new compilers are very successful

in comparison with the traditional Fortran and C compilers on key problems in

scientific computing. Many new applications in science are being developed in
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Java worldwide. It is the purpose of this book to provide students with building

blocks for developing practical skills in scientific computing, which has become

a critical pillar in fundamental research, knowledge development, and emerging

technology.

Exercises

1.1 The value of π can be estimated from the calculations of the side lengths

of regular polygons inscribing a circle. In general,

πk = π∞ +
c1

k
+

c2

k2
+

c3

k3
+ · · · ,

where πk is the ratio of the perimeter to the diameter of a regular

k-sided polygon. Determine the approximate value of π ≃ π∞ from

π8 = 3.061 467, π16 = 3.121 445, π32 = 3.136 548, and π64 = 3.140 331

of the inscribing polygons. Which ci is most significant and why? What

happens if we use the values from the polygons circumscribing the cir-

cle, for example, π8 = 3.313 708, π16 = 3.182 598, π32 = 3.151 725, and

π64 = 3.144 118?

1.2 Show that the Euler method for Newton’s equation in Section 1.3 is accurate

up to a term on the order of (ti+1 − ti )
2. Discuss how to improve its accuracy.

1.3 An efficient program should always avoid unnecessary operations, such as

the calculation of any constant or repeated access to arrays, subprograms,

library routines, or to other objects inside a loop. The problem becomes

worse if the loop is long or inside other loops. Examine the example pro-

grams in this chapter and Chapters 2 and 3 and improve the efficiency of

these programs if possible.

1.4 Several mathematical constants are used very frequently in science, such

as π , e, and the Euler constant γ = limn→∞
(
∑n

k=1 k−1 − ln n
)

. Find three

ways of creating each of π , e, and γ in a code. After considering language

specifications, numerical accuracy, and efficiency, which way of creating

each of them is most appropriate? If we need to use such a constant many

times in a program, should the constant be created once and stored under

a variable to be used over and over again, or should it be created/accessed

every time it is needed?

1.5 Translate the Java program in Section 1.3 for a particle moving in one

dimension into another programming language.

1.6 Modify the program given in Section 1.3 to study a particle, under a uniform

gravitational field vertically and a resistive force fr = −κvv, where v (v) is

the speed (velocity) of the particle and κ is a positive parameter. Analyze

the height dependence of the speed of a raindrop with different m/κ , where

m is the mass of the raindrop, taken to be a constant for simplicity. Plot the
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terminal speed of the raindrop against m/κ , and compare it with the result

of free falling.

1.7 The dynamics of a comet is governed by the gravitational force between the

comet and the Sun, f = −G Mmr/r3, where G = 6.67 × 10−11 N m2/kg2

is the gravitational constant, M = 1.99 × 1030 kg is the mass of the Sun,

m is the mass of the comet, r is the position vector of the comet measured

from the Sun, and r is the magnitude of r. Write a program to study the

motion of Halley’s comet that has an aphelion (the farthest point from the

Sun) distance of 5.28 × 1012 m and an aphelion velocity of 9.12 × 102 m/s.

What are the proper choices of the time and length units for the problem?

Discuss the error generated by the program in each period of Halley’s comet.

1.8 People have made motorcycle jumps over long distances. We can build

a model to study these jumps. The air resistance on a moving object is

given by fr = −cAρvv/2, where v (v) is the speed (velocity) and A is

cross section of the moving object, ρ is the density of the air, and c is a

coefficient on the order of 1 for all other uncounted factors. Assuming that

the cross section is A = 0.93 m2, the maximum taking-off speed of the

motorcycle is 67 m/s, the air density is ρ = 1.2 kg/m3, the combined mass

of the motorcycle and the person is 250 kg, and the coefficient c is 1, find

the tilting angle of the taking-off ramp that can produce the longest range.

1.9 One way to calculate π is by randomly throwing a dart into the unit square

defined by x ∈ [0, 1] and y ∈ [0, 1] in the xy plane. The chance of the

dart landing inside the unit circle centered at the origin of the coordinates

is π/4, from the comparison of the areas of one quarter of the circle and

the unit square. Write a program to calculate π in such a manner. Use the

random-number generator provided in the programming language selected

or the one given in Chapter 2.

1.10 Object-oriented languages are convenient for creating applications that are

icon-driven. Write a Java application that simulates a Chinese abacus. Test

your application by performing the four basic math operations (addition,

subtraction, multiplication, and division) on your abacus.



Chapter 2

Approximation of a function

This chapter and the next examine the most commonly used methods in com-

putational science. Here we concentrate on some basic aspects associated with

numerical approximation of a function, interpolation, least-squares and spline

approximations of a curve, and numerical representations of uniform and other

distribution functions. We are only going to give an introductory description

of these topics here as a preparation for other chapters and many of the issues

will be revisited in a greater depth later. Note that some of the material covered

here would require much more space if discussed thoroughly. For example, com-

plete coverage of the issues involved in creating good random-number generators

could form a separate book. Therefore, we only focus on the basics of the topics

here.

2.1 Interpolation

In numerical analysis, the results obtained from computations are always approx-

imations of the desired quantities and in most cases are within some uncertainties.

This is similar to experimental observations in physics. Every single physical

quantity measured carries some experimental error. We constantly encounter sit-

uations in which we need to interpolate a set of discrete data points or to fit them

to an adjustable curve. It is extremely important for a physicist to be able to draw

conclusions based on the information available and to generalize the knowledge

gained in order to predict new phenomena.

Interpolation is needed when we want to infer some local information from a

set of incomplete or discrete data. Overall approximation or fitting is needed

when we want to know the general or global behavior of the data. For ex-

ample, if the speed of a baseball is measured and recorded every 1/100 of a

second, we can then estimate the speed of the baseball at any moment by in-

terpolating the recorded data around that time. If we want to know the overall

trajectory, then we need to fit the data to a curve. In this section, we will dis-

cuss some very basic interpolation schemes and illustrate how to use them in

physics.

16
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Linear interpolation

Consider a discrete data set given from a discrete function fi = f (xi ) with

i = 0, 1, . . . , n. The simplest way to obtain the approximation of f (x) for

x ∈ [xi , xi+1] is to construct a straight line between xi and xi+1. Then f (x)

is given by

f (x) = fi +
x − xi

xi+1 − xi

( fi+1 − fi ) +� f (x), (2.1)

which of course is not accurate enough in most cases but serves as a good start in

understanding other interpolation schemes. In fact, any value of f (x) in the region

[xi , xi+1] is equal to the sum of the linear interpolation in the above equation and

a quadratic contribution that has a unique curvature and is equal to zero at xi and

xi+1. This means that the error � f (x) in the linear interpolation is given by

� f (x) =
γ

2
(x − xi )(x − xi+1), (2.2)

with γ being a parameter determined by the specific form of f (x). If we draw a

quadratic curve passing through f (xi ), f (a), and f (xi+1), we can show that the

quadrature

γ = f ′′(a), (2.3)

with a ∈ [xi , xi+1], as long as f (x) is a smooth function in the region [xi , xi+1];

namely, the kth-order derivative f (k)(x) exists for any k. This is the result of

the Taylor expansion of f (x) around x = a with the derivatives f (k)(a) = 0 for

k > 2. The maximum error in the linear interpolation of Eq. (2.1) is then bounded

by

|� f (x)| ≤
γ1

8
(xi+1 − xi )

2, (2.4)

where γ1 = max[| f ′′(x)|] with x ∈ [xi , xi+1]. The upper bound of the error in

Eq. (2.4) is obtained from Eq. (2.2) with γ replaced by γ1 and x solved from

d� f (x)/dx = 0. The accuracy of the linear interpolation can be improved by

reducing the interval hi = xi+1 − xi . However, this is not always practical.

Let us take f (x) = sin x as an illustrative example here. Assuming that xi =
π/4 and xi+1 = π/2, we have fi = 0.707 and fi+1 = 1.000. If we use the linear

interpolation scheme to find the approximate value of f (x) at x = 3π/8, we have

the interpolated value f (3π/8) ≃ 0.854 from Eq. (2.1). We know, of course, that

f (3π/8) = sin(3π/8) = 0.924. The actual difference is |� f (x)| = 0.070, which

is smaller than the maximum error estimated with Eq. (2.4), 0.077.

The above example is a very simple one, showing how most interpolation

schemes work. A continuous curve (a straight line in the above example) is

constructed from the given discrete set of data and then the interpolated value

is read off from the curve. The more points there are, the higher the order of

the curve can be. For example, we can construct a quadratic curve from three
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data points and a cubic curve from four data points. One way to achieve higher-

order interpolation is through the Lagrange interpolation scheme, which is a

generalization of the linear interpolation that we have just discussed.

The Lagrange interpolation

Let us first make an observation about the linear interpolation discussed in the

preceding subsection. The interpolated function actually passes through the two

points used for the interpolation. Now if we use three points for the interpolation,

we can always construct a quadratic function that passes through all the three

points. The error is now given by a term on the order of h3, where h is the larger

interval between any two nearest points, because an x3 term could be added to

modify the curve to pass through the function point if it were actually known. In

order to obtain the generalized interpolation formula passing through n + 1 data

points, we rewrite the linear interpolation of Eq. (2.1) in a symmetric form with

f (x) =
x − xi+1

xi − xi+1

fi +
x − xi

xi+1 − xi

fi+1 +� f (x)

=
i+1
∑

j=i

f j p1 j (x) +� f (x), (2.5)

where

p1 j (x) =
x − xk

x j − xk

, (2.6)

with k 	= j . Now we can easily generalize the expression to an nth-order curve

that passes through all the n + 1 data points,

f (x) =
n
∑

j=0

f j pnj (x) +� f (x), (2.7)

where pnj (x) is given by

pnj (x) =
n
∏

k 	= j

x − xk

x j − xk

. (2.8)

In other words, � f (x j ) = 0 at all the data points. Following a similar argument

to that for linear interpolation in terms of the Taylor expansion, we can show that

the error in the nth-order Lagrange interpolation is given by

� f (x) =
γ

(n + 1)!
(x − x0)(x − x1) · · · (x − xn), (2.9)

where

γ = f (n+1)(a), (2.10)

with a ∈ [x0, xn]. Note that f (a) is a point passed through by the (n + 1)th-order

curve that also passes through all the f (xi ) with i = 0, 1, . . . , n. Therefore, the

maximum error is bounded by

|� f (x)| ≤
γn

4(n + 1)
hn+1, (2.11)
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Fig. 2.1 The hierarchy

in the Aitken scheme

for n + 1 data points.

where γn = max[| f (n+1)(x)|] with x ∈ [x0, xn] and h is the largest hi = xi+1 −
xi . The above upper bound can be obtained by replacing γ with γn in Eq. (2.9)

and then maximizing the pairs (x − x0)(x − xn), (x − x1)(x − xn−1), . . . , and

(x − x(n−1)/2)(x − x(n+1)/2) individually for an even n + 1. For an odd n + 1, we

can choose the maximum value nh for the x − xi that is not paired. Equation (2.7)

can be rewritten into a power series

f (x) =
n
∑

k=0

ak x k +� f (x), (2.12)

with ak given by expanding pnj (x) in Eq. (2.7). Note that the generalized form

reduces to the linear case if n = 1.

The Aitken method

One way to achieve the Lagrange interpolation efficiently is by performing a

sequence of linear interpolations. This scheme was first developed by Aitken

(1932). We can first work out n linear interpolations with each constructed from

a neighboring pair of the n + 1 data points. Then we can use these n interpolated

data points to achieve another level of n − 1 linear interpolations with the next

neighboring points of xi . We repeat this process until we obtain the final result

after n levels of consecutive linear interpolations. We can summarize the scheme

in the following equation:

fi ... j =
x − x j

xi − x j

fi ... j−1 +
x − xi

x j − xi

fi+1... j , (2.13)

with fi = f (xi ) to start. If we want to obtain f (x) from a given set fi for i =
0, 1, . . . , n, we can carry out n levels of consecutive linear interpolations as shown

in Fig. 2.1, in which every column is constructed from the previous column by
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Table 2.1. Result of the example with the Aitken method

xi fi fi j fi jk fi jkl fi jklm

0.0 1.000 000

0.889 246

0.5 0.938 470 0.808 792

0.799 852 0.807 272

1.0 0.765 198 0.806 260 0.807 473

0.815 872 0.807 717

1.5 0.511 828 0.811 725

0.857 352

2.0 0.223 891

linear interpolations of the adjacent values. For example,

f012 =
x − x2

x0 − x2

f01 +
x − x0

x2 − x0

f12 (2.14)

and

f01234 =
x − x4

x0 − x4

f0123 +
x − x0

x4 − x0

f1234. (2.15)

It can be shown that the consecutive linear interpolations outlined in Fig. 2.1

recover the standard Lagrange interpolation. The Aitken method also provides a

way of estimating the error of the Lagrange interpolation. If we use the five-point

case, that is, n + 1 = 5, as an illustrative example, the error in the Lagrange

interpolation scheme is roughly given by

� f (x) ≈
| f01234 − f0123| + | f01234 − f1234|

2
, (2.16)

where the differences are taken from the last two columns of the hierarchy.

Let us consider the evaluation of f (0.9), from the given set f (0.0) =
1.000 000, f (0.5) = 0.938 470, f (1.0) = 0.765 198, f (1.5) = 0.511 828, and

f (2.0) = 0.223 891, as an actual numerical example. These are the values of

the zeroth-order Bessel function of the first kind, J0(x). All the consecutive lin-

ear interpolations of the data with the Aitken method are shown in Table 2.1.

The error estimated from the differences of the last two columns of the data

in the table is

� f (x) ≈
|0.807 473 − 0.807 273| + |0.807 473 − 0.807 717|

2
≃ 2 × 10−4.

The exact result of f (0.9) is 0.807 524. The error in the interpolated value is

|0.807 473 − 0.807 524| ≃ 5 × 10−5, which is a little smaller than the estimated

error from the differences of the last two columns in Table 2.1. The following



2.1 Interpolation 21

program is an implementation of the Aitken method for the Lagrange interpola-

tion, using the given example of the Bessel function as a test.

// An example of extracting an approximate function
// value via the Lagrange interpolation scheme.

import java.lang.*;

public class Lagrange {
public static void main(String argv[]) {

double xi[] = {0, 0.5, 1, 1.5, 2};

double fi[] = {1, 0.938470, 0.765198, 0.511828,
0.223891};

double x = 0.9;

double f = aitken(x, xi, fi);
System.out.println("Interpolated value: " + f);

}

// Method to carry out the Aitken recursions.

public static double aitken(double x, double xi[],
double fi[]) {
int n = xi.length-1;
double ft[] = (double[]) fi.clone();
for (int i=0; i<n; ++i) {

for (int j=0; j<n-i; ++j) {
ft[j] = (x-xi[j])/(xi[i+j+1]-xi[j])*ft[j+1]

+(x-xi[i+j+1])/(xi[j]-xi[i+j+1])*ft[j];
}

}
return ft[0];

}
}

After running the above program, we obtain the expected result, f (0.9) ≃
0.807 473. Even though we have a quite accurate result here, the interpolation

can be influenced significantly by the rounding error in some cases if the Aitken

procedure is carried out directly. This is due to the change in the interpolated

value being quite small compared to the actual value of the function during each

step of the consecutive linear interpolations. When the number of data points

involved becomes large, the rounding error starts to accumulate. Is there a better

way to achieve the interpolation?

A better way is to construct an indirect scheme that improves the interpolated

value at every step by updating the differences of the interpolated values from

the adjacent columns, that is, by improving the corrections of the interpolated

values over the preceding column rather than the interpolated values themselves.

The effect of the rounding error is then minimized. This procedure is accom-

plished with the up-and-down method, which utilizes the upward and downward

corrections

�+
i j = f j ... j+i − f j+1... j+i , (2.17)

�−
i j = f j ... j+i − f j ... j+i−1, (2.18)
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Fig. 2.2 The hierarchy for

both �+
i j and �−

i j in the

upward and downward

correction method for

n + 1 data points.

defined at each step from the differences between two adjacent columns. Here

�−
i j is the downward (going down along the triangle in Fig. 2.1) correction and

�+
i j is the upward (going up along the triangle in Fig. 2.1) correction. The index

i here is for the level of correction and j is for the element in each level. The

hierarchy for both �+
i j and �−

i j is show in Fig. 2.2. It can be shown from the

definitions of �+
i j and �−

i j that they satisfy the following recursion relations:

�+
i j =

xi+ j − x

xi+ j − x j

(�+
i−1 j −�−

i−1 j+1), (2.19)

�−
i j =

x j − x

xi+ j − x j

(�+
i−1 j −�−

i−1 j+1), (2.20)

with the starting column �±
0 j = f j . Here x j is chosen as the data point closest

to x . In general, we use the upward correction as the first correction if x < x j .

Otherwise, the downward correction is used. Then we alternate the downward

and upward corrections in the steps followed until the final result is reached. If the

upper (lower) boundary of the triangle in Fig. 2.2 is reached during the process,

only downward (upward) corrections can be used afterward.

We can use the numerical values of the Bessel function in Table 2.1 to illustrate

the method. Assume that we are still calculating f (x) with x = 0.9. It is easy to

see that the starting point should be x j = 1.0, because it is closest to x = 0.9. So

the zeroth-order approximation of the interpolated data is f (x) ≈ f (1.0). The

first correction to f (x) is then �+
11. In the next step, we alternate the direction of

the correction and use the downward correction, �−
21 in this example, to improve

f (x) further. We can continue the procedure with another upward correction

and another downward correction to reach the final result. We can write a simple

program to accomplish what we have just described. It is a good practice to write a

method, function, or subroutine, depending on the particular language used, with

x , xi , and fi , for i = 0, 1, . . . , n, being the input and f (x) being the output. The
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method can then be used for any interpolation task. Here is an implementation

of the up-and-down method in Java.

// Method to complete the interpolation via upward and
// downward corrections.

public static double upwardDownward(double x,

double xi[], double fi[]) {

int n = xi.length-1;
double dp[][] = new double[n+1][];

double dm[][] = new double[n+1][];

// Assign the 1st columns of the corrections

dp[0] = (double[]) fi.clone();

dm[0] = (double[]) fi.clone();

// Find the closest point to x

int j0 = 0, k0 = 0;
double dx = x-xi[0];
for (int j=1; j<=n; ++j) {

double dx1 = x-xi[j];
if (Math.abs(dx1)<Math.abs(dx)) {

j0 = j;
dx = dx1;

}
}
k0 = j0;

// Evaluate the rest of the corrections recursively
for (int i=1; i<=n; ++i) {

dp[i] = new double[n-i+1];
dm[i] = new double[n-i+1];
for (int j=0; j<n-i+1; ++j) {

double d = dp[i-1][j]-dm[i-1][j+1];
d /= xi[i+j]-xi[j];
dp[i][j] = d*(xi[i+j]-x);
dm[i][j] = d*(xi[j]-x);

}
}

// Update the interpolation with the corrections
double f = fi[j0];
for (int i=1; i<=n; ++i) {

if (((dx<0)||(k0==n)) && (j0!=0)) {
j0--;
f += dp[i][j0];
dx = -dx;

}
else {

f += dm[i][j0];
dx = -dx;
k0++;

}
}
return f;

}

We can replace the Aitken method in the earlier example program with this

method. The numerical result, with the input data from Table 2.1, is exactly the

same as the earlier result, f (0.9) = 0.807 473, as expected.
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2.2 Least-squares approximation

As we have pointed out, interpolation is mainly used to find the local approxi-

mation of a given discrete set of data. In many situations in physics we need to

know the global behavior of a set of data in order to understand the trend in a

specific measurement or observation. A typical example is a polynomial fit to a

set of experimental data with error bars.

The most common approximation scheme is based on the least squares of the

differences between the approximation pm(x) and the data f (x). If f (x) is the

data function to be approximated in the region [a, b] and the approximation is an

mth-order polynomial

pm(x) =
m
∑

k=0

ak x k, (2.21)

we can construct a function of ak for k = 0, 1, . . . ,m as

χ 2[ak] =
∫ b

a

[ pm(x) − f (x)]2 dx (2.22)

for the continuous data function f (x), and

χ2[ak] =
n
∑

i=0

[ pm(xi ) − f (xi )]
2 (2.23)

for the discrete data function f (xi ) with i = 0, 1, . . . , n. Here we have used a

generic variable ak inside a square bracket for a quantity that is a function of a set

of independent variables a0, a1, . . . , am . This notation will be used throughout

this book. Here χ2 is the conventional notation for the summation of the squares

of the deviations.

The least-squares approximation is obtained with χ2[ak] minimized with re-

spect to all the m + 1 coefficients through

∂χ 2[ak]

∂al

= 0, (2.24)

for l = 0, 1, 2, . . . ,m. The task left is to solve this set of m + 1 linear equations

to obtain all the al . This general problem of solving a linear equation set will be

discussed in detail in Chapter 5. Here we consider a special case with m = 1, that

is, the linear fit. Then we have

p1(x) = a0 + a1x, (2.25)

with

χ2[ak] =
n
∑

i=0

(a0 + a1xi − fi )
2
. (2.26)

From Eq. (2.24), we obtain

(n + 1)a0 + c1a1 − c3 = 0, (2.27)

c1a0 + c2a1 − c4 = 0, (2.28)
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where c1 =
∑n

i=0 xi , c2 =
∑n

i=0 x2
i , c3 =

∑n
i=0 fi , and c4 =

∑n
i=0 xi fi . Solving

these two equations together, we obtain

a0 =
c1c4 − c2c3

c2
1 − (n + 1)c2

, (2.29)

a1 =
c1c3 − (n + 1)c4

c2
1 − (n + 1)c2

. (2.30)

We will see an example of implementing this linear approximation in the analysis

of the data from the Millikan experiment in the next section. Note that this

approach becomes very involved when m becomes large.

Here we change the strategy and tackle the problem with orthogonal poly-

nomials. In principle, we can express the polynomial pm(x) in terms of a set of

orthogonal polynomials with

pm(x) =
m
∑

k=0

αk uk(x), (2.31)

where uk(x) is a set of real orthogonal polynomials that satisfy
∫ b

a

uk(x)w(x)ul (x) dx = 〈uk |ul〉 = δklNk , (2.32)

with w(x) being the weight whose form depends on the specific set of orthogonal

polynomials. Here δkl is the Kronecker δ function, which is 1 for k = l and 0 for

k 	= l, and Nk is a normalization constant. The coefficients αk can be formally

related to a j by a matrix transformation, and are determined with χ2[αk] mini-

mized. Note that χ2[αk] is the same quantity defined in Eq. (2.22) or Eq. (2.23)

with pm(x) from Eq. (2.31). If we want the polynomials to be orthonormal, we can

simply divide uk(x) by
√

Nk . We will also use the notation in the above equation

for the discrete case with

〈uk |ul〉 =
n
∑

i=0

uk(xi )w(xi )ul (xi ) = δklNk . (2.33)

The orthogonal polynomials can be generated with the following recursion:

uk+1(x) = (x − gk)uk(x) − hk uk−1(x), (2.34)

where the coefficients gk and hk are given by

gk =
〈xuk |uk〉
〈uk |uk〉

, (2.35)

hk =
〈xuk |uk−1〉
〈uk−1|uk−1〉

, (2.36)

with the starting u0(x) = 1 and h0 = 0. We can take the above polynomials and

show that they are orthogonal regardless of whether they are continuous or dis-

crete; they always satisfy 〈uk |ul〉 = δklNk . For simplicity, we will just consider the

case with w(x) = 1. The formalism developed here can easily be generalized to

the cases with w(x) 	= 1. We will have more discussions on orthogonal polynomi-

als in Chapter 6 when we introduce special functions and Gaussian quadratures.
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The least-squares approximation is obtained if we find all the coefficients αk that

minimize the function χ2[αk]. In other words, we would like to have

∂χ 2[αk]

∂α j

= 0 (2.37)

and

∂2χ 2[αk]

∂α2
j

> 0, (2.38)

for j = 0, 1, . . . ,m. The first-order derivative of χ2[αk] can easily be obtained.

After exchanging the summation and the integration in ∂χ2[αk]/∂α j = 0, we

have

α j =
〈u j | f 〉
〈u j |u j 〉

, (2.39)

which ensures a minimum value of χ2[αk], because ∂2χ2[αk]/∂α2
j = 2〈u j |u j 〉

is always greater than zero. We can always construct a set of discrete orthogonal

polynomials numerically in the region [a, b]. The following method is a simple

example for obtaining a set of orthogonal polynomials uk(xi ) and the coefficients

αk for a given set of discrete data fi at data points xi .

// Method to generate the orthogonal polynomials and the
// least-squares fitting coefficients.

public static double[][] orthogonalPolynomialFit

(int m, double x[], double f[]) {
int n = x.length-1;
double u[][] = new double[m+1][n+2];
double s[] = new double[n+1];
double g[] = new double[n+1];
double h[] = new double[n+1];

// Check and fix the order of the curve
if (m>n) {

m = n;
System.out.println("The highest power"

+ " is adjusted to: " + n);
}

// Set up the zeroth-order polynomial
for (int i=0; i<=n; ++i) {

u[0][i] = 1;
double stmp = u[0][i]*u[0][i];
s[0] += stmp;
g[0] += x[i]*stmp;
u[0][n+1] += u[0][i]*f[i];

}
g[0] = g[0]/s[0];
u[0][n+1] = u[0][n+1]/s[0];

// Set up the first-order polynomial
for (int i=0; i<=n; ++i) {

u[1][i] = x[i]*u[0][i]-g[0]*u[0][i];
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s[1] += u[1][i]*u[1][i];
g[1] += x[i]*u[1][i]*u[1][i];

h[1] += x[i]*u[1][i]*u[0][i];

u[1][n+1] += u[1][i]*f[i];
}

g[1] = g[1]/s[1];

h[1] = h[1]/s[0];
u[1][n+1] = u[1][n+1]/s[1];

// Obtain the higher-order polynomials recursively

if (m >= 2) {
for (int i=1; i<m; ++i) {

for (int j=0; j<=n; ++j) {
u[i+1][j] = x[j]*u[i][j]-g[i]*u[i][j]

-h[i]*u[i-1][j];

s[i+1] += u[i+1][j]*u[i+1][j];

g[i+1] += x[j]*u[i+1][j]*u[i+1][j];
h[i+1] += x[j]*u[i+1][j]*u[i][j];
u[i+1][n+1] += u[i+1][j]*f[j];

}
g[i+1] = g[i+1]/s[i+1];
h[i+1] = h[i+1]/s[i];
u[i+1][n+1] = u[i+1][n+1]/s[i+1];

}
}
return u;

}

Note that this method is only for discrete functions, with both the polynomials

and least-squares fitting coefficients returned in a combined matrix. This is the

typical case encountered in data analysis in science. Even with a continuous

variable, it is a common practice to discretize the data first and then perform

the curve fitting. However, if we must deal with continuous functions without

discretization, we can generate the orthogonal polynomials with a continuous

variable and apply an integration quadrature for the evaluation of the integrals

involved. We will discuss the methods for generating continuous polynomials

in Chapter 6. Integration quadratures will be introduced in the next section with

several practical examples. A more elaborate scheme called Gaussian quadratures

will be studied in Section 6.9.

2.3 The Millikan experiment

Here we use a set of data from the famous oil drop experiment of Millikan as an

example to illustrate how we can actually employ the least-squares approximation

discussed above. Millikan (1910) published his famous work on the oil drop

experiment in Science. Based on the measurements of the charges carried by

all the oil drops, Millikan concluded that the charge carried by any object is a

multiple (with a sign) of a fundamental charge, the charge of an electron (for

negative charges) or the charge of a proton (for positive charges). In the article,

Millikan extracted the fundamental charge by taking the average of the measured
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Table 2.2. Data from the Millikan experiment

k 4 5 6 7 8 9 10 11

qk 6.558 8.206 9.880 11.50 13.14 14.82 16.40 18.04

k 12 13 14 15 16 17 18

qk 19.68 21.32 22.96 24.60 26.24 27.88 29.52

charges carried by all the oil drops. Here we are going to take the data of Millikan

and make a least-squares fit to a straight line. Based on the fit, we can estimate

the fundamental charge and the accuracy of the Millikan measurement. Millikan

did not use the method that we are discussing here to reach his conclusion, of

course.

Each measured data point from the Millikan experiment is assigned an integer.

The measured charges qk (in units of 10−19 C) and the corresponding integers k

are listed in Table 2.2.

From the average charges of the oil drops, Millikan concluded that the funda-

mental charge is e = 1.65 × 10−19 C, which is very close to the currently accepted

value of the fundamental charge, e = 1.602 177 33(49) × 10−19 C. Let us take the

Millikan’s data obtained in Table 2.2 and apply the least-squares approximation

discussed in the preceding section for a discrete function to find the fundamental

charge and the order of the error in the measurements. We can take the linear

equation

qk = ke +�qk (2.40)

as the approximation of the measured data. For simplicity, �qk is taken as a

constant �q to represent the overall error associated with the measurement. We

leave the problem with different �qk as an exercise for the reader. Note that if

we fit the data to a straight line in the xy plane, �q is the intercept on the y axis.

The following program applies the least-squares approximation and calculates the

fundamental charge e and the overall error �q using the data from the Millikan

experiment.

// An example of applying the least-squares approximation
// to the Millikan data on a straight line q=k*e+dq.

import java.lang.*;
public class Millikan {

public static void main(String argv[]) {
double k[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18};
double q[] = {6.558, 8.206, 9.880, 11.50, 13.14,

14.81, 16.40, 18.04, 19.68, 21.32, 22.96, 24.60,
26.24, 27.88, 29.52};

int n = k.length-1;
int m = 21;
double u[][] = orthogonalPolynomialFit(m, k, q);
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double sum = 0;
for (int i=0; i<=n; ++i) sum += k[i];

double e = u[1][n+1];
double dq = u[0][n+1]-u[1][n+1]*sum/(n+1);
System.out.println("Fundamental charge: " + e);
System.out.println("Estimated error: " + dq);

}

public static double[][] orthogonalPolynomialFit
(int m, double x[], double f[]) {...}

}

Note that we have used . . . to represent the body of a method that we introduced

earlier to avoid repeating the material. We will do this throughout the book, but

the same programs are listed in their entirety on the website for the book. We

have also used the fact that u0 = 1, u1(x) = x − g0, and g0 =
∑n

i=0 xi/(n + 1)

from Eqs. (2.34) and (2.35) in the above program. So from the linear function

f (x) = a0 + a1x = α0 + α1u1(x), we know that a1 = α1 and a0 = α0 − g0 =
α0 −

∑n
i=0 xi/(n + 1) after taking x = 0.

After we compile and run the above program, we obtain e ≃ 1.64 × 10−19 C,

and the intercept on the y axis gives us a rough estimate of the error bar |�e| ≈
|�q| = 0.03 × 10−19 C. The Millikan data and the least-squares approximation

of Eq. (2.40) with e and �q obtained from the above program are plotted in

Fig. 2.3. Note that the measured data are very accurately represented by the

straight line of the least-squares approximation.

The approach here is very general and we can easily fit the Millikan data to a

higher-order curve by changing m = 1 to a higher value, for example, m = 21,

as we actually did in the above program. After running the program, we found

that other coefficients are vanishingly small. However, if the data set is nonlinear,

other coefficients will become significant.
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For the linear fit of the Millikan data, we can take a much simpler approach,

like the one given in Eqs. (2.25)–(2.30). The following program is the result of

such an approach.

// An example of directly fitting the Millikan data to
// p1(x) = a0+a1*x.

import java.lang.*;

public class Millikan2 {
public static void main(String argv[]) {

double x[] = {4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18};

double f[] = {6.558, 8.206, 9.880, 11.50,

13.14, 14.81, 16.40, 18.04, 19.68, 21.32,
22.96, 24.60, 26.24, 27.88, 29.52};

int n = x.length-1;
double c1 = 0, c2 = 0, c3 = 0, c4 = 0;
for (int i=0; i<=n; ++i) {

c1 += x[i];
c2 += x[i]*x[i];
c3 += f[i];
c4 += f[i]*x[i];

}
double g = c1*c1-c2*(n+1);
double a0 = (c1*c4-c2*c3)/g;

double a1 = (c1*c3-c4*(n+1))/g;

System.out.println("Fundamental charge: " + a1);
System.out.println("Estimated error: " + a0);

}
}

Of course, we end up with exactly the same result. The point is that sometimes

we may need a general approach because we have more than one problem in

mind, but other times we may need a direct approach that is simple and fast.

We must learn to be able to deal with problems at different levels of complexity

accordingly. In certain problems this can make the difference between finding a

solution or not.

2.4 Spline approximation

In many instances, we have a set of data that varies rapidly over the range of

interest, for example, a typical spectral measurement that contains many peaks

and dips. Then there is no such thing as a global polynomial behavior. In such

situations, we want to fit the function locally and to connect each piece of the

function smoothly. A spline is such a tool; it interpolates the data locally through

a polynomial and fits the data overall by connecting each segment of the in-

terpolation polynomial by matching the function and its derivatives at the data

points.

Assuming that we are trying to create a spline function that approximates

a discrete data set fi = f (xi ) for i = 0, 1, . . . , n, we can use an mth-order
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polynomial

pi (x) =
m
∑

k=0

cik x k (2.41)

to approximate f (x) for x ∈ [xi , xi+1]. Then the coefficients cik are determined

from the smoothness conditions at the nonboundary data points with the lth-order

derivative there satisfying

p
(l)
i (xi+1) = p

(l)
i+1(xi+1), (2.42)

for l = 0, 1, . . . ,m − 1. These conditions and the values pi (xi ) = fi provide

(m + 1)(n − 1) equations from the nonboundary points. So we still need m + 1

equations in order to solve all the (m + 1)n coefficients aik . Two additional

equations p0(x0) = f0 and pn−1(xn) = fn are obvious and the remaining m − 1

equations are provided by the choice of some of p
(l)
0 (x0) and p

(l)
n−1(xn) for

l = m − 1,m − 2, . . . .

The most widely adopted spline function is the cubic spline with m = 3. In this

case, the number of equations needed from the derivatives of the polynomials at

the boundary points is m − 1 = 2. One of the choices, called the natural spline,

is made by setting the highest-order derivatives to zero at both ends up to the

number of equations needed. For the cubic spline, the natural spline is given by

the choices of p′′
0 (x0) = 0 and p′′

n−1(xn) = 0.

To construct the cubic spline, we can start with the linear interpolation of the

second-order derivative in [xi , xi+1],

p′′
i (x) =

1

xi+1 − xi

[(x − xi ) p′′
i+1 − (x − xi+1) p′′

i ], (2.43)

where p′′
i = p′′

i (xi ) = p′′
i−1(xi ) and p′′

i+1 = p′′
i+1(xi+1) = p′′

i (xi+1). If we inte-

grate the above equation twice and use pi (xi ) = fi and pi (xi+1) = fi+1, we

obtain

pi (x) = αi (x − xi )
3 + βi (x − xi+1)3 + γi (x − xi ) + ηi (x − xi+1), (2.44)

where

αi =
p′′

i+1

6hi

, (2.45)

βi = −
p′′

i

6hi

, (2.46)

γi =
fi+1

hi

−
hi p′′

i+1

6
, (2.47)

ηi =
hi p′′

i

6
−

fi

hi

, (2.48)

with hi = xi+1 − xi . So if we find all p′′
i , we find the spline. Applying the

condition

p′
i−1(xi ) = p′

i (xi ) (2.49)
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to the polynomial given in Eq. (2.44), we have

hi−1 p′′
i−1 + 2(hi−1 + hi ) p′′

i + hi p′′
i+1 = 6

(

gi

hi

−
gi−1

hi−1

)

, (2.50)

where gi = fi+1 − fi . This is a linear equation set with n − 1 unknowns p′′
i for

i = 1, 2, . . . , n − 1. Note that the boundary values are fixed by p′′
0 = p′′

n = 0.

We can write the above equations in a matrix form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1 h1 0 · · · · · · 0

h1 d2 h2 · · · · · · 0

...
...

...
...

...
...

0 · · · · · · hn−3 dn−2 hn−2

0 · · · · · · 0 hn−2 dn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p′′
1

p′′
2

...

p′′
n−2

p′′
n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1

b2

...

bn−2

bn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.51)

or equivalently,

Ap′′ = b, (2.52)

where di = 2(hi−1 + hi ) and bi = 6(gi/hi − gi−1/hi−1). The coefficient matrix

A in this problem is a real, symmetric, and tridiagonal matrix with elements

Ai j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

di if i = j,

hi if i = j − 1,

hi−1 if i = j + 1,

0 otherwise.

(2.53)

Because of the simplicity of the coefficient matrix, the solution of the equation set

becomes quite straightforward. Here we will limit ourselves to the problem with

the coefficients given in a tridiagonal matrix and leave the solution of a general

linear equation set to Chapter 5.

In general, we can decompose an m × m square matrix A into a product of a

lower-triangular matrix L and an upper-triangular matrix U,

A = LU, (2.54)

with L i j = 0 for i < j and Ui j = 0 for i > j . We can choose either Ui i = 1 or

L i i = 1. This scheme is called the LU decomposition. The choice of Ui i = 1 is

called the Crout factorization and the alternative choice of L i i = 1 is called the

Doolittle factorization. Here we work out the Crout factorization and leave the

Doolittle factorization as an exercise. For a tridiagonal matrix A with

Ai j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

di if i = j,

ei if i = j − 1,

ci−1 if i = j + 1,

0 otherwise,

(2.55)
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the matrices L and U are extremely simple and are given by

L i j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w i if i = j,

vi−1 if i = j + 1,

0 otherwise,

(2.56)

and

Ui j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if i = j,

ti if i = j − 1,

0 otherwise.

(2.57)

The elements in L and U can be related easily to di , ci , and ei if we multiply

L and U and compare the two sides of Eq. (2.54) element by element. Then we

have

vi = ci , (2.58)

ti = ei/w i , (2.59)

w i = di − vi−1ti−1, (2.60)

with w1 = d1. The solution of the linear equation Az = b can be obtained by

forward and backward substitutions because

Az = LUz = Ly = b. (2.61)

We can first solve Ly = b and then Uz = y with

yi = (bi − vi−1 yi−1)/w i , (2.62)

zi = yi − ti zi+1, (2.63)

with y1 = b1/w1 and zm = ym . The following program is an implementation of

the cubic spline with the solution of the tridiagonal linear equation set through

Crout factorization.

// An example of creating cubic-spline approximation of
// a discrete function fi=f(xi).

import java.lang.*;
import java.io.*;
import java.util.*;
public class Spline {

final static int n = 20;
final static int m = 100;
public static void main(String argv[]) throws

IOException {
double xi[] = new double[n+1];
double fi[] = new double[n+1];
double p2[] = new double[n+1];

// Read in data points xi and and data fi
BufferedReader r = new BufferedReader

(new InputStreamReader
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(new FileInputStream("xy.data")));
for (int i=0; i<=n; ++i) {

StringTokenizer
s = new StringTokenizer(r.readLine());

xi[i] = Double.parseDouble(s.nextToken());

fi[i] = Double.parseDouble(s.nextToken());
}
p2 = cubicSpline(xi, fi);

// Find the approximation of the function

double h = (xi[n]-xi[0])/m;
double x = xi[0];

for (int i=1; i<m; ++i) {
x += h;

// Find the interval where x resides
int k = 0;
double dx = x-xi[0];
while (dx > 0) {

++k;
dx = x-xi[k];

}

--k;

// Find the value of function f(x)
dx = xi[k+1]-xi[k];
double alpha = p2[k+1]/(6*dx);

double beta = -p2[k]/(6*dx);
double gamma = fi[k+1]/dx-dx*p2[k+1]/6;
double eta = dx*p2[k]/6 - fi[k]/dx;
double f = alpha*(x-xi[k])*(x-xi[k])*(x-xi[k])

+beta*(x-xi[k+1])*(x-xi[k+1])*(x-xi[k+1])
+gamma*(x-xi[k])+eta*(x-xi[k+1]);

System.out.println(x + " " + f);
}

}

// Method to carry out the cubic-spline approximation
// with the second-order derivatives returned.

public static double[] cubicSpline(double x[],
double f[]) {
int n = x.length-1;
double p[] = new double [n+1];
double d[] = new double [n-1];
double b[] = new double [n-1];
double c[] = new double [n-1];
double g[] = new double [n];
double h[] = new double [n];

// Assign the intervals and function differences
for (int i=0; i<n; ++i) {

h[i] = x[i+1]-x[i];
g[i] = f[i+1]-f[i];

}

// Evaluate the coefficient matrix elements
for (int i=0; i<n-1; ++i) {

d[i] = 2*(h[i+1]+h[i]);
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b[i] = 6*(g[i+1]/h[i+1]-g[i]/h[i]);
c[i] = h[i+1];

}

// Obtain the second-order derivatives
g = tridiagonalLinearEq(d, c, c, b);
for (int i=1; i<n; ++i) p[i] = g[i-1];
return p;

}

// Method to solve the tridiagonal linear equation set.

public static double[] tridiagonalLinearEq(double d[],

double e[], double c[], double b[]) {

int m = b.length;
double w[] = new double[m];

double y[] = new double[m];
double z[] = new double[m];
double v[] = new double[m-1];
double t[] = new double[m-1];

// Evaluate the elements in the LU decomposition
w[0] = d[0];

v[0] = c[0];
t[0] = e[0]/w[0];
for (int i=1; i<m-1; ++i) {

w[i] = d[i]-v[i-1]*t[i-1];
v[i] = c[i];
t[i] = e[i]/w[i];

}
w[m-1] = d[m-1]-v[m-2]*t[m-2];

// Forward substitution to obtain y
y[0] = b[0]/w[0];
for (int i=1; i<m; ++i)

y[i] = (b[i]-v[i-1]*y[i-1])/w[i];

// Backward substitution to obtain z
z[m-1] = y[m-1];
for (int i=m-2; i>=0; --i) {

z[i] = y[i]-t[i]*z[i+1];
}
return z;

}
}

We have used a set of uniform random numbers from the generator in next section

as the data function at uniformly spaced data points in [0, 1]. The output of the

above program is plotted together with the original data in Fig. 2.4.

The above approach can be generalized to a higher-order spline. For example,

the quintic spline is achieved by including forth-order and fifth-order terms. Then

the polynomial in the interval [xi , xi+1] is given by

pi (x) = αi (x − xi )
5 + βi (x − xi+1)5 + γi (x − xi )

3

+ ηi (x − xi+1)3 + δi (x − xi ) + σi (x − xi+1), (2.64)
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Fig. 2.4 An example of a

cubic-spline

approximation. The

original data are shown as

solid circles and the

approximations as open

circles.

where

αi =
p

(4)
i+1

120hi

, (2.65)

βi = −
p

(4)
i

120hi

. (2.66)

We must also have pi (xi ) = fi and pi (xi+1) = fi+1, which give

h5
i αi + h3

i γi + hiδi = fi+1, (2.67)

h5
i βi + h3

i ηi + hiσi = − fi , (2.68)

where hi = xi+1 − xi . In order for the pieces to join smoothly, we also impose

that p
(l)
i−1(xi ) = p

(l)
i (xi ) for l = 1, 2, 3. From p′

i−1(xi ) = p′
i (xi ), we have

5h4
i−1αi−1 + 3h2

i−1γi−1 + δi−1 + σi−1 = 5h4
i βi + 3h2

i ηi + δi + σi . (2.69)

For l = 2, we have

10h3
i−1αi−1 + 3hi−1γi−1 = 10h3

i βi + 3hiηi . (2.70)

The continuity of the third-order derivative p
(3)
i−1(xi ) = p

(3)
i (xi ) leads to

10h2
i−1αi−1 + γi−1 = 10h2

i βi + ηi . (2.71)

Note that we always have p
(4)
i = 120hi−1αi−1 = −120hiβi . Then from the equa-

tions with l = 2 and l = 3, we obtain

γi = −
h2

i + 3hi hi+1 + 2h2
i+1

36(hi + hi+1)
p

(4)
i+1, (2.72)

ηi =
2h2

i−1 + 3hi−1hi + 2h2
i

36(hi−1 + hi )
p

(4)
i . (2.73)
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Then we can use Eqs. (2.67) and (2.68) to obtain δi and σi in terms of p
(4)
i . Substi-

tuting these into Eq. (2.69), we arrive at the linear equation set for p
(4)
i with a coef-

ficient matrix in tridiagonal form that can be solved as done for the cubic spline.

2.5 Random-number generators

In practice, many numerical simulations need random-number generators either

for setting up initial configurations or for generating new configurations. There is

no such thing as random in a computer program. A computer will always produce

the same result if the input is the same. A random-number generator here really

means a pseudo-random-number generator that can generate a long sequence of

numbers that can imitate a given distribution. In this section we will discuss some

of the basic random-number generators used in computational physics and other

computer simulations.

Uniform random-number generators

The most useful random-number generators are those with a uniform distribution

in a given region. The three most important criteria for a good uniform random-

number generator are the following (Park and Miller, 1988).

First, a good generator should have a long period, which should be close to

the range of the integers adopted. For example, if 32-bit integers are used, a good

generator should have a period close to 231 − 1 = 2 147 483 647. The range of

the 32-bit integers is [−231, 231 − 1]. Note that one bit is used for the sign of the

integers.

Second, a good generator should have the best randomness. There should

only be a very small correlation among all the numbers generated in sequence.

If 〈A〉 represents the statistical average of the variable A, the k-point corre-

lation function of the numbers generated in the sequence 〈xi1
xi2

· · · xik
〉 for

k = 2, 3, 4, . . . should be very small. One way to illustrate the behavior of

the correlation function 〈xi xi+l〉 is to plot xi and xi+l in the xy plane. A good

random-number generator will have a very uniform distribution of the points for

any l 	= 0. A poor generator may show stripes, lattices, or other inhomogeneous

distributions.

Finally, a good generator has to be very fast. In practice, we need a lot of random

numbers in order to have good statistical results. The speed of the generator can

become a very important factor.

The simplest uniform random-number generator is built using the so-called

linear congruent scheme. The random numbers are generated in sequence from

the linear relation

xi+1 = (a xi + b) mod c, (2.74)
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Fig. 2.5 One thousand

points of the

random-number pairs (xi ,

xi+10) normalized to the

range of [0,1].

where a, b, and c are magic numbers: their values determine the quality of

the generator. One common choice, a = 75 = 16 807, b = 0, and c = 231 − 1 =
2 147 483 647, has been tested and found to be excellent for generating unsigned

32-bit random integers. It has the full period of 231 − 1 and is very fast. The

correlation function 〈xi1
xi2

. . . xik
〉 is very small. In Fig. 2.5, we plot xi and xi+10

(normalized by c) generated using the linear congruent method with the above

selection of the magic numbers. Note that the plot is very homogeneous and

random. There are no stripes, lattice structures, or any other visible patterns in

the plot.

Implementation of this random-number generator on a computer is not al-

ways trivial, because of the different numerical range of the integers specified by

the computer language or hardware. For example, most 32-bit computers have

integers in [−231, 231 − 1]. If a number runs out of this range by accident, the

computer will reset it to zero. If the computer could modulate the integers by

231 − 1 automatically, we could implement a random-number generator with the

above magic numbers a, b, and c simply by taking consecutive numbers from

xi+1 = 16 807xi with any initial choice of 1 < x0 < 231 − 1. The range of this

generator would be [0, 231 − 1]. However, this automatic modulation would cause

some serious problems in other situations. For example, when a quantity is out of

range due to a bug in the program, the computer would still wrap it back without

producing an error message. This is why, in practice, computers do not modulate

numbers automatically, so we have to devise a scheme to modulate the num-

bers generated in sequence. The following method is an implementation of the

uniform random-number generator (normalized to the range of [0, 1]) discussed

above.
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// Method to generate a uniform random number in [0,1]
// following x(i+1)=a*x(i) mod c with a=pow(7,5) and
// c=pow(2,31)-1. Here the seed is a global variable.

public static double ranf() {
final int a = 16807, c = 2147483647, q = 127773,

r = 2836;
final double cd = c;

int h = seed/q;

int l = seed%q;
int t = a*l-r*h;
if (t > 0) seed = t;
else seed = c+t;
return seed/cd;

}

Note that in the above code, we have used two more magic numbers q = c/a

and r = c mod a. A program in Pascal that implements a method similar to that

above is given by Park and Miller (1988). We can easily show that the above

method modulates numbers with c = 231 − 1 on any computer with integers of

32 bits or more. To use this method, the seed needs to be a global variable that

is returned each time that the method is called. To show that the method given

here does implement the algorithm correctly, we can set the initial seed to be 1,

and then after 10 000 steps, we should have 1 043 618 065 returned as the value

of the seed (Park and Miller, 1988).

The above generator has a period of 231 − 1. If a longer period is desired,

we can create similar generators with higher-bit integers. For example, we can

create a generator with a period of 263 − 1 for 64-bit integers with the following

method.

// Method to generate a uniform random number in [0,1]
// following x(i+1)=a*x(i) mod c with a=pow(7,5) and
// c=pow(2,63)-1. Here the seed is a global variable.

public static double ranl() {
final long a = 16807L, c = 9223372036854775807L,

q = 548781581296767L, r = 12838L;
final double cd = c;
long h = seed/q;
long l = seed%q;
long t = a*l-r*h;
if (t > 0) seed = t;
else seed = c+t;
return seed/cd;

}

Note that we have used a = 75, c = 263 − 1, q = c/a, and r = c mod a in the

above method with the seed being a 64-bit (long) integer.

In order to start the random-number generator differently every time, we need

to have a systematic way of obtaining a different initial seed. Otherwise, we would

not be able to obtain fair statistics. Almost every computer language has intrinsic
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routines to report the current time in an integer form, and we can use this integer

to construct an initial seed (Anderson, 1990). For example, most computers can

produce 0 ≤ t1 ≤ 59 for the second of the minute, 0 ≤ t2 ≤ 59 for the minute of

the hour, 0 ≤ t3 ≤ 23 for the hour of the day, 1 ≤ t4 ≤ 31 for the day of the month,

1 ≤ t5 ≤ 12 for the month of the year, and t6 for the current year in common era.

Then we can choose

is = t6 + 70
(

t5 + 12{t4 + 31[t3 + 23(t2 + 59t1)]}
)

(2.75)

as the initial seed, which is roughly in the region of [0, 231 − 1]. The results

should never be the same as long as the jobs are started at least a second apart.

We now demonstrate how to apply the random-number generator and how to

initiate the generator with the current time through a simple example. Consider

evaluating π by randomly throwing a dart into a unit square defined by x ∈ [0, 1]

and y ∈ [0, 1]. By comparing the areas of the unit square and the quarter of the

unit circle we can see that the chance of the dart landing inside a quarter of the

unit circle centered at the origin of the coordinates is π/4. The following program

is an implementation of such an evaluation of π in Java.

// An example of evaluating pi by throwing a dart into a
// unit square with 0<x<1 and 0<y<1.

import java.lang.*;
import java.util.Calendar;
import java.util.GregorianCalendar;
public class Dart {

final static int n = 1000000;
static int seed;
public static void main(String argv[]) {

// Initiate the seed from the current time

GregorianCalendar t = new GregorianCalendar();
int t1 = t.get(Calendar.SECOND);
int t2 = t.get(Calendar.MINUTE);
int t3 = t.get(Calendar.HOUR_OF_DAY);
int t4 = t.get(Calendar.DAY_OF_MONTH);
int t5 = t.get(Calendar.MONTH)+1;
int t6 = t.get(Calendar.YEAR);
seed = t6+70*(t5+12*(t4+31*(t3+23*(t2+59*t1))));
if ((seed%2) == 0) seed = seed-1;

// Throw the dart into the unit square
int ic = 0;
for (int i=0; i<n; ++i) {

double x = ranf();
double y = ranf();
if ((x*x+y*y) < 1) ic++;

}
System.out.println("Estimated pi: " + (4.0*ic/n));

}

public static double ranf() {...}
}
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An even initial seed is usually avoided in order to have the full period of the

generator realized. Note that in Java the months are represented by the numerals

0–11, so we have added 1 in the above program to have it between 1 and 12. To

initiate the 64-bit generator, we can use the method getTime() from the Date

class in Java, which returns the current time in milliseconds in a 64-bit (long)

integer, measured from the beginning of January 1, 1970.

Uniform random-number generators are very important in scientific comput-

ing, and good ones are extremely difficult to find. The generator given here is

considered to be one of the best uniform random-number generators.

New computer programming languages such as Java typically come with a

comprehensive, intrinsic set of random-number generators that can be initiated

automatically with the current time or with a chosen initial seed. We will demon-

strate the use of such a generator in Java later in this section.

Other distributions

As soon as we obtain good uniform random-number generators, we can use them

to create other types of random-number generators. For example, we can use

a uniform random-number generator to create an exponential distribution or a

Gaussian distribution.

All the exponential distributions can be cast into their simplest form

p(x) = e−x (2.76)

after a proper choice of units and coordinates. For example, if a system has energy

levels of E0, E1, . . . , En , the probability for the system to be at the energy level

Ei at temperature T is given by

p(Ei , T ) ∝ e−(Ei −E0)/kBT , (2.77)

where kB is the Boltzmann constant. If we choose kBT as the energy unit and E0

as the zero point, the above equation reduces to Eq. (2.76).

One way to generate the exponential distribution is to relate it to a uniform

distribution. For example, if we have a uniform distribution f (y) = 1 for y ∈
[0, 1], we can relate it to an exponential distribution by

f (y) dy = dy = p(x) dx = e−x dx , (2.78)

which gives

y(x) − y(0) = 1 − e−x (2.79)

after integration. We can set y(0) = 0 and invert the above equation to have

x = − ln(1 − y), (2.80)
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which relates the exponential distribution of x ∈ [0,∞] to the uniform distribu-

tion of y ∈ [0, 1]. The following method is an implementation of the exponential

random-number generator given in the above equation and is constructed from a

uniform random-number generator.

// Method to generate an exponential random number from a
// uniform random number in [0,1].

public static double rane() {
return -Math.log(1-ranf());

}

public static double ranf() {...}

The uniform random-number generator obtained earlier is used in this method.

Note that when this method is used in a program, the seed still has to be a global

variable.

As we have pointed out, another useful distribution in physics is the Gaussian

distribution

g(x) =
1

√
2πσ

e−x2/2σ 2

, (2.81)

where σ is the variance of the distribution, which we can take as 1 for the moment.

The distribution withσ 	= 1 can be obtained via the rescaling of x byσ . We can use

a uniform distribution f (φ) = 1 for φ ∈ [0, 2π ] and an exponential distribution

p(t) = e−t for t ∈ [0,∞] to obtain two Gaussian distributions g(x) and g(y). We

can relate the product of a uniform distribution and an exponential distribution

to a product of two Gaussian distributions by

1

2π
f (φ) dφ p(t) dt = g(x) dx g(y) dy, (2.82)

which gives

e−t dt dφ = e−(x2+y2)/2dx dy. (2.83)

The above equation can be viewed as the coordinate transform from the polar

system (ρ, φ) with ρ =
√

2t into the rectangular system (x, y), that is,

x =
√

2t cosφ, (2.84)

y =
√

2t sinφ, (2.85)

which are two Gaussian distributions if t is taken from an exponential distribu-

tion and φ is taken from a uniform distribution in the region [0, 2π ]. With the

availability of the exponential random-number generator and uniform random-

number generator, we can construct two Gaussian random numbers immediately

from Eqs. (2.74) and (2.75). The exponential random-number generator itself

can be obtained from a uniform random-number generator as discussed above.

Below we show how to create two Gaussian random numbers from two uniform

random numbers.
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// Method to create two Gaussian random numbers from two

// uniform random numbers in [0,1].

public static double[] rang() {
double x[] = new double[2];

double r1 = - Math.log(1-ranf());
double r2 = 2*Math.PI*ranf();
r1 = Math.sqrt(2*r1);
x[0] = r1*Math.cos(r2);
x[1] = r1*Math.sin(r2);
return x;

}

public static double ranf() {...}

In principle, we can generate any given distribution numerically. For the

Gaussian distribution and exponential distribution, we construct the new gener-

ators with the integral transformations in order to relate the distributions sought

to the distributions known. A general procedure can be devised by dealing with

the integral transformation numerically. For example, we can use the Metropo-

lis algorithm, which will be discussed in Chapter 10, to obtain any distribution

numerically.

Percolation in two dimensions

Let us use two-dimensional percolation as an example to illustrate how a random-

number generator is utilized in computer simulations. When atoms are added to a

solid surface, they first occupy the sites with the lowest potential energy to form

small two-dimensional clusters. If the probability of occupying each empty site

is still high, the clusters grow on the surface and eventually form a single layer,

or a percolated two-dimensional network. If the probability of occupying each

empty site is low, the clusters grow into island-like three-dimensional clusters.

The general problem of the formation of a two-dimensional network can be cast

into a simple model with each site carrying a fixed occupancy probability.

Assume that we have a two-dimensional square lattice with n × n lattice points.

Then we can generate n × n random numbers xi j ∈ [0, 1] for i = 0, 1, . . . , n − 1

and j = 0, 1, . . . , n − 1. The random number xi j is further compared with the

assigned occupancy probability p ∈ [0, 1]. The site is occupied if p > xi j ;

otherwise the site remains empty. Clusters are formed by the occupied sites.

A site in each cluster is, at least, a nearest neighbor of another site in the same

cluster. We can gradually change p from 0 to 1. As p increases, the sizes of the

clusters increase and some clusters merge into larger clusters. When p reaches

a critical probability pc, there is one cluster of occupied sites, which reaches

all the boundaries of the lattice. We call pc the percolation threshold. The fol-

lowing method is the core of the simulation of two-dimensional percolation,

which assigns a false value to an empty site and a true value to an occupied

site.
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// Method to create a 2-dimensional percolation lattice.

import java.util.Random;

public static boolean[][] lattice(double p, int n) {
Random r = new Random();

boolean y[][] = new boolean[n][n];

for (int i=0; i<n; ++i) {
for (int j=0; j<n; ++j) {

if (p > r.nextDouble()) y[i][j] = true;

else y[i][j] = false;
}

}
return y;

}

Here yi j is a boolean array that contains true values at all the occupied sites

and false values at all the empty sites. We can use the above method with a

program that has p increased from 0 to 1, and can sort out the sizes of all the

clusters formed by the occupied lattice sites. In order to obtain good statistical

averages, the procedure should be carried out many times. For more discussions on

percolation, see Stauffer and Aharony (1992) and Grimmett (1999). Note that we

have used the intrinsic random-number generator from Java: nextDouble()is

a method in the Random class, and it creates a floating-point random number in

[0, 1] when it is called. The default initiation of the generator, as used above, is

from the current time.

The above example is an extremely simple application of the uniform random-

number generator in physics. In Chapters 8, 10, and 11, we will discuss the

application of random-number generators in other simulations. Interested readers

can find more on different random-number generators in Knuth (1998), Park and

Miller (1988), and Anderson (1990).

Exercises

2.1 Show that the error in the nth-order Lagrange interpolation scheme is

bounded by

|� f (x)| ≤
γn

4(n + 1)
hn+1,

where γn = max[| f (n+1)(x)|], for x ∈ [x0, xn].

2.2 Write a program that implements the Lagrange interpolation scheme di-

rectly. Test it by evaluating f (0.3) and f (0.5) from the data taken from the

error function with f (0.0) = 0, f (0.4) = 0.428 392, f (0.8) = 0.742 101,

f (1.2) = 0.910 314, and f (1.6) = 0.970 348. Examine the accuracy of the

interpolation by comparing the results obtained from the interpolation with

the exact values f (0.3) = 0.328 627 and f (0.5) = 0.520 500.
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2.3 The Newton interpolation is another popular interpolation scheme that

adopts the polynomial

pn(x) =
n
∑

j=0

c j

j−1
∏

i=0

(x − xi ),

where
∏−1

i=0(x − xi ) = 1. Show that this polynomial is equivalent to that

of the Lagrange interpolation and the coefficients c j here are recursively

given by

c j =
f j −

j−1
∑

k=0

ck

k−1
∏

i=0

(x j − xi )

j−1
∏

i=0

(x j − xi )

.

Write a subprogram that creates all c j with given xi and fi .

2.4 Show that the coefficients in the Newton interpolation, defined in

Exercise 2.3, can be cast into divided differences recursively as

ai ... j =
ai+1... j − ai ... j−1

x j − xi

,

where ai = fi are the discrete data and a0...i = ci are the coefficients in

the Newton interpolation. Write a subprogram that creates ci in this way.

Apply this subprogram to create another subprogram that evaluates the

interpolated value from the nested expression of the polynomial

pn(x) = c0 + (x − x0){c1 + (x − x1)[c2 + · · · + (x − xn−1)cn · · · ]}.

Use the values of the Bessel function in Section 2.1 to test the program.

2.5 The Newton interpolation of Exercise 2.3 can be used inversely to find

approximate roots of an equation f (x) = 0. Show that x = pn(0) is such

an approximate root if the polynomial

pn(z) =
n
∑

j=0

c j

j−1
∏

i=0

(z − fi ),

where
∏−1

i=0(x − fi ) = 1. Develop a program that estimates the root of

f (x) = ex ln x − x2 with xi = 1, 1.1, . . . , 2.0.

2.6 Modify the program in Section 2.3 for the least-squares approx-

imation to fit the data set f (0.0) = 1.000 000, f (0.2) = 0.912 005,

f (0.4) = 0.671 133, f (0.6) = 0.339 986, f (0.8) = 0.002 508, f (0.9) =
−0.142 449, and f (1.0) = −0.260 052 and the corresponding points of

f (−x) = f (x) as the input. The data are taken from the Bessel func-

tion table with f (x) = J0(3x). Compare the results with the well-known
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approximate formula for the Bessel function,

f (x) = 1 − 2.249 999 7 x2 + 1.265 620 8 x4 − 0.316 386 6 x6

+ 0.044 447 9 x8 − 0.003 944 4 x10 + 0.000 210 0 x12.

2.7 Use the program in Section 2.3 that fits the Millikan data directly to a

linear function to analyze the accuracy of the approximation. Assume that

the error bars in the experimental measurements are |�qk | = 0.05qk . The

accuracy of a curve fitting is determined from

χ 2 =
1

n + 1

n
∑

i=0

| f (xi ) − pm(xi )|2

σ 2
i

,

where σi is the error bar of f (xi ) and m is the order of the polynomial. If

χ ≪ 1, the fitting is considered successful.

2.8 For periodic functions, we can approximate the function in one pe-

riod with the periodic boundary condition imposed. Modify the cubic-

spline program in Section 2.4 to have pn−1(xn) = p0(x0), p′
n−1(xn) =

p′
0(x0), and p′′

n−1(xn) = p′′
0 (x0). Test the program with fi ∈ [0, 1] and

xi ∈ [0, 1] generated randomly and sorted according to xi+1 ≥ xi for

n = 20.

2.9 Modify the cubic-spline program given in Section 2.4 to have the LU de-

composition carried out by the Doolittle factorization.

2.10 Use a fifth-order polynomial

pi (x) =
5
∑

k=0

aik x k

for x ∈ [xi , xi+1] to create a quintic spline approximation for a function

f (x) given at discrete data points, fi = f (xi ) for i = 0, 1, . . . , n, with

p
(4)
0 (x0) = p

(4)
n−1(xn) = p

(3)
0 (x0) = p

(3)
n−1(xn) = 0. Find the linear equation

set whose solution provides p
(4)
i at every data point. Is the numerical prob-

lem here significantly different from that of the cubic spline? Modify the

cubic-spline program given in Section 2.4 to one for the quintic spline

and test your program by applying it to approximate fi ∈ [0, 1], generated

randomly, at xi ∈ [0, 1], also generated randomly and sorted according to

xi+1 ≥ xi for n = 40.

2.11 We can approximate a function f (x) as a linear combination of a set of

basis functions Bnk(x) through

p(x) =
∞
∑

j=−∞
A j Bnj−n(x),

for a chosen integer n ≥ 0, where the functions Bnk(x) are called B splines
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of degree n, which can be constructed recursively with

Bnk(x) =
x − xk

xk+n − xk

Bn−1k(x) +
xl+n+1 − x

xk+n+1 − xk+1

Bn−1k+1(x),

starting from

B0k(x) =

{

1 for xk ≤ x < xk+1,

0 elsewhere.

If xk+1 ≥ xk and fk = p(xk), show that

Bnk(x) > 0 and
∞
∑

j=−∞
Bnj (x) = 1.

Develop a computer program to implement B splines of degree 3. Compare

the result for a set data against the cubic-spline approximation.

2.12 If we randomly drop a needle of unit length on an infinite plane that is cov-

ered by parallel lines one unit apart, the probability of the needle landing in

a gap (not crossing any line) is 1 − 2/π . Derive this probability analytically.

Write a program that can sample the needle dropping process and calcu-

late the probability without explicitly using the value of π . Compare you

numerical result with the analytical result and discuss the possible sources

of error.

2.13 Generate 21 pairs of random numbers (xi , fi ) in [0, 1] and sort them ac-

cording to xi+1 ≥ xi . Treat them as a discrete set of function f (x) and fit

them to p20(x), where

pm(x) =
m
∑

k=0

αk uk(x),

with uk(x) being orthogonal polynomials. Use the method developed in

Section 2.2 to obtain the corresponding uk(x) and αk . Numerically show

that the orthogonal polynomials satisfy 〈uk |ul〉 = δkl . Compare the least-

squares approximation with the cubic-spline approximation of the same

data and discuss the cause of difference.

2.14 Develop a scheme that can generate any distribution w(x) > 0 in a given

region [a, b]. Write a program to implement the scheme and test it with

w(x) = 1, w(x) = e−x2

, and w(x) = x2e−x2

. Vary a and b, and compare

the results with those from the uniform random-number generator and the

Gaussian random-number generator given in Section 2.5.

2.15 Generate a large set of Gaussian random numbers and sort them into an

increasing order. Then count the data points falling into each of the uni-

formly divided intervals. Use these values to perform a least-squares fit of

the generated data to the function f (x) = ae−x2/2σ 2

, where a and σ are

the parameters to be determined. Comment on the quality of the generator

based on the fitting result.
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2.16 Write a program that can generate clusters of occupied sites in a two-

dimensional square lattice with n × n sites. Determine pc(n), the threshold

probability with at least one cluster reaching all the boundaries. Then de-

termine pc for an infinite lattice from

pc(n) = pc +
c1

n
+

c2

n2
+

c3

n3
+ · · · ,

where ci and pc can be solved from the pc(n) obtained.



Chapter 3

Numerical calculus

Calculus is at the heart of describing physical phenomena. As soon as we talk

about motion, we must invoke differentiation and integration. For example, the

velocity and the acceleration of a particle are the first-order and second-order

time derivatives of the corresponding position vector, and the distance traveled

by a particle is the integral of the corresponding speed over the elapsed time.

In this chapter, we introduce some basic computational methods for dealing

with numerical differentiation and integration, and numerical schemes for search-

ing for the roots of an equation and the extremes of a function. We stay at a basic

level, using the simple but practical schemes frequently employed in computa-

tional physics and scientific computing. Some of the subjects will be reexamined

later in other chapters to a greater depth. Some problems introduced here, such

as searching for the global minimum or maximum of a multivariable function,

are considered unsolved and are still under intensive research. Several interesting

examples are given to illustrate how to apply these methods in studying important

problems in physics and related fields.

3.1 Numerical differentiation

One basic tool that we will often use in this book is the Taylor expansion of a

function f (x) around a point x0:

f (x) = f (x0) + (x − x0) f ′(x0) +
(x − x0)2

2!
f ′′(x0) + · · · +

(x − x0)n

n!
f (n)(x0) + · · · .

(3.1)

The above expansion can be generalized to describe a multivariable function

f (x, y, . . . ) around the point (x0, y0, . . . ):

f (x, y, . . . ) = f (x0, y0, . . . ) + (x − x0) fx (x0, y0, . . . )

+ (y − y0) fy(x0, y0, . . . ) +
(x − x0)2

2!
fxx (x0, y0, . . . )

+
(y − y0)2

2!
fyy(x0, y0, . . . ) +

2(x − x0)(y − y0)

2!
fxy(x0, y0, . . . ) + · · · ,

(3.2)

49



50 Numerical calculus

where the subscript indices denote partial derivatives, for example, fxy =
∂2 f/∂x∂y.

The first-order derivative of a single-variable function f (x) around a point xi

is defined from the limit

f ′(xi ) = lim
�x→0

f (xi +�x) − f (xi )

�x
(3.3)

if it exists. Now if we divide the space into discrete points xi with evenly spaced

intervals xi+1 − xi = h and label the function at the lattice points as fi = f (xi ),

we obtain the simplest expression for the first-order derivative

f ′
i =

fi+1 − fi

h
+ O(h). (3.4)

We have used the notation O(h) for a term on the order of h. Similar notation

will be used throughout this book. The above formula is referred to as the two-

point formula for the first-order derivative and can easily be derived by taking the

Taylor expansion of fi+1 around xi . The accuracy can be improved if we expand

fi+1 and fi−1 around xi and take the difference

fi+1 − fi−1 = 2h f ′
i + O(h3). (3.5)

After a simple rearrangement, we have

f ′
i =

fi+1 − fi−1

2h
+ O(h2), (3.6)

which is commonly known as the three-point formula for the first-order derivative.

The accuracy of the expression increases to a higher order in h if more points are

used. For example, a five-point formula can be derived by including the expan-

sions of fi+2 and fi−2 around xi . If we use the combinations

fi+1 − fi−1 = 2h f ′
i +

h3

3
f

(3)
i + O(h5) (3.7)

and

fi+2 − fi−2 = 4h f ′
i +

8h3

3
f

(3)
i + O(h5) (3.8)

to cancel the f
(3)
i terms, we have

f ′
i =

1

12h
( fi−2 − 8 fi−1 + 8 fi+1 − fi+2) + O(h4). (3.9)

We can, of course, make the accuracy even higher by including more points, but

in many cases this is not good practice. For real problems, the derivatives at points

close to the boundaries are important and need to be calculated accurately. The

errors in the derivatives of the boundary points will accumulate in other points

when the scheme is used to integrate an equation. The more points involved in

the expressions of the derivatives, the more difficulties we encounter in obtaining

accurate derivatives at the boundaries. Another way to increase the accuracy is

by decreasing the interval h. This is very practical on vector computers. The

algorithms for first-order or second-order derivatives are usually fully vectorized,

so a vector processor can calculate many points in just one computer clock cycle.
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Approximate expressions for the second-order derivative can be obtained with

different combinations of f j . The three-point formula for the second-order deriva-

tive is given by the combination

fi+1 − 2 fi + fi−1 = h2 f ′′
i + O(h4), (3.10)

with the Taylor expansions of fi±1 around xi . Note that the third-order term with

f
(3)
i vanishes because of the cancellation in the combination. The above equation

gives the second-order derivative as

f ′′
i =

fi+1 − 2 fi + fi−1

h2
+ O(h2). (3.11)

Similarly, we can combine the expansions of fi±2 and fi±1 around xi and fi to

cancel the f ′
i , f

(3)
i , f

(4)
i , and f

(5)
i terms; then we have

f ′′
i =

1

12h2
(− fi−2 + 16 fi−1 − 30 fi + 16 fi+1 − fi+2) + O(h4) (3.12)

as the five-point formula for the second-order derivative. The difficulty in dealing

with the points around the boundaries still remains. We can use the interpolation

formulas that we developed in the Chapter 2 to extrapolate the derivatives to the

boundary points. The following program shows an example of calculating the

first-order and second-order derivatives with the three-point formulas.

// An example of evaluating the derivatives with the
// 3-point formulas for f(x)=sin(x).

import java.lang.*;
public class Deriv {

static final int n = 100, m = 5;

public static void main(String argv[]) {
double[] x = new double[n+1];
double[] f = new double[n+1];
double[] f1 = new double[n+1];

double[] f2 = new double[n+1];

// Assign constants, data points, and function
int k = 2;
double h = Math.PI/(2*n);
for (int i=0; i<=n; ++i) {

x[i] = h*i;
f[i] = Math.sin(x[i]);

}

// Calculate 1st-order and 2nd-order derivatives
f1 = firstOrderDerivative(h, f, k);
f2 = secondOrderDerivative(h, f, k);

// Output the result in every m data points
for (int i=0; i<=n; i+=m) {

double df1 = f1[i]-Math.cos(x[i]);
double df2 = f2[i]+Math.sin(x[i]);
System.out.println("x = " + x[i]);
System.out.println("f'(x) = " + f1[i]);
System.out.println("Error in f'(x): " + df1);
System.out.println("f''(x) = " + f2[i]);
System.out.println("Error in f''(x): " + df2);



52 Numerical calculus

System.out.println();
}

}

// Method for the 1st-order derivative with the 3-point
// formula. Extrapolations are made at the boundaries.

public static double[] firstOrderDerivative(double h,
double f[], int k) {
int n = f.length-1;
double[] y = new double[n+1];
double[] xl = new double[k+1];
double[] fl = new double[k+1];
double[] fr = new double[k+1];

// Evaluate the derivative at nonboundary points

for (int i=1; i<n; ++i)
y[i] = (f[i+1]-f[i-1])/(2*h);

// Lagrange-extrapolate the boundary points
for (int i=1; i<=(k+1); ++i) {

xl[i-1] = h*i;
fl[i-1] = y[i];

fr[i-1] = y[n-i];
}
y[0] = aitken(0, xl, fl);
y[n] = aitken(0, xl, fr);
return y;

}

// Method for the 2nd-order derivative with the 3-point
// formula. Extrapolations are made at the boundaries.

public static double[] secondOrderDerivative(double h,
double[] f, int k) {
int n = f.length-1;
double[] y = new double[n+1];
double[] xl = new double[k+1];
double[] fl = new double[k+1];
double[] fr = new double[k+1];

// Evaluate the derivative at nonboundary points
for (int i=1; i<n; ++i) {

y[i] = (f[i+1]-2*f[i]+f[i-1])/(h*h);
}

// Lagrange-extrapolate the boundary points
for (int i=1; i<=(k+1); ++i) {

xl[i-1] = h*i;
fl[i-1] = y[i];
fr[i-1] = y[n-i];

}
y[0] = aitken(0, xl, fl);
y[n] = aitken(0, xl, fr);
return y;

}

public static double aitken(double x, double xi[],
double fi[]) {...}

}
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Table 3.1. Derivatives obtained in the example

x f ′ � f ′ f ′′ � f ′′

0 0.999 959 −0.000 041 0.000 004 0.000 004

π/10 0.951 017 −0.000 039 −0.309 087 −0.000 070

π/5 0.808 985 −0.000 032 −0.587 736 0.000 049

3π/10 0.587 762 −0.000 023 −0.809 013 0.000 004

2π/5 0.309 003 −0.000 014 −0.951 055 0.000 001

π/2 −0.000 004 −0.000 004 −0.999 980 0.000 020

We have taken a simple function f (x) = sin x , given at 101 discrete points with

evenly spaced intervals in the region [0, π/2]. The Lagrange interpolation is

applied to extrapolate the derivatives at the boundary points. The numerical

results are summarized in Table 3.1, together with their errors. Note that the

extrapolated data are of the same order of accuracy as other calculated values

for f ′ and f ′′ at both x = 0 and x = π/2 because the three-point Lagrange

interpolation scheme is accurate to a quadratic behavior. The functions sin x

and cos x are well approximated by a linear or a quadratic curve at those two

points.

In practice, we may encounter two problems with the formulas used above.

The first problem is that we may not have the data given at uniform data points.

One solution to such a problem is to perform an interpolation of the data first

and then apply the above formulas to the function at the uniform data points

generated from the interpolation. This approach can be tedious and has errors

from two sources, the interpolation and the formulas above. The easiest solution

to the problem is to adopt formulas that are suitable for nonuniform data points.

If we use the Taylor expansion

f (xi±1) = f (xi ) + (xi±1 − xi ) f ′(xi ) +
1

2!
(xi±1 − xi )

2 f ′′(xi ) + O(h3) (3.13)

and a combination of fi−1, fi , and fi+1 to cancel the second-order terms, we

obtain

f ′
i =

h2
i−1 fi+1 +

(

h2
i − h2

i−1

)

fi − h2
i fi−1

hi hi−1(hi + hi−1)
+ O(h2), (3.14)

where hi = xi+1 − xi and h is the larger of |hi−1| and |hi |. This is the three-

point formula for the first-order derivative in the case of nonuniform data points.

Note that the accuracy here is the same as for the uniform data points. This

is a better choice than interpolating the data first because the formula can

be implemented in almost the same manner as in the case of the uniform

data points. The following method returns the first-order derivative for such a

situation.
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// Method to calculate the 1st-order derivative with the
// nonuniform 3-point formula. Extrapolations are made

// at the boundaries.

public static double[] firstOrderDerivative2
(double x[], double f[], int k) {
int n = x.length-1;
double[] y = new double[n+1];
double[] xl = new double[k+1];
double[] fl = new double[k+1];
double[] xr = new double[k+1];
double[] fr = new double[k+1];

// Calculate the derivative at the field points
double h0 = x[1]-x[0];
double a0 = h0*h0;
for (int i=1; i<n; ++i) {

double h = x[i+1]-x[i];
double a = h*h;

double b = a-a0;

double c = h*h0*(h+h0);
y[i] = (a0*f[i+1]+b*f[i]-a*f[i-1])/c;

h0 = h;
a0 = a;

}

// Lagrange-extrapolate the boundary points
for (int i=1; i<=(k+1); ++i) {

xl[i-1] = x[i]-x[0];
fl[i-1] = y[i];
xr[i-1] = x[n]-x[n-i];
fr[i-1] = y[n-i];

}
y[0] = aitken(0, xl, fl);

y[n] = aitken(0, xr, fr);

return y;
}

public static double aitken(double x, double xi[],
double fi[]) {...}

The corresponding three-point formula for the second-order derivative can be

derived with a combination of fi−1, fi , and fi+1 to have the first-order terms in

the Taylor expansion removed, and we have

f ′′
i =

2[hi−1 fi+1 − (hi + hi−1) fi + hi fi−1]

hi hi+1(hi + hi−1)
+ O(h). (3.15)

Note that the accuracy here is an order lower than in the case of uniform data points

because the third-order terms in the Taylor expansion are not canceled completely

at the same time. However, the reality is that the third-order terms are partially

canceled depending on how close the data points are to being uniform. We need

to be careful in applying the three-point formula above. If higher accuracy is

needed, we can resort to a corresponding five-point formula instead.

The second problem is that the accuracy cannot be controlled during evalua-

tion with the three-point or five-point formulas. If the function f (x) is available
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continuously, that is, for any given x in the region of interest, the accuracy in the

numerical evaluation of the derivatives can be systematically improved to any

desired level through an adaptive scheme. The basic strategy here is to apply the

combination of

�1(h) =
f (x + h) − f (x − h)

2h
(3.16)

and �1(h/2) to remove the next nonzero term in the Taylor expansion and to

repeat this process over and over. For example,

�1(h) − 4�1(h/2) = −3 f ′(x) + O(h4). (3.17)

Then we can use the difference in the evaluations of f ′(x) from�1(h) and�1(h/2)

to set up a rough criterion for the desired accuracy. The following program is such

an implementation.

// An example of evaluating 1st-order derivative through
// the adaptive scheme.

import java.lang.*;
public class Deriv3 {

public static void main(String argv[]) {
double del = 1e-6;
int n = 10, m = 10;

double h = Math.PI/(2*n);

// Evaluate the derivative and output the result
int k = 0;
for (int i=0; i<=n; ++i) {

double x = h*i;
double d = (f(x+h)-f(x-h))/(2*h);
double f1 = firstOrderDerivative3(x, h, d, del, k, m);
double df1 = f1-Math.cos(x);
System.out.println("x = " + x);
System.out.println("f'(x) = " + f1);
System.out.println("Error in f'(x): " + df1);

}
}

// Method to carry out 1st-order derivative through the

// adaptive scheme.

public static double firstOrderDerivative3(double x,
double h, double d, double del, int step,
int maxstep) {
step++;
h = h/2;
double d1 = (f(x+h)-f(x-h))/(2*h);
if (step >= maxstep) {

System.out.println ("Not converged after "
+ step + " recursions");

return d1;
}
else {

if ((h*h*Math.abs(d-d1)) < del) return (4*d1-d)/3;
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else return firstOrderDerivative3(x, h, d1, del,
step, maxstep);

}
}

public static double f(double x) {
return Math.sin(x);

}

}

Running the above program we obtain the first-order derivative of the function

accurate to the order of the tolerance set in the program.

In fact, we can analytically work out a recursion by combining more�1(h/2k)

for k = 0, 1, . . . . For example, using the combination

�1(h) − 20�1(h/2) + 64�1(h/4) = 45 f ′(x) + O(h6), (3.18)

we cancel the fourth-order terms in the Taylor expansion. Note that the fifth-

order term is also canceled automatically because of the symmetry in �1(h/2k).

This process can be repeated analytically; this scheme is called the Richardson

extrapolation. The derivation and implementation of the Richardson extrapolation

are left as an exercise for the reader.

A similar adaptive scheme can be devised for the second-order derivative. For

example, if we define the function

�2(h) =
f (x + h) − 2 f (x) + f (x − h)

h2
, (3.19)

and then use �2(h) and �2(h/2) to remove the next nonzero terms in the Taylor

expansion, we have

�2(h) − 4�2(h/2) = −3 f ′′(x) + O(h4). (3.20)

Based on the above equation and further addition of the terms involving�2(h/2k),

we can come up with exactly the same adaptive scheme and the Richardson

extrapolation for the second-order derivative.

3.2 Numerical integration

Let us turn to numerical integration. In general, we want to obtain the numerical

value of an integral, defined in the region [a, b],

S =
∫ b

a

f (x) dx . (3.21)

We can divide the region [a, b] into n slices, evenly spaced with an interval h. If

we label the data points as xi with i = 0, 1, . . . , n, we can write the entire integral

as a summation of integrals, with each over an individual slice,

∫ b

a

f (x) dx =
n−1
∑

i=0

∫ xi+1

xi

f (x) dx . (3.22)
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If we can develop a numerical scheme that evaluates the summation over several

slices accurately, we will have solved the problem. Let us first consider each

slice separately. The simplest quadrature is obtained if we approximate f (x) in

the region [xi , xi+1] linearly, that is, f (x) ≃ fi + (x − xi )( fi+1 − fi )/h. After

integrating over every slice with this linear function, we have

S =
h

2

n−1
∑

i=0

( fi + fi+1) + O(h2), (3.23)

where O(h2) comes from the error in the linear interpolation of the function. The

above quadrature is commonly referred to as the trapezoid rule, which has an

overall accuracy up to O(h2).

We can obtain a quadrature with a higher accuracy by working on two slices

together. If we apply the Lagrange interpolation to the function f (x) in the region

[xi−1, xi+1], we have

f (x) =
(x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
fi−1 +

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
fi

+
(x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
fi+1 + O(h3). (3.24)

If we carry out the integration for every pair of slices together with the integrand

given from the above equation, we have

S =
h

3

n/2−1
∑

j=0

( f2 j + 4 f2 j+1 + f2 j+2) + O(h4), (3.25)

which is known as the Simpson rule. The third-order term vanishes because of

cancelation. In order to pair up all the slices, we have to have an even num-

ber of slices. What happens if we have an odd number of slices, or an even

number of points in [a, b]? One solution is to isolate the last slice and we then

have
∫ b

b−h

f (x) dx =
h

12
(− fn−2 + 8 fn−1 + 5 fn). (3.26)

The expression for f (x) in Eq. (3.24), constructed from the last three points of

the function, has been used in order to obtain the above result. The following

program is an implementation of the Simpson rule for calculating an integral.

// An example of evaluating an integral with the Simpson
// rule over f(x)=sin(x).

import java.lang.*;
public class Integral {

static final int n = 8;
public static void main(String argv[]) {

double f[] = new double[n+1];
double h = Math.PI/(2.0*n);
for (int i=0; i<=n; ++i) {

double x = h*i;
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f[i] = Math.sin(x);
}

double s = simpson(f, h);

System.out.println("The integral is: " + s);
}

// Method to achieve the evenly spaced Simpson rule.

public static double simpson(double y[], double h) {
int n = y.length-1;
double s0 = 0, s1 = 0, s2 = 0;
for (int i=1; i<n; i+=2) {

s0 += y[i];
s1 += y[i-1];

s2 += y[i+1];
}
double s = (s1+4*s0+s2)/3;

// Add the last slice separately for an even n+1
if ((n+1)%2 == 0)

return h*(s+(5*y[n]+8*y[n-1]-y[n-2])/12);
else

return h*s;
}

}

We have used f (x) = sin x as the integrand in the above example program and

[0, π/2] as the integration region. The output of the above program is 1.000 008,

which has six digits of accuracy compared with the exact result 1. Note that we

have used only nine mesh points to reach such a high accuracy.

In some cases, we may not have the integrand given at uniform data points. The

Simpson rule can easily be generalized to accommodate cases with nonuniform

data points. We can rewrite the interpolation in Eq. (3.24) as

f (x) = ax2 + bx + c , (3.27)

where

a =
hi−1 fi+1 − (hi−1 + hi ) fi + hi fi−1

hi−1hi (hi−1 + hi )
, (3.28)

b =
h2

i−1 fi+1 +
(

h2
i − h2

i−1

)

fi − h2
i fi−1

hi−1hi (hi−1 + hi )
, (3.29)

c = fi , (3.30)

with hi = xi+1 − xi . We have taken xi = 0 because the integral

Si =
∫ xi+1

xi−1

f (x) dx (3.31)

is independent of the choice of the origin of the coordinates. Then we have

Si =
∫ hi

−hi−1

f (x) dx = α fi+1 + β fi + γ fi−1, (3.32)
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where

α =
2h2

i + hi hi−1 − h2
i−1

6hi

, (3.33)

β =
(hi + hi−1)3

6hi hi−1

, (3.34)

γ =
−h2

i + hi hi−1 + 2h2
i−1

6hi

. (3.35)

The last slice needs to be treated separately if n + 1 is even, as with the case of

uniform data points. Then we have

Sn =
∫ hn−1

0

f (x) dx = α fn + β fn−1 + γ fn−2, (3.36)

where

α =
hn−1

6

(

3 −
hn−1

hn−1 + hn−2

)

, (3.37)

β =
hn−1

6

(

3 +
hn−1

hn−2

)

, (3.38)

γ = −
hn−1

6

h2
n−1

hn−2(hn−1 + hn−2)
. (3.39)

The equations appear quite tedious but implementing them in a program is quite

straightforward following the program for the case of uniform data points.

Even though we can make an order-of-magnitude estimate of the error oc-

curring in either the trapezoid rule or the Simpson rule, it is not possible to

control it because of the uncertainty involved in the associated coefficient. We

can, however, develop an adaptive scheme based on either the trapezoid rule or the

Simpson rule to make the error in the evaluation of an integral controllable. Here

we demonstrate such a scheme with the Simpson rule and leave the derivation of

a corresponding scheme with the trapezoid rule to Exercise 3.9.

If we expand the integrand f (x) in a Taylor series around x = a, we have

S =
∫ b

a

f (x) dx

=
∫ b

a

[

∞
∑

k=0

(x − a)k

k!
f (k)(a)

]

dx

=
∞
∑

k=0

hk+1

(k + 1)!
f (k)(a), (3.40)

where h = b − a. If we apply the Simpson rule with xi−1 = a, xi = c =
(a + b)/2, and xi+1 = b, we have the zeroth-level approximation

S0 =
h

6
[ f (a) + 4 f (c) + f (b)]

=
h

6

[

f (a) +
∞
∑

k=0

hk

k!

(

1

2k−2
− 1

)

f (k)(a)

]

. (3.41)
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We have expanded both f (c) and f (b) in a Taylor series around x = a in the

above equation. Now if we take the difference between S and S0 and keep only

the leading term, we have

�S0 = S − S0 ≈ −
h5

2880
f (4)(a). (3.42)

We can continue to apply the Simpson rule in the regions [a, c] and [c, b]. Then

we obtain the first-level approximation

S1 =
h

12
[ f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)] , (3.43)

where d = (a + c)/2 and e = (c + b)/2, and

�S1 = S − S1

≈ −
(h/2)5

2880
f (4)(a) −

(h/2)5

2880
f (4)(c)

≈ −
1

24

h5

2880
f (4)(a). (3.44)

We have used that f (4)(a) ≈ f (4)(c). The difference between the first-level and

zeroth-level approximations is

S1 − S0 ≈ −
15

16

h5

2880
f (4)(a) ≈

15

16
�S0 ≈ 15�S1. (3.45)

The above result can be used to set up the criterion for the error control in an

adaptive algorithm. Consider, for example, that we want the error |�S| ≤ δ.

First we can carry out S0 and S1. Then we check whether |S1 − S0| ≤ 15δ, that

is, whether |�S1| ≤ δ. If it is true, we return S1 as the approximation for the

integral. Otherwise, we continue the adaptive process to divide the region into

two halves, four quarters, and so on, until we reach the desired accuracy with

|S − Sn| ≤ δ, where Sn is the nth-level approximation of the integral. Let us here

take the evaluation of the integral

S =
∫ π

0

[1 + a0(1 − cos x)2] dx

(1 + a0 sin2 x)
√

1 + 2a0(1 − cos x)
, (3.46)

for any a0 ≥ 0, as an example. The following program is an implementation of

the adaptive Simpson rule for the integral above.

// An example of evaluating an integral with the adaptive
// Simpson rule.

import java.lang.*;
public class Integral2 {

static final int n = 100;
public static void main(String argv[]) {

double del = 1e-6;
int k = 0;
double a = 0;
double b = Math.PI;
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double s = simpson2(a, b, del, k, n);
System.out.println ("S = " + s);

}

// Method to integrate over f(x) with the adaptive
// Simpson rule.

public static double simpson2(double a, double b,
double del, int step, int maxstep) {
double h = b-a;
double c = (b+a)/2;
double fa = f(a);
double fc = f(c);
double fb = f(b);

double s0 = h*(fa+4*fc+fb)/6;

double s1 = h*(fa+4*f(a+h/4)+2*fc
+ 4*f(a+3*h/4)+fb)/12;

step++;
if (step >= maxstep) {

System.out.println ("Not converged after "
+ step + " recursions");

return s1;

}
else {

if (Math.abs(s1-s0) < 15*del) return s1;
else return simpson2(a, c, del/2, step, maxstep)

+ simpson2(c, b, del/2, step, maxstep);
}

}

// Method to provide the integrand f(x).

public static double f(double x) {
double a0 = 5;
double s = Math.sin(x);
double c = Math.cos(x);
double f = (1+a0*(1-c)*(1-c))

/((1+a0*s*s)*Math.sqrt(1+2*a0*(1-c)));
return f;

}
}

After running the program, we obtain S ≃ 3.141 592 78. Note that a0 = 5 is

assigned in the above program. In fact, we can assign a random value to a0 and

the result will remain the same within the errorbar. This is because the above

integral S ≡ π , independent of the specific value of a0. The integral showed up

while solving a problem in Jackson (1999). It is quite intriguing because the

integrand has such a complicated dependence on a0 and x and yet the result is so

simple and cannot be obtained from any table or symbolic system. Try it and see

whether an analytical solution can be found easily. One way to do it is to show

first that the integral is independent of a0 and then set a0 = 0.

The adaptive scheme presented above provides a way of evaluating an inte-

gral accurately. It is, however, limited to cases with an integrand that is given

continuously in the integration region. For problems that involve an integrand
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given at discrete points, the strength of the adaptive scheme is reduced because

the data must be interpolated and the interpolation may destroy the accuracy in

the adaptive scheme. Adaptive schemes can also be slow if a significant number

of levels are needed. In determining whether to use an adaptive scheme or not,

we should consider how critical and practical the accuracy sought in the evalua-

tion is against the speed of computation and possible errors due to other factors

involved. Sometimes the adaptive method introduced above is the only viable

numerical approach if a definite answer is sought, especially when an analytic

result does not exist or is difficult to find.

3.3 Roots of an equation

In physics, we often encounter situations in which we need to find the possible

value of x that ensures the equation f (x) = 0, where f (x) can either be an explicit

or an implicit function of x . If such a value exists, we call it a root or zero of the

equation. In this section, we will discuss only single-variable problems and leave

the discussion of multivariable cases to Chapter 5, after we have gained some

basic knowledge of matrix operations.

Bisection method

If we know that there is a root x = xr in the region [a, b] for f (x) = 0, we can

use the bisection method to find it within a required accuracy. The bisection

method is the most intuitive method, and the idea is very simple. Because there is

a root in the region, f (a) f (b) < 0. We can divide the region into two equal parts

with x0 = (a + b)/2. Then we have either f (a) f (x0) < 0 or f (x0) f (b) < 0.

If f (a) f (x0) < 0, the next trial value is x1 = (a + x0)/2; otherwise, x1 =
(x0 + b)/2. This procedure is repeated until the improvement on xk or | f (xk)| is

less than the given tolerance δ.

Let us take f (x) = ex ln x − x2 as an example to illustrate how the bisec-

tion method works. We know that when x = 1, f (x) = −1 and when x = 2,

f (x) = e2 ln 2 − 4 ≈ 1. So there is at least one value xr ∈ [1, 2] that would make

f (xr) = 0. In the neighborhood of xr, we have f (xr + δ) > 0 and f (xr − δ) < 0.

// An example of searching for a root via the bisection
// method for f(x)=exp(x)*ln(x)-x*x=0.

import java.lang.*;
public class Bisect {

public static void main(String argv[]) {
double x = 0, del = 1e-6, a = 1, b = 2;
double dx = b-a;
int k = 0;
while (Math.abs(dx) > del) {

x = (a+b)/2;
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if ((f(a)*f(x)) < 0) {
b = x;

dx = b-a;
}
else {

a = x;

dx = b-a;
}
k++;

}
System.out.println("Iteration number: " + k);

System.out.println("Root obtained: " + x);

System.out.println("Estimated error: " + dx);
}

// Method to provide function f(x)=exp(x)*log(x)-x*x.

public static double f(double x) {
return Math.exp(x)*Math.log(x)-x*x;

}
}

The above program gives the root xr = 1.694 601 ± 0.000 001 after only

20 iterations. The error comes from the final improvement in the search. This

error can be reduced to a lower value by making the tolerance δ smaller.

The Newton method

This method is based on linear approximation of a smooth function around its

root. We can formally expand the function f (xr) = 0 in the neighborhood of the

root xr through the Taylor expansion

f (xr) ≃ f (x) + (xr − x) f ′(x) + · · · = 0, (3.47)

where x can be viewed as a trial value for the root of xr at the kth step and the

approximate value of the next step xk+1 can be derived from

f (xk+1) = f (xk) + (xk+1 − xk) f ′(xk) ≃ 0, (3.48)

that is,

xk+1 = xk +�xk = xk − fk/ f ′
k , (3.49)

with k = 0, 1, . . . . Here we have used the notation fk = f (xk). The above

iterative scheme is known as the Newton method. It is also referred to as the

Newton–Raphson method in the literature. The above equation is equivalent to

approximating the root by drawing a tangent to the curve at the point xk and taking

xk+1 as the tangent’s intercept on the x axis. This step is repeated toward the root,

as illustrated in Fig. 3.1. To see how this method works in a program, we again

take the function f (x) = ex ln x − x2 as an example. The following program is

an implementation of the Newton method.
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Fig. 3.1 A schematic

illustration of the steps in

the Newton method for

searching for the root of

f (x) = 0.

// An example of searching for a root via the Newton method
// for f(x)=exp(x)*ln(x)-x*x=0.

import java.lang.*;
public class Newton {

public static void main(String argv[]) {
double del = 1e-6, a = 1, b = 2;
double dx = b-a, x=(a+b)/2;
int k = 0;
while (Math.abs(dx) > del) {

dx = f(x)/d(x);
x -= dx;
k++;

}
System.out.println("Iteration number: " + k);
System.out.println("Root obtained: " + x);
System.out.println("Estimated error: " + dx);

}

public static double f(double x) {...}

// Method to provide the derivative f'(x).

public static double d(double x) {
return Math.exp(x)*(Math.log(x)+1/x)-2*x;

}
}

The above program gives the root xr = 1.694 600 92 after only five iterations. It

is clear that the Newton method is more efficient, because the error is now much

smaller even though we have started the search at exactly the same point, and have

gone through a much smaller number of steps. The reason is very simple. Each

new step size |�xk | = |xk+1 − xk | in the Newton method is determined according

to Eq. (3.49) by the ratio of the value and the slope of the function f (x) at xk . For

the same function value, a large step is created for the small-slope case, whereas

a small step is made for the large-slope case. This ensures an efficient update and
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also avoids possible overshooting. There is no such mechanism in the bisection

method.

Secant method

In many cases, especially when f (x) has an implicit dependence on x , an analytic

expression for the first-order derivative needed in the Newton method may not

exist or may be very difficult to obtain. We have to find an alternative scheme to

achieve a similar algorithm. One way to do this is to replace f ′
k in Eq. (3.49) with

the two-point formula for the first-order derivative, which gives

xk+1 = xk − (xk − xk−1) fk/( fk − fk−1). (3.50)

This iterative scheme is commonly known as the secant method, or the discrete

Newton method. The disadvantage of the method is that we need two points in

order to start the search process. The advantage of the method is that f (x) can now

be implicitly given without the need for the first-order derivative. We can still use

the function f (x) = ex ln x − x2 as an example, in order to make a comparison.

// An example of searching for a root via the secant method
// for f(x)=exp(x)*ln(x)-x*x=0.

import java.lang.*;
public class Root {

public static void main(String argv[]) {
double del = 1e-6, a = 1, b = 2;
double dx = (b-a)/10, x = (a+b)/2;
int n = 6;
x = secant(n, del, x, dx);
System.out.println("Root obtained: " + x);

}

// Method to carry out the secant search.

public static double secant(int n, double del,

double x, double dx) {

int k = 0;
double x1 = x+dx;
while ((Math.abs(dx)>del) && (k<n)) {

double d = f(x1)-f(x);
double x2 = x1-f(x1)*(x1-x)/d;
x = x1;
x1 = x2;
dx = x1-x;
k++;

}

if (k==n) System.out.println("Convergence not" +
" found after " + n + " iterations");

return x1;
}

public static double f(double x) {...}
}
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The above program gives the root xr = 1.694 601 0 after five iterations. As

expected, the secant method is more efficient than the bisection method but

less efficient than the Newton method, because of the two-point approxima-

tion of the first-order derivative. However, if the expression for the first-order

derivative cannot easily be obtained, the secant method becomes very useful and

powerful.

3.4 Extremes of a function

An associated problem to finding the root of an equation is finding the maxima

and/or minima of a function. Examples of such situations in physics occur when

considering the equilibrium position of an object, the potential surface of a field,

and the optimized structures of molecules and small clusters. Here we consider

mainly a function of a single variable, g = g(x), and just touch on the multi-

variable case of g = g(x1, x2, . . . , xl) with the steepest-descent method. Other

schemes for the multivariable cases are left to later chapters.

Knowing the solution of a nonlinear equation f (x) = 0, we can develop nu-

merical schemes to obtain minima or maxima of a function g(x). We know that

an extreme of g(x) occurs at the point with

f (x) =
dg(x)

dx
= 0, (3.51)

which is a minimum (maximum) if f ′(x) = g′′(x) is greater (less) than zero. So

all the root-search schemes discussed so far can be generalized here to search for

the extremes of a single-variable function.

However, at each step of updating the value of x , we need to make a judgment as

to whether g(xk+1) is increasing (decreasing) if we are searching for a maximum

(minimum) of the function. If it is, we accept the update. If it is not, we reverse

the update; that is, instead of using xk+1 = xk +�xk , we use xk+1 = xk −�xk .

With the Newton method, the increment is �xk = − fk/ f ′
k , and with the secant

method, the increment is �xk = −(xk − xk−1) fk/( fk − fk−1).

Let us illustrate these ideas with a simple example of finding the bond length of

the diatomic molecule NaCl from the interaction potential between the two ions

(Na+ and Cl− in this case). Assuming that the interaction potential is V (r ) when

the two ions are separated by a distance r , the bond length req is the equilibrium

distance when V (r ) is at its minimum. We can model the interaction potential

between Na+ and Cl− as

V (r ) = −
e2

4πǫ0r
+ V0 e−r/r0 , (3.52)

where e is the charge of a proton, ǫ0 is the electric permittivity of vacuum, and

V0 and r0 are parameters of this effective interaction. The first term in Eq. (3.52)

comes from the Coulomb interaction between the two ions, but the second term
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is the result of the electron distribution in the system. We will use V0 = 1.09 ×
103 eV, which is taken from the experimental value for solid NaCl (Kittel, 1995),

and r0 = 0.330 Å, which is a little larger than the corresponding parameter for

solid NaCl (r0 = 0.321 Å), because there is less charge screening in an isolated

molecule. At equilibrium, the force between the two ions,

f (r ) = −
dV (r )

dr
= −

e2

4πǫ0r 2
+

V0

r0

e−r/r0 , (3.53)

is zero. Therefore, we search for the root of f (x) = dg(x)/dx = 0, with g(x) =
−V (x). We will force the algorithm to move toward the minimum of V (r ). The

following program is an implementation of the algorithm with the secant method

to find the bond length of NaCl.

// An example of calculating the bond length of NaCl.

import java.lang.*;
public class Bond {

static final double e2 = 14.4, v0 = 1090, r0 = 0.33;
public static void main(String argv[]) {

double del = 1e-6, r = 2, dr = 0.1;
int n = 20;
r = secant2(n, del, r, dr);
System.out.println("The bond length is " + r +

" angstroms");
}

// Method to carry out the secant search for the
// maximum of g(x) via the root of f(x)=dg(x)/dx=0.

public static double secant2(int n, double del,
double x, double dx) {
int k = 0;
double x1 = x+dx, x2 = 0;
double g0 = g(x);
double g1 = g(x1);
if (g1 > g0) x1 = x-dx;
while ((Math.abs(dx)>del) && (k<n)) {

double d = f(x1)-f(x);
dx = -(x1-x)*f(x1)/d;
x2 = x1+dx;
double g2 = g(x2);
if (g2 > g1) x2 = x1-dx;
x = x1;
x1 = x2;
g1 = g2;
k++;

}
if (k==n) System.out.println("Convergence not" +

" found after " + n + " iterations");
return x1;

}
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// Method to provide function g(x)=-e2/x+v0*exp(-x/r0).

public static double g(double x) {
return -e2/x+v0*Math.exp(-x/r0);

}

// Method to provide function f(x)=-dg(x)/dx.

public static double f(double x) {

return -e2/(x*x)+v0*Math.exp(-x/r0)/r0;
}

}

The bond length obtained from the above program is req = 2.36 Å. We have

used e2/4πǫ0 = 14.4 Å eV for convenience. The method for searching for the

minimum is modified slightly from the secant method used in the preceding

section in order to force the search to move toward the minimum of g(x). We will

still obtain the same result as with the secant method used in the earlier example

for this simple problem, because there is only one minimum of V (x) around the

point where we start the search. The other minimum of V (x) is at x = 0 which is

also a singularity. For a more general g(x), modifications introduced in the above

program are necessary.

Another relevant issue is that in many cases we do not have the explicit function

f (x) = g′(x) if g(x) is not an explicit function of x . However, we can construct

the first-order and second-order derivatives numerically from the two-point or

three-point formulas, for example.

In the example program above, the search process is forced to move along the

direction of descending the function g(x) when looking for a minimum. In other

words, for xk+1 = xk +�xk , the increment �xk has the sign opposite to g′(xk).

Based on this observation, an update scheme can be formulated as

xk+1 = xk +�xk = xk − ag′(xk), (3.54)

with a being a positive, small, and adjustable parameter. This scheme can be

generalized to the multivariable case as

xk+1 = xk +�xk = xk − a∇g(xk)/|∇g(xk)|, (3.55)

where x = (x1, x2, . . . , xl) and ∇g(x) = (∂g/∂x1, ∂g/∂x2, . . . , ∂g/∂xl).

Note that step�xk here is scaled by |∇g(xk)| and is forced to move toward the

direction of the steepest descent. This is why this method is known as the steepest-

descent method. The following program is an implementation of such a scheme to

search for the minimum of the function g(x, y) = (x − 1)2 e−y2 + y(y + 2) e−2x2

around x = 0.1 and y = −1.

// An example of searching for a minimum of a multivariable
// function through the steepest-descent method.

import java.lang.*;
public class Minimum {
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public static void main(String argv[]) {
double del = 1e-6, a = 0.1;

double x[] = new double[2];

x[0] = 0.1;
x[1] = -1;

steepestDescent(x, a, del);

System.out.println("The minimum is at"
+ " x= " + x[0] +", y= " +x[1]);

}

// Method to carry out the steepest-descent search.

public static void steepestDescent(double x[],
double a, double del) {

int n = x.length;

double h = 1e-6;
double g0 = g(x);
double fi[] = new double[n];
fi = f(x, h);
double dg = 0;
for (int i=0; i<n; ++i) dg += fi[i]*fi[i];
dg = Math.sqrt(dg);

double b = a/dg;
while (dg > del) {

for (int i=0; i<n; ++i) x[i] -= b*fi[i];
h /= 2;
fi = f(x, h);
dg = 0;
for (int i=0; i<n; ++i) dg += fi[i]*fi[i];
dg = Math.sqrt(dg);
b = a/dg;
double g1 = g(x);
if (g1 > g0) a /= 2;
else g0 = g1;

}
}

// Method to provide the gradient of g(x).

public static double[] f(double x[], double h) {
int n = x.length;
double z[] = new double[n];
double y[] = (double[]) x.clone();
double g0 = g(x);
for (int i=0; i<n; ++i) {

y[i] += h;
z[i] = (g(y)-g0)/h;

}
return z;

}

// Method to provide function g(x).

public static double g(double x[]) {
return (x[0]-1)*(x[0]-1)*Math.exp(-x[1]*x[1])

+x[1]*(x[1]+2)*Math.exp(-2*x[0]*x[0]);
}

}



70 Numerical calculus

Note that the spacing in the two-point formula for the derivative is reduced by a

factor of 2 after each search, so is the step size in case of overshooting. After run-

ning the program, we find the minimum is at x ≃ 0.107 355 and y ≃ −1.223 376.

This is a very simple but not very efficient scheme. Like many other optimization

schemes, it converges to a local minimum near the starting point. The search

for a global minimum or maximum of a multivariable function is a nontrivial

task, especially when the function contains a significant number of local min-

ima or maxima. Active research is still looking for better and more reliable

schemes. In the last few decades, several advanced methods have been intro-

duced for dealing with function optimization, most noticeably, the simulated

annealing scheme, the Monte Carlo method, and the genetic algorithm and pro-

gramming. We will discuss some of these more advanced topics later in the

book.

3.5 Classical scattering

Scattering is a very important process in physics. From systems at the microscopic

scale, such as protons and neutrons in nuclei, to those at the astronomical scale,

such as galaxies and stars, scattering processes play a crucial role in determining

their structures and dynamics. In general, a many-body process can be viewed

as a sum of many simultaneous two-body scattering events if coherent scattering

does not happen.

In this section, we will apply the computational methods that we have devel-

oped in this and the preceding chapter to study the classical scattering of two

particles, interacting with each other through a pairwise potential. Most scatter-

ing processes with realistic interaction potentials cannot be solved analytically.

Therefore, numerical solutions of a scattering problem become extremely valu-

able if we want to understand the physical process of particle–particle interaction.

We will assume that the interaction potential between the two particles is spheri-

cally symmetric. Thus the total angular momentum and energy of the system are

conserved during the scattering.

The two-particle system

The Lagrangian for a general two-body system can be written as

L =
m1

2
v2

1 +
m2

2
v2

2 − V (r1, r2), (3.56)

where mi , ri , and vi = |dri/dt | with i = 1, 2 are, respectively, the mass, po-

sition vector, and speed of the i th particle, and V is the interaction potential

between the two particles, which we take to be spherically symmetric, that

is, V (r1, r2) = V (r21), with r21 = |r2 − r1| being the distance between the two

particles.
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We can always perform a coordinate transformation from r1 and r2 to the

relative coordinate r and the center-of-mass coordinate rc with

r = r2 − r1, (3.57)

rc =
m1r1 + m2r2

m1 + m2

. (3.58)

Then we can express the Lagrangian of the system in terms of the new coordinates

and their corresponding speeds as

L =
M

2
v2

c +
m

2
v2 − V (r ), (3.59)

where r = r21 and v = |dr/dt | are the distance and relative speed between the two

particles, M = m1 + m2 is the total mass of the system, m = m1m2/(m1 + m2) is

the reduced mass of the two particles, and vc = |drc/dt | is the speed of the center

of mass. If we study the scattering in the center-of-mass coordinate system with

vc = drc/dt = 0, the process is then represented by the motion of a single particle

of mass m in a central potential V (r ). In general, a two-particle system with a

spherically symmetric interaction can be viewed as a single particle with a reduced

mass moving in a central potential that is identical to the interaction potential.

We can reach the same conclusion from Newton’s equations

m1r̈1 = f1, (3.60)

m2r̈2 = f2, (3.61)

where the accelerations and forces are given by r̈i = d2ri/dt2 and fi =
−∇i V (r21) = −dV (r21)/dri . Note that, following the convention in physics,

we have used two dots over a variable to denote the second-order time derivative

of the variable, and we will also use a dot over a variable to denote the first-order

time derivative of the variable. Adding the above two equations and using New-

ton’s third law, f1 = −f2, or dividing the corresponding equation by mi and then

taking the difference, we obtain

mr̈ = f(r), (3.62)

M r̈c = 0, (3.63)

where f(r) = −∇V (r ) = −dV (r )/dr. So the motion of a two-particle system

with an isotropic interaction is equivalent to the constant-velocity motion of the

center of mass plus the relative motion of two particles that is described by an

effective particle of mass m in a central potential V (r ).

Cross section of scattering

Now we only need to study the scattering process of a particle with a mass m in a

central potential V (r ). Assume that the particle is coming in from the left with an

impact parameter b, the shortest distance between the particle and the potential

center if V (r ) → 0. A sketch of the process is given in Fig. 3.2.
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Fig. 3.2 A sketch of the

scattering process of a

particle in a central

potential.

The total cross section of such a scattering process is given by

σ =
∫

σ (θ ) d�, (3.64)

where σ (θ ) is the differential cross section, or the probability of a particle’s

being found in the solid angle element d� = 2π sin θ dθ at the deflection

angle θ .

If the particles are coming in with a flux density I (number of particles per

unit cross-sectional area per unit time), then the number of particles per unit

time within the range db of the impact parameter b is 2π I b db. Because all the

incoming particles in this area will go out in the solid angle element d� with the

probability σ (θ ), we have

2π I b db = Iσ (θ ) d�, (3.65)

which gives the differential cross section as

σ (θ ) =
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

. (3.66)

The reason for taking the absolute value of db/dθ in the above equation is that

db/dθ can be positive or negative depending on the form of the potential and the

impact parameter. However, σ (θ ) has to be positive because it is a probability.

We can relate this center-of-mass cross section to the cross section measured

in the laboratory through an inverse coordinate transformation of Eq. (3.57)

and Eq. (3.58), which relates r and rc back to r1 and r2. We will not discuss

this transformation here; interested readers can find it in any standard advanced

mechanics textbook.

Numerical evaluation of the cross section

Because the interaction between two particles is described by a spherically sym-

metric potential, the angular momentum and the total energy of the system are
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conserved during the scattering. Formally, we have

l = mbv0 = mr 2φ̇ (3.67)

and

E =
m

2
v2

0 =
m

2
(ṙ 2 + r 2φ̇

2
) + V (r ) (3.68)

which are respectively the total momentum and total energy and which are con-

stant. Here r is the radial coordinate, φ is the polar angle, and v0 is the initial

impact velocity. Combining Eq. (3.67) and Eq. (3.68) with

dφ

dr
=

dφ

dt

dt

dr
, (3.69)

we obtain

dφ

dr
= ±

b

r 2
√

1 − b2/r 2 − V (r )/E
, (3.70)

which provides a relation between φ and r for the given E , b, and V (r ). Here the

+ and − signs correspond to two different but symmetric parts of the trajectory.

The equation above can be used to calculate the deflection angle θ through

θ = π − 2�φ, (3.71)

where �φ is the change in the polar angle when r changes from infinity to its

minimum value rm. From Eq. (3.70), we have

�φ = b

∫ ∞

rm

dr

r 2
√

1 − b2/r 2 − V (r )/E

= −b

∫ rm

∞

dr

r 2
√

1 − b2/r 2 − V (r )/E
. (3.72)

If we use the energy conservation and angular momentum conservation discussed

earlier in Eq. (3.67) and Eq. (3.68), we can show that rm is given by

1 −
b2

r 2
m

−
V (rm)

E
= 0, (3.73)

which is the result of zero r -component velocity, that is, ṙ = 0. Because of the

change in the polar angle �φ = π/2 for V (r ) = 0, we can rewrite Eq. (3.71)

as

θ = 2b

[

∫ ∞

b

dr

r 2
√

1 − b2/r 2
−
∫ ∞

rm

dr

r 2
√

1 − b2/r 2 − V (r )/E

]

. (3.74)

The real reason for rewriting the constant π as an integral in the above expression

for θ is a numerical strategy to reduce possible errors coming from the truncation

of the integration region at both ends of the second term. The integrand in the first

integral diverges as r → b in much the same way as the integrand in the second

integral does as r → rm. The errors from the first and second terms cancel each

other, at least partially, because they are of opposite signs.
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Now we demonstrate how to calculate the differential cross section for a given

potential. Let us take the Yukawa potential

V (r ) =
κ

r
e−r/a (3.75)

as an illustrative example. Here κ and a are positive parameters that reflect,

respectively, the range and the strength of the potential and can be adjusted.

We use the secant method to solve Eq. (3.73) to obtain rm for the given b and

E . Then we use the Simpson rule to calculate the integrals in Eq. (3.74). After

that, we apply the three-point formula for the first-order derivative to obtain

dθ/db. Finally, we put all these together to obtain the differential cross section of

Eq. (3.66).

For simplicity, we choose E = m = κ = 1. The following program is an

implementation of the scheme outlined above.

// An example of calculating the differential cross section
// of classical scattering on the Yukawa potential.

import java.lang.*;
public class Collide {

static final int n = 10000, m = 20;

static final double a = 100, e = 1;
static double b;
public static void main(String argv[]) {

int nc = 20, ne = 2;
double del = 1e-6, db = 0.5, b0 = 0.01, h = 0.01;
double g1, g2;
double theta[] = new double[n+1];
double fi[] = new double[n+1];
double sig[] = new double[m+1];
for (int i=0; i<=m; ++i) {

b = b0+i*db;

// Calculate the first term of theta
for (int j=0; j<=n; ++j) {

double r = b+h*(j+1);

fi[j] = 1/(r*r*Math.sqrt(fb(r)));
}
g1 = simpson(fi, h);

// Find r_m from 1-b*b/(r*r)-V/E = 0
double rm = secant(nc, del, b, h);

// Calculate the second term of theta
for (int j=0; j<=n; ++j) {

double r = rm+h*(j+1);
fi[j] = 1/(r*r*Math.sqrt(f(r)));

}
g2 = simpson(fi, h);
theta[i] = 2*b*(g1-g2);

}

// Calculate d theta/d b
sig = firstOrderDerivative(db, theta, ne);

// Put the cross section in log form with the exact
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Fig. 3.3 This figure

shows the differential

cross section for

scattering from the

Yukawa potential with

a = 0.1 (crosses), a = 1

(triangles), a = 10

(solid circles), and

a = 100 (open circles),

together with the

analytical result for

Coulomb scattering

(dots). Other

parameters used are

E = m = κ = 1.

// result of the Coulomb scattering (ruth)
for (int i=m; i>=0; --i) {

b = b0+i*db;
sig[i] = b/(Math.abs(sig[i])*Math.sin(theta[i]));
double ruth = 1/Math.pow(Math.sin(theta[i]/2),4);
ruth /= 16;
double si = Math.log(sig[i]);
double ru = Math.log(ruth);
System.out.println("theta = " + theta[i]);
System.out.println("ln sigma(theta) = " + si);
System.out.println("ln sigma_r(theta) = " + ru);
System.out.println();

}
}

public static double simpson(double y[], double h)
{...}

public static double secant(int n, double del,
double x, double dx) {...}

public static double[] firstOrderDerivative(double h,
double f[], int m) {...}

public static double aitken(double x, double xi[],

double fi[]) {...}

// Method to provide function f(x) for the root search.

public static double f(double x) {

return 1-b*b/(x*x)-Math.exp(-x/a)/(x*e);
}

// Method to provide function 1-b*b/(x*x).

public static double fb(double x) {
return 1-b*b/(x*x);

}
}
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The methods called in the program are exactly those given earlier in this the pre-

ceding chapter. We have also included the analytical result for Coulomb scattering,

which is a special case of the Yukawa potential with a → ∞. The differential

cross section for Coulomb scattering is

σ (θ ) =
( κ

4E

)2 1

sin4(θ/2)
; (3.76)

this expression is commonly referred to as the Rutherford formula. The results

obtained with the above program for different values of a are shown in Fig. 3.3.

It is clear that when a is increased, the differential cross section becomes closer

to that of the Coulomb scattering, as expected.

Exercises

3.1 Write a program that obtains the first-order and second-order derivatives

from the five-point formulas. Check its accuracy with the function f (x) =
cos x sinh x with 101 uniformly spaced points for 0 ≤ x ≤ π/2. Discuss

the procedure used for dealing with the boundary points.

3.2 The derivatives of a function can be obtained by first performing the in-

terpolation of f (xi ) and then obtaining the derivatives of the interpolation

polynomial. Show that: if p1(x) is used to interpolate the function and

x0 = x − h and x1 = x + h are used as the data points, the three-point

formula for the first-order derivative is recovered; if p2(x) is used to in-

terpolate the function and x0 = x − h, x1 = x , and x2 = x + h are used

as the data points, the three-point formula for the second-order derivative

is recovered; if p3(x) is used to interpolate the function and x0 = x − 2h,

x1 = x − h, x2 = x + h, and x3 = x + 2h are used as the data points, the

five-point formula for the first-order derivative is recovered; and if p4(x)

is used to interpolate the function and x0 = x − 2h, x1 = x − h, x2 = x ,

x3 = x + h, and x4 = x + 2h are used as the data points, the five-point

formula for the second-order derivative is recovered.

3.3 The Richardson extrapolation is a recursive scheme that can be used to

improve the accuracy of the evaluation of derivatives. From the Taylor

expansions of f (x − h) and f (x + h), we know that

�1(h) =
f (x + h) − f (x − h)

2h
= f ′(x) +

∞
∑

k=1

c2kh2k .

Starting from Ŵk0 = �1(h/2k), show that the Richardson extrapolation

Ŵkl =
4l

4l − 1
Ŵkl−1 −

1

4l − 1
Ŵk−1l−1,

for 0 ≤ l ≤ k, leads to

f ′(x) = Ŵkl −
∞
∑

m=l+1

Bml

(

h

2k

)2m

,
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where

Bkl =
(

4l − 4k

4l − 1

)

Bkl−1,

with Bkk = 0. Write a subprogram that generates the Richardson extrap-

olation and evaluates the first-order derivative f ′(x) ≃ Ŵnn for a given n.

Test the subprogram with f (x) = sin x .

3.4 Repeat Exercise 3.3 with �1(h) replaced by

�2(h) =
f (x + h) − 2 f (x) + f (x − h)

h2

and f ′(x) replaced by f ′′(x). Is there any significant difference?

3.5 Using the fact that

�2(h) − 4�2(h/2) = −3 f ′′(x) + O(h4),

construct a subprogram that calculates the second-order derivative f ′′(x)

adaptively. (�2 is defined in Exercise 3.4.) Then apply the subprogram to

f (x) = e−x ln x . Is there any significant difference between the scheme

here and the adaptive scheme for the first-order derivative introduced in

Section 3.1?

3.6 Derive the Simpson rule with a pair of slices with an equal interval by using

the Taylor expansion of f (x) around xi in the region [xi−1, xi+1] and the

three-point formulas for the first-order and second-order derivatives. Show

that the contribution of the last slice is also correctly given by the formula

in Section 3.2 under such an approach.

3.7 Derive the Simpson rule with f (x) = ax2 + bx + c going through points

xi−1, xi , and xi+1. Determine a, b, and c from the three equations given at

the three data points first and then carry out the integration over the two

slices with the quadratic curve being the integrand.

3.8 Develop a program that can calculate the integral with a given integrand

f (x) in the region [a, b] by the Simpson rule with nonuniform data points.

Check its accuracy with the integral
∫∞

0
e−x dx with x j = jhe jα , where h

and α are small constants.

3.9 Expand the integrand of S =
∫ b

a
f (x) dx in a Taylor series around x = a

and show that

�S0 = S − S0 ≈ −
h3

12
f ′′(a),

where h = b − a and S0 is the trapezoid evaluation of S with xi = a and

xi+1 = b. If the region [a, b] is divided into two, [a, c] and [c, b], with

c = (a + b)/2, show that

�S1 = S − S1 ≈ −
h3

48
f ′′(a),
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where S1 is the sum of the trapezoid evaluations of the integral in the regions

[a, c] and [c, b]. Using the fact that S1 − S0 ≈ 3�S1, write a subprogram

that performs the adaptive trapezoid evaluation of an integral to a specified

accuracy.

3.10 The Romberg algorithm is a recursive procedure for evaluating an integral

based on the adaptive trapezoid rule with

Skl =
4l

4l − 1
Skl−1 −

1

4l − 1
Sk−1l−1,

where Sk0 is the evaluation of the integral with the adaptive trapezoid rule

to the kth level. Show that

lim
k→∞

Skl = S =
∫ b

a

f (x) dx

for any l. Find the formula for the error estimate �Skl = S − Skl .

3.11 Apply the secant method developed in Section 3.3 to solve f (x) =
ex2

ln x2 − x = 0. Discuss the procedure for dealing with more than one

root in a given region.

3.12 Develop a subprogram that implements the Newton method to solve f(x) =
0, where both f and x are l-dimensional vectors. Test the subprogram with

f1(x1, x2) = ex2
1 ln x2 − x2

1 and f2(x1, x2) = ex2 ln x1 − x2
2 .

3.13 Write a routine that returns the minimum of a single-variable function

g(x) in a given region [a, b]. Assume that the first-order and second-order

derivatives of g(x) are not explicitly given. Test the routine with some

well-known functions, for example, g(x) = x2.

3.14 Consider clusters of ions (Na+)n(Cl−)m, where m and n are small, positive

integers. Use the steepest-descent method to obtain the stable geometric

structures of the clusters. Use the molecular potential given in Eq. (3.52)

for opposite charges but the Coulomb potential for like charges.

3.15 Modify the program in Section 3.5 to evaluate the differential cross section

of the Lennard–Jones potential

V (r ) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

.

Choose ε as the energy unit and σ as the length unit.

3.16 Show that the period of a pendulum confined in a vertical plane is

T = 4

√

ℓ

2g

∫ θ0

0

dθ
√

cos θ − cos θ0

,

where θ0 < π is the maximum of the angle between the pendulum and

the downward vertical, ℓ is the length of the pendulum, and g is the

gravitational acceleration. Evaluate this integral numerically for θ0 =
π/128, π/64, π/32, π/16, π/8, π/4, π/2, and compare the numerical re-

sults with the small-angle approximation T ≃ 2π
√
ℓ/g.
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3.17 Show that the time taken for a meterstick to fall on a frictionless, horizontal

surface from an initial angle θ0 to a final angle θ with the horizontal is

t =
1

2

√

ℓ

3g

∫ θ0

θ

√

1 + 3 cos2 φ

sin θ0 − sinφ
dφ,

where ℓ is the length of the meterstick (1 meter) and g is the gravitational

acceleration. Evaluate this time numerically with θ0 = π/8, π/4, π/2, and

θ = 0.

3.18 For a classical particle of mass m moving in a one-dimensional, symmetric

potential well U (x) = U (−x), show that the inverse function is given by

x(U ) =
1

2π
√

2m

∫ U

0

T (E) d E
√

U − E
,

where T (E) is the period of the motion for a given total energy E . Find

U (x) numerically if T/T0 = 1 + αe−E/E0 , for α = 0, 0.1, 1, 10. Use T0,

E0, and T0

√
E0/(2π

√
2m) as the units of the period, energy, and position,

respectively. Discuss the accuracy of the numerical results by comparing

them with an available analytical result.



Chapter 4

Ordinary differential equations

Most problems in physics and engineering appear in the form of differen-

tial equations. For example, the motion of a classical particle is described by

Newton’s equation, which is a second-order ordinary differential equation in-

volving at least a second-order derivative in time, and the motion of a quantum

particle is described by the Schrödinger equation, which is a partial differential

equation involving a first-order partial derivative in time and second-order partial

derivatives in coordinates. The dynamics and statics of bulk materials such as

fluids and solids are all described by differential equations.

In this chapter, we introduce some basic numerical methods for solving

ordinary differential equations. We will discuss the corresponding schemes for

partial differential equations in Chapter 7 and some more advanced techniques

for the many-particle Newton equation and the many-body Schrödinger equation

in Chapters 8 and 10. Hydrodynamics and magnetohydrodynamics are treated in

Chapter 9.

In general, we can classify ordinary differential equations into three major

categories:

(1) initial-value problems, which involve time-dependent equations with given initial

conditions;

(2) boundary-value problems, which involve differential equations with specified bound-

ary conditions;

(3) eigenvalue problems, which involve solutions for selected parameters (eigenvalues)

in the equations.

In reality, a problem may involve more than just one of the categories listed

above. A common situation is that we have to separate several variables by intro-

ducing multipliers so that the initial-value problem is isolated from the boundary-

value or eigenvalue problem. We can then solve the boundary-value or eigenvalue

problem first to determine the multipliers, which in turn are used to solve the re-

lated initial-value problem. We will cover separation of variables in Chapter 7. In

this chapter, we concentrate on the basic numerical methods for all the three cat-

egories listed above and illustrate how to use these techniques to solve problems

encountered in physics and other related fields.

80
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4.1 Initial-value problems

Typically, initial-value problems involve dynamical systems, for example, the

motion of the Moon, Earth, and the Sun, the dynamics of a rocket, or the propa-

gation of ocean waves. The behavior of a dynamical system can be described by

a set of first-order differential equations,

dy

dt
= g(y, t), (4.1)

where

y = (y1, y2, . . . , yl ) (4.2)

is the dynamical variable vector, and

g(y, t) = [g1(y, t), g2(y, t), . . . , gl (y, t)] (4.3)

is the generalized velocity vector, a term borrowed from the definition of the

velocity v(r, t) = dr/dt for a particle at position r and time t . Here l is the total

number of dynamical variables. In principle, we can always obtain the solution of

the above equation set if the initial condition y(t = 0) = y0 is given and a solution

exists. For the case of the particle moving in one dimension under an elastic force

discussed in Chapter 1, the dynamics is governed by Newton’s equation

f = ma, (4.4)

where a and m are the acceleration and mass of the particle, respectively, and f

is the force exerted on the particle. This equation can be viewed as a special case

of Eq. (4.1) with l = 2: that is, y1 = x and y2 = v = dx/dt , and g1 = v = y2

and g2 = f/m = −kx/m = −ky1/m. Then we can rewrite Newton’s equation

in the form of Eq. (4.1):

dy1

dt
= y2, (4.5)

dy2

dt
= −

k

m
y1. (4.6)

If the initial position y1(0) and the initial velocity y2(0) = v(0) are given, we can

solve the problem numerically as demonstrated in Chapter 1.

In fact, most higher-order differential equations can be transformed into a set

of coupled first-order differential equations in the form of Eq. (4.1). The higher-

order derivatives are usually redefined into new dynamical variables during the

transformation. The velocity in Newton’s equation discussed above is such an

example.

4.2 The Euler and Picard methods

For convenience of notation, we will work out our numerical schemes for cases

with only one dynamical variable, that is, treating y and g in Eq. (4.1) as
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one-dimensional vectors or signed scalars. Extending the formalism developed

here to multivariable cases is straightforward. We will illustrate such an extension

in Sections 4.3 and 4.5.

Intuitively, Eq. (4.1) can be solved numerically as was done in Chapter 1 for

the problem of a particle moving in one dimension with the time derivative of the

dynamical variable approximated by the average generalized velocity as

dy

dt
≃

yi+1 − yi

ti+1 − ti

≃ g(yi , ti ). (4.7)

Note that the indices i and i + 1 here are for the time steps. We will also use

gi = g(yi , ti ) to simplify the notation. The approximation of the first-order deriva-

tive in Eq. (4.7) is equivalent to the two-point formula, which has a possible error

of O(|ti+1 − ti |). If we take evenly spaced time points with a fixed time step

τ = ti+1 − ti and rearrange the terms in Eq. (4.7), we obtain the simplest algo-

rithm for initial-value problems,

yi+1 = yi + τgi + O(τ 2), (4.8)

which is commonly known as the Euler method and was used in the example of

a particle moving in one dimension in Chapter 1. We can reach the same result

by considering it as the Taylor expansion of yi+1 at ti by keeping the terms up to

the first order. The accuracy of this algorithm is relatively low. At the end of the

calculation after a total of n steps, the error accumulated in the calculation is on

the order of nO(τ 2) ≃ O(τ ). To illustrate the relative error in this algorithm, let

us use the program for the one-dimensional motion given in Section 1.3. Now if

we use a time step of 0.02π instead of 0.000 02π , the program can accumulate

a sizable error. The results for the position and velocity of the particle in the

first period are given in Fig. 4.1. The results from a better algorithm with a

corrector to be discussed in Section 4.3 and the exact results are also shown

for comparison. The accuracy of the Euler algorithm is very low. We have 100

points in one period of the motion, which is a typical number of points chosen

in most numerical calculations. If we go on to the second period, the error will

increase further. For problems without periodic motion, the results at a later time

would be even worse. We can conclude that this algorithm cannot be adopted in

actual numerical solutions of most physics problems. How can we improve the

algorithm so that it will become practical?

We can formally rewrite Eq. (4.1) as an integral

yi+ j = yi +
∫ ti+ j

ti

g(y, t) dt, (4.9)

which is the exact solution of Eq. (4.1) if the integral in the equation can be

obtained exactly for any given integers i and j . Because we cannot obtain the

integral in Eq. (4.9) exactly in general, we have to approximate it. The accuracy

in the approximation of the integral determines the accuracy of the solution. If
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Fig. 4.1 The position

(+) and velocity (✷) of

the particle moving in

a one-dimensional

space under an elastic

force calculated using

the Euler method with

a time step of 0.02π

compared with the

position (◦) and

velocity (•) calculated

with the predictor--

corrector method and

the exact results (solid

and dotted lines).

we take the simplest case of j = 1 and approximate g(y, t) ≃ gi in the integral,

we recover the Euler algorithm of Eq. (4.8).

The Picard method is an adaptive scheme, with each iteration carried out by

using the solution from the previous iteration as the input on the right-hand side

of Eq. (4.9). For example, we can use the solution from the Euler method as the

starting point, and then carry out Picard iterations at each time step. In practice,

we need to use a numerical quadrature to carry out the integration on the right-

hand side of the equation. For example, if we choose j = 1 and use the trapezoid

rule for the integral in Eq. (4.9), we obtain the algorithm

yi+1 = yi +
τ

2
(gi + gi+1) + O(τ 3). (4.10)

Note that gi+1 = g(yi+1, ti+1) contains yi+1, which is provided adaptively in the

Picard method. For example, we can take the solution at the previous time step as

a guess of the solution at the current time, y
(0)
i+1 = yi , and then iterate the solution

from right to left in the above equation, namely, y
(k+1)
i+1 = yi + τ

2
(gi + g

(k)
i+1). The

Picard method can be slow if the initial guess is not very close to the actual

solution; it may not even converge if certain conditions are not satisfied. Can we

avoid such tedious iterations by an intelligent guess of the solution?

4.3 Predictor--corrector methods

One way to avoid having to perform tedious iterations is to use the so-called

predictor–corrector method. We can apply a less accurate algorithm to predict

the next value yi+1 first, for example, using the Euler algorithm of Eq. (4.8), and

then apply a better algorithm to improve the new value, for example, using the

Picard algorithm of Eq. (4.10). If we apply this system to the one-dimensional

motion studied with the Euler method, we obtain a much better result with the
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same choice of time step, for example, τ = 0.02π . The following program is the

implementation of this simplest predictor–corrector method to such a problem.

// A program to study the motion of a particle under an
// elastic force in one dimension through the simplest

// predictor-corrector scheme.

import java.lang.*;
public class Motion2 {

static final int n = 100, j = 5;
public static void main(String argv[]) {

double x[] = new double[n+1];
double v[] = new double[n+1];

// Assign time step and initial position and velocity
double dt = 2*Math.PI/n;
x[0] = 0;
v[0] = 1;

// Calculate other position and velocity recursively
for (int i=0; i<n; ++i) {

// Predict the next position and velocity
x[i+1] = x[i]+v[i]*dt;
v[i+1] = v[i]-x[i]*dt;

// Correct the new position and velocity

x[i+1] = x[i]+(v[i]+v[i+1])*dt/2;

v[i+1] = v[i]-(x[i]+x[i+1])*dt/2;
}

// Output the result in every j time steps
double t = 0;
double jdt = j*dt;

for (int i=0; i<=n; i+=j) {
System.out.println(t +" " + x[i] +" " + v[i]);
t += jdt;

}
}

}

The numerical result from the above program is shown in Fig. 4.1 for comparison.

The improvement obtained is significant. With 100 mesh points in one period of

motion, the errors are less than the size of the smallest symbol used in the figure.

Furthermore, the improvement can also sustain long runs with more periods

involved.

Another way to improve an algorithm is by increasing the number of mesh

points j in Eq. (4.9). Thus we can apply a better quadrature to the integral. For

example, if we take j = 2 in Eq. (4.9) and then use the linear interpolation scheme

to approximate g(y, t) in the integral from gi and gi+1, we obtain

g(y, t) =
(t − ti )

τ
gi+1 −

(t − ti+1)

τ
gi + O(τ 2). (4.11)
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Now if we carry out the integration with g(y, t) given from this equation, we

obtain a new algorithm

yi+2 = yi + 2τgi+1 + O(τ 3), (4.12)

which has an accuracy one order higher than that of the Euler algorithm. However,

we need the values of the first two points in order to start this algorithm, because

gi+1 = g(yi+1, ti+1). Usually, the dynamical variable and the generalized velocity

at the second point can be obtained by the Taylor expansion around the initial

point at t = 0. For example, we have

y1 = y0 + τg0 +
τ 2

2

(

∂g0

∂t
+ g0

∂g0

∂y

)

+ O(τ 3) (4.13)

and

g1 = g(y1, τ ). (4.14)

We have truncated y1 at O(τ 3) to preserve the same order of accuracy in the

algorithm of Eq. (4.12). We have also used the fact that dy/dt = g.

Of course, we can always include more points in the integral of Eq. (4.9) to

obtain algorithms with apparently higher accuracy, but we will need the values

of more points in order to start the algorithm. This becomes impractical if we

need more than two points in order to start the algorithm, because the errors

accumulated from the approximations of the first few points will eliminate the

apparently high accuracy of the algorithm.

We can make the accuracy even higher by using a better quadrature. For

example, we can take j = 2 in Eq. (4.9) and apply the Simpson rule, discussed

in Section 3.2, to the integral. Then we have

yi+2 = yi +
τ

3
(gi+2 + 4gi+1 + gi ) + O(τ 5). (4.15)

This implicit algorithm can be used as the corrector if the algorithm in Eq. (4.12)

is used as the predictor.

Let us take the simple model of a motorcycle jump over a gap as an illus-

trating example. The air resistance on a moving object is roughly given by fr =
−κvv = −cAρvv, where A is cross section of the moving object, ρ is the density

of the air, and c is a coefficient that accounts for all the other factors on the order

of 1. So the motion of the system is described by the equation set

dr

dt
= v, (4.16)

dv

dt
= a =

f

m
, (4.17)

where

f = −mgŷ − κvv (4.18)
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is the total force on the system of a total mass m. Here ŷ is the unit vector pointing

upward. Assuming that we have the first point given, that is, r0 and v0 at t = 0,

the next point is then obtained from the Taylor expansions and the equation set

with

r1 = r0 + τv0 +
τ 2

2
a0 + O(τ 3), (4.19)

v1 = v0 + τa0 +
τ 2

2

da0

dt
+ O(τ 3), (4.20)

where

da0

dt
= −

κ

m

(

v0a0 +
v0 · a0

v0

v0

)

. (4.21)

The following program calculates the trajectory of the motorcycle with a given

taking-off angle.

// An example of modeling a motorcycle jump with the
// two-point predictor-corrector scheme.

import java.lang.*;
public class Jump {

static final int n = 100, j = 2;
public static void main(String argv[]) {

double x[] = new double[n+1];
double y[] = new double[n+1];
double vx[] = new double[n+1];
double vy[] = new double[n+1];
double ax[] = new double[n+1];
double ay[] = new double[n+1];

// Assign all the constants involved
double g = 9.80;
double angle = 42.5*Math.PI/180;
double speed = 67;
double mass = 250;
double area = 0.93;
double density = 1.2;
double k = area*density/(2*mass);
double dt = 2*speed*Math.sin(angle)/(g*n);
double d = dt*dt/2;

// Assign the quantities for the first two points
x[0] = y[0] = 0;
vx[0] = speed*Math.cos(angle);
vy[0] = speed*Math.sin(angle);
double v = Math.sqrt(vx[0]*vx[0]+vy[0]*vy[0]);
ax[0] = -k*v*vx[0];
ay[0] = -g-k*v*vy[0];
double p = vx[0]*ax[0]+vy[0]*ay[0];

x[1] = x[0]+dt*vx[0]+d*ax[0];

y[1] = y[0]+dt*vy[0]+d*ay[0];

vx[1] = vx[0]+dt*ax[0]-d*k*(v*ax[0]+p*vx[0]/v);

vy[1] = vy[0]+dt*ay[0]-d*k*(v*ay[0]+p*vy[0]/v);
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Fig. 4.2 The trejactory

of the motorcycle as

calculated in the

example program with

different taking-off

angles: 40◦ (+), 42.5◦

(•), and 45◦ (◦).

v = Math.sqrt(vx[1]*vx[1]+vy[1]*vy[1]);
ax[1] = -k*v*vx[1];
ay[1] = -g-k*v*vy[1];

// Calculate other position and velocity recursively

double d2 = 2*dt;

double d3 = dt/3;
for (int i=0; i<n-1; ++i) {

// Predict the next position and velocity

x[i+2] = x[i]+d2*vx[i+1];
y[i+2] = y[i]+d2*vy[i+1];

vx[i+2] = vx[i]+d2*ax[i+1];

vy[i+2] = vy[i]+d2*ay[i+1];
v = Math.sqrt(vx[i+2]*vx[i+2]+vy[i+2]*vy[i+2]);

ax[i+2] = -k*v*vx[i+2];
ay[i+2] = -g-k*v*vy[i+2];

// Correct the new position and velocity
x[i+2] = x[i]+d3*(vx[i+2]+4*vx[i+1]+vx[i]);
y[i+2] = y[i]+d3*(vy[i+2]+4*vy[i+1]+vy[i]);
vx[i+2] = vx[i]+d3*(ax[i+2]+4*ax[i+1]+ax[i]);
vy[i+2] = vy[i]+d3*(ay[i+2]+4*ay[i+1]+ay[i]);

}

// Output the result in every j time steps
for (int i=0; i<=n; i+=j)

System.out.println(x[i] +" " + y[i]);
}

}

In the above program, we have used the cross section A = 0.93 m2, the taking-

off speed v0 = 67 m/s, the air density ρ = 1.2 kg/m3, the combined mass of the

motorcycle and the person 250 kg, and the coefficient c = 1. The results for three

different taking-off angles are plotted in Fig. 4.2. The maximum range is about

269 m at a taking-off angle of about 42.5◦.
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In principle, we can go further by including more points in the integration

quadrature of Eq. (4.9) and interested readers can find many multiple-point

formulas in Davis and Polonsky (1965).

4.4 The Runge–Kutta method

The accuracy of the methods that we have discussed so far can be improved

only by including more starting points, which is not always practical, because

a problem associated with a dynamical system usually has only the first point,

namely, the initial condition, given. A more practical method that requires only

the first point in order to start or to improve the algorithm is the Runge–Kutta

method, which is derived from two different Taylor expansions of the dynamical

variables and their derivatives defined in Eq. (4.1).

Formally, we can expand y(t + τ ) in terms of the quantities at t with the Taylor

expansion

y(t + τ ) = y + τ y′ +
τ 2

2
y′′ +

τ 3

3!
y(3) + · · ·

= y + τg +
τ 2

2
(gt + ggy) +

τ 3

6

(

gt t + 2ggt y + g2gyy + gg2
y + gt gy

)

+ · · · ,

(4.22)

where the subscript indices denote partial derivatives for example, gyt =
∂2g/∂y∂t . We can also formally write the solution at t + τ as

y(t + τ ) = y(t) + α1c1 + α2c2 + · · · + αmcm, (4.23)

with

c1 = τg(y, t),

c2 = τg(y + ν21c1, t + ν21τ ),

c3 = τg(y + ν31c1 + ν32c2, t + ν31τ + ν32τ ), (4.24)

...

cm = τg

(

y +
m−1
∑

i=1

νmi ci , t + τ

m−1
∑

i=1

νmi

)

,

where αi (with i = 1, 2, . . . ,m) and νi j (with i = 2, 3, . . . ,m and j < i) are

parameters to be determined. We can expand Eq. (4.23) into a power series of τ

by carrying out Taylor expansions for all ci with i = 1, 2, . . . ,m. Then we can

compare the resulting expression of y(t + τ ) from Eq. (4.23) with the expansion

in Eq. (4.22) term by term. A set of equations for αi and νi j is obtained by keeping

the coefficients for the terms with the same power of τ on both sides equal. By

truncating the expansion to the term O(τm), we obtain m equations but with

m + m(m − 1)/2 parameters (αi and νi j ) to be determined. Thus, there are still

options left in choosing these parameters.
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Let us illustrate this scheme by working out the case for m = 2 in detail. If

only the terms up to O(τ 2) are kept in Eq. (4.22), we have

y(t + τ ) = y + τg +
τ 2

2
(gt + ggy). (4.25)

We can obtain an expansion up to the same order by truncating Eq. (4.23) at

m = 2,

y(t + τ ) = y(t) + α1c1 + α2c2, (4.26)

with

c1 = τg(y, t), (4.27)

c2 = τg(y + ν21c1, t + ν21τ ). (4.28)

Now if we perform the Taylor expansion for c2 up to the term O(τ 2), we have

c2 = τg + ν21τ
2(gt + ggy). (4.29)

Substituting c1 and the expansion of c2 above back into Eq. (4.26) yields

y(t + τ ) = y(t) + (α1 + α2)τg + α2τ
2ν21(gt + ggy). (4.30)

If we compare this expression with Eq. (4.25) term by term, we have

α1 + α2 = 1, (4.31)

α2ν21 =
1

2
. (4.32)

As pointed out earlier, there are only m (2 in this case) equations available but

there are m + m(m − 1)/2 (3 in this case) parameters to be determined. We do not

have a unique solution for all the parameters; thus we have flexibility in assigning

their values as long as they satisfy the m equations. We could choose α1 =
α2 = 1/2 and ν21 = 1, or α1 = 1/3, α2 = 2/3, and ν21 = 3/4. The flexibility

in choosing the parameters provides one more way to increase the numerical

accuracy in practice. We can adjust the parameters according to the specific

problems involved.

The most commonly known and widely used Runge–Kutta method is the one

with Eqs. (4.22) and (4.23) truncated at the terms of O(τ 4). We will give the

result here and leave the derivation as an exercise to the reader. This well-known

fourth-order Runge–Kutta algorithm is given by

y(t + τ ) = y(t) +
1

6
(c1 + 2c2 + 2c3 + c4), (4.33)
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Fig. 4.3 A sketch of a

driven pendulum under

damping: fd is the driving

force and fr is the

resistive force.

with

c1 = τg(y, t), (4.34)

c2 = τg
(

y +
c1

2
, t +

τ

2

)

, (4.35)

c3 = τg
(

y +
c2

2
, t +

τ

2

)

, (4.36)

c4 = τg(y + c3, t + τ ). (4.37)

We can easily show that the above selection of parameters does satisfy the required

equations. As pointed out earlier, this selection is not unique and can be modified

according to the problem under study.

4.5 Chaotic dynamics of a driven pendulum

Before discussing numerical methods for solving boundary-value and eigenvalue

problems, let us apply the Runge–Kutta method to the initial-value problem of

a dynamical system. Even though we are going to examine only one special

system, the approach, as shown below, is quite general and suitable for all other

problems.

Consider a pendulum consisting of a light rod of length l and a point mass

m attached to the lower end. Assume that the pendulum is confined to a vertical

plane, acted upon by a driving force fd and a resistive force fr as shown in

Fig. 4.3. The motion of the pendulum is described by Newton’s equation along

the tangential direction of the circular motion of the point mass,

mat = fg + fd + fr, (4.38)

where fg = −mg sin θ is the contribution of gravity along the direction of motion,

with θ being the angle made by the rod with respect to the vertical line, and

at = ld2θ/dt2 is the acceleration along the tangential direction. Assume that the
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time dependency of the driving force is periodic as

fd(t) = f0 cosω0t, (4.39)

and the resistive force fr = −κv, where v = ldθ/dt is the velocity of the mass

and κ is a positive damping parameter. This is a reasonable assumption for a

pendulum set in a dense medium under a harmonic driving force. If we rewrite

Eq. (4.38) in a dimensionless form with
√

l/g chosen as the unit of time, we have

d2θ

dt2
+ q

dθ

dt
+ sin θ = b cosω0t, (4.40)

where q = κ/m and b = f0/ml are redefined parameters. As discussed at the

beginning of this chapter, we can write the derivatives as variables. We can thus

transform higher-order differential equations into a set of first-order differential

equations. If we choose y1 = θ and y2 = ω = dθ/dt , we have

dy1

dt
= y2, (4.41)

dy2

dt
= −qy2 − sin y1 + b cosω0t, (4.42)

which are in the form of Eq. (4.1). In principle, we can use any method discussed

so far to solve this equation set. However, considering the accuracy required for

long-time behavior, we use the fourth-order Runge–Kutta method here.

As we will show later from the numerical solutions of Eqs. (4.41) and (4.42), in

different regions of the parameter space (q, b, ω0) the system has quite different

dynamics. Specifically, in some parameter regions the motion of the pendulum

is totally chaotic.

If we generalize the fourth-order Runge–Kutta method discussed in the

preceding section to multivariable cases, we have

yi+1 = yi +
1

6
(c1 + 2c2 + 2c3 + c4), (4.43)

with

c1 = τg(yi , ti ), (4.44)

c2 = τg
(

yi +
c1

2
, ti +

τ

2

)

, (4.45)

c3 = τg
(

yi +
c2

2
, ti +

τ

2

)

, (4.46)

c4 = τg(yi + c3, ti + τ ), (4.47)

where yi for any i and c j for j = 1, 2, 3, 4 are multidimensional vectors. Note

that generalizing an algorithm for the initial-value problem from the single-

variable case to the multivariable case is straightforward. Other algorithms we

have discussed can be generalized in exactly the same fashion.

In principle, the pendulum problem has three dynamical variables: the angle

between the rod and the vertical line, θ , its first-order derivative ω = dθ/dt , and
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the phase of the driving force φ = ω0t . This is important because a dynamical

system cannot be chaotic unless it has three or more dynamical variables. However

in practice, we only need to worry about θ and ω because φ = ω0t is the solution

of φ.

Any physical quantities that are functions of θ are periodic: for example,

ω(θ ) = ω(θ ± 2nπ ), where n is an integer. Therefore, we can confine θ in the

region [−π, π]. If θ is outside this region, it can be transformed back with

θ ′ = θ ± 2nπ without losing any generality. The following program is an im-

plementation of the fourth-order Runge–Kutta algorithm as applied to the driven

pendulum under damping.

// A program to study the driven pendulum under damping
// via the fourth-order Runge-Kutta algorithm.

import java.lang.*;
public class Pendulum {

static final int n = 100, nt = 10, m = 5;
public static void main(String argv[]) {

double y1[] = new double[n+1];
double y2[] = new double[n+1];
double y[] = new double[2];

// Set up time step and initial values
double dt = 3*Math.PI/nt;
y1[0] = y[0] = 0;
y2[0] = y[1] = 2;

// Perform the 4th-order Runge-Kutta integration
for (int i=0; i<n; ++i) {

double t = dt*i;

y = rungeKutta(y, t, dt);

y1[i+1] = y[0];
y2[i+1] = y[1];

// Bring theta back to the region [-pi, pi]
int np = (int) (y1[i+1]/(2*Math.PI)+0.5);
y1[i+1] -= 2*Math.PI*np;

}

// Output the result in every m time steps
for (int i=0; i<=n; i+=m) {

System.out.println("Angle: " + y1[i]);
System.out.println("Angular velocity: " + y2[i]);
System.out.println();

}
}

// Method to complete one Runge-Kutta step.

public static double[] rungeKutta(double y[],
double t, double dt) {
int l = y.length;
double c1[] = new double[l];
double c2[] = new double[l];
double c3[] = new double[l];
double c4[] = new double[l];
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Fig. 4.4 The angular

velocity ω versus the

angle θ , with

parameters ω0 = 2/3,

q = 0.5, and b = 0.9.

Under the given

condition the system is

apparently periodic.

Here 1000 points from

10 000 time steps are

shown.

c1 = g(y, t);
for (int i=0; i<l; ++i) c2[i] = y[i] + dt*c1[i]/2;
c2 = g(c2, t+dt/2);
for (int i=0; i<l; ++i) c3[i] = y[i] + dt*c2[i]/2;
c3 = g(c3, t+dt/2);
for (int i=0; i<l; ++i) c4[i] = y[i] + dt*c3[i];
c4 = g(c4, t+dt);
for (int i=0; i<l; ++i)

c1[i] = y[i] + dt*(c1[i]+2*(c2[i]+c3[i])+c4[i])/6;
return c1;

}

// Method to provide the generalized velocity vector.

public static double[] g(double y[], double t) {
int l = y.length;

double q = 0.5, b = 0.9, omega0 = 2.0/3;
double v[] = new double[l];
v[0] = y[1];
v[1] = -Math.sin(y[0])+b*Math.cos(omega0*t);
v[1] -= q*y[1];
return v;

}
}

Depending on the choice of the three parameters, q , b, and ω0, the system can

be periodic or chaotic. In Fig. 4.4 and Fig. 4.5, we show two typical numerical

results. The dynamical behavior of the pendulum shown in Fig. 4.4 is periodic in

the selected parameter region, and the dynamical behavior shown in Fig. 4.5 is

chaotic in another parameter region. We can modify the program developed here

to explore the dynamics of the pendulum through the whole parameter space and

many important aspects of chaos. Interested readers can find discussions on these

aspects in Baker and Gollub (1996).

Several interesting features appear in the results shown in Fig. 4.4 and Fig. 4.5.

In Fig. 4.4, the motion of the system is periodic, with a period T = 2T0, where
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Fig. 4.5 The same plot as

in Fig. 4.4, with

parameters ω0 = 2/3,

q = 0.5, and b = 1.15. The

system at this point of the

parameter space is

apparently chaotic. Here

1000 points from 10 000

time steps are shown.

T0 = 2π/ω0 is the period of the driving force. If we explore other parameter

regions, we would find other periodic motions with T = nT0, where n is an even,

positive integer. The reason why n is even is that the system is moving away

from being periodic to being chaotic; period doubling is one of the routes for

a dynaimcal system to develop chaos. The chaotic behavior shown in Fig. 4.5

appears to be totally irregular; however, detailed analysis shows that the phase-

space diagram (the ω–θ plot) has self-similarity at all length scales, as indicated

by the fractal structure in chaos.

4.6 Boundary-value and eigenvalue problems

Another class of problems in physics requires the solving of differential equations

with the values of physical quantities or their derivatives given at the boundaries

of a specified region. This applies to the solution of the Poisson equation with a

given charge distribution and known boundary values of the electrostatic potential

or of the stationary Schrödinger equation with a given potential and boundary

conditions.

A typical boundary-value problem in physics is usually given as a second-order

differential equation

u′′ = f (u, u′; x), (4.48)

where u is a function of x , u′ and u′′ are the first-order and second-order derivatives

of u with respect to x , and f (u, u′; x) is a function of u, u′, and x . Either u or

u′ is given at each boundary point. Note that we can always choose a coordinate

system so that the boundaries of the system are at x = 0 and x = 1 without losing

any generality if the system is finite. For example, if the actual boundaries are at

x = x1 and x = x2 for a given problem, we can always bring them back to x ′ = 0
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and x ′ = 1 with a transformation

x ′ = (x − x1)/(x2 − x1). (4.49)

For problems in one dimension, we can have a total of four possible types of

boundary conditions:

(1) u(0) = u0 and u(1) = u1;

(2) u(0) = u0 and u′(1) = v1;

(3) u′(0) = v0 and u(1) = u1;

(4) u′(0) = v0 and u′(1) = v1.

The boundary-value problem is more difficult to solve than the similar initial-

value problem with the differential equation. For example, if we want to solve

an initial-value problem that is described by the differential equation given in

Eq. (4.48) with x replaced by time t and the initial conditions u(0) = u0 and

u′(0) = v0, we can first transform the differential equation as a set of two first-

order differential equations with a redefinition of the first-order derivative as a

new variable. The solution will follow if we adopt one of the algorithms discussed

earlier in this chapter. However, for the boundary-value problem, we know only

u(0) or u′(0), which is not sufficient to start an algorithm for the initial-value

problem without some further work.

Typical eigenvalue problems are even more complicated, because at least one

more parameter, that is, the eigenvalue, is involved in the equation: for example,

u′′ = f (u, u′; x ; λ), (4.50)

with a set of given boundary conditions, defines an eigenvalue problem. Here

the eigenvalue λ can have only some selected values in order to yield acceptable

solutions of the equation under the given boundary conditions.

Let us take the longitudinal vibrations along an elastic rod as an illustrative

example here. The equation describing the stationary solution of elastic waves is

u′′(x) = −k2u(x), (4.51)

where u(x) is the displacement from equilibrium at x and the allowed values of

k2 are the eigenvalues of the problem. The wavevector k in the equation is related

to the phase speed c of the wave along the rod and the allowed angular frequency

ω by the dispersion relation

ω = ck. (4.52)

If both ends (x = 0 and x = 1) of the rod are fixed, the boundary conditions are

then u(0) = u(1) = 0. If one end (x = 0) is fixed and the other end (x = 1) is

free, the boundary conditions are then u(0) = 0 and u′(1) = 0. For this problem,

we can obtain an analytical solution. For example, if both ends of the rod are
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fixed, the eigenfunctions

ul (x) =
√

2 sin kl x (4.53)

are the possible solutions of the differential equation. Here the eigenvalues are

given by

k2
l = (lπ )2, (4.54)

with l = 1, 2, . . . ,∞. The complete solution of the longitudinal waves along the

elastic rod is given by a linear combination of all the eigenfunctions with their

associated initial-value solutions as

u(x, t) =
∞
∑

l=1

(al sinωl t + bl cosωl t)ul (x), (4.55)

where ωl = ckl , and al and bl are the coefficients to be determined by the initial

conditions. We will come back to this problem in Chapter 7 when we discuss the

solution of a partial differential equation.

4.7 The shooting method

A simple method for solving the boundary-value problem of Eq. (4.48) and the

eigenvalue problem of Eq. (4.50) with a set of given boundary conditions is the

so-called shooting method. We will first discuss how this works for the boundary-

value problem and then generalize it to the eigenvalue problem.

We first convert the second-order differential equation into two first-order

differential equations by defining y1 = u and y2 = u′, namely,

dy1

dx
= y2, (4.56)

dy2

dx
= f (y1, y2; x). (4.57)

To illustrate the method, let us assume that the boundary conditions are u(0) = u0

and u(1) = u1. Any other types of boundary conditions can be solved in a similar

manner.

The key here is to make the problem look like an initial-value problem by

introducing an adjustable parameter; the solution is then obtained by varying

the parameter. Because u(0) is given already, we can make a guess for the first-

order derivative at x = 0, for example, u′(0) = α. Here α is the parameter to be

adjusted. For a specific α, we can integrate the equation to x = 1 with any of

the algorithms discussed earlier for initial-value problems. Because the initial

choice of α can hardly be the actual derivative at x = 0, the value of the function

uα(1), resulting from the integration with u′(0) = α to x = 1, would not be the

same as u1. The idea of the shooting method is to use one of the root search

algorithms to find the appropriate α that ensures f (α) = uα(1) − u1 = 0 within

a given tolerance δ.
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Let us take an actual numerical example to illustrate the scheme. Assume that

we want to solve the differential equation

u′′ = −
π 2

4
(u + 1), (4.58)

with the given boundary conditions u(0) = 0 and u(1) = 1. We can define the

new variables y1 = u and y2 = u′; then we have

dy1

dx
= y2, (4.59)

dy2

dx
= −

π 2

4
(y1 + 1). (4.60)

Now assume that this equation set has the initial values y1(0) = 0 and y2(0) = α.

Here α is a parameter to be adjusted in order to have f (α) = uα(1) − 1 = 0.

We can combine the secant method for the root search and the fourth-order

Runge–Kutta method for initial-value problems to solve the above equation set.

The following program is an implementation of such a combined approach to the

boundary-value problem defined in Eq. (4.58) or Eqs. (4.59) and (4.60) with the

given boundary conditions.

// An example of solving a boundary-value problem via
// the shooting method. The Runge-Kutta and secant
// methods are used for integration and root search.

import java.lang.*;
public class Shooting {

static final int n = 100, ni=10, m = 5;
static final double h = 1.0/n;
public static void main(String argv[]) {

double del = 1e-6, alpha0 = 1, dalpha = 0.01;
double y1[] = new double [n+1];
double y2[] = new double [n+1];
double y[] = new double [2];

// Search for the proper solution of the equation

y1[0] = y[0] = 0;

y2[0] = y[1] = secant(ni, del, alpha0, dalpha);
for (int i=0; i<n; ++i) {

double x = h*i;
y = rungeKutta(y, x, h);
y1[i+1] = y[0];
y2[i+1] = y[1];

}

// Output the result in every m points
for (int i=0; i<=n; i+=m)

System.out.println(y1[i]);
}

public static double secant(int n, double del,
double x, double dx) {...}

// Method to provide the function for the root search.

public static double f(double x) {
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Fig. 4.6 The numerical

solution of the

boundary-value problem

of Eq. (4.58) by the

shooting method (+)

compared with the

analytical solution (solid

line) of the same problem.

double y[] = new double[2];
y[0] = 0;
y[1] = x;
for (int i=0; i<n-1; ++i) {

double xi = h*i;
y = rungeKutta(y, xi, h);

}
return y[0]-1;

}

public static double[] rungeKutta(double y[],
double t, double dt) {...}

// Method to provide the generalized velocity vector.

public static double[] g(double y[], double t) {
int k = y.length;

double v[] = new double[k];

v[0] = y[1];
v[1] = -Math.PI*Math.PI*(y[0]+1)/4;
return v;

}
}

Note how we have combined the secant and Runge–Kutta methods. The boundary-

value problem solved in the above program can also be solved exactly with an

analytical solution

u(x) = cos
πx

2
+ 2 sin

πx

2
− 1. (4.61)

We can easily check that the above expression does satisfy the equation and

the boundary conditions. We plot both the numerical result obtained from the

shooting method and the analytical solution in Fig. 4.6. Note that the shooting

method provides a very accurate solution of the boundary-value problem. It is

also a very general method for both the boundary-value and eigenvalue problems.

Boundary-value problems with other types of boundary conditions can be

solved in a similar manner. For example, if u′(0) = v0 and u(1) = u1 are given,
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we can make a guess of u(0) = α and then integrate the equation set of y1 and

y2 to x = 1. The root to be sought is from f (α) = uα(1) − u1 = 0. Here uα(1)

is the numerical result of the equation with u(0) = α. If u′(1) = v1 is given, the

equation f (α) = u′
α(1) − v1 = 0 is solved instead.

When we apply the shooting method to an eigenvalue problem, the parameter

to be adjusted is no longer a parameter introduced but the eigenvalue of the

problem. For example, if u(0) = u0 and u(1) = u1 are given, we can integrate

the equation with u′(0) = α, a small quantity. Then we search for the root of

f (λ) = uλ(1) − u1 = 0 by varying λ. When f (λ) = 0 is satisfied, we obtain an

approximate eigenvalue λ and the corresponding eigenstate from the normalized

solution of uλ(x). The introduced parameter α is not relevant here, because it will

be automatically modified to be the first-order derivative when the solution in

normalized. In other words, we can choose the first-order derivative at the bound-

ary arbitrarily and it will be adjusted to an appropriate value when the solutions

are made orthonormal. We will demonstrate this in Section 4.9 with examples.

4.8 Linear equations and the Sturm--Liouville problem

Many eigenvalue or boundary-value problems are in the form of linear equations,

such as

u′′ + d(x)u′ + q(x)u = s(x), (4.62)

where d(x), q(x), and s(x) are functions of x . Assume that the boundary con-

ditions are u(0) = u0 and u(1) = u1. If all d(x), q(x), and s(x) are smooth, we

can solve the equation with the shooting method developed in the preceding

section. In fact, we can show that an extensive search for the parameter α from

f (α) = uα(1) − u1 = 0 is unnecessary in this case, because of the principle of

superposition of linear equations: any linear combination of the solutions is also

a solution of the equation. We need only two trial solutions uα0
(x) and uα1

(x),

where α0 and α1 are two different parameters. The correct solution of the equation

is given by

u(x) = auα0
(x) + buα1

(x), (4.63)

where a and b are determined from u(0) = u0 and u(1) = u1. Note that uα0
(0) =

uα1
(0) = u(0) = u0. So we have

a + b = 1, (4.64)

uα0
(1)a + uα1

(1)b = u1, (4.65)

which lead to

a =
uα1

(1) − u1

uα1
(1) − uα0

(1)
, (4.66)

b =
u1 − uα0

(1)

uα1
(1) − uα0

(1)
. (4.67)
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With a and b given by the above equations, we reach the solution of the differential

equation from Eq. (4.63).

Here we would like to demonstrate the application of the above scheme to the

linear equation problem defined in Eq. (4.58). The following example program

is an implementation of the scheme.

// An example of solving the boundary-value problem of

// a linear equation via the Runge-Kutta method.

import java.lang.*;
public class LinearDEq {

static final int n = 100, m = 5;
public static void main(String argv[]) {

double y1[] = new double [n+1];
double y2[] = new double [n+1];
double y[] = new double [2];
double h = 1.0/n;

// Find the 1st solution via the Runge-Kutta method
y[1] = 1;

for (int i=0; i<n; ++i) {
double x = h*i;
y = rungeKutta(y, x, h);
y1[i+1] = y[0];

}

// Find the 2nd solution via the Runge-Kutta method
y[0] = 0;
y[1] = 2;
for (int i=0; i<n; ++i) {

double x = h*i;
y = rungeKutta(y, x, h);
y2[i+1] = y[0];

}

// Superpose the two solutions found
double a = (y2[n]-1)/(y2[n]-y1[n]);
double b = (1-y1[n])/(y2[n]-y1[n]);
for (int i=0; i<=n; ++i)

y1[i] = a*y1[i]+b*y2[i];

// Output the result in every m points

for (int i=0; i<=n; i+=m)
System.out.println(y1[i]);

}

public static double[] rungeKutta(double y[],
double t, double dt) {...}

public static double[] g(double y[], double t) {...}

}

Note that we have only integrated the equation twice in the above example pro-

gram. This is in clear contrast to the general shooting method, in which many

more integrations may be needed depending on how fast the solution converges.
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An important class of linear equations in physics is known as the Sturm–

Liouville problem, defined by

[p(x)u′(x)]′ + q(x)u(x) = s(x), (4.68)

which has the first-order derivative term combined with the second-order deriva-

tive term. Here p(x), q(x), and s(x) are the coefficient functions of x . For most

actual problems, s(x) = 0 and q(x) = −r (x) + λw(x), where λ is the eigenvalue

of the equation and r (x) and w(x) are the redefined coefficient functions. The

Legendre equation, the Bessel equation, and their related equations in physics

are examples of the Sturm–Liouville problem.

Our goal here is to construct an accurate algorithm which can integrate

the Sturm–Liouville problem, that is, Eq. (4.68). In Chapter 3, we obtained the

three-point formulas for the first-order and second-order derivatives from the

combinations

�1 =
ui+1 − ui−1

2h
= u′

i +
h2u

(3)
i

6
+ O(h4) (4.69)

and

�2 =
ui+1 − 2ui + ui−1

h2
= u′′

i +
h2u

(4)
i

12
+ O(h4). (4.70)

Now if we multiply Eq. (4.69) by p′
i and Eq. (4.70) by pi and add them together,

we have

p′
i�1 + pi�2 = (pi u

′
i )

′ +
h2

12

(

pi u
(4)
i + 2p′

i u
(3)
i

)

+ O(h4). (4.71)

If we replace the first term on the right-hand side with si − qi ui by applying the

original differential equation and drop the second term, we obtain the simplest

numerical algorithm for the Sturm–Liouville problem:

(2pi + hp′
i )ui+1 + (2pi − hp′

i )ui−1 = 4pi ui + 2h2(si − qi ui ), (4.72)

which is accurate up to O(h4). Before we discuss how to improve the accuracy

of this algorithm, let us work on an illustrating example. The Legendre equation

is given by

d

dx

[

(1 − x2)
du

dx

]

+ l(l + 1)u = 0, (4.73)

with l = 0, 1, . . . ,∞ and x ∈ [−1, 1]. The solutions of the Legendre equation

are the Legendre polynomials Pl(x). Let us assume that we do not know the value

of l but know the first two points of P1(x) = x ; then we can treat the problem as

an eigenvalue problem.

The following program is an implementation of the simplest algorithm for the

Sturm–Liouville problem, in combination with the secant method for the root

search, to solve for the eigenvalue l = 1 of the Legendre equation.
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// An example of implementing the simplest method to
// solve the Sturm-Liouville problem.

import java.lang.*;

public class Sturm {
static final int n = 100, ni = 10;
public static void main(String argv[]) {

double del = 1e-6, l = 0.5, dl = 0.1;

l = secant(ni, del, l, dl);

// Output the eigenvalue obtained
System.out.println("The eigenvalue is: " + l);

}

public static double secant(int n, double del,
double x, double dx) {...}

// Method to provide the function for the root search.

public static double f(double l) {
double u[] = new double[n+1];
double p[] = new double[n+1];
double q[] = new double[n+1];
double s[] = new double[n+1];
double p1[] = new double[n+1];
double h = 1.0/n;
double u0 = 0;
double u1 = h;

for (int i=0; i<=n; ++i){
double x = h*i;
p[i] = 1-x*x;
p1[i] = -2*x;
q[i] = l*(l+1);
s[i] = 0;

}
u = sturmLiouville(h, u0, u1, p, p1, q, s);
return u[n]-1;

}

// Method to integrate the Sturm-Liouville problem.

public static double[] sturmLiouville(double h,
double u0, double u1, double p[], double p1[],
double q[], double s[]) {
int n = p.length-1;
double u[] = new double[n+1];
double h2 = h*h;
u[0] = u0;
u[1] = u1;
for (int i=1; i<n; ++i){

double c2 = 2*p[i]+h*p1[i];
double c1 = 4*p[i]-2*h2*q[i];
double c0 = 2*p[i]-h*p1[i];
double d = 2*h2*s[i];
u[i+1] = (c1*u[i]-c0*u[i-1]+d)/c2;

}
return u;

}
}
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The eigenvalue obtained from the above program is 1.000 000 000 01, which

contains an error on the order of 10−11, in comparison with the exact result of

l = 1. The error is vanishingly small considering the possible rounding error and

the inaccuracy in the algorithm. This is accidental of course. The expected error

is on the order of 10−6, given by the tolerance set in the program.

Note that the procedure adopted in the above example is quite general and it

is the shooting method for the eigenvalue problem. For equations other than the

Sturm–Liouville problem, we can follow exactly the same steps.

If we want to have higher accuracy in the algorithm for the Sturm–Liouville

problem, we can differentiate Eq. (4.68) twice. Then we have

pu(4) + 2p′u(3) = s ′′ − 3p′′u′′ − p(3)u′ − p′u(3) − q ′′u − 2q ′u′ − qu′′, (4.74)

where u(3) on the right-hand side can be replaced with

u(3) =
1

p
(s ′ − p′′u′ − 2p′u′′ − q ′u − qu′), (4.75)

which is the result of taking the first-order derivative of Eq. (4.68). If we combine

Eqs. (4.71), (4.74), and (4.75), we obtain a better algorithm:

ci+1ui+1 + ci−1ui−1 = ci ui + di + O(h6), (4.76)

where ci+1, ci−1, ci , and di are given by

ci+1 = 24pi + 12hp′
i + 2h2qi + 6h2 p′′

i − 4h2(p′
i )

2/pi

+ h3 p
(3)
i + 2h3q ′

i − h3 p′
i qi/pi − h3 p′

i p′′
i /pi , (4.77)

ci−1 = 24pi − 12hp′
i + 2h2qi + 6h2 p′′

i − 4h2(p′
i )

2/pi

− h3 p
(3)
i − 2h3q ′

i + h3 p′
i qi/pi + h3 p′

i p′′
i /pi , (4.78)

ci = 48pi − 20h2qi − 8h2(p′
i )

2/pi + 12h2 p′′

+ 2h4 p′
i q

′
i/pi − 2h4q ′′

i , (4.79)

di = 24h2si 2h4s ′′
i − 2h4 p′

i s
′
i/pi , (4.80)

which can be evaluated easily if p(x), q(x), and s(x) are explicitly given. When

some of the derivatives needed are not easily obtained analytically, we can evaluate

them numerically. In order to maintain the high accuracy of the algorithm, we

need to use compatible numerical formulas.

For the special case with p(x) = 1, the above coefficients reduce to much

simpler forms. Without sacrificing the apparently high accuracy of the algorithm,

we can apply the three-point formulas to the first- and second-order derivatives
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of q(x) and s(x). Then we have

ci+1 = 1 +
h2

24
(qi+1 + 2qi − qi−1), (4.81)

ci−1 = 1 +
h2

24
(qi−1 + 2qi − qi+1), (4.82)

ci = 2 −
5h2

60
(qi+1 + 8qi + qi−1), (4.83)

di =
h2

12
(si+1 + 10si + si−1), (4.84)

which are slightly different from the commonly known Numerov algorithm,

which is an extremely accurate scheme for linear differential equations without

the first-order derivative term, that is, Eq. (4.62) with d(x) = 0 or Eq. (4.68)

with p(x) = 1. Many equations in physics have this form, for example, the

Poisson equation with spherical symmetry or the one-dimensional Schrödinger

equation.

The Numerov algorithm is derived from Eq. (4.70) after applying the three-

point formula to the second-order derivative and the fourth-order derivative given

in the form of a second-order derivative from Eq. (4.68),

u(4)(x) =
d2

dx2
[−q(x)u(x) + s(x)]. (4.85)

If we apply the three-point formula to the second-order derivative on the right-

hand side of the above equation, we obtain

u(4)(x) =
(si+1 − qi+1ui+1) − 2(si − qi ui ) + (si−1 − qi−1ui−1)

h2
. (4.86)

Combining the above equation with �2 = (ui+1 − 2ui + ui−1)/h2 = u′′
i +

h2u(4)/12 and u′′
i = si − qi ui , we obtain the Numerov algorithm in the form

of Eq. (4.76) with the corresponding coefficients given as

ci+1 = 1 +
h2

12
qi+1, (4.87)

ci−1 = 1 +
h2

12
qi−1, (4.88)

ci = 2 −
5h2

6
qi , (4.89)

di =
h2

12
(si+1 + 10si + si−1). (4.90)

Note that even though the apparent local accuracy of the Numerov algorithm

and the algorithm we derived earlier in this section for the Sturm–Liouville

problem is O(h6), the actual global accuracy of the algorithm is only O(h4)

because of the repeated use of the three-point formulas. For more discussion on

this issue, see Simos (1993). The algorithms discussed here can be applied to

initial-value problems as well as to boundary-value or eigenvalue problems. The

Numerov algorithm and the algorithm for the Sturm–Liouville problem usually
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have lower accuracy than the fourth-order Runge–Kutta algorithm when applied

to the same problem, and this is different from what the apparent local accura-

cies imply. For more numerical examples of the Sturm–Liouville problem and

the Numerov algorithm in the related problems, see Pryce (1993) and Onodera

(1994).

4.9 The one-dimensional Schrödinger equation

The solutions associated with the one-dimensional Schrödinger equation are of

importance in understanding quantum mechanics and quantum processes. For

example, the energy levels and transport properties of electrons in nanostructures

such as quantum wells, dots, and wires are crucial in the development of the next

generation of electronic devices. In this section, we will apply the numerical

methods that we have introduced so far to solve both the eigenvalue and transport

problems defined through the one-dimensional Schrödinger equation

−
h--2

2m

d2φ(x)

dx2
+ V (x)φ(x) = εφ(x), (4.91)

where m is the mass of the particle, h-- is the Planck constant, ε is the energy level,

φ(x) is the wavefunction, and V (x) is the external potential. We can rewrite the

Schrödinger equation as

φ′′(x) +
2m

h--2
[ε − V (x)]φ(x) = 0, (4.92)

which is in the same form as the Sturm–Liouville problem with p(x) = 1, q(x) =
2m [ε − V (x)] /h--2, and s(x) = 0.

The eigenvalue problem

For the eigenvalue problem, the particle is confined by the potential well V (x),

so that φ(x) → 0 with |x | → ∞. A sketch of a typical V (x) is shown in Fig. 4.7.

In order to solve this eigenvalue problem, we can integrate the equation with the

Numerov algorithm from left to right or from right to left of the potential region.

Because the wavefunction goes to zero as |x | → ∞, the integration from one

side to another requires integrating from an exponentially increasing region to an

oscillatory region and then into an exponentially decreasing region.

The error accumulated will become significant if we integrate the solution from

the oscillatory region into the exponentially decreasing region. This is because

an exponentially increasing solution is also a possible solution of the equation

and can easily enter the numerical integration to destroy the accuracy of the al-

gorithm. The rule of thumb is to avoid integrating into the exponential regions,

that is, to carry out the solutions from both sides and then match them in the

well region. Usually the matching is done at one of the turning points, where

the energy is equal to the potential energy, such as xl and xr in Fig. 4.7. The
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so-called matching here is to adjust the trial eigenvalue until the solution in-

tegrated from the right, φr(x), and the solution integrated from the left, φl(x),

satisfy the continuity conditions at one of the turning points. If we choose the

right turning point as the matching point, the continuity conditions are

φl(xr) = φr(xr), (4.93)

φ′
l (xr) = φ′

r(xr). (4.94)

If we combine these two conditions, we have

φ′
l (xr)

φl(xr)
=

φ′
r(xr)

φr(xr)
. (4.95)

If we use the three-point formula for the first-order derivatives in the above

equation, we have

f (ε) =
[φl(xr + h) − φl(xr − h)] − [φr(xr + h) − φr(xr − h)]

2hφ(xr)

= 0, (4.96)

which can be ensured by a root search scheme. Note that f (ε) is a function of

only ε because φl(xr) = φr(xr) = φ(xr) can be used to rescale the wavefunctions.

We now outline the numerical procedure for solving the eigenvalue problem

of the one-dimensional Schrödinger equation:

(1) Choose the region of the numerical solution. This region should be large enough

compared with the effective region of the potential to have a negligible effect on the

solution.

(2) Provide a reasonable guess for the lowest eigenvalue ε0. This can be found approxi-

mately from the analytical result of the case with an infinite well and the same range

of well width.
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(3) Integrate the equation for φl(x) from the left to the point xr + h and the one for φr(x)

from the right to xr − h. We can choose zero to be the value of the first points of φl(x)

and φr(x), and a small quantity to be the value of the second points of φl(x) and φr(x),

to start the integration, for example, with the Numerov algorithm. Before matching

the solutions, rescale one of them to ensure that φl(xr) = φr(xr). For example, we can

multiply φl(x) by φr(xr)/φl(xr) up to x = xr + h. This rescaling also ensures that the

solutions have the correct nodal structure, that is, changing the sign of φl(x) if it is

incorrect.

(4) Evaluate f (ε0) = [φr(xr − h) − φr(xr + h) − φl(xr − h) + φl(xr + h)]/2hφr(xr).

(5) Apply a root search method to obtain ε0 from f (ε0) = 0 within a given tolerance.

(6) Carry out the above steps for the next eigenvalue. We can start the search with a

slightly higher value than the last eigenvalue. We need to make sure that no eigen-

state is missed. This can easily be done by counting the nodes in the solution; the

nth state has a total number of n nonboundary nodes, with n = 0 for the ground

state. A node is where φ(x) = 0. This also provides a way of pinpointing a specific

eigenstate.

Now let us look at an actual example with a particle bound in a potential

well

V (x) =
h--2

2m
α2λ(λ− 1)

[

1

2
−

1

cosh2(αx)

]

, (4.97)

where both α and λ are given parameters. The Schrödinger equation with this

potential can be solved exactly with the eigenvalues

εn =
h--2

2m
α2

[

λ(λ− 1)

2
− (λ− 1 − n)2

]

, (4.98)

for n = 0, 1, 2, . . . .We have solved this problem numerically in the region

[−10, 10] with 501 points uniformly spaced. The potential well, eigenvalue, and

eigenfunction shown in Fig. 4.7 are from this problem with α = 1, λ = 4, and

n = 2. We have also used h-- = m = 1 in the numerical solution for convenience.

The program below implements this scheme.

// An example of solving the eigenvalue problem of the
// one-dimensional Schroedinger equation via the secant
// and Numerov methods.

import java.lang.*;
import java.io.*;
public class Schroedinger {

static final int nx = 500, m = 10, ni = 10;

static final double x1 = -10, x2 = 10, h = (x2-x1)/nx;
static int nr, nl;
static double ul[] = new double[nx+1];
static double ur[] = new double[nx+1];
static double ql[] = new double[nx+1];
static double qr[] = new double[nx+1];
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static double s[] = new double[nx+1];
static double u[] = new double[nx+1];

public static void main(String argv[]) throws
FileNotFoundException {
double del = 1e-6, e = 2.4, de = 0.1;

// Find the eigenvalue via the secant search
e = secant(ni, del, e, de);

// Output the wavefunction to a file
PrintWriter w = new PrintWriter

(new FileOutputStream("wave.data"), true);

double x = x1;
double mh = m*h;

for (int i=0; i<=nx; i+=m) {
w.println( x + " " + u[i]);
x += mh;

}

// Output the eigenvalue obtained
System.out.println("The eigenvalue: " + e);

}

public static double secant(int n, double del,
double x, double dx) {...}

// Method to provide the function for the root search.

public static double f(double x) {
wave(x);
double f0 = ur[nr-1]+ul[nl-1]-ur[nr-3]-ul[nl-3];
return f0/(2*h*ur[nr-2]);

}

// Method to calculate the wavefunction.

public static void wave(double energy) {
double y[] = new double [nx+1];
double u0 = 0, u1 = 0.01;

// Set up function q(x) in the equation
for (int i=0; i<=nx; ++i) {

double x = x1+i*h;
ql[i] = 2*(energy-v(x));
qr[nx-i] = ql[i];

}

// Find the matching point at the right turning point
int im = 0;
for (int i=0; i<nx; ++i)

if (((ql[i]*ql[i+1])<0) && (ql[i]>0)) im = i;

// Carry out the Numerov integrations

nl = im+2;

nr = nx-im+2;
ul = numerov(nl, h, u0, u1, ql, s);

ur = numerov(nr, h, u0, u1, qr, s);

// Find the wavefunction on the left
double ratio = ur[nr-2]/ul[im];
for (int i=0; i<=im; ++i) {
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u[i] = ratio*ul[i];
y[i] = u[i]*u[i];

}

// Find the wavefunction on the right
for (int i=0; i<nr-1; ++i) {

u[i+im] = ur[nr-i-2];
y[i+im] = u[i+im]*u[i+im];

}

// Normalize the wavefunction
double sum = simpson(y, h);
sum = Math.sqrt(sum);
for (int i=0; i<=nx; ++i) u[i] /= sum;

}

// Method to perform the Numerov integration.

public static double[] numerov(int m, double h,
double u0, double u1, double q[], double s[]) {
double u[] = new double[m];
u[0] = u0;
u[1] = u1;

double g = h*h/12;
for (int i=1; i<m-1; ++i) {

double c0 = 1+g*q[i-1];
double c1 = 2-10*g*q[i];
double c2 = 1+g*q[i+1];
double d = g*(s[i+1]+s[i-1]+10*s[i]);
u[i+1] = (c1*u[i]-c0*u[i-1]+d)/c2;

}
return u;

}

public static double simpson(double y[], double h)
{...}

// Method to provide the given potential in the problem.

public static double v(double x) {
double alpha = 1, lambda = 4;

return alpha*alpha*lambda*(lambda-1)
*(0.5-1/Math.pow(cosh(alpha*x),2))/2;

}

// Method to provide the hyperbolic cosine needed.

public static double cosh(double x) {
return (Math.exp(x)+Math.exp(-x))/2;

}
}

Running the above program gives ε2 = 2.499 999, which is what we expect, com-

paring with the exact result ε2 = 2.5, under the given tolerance of 1.0 × 10−6.

Note that we have used the Numerov algorithm with the set of coefficients pro-

vided in Eqs. (4.87)–(4.90). We can use the set of coefficients in Eqs. (4.81)–(4.84)

and the result will remain the same within the accuracy of the algorithm.
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Quantum scattering

Now let us turn to the problem of unbound states, that is, the scattering prob-

lem. Assume that the potential is nonzero in the region of x ∈ [0, a] and that

the incident particle comes from the left. We can write the general solution of

the Schrödinger equation outside the potential region as

φ(x) =

{

φ1(x) = eikx + Ae−ikx for x < 0,

φ3(x) = Beik(x−a) for x > a,
(4.99)

where A and B are the parameters to be determined and k can be found from

ε =
h--2k2

2m
, (4.100)

where ε is the energy of the incident particle. The solution φ(x) = φ2(x) in the

region of x ∈ [0, a] can be obtained numerically. During the process of solving

φ2(x), we will also obtain A and B, which are necessary for calculating the

reflectivity R = |A|2 and transmissivity T = |B|2. Note that T + R = 1. The

boundary conditions at x = 0 and x = a are

φ1(0) = φ2(0), (4.101)

φ2(a) = φ3(a), (4.102)

φ′
1(0) = φ′

2(0), (4.103)

φ′
2(a) = φ′

3(a), (4.104)

which give

φ2(0) = 1 + A, (4.105)

φ2(a) = B, (4.106)

φ′
2(0) = ik(1 − A), (4.107)

φ′
2(a) = ik B. (4.108)

Note that the wavefunction is now a complex function, as are the parameters A and

B. We outline here a combined numerical scheme that utilizes either the Numerov

or the Runge–Kutta method to integrate the equation and a minimization scheme

to adjust the solution to the desired accuracy. We first outline the scheme through

the Numerov algorithm:

(1) For a given particle energy ε = h--2k2/2m, guess a complex parameter A = Ar + i Ai.

We can use the analytical results for a square potential that has the same range and

average strength of the given potential as the initial guess. Because the convergence

is very fast, the initial guess is not very important.

(2) Perform the Numerov integration of the Schrödinger equation

φ′′
2 (x) +

[

k2 −
2m

h--2
V (x)

]

φ2(x) = 0 (4.109)
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from x = 0 to x = a with the second point given by the Taylor expansion of φ2(x)

around x = 0 to the second order,

φ2(h) = φ2(0) + hφ′
2(0) +

h2

2
φ′′

2 (0) + O(h3), (4.110)

where φ2(0) = φ1(0) = 1 + A, φ′
2(0) = φ′

1(0) = ik(1 − A), and φ′′
2 (0) =

[2mV (0+)/h--2 − k2]φ2(0) = [2mV (0+)/h--2 − k2](1 + A). Note that we have

used V (0+) = limδ→0 V (δ) for δ > 0. The second-order derivative here is obtained

from the Schrödinger equation. Truncation at the first order would also work, but

with a little less accuracy.

(3) We can then obtain the approximation for B after the first integration to the point

x = a with

B = φ2(a). (4.111)

(4) Using this B value, we can integrate the equation from x = a back to x = 0 with

the same Numerov algorithm with the second point given by the Taylor expansion of

φ2(x) around x = a as

φ2(a − h) = φ2(a) − hφ′
2(a) +

h2

2
φ′′

2 (a) + O(h3), (4.112)

where φ2(a) = φ3(a) = B and φ′
2(a) = φ′

3(a) = ik B from the continuity conditions.

But the second-order derivative is obtained from the equation, and we have φ′′
2 (a) =

[2mV (a−)/h--2 − k2]φ2(a) = [2mV (a−)/h--2 − k2]B. Note that we have used V (a−) =
limδ→0 V (a − δ) for δ > 0.

(5) From the backward integration, we can obtain a new Anew = Anew
r + i Anew

i from

φnew
2 (0) = 1 + Anew. We can then construct a real function g(Ar, Ai) = (Ar −

Anew
r )2 + (Ai − Anew

i )2. Note that Anew
r and Anew

i are both the implicit functions of

(Ar, Ai).

(6) Now the problem becomes an optimization problem of minimizing g(Ar, Ai) as Ar

and Ai vary. We can use the steepest-descent scheme introduced in Chapter 3 or other

optimization schemes given in Chapter 5.

Now let us illustrate the scheme outlined above with an actual example. As-

sume that we are interested in the quantum scattering of a double-barrier

potential

V (x) =

{

V0 if 0 ≤ x ≤ x1 or x2 ≤ x ≤ a,

0 elsewhere.
(4.113)

This is a very interesting problem, because it is one of the basic elements
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ik(x−a)

V(x)

Ae

e ikx

V0
Be

x
axxO 1 2

−ikx

Fig. 4.8 The

double-barrier structure

of the example. For a

system made of GaAs and

Ga1−xAlxAs layers, the

barrier regions are

formed with Ga1−xAlxAs.

conceived for the next generation of electronic devices. A sketch of the system

is given in Fig. 4.8. The problem is solved with the Numerov algorithm and an

optimization scheme. We use the steepest-descent method introduced in Chapter 3

in the following implementation.

// An example of studying quantum scattering in one
// dimension through the Numerov and steepest-descent
// methods.

import java.lang.*;

import java.io.*;

public class Scattering {
static final int nx = 100;
static final double hartree = 0.0116124;
static final double bohr = 98.964, a = 125/bohr;
static double e;

public static void main(String argv[]) throws
IOException {
double x[] = new double[2];

// Read in the particle energy
System.out.println("Enter particle energy: ");
InputStreamReader c

= new InputStreamReader(System.in);
BufferedReader b = new BufferedReader(c);
String energy = b.readLine();

e = Double.valueOf(energy).doubleValue();
e /= hartree;
x[0] = 0.1;
x[1] = -0.1;
double d = 0.1, del = 1e-6;
steepestDescent(x, d, del);
double r = x[0]*x[0]+x[1]*x[1];

double t = 1-r;
System.out.println("The reflectivity: " + r);
System.out.println("The transmissivity: " + t);

}

public static void steepestDescent(double x[],
double a, double del) {...}
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// Method to provide function f=gradient g(x).
public static double[] f(double x[], double h) {...}

// Method to provide function g(x).

public static double g(double x[]) {

double h = a/nx;
double ar = x[0];
double ai = x[1];
double ur[] = new double[nx+1];
double ui[] = new double[nx+1];
double qf[] = new double[nx+1];

double qb[] = new double[nx+1];
double s[] = new double[nx+1];

for (int i=0; i<=nx; ++i) {

double xi = h*i;

s[i] = 0;
qf[i] = 2*(e-v(xi));
qb[nx-i] = qf[i];

}

// Perform forward integration

double delta = 1e-6;

double k = Math.sqrt(2*e);
double ur0 = 1+ar;
double ur1 = ur0+k*ai*h

+h*h*(v(delta)-e)*ur0;
double ui0 = ai;
double ui1 = ui0+k*(1-ar)*h

+h*h*(v(delta)-e)*ui0;
ur = numerov(nx+1, h, ur0, ur1, qf, s);
ui = numerov(nx+1, h, ui0, ui1, qf, s);

// Perform backward integration
ur0 = ur[nx];
ur1 = ur0+k*ui[nx]*h

+h*h*(v(a-delta)-e)*ur0;
ui0 = ui[nx];
ui1 = ui0-k*ur[nx]*h

+h*h*(v(a-delta)-e)*ui0;
ur = numerov(nx+1, h, ur0, ur1, qb, s);
ui = numerov(nx+1, h, ui0, ui1, qb, s);

// Return the function value |a-a_new|*|a-a_new|
return (1+ar-ur[nx])*(1+ar-ur[nx])

+(ai-ui[nx])*(ai-ui[nx]);
}

// Method to provide the potential V(x).

public static double v(double x) {
double v0 = 0.3/hartree;
double x1 = 25/bohr;
double x2 = 75/bohr;
if (((x<x1)&&(x>0)) || ((x<a)&&(x>x2)))

return v0;
else return 0;

}
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Fig. 4.9 The energy

dependence of the

transmissivity for a

double-barrier potential

with a barrier height of

0.3 eV, barrier widths of

25 Å and 50 Å, and the

width of the well between

the barriers of 50 Å. The

transmissivity is plotted

on a logarithmic scale.

// Method to perform the Numerov integration.
public static double[] numerov(int m, double h,

double u0, double u1, double q[], double s[])
{...}

}

We have used the parameters associated with GaAs in the above program with the

effective mass of the electron m = 0.067me and electric permittivity ǫ = 12.53ǫ0,

where me is the mass of a free electron and ǫ0 is the electric permittivity of vacuum.

Under this choice of effective mass and permittivity, we have given the energy in

the unit of the effective Hartree (about 11.6 meV) and length in the unit of the

effective Bohr radius (about 99.0 Å).

In Fig. 4.9, we plot the transmissivity of the electron obtained for V0 = 0.3 eV,

x1 = 25 Å, x2 = 75 Å, and a = 125 Å. Note that there is a significant increase

in the transmissivity around a resonance energy ε ≃ 0.09 eV, which is a virtual

energy level. The second peak appears at an energy slightly above the barriers.

Study of the symmetric barrier case (Pang, 1995) shows that the transmissivity

can reach at least 0.999 997 at the resonance energy ε ≃ 0.089 535 eV, for the

case with x1 = 50 Å, x2 = 100 Å, and a = 150 Å.

We can also use the Runge–Kutta algorithm to integrate the equation if we

choose y1(x) = φ2(x) and y2(x) = φ′
2(x). Using the initial conditions for φ2(x)

and φ′
2(x) at x = 0, we integrate the equation to x = a. From y1(a) and y2(a),

we obtain two different values of B,

B1 = y1(a), (4.114)

B2 = −
i

k
y2(a), (4.115)

which are both implicit functions of the initial guess of A = Ar + i Ai. This

means that we can construct an implicit function g(Ar, Ai) = |B1 − B2|2 and
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then optimize it. Note that both B1 and B2 are complex, as are the functions

y1(x) and y2(x). The Runge–Kutta algorithm in this case is much more accurate,

because no approximation for the second point is needed. For more details on

the application of the Runge–Kutta algorithm and the optimization method in the

scattering problem, see Pang (1995).

The procedure can be simplified in the simple potential case, as suggested by

R. Zimmermann (personal communication), if we realize that the Schrödinger

equation in question is a linear equation. We can take B = 1 and then integrate

the equation from x = a back to x = −h with either the Numerov or the Runge–

Kutta scheme. The solution at x = 0 and x = −h satisfies

φ(x) = A1eikx + A2e−ikx , (4.116)

and we can solve for A1 and A2 with the numerical results of φ(0) and φ(−h). The

reflectivity and transmissivity are then given by R = |A2/A1|2 and T = 1/|A1|2,

respectively. Note that it is not now necessary to have the minimization in the

scheme. However, for a more general potential, for example, a nonlinear potential,

a combination of an integration scheme and an optimization scheme becomes

necessary.

Exercises

4.1 Consider two charged particles of masses m1 and m2, and charges q1 and q2,

respectively. They are moving in the xy plane under the influence of a con-

stant electric field E = E0x̂ and a constant magnetic induction B = B0ẑ,

where x̂ and ẑ are unit vectors along the positive x and z axes, respec-

tively. Implement the two-point predictor–corrector method to study the

system. Is there a parameter region in which the system is chaotic? What

happens if each particle encounters a random force that is in the Gaussian

distribution?

4.2 Derive the fourth-order Runge–Kutta algorithm for solving the differential

equation

dy

dt
= g(y, t)

with a given initial condition. Discuss the options in the selection of the

parameters involved.

4.3 Construct a subprogram that solves the differential equation set

dy

dt
= g(y, t)

with the fourth-order Runge–Kutta method with different parameters from

those given in the text. Use the total number of components in y and the

initial condition y(0) = y0 as the input to the subprogram. Test the fitness
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of the parameters by comparing the numerical result from the subprogram

and the known exact result for the motion of Earth.

4.4 Study the driven pendulum under damping numerically and plot the bi-

furcation diagram (ω–b plot at a fixed θ ) with q = 1/2, ω0 = 2/3, and

b ∈ [1, 1.5].

4.5 Modify the example program for the driven pendulum under damping to

study the cases with the driving force changed to a square wave with fd(t) =
f0 for 0 < t < T0/2 and fd(t) = − f0 for T0/2 < t < T0, and to a triangular

wave with fd(t) = f0(2t/T0 − 1) for 0 < t < T0, where T0 is the period of

the driving force that repeats in other periods. Is there a parameter region

in which the system is chaotic?

4.6 The Duffing model is given by

d2x

dt2
+ g

dx

dt
+ x3 = b cos t.

Write a program to solve the Duffing model in a different parameter region

of (g, b). Discuss the behavior of the system from the phase diagram of

(x, v), where v = dx/dt . Is there a parameter region in which the system

is chaotic?

4.7 The Henón–Heiles model is used to describe stellar orbits and is given by

a two-dimensional potential

V (x, y) =
mω2

2
(x2 + y2) + λ

(

x2 y −
y3

3

)

,

where m is the mass of the star, andω andλ are two additional model param-

eters. Derive the differential equation set that describes the motion of the

star under the Henón–Heiles model and solve the equation set numerically.

In what parameter region does the orbit become chaotic?

4.8 The Lorenz model is used to study climate change and is given by

dy1

dt
= a(y2 − y1),

dy2

dt
= (b − y3)y1 − y2,

dy3

dt
= y1 y2 − cy3,

where a, b, and c are positive parameters in the model. Solve this model

numerically and find the parameter region in which the system is chaotic.

4.9 Consider three objects in the solar system, the Sun, Earth, and Mars. Find

the modification of the next period of Earth due to the appearance of Mars

starting at the beginning of January 1, 2006.

4.10 Study the dynamics of the two electrons in a classical helium atom. Explore

the properties of the system under different initial conditions. Can the

system ever be chaotic?



Exercises 117

4.11 Apply the Numerov algorithm to solve

u′′(x) = −4π2u(x),

with u(0) = 1 and u′(0) = 0. Discuss the accuracy of the result by compar-

ing it with the solution obtained via the fourth-order Runge–Kutta algorithm

and with the exact result.

4.12 Apply the shooting method to solve the eigenvalue problem

u′′(x) = λu(x),

with u(0) = u(1) = 0. Discuss the accuracy of the result by comparing it

with the exact result.

4.13 Develop a program that applies the fourth-order Runge–Kutta and bisection

methods to solve the eigenvalue problem of the stationary one-dimensional

Schrödinger equation. Find the two lowest eigenvalues and eigenfunctions

for an electron in the potential well

V (x) =

⎧

⎨

⎩

V0

x

x0

if 0 < x < x0,

V0 elsewhere.

Atomic units (a.u.), that is, me = e = h-- = c = 1, x0 = 5 a.u., and V0 =
50 a.u. can be used.

4.14 Apply the fourth-order Runge–Kutta algorithm to solve the quantum scat-

tering problem in one dimension. The optimization can be achieved with

the bisection method through varying Ar and Ai, respectively, within

the region [−1, 1]. Test the program with the double-barrier potential of

Eq. (4.113).

4.15 Find the angle dependence of the angular velocity and the center-of-mass

velocity of a meterstick falling with one end on a horizontal plane. Assume

that the meterstick is released from an initial angle of θ0 ∈ [0, π/2] between

the meterstick and the horizontal and that there is kinetic friction at the

contact point, with the kinetic friction coefficient 0 ≤ µk ≤ 0.9.

4.16 Implement the full-accuracy algorithm for the Sturm–Liouville problem

derived in the text in a subprogram. Test it by applying the algorithm to the

spherical Bessel equation

(x2u′)′ + [x2 − l(l + 1)]u = 0,

where l(l + 1) are the eigenvalues. Use the known analytic solutions to set

up the first two points. Evaluate l numerically and compare it with the exact

result. Is the apparent accuracy of O(h6) in the algorithm delivered?

4.17 Study the dynamics of a compact disk after it is set in rotation on a horizontal

table with the rotational axis vertical and along its diameter. Establish a

model and set up the relevant equation set that describes the motion of

the disk, including the process of the disk falling onto the table. Write a
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program that solves the equation set. Does the solution describe the actual

experiment well?

4.18 The tippe top is a symmetric top that can spin on both ends. When the top

is set in rotation on the end that is closer to the center of mass of the top,

it will gradually slow down and flip over to spin on the end that is farther

away from the center of mass. Establish a model and set up the relevant

equation set that describes the motion of the tippe top, including the process

of toppling over. Write a program that solves the equation set. Does the

solution describe the actual experiment well?

4.19 The system of two coupled rotors is described by the following equation

set:

d2 y1

dt2
+ γ1

dy1

dt
+ ǫ

(

dy1

dt
−

dy2

dt

)

= f1(y1) + F1(t),

d2 y2

dt2
+ γ2

dy2

dt
+ ǫ

(

dy2

dt
−

dy1

dt

)

= f2(y2) + F2(t),

where ǫ is the coupling constant, f1,2 are periodic functions of period

2π , and F1,2 = α1,2 + β1,2 sin(ω1,2t + φ1,2). Write a program to study this

system. Consider a special case with αi = φi = 0, γ1 = γ2, ω1 = ω2, and

fi (x) = f0 sin x . Is there a parameter region in which the system is chaotic?



Chapter 5

Numerical methods for matrices

Matrix operations are involved in many numerical and analytical scientific prob-

lems. Schemes developed for the matrix problems can be applied to the related

problems encountered in ordinary and partial differential equations. For example,

an eigenvalue problem given in the form of a partial differential equation can be

rewritten as a matrix problem. A boundary-value problem after discretization is

essentially a linear algebra problem.

5.1 Matrices in physics

Many problems in physics can be formulated in a matrix form. Here we give a

few examples to illustrate the importance of matrix operations in physics and

related fields.

If we want to study the vibrational spectrum of a molecule with n vibrational

degrees of freedom, the first step is to investigate the harmonic oscillations of the

system by expanding the potential energy up to the second order of the gener-

alized coordinates around the equilibrium structure. Then we have the potential

energy

U (q1, q2, . . . , qn) ≃
1

2

n
∑

i, j=1

Ai j qi q j , (5.1)

where qi are the generalized coordinates and Ai j are the elements of the gen-

eralized elastic constant matrix that can be obtained through, for example, a

quantum chemistry calculation or an experimental measurement. We have taken

the equilibrium potential energy as the zero point. Usually the kinetic energy of

the system can be expressed as

T (q̇1, q̇2, . . . , q̇n) ≃
1

2

n
∑

i, j=1

Mi j q̇i q̇ j , (5.2)

where q̇i = dqi/dt are the generalized velocities, and Mi j are the elements of the

generalized mass matrix whose values depend upon the specifics of the molecule.

Now if we apply the Lagrange equation

∂L

∂qi

−
d

dt

∂L

∂q̇i

= 0, (5.3)

119
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where L = T − U is the Lagrangian of the system, we have

n
∑

j=1

(Ai j q j + Mi j q̈ j ) = 0, (5.4)

for i = 1, 2, . . . , n. If we assume that the time dependence of the generalized

coordinates is oscillatory with

q j = x j e−iωt , (5.5)

we have

n
∑

j=1

(Ai j − ω2 Mi j )x j = 0, (5.6)

for i = 1, 2, . . . , n. This equation can be rewritten in a matrix form:

⎛

⎜

⎜

⎝

A11 · · · A1n

...
...

...

An1 · · · Ann

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x1

...

xn

⎞

⎟

⎟

⎟

⎠

= λ

⎛

⎜

⎜

⎜

⎝

M11 · · · M1n

...
...

...

Mn1 · · · Mnn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x1

...

xn

⎞

⎟

⎟

⎟

⎠

, (5.7)

or equivalently,

Ax = λMx, (5.8)

where λ = ω2 is the eigenvalue and x is the corresponding eigenvector of the

above eigenequation. Note that it is a homogeneous linear equation set. In order

to have a nontrivial (not all zero components) solution of the equation set, the

determinant of the coefficient matrix has to vanish, that is,

|A − λM| = 0. (5.9)

The roots of this secular equation, λk with k = 1, 2, . . . , n, give all the possible

vibrational angular frequencies ωk =
√

λk of the molecule.

Another example we illustrate here deals with the problems associated with

electrical circuits. We can apply the Kirchhoff rules to obtain a set of equations

for the voltages and currents, and then we can solve the equation set to find the

unknowns. Let us take the unbalanced Wheatstone bridge shown in Fig. 5.1 as

an example. There is a total of three independent loops. We can choose the first

as going through the source and two upper bridges and the second and third as

the loops on the left and right of the ammeter. Each loop results in one of three

independent equations:

rsi1 + r1i2 + r2i3 = v0, (5.10)

−rx i1 + (r1 + rx + ra)i2 − rai3 = 0, (5.11)

−r3i1 − rai2 + (r2 + r3 + ra)i3 = 0, (5.12)

where r1, r2, r3, rx , ra, and rs are the resistances of the upper left bridge, upper

right bridge, lower right bridge, lower left bridge, ammeter, and external source;
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Fig. 5.1 The

unbalanced

Wheatstone bridge

with all the resistors

indicated.

i1, i2, and i3 are the currents through the source, upper left bridge, and upper right

bridge; and v0 is the voltage of the external source. The above equation set can

be rewritten in a matrix form

Ri = v, (5.13)

where

R =

⎛

⎜

⎝

rs r1 r2

−rx r1 + rx + ra −ra

−r3 −ra r2 + r3 + ra

⎞

⎟

⎠
(5.14)

is the resistance coefficient matrix, and

i =

⎛

⎜

⎝

i1

i2

i3

⎞

⎟

⎠
and v =

⎛

⎜

⎝

v0

0

0

⎞

⎟

⎠
(5.15)

are the current and voltage arrays that are in the form of column matrices. If we

multiply both sides of the equation by the inverse matrix R−1, we have

i = R−1v, (5.16)

which is solved if we know R−1. We will see in Section 5.3 that, in general, it is not

necessary to know the inverse of the coefficient matrix in order to solve a linear

equation set. However, as soon as we know the solution of the linear equation set,

we can obtain the inverse of the coefficient matrix using the above equation.

A third example lies the calculation of the electronic structure of a many-

electron system. Let us examine a very simple, but still meaningful system, H+
3 .

Three protons are arranged in an equilateral triangle. The two electrons in the

system are shared by all three protons. Assuming that we can describe the system

by a simple Hamiltonian H, containing one term for the hopping of an electron
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from one site to another and another for the repulsion between the two electrons

on a doubly occupied site, we have

H = −t
∑

i 	= j

a
†
iσa jσ + U

∑

ni↑ni↓, (5.17)

where a
†
iσ and a jσ are creation and annihilation operators of an electron with either

spin up (σ = ↑) or spin down (σ = ↓), and niσ = a
†
iσaiσ is the corresponding

occupancy at the i th site. This Hamiltonian is called the Hubbard model when it

is used to describe highly correlated electronic systems. The parameters t and U

in the Hamiltonian can be obtained from either a quantum chemistry calculation

or experimental measurement. The Schrödinger equation for the system is

H|�k〉 = Ek |�k〉, (5.18)

where Ek and |�k〉 are the kth eigenvalue and eigenstate of the Hamiltonian.

Because each site has only one orbital, we have a total of 15 possible states for

the two electrons under the single-particle representation,

|φ1〉 = a
†
1↑a

†
1↓|0〉, |φ2〉 = a

†
2↑a

†
2↓|0〉, |φ3〉 = a

†
3↑a

†
3↓|0〉,

|φ4〉 = a
†
1↑a

†
2↓|0〉, |φ5〉 = a

†
1↑a

†
3↓|0〉, |φ6〉 = a

†
2↑a

†
3↓|0〉,

|φ7〉 = a
†
1↓a

†
2↑|0〉, |φ8〉 = a

†
1↓a

†
3↑|0〉, |φ9〉 = a

†
2↓a

†
3↑|0〉, (5.19)

|φ10〉 = a
†
1↑a

†
2↑|0〉, |φ11〉 = a

†
1↑a

†
3↑|0〉, |φ12〉 = a

†
2↑a

†
3↑|0〉,

|φ13〉 = a
†
1↓a

†
2↓|0〉, |φ14〉 = a

†
1↓a

†
3↓|0〉, |φ15〉 = a

†
2↓a

†
3↓|0〉,

with |0〉 is the vacuum state. Then we can cast the Schrödinger equation as a

matrix equation

HΨk = EkΨk, (5.20)

where Hi j = 〈φi |H|φ j 〉 with i, j = 1, 2, . . . , 15, and �ki = 〈φi |�k〉. We leave it

as an exercise for the reader to figure out the Hamiltonian elements. The 15 roots

of the secular equation

|H − E I| = 0 (5.21)

are the eigenenergies of the system. Here I is a unit matrix with Ii j = δi j . Note that

the quantum problem here has a mathematical structure similar to that of the clas-

sical problem of molecular vibrations. We could have simplified the problem by

exploiting the symmetries of the system. The total spin and the z component of the

total spin commute with the Hamiltonian; thus they are good quantum numbers.

We can reduce the Hamiltonian matrix into block-diagonal form with a maximum

block size of 2 × 2. After we obtain all the eigenvalues and eigenvectors of the

system, we can analyze the electronic, optical, and magnetic properties of H+
3

easily.
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5.2 Basic matrix operations

An n × m matrix A is defined through its elements Ai j with the row index i =
1, 2, . . . , n and the column index j = 1, 2, . . . ,m. It is called a square matrix if

n = m. We will consider mainly the problems associated with square matrices in

this chapter.

A variable array x with elements x1, x2, . . . , xn arranged into a column is

viewed as an n × 1 matrix, or an n-element column matrix. A typical set of linear

algebraic equations is given by

n
∑

j=1

Ai j x j = bi , (5.22)

for i = 1, 2, . . . , n, where x j are the unknowns to be solved, Ai j are the given

coefficients, and bi are the given constants. Equation (5.22) can be written as

Ax = b, (5.23)

with Ax defined from the standard matrix multiplication

Ci j =
∑

k

Aik Bk j , (5.24)

for C = AB. The summation over k requires the number of columns of the first

matrix to be the same as the number of rows of the second matrix. Otherwise,

the product does not exist. Basic matrix operations are extremely important. For

example, the inverse of a square matrix A (written as A−1) is defined by

A−1A = AA−1 = I, (5.25)

where I is a unit matrix with the elements Ii j = δi j . The determinant of an n × n

matrix A is defined as

|A| =
n
∑

i=1

(−1)i+ j Ai j |Ri j | (5.26)

for any j = 1, 2, . . . , n, where |Ri j | is the determinant of the residual matrix

Ri j of A with its i th row and j th column removed. The combination Ci j =
(−1)i+ j |Ri j | is called a cofactor of A. The determinant of a 1 × 1 matrix is

the element itself. The determinant of a triangular matrix is the product of the

diagonal elements. In principle, the inverse of A can be obtained through

A−1
i j =

C j i

|A|
. (5.27)

If a matrix has an inverse or nonzero determinant, it is called a nonsingular matrix.

Otherwise, it is a singular matrix.

The trace of a matrix A is the sum of all its diagonal elements, written as

Tr A =
n
∑

i=1

Ai i . (5.28)
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The transpose of a matrix A (written as AT) has elements with the row and column

indices of A interchanged, that is,

AT
i j = A j i . (5.29)

We call A an orthogonal matrix if AT = A−1. The complex conjugate of AT is

called the Hermitian operation of A (written as A†) with A
†
i j = A∗

j i . We call A a

Hermitian matrix if A† = A and a unitary matrix if A† = A−1.

Another useful matrix operation is to add one row (or column) multiplied by

a factor λ to another row (or column), such as

A′
i j = Ai j + λAk j , (5.30)

for j = 1, 2, . . . , n, where i and k are row indices, which can be different or the

same. This operation preserves the determinant, that is, |A′| = |A|, and can be

represented by a matrix multiplication

A′ = MA, (5.31)

where M has unit diagonal elements plus a single nonzero off-diagonal element

Mik = λ. If we interchange any two rows or columns of a matrix, its determinant

changes only its sign.

A matrix eigenvalue problem, such as the problem associated with the elec-

tronic structure of H+
3 , is defined by the equation

Ax = λx, (5.32)

where x and λ are an eigenvector and its corresponding eigenvalue of the ma-

trix, respectively. Note that this includes the eigenvalue problem associated with

molecular vibrations, Ax = λMx, if we take M−1A = B as the matrix of the

problem. Then we have Bx = λx.

The matrix eigenvalue problem can also be viewed as a linear equation set

problem solved iteratively. For example, if we want to solve the eigenvalues and

eigenvectors of the above equation, we can carry out the recursion

Ax(k+1) = λ(k)x(k), (5.33)

where λ(k) and x(k) are the approximate eigenvalue and eigenvector at the kth

iteration. This is known as the iteration method. In Section 5.5 we will discuss a

related scheme in more detail, but here we just want to point out that the problem

is equivalent to the solution of the linear equation set at each iteration. We can



5.3 Linear equation systems 125

also show that the eigenvalues of a matrix under a similarity transformation

B = S−1AS (5.34)

are the same as the ones of the original matrix A because

By = λy (5.35)

is equivalent to

Ax = λx, (5.36)

if we choose x = Sy. This, of course, assumes that matrix S is nonsingular. It

also means that

|B| = |A| =
n
∏

i=1

λi . (5.37)

These basic aspects of matrix operations are quite important and will be used

throughout this chapter. Readers who are not familiar with these aspects should

consult one of the standard textbooks, for example, Lewis (1991).

5.3 Linear equation systems

A matrix is called an upper-triangular (lower-triangular) matrix if the elements

below (above) the diagonal are all zero. The simplest scheme for solving matrix

problems is Gaussian elimination, which uses very basic matrix operations to

transform the coefficient matrix into an upper (lower) triangular one first and

then finds the solution of the equation set by means of backward (forward) sub-

stitutions. The inverse and the determinant of a matrix can also be obtained in

such a manner.

Let us take the solution of the linear equation set

Ax = b (5.38)

as an illustrative example. If we assume that |A| 	= 0 and b 	= 0, then the system

has a unique solution. In order to show the steps of the Gaussian elimination, we

will label the original matrix A = A(0) with A( j) being the resultant matrix after

j matrix operations. Similar notation is used for the transformed b as well.

Gaussian elimination

The basic idea of Gaussian elimination is to transform the original linear equation

set to one that has an upper-triangular or lower-triangular coefficient matrix, but

has the same solution. Here we want to transform the coefficient matrix into an

upper triangular matrix. We can interchange the roles of the rows and the columns

if we want to transform the coefficient matrix into a lower triangular one. In each
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step of transformation, we eliminate the elements of a column that are not part

of the upper triangle. The final linear equation set is then given by

A(n−1)x = b(n−1), (5.39)

with A
(n−1)
i j = 0 for i > j . The procedure is quite simple. We first multiply the first

equation by −A
(0)
i1 /A

(0)
11 , that is, all the elements of the first row in the coefficient

matrix and b
(0)
1 , and then add it to the i th equation for i > 1. The first element of

every row except the first row in the coefficient matrix is then eliminated. Now

we denote the new matrix A(1) and multiply the second equation by −A
(1)
i2 /A

(1)
22 .

Then we add the modified second equation to all the other equations with i > 2,

the second element of every row except the first row and the second row of the

coefficient matrix is eliminated. This procedure can be continued with the third,

fourth, . . . , and (n − 1)th equations, and then the coefficient matrix becomes

an upper-triangular matrix A(n−1). A linear equation set with an upper-triangular

coefficient matrix can easily be solved with backward substitutions.

Because all the diagonal elements are used in the denominators, the scheme

would fail if any of them happened to be zero or a very small quantity. This

problem can be circumvented in most cases by interchanging the rows and/or

columns to have the elements used for divisions being the ones with largest

magnitudes possible. This is the so-called pivoting procedure. This procedure will

not change the solutions of the linear equation set but will put them in a different

order. Here we will consider only the partial-pivoting scheme, which searches for

the pivoting element (the one used for the next division) only from the remaining

elements of the given column. A full-pivoting scheme searches for the pivoting

element from all the remaining elements. After considering both the computing

speed and accuracy, the partial-pivoting scheme seems to be a good compromise.

We first search for the element with the largest magnitude from |A(0)
i1 | for

i = 1, 2, . . . , n. Assuming that the element obtained is A
(0)
k11, we then interchange

the first row and the k1th row and eliminate the first element of each row except the

first row. Similarly, we can search for the second pivoting element with the largest

magnitude from |A(1)
i2 | for i = 2, 3, . . . , n. Assuming that the element obtained is

A
(1)
k22 with k2 > 1, we can then interchange the second row and the k2th row and

eliminate the second element of each row except the first and second rows. This

procedure is continued to complete the elimination and transform the original

matrix into an upper-triangular matrix.

Physically, we do not need to interchange the rows of the matrix when searching

for pivoting elements. An index can be used to record the order of the pivoting

elements taken from all the rows. Furthermore, the ratios A
( j−1)
i j /A

( j−1)
k j j for i > j

are also needed to modify b( j−1) into b( j) and can be stored in the same two-

dimensional array that stores matrix A(n−1) at the locations where A
(n−1)
i j = 0, that

is, the locations below the diagonal. When we determine the pivoting element,

we also rescale the element from each row by the largest element magnitude of

that row in order to have a fair comparison. This rescaling also reduces some
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potential rounding errors. The following method is an implementation of the

partial-pivoting Gaussian elimination outlined above.

// Method to carry out the partial-pivoting Gaussian
// elimination. Here index[] stores pivoting order.

public static void gaussian(double a[][],
int index[]) {
int n = index.length;
double c[] = new double[n];

// Initialize the index
for (int i=0; i<n; ++i) index[i] = i;

// Find the rescaling factors, one from each row
for (int i=0; i<n; ++i) {

double c1 = 0;
for (int j=0; j<n; ++j) {

double c0 = Math.abs(a[i][j]);
if (c0 > c1) c1 = c0;

}
c[i] = c1;

}

// Search for the pivoting element from each column
int k = 0;
for (int j=0; j<n-1; ++j) {

double pi1 = 0;
for (int i=j; i<n; ++i) {

double pi0 = Math.abs(a[index[i]][j]);
pi0 /= c[index[i]];
if (pi0 > pi1) {

pi1 = pi0;
k = i;

}

}

// Interchange rows according to the pivoting order
int itmp = index[j];
index[j] = index[k];
index[k] = itmp;
for (int i=j+1; i<n; ++i) {

double pj = a[index[i]][j]/a[index[j]][j];

// Record pivoting ratios below the diagonal
a[index[i]][j] = pj;

// Modify other elements accordingly
for (int l=j+1; l<n; ++l)

a[index[i]][l] -= pj*a[index[j]][l];

}
}

}

The above method destroys the original matrix. If we want to preserve it, we can

just duplicate it in the method and work on the new matrix and return it after

completing the procedure as done in the Lagrange interpolation programs for the

data array in Chapter 2.



128 Numerical methods for matrices

Determinant of a matrix

The determinant of the original matrix can easily be obtained after we have

transformed it into an upper-triangular matrix through Gaussian elimination.

As we have pointed out, the procedure used in the partial-pivoting Gaussian

elimination does not change the value of the determinant only its sign, which

can be fixed with the knowledge of the order of pivoting elements. For an upper-

triangular matrix, the determinant is given by the product of all its diagonal

elements. Therefore, we can obtain the determinant of a matrix as soon as it is

transformed into an upper-triangular matrix. Here is an example of obtaining the

determinant of a matrix with the partial-pivoting Gaussian elimination.

// An example of evaluating the determinant of a matrix
// via the partial-pivoting Gaussian elimination.

import java.lang.*;

public class Det {
public static void main(String argv[]) {

double a[][]= {{ 1, -3, 2, -1, -2},
{-2, 2, -1, 2, 3},
{ 3, -3, -2, 1, -1},
{ 1, -2, 1, -3, 2},
{-3, -1, 2, 1, -3}};

double d = det(a);
System.out.println("The determinant is: " + d);

}

// Method to evaluate the determinant of a matrix.

public static double det(double a[][]) {
int n = a.length;
int index[] = new int[n];

// Transform the matrix into an upper triangle
gaussian(a, index);

// Take the product of the diagonal elements
double d = 1;
for (int i=0; i<n; ++i) d = d*a[index[i]][i];

// Find the sign of the determinant
int sgn = 1;
for (int i=0; i<n; ++i) {

if (i != index[i]) {
sgn = -sgn;

int j = index[i];
index[i] = index[j];
index[j] = j;

}
}
return sgn*d;

}

public static void gaussian(double a[][],
int index[]) {...}

}
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We obtain the determinant |A| = 262 after running the above program. Note

that we have used the recorded pivoting order to obtain the correct sign of the

determinant. The method developed here is quite efficient and powerful and can

be used in real problems that require repeated evaluation of the determinant of a

large matrix, such as the local energy for a Fermi system in the variational and

diffusion quantum Monte Carlo simulations, to be discussed in Chapter 10.

Solution of a linear equation set

Similarly, we can solve a linear equation set after transforming its coefficient

matrix into an upper-triangular matrix through Gaussian elimination. The solution

is then obtained through backward substitutions with

xi =
1

A
(n−1)
ki i

(

b
(n−1)
ki

−
n
∑

j=i+1

A
(n−1)
ki j x j

)

, (5.40)

for i = n − 1, n − 2, . . . , 1, starting with xn = b
(n−1)
kn

/A
(n−1)
knn . We have used ki

as the row index of the pivoting element from the i th column. We can easily show

that the above recursion satisfies the linear equation set A(n−1)x = b(n−1). Here we

demonstrate it using the example of finding the currents in the Wheatstone bridge,

highlighted in Section 5.1 with rs = r1 = r2 = rx = ra = 100� and v0 = 200 V.

// An example of solving a linear equation set via the
// partial-pivoting Gaussian elimination.

import java.lang.*;
public class LinearEq {

public static void main(String argv[]) {
int n = 3;
double x[] = new double[n];
double b[] = {200,0,0};
double a[][]= {{ 100, 100, 100},

{-100, 300, -100},
{-100, -100, 300}};

int index[] = new int[n];
x = solve(a, b, index);

for (int i=0; i<n; i++)
System.out.println("I_" + (i+1) + " = " + x[i]);

}

// Method to solve the equation a[][] x[] = b[] with

// the partial-pivoting Gaussian elimination.

public static double[] solve(double a[][],
double b[], int index[]) {
int n = b.length;
double x[] = new double[n];

// Transform the matrix into an upper triangle

gaussian(a, index);

// Update the array b[i] with the ratios stored
for(int i=0; i<n-1; ++i) {
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for(int j =i+1; j<n; ++j) {
b[index[j]] -= a[index[j]][i]*b[index[i]];

}
}

// Perform backward substitutions
x[n-1] = b[index[n-1]]/a[index[n-1]][n-1];
for (int i=n-2; i>=0; --i) {

x[i] = b[index[i]];
for (int j=i+1; j<n; ++j) {

x[i] -= a[index[i]][j]*x[j];
}

x[i] /= a[index[i]][i];
}

// Put x[i] into the correct order
order(x,index);

return x;
}

public static void gaussian(double a[][], int index[])
{...}

// Method to sort an array x[i] from the lowest to the
// highest value of index[i].

public static void order(double x[], int index[]){
int m = x.length;
for (int i = 0; i<m; ++i) {

for (int j = i+1; j<m; ++j) {
if (index[i] > index[j]) {

int itmp = index[i];
index[i] = index[j];
index[j] = itmp;
double xtmp = x[i];
x[i] = x[j];
x[j] = xtmp;

}
}

}
}

}

We obtain i1 = 1 A and i2 = i3 = 0.5 A after running the above program.

Inverse of a matrix

The inverse of a matrix A can be obtained in exactly the same fashion if we realize

that

A−1
i j = xi j , (5.41)

for i, j = 1, 2, . . . , n, where xi j is the solution of the equation Ax j = b j , with

bi j = δi j . If we expand b into a unit matrix in the program for solving a linear

equation set, the solution corresponding to each column of the unit matrix forms
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the corresponding column of A−1. With a little modification of the above routine

for solving the linear equation set, we obtain the program for matrix inversion.

// An example of performing matrix inversion through the

// partial-pivoting Gaussian elimination.
import java.lang.*;

public class Inverse {

public static void main(String argv[]) {
double a[][]= {{ 100, 100, 100},

{-100, 300, -100},
{-100, -100, 300}};

int n = a.length;
double d[][] = invert(a);
for (int i=0; i<n; ++i)

for (int j=0; j<n; ++j)

System.out.println(d[i][j]);
}

public static double[][] invert(double a[][]) {
int n = a.length;
double x[][] = new double[n][n];
double b[][] = new double[n][n];
int index[] = new int[n];
for (int i=0; i<n; ++i) b[i][i] = 1;

// Transform the matrix into an upper triangle

gaussian(a, index);

// Update the matrix b[i][j] with the ratios stored
for (int i=0; i<n-1; ++i)

for (int j=i+1; j<n; ++j)
for (int k=0; k<n; ++k)

b[index[j]][k]
-= a[index[j]][i]*b[index[i]][k];

// Perform backward substitutions
for (int i=0; i<n; ++i) {

x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
for (int j=n-2; j>=0; --j) {

x[j][i] = b[index[j]][i];
for (int k=j+1; k<n; ++k) {
x[j][i] -= a[index[j]][k]*x[k][i];

}
x[j][i] /= a[index[j]][j];

}
}

return x;
}

public static void gaussian(double a[][], int index[])
{...}

}

After running the above program, we obtain the inverse of the input matrix used

in the program. Even though we have only used a very simple matrix to illustrate

the method, the scheme itself is efficient enough for most real problems.
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LU decomposition

A scheme related to the Gaussian elimination is called LU decomposition,

which splits a nonsingular matrix into the product of a lower-triangular and an

upper-triangular matrix. A simple example of the LU decomposition of a tridi-

agonal matrix was introduced in Section 2.4 in association with the cubic spline.

Here we examine the general case.

As pointed out earlier in this section, the Gaussian elimination corresponds to

a set of n − 1 matrix operations that can be represented by a matrix multiplication

A(n−1) = MA, (5.42)

where

M = M(n−1)M(n−2) · · · M(1), (5.43)

with each M(r ), for r = 1, 2, . . . , n − 1, completing one step of the elimination. It

is easy to show that M is a lower-triangular matrix with all the diagonal elements

being −1 and Mki j = −A
( j−1)
ki j /A

( j−1)
k j j for i > j . So Eq. (5.42) is equivalent to

A = LU, (5.44)

where U = A(n−1) is an upper-triangular matrix and L = M−1 is a lower-triangular

matrix. Note that the inverse of a lower-triangular matrix is still a lower-

triangular matrix. Furthermore, because Mi i = −1, we must have L i i = 1 and

L i j = −Mi j = A
( j−1)
ki j /A

( j−1)
k j j for i > j , which are the ratios stored in the matrix

in the method introduced earlier in this section to perform the partial-pivoting

Gaussian elimination. The method performs the LU decomposition with nonzero

elements of U and nonzero, nondiagonal elements of L stored in the returned

matrix. The choice of L i i = 1 in the LU decomposition is called the Doolittle

factorization. An alternative is to choose Ui i = 1; this is called the Crout factor-

ization. The Crout factorization is equivalent to rescaling Ui j by Ui i for i < j

and multipling L i j by U j j for i > j from the Doolittle factorization.

In general the elements in L and U can be obtained from comparison of the

elements of the product of L and U with the elements of A in Eq. (5.44). The

result can be cast into a recursion with

L i j =
1

U j j

(

Ai j −
j−1
∑

k=1

L ikUk j

)

, (5.45)

Ui j =
1

L i i

(

Ai j −
i−1
∑

k=1

L ikUk j

)

, (5.46)

where L i1 = Ai1/U11 and U1 j = A1 j/L11 are the starting values. If we imple-

ment the LU decomposition following the above recursion, we still need to con-

sider the issue of pivoting, which shows up in the denominator of the expression

for Ui j or L i j . We can manage it in exactly the same way as in the Gaussian

elimination. In practice, we can always store both L and U in one matrix, with
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the elements below the diagonal for L, those above the diagonal for U, and the

diagonal elements for either Ui i or L i i depending on which of them is not equal

to 1.

The determinant of A is given by the product of the diagonal elements of L

and U because

|A| = |L||U| =
n
∏

i=1

L i i Ui i . (5.47)

As soon as we obtain L and U for a given matrix A, we can solve the linear

equation set Ax = b with one set of forward substitutions and another set of

backward substitutions because the linear equation set can now be rewritten as

Ly = b, (5.48)

Ux = y. (5.49)

If we compare the elements on both sides of these equations, we have

yi =
1

L i i

(

bi −
i−1
∑

k=1

L ik yk

)

, (5.50)

with y1 = b1/L11 and i = 2, 3, . . . , n. Then we can obtain the solution of the

original linear equation set from

xi =
1

Ui i

(

yi −
n
∑

k=i+1

Uik xk

)

, (5.51)

for i = n − 1, n − 2, . . . , 1, starting with xn = yn/Unn .

We can also obtain the inverse of a matrix by a method similar to that used

in the matrix inversion through the Gaussian elimination. We can choose a set

of vectors with elements bi j = δi j with i, j = 1, 2, . . . , n. Here i refers to the

element and j to a specific vector. The inverse of A is then given by A−1
i j = xi j

solving from Ax j = b j .

5.4 Zeros and extremes of multivariable functions

The numerical solution of a linear equation set discussed in the preceding section

is important in computational physics and scientific computing because many

problems there appear in the form of a linear equation set. A few examples of

them are given in the exercises for this chapter.

However, there is another class of problems that are nonlinear in nature but can

be solved iteratively with the linear schemes just developed. Examples include

the solution of a set of nonlinear multivariable equations and a search for the

maxima or minima of a multivariable function. In this section, we will show how

to extend the matrix methods discussed so far to study nonlinear problems. We

will also demonstrate the application of these numerical schemes to an actual

physics problem, the stable geometric configuration of a multicharge system,



134 Numerical methods for matrices

which is relevant in the study of the geometry of molecules and the formation of

solid salts. From the numerical point of view, this is also a problem of searching

for the global or a local minimum on a potential energy surface.

The multivariable Newton method

Nonlinear equations can also be solved with matrix techniques. In Chapter 3,

we introduced the Newton method in obtaining the zeros of a single-variable

function. Now we would like to extend our study to the solution of a set of

multivariable equations. Assume that the equation set is given by

f(x) = 0, (5.52)

with f = ( f1, f2, . . . , fn) and x = (x1, x2, . . . , xn). If the equation has at least

one solution at xr, we can perform the Taylor expansion around a neighboring

point x with

f(xr) = f(x) +�x · ∇f(x) + O(�x2) ≃ 0, (5.53)

where �x = xr − x. This is a linear equation set that can be cast into a matrix

form

A�x = b, (5.54)

where

Ai j =
∂ fi (x)

∂x j

(5.55)

and bi = − fi . Next we can find the root of the nonlinear equation set iteratively

by carrying out the solutions of Eq. (5.54) at every point of iteration. The Newton

method is then given by

xk+1 = xk +�xk, (5.56)

where �xk is the solution of Eq. (5.54) with x = xk . The Newton method for a

single-variable equation discussed in Chapter 3 is the special case with n = 1.

As with the secant method discussed in Chapter 3, if the expression for the

first-order derivative is not easy to obtain, the two-point formula can be used for

the partial derivative

Ai j =
fi (x + h j x̂ j ) − fi (x)

h j

, (5.57)

where h j is a finite interval and x̂ j is the unit vector along the direction of x j . A

rule of thumb in practice is to choose

h j ≃ δ0x j , (5.58)

where δ0 is roughly the square root of the tolerance of the floating-point data used

in the calculation; it is related to the total number of bits allocated for that data
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type either by the programming language or by the processor of the computer.

For example, the tolerance is about 2−31 ≈ 5 × 10−10 for the 32-bit floating-point

data.

As a matter of fact, both the Newton and the secant method converge locally

if the function is smooth enough, and the main computing cost is in solving

the linear equation set defined in Eq. (5.54). Here we demonstrate the scheme

using the following example in which we find the root of the set of two

equations, f1(x, y) = ex2

ln y − x2 = 0 and f2(x, y) = ey2

ln x − y2 = 0,

around x = y = 1.5.

// An example of searching for the root via the secant method
// for f_i[x_k] for i=1,2,...,n.

import java.lang.*;
public class Rootm {

public static void main(String argv[]) {
int n = 2;
int ni = 10;
double del = 1e-6;
double x[] = {1.5, 1.5};
secantm(ni, x, del);

// Output the root obtained
System.out.println("The root is at x = " + x[0]

+ "; y = " + x[1]);
}

// Method to carry out the multivariable secant search.

public static void secantm(int ni, double x[],
double del) {
int n = x.length;
double h = 2e-5;
int index[] = new int[n];
double a[][] = new double[n][n];

int k = 0;

double dx = 0.1;
while ((Math.abs(dx)>del) && (k<ni)) {

double b[] = f(x);
for (int i=0; i<n; ++i) {

for (int j=0; j<n; ++j) {
double hx = x[j]*h;
x[j] += hx;
double c[] = f(x);
a[i][j] = (c[i]-b[i])/hx;

}
}
for (int i=0; i<n; ++i) b[i] = -b[i];
double d[] = solve(a, b, index);
dx = 0;
for (int i=0; i<n; ++i) {

dx += d[i]*d[i];
x[i] += d[i];

}
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dx = Math.sqrt(dx/n);
k++;

}

if (k==n) System.out.println("Convergence not" +
" found after " + ni + " iterations");

}

public static double[] solve(double a[][], double b[],

int index[]) {...}

public static void gaussian(double a[][], int index[])
{...}

// Method to provide function f_i[x_k].

public static double[] f(double x[]) {
double fx[] = new double[2];
fx[0] = Math.exp(x[0]*x[0])*Math.log(x[1])

-x[0]*x[0];
fx[1] = Math.exp(x[1])*Math.log(x[0])-x[1]*x[1];
return fx;

}
}

Running the above program we obtain the root, which is at x ≃ 1.559 980 and

y ≃ 1.238 122. The accuracy can be improved if we reduce the tolerance further.

Extremes of a multivariable function

Knowing the solution of a nonlinear equation set, we can develop numerical

schemes to obtain the minima or maxima of a multivariable function. The ex-

tremes of a multivariable function g(x) are the solutions of a nonlinear equation

set

f(x) = ∇g(x) = 0, (5.59)

where f(x) is an n-dimensional vector with each component given by a partial

derivative of g(x).

In Chapter 3, we introduced the steepest-descent method in the search of an

extreme of a multivariable function. We can also use the multivariable Newton

or secant method introduced above for such a purpose, except that special care is

needed to ensure that g(x) decreases (increases) during the updates for a minimum

(maximum) of g(x). For example, if we want to obtain a minimum of g(x), we

can update the position vector x following Eq. (5.56). We can also modify the

matrix defined in Eq. (5.55) to

Ai j =
∂ fi

∂x j

+ µδi j , (5.60)

with µ taken as a small positive quantity to ensure that the modified matrix A is

positive definite, that is, wTAw ≥ 0 for any nonzero w. This will force the updates

always to move in the direction of decreasing g(x).
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A special choice of µ, known as the BFGS (Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; Shanno, 1970) updating scheme, is to have

Ak = Ak−1 +
yyT

yTw
−

Ak−1wwTAk−1

wTAk−1w
, (5.61)

where

w = xk − xk−1 (5.62)

and

y = fk − fk−1. (5.63)

The BFGS scheme ensures that the updating matrix is positive definite; thus

the search is always moving toward a minimum of g(x). This scheme has been

very successful in many practical problems. The reason behind its success is still

unclear. If we want to find the maximum of g(x), we can carry out exactly the

same steps to find the minimum of −g(x) with f(x) = −∇g(x). If the gradient

is not available analytically, we can use the finite difference instead, which is

in the spirit of the secant method. For more details on the optimization of a

function, see Dennis and Schnabel (1983). Much work has been done to develop

a better numerical method for optimization of a multivariable function in the

last few decades. However, the problem of global optimization of a multivariable

function with many local minima is still open and may never be solved. For

some discussions on the problem, see Wenzel and Hamacher (1999), Wales and

Scheraga (1999), and Baletto et al. (2004).

Geometric structures of multicharge clusters

We now turn to a physics problem, the stable geometric structure of a multicharge

cluster, which is extremely important in the analysis of small clusters of atoms,

ions, and molecules. We will take clusters of (Na+)l(Cl−)m with small positive

integers l and m as illustrative examples. We will study geometric structures of the

clusters with 2 ≤ n = l + m ≤ 6. If we take the empirical form of the interaction

potential between two ions in the NaCl crystal,

V (ri j ) = ηi j

e2

4πǫ0ri j

+ δi j V0 e−ri j /r0 , (5.64)

where ηi j = −1 and δi j = 1 if the particles are of opposite charges; otherwise,

ηi j = 1 and δi j = 0. Here V0 and r0 are empirical parameters, which can be

determined from either experiment or first-principles calculations. For solid NaCl,

V0 = 1.09 × 103 eV and r0 = 0.321 Å (Kittel, 1995). We will use these two

quantities in what follows.
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Fig. 5.2 Top view of stable

structures of Na+(NaCl)2

(left) and (NaCl)3 (right).

The function to be optimized is the total interaction potential energy of the

system,

U (r1, r2, . . . , rn) =
n
∑

i> j

V (ri j ). (5.65)

A local optimal structure of the cluster is obtained when U reaches a local mini-

mum. This minimum cannot be a global minimum for large clusters, because no

relaxation is allowed and a large cluster can have many local minima. There are

3n coordinates as independent variables in U (r1, r2, . . . , rn). However, because

the position of the center of mass and rotation around the center of mass do not

change the total potential energy U, we remove the center-of-mass motion and

the rotational motion around the center of mass during the optimization. We can

achieve this by imposing several restrictions on the cluster. First, we fix one of the

particles at the origin of the coordinates. This removes three degrees of freedom

of the cluster. Second, we restrict another particle on an axis, for example, the x

axis. This removes two more degrees of freedom of the cluster. Finally, we re-

strict the third particle in a plane, for example, the xy plane. This removes the last

(sixth) degree of freedom in order to fix the center of mass and make the system

irrotational. The potential energy U now only has 3n − 6 independent variables

(coordinates).

The BFGS scheme has been applied to search for the local minima of U for

NaCl, Na+(NaCl), (NaCl)2, Na+(NaCl)2, and (NaCl)3. The stable structures for

the first three systems are very simple: a dimer, a straight line, and a square. The

stable structures obtained for Na+(NaCl)2 and (NaCl)3 are shown in Fig. 5.2. In

order to avoid reaching zero separation of any two ions, a term b(c/ri j )
12 has

been added in the interaction, with b = 1 eV and c = 0.1 Å, which adds on an

amount of energy on the order of 10−18 eV to the total potential energy. It is worth

pointing out that the structure of (NaCl)3 is similar to the structure of (H2O)6

discovered by Liu et al. (1996). This might be an indication that water molecules

are actually partially charged because of the intermolecular polarization.

5.5 Eigenvalue problems

Matrix eigenvalue problems are very important in physics. They are defined by

Ax = λx, (5.66)



5.5 Eigenvalue problems 139

where λ is the eigenvalue corresponding to the eigenvector x of the matrix A,

determined from the secular equation

|A − λI| = 0, (5.67)

where I is a unit matrix. An n × n matrix has a total of n eigenvalues. The

eigenvalues do not have to be different. If two or more eigenstates have the same

eigenvalue, they are degenerate. The degeneracy of an eigenvalue is the total

number of the corresponding eigenstates.

The eigenvalue problem is quite general in physics, because the matrix in

Eq. (5.66) can come from many different problems, for example, the Lagrange

equation for the vibrational modes of a large molecule, or the Schrödinger equa-

tion for H+
3 discussed in Section 5.1. In this section, we will discuss the most

common and useful methods for obtaining eigenvalues and eigenvectors in a

matrix eigenvalue problem.

Eigenvalues of a Hermitian matrix

In many problems in physics and related fields, the matrix in question is Hermitian

with

A† = A. (5.68)

The simplicity of the Hermitian eigenvalue problem is due to three important

properties associated with a Hermitian matrix:

(1) the eigenvalues of a Hermitian matrix are all real;

(2) the eigenvectors of a Hermitian matrix can be made orthonormal;

(3) a Hermitian matrix can be transformed into a diagonal matrix with the same set of

eigenvalues under a similarity transformation of a unitary matrix that contains all its

eigenvectors.

Furthermore, the eigenvalue problem of an n × n complex Hermitian matrix is

equivalent to that of a 2n × 2n real symmetric matrix. We can show this easily.

For a complex matrix, we can always separate its real part from its imaginary part

with

A = B + iC, (5.69)

where B and C are the real and imaginary parts of A, respectively. If A is

Hermitian, then B is a real symmetric matrix and C is a real skew symmetric

matrix; they satisfy

Bi j = B j i , (5.70)

Ci j = −C j i . (5.71)
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If we decompose the eigenvector z in a similar fashion, we have z = x + iy. The

original eigenvalue problem becomes

(B + iC)(x + iy) = λ(x + iy), (5.72)

which is equivalent to
(

B −C

C B

)(

x

y

)

= λ

(

x

y

)

. (5.73)

This is a real symmetric eigenvalue problem with the same set of eigenvalues

that have an overall double degeneracy. Therefore we need to solve only the real

symmetric eigenvalue problem if the matrix is Hermitian.

The matrix used in similarity transformation of a real symmetric matrix to a

diagonal matrix is orthogonal instead of unitary. This simplifies the procedure

considerably. The problem can be simplified further if we separate the procedure

into two steps:

(1) use an orthogonal matrix to perform a similarity transformation of the real symmetric

matrix defined in Eq. (5.73) into a real symmetric tridiagonal matrix;

(2) solve the eigenvalue problem of the resulting tridiagonal matrix.

Note that the similarity transformation preserves the eigenvalues of the original

matrix, and the eigenvectors are the columns or rows of the orthogonal matrix

used in the transformation. The most commonly used method for tridiagonalizing

a real symmetric matrix is the Householder method. Sometimes the method is

also called the Givens method. Here we give a brief description of the scheme. The

tridiagonalization is achieved with a total of n − 2 consecutive transformations,

each operating on a row and a column of the matrix. The transformations can be

cast into a recursion

A(k) = OT
kA(k−1)Ok, (5.74)

for k = 1, 2, . . . , n − 2, where Ok is an orthogonal matrix that works on the

row elements with i = k + 2, . . . , n of the kth column and the column elements

with j = k + 2, . . . , n of the kth row. The recursion begins with A(0) = A. To be

specific, we can write the orthogonal matrix as

Ok = I −
1

ηk

wkwT
k, (5.75)

where the lth component of the vector wk is given by

wkl =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for l ≤ k,

A
(k−1)
kk+1 + αk for l = k + 1,

A
(k−1)
kl for l ≥ k + 2,

(5.76)

with

αk = ±

√

√

√

√

n
∑

l=k+1

[

A
(k−1)
kl

]2

(5.77)
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and

ηk = αk

[

αk + A
(k−1)
kk+1

]

. (5.78)

Even though the sign of αk is arbitrary in the above equations, it is always taken to

be the same as that of A
(k−1)
kk+1 in practice in order to avoid any possible cancelation,

which can make the algorithm ill-conditioned (with a zero denominator in Ok).

We can show that Ok defined above is the desired matrix, which is orthogonal

and converts the row elements with i = k + 2, . . . , n for the kth column and the

column elements with j = k + 2, . . . , n for the kth row of A(k−1) to zero just

by comparing the elements on the both sides of Eq. (5.74). We are not going

to provide a program here for the Householder scheme for tridiagonalizing a

real symmetric matrix because it is in all standard mathematical libraries and

reference books, for example, Press et al. (2002).

After we obtain the tridiagonalized matrix, the eigenvalues can be found using

one of the root search routines available. Note that the secular equation |A − λI| =
0 is equivalent to a polynomial equation pn(λ) = 0. Because of the simplicity

of the symmetric tridiagonal matrix, the polynomial pn(λ) can be generated

recursively with

pi (λ) = (ai − λ) pi−1(λ) − b2
i−1 pi−2(λ), (5.79)

where ai = Ai i and bi = Ai i+1 = Ai+1i . The polynomial pi (λ) is given from

the submatrix of A jk with j, k = 1, 2, . . . , i with the starting values p0(λ) = 1

and p1(λ) = a1 − λ. Note that this recursion is similar to that of the orthogonal

polynomials introduced in Section 2.2 and can be generated easily using the

following method.

// Method to generate the polynomial for the secular
// equation of a symmetric tridiagonal matrix.

public static double polynomial(double a[],
double b[], double x, int i) {
if (i==0) return 1;
else if (i==1) return a[0]-x;
else return (a[i-1]-x)*polynomial(a, b, x, i-1)

-b[i-2]*b[i-2]*polynomial(a, b, x, i-2);
}

In principle, we can use any of the root searching routines to find the eigenvalues

from the secular equation as soon as the polynomial is generated. However, two

properties associated with the zeros of pn(λ) are useful in developing a fast and

accurate routine to obtain the eigenvalues of a symmetric tridiagonal matrix.

(1) All the roots of pn(λ) = 0 lie in the interval [−‖A‖, ‖A‖], where

‖A‖ = max

{ n
∑

j=1

|Ai j |
}

, (5.80)
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for i = 1, 2, . . . , n, is the column modulus of the matrix. We can also use the row

modulus of the matrix in the above statement. The row modulus of a matrix is given

by

‖Ã‖ = max

{ n
∑

i=1

|Ai j |
}

, (5.81)

for j = 1, 2, . . . , n.

(2) The number of roots for pn(λ) = 0 with λ ≥ λ0 is given by the number of agreements

of the signs of p j (λ0) and p j−1(λ0) for j = 1, 2, . . . , n. If any of the polynomials, for

example, p j (λ0), is zero, the sign of the previous polynomial p j−1(λ0) is assigned to

that polynomial.

With the help of these properties, we can develop a quite simple but fast algorithm

in connection with the bisection method discussed in Chapter 3 to obtain the

eigenvalues of a real symmetric matrix. We outline this algorithm below.

We first evaluate the column modulus of the matrix with Eq. (5.80). This sets

the boundaries for the eigenvalues. Note that each summation in Eq. (5.80) has

only two or three terms, |Ai i−1|, |Ai i |, and |Ai i+1|. We can then start the search

for the first eigenvalue in the region of [−‖A‖, ‖A‖]. Because there is a total of

n eigenvalues, we need to decide which of those are sought. For example, if we

are only interested in the ground state, in other words, the lowest eigenvalue, we

can design an algorithm to target it directly.

A specific scheme can be devised and altered, based on the following general

procedure. We can bisect the maximum region of [−‖A‖, ‖A‖] and evaluate

the signs of pi (0) for i = 1, 2, . . . , n. Note that p0(λ) = 1. Based on what we

have discussed, we will know the number of eigenvalues lying within either

[−‖A‖, 0] or [0, ‖A‖]. This includes any possible degeneracy. We can divide the

two subintervals into four equal regions and check the signs of the polynomials at

each bisected point. This procedure can be continued to narrow down the region

where each eigenvalue resides. After l steps of bisection, each eigenvalue sought

is narrowed down to a region with a size of ‖A‖/2l−1. Note that we can work

either on a specific eigenvalue, for example, the one associated with the ground

state, or on a group of eigenvalues simultaneously. The errorbars are bounded by

‖A‖/2l−1 after l steps of bisection. A more realistic estimate of the errorbar is

obtained from the improvement of a specific eigenvalue at each step of bisection,

as in the estimates, made in Chapter 3.

Because the Householder scheme for a real symmetric matrix is carried out in

two steps, transformation of the original matrix into a tridiagonal matrix and so-

lution of the eigenvalue problem of the tridiagonal matrix, we can design different

algorithms to achieve each of these two steps separately, depending on the spe-

cific problems involved. Interested readers can find several of these algorithms in

Wilkinson (1963; 1965). It is worth emphasizing again that a Hermitian matrix

eigenvalue problem can be converted into a real symmetric matrix eigenvalue

problem with the size of the matrix expanded to twice that of the original matrix
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along each direction. This seems to be a reasonable approach in most cases, as

long as the size of the matrix is not limited by the available resources.

Eigenvalues of general matrices

Even though most problems in physics are likely to be concerned with Hermitian

matrices, there are still problems that require us to deal with general matrices.

Here we discuss briefly how to obtain the eigenvalues of a general nondefective

matrix. A matrix is nondefective if it can be diagonalized under a matrix transfor-

mation and its eigenvectors can form a complete vector space. Here we consider

nondefective matrices only, Because there is always a well-defined eigenvalue

equation Ax = λx for a nondefective matrix A, and we seldom encounter defec-

tive matrices in physics.

In most cases, we can define a matrix function f (A) with A playing the same

role as x in f (x). For example,

f (A) = e−αA =
∞
∑

k=0

(−αA)k

k!
(5.82)

is similar to

f (x) = e−αx =
∞
∑

k=0

(−αx)k

k!
, (5.83)

except that the power of a matrix is treated as matrix multiplications with A0 = I.

When the matrix function operates on an eigenvector of the matrix, the matrix

can be replaced by the corresponding eigenvalue, such as

f (A)xi = f (λi )xi , (5.84)

where xi and λi satisfy Axi = λi xi . If the function involves the inverse of the

matrix and the eigenvalue happens to be zero, we can always add a term ηI to the

original matrix to remove the singularity. The modified matrix has the eigenvalue

λi − η for the corresponding eigenvector xi . The eigenvalue of the original matrix

is recovered by taking η → 0 after the problem is solved. Based on this property

of nondefective matrices, we can construct a recursion

x(k) =
1

√

Nk

(A − µI)−1x(k−1) (5.85)

to extract the eigenvalue that is closest to the parameter µ. Here k = 1, 2, . . . ,

and Nk is a normalization constant to ensure that
〈

x(k)
∣

∣

∣
x(k)
〉

=
(

x(k)
)†

x(k) = 1. (5.86)

To analyze this recursive procedure, let us express the trial state x(0) in terms of

a linear combination of all the eigenstates with

x(0) =
n
∑

i=1

a
(0)
i xi , (5.87)
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which is always possible, because the eigenstates form a complete vector space.

If we substitute the above trial state into the recursion, we have

x(k) =
1

√

∏k

j=1 N j

n
∑

i=1

a
(0)
i xi

(λi − µ)k
=

n
∑

i=1

a
(k)
i xi . (5.88)

If we normalize the state at each step of iteration, only the state x j , with the

eigenvalue λ j that is the closest to µ, survive after a large number of iterations.

All other coefficients vanish approximately as

a
(k)
i ∼

(

λ j − µ

λi − µ

)k
a

(0)
i

a
(0)
j

(5.89)

for i 	= j , after k iterations. However, a
(k)
j will grow with k to approach 1. The

corresponding eigenvalue is obtained with

λ j = µ+ lim
k→∞

1
√

Nk

x
(k−1)
l

x
(k)
l

, (5.90)

where l is the index for a specific nonzero component (usually the one with the

maximum magnitude) of x(k) or x(k−1).

Here x(0) is a trial state, which should have a nonzero overlap with the eigenvec-

tor x j . We have to be very careful to make sure the overlap is nonzero. Otherwise,

we end up with the eigenvalue that belongs to the eigenvector with a nonzero over-

lap with x(0) but which is still closer to µ than the rest. One way to avoid a zero

overlap of x(0) with x j is to generate each component of x(0) with a random-number

generator and check each result with at least two different trial states.

The method outlined here is usually called the inverse iteration method. It

is quite straightforward if we have an efficient algorithm to perform the matrix

inversion. We can also rewrite the recursion at each step as a linear equation set

√

Nk(A − µI)x(k) = x(k−1), (5.91)

which can be solved with Gaussian elimination, for example, from one iteration

to another. Note that this iterative scheme also solves the eigenvectors of the

matrix at the same time. This is a very useful feature in many applications for

which the eigenvectors and eigenvalues are both needed.

Eigenvectors of matrices

We sometimes also need the eigenvectors of an eigenequation. For a nondefec-

tive matrix, we can always obtain a complete set of eigenvectors, including the

degenerate eigenvalue cases.

First, if the matrix is symmetric, it is much easier to obtain its eigenvectors. In

principle, we can transform a real symmetric matrix A into a tridiagonal matrix

T with a similarity transformation

T = OTAO, (5.92)
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where O is an orthogonal matrix. The eigenvalue equation then becomes

Ax = λx = OTOTx, (5.93)

which is equivalent to solving y from

Ty = λy (5.94)

and then x is obtained from

x = Oy. (5.95)

Thus, we can develop a practical scheme that solves the eigenvectors of T first

and then those of A by multiplying y with O, which is a byproduct of any tridi-

agonalization scheme, such as the Householder scheme.

As we discussed earlier, the recursion
√

Nk(T − µI)y(k) = y(k−1) (5.96)

will lead to both the eigenvector yj and the eigenvalue λ j that is closest to µ.

Equation (5.96) can be solved with an elimination scheme. Note that the elim-

ination scheme is now extremely simple because there are no more than three

nonzero elements in each row. In every step of the above recursion, we need

to normalize the resulting vector. We can use the LU decomposition in solving

a linear equation set with a tridiagonal coefficient matrix, as given in detail in

Section 2.4.

If the eigenvalue corresponds to more than one eigenvector, we can obtain

the other vectors simply by changing the value of µ or the initial guess of y(0).

When all the vectors xk corresponding to the same eigenvalue are found, we can

transform them into an orthogonal set zk with

zk = xk −
k−1
∑

j=1

〈z j |xk〉z j = xk −
k−1
∑

j=1

(

zT
j xk

)

z j , (5.97)

which is known as the Gram–Schmidt orthogonalization procedure.

If the tridiagonal matrix is obtained by means of the Householder scheme, we

can also obtain the eigenvectors of the original matrix at the same time using

x = O1O2 · · · On−2y

=
(

I −
1

η1

w1wT
1

)

· · ·
(

I −
1

ηn−2

wn−2wT
n−2

)

y, (5.98)

which can be carried out in a straightforward fashion if we realize that
(

I −
1

ηk

wkwT
k

)

y = y − βkwk, (5.99)

with βk = wT
ky/ηk . Note that the first k elements in wk are all zero.

For a general nondefective matrix, we can also follow a similar scheme to

obtain the eigenvectors of the matrix. First we transform the matrix into an upper

Hessenberg matrix. A matrix with all the elements below (above) the first
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off-diagonal elements equal to zero is called an upper (lower) Hessenberg ma-

trix. This transformation can always be achieved for a nondefective matrix A with

H = U†AU (5.100)

under the unitary matrix U. Here H is in the form of a Hessenberg matrix.

There are several methods that can be used to reduce a matrix to a Hessenberg

matrix; they are given in Wilkinson (1965). A typical scheme is similar to the

Householder scheme for reducing a symmetric matrix to a tridiagonal matrix. We

can then solve the eigenvalue problem of the Hessenberg matrix. The eigenvalue

problem of an upper (lower) Hessenberg matrix is considerably simpler than that

of a general matrix under a typical algorithm, such as the QR algorithm. The

so-called QR algorithm splits a nonsingular matrix A into a product of a unitary

matrix Q and an upper-triangular matrix R as

A = QR. (5.101)

We can construct a series of similarity transformations by alternating the order

of Q and R to reduce the original matrix to an upper-triangular matrix that has

the eigenvalues of the original matrix on the diagonal. Assume that A(0) = A and

A(k) = QkRk ; (5.102)

then we have

A(k+1) = RkQk = Q
†
kA(k)Qk = Q

†
k · · · Q

†
0AQ0 · · · Qk, (5.103)

with k = 0, 1, . . . . This algorithm works best if A is a Hessenberg matrix.

Taking account of stability and computing speed, a Householder type of scheme

to transform a nondefective matrix into a Hessenberg matrix seems to be an

excellent choice (Wilkinson, 1965).

When the matrix has been transformed into the Hessenberg form, we can use

the inverse iteration method to obtain the eigenvectors of the Hessenberg matrix

H with
√

Nk(H − µI)y(k) = y(k−1) (5.104)

and then the eigenvectors of the original matrix A from

x = Uy. (5.105)

Of course, the normalization of the vector at each iteration is assumed with the

normalization constant Nk , with a definition similar to that of Nk in Eq. (5.86),

to ensure the convergence.

Many numerical packages are available for dealing with linear algebra and

matrix problems, including JMSL, a collection of mathematical, statistical, and

charting classes in Java by Visual Numerics Inc. We should understand the basics

and then learn how to apply the routines from numerical packages in research. A

good survey of the existing packages can be found in Heath (2002).
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5.6 The Faddeev--Leverrier method

A very interesting method developed for matrix inversion and eigenvalue problem

is the Faddeev–Leverrier method. The scheme was first discovered by Leverrier in

the middle of the nineteenth century and later modified by Faddeev (Faddeev and

Faddeeva, 1963). Here we give a brief discussion of the method. The characteristic

polynomial of the matrix is given by

pn(λ) = |A − λI| =
n
∑

k=0

ckλ
k, (5.106)

where cn = (−1)n . Then we can introduce a set of supplementary matrices Sk

with

pn(λ)(λI − A)−1 =
n−1
∑

k=0

λn−k−1Sk . (5.107)

If we multiply the above equation by (λI − A), we have

n
∑

k=0

ckλ
kI = S0λ

n +
n−1
∑

k=1

(Sk − ASk−1)λn−k − ASn−1. (5.108)

Comparing the coefficients from the same order of λl for l = 0, 1, . . . , n on the

both sides of the equation, we obtain the recursion for cn−k and Sk ,

cn−k = −
1

k
Tr ASk−1, (5.109)

Sk = ASk−1 + cn−kI, (5.110)

for k = 1, 2, . . . , n. The recursion is started with S0 = I and is ended at c0. From

Eq. (5.107) with λ = 0, we can easily show that

ASn−1 + c0I = 0, (5.111)

which can be used to obtain the inverse

A−1 = −
1

c0

Sn−1. (5.112)

The following program is an example of generating Sk and ck for a given matrix

A with an evaluation of A−1 from Sn−1 and c0 as an illustration.

// An example of using the Faddeev-Leverrier method to

// obtain the inversion of a matrix.

import java.lang.*;
public class Faddeev {

public static void main(String argv[]) {
double a[][]= {{ 1, 3, 2},

{-2, 3, -1},

{-3, -1, 2}};
int n = a.length;
double c[] = new double[n];
double d[][] = new double[n][n];
double s[][][] = (double[][][]) fl(a, c);



148 Numerical methods for matrices

for (int i=0; i<n; ++i)
for (int j=0; j<n; ++j)

d[i][j] = -s[n-1][i][j]/c[0];
for (int i=0; i<n; ++i)

for (int j=0; j<n; ++j)

System.out.println(d[i][j]);
}

// Method to complete the Faddeev-Leverrier recursion.

public static double[][][] fl(double a[][],
double c[]) {

int n = c.length;
double s[][][] = new double[n][n][n];

for (int i=0; i<n; ++i) s[0][i][i] = 1;

for (int k=1; k<n; ++k) {
s[k] = mm(a,s[k-1]);
c[n-k] = -tr(s[k])/k;
for (int i=0; i<n; ++i)
s[k][i][i] += c[n-k];

}
c[0] = -tr(mm(a,s[n-1]));

return s;
}

// Method to calculate the trace of a matrix.

public static double tr(double a[][]) {
int n = a.length;
double sum = 0;
for (int i=0; i<n; ++i) sum += a[i][i];
return sum;

}

// Method to evaluate the product of two matrices.

public static double[][] mm(double a[][],
double b[][]) {
int n = a.length;
double c[][] = new double[n][n];
for (int i=0; i<n; ++i)

for (int j=0; j<n; ++j)
for (int k=0; k<n; ++k)

c[i][j] += a[i][k]*b[k][j];
return c;

}
}

After running the above program, we obtain the inverse of the matrix. Note that

each method in the example program above is kept general enough to deal with

any real matrix.

Because the Faddeev–Leverrier recursion also generates all the coefficients

ck for the characteristic polynomial pn(λ), we can use a root search method to

obtain all the eigenvalues from pn(λ) = 0. This is the same as the situation for the

Householder method discussed in the preceding section. We will further explore

the zeros of a general real polynomial, including complex ones, in the next section.
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After we have found all the eigenvalues λk , we can also obtain the corre-

sponding eigenvectors with the availability of the supplementary matrices Sk . If

we define a new matrix

X(λk) =
n
∑

l=1

Sl−1λ
n−l
k , (5.113)

then the columns of X(λk) are the eigenvectors xk . This can be shown from the

limit of the matrix X(λ) with λ = λk + δ. Here δ → 0 is introduced to make X a

nonsingular matrix. From Eq. (5.107), we can easily show that

X(λ) = |λI − A|(λI − A)−1, (5.114)

which leads each column of the matrix to the eigenvector xk as δ → 0. The

advantage of this scheme over the iterative scheme discussed in Section 5.5 is

that we do not need to perform iterations as soon as we have the supplementary

matrices Sk . Note that we have not specified anything about the matrix A except

that it is nonsingular. Therefore, the Faddeev–Leverrier method can be used for

general matrices as well as symmetric matrices. However, the scheme can be time

consuming if the dimension of the matrix is large.

5.7 Complex zeros of a polynomial

In scientific computing, we deal with problems mainly involving real symmetric

or Hermitian matrices, which always have real eigenvalues. We rarely encounter a

general complex matrix problem. If we do, we can still split the matrix into its real

and imaginary parts, and then the problem becomes a general problem with two

coupled real matrix equations. So occasionally we need to work with a general

real matrix that may have complex eigenvalues and eigenvectors. If we can find

the complex eigenvalues, we can also find the corresponding eigenvectors either

by the inverse iteration method or the Faddeev–Leverrier method. Then how can

we find all the eigenvalues of a general real matrix?

In principle, the eigenvalues of an n × n real matrix A are given by the zeros

of the polynomial

pn(λ) = |A − λI| =
n
∑

k=0

ckλ
k, (5.115)

The coefficients ck are real, because A is real, with cn = (−1)n; the polynomial

has a total of n zeros. We have discussed how to obtain all the coefficients ck with

the Faddeev–Leverrier method in the preceding section.

Here we explore some major properties of such a polynomial, especially its

zeros, which can be complex even though all ck are real. Note that if a complex

value z0 = x0 + iy0 for y0 	= 0 is a zero of the polynomial, its complex conjugate

z∗
0 = x0 − iy0 is also a zero. For a polynomial of degree n, that is, cn 	= 0, there

is a total of n zeros. This means that a polynomial with an odd n must have at

least one real zero.
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Locations of the zeros

In principle, we can rewrite the polynomial as a product

pn(z) =
n
∑

k=0

ck zk = cn

n
∏

k=1

(z − zk), (5.116)

where zk is the kth zero of the polynomial, or the kth root of the equation pn(z)

= 0. If we take z = 0 in the above equation, we reach

n
∏

k=1

zk = (−1)n c0

cn

. (5.117)

We can force |cn| = |c0| = 1 by first dividing the polynomial by c0 and then using

z to denote |cn/c0|1/nz. Then we have, from the above equation, some of the zeros

residing inside the unit circle on the complex z plane, centered at the origin of

z = x + iy. The rest of zeros are outside the unit circle. Thus we can use, for

example, the bisection method to find the corresponding real and imaginary parts

(or the amplitudes and phases) of the zeros inside the unit circle easily.

For the zeros outside the unit circle, we can further change the variable z

to 1/z and then multiply the polynomial by zn . The new polynomial has the

coefficients ck changed to cn−k , for k = 0, 1, . . . , n, and has zeros that are the

inverses of the zeros of the original polynomial. Thus we can find the zeros of

the original polynomial outside the unit circle by searching for the zeros of the

new polynomial inside the unit circle.

The evaluation of a polynomial is necessary for any search scheme that looks

for zeros within the unit circle. We can evaluate the polynomial efficiently by

realizing that

pn(z) = un(x, y) + ivn(x, y)

= c0 + z{c1 + z[c2 + · · · + (cn−1 + zcn) · · · ]}, (5.118)

where un and vn are the real and imaginary parts of pn , respectively. Then we

can construct the recursion

uk = cn−k + xuk−1 − yvk−1, (5.119)

vk = xvk−1 + yuk−1, (5.120)

starting with u0 = cn and v0 = 0. The following method implements such a

recursive evaluation of pn .

// Method to evaluate the polynomial with given c_k and
// z=x+iy.

public static double[] polynomial2(double c[],

double x, double y) {

double p[] = new double[2];

int n = c.length-1;

double u = c[n];

double v = 0;
for (int i=0; i<n; ++i) {
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double t = x*v+y*u;
u = c[n-i-1]+x*u-y*v;

v = t;
}
p[0] = u;

p[1] = v;

return p;
}

In order to find a zero of pn(z), we effectively have to solve two equations,

un(x, y) = 0 and vn(x, y) = 0, simultaneously. This can be done, for example,

with the multivariable Newton method discussed in Section 5.4.

A related issue is to evaluate the coefficients of a polynomial with its imaginary

axis shift by an amount x0, that is,

qn(z) = pn(z − x0) =
n
∑

k=0

dk zk, (5.121)

where the new coefficients dn are given by

dk = ck − x0dk+1, (5.122)

for k = n, n − 1, . . . , 0. Note that x0 is real and we need dn+1 = 0 to start the

recursion.

For a polynomial obtained from the secular equation of a real matrix, the zeros

are in general bounded by the column or row modulus of the matrix on the z plane.

For example, if we use the row modulus, we have

|zk | ≤ ‖A‖, (5.123)

which provides a circle that circumscribes all the eigenvalues of the matrix. After

we obtain the coefficients ck , for example, with the Faddeev–Leverrier method,

we can conduct an exhaustive search of all the eigenvalues within the circle of

|z| < ‖A‖. This method of searching for all the eigenvalues is primitive and can

be slow if n is large. If we want a more efficient scheme for searching for the

zeros of the polynomial or the eigenvalues of the corresponding matrix, we must

develop some new ideas.

Factoring a polynomial

A better strategy is to divide the original polynomial by a linear function or a

quadratic function, and then search for the zeros of the polynomial by turning

the coefficients of the remainders to zero. This is more efficient because we can

obtain the zero (or a pair of zeros) and reduce the polynomial to its quotient for

further search at the same time.

For example, if we divide the polynomial pn(z) by a divisor that is a first-order

polynomial f1(z) = α + βz, we have the quotient

pn−1(z) = pn(x)/ f1(x) − r0 =
n−1
∑

k=0

dk zk, (5.124)
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where dk is given by

dk−1 = (ck + αdk)/β, (5.125)

for k = n, n − 1, . . . , 1. Note that we take dn = 0 to start the recursion, and the

remainder is given by r0 = c0 − αd0. We can easily implement this factoring

scheme to locate real zeros. Note that we can use the sign of the remainder to

narrow down the region. Consider two points x1 and x2 > x1 on the real axis and

use f1(z) = z − x1 to obtain the remainder r0(x1) and f1(z) = z − x2 to obtain the

remainder r0(x2). If we have r0(x1)r0(x2) < 0, we know that there is at least one

real zero z0 = x0 in the region [x1, x2]. A combination of the bisection method

and the above factoring scheme can locate a real zero of pn(z) quickly. This

process can be continued with a search for a zero in the quotient, the quotient of

the quotient, . . . , until we have exhausted all the real zeros of the polynomial

pn(z).

To divide the polynomial pn(z) by f2(z) = α + βz + γ z2, we have the

quotient

pn−2(z) = pn(x)/ f2(x) − (r0 + r1z) =
n−2
∑

k=0

ek zk, (5.126)

where ek is given by

ek−2 = (ck − αek − βek−1)/γ, (5.127)

for k = n, n − 1, . . . , 1. Note that we take en = en−1 = 0 to start the recursion,

and the remainder coefficients are given by r1 = c1 − αe1 − βe0 and r0 = c0 −
αe0.

The above factoring scheme can be applied in the search for a pair of com-

plex zeros in the polynomial pn(z) by simultaneously solving r0(α, β) = 0 and

r1(α, β) = 0 if we set γ = 1 in f2(z). One can use the discrete Newton method

introduced in Section 5.4 to accomplish the root search. After we locate a root

with parameters α = α0 and β = β0, we can relate them back to the pair of zeros

of pn(z) as
(

− β0 ± i

√

4α0 − β2
0

)

/2.

We can also work out the analytical expressions for the partial derivatives

∂ri/∂α and ∂ri/∂β for i = 0, 1, and then apply the Newton method to solve

the two equations efficiently. This scheme is called the Bairstow method. For a

detailed discussion of the Bairstow method, see Wilkinson (1965).

The Routh--Hurwitz test

An interesting scheme for testing the real parts of the zeros of a polynomial pn(z)

is called the Routh–Hurwitz test. The scheme uses the coefficients ck to construct

a sequence whose signs determine how many zeros are on the right-hand side of

the imaginary axis. Here is how to construct the sequence.
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We can build an (n + 1) × m matrix with

Bi j =
1

Bi+11

∣

∣

∣

∣

∣

Bi+11 Bi+1 j+1

Bi+21 Bi+2 j+1

∣

∣

∣

∣

∣

, (5.128)

for i = n − 1, n − 2, . . . , 1 and j = 1, 2, . . . ,m, where

Bn+1 j = cn−2( j−1), (5.129)

Bn j = cn−2 j+1, (5.130)

with m = 1 + n/2 if n is even and m = (n + 1)/2 if n is odd. Note that if c−1

or any Bi j outside the range of the matrix shows up, it is treated as 0. Then we

count how many sign agreements that we have between Bi 1 and Bi+11 for i =
1, 2, . . . , n, which is the number of zeros on the right-hand side of the imaginary

axis.

There are a couple of problems in the above recursion. First, if Bi+11 = 0,

the recursion cannot go on. We can cure this by multiplying the polynomial by

z − x0 with x0 < 0. This does not change the zeros in the original polynomial

but merely adds another real zero to the polynomial on the left-hand side of the

imaginary axis.

The second problem is when a row of the matrix turns out to be zero. This

terminates the recursion prematurely. This problem arises from the elements from

the previous row (one line lower on the matrix); they happen to be the coefficients

of an exact divisor with a zero remainder. We can cure this by replacing the

zeros with the coefficients from the first-order derivative of the exact divisor. The

highest order of the exact divisor is determined by the index of the row that is zero.

For example, if Bk j = 0 for all j , the divisor is d(x) = Bk+11xk + Bk+12xk−2 +
Bk+13xk−4 + · · · .

The Routh–Hurwitz test provides an efficient and powerful method of search-

ing for zeros and of factoring the polynomial if we combine it with the

shift operation discussed earlier and the bisection search along the imaginary

axis.

5.8 Electronic structures of atoms

As we have pointed out, there are many applications of matrix operations in

physics. We have given a few examples in Section 5.1 and a concrete case study

on multicharge clusters in Section 5.4. In this section, we demonstrate how to

apply the matrix eigenvalue schemes in the calculation of the electronic struc-

tures of many-electron atomic systems within the framework of the Hartree–Fock

approximation.

The Schrödinger equation for a multielectron atom is given by

H�k(R) = Ek�k(R) (5.131)
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for k = 0, 1, . . . , where R = (r1, r2, . . . , rN ) is a 3N -dimensional position vector

for all N electrons in the system, H is the Hamiltonian of the N electrons in the

system, given by

H = −
h--2

2me

N
∑

i=1

∇2
i −

Ze2

4πǫ0

N
∑

i=1

1

ri

+
e2

4πǫ0

N
∑

i> j

1

|ri − r j |
, (5.132)

and Ek is the kth eigenvalue of the the Hamiltonian. Here Z is the atomic number,

ǫ0 is the electric permittivity of vacuum, me is the mass of a free electron, and

e is the fundamental charge. In general, it is not possible to obtain an exact

solution of the multielectron Schrödinger equation; approximations must be made

in order to solve the underlying eigenvalue problem. To simplify the expressions,

we use atomic units, that is, me = e = 4πǫ0 = µ0/4π = h-- = 1, where µ0 is

the magnetic permeability of vacuum. Under these choices of units, lengths are

given in the Bohr radius, a0 = 4πǫ0h--2/mee2 = 0.529 177 249(24) × 10−10 m,

and energies are given in the hartree, e2/4πǫ0a0 = 27.211 396 1(81) eV.

The Hartree–Fock approximation assumes that the ground state of a system

of fermions (electrons in this case) can be viewed as occupying the lowest set of

certain single-particle states after considering the Pauli exclusion principle. Then

the ground state is approximated by the Hartree–Fock ansatz, which can be cast

into a determinant

�HF(R) =
1

√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ1(r2) · · · φ1(rN )

φ2(r1) φ2(r2) · · · φ2(rN )

...
...

...
...

φN (r1) φN (r2) · · · φN (rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

; (5.133)

this is also known as the Slater determinant. The index used above includes both

the spatial and spin indices. In most cases, it is more convenient to write the

single particle states as φiσ (r) with the spin index σ (↑ or ↓) separated from the

spatial index i .

Because E0 is the ground-state energy of the system, we must have

EHF =
〈�HF|H|�HF〉
〈�HF|�HF〉

≥ E0. (5.134)

To optimize (minimize) EHF, we perform the functional variation with respect to

φ
†
iσ (r); then we have

[

−
1

2
∇2 −

Z

r
+ VH(r)

]

φiσ (r) −
∫

Vxσ (r′, r)φiσ (r′) dr′

= εiφiσ (r), (5.135)

which is known as the Hartree–Fock equation (see Exercise 5.15). Here VH(r) is

the Hartree potential given by

VH(r) =
∫

ρ(r′)

|r − r′|
dr′, (5.136)
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whereρ(r) = ρ↑(r) + ρ↓(r) is the total density of the electrons at r. The exchange

interaction Vxσ (r, r′) is given by

Vxσ (r′, r) =
ρσ (r, r′)

|r − r′|
, (5.137)

where ρσ (r, r′) is the density matrix of the electrons, given by

ρσ (r, r′) =
Nσ
∑

i=1

φ
†
iσ (r)φiσ (r′). (5.138)

Here Nσ is the total number of states occupied by the electrons with spin

σ . The density of the electrons is the diagonal of the density matrix, that is,

ρσ (r) = ρσ (r, r). The eigenvalue εi above is a multiplier introduced during the

optimization (minimization) of EHF.

The Hartree potential can also be obtained from the solution of the Poisson

equation

∇2VH(r) = −4πρ(r). (5.139)

The single-particle wavefunctions in the atomic systems can be assumed to have

the form

φiσ (r) =
1

r
unlσ (r )Ylm(θ, φ), (5.140)

where Ylm(θ, φ) are the spherical harmonics with θ and φ being the polar and

azimuthal angles, respectively. Quantum numbers n, l, and m correspond to the

energy, angular momentum, and z component of the angular momentum.

We can make the further assumption that the electron density is spherically

symmetric and divide the space [0, rc] into discrete points with an evenly spaced

interval h. Here rc is the cut-off in the radial direction, typically a few Bohr

radii. The spherical approximation of the density of electrons is valid only if

the formation of the magnetic moment is not considered. If we use a numer-

ical expression for the second-order derivative, for example, the three-point

formula, the Hartree–Fock equation for a given l is converted into a matrix

equation

Hu = εu, (5.141)

with the diagonal elements of H given by

Hi i =
1

h2
+

l(l + 1)

2r 2
i

−
Ze2

ri

+ VH(ri ), (5.142)

and the corresponding off-diagonal elements given by

Hi j = −
δi j±1

2h2
+ hV (l)

xσ (ri , r j ), (5.143)

where V
(l)

xσ (ri , r j ) is the lth component of Vxσ (ri , r j ) expanded in spherical har-

monics. We have used H for the matrix form of H and u for the discrete form
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of the wavefunction unlσ (r ). The angular momentum index is suppressed in H

and u for convenience. We can easily apply the numerical schemes introduced in

Section 5.5 to solve this matrix eigenvalue problem. The energy levels for dif-

ferent n are obtained for a fixed l. We can, of course, evaluate the density matrix

and the Hartree–Fock ground-state energy with the method described here.

5.9 The Lanczos algorithm and the many-body problem

One of the most powerful methods in large-scale matrix computing is the Lanczos

method, which is an iterative scheme suitable for large, especially sparse (most

elements are zero) matrices. The advantage of the Lanczos method is extremely

noticeable when we only need a few eigenvalues and eigenvectors, or when

the system is extremely large and sparse. Here we just sketch a very basic

Lanczos algorithm. More elaborate discussions on various Lanczos methods can

be found in several specialized books, for example, Wilkinson (1965), Cullum

and Willoughby (1985), and Hackbusch (1994).

Assuming that the matrix H is an n × n real symmetric matrix, we can tridi-

agonalize an m × m subset of H with

OTHO = H̃, (5.144)

where O is an n × m matrix with its kth column given by

vk =
uk
√

Nk

, (5.145)

for k = 1, 2, . . . ,m, where Nk = uT
kuk is the normalization constant and the

vectors uk are generated recursively from an arbitrary vector u1 as

uk+1 = Hvk − αkvk − βkvk−1, (5.146)

with βk = H̃ k−1k = vT
k−1Hvk and αk = H̃ kk = vT

kHvk . The recursion is started

at β1 = 0 with u1 being a selected vector. Note that u1 can be a normalized vec-

tor with each element generated from a uniform random-number generator, for

example. In principle, the vectors vk , for k = 1, 2, . . . ,m, form an orthonormal

set, but in practice we still need to carry out the Gram–Schmidt orthogonaliza-

tion procedure, at every step of the recursion, to remove the effects of rounding

errors. We can show that the eigenvalues of the tridiagonal submatrix H̃ are the

approximations of the ones of H with the largest magnitudes. We can use the

standard methods discussed earlier to diagonalize H̃ to obtain its eigenvectors

and eigenvalues from H̃x̃k = λk x̃k . The eigenvectors x̃k can be used to obtain the

approximate eigenvectors of H with xk ≃ Ox̃k .

The approximation is improved if we construct a new initial state u1 from the

eigenvectors x̃k with k = 1, 2, . . . ,m, for example,

u1 =
m
∑

k=1

ck x̃k, (5.147)
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and then the recursion is repeated again and again. We can show that this iterative

scheme will eventually lead to the m eigenvectors of H, corresponding to the

eigenvalues with the largest magnitudes. In practice, the selection of the coeffi-

cients ck is rather important in order to have a fast and accurate algorithm. Later

in this section we will introduce one of the choices made by Dagotto and Moreo

(1985) in the study of the ground state of a quantum many-body system.

We can work out the eigenvalue problem for a specified region of the spectrum

of H with the introduction of the matrix

G = (H − µI)−1. (5.148)

We can solve G with the Lanczos algorithm to obtain the eigenvectors with

eigenvalues near µ. Note that

Gxk =
1

λk − µ
xk (5.149)

if Hxk = λkxk . This is useful if one wants to know about the spectrum of a

particular region.

At the beginning of this chapter, we used a many-body Hamiltonian (the

Hubbard model) in Eq. (5.17) to describe the electronic behavior of H+
3 . It is

generally believed that the Hubbard model and its variants can describe the ma-

jority of highly correlated quantum systems, for example, transition metals, rare

earth compounds, conducting polymers, and oxide superconducting materials.

There are good reviews of the Hubbard model in Rasetti (1991). Usually, we

want to know the properties of the ground state and the low-lying excited states.

For example, if we want to know the ground state and the first excited state of

a cluster of N sites with N0 < N electrons, we can solve the problem using the

Lanczos method by taking m ≃ 10 and iterating the result a few times. Note that

the number of many-body states increases exponentially with both N0 and N .

The iteration converges to the ground state and the low-lying excited state only

if they have the largest eigenvalue magnitudes. The ground state and low-lying

excited state energies carry the largest magnitudes if the chemical potential of

the system is set to be zero. We also have to come up with a construction for the

next guess of u1. We can, for example, use

u
(l+1)
1 =

5
∑

k=1

v
(l)
k . (5.150)

A special choice of the iteration scheme for the ground-state properties is

given by Dagotto and Moreo (1985). The (l + 1)th iteration of v1 is taken as

v
(l+1)
1 =

1
√

1 + a2

(

v
(l)
1 + av

(l)
2

)

, (5.151)

where a is determined from the minimization of the expectation value of H under

v
(l+1)
1 , which gives

a = b −
√

1 + b2, (5.152)
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where b is expressed in terms of the expectation values of the lth iteration as

b =
d3 − 3d1d2 + 2d3

1

2(d2 − d2
1 )3/2

(5.153)

with d1 = vT
1Hv1, d2 = vT

1H2v1, and d3 = vT
1H3v1. The second vector

v2 =
1

√

d2 − d2
1

(Hv1 − d1v1) (5.154)

is also normalized under such a choice of v1. The advantage of this algorithm is

that we only need to store three vectors v1, Hv1, and H2v1 during each iteration.

The eigenvalue with the largest magnitude is also given iteratively from

λ1 = vT
1Hv1 +

a
√

d2 − d2
1

. (5.155)

This algorithm is very efficient for calculating the ground-state properties of

many-body quantum systems. For more discussions on the method and its appli-

cations, see Dagotto (1994).

5.10 Random matrices

The distributions of the energy levels of many physical systems have some univer-

sal features determined by the fundamental symmetry of the Hamiltonian. This

type of feature is usually qualitative. For example, when disorders are introduced

into metallic systems, the resistivities increase and the systems become insulators

if the disorders are strong enough. For each metal, the degree of disorder needed

to become an insulator is different, but the general behavior of metallic systems

to become insulators under strong disorders is the same. If we want to represent a

disordered material with a matrix Hamiltonian, the elements of the matrix have to

be randomly selected. The general feature of a physical system is obtained with

an ensemble of random matrices satisfying the physical constraints of the system.

Even though the elements of the matrices are random, at least three types of

fundamental symmetries can exist in the ensembles of the random matrices for

a given physical system. For example, if the system has time-reversal symmetry

plus rotational invariance for the odd-half-integer spin case, the ensemble is real

symmetric, or orthogonal.

If rotational invariance is not present in the odd-half-integer spin case, the

ensemble is quaternion real, or symplectic. The general case without time-reversal

symmetry is described by general Hermitian matrices, or a unitary ensemble.

The structure of the matrix is the other relevant factor that determines the

detailed properties of a specific system. Traditionally, the focus of the general

properties was on the orthogonal ensemble with real symmetric matrices and a

Gaussian distribution for the matrix elements. Efforts made in the last 30 years

are described in Mehta (1991). In this section, we will not be able to cover

many aspects of random matrices and will only provide a very brief introduction.

Interested readers should consult Mehta (1991), Brody et al. (1981), and Bohigas

(1991).
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We can easily generate a random matrix if the symmetry and the structure

of the matrix are specified. The Gaussian orthogonal ensemble of n × n matri-

ces is specified with a distribution Wn(H) that is invariant under an orthogonal

transformation with

Wn(H′) d H′ = Wn(H) d H, (5.156)

where

H′ = OTHO, (5.157)

with O being an orthogonal matrix. The above condition also implies that Wn(H)

is invariant under the orthogonal transformation because d H is invariant. This

restricts the distribution to be

Wn(H) = e−Tr H2/4σ 2

, (5.158)

where the trace is given by

Tr H2 =
n
∑

i=1

H 2
i i +

n
∑

i 	= j

H 2
i j . (5.159)

The average of the elements and the variance satisfy 〈Hi j 〉 = 0 and 〈H 2
i j 〉 = (1 +

δi j )σ
2 for the Gaussian orthogonal ensemble. The variance for the off-diagonal

elements is only half that of for the diagonal elements because Hi j = H j i in

symmetric matrices.

We can generate a random-matrix ensemble numerically and diagonalize each

matrix to obtain the distribution of the eigenvalues and eigenvectors. For example,

the Gaussian orthogonal random matrix can be obtained with the method given

below. The Gaussian random-number generator used is from the Java language.

// Method to generate a random matrix for the Gaussian
// orthogonal ensemble with sigma being the standard
// deviation of the off-diagonal elements.

import java.util.Random;
public static double[][] rm(int n, double sigma) {

double a[][] = new double[n][n];
double sigmad = Math.sqrt(2)*sigma;
Random r = new Random();

for (int i=0; i<n; ++i)
a[i][i] = sigmad*r.nextGaussian();

for (int i=0; i<n; ++i) {
for (int j=0; j<i; ++j) {

a[i][j] = sigma*r.nextGaussian();
a[j][i] = a[i][j];

}
}
return a;

}

This matrix can then be diagonalized by any method discussed earlier in this

chapter. In order to obtain the statistical information, the matrix needs to be
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generated and diagonalized many times before a smooth and correct distribution

can be reached. Based on the distributions of the eigenvalues and the eigenvectors

of the random-matrix ensemble, we can obtain the correlation functions of the

eigenvalues and other important statistical information. Statistical methods and

correlation functions are discussed in more detail in Chapters 8 and 10. We can

also use the Gaussian random-number generator introduced in Chapter 2 instead

the one from Java in the above method.

The distribution density of the eigenvalues in the Gaussian orthogonal ensem-

ble can be obtained analytically, and it is given by a semicircle function

ρ(λ) =

⎧

⎨

⎩

1

2π

√

4 − λ2 if |λ| < 2,

0 elsewhere,
(5.160)

which was first derived by Wigner in the 1950s. Here ρ(λ) is the normalized

density at the eigenvalue λ measured in σ
√

n. The numerical simulations carried

out so far seem to suggest that the semicircle distribution is true for any other

ensemble as long as the elements satisfy 〈Hi j 〉 = 0 and 〈H 2
i j 〉 = σ 2 for i < j . We

will leave this as an exercise for the reader.

There has been a lot of activity in the field of random-matrix theory and

its applications. Here we mention just a couple of examples. Hackenbroich and

Weidenmüller (1995) have shown that a general distribution of the form

Wn(H) =
1

Z
e−n TrV(H), (5.161)

whereZ is a normalization constant, would lead to the same correlation functions

among the eigenvalues as those of a Gaussian orthogonal ensemble, in the limit

of n → ∞. This is true for any ensemble, orthogonal, symplectic, or unitary.

Here V(H) is a function of H with the restriction that its eigenvalues are confined

within a finite interval with a smooth distribution and that V (λ) grows at least

linearly as λ → ∞. The Gaussian ensemble is a special case with V(H) ∝ H2.

Akulin, Bréchignac, and Sarfati (1995) have used the random-matrix method

in the study of the electronic, structural, and thermal properties of metallic clus-

ters. They have introduced a random interaction V , where 〈V 〉 = 0 and 〈V 2〉 is

a function characterized by the electron–electron, electron–ion, and/or electron–

phonon interactions, and the shape fluctuations of the clusters. Using this theory,

they have predicted deformation transformation in the cluster when the temper-

ature is lowered. This effect is predicted only for open shell clusters and is quite

similar to the Jahn–Teller effect, which creates a finite distortion in the lattice in

ionic solids due to the electron–phonon interaction.

Exercises

5.1 Find the currents in the unbalanced Wheatstone bridge (Fig. 5.1). Assume

that v0 = 1.5 V, r1 = r2 = 100 �, r3 = 150 �, rx = 120 �, ra = 1000 �,

and rs = 10 �.



Exercises 161

5.2 A typical problem in physics is that physical quantities can be calculated

for a series of finite systems, but ultimately, we would like to know the

results for the infinite system. Hulthén (1938) studied the one-dimensional

spin- 1
2

Heisenberg model with the Hamiltonian

H =
n−1
∑

i=1

si · si+1,

where si is the spin at the i th site and n is the total number of sites in the

system. From the eigenequation

H�k = Ek�k,

Hulthén obtained the ground-state energy per site, εn = E0/n, for a series

of finite systems with ε2 = −2.0000, ε4 = −1.5000, ε6 = −1.4343, ε8 =
−1.4128, and ε10 = −1.4031. Now assume that the ground-state energy

per site is given by

εn = ε∞ +
c1

n
+

c2

n2
+ · · · +

cl

nl
+ · · · .

Truncate the above series at l = 4 and find ε∞ by solving the linear equation

set numerically.

5.3 Consider the least-squares approximation of a discrete function f (xi ) for

i = 0, 1, . . . , n with the polynomial

pm(x) =
m
∑

k=0

ck x k .

Write a subprogram that evaluates all the ck from

∂χ 2

∂cl

= 0,

for l = 0, 1, . . . ,m, where

χ2 =
n
∑

i=0

[ pm(xi ) − f (xi )]
2.

5.4 Develop a subprogram to achieve the LU decomposition of an n × n banded

matrix with l subdiagonals and m superdiagonals with either the Crout or

the Doolittle factorization. Simplify the subprogram for the cases of l = m

and a symmetric matrix.

5.5 Apply the secant method to obtain the stable geometric structure of clusters

of ions (Na+)n(Cl−)m , where n and m are small positive integers. Use the

empirical interaction potential given in Eq. (5.64) for the ions.

5.6 Write a subprogram to implement the BFGS optimization scheme. Test it by

searching for the stable geometric structure of (NaCl)5. Use the empirical

interaction potential given in Eq. (5.64) for the ions.

5.7 Write a subprogram that utilizes the Householder scheme to tridiagonalize

a real symmetric matrix.
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5.8 Write a subprogram that uses the properties of determinant polynomials of

a tridiagonal matrix and a root-search method to solve its first few eigen-

values.

5.9 Discretize the one-dimensional Schrödinger equation

−
h--2

2m

d2φ(x)

dx2
+ V (x)φ(x) = εφ(x)

by applying the three-point formula to the second-order derivative above.

Assuming that the potential V (x) is

V (x) =
h--2

2m
α2λ(λ− 1)

[

1

2
−

1

cosh2(αx)

]

,

solve the corresponding eigenvalue problem by the inverse iteration method

to obtain the eigenvalues and eigenvectors for the four lowest states. Com-

pare the numerical result obtained here with the analytical result given in

Eq. (4.98).

5.10 Find all the 15 × 15 elements of the Hamiltonian for H+
3 and solve the

corresponding eigenvalues and eigenvectors numerically. Compare the nu-

merical results with the analytic results by reducing the matrix to block-

diagonal form with the largest block being a 2 × 2 matrix.

5.11 It is of special interest in far infrared spectroscopy to know the vibrational

spectrum of a molecule. Find all the the vibrational modes of Na2Cl2. Use

the empirical interaction potential for the ions that is given in Eq. (5.64).

5.12 Implement the Faddeev–Leverrier method in a program to obtain the in-

verse, eigenvalues, and eigenvectors of a general real matrix.

5.13 Divide the polynomial pn(z) =
∑n

k=0 ck zk by f2(z) = z2 + βz + α twice

and obtain the recursions for the coefficients in the quotients and remainders

in each step. Find analytical expressions for ∂ri (α, β)/∂α and ∂ri (α, β)/∂β,

where r0 and r1 are the coefficients of the remainder r = r1z + r0 after the

first division. Derive the Bairstow method that utilizes the Newton method

to factor the polynomial pn(z) and to obtain a pair of its zeros. Implement

the scheme in a program and test it with p6(z) = (z2 + z + 1)(z2 + 2z +
2)(z2 + 3z + 3).

5.14 Combine the Routh–Hurwitz test and bisection method in a program to

locate all the zeros of the polynomial pn(z) =
∑

k=0 ck zk . Test it with

p6(z) = (z2 + z + 1)(z2 + 2z − 4)(z2 + 3z + 3).

5.15 Derive the Hartree–Fock equation for the atomic systems given in Sec-

tion 5.8. Show that the matrix form of the Hartree–Fock equation does

represent the original equation if the electron density is spherically sym-

metric, and find the expression for V
(l)

xσ (ri , r j ) in the matrix equation.
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5.16 Write a program to generate and diagonalize ensembles of real symmetric

matrices with the following distributions:

Wn(Hi j ) =

{

1
2

if |Hi j | < 1,

0 otherwise,

Wn(Hi j ) =
1

2
[δ(Hi j − 1) + δ(Hi j + 1)],

Wn(Hi j ) =
1

√
2π

e
−H2

i j /2
,

for i ≤ j . Compare the density of eigenvalues with that of the Wigner

semicircle.

5.17 Find the optimized configurations of N < 20 charges confined on the sur-

face of a unit sphere. Discuss whether the configurations found are the

global minima of the electrostatic potential energies of the systems.

5.18 Find the optimized configurations of N < 20 particles, such as argon atoms,

interacting with each other through the Lennard–Jones potential

Vi j = 4ε

[

(

σ

ri j

)12

−
(

σ

ri j

)6
]

,

where both ε and σ are model parameters. Find the N dependence of the

number of local minima that are close to the global minimum of the total

interaction energy of the system.



Chapter 6

Spectral analysis

Nature often behaves differently to how our intuition predicts it should. For

example, when we observe a periodic motion, immediately we can figure out

the period involved, but not the detailed structure of the data within each period.

It was Fourier who first pointed out that an arbitrary periodic function f (t), with

a period T , can be decomposed into a summation of simple harmonic terms,

which are periodic functions of frequencies that are multiples of the fundamental

frequency 1/T of the function f (t). Each coefficient in the summation is given

by an integral of the product of the function and the complex conjugate of that

harmonic term.

Assuming that we have a time-dependent function f (t) with a period T , that

is, f (t + T ) = f (t), the Fourier theorem can be cast as a summation

f (t) =
∞
∑

j=−∞
g j e−i jωt , (6.1)

which is commonly known as the Fourier series. Here ω = 2π/T is the funda-

mental angular frequency and g j are the Fourier coefficients, which are given by

g j =
1

T

∫ T

0

f (t)ei jωt dt. (6.2)

The Fourier theorem can be derived from the properties of the exponential

functions

φ j (t) =
1

√
T

e−i jωt , (6.3)

which form an orthonormal basis set in the region of one period of f (t): namely,
∫ t0+T

t0

φ∗
j (t)φk(t) dt = 〈 j |k〉 = δ jk, (6.4)

where t0 is an arbitrary starting point, φ∗
j (t) is the complex conjugate of φ j (t),

and δ jk is the Kronecker δ function.

The Fourier coefficients gk of Eq. (6.2) are then obtained by multiplying

Eq. (6.1) by e−ikωt and then integrating both sides of the equation over one

period of f (t). We can always take t0 = 0 for convenience, because it is arbitrary.

164
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6.1 Fourier analysis and orthogonal functions

We can generalize the Fourier theorem to a nonperiodic function defined in a

region of x ∈ [a, b] if we have a complete basis set of orthonormal functions

φk(x) with
∫ b

a

φ∗
j (x)φk(x) dx = 〈 j |k〉 = δ jk . (6.5)

For any arbitrary function f (x) defined in the region of x ∈ [a, b], we can always

write

f (x) =
∑

j

g j φ j (x) (6.6)

if the function is square integrable, defined by

∫ b

a

| f (x)|2 dx < ∞. (6.7)

The summation in the series is over all the possible states in the complete set,

and the coefficients g j are given by

g j =
∫ b

a

φ∗
j (x) f (x) dx = 〈 j | f 〉. (6.8)

The continuous Fourier transform is obtained if we restrict the series to the

region of t ∈ [−T/2, T/2] and then extend the period T to infinity. We need to

redefine jω → ω and
∑

j → (1/
√

2π )
∫

dω. Then the sum becomes an integral

f (t) =
1

√
2π

∫ ∞

−∞
g(ω)e−iωt dω, (6.9)

which is commonly known as the Fourier integral. The Fourier coefficient function

is given by

g(ω) =
1

√
2π

∫ ∞

−∞
f (t)eiωt dt. (6.10)

Equations (6.9) and (6.10) define an integral transform and its inverse, which are

commonly known as the Fourier transform and the inverse Fourier transform. We

can show that the two equations above are consistent: that is, we can obtain the

second equation by multiplying the first equation by eiωt and then integrating it.

We need to use the Dirac δ function during this process. The Dirac δ function is

defined by

δ(x − x ′) =

{

∞ if x = x ′,

0 elsewhere,
(6.11)

and

∫ ∞

−∞
δ(x − x ′) dx = lim

ǫ→+0

∫ x ′+ǫ

x ′−ǫ
δ(x − x ′) dx = 1. (6.12)
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So the Dirac δ function δ(ω) can also be interpreted as the Fourier transform of a

constant function f (t) = 1/
√

2π , which we can easily show by carrying out the

transform integration.

The Fourier transform can also be applied to other types of variables or to

higher dimensions. For example, the Fourier transform of a function f (r) in

three dimensions is given by

f (r) =
1

(2π )3/2

∫

g(q)eiq·r dq, (6.13)

with the Fourier coefficient

g(q) =
1

(2π )3/2

∫

f (q)e−iq·r dr. (6.14)

Note that both of the above integrals are three-dimensional. The space defined

by q is usually called the momentum space.

6.2 Discrete Fourier transform

The Fourier transform of a specific function is usually necessary in the analysis of

experimental data, because it is often difficult to establish a clear physical picture

just from the raw data taken from an experiment. Numerical procedures for the

Fourier transform are inevitable in physics and other scientific fields. Usually we

have to deal with a large number of data points, and the speed of the algorithm

for the Fourier transform becomes a very important issue. In this section we will

discuss a straightforward scheme for the one-dimensional case to illustrate some

basic aspects of the DFT (discrete Fourier transform). In the next section, we will

outline a fast algorithm for the discrete Fourier transform, commonly known as

the FTT (fast Fourier transform).

As we pointed out earlier, the one-dimensional Fourier transform is defined by

Eq. (6.9) and Eq. (6.10); as always, we need to convert the continuous variables

into discrete ones before we develop a numerical procedure.

Let us consider f (x) as a space-dependent physical quantity obtained from

experimental measurements. If the measurements are conducted between x = 0

and x = L , f (x) is nonzero only for x ∈ [0, L]. To simplify our problem, we

can assume that the data are taken at evenly spaced points with each interval

h = L/(N − 1), where N is the total number of data points. We assume that the

data repeat periodically outside the region of x ∈ [0, L], which is equivalent to

imposing the periodic boundary condition on the finite system. The correspond-

ing wavenumber in the momentum space is then discrete too, with an interval

κ = 2π/L .

The discrete Fourier transform of such a data set can then be expressed in

terms of a summation

fk =
1

√
N

N−1
∑

j=0

g j ei2π jk/N , (6.15)
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with the Fourier coefficients given by

g j =
1

√
N

N−1
∑

k=0

fk e−i2π jk/N , (6.16)

where we have used our convention that fk = f (t = kτ ) and g j = g(ω = jν).

We can show that the above two summations are consistent, meaning that the

inverse Fourier transform of the Fourier coefficients will give the exact values of

f (t) at t = 0, τ, . . . , (N − 1)τ . However, this inverse Fourier transform does not

ensure smoothness in the recovered data function.

Note that the exponential functions in the series form a discrete basis set of

orthogonal functions: that is,

〈φ j |φm〉 =
N−1
∑

k=0

1
√

N
e−i2πk j/N 1

√
N

ei2πkm/N

=
1

N

N−1
∑

k=0

ei2πk(m− j)/N = δ jm . (6.17)

Before we introduce the fast Fourier transform, let us examine how we can im-

plement the discrete Fourier transform of Eq. (6.16) in a straightforward manner.

We can separate the real (Re) and imaginary (Im) parts of the coefficients,

Re g j =
1

√
N

N−1
∑

k=0

(

cos
2π jk

N
Re fk + sin

2π jk

N
Im fk

)

, (6.18)

Im g j =
1

√
N

N−1
∑

k=0

(

cos
2π jk

N
Im fk − sin

2π jk

N
Re fk

)

, (6.19)

for convenience. Note that it is not necessary to separate them in practice even

though most people would do so. Separating the real and imaginary parts is

convenient because then we only need to deal with real numbers.

The following program is an implementation of Eqs. (6.18) and (6.19) with

the real and imaginary parts of the coefficients separated.

// An example of performing the discrete Fourier transform
// with function f(x)=x(1-x) with x in [0,1]. The
// inverse transform is also performed for comparison.

import java.lang.*;
public class Fourier {

static final int n = 128, m = 8;
public static void main(String argv[]) {
double x[] = new double[n];
double fr[] = new double[n];
double fi[] = new double[n];
double gr[] = new double[n];
double gi[] = new double[n];
double h = 1.0/(n-1);
double f0 = 1/Math.sqrt(n);

// Assign the data and perform the transform
for (int i=0; i<n; ++i) {

x[i] = h*i;
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fr[i] = x[i]*(1-x[i]);
fi[i] = 0;

}

dft(fr, fi, gr, gi);

// Perform the inverse Fourier transform
for (int i=0; i<n; ++i) {

gr[i] = f0*gr[i];
gi[i] = -f0*gi[i];
fr[i] = fi[i] = 0;

}
dft(gr, gi, fr, fi);

for (int i=0; i<n; ++i) {
fr[i] = f0*fr[i];
fi[i] = -f0*fi[i];

}

// Output the result in every m data steps
for (int i=0; i<n; i+=m)

System.out.println(x[i] + " " + fr[i] + " " fi[i]);
}

// Method to perform the discrete Foruier transform. Here
// fr[] and fi[] are the real and imaginary parts of the
// data with the correponding outputs gr[] and gi[].

public static void dft(double fr[], double fi[],
double gr[], double gi[]) {
int n = fr.length;
double x = 2*Math.PI/n;
for (int i=0; i<n; ++i) {

for (int j=0; j<n; ++j) {
double q = x*j*i;
gr[i] += fr[j]*Math.cos(q)+fi[j]*Math.sin(q);
gi[i] += fi[j]*Math.cos(q)-fr[j]*Math.sin(q);

}
}

}
}

The above program takes an amount of computing time that is proportional to

N 2. We have used f (x) = x(1 − x) as the data function to test the method in

the region of x ∈ [0, 1]. This program demonstrates how we can perform the

discrete Fourier transform and its inverse, that is, how to obtain g j from fk , and

to obtain fk from g j , in exactly the same manner. Note that we do not have the

factor 1/
√

N in the method, which is a common practice in designing a Fourier

transform subprogram. It is obvious that the inverse transform is nearly identical

to the transform except for a sign.

As we have pointed out, the inverse Fourier transform provides exactly the same

values as the original data at the data points. The result of the inverse discrete

Fourier transform from the above program and the original data are shown in

Fig. 6.1. Some inaccuracy can still appear at these data points, because of the
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Fig. 6.1 The function

f (x) = x(1 − x) (line)

and the corresponding

values from the

inverse transform of its

Fourier coefficients (+)

calculated with the

example program.

rounding error incurred during the computing. A more important issue here is the

accuracy of the recovered data function at places other than the data points. When

the Fourier transform or its inverse is performed, we can have only a discrete set

of data points. So an interpolation is inevitable if we want to know any value

that is not at the data points. We can increase the number of points to reduce the

errors in the interpolation of the data, but we also have to watch the growth of

the rounding errors with the number of points used.

6.3 Fast Fourier transform

As we can clearly see, the straightforward discrete Fourier transform algorithm

introduced in the preceding section is very inefficient, because the computing time

needed is proportional to N 2. In order to solve this problem, many people have

come up with the idea that is now known as the FFT (fast Fourier transform). The

key element of the fast Fourier transform is to rearrange the terms in the series

and to have the summation performed in a hierarchical manner. For example,

we can perform a series of pairwise additions to accomplish the summation if

the number of data points is of the power of 2: that is, N = 2M, where M is an

integer.

The idea behind the fast Fourier transform had been considered a long time

ago, even before the first computer was built. As mentioned in Chapter 1, Gauss

developed a version of the fast Fourier transform and published his work in

neoclassical Latin (Gauss, 1886; Goldstine, 1977, pp. 249–53). However, no one

really took notice of Gauss’s idea or connected it to modern computation. The

fast Fourier transform algorithm was formally discovered and put into practice

by Cooley and Tukey (1965). Here we will give a brief outline of their idea.
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The simplest fast Fourier transform algorithm is accomplished with the ob-

servation that we can separate the odd and even terms in the discrete Fourier

transform as

g j =
N/2−1
∑

k=0

f2k e−i2π j(2k)/N +
N/2−1
∑

k=0

f2k+1 e−i2π j(2k+1)/N ,

= x j + y j e−i2π j/N , (6.20)

where

x j =
N/2−1
∑

k=0

f2k e−i2π jk/(N/2) (6.21)

and

y j =
N/2−1
∑

k=0

f2k+1 e−i2π jk/(N/2). (6.22)

Here we have ignored the factor 1/
√

N , which can always be added back into

the program that calls the fast Fourier transform subprogram. What we have

done is to rewrite the Fourier transform with a summation of N terms as two

summations, each of N/2 terms. This process can be repeated further and further

until eventually we have only two terms in each summation if N = 2M, where M

is an integer. There is one more symmetry between gk for k < N/2 and gk for

k ≥ N/2: that is,

g j = x j + w j y j , (6.23)

g j+N/2 = x j − w j y j , (6.24)

where w = e−i2π/N and j = 0, 1, . . . , N/2 − 1. This is quite important in prac-

tice, because now we need to perform the transform only up to j = N/2 − 1,

and the Fourier coefficients with higher j are obtained with the above equation

at the same time.

There are two important ingredients in the fast Fourier transform algorithm.

After the summation is decomposed M times, we need to add individual data

points in pairs. However, due to the sorting of the odd and even terms in every

level of decomposition, the points in each pair at the first level of additions can

be very far apart in the original data string. However, Cooley and Tukey (1965)

found that if we record the data string index with a binary number, a bit-reversed

order will put each pair of data points next to each other for the summations at

the first level. Let us take a set of 16 data points f0, f1, . . . , f15 as an example. If

we record them with a binary index, we have 0000, 0001, 0010, 0011, . . . , 1111,

for all the data points. Bit-reversed order is achieved if we reverse the order of

each binary string. For example, the bit-reversed order of 1000 is 0001. So the

order of the data after the bit reversal is f0, f8, f4, f12, . . . , f3, f11, f7, f15. Then

the first level of additions is performed between f0 and f8, f4 and f12, . . . , f3

and f11, and f7 and f15. Equations (6.23) and (6.24) can be applied repeatedly to
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sum the pairs 2l−1 spaces apart in the bit-reversed data stream. Here l indicates

the level of additions; for example, the first set of additions corresponds to l = 1.

At each level of additions, two data points are created from each pair. Note that

w j is associated with the second term in the equation.

With the fast Fourier transform algorithm, the computing time needed for a

large set of data points is tremendously reduced. We can see this by examining

the calculation steps needed in the transform. Assume that N = 2M, so that after

bit reversal, we need to perform M levels of additions and N/2l additions at

the lth level. A careful analysis shows that the total computing time in the fast

Fourier transform algorithm is proportional to N log2 N instead of to N 2, as is the

case for the straightforward discrete Fourier transform. Similar algorithms can

be devised for N of the power of 4, 8, and so forth.

Many versions and variations of the fast Fourier transform programs are avail-

able in Fortran (Burrus and Parks, 1985) and in other programming languages.

One of the earliest Fortran programs of the fast Fourier transform was writ-

ten by Cooley, Lewis, and Welch (1969). Now many computers come with a

fast Fourier transform library, which is usually written in machine language and

tailored specifically for the architecture of the system.

Most routines for the fast Fourier transform are written with complex variables.

However, it is easier to deal with just real variables. We can always separate the

real and imaginary parts in Eqs. (6.20)–(6.24), as discussed earlier. The following

method is an example of this. Note also that Java does not have a complex data

type at the moment and we need to create a class for complex variables and

their operations if we want implement the algorithm without separating the real

and imaginary parts of the data. For other languages, it is more concise for

programming to have both input and result in a complex form. If the data are real,

we can simply remove the lines related to the imaginary part of the input data.

// Method to perform the fast Foruier transform. Here
// fr[] and fi[] are the real and imaginary parts of
// both the input and output data.

public static void fft(double fr[], double fi[],
int m) {
int n = fr.length;
int nh = n/2;
int np = (int) Math.pow(2, m);

// Stop the program if the indices do not match
if (np != n) {

System.out.println("Index mismtch detected");
System.exit(1);

}

// Rearrange the data to the bit-reversed order
int k = 1;
for (int i=0; i<n-1; ++i) {

if (i < k-1) {
double f1 = fr[k-1];
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double f2 = fi[k-1];
fr[k-1] = fr[i];

fi[k-1] = fi[i];

fr[i] = f1;
fi[i] = f2;

}

int j = nh;
while (j < k) {

k -= j;
j /= 2;

}
k += j;

}

// Sum up the reordered data at all levels

k = 1;
for (int i=0; i<m; ++i) {

double w = 0;
int j = k;
k = 2*j;
for (int p=0; p<j; ++p) {

double u = Math.cos(w);
double v = -Math.sin(w);
w += Math.PI/j;
for (int q=p; q<n; q+=k) {

int r = q+j;

double f1 = fr[r]*u-fi[r]*v;
double f2 = fr[r]*v+fi[r]*u;
fr[r] = fr[q]-f1;
fr[q] += f1;
fi[r] = fi[q]-f2;
fi[q] += f2;

}
}

}
}

As we can see from the above method, rearranging the data points into bit-reversed

order is nontrivial. However, it can still be understood if we examine the part of

the program iteration by iteration with a small N . To be convinced that the above

subroutine is a correct implementation of the N = 2M case, the reader can take

N = 16 as an example and then work out the terms by hand.

A very important issue here is how much time can use of the fast Fourier

transform save. On a scalar machine, it is quite significant. However, on a vector

machine, the saving is somewhat restricted. A vector processor can perform the

inner loop in the discrete Fourier transform in parallel within each clock cycle,

and this makes the computing time for the straightforward discrete Fourier trans-

form proportional to Nα , with α somewhere between 1 and 2. In real problems, α

may be a little bit higher than 2 for a scalar machine. However, the advantage of

vectorization in the fast Fourier transform is not as significant as in the straight-

forward discrete Fourier transform. So in general, we may need to examine the

problem under study, and the fast Fourier transform is certainly an important tool,

because the available computing resources are always limited.
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6.4 Power spectrum of a driven pendulum

In Chapter 4 we discussed the fact that a driven pendulum with damping can

exhibit either periodic or chaotic behavior. One way to analyze the dynamics of

a nonlinear system is to study its power spectrum.

The power spectrum of a dynamical variable is defined as the square of the

modulus of the Fourier coefficient function,

S(ω) = |g(ω)|2, (6.25)

where g(ω) is given by

g(ω) =
1

√
2π

∫ ∞

−∞
y(t)eiωt dt, (6.26)

with y(t) being the time-dependent dynamic variable. We discussed in the pre-

ceding section how to achieve the fast Fourier transform numerically. With the

availability of such a scheme, the evaluation of the power spectrum of a time-

dependent variable becomes straightforward.

The driven pendulum with damping is described by

dy1

dt
= y2, (6.27)

dy2

dt
= −q y2 − sin y1 + b cosω0t, (6.28)

where y1(t) = θ (t) is the angle between the pendulum and the vertical, y2(t) =
dθ (t)/dt is its corresponding angular velocity, q is a measure of the damping, and

b andω0 are the amplitude and angular frequency of the external driving force. We

have already shown in Chapter 4 how to solve this problem numerically with the

fourth-order Runge–Kutta algorithm. The power spectra of the time-dependent

angle and the time-dependent angular velocity can be obtained easily by per-

forming a discrete Fourier transform with the fast Fourier transform algorithm.

We show the numerical results in Fig. 6.2(a) and (b), which correspond to the

power spectra of the time-dependent angle θ (t) in periodic and chaotic regions,

respectively.

We have taken 65 536 data points with 192 points in one period of the driving

force. The initial condition, y1(0) = 0 and y2(0) = 2, is used in generating the

data. In Fig. 6.2, we have shown the first 2048 points of the power spectra. As we

can see from the figure, the power spectrum for periodic motion has separated

sharp peaks with δ-function-like distributions. The broadening of the major peak

at the angular frequency of the driving force, ω0, is due to rounding errors. We

can reduce the broadening by increasing the number of points used. The power

spectrum for the chaotic case is quite irregular, but still has noticeable peaks at the

same positions as the periodic case. This is because the contribution at the angular

frequency of the driving force is still high, even though the system is chaotic.

The peaks at multiples of ω0 are due to relatively large contributions at the higher

frequencies with ω = nω0, where n is an integer, in the Fourier coefficient. If

we have more data points, we can also study the fractal structure of the power
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Fig. 6.2 Power spectra of

the time-dependent angle

of a driven pendulum with

damping, with ω0 = 2/3,

q = 0.5, for (a) periodic

behavior at b = 0.9 and (b)

chaotic behavior at

b = 1.15.
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spectrum. This could be achieved by examining the data at different scales of

the frequency; we would observe similar patterns emerging from different scales

with a unique fractal dimensionality.

6.5 Fourier transform in higher dimensions

The Fourier transform can be obtained in a very straightforward manner in higher

dimensions if we realize that we can transform each coordinate as if it were a

one-dimensional problem, with all other coordinate indices held constant.

Let us take the two-dimensional case as an example. Assume that the data are

from a rectangular domain with N1 mesh points in one direction and N2 in the

other. So the total number of points is N = N1 N2. The discrete Fourier transform

is then given by

g jk =
1

√
N

N1−1
∑

l=0

N2−1
∑

m=0

flme−i2π ( jl/N1+km/N2)

=
1

√
N1

N1−1
∑

l=0

e−i2π jl/N1
1

√
N2

N2−1
∑

m=0

flme−i2πkm/N2 . (6.29)
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Thus, we can obtain the transform first for all the terms under index m with a

fixed l and then for all the terms under index l with a fixed k. The procedure can

be seen easily from the method given below.

// Method to carry out the fast Fourier transform for a
// 2-dimenisonal array. Here fr[][] and fi[][] are real
// and imaginary parts in both the input and output.

public static void fft2d(double fr[][],
double fi[][], int m1, int m2) {
int n1 = fr.length;
int n2 = fr[0].length;
double hr[] = new double[n2];

double hi[] = new double[n2];

double pr[] = new double[n1];
double pi[] = new double[n1];

// Perform fft on the 2nd index

for (int i=0; i<n1; ++i) {
for (int j=0; j<n2; ++j) {

hr[j] = fr[i][j];
hi[j] = fi[i][j];

}
fft(hr, hi, m2);
for (int j=0; j<n2; ++j) {

fr[i][j] = hr[j];
fi[i][j] = hi[j];

}
}

// Perform fft on the 1st index
for (int j=0; j<n2; ++j) {

for (int i=0; i<n1; ++i) {
pr[i] = fr[i][j];
pi[i] = fi[i][j];

}
fft(pr, pi, m1);
for (int i=0; i<n1; ++i) {

fr[i][j] = pr[i];
fi[i][j] = pi[i];

}
}

}

public static void fft(double fr[], double fi[],
int m) {...}

We have used the one-dimensional fast Fourier transform twice, once for each

of the two indices. This procedure works well if the boundary of the data is

rectangular.

6.6 Wavelet analysis

Wavelet analysis was first introduced by Haar (1910) but not recognized as a

powerful mathematical tool until the 1980s. It was Morlet et al. (1982a; 1982b)
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who first used the wavelet approach in seismic data analysis. The wavelet trans-

form contains spectral information at different scales and different locations of

the data stream, for example, the intensity of a signal around a specific frequency

and a specific time. This is in contrast to Fourier analysis, in which a specific

transform coefficient contains information about a specific scale or frequency

from the entire data space without referring to its relevance to the location in the

original data stream. The wavelet method is extremely powerful in the analysis

of short time signals, transient data, or complex patterns. The development and

applications of wavelet analysis since the 1980s have shown that many more ap-

plications will emerge in the future. Here we give just a brief introduction to the

subject and point out its potential applications in computational physics. More

details on the method and some applications can be found in several monographs

(Daubechies, 1992; Chui, 1992; Meyer, 1993; Young, 1993; Holschneider, 1999;

Percival and Walden, 2000) and collections (Combes, Grossmann, and Tchan-

mitchian, 1990; Chui, Montefusco, and Puccio, 1994; Foufoula-Georgiou and

Kumar, 1994; Silverman and Vassilicos, 1999; van den Berg, 1999).

Windowed Fourier transform

It is desirable in many applications that the local structure in a set of data can be

amplified and analyzed. This is because we may not be able to obtain the data

throughout the entire space or on a specific scale of particular interest. Sometimes

we also want to filter out the noise around the boundaries of the data. A windowed

Fourier transform can be formulated to select the information from the data at a

specific location. We can define

g(ω, τ ) =
1

√
2π

∫ ∞

−∞
f (t)w(t − τ )eiωt dt (6.30)

as the windowed Fourier transform of the function f (t) under the window function

w(t − τ ). The window function w(t − τ ) is used here to extract information about

f (t) in the neighborhood of t = τ . The window function w(t) is commonly

chosen to be a real, even function, and satisfies
∫ ∞

−∞
w2(t) dt = 1. (6.31)

Typical window functions include the triangular window function

w(t) =

⎧

⎪

⎨

⎪

⎩

1
√

N

(

1 −
|t |
σ

)

if |t | < σ,

0 elsewhere,

(6.32)

and the Gaussian window function

w(t) =
1
√

N
e−t2/2σ 2

, (6.33)
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where N is the normalization constant and σ is a measure of the window width.

As soon as σ is selected, N can be evaluated with Eq. (6.31). From the definition,

we can also recover the data from their Fourier coefficients through the inverse

transform

f (t) =
1

√
2π

∫ ∞

−∞
g(ω, τ )w(τ − t)e−iωt dω dτ (6.34)

as in the conventional Fourier transform. The inner product, that is, the integral

over the square of the data amplitude, is equal to the integral over the square of

its transform coefficient amplitude: that is,
∫ ∞

−∞
| f (t)|2dt =

∫ ∞

−∞
|g(ω, τ )|2 dω dτ. (6.35)

The advantage of the windowed Fourier transform is that it tunes the data with the

window function so that we can obtain the local structure of the data or suppress

unwanted effects in the data string. However, the transform treats the whole data

space uniformly and would not be able to distinguish detailed structures of the

data at different scales.

Continuous wavelet transform

The windowed Fourier transform can provide information at a given location in

time, but it fails to provide the data with a specific scale at the selected location.

We can obtain information about a set of data locally and also at different scales

through wavelet analysis.

The continuous wavelet transform of a function f (t) is defined through the

integral

g(λ, τ ) =
∫ ∞

−∞
f (t)u∗

λτ (t) dt, (6.36)

where u∗
λτ (t) is the complex conjugate of the wavelet

uλτ (t) =
1

√
|λ|

u

(

t − τ

λ

)

, (6.37)

withλ 	= 0 being the dilate and τ being the translate of the wavelet transform. The

parameters λ and τ are usually chosen to be real, and they select, respectively, the

scale and the location of the data stream during the transformation. The function

u(t) is the generator of all the wavelets uλτ (t) and is called the mother wavelet

or just the wavelet. Note that u10(t) = u(t) as expected for the case without any

dilation or translation in picking up the data.

There are some constraints on the selection of a meaningful wavelet u(t). For

example, in order to have the inverse transform defined, we must have

Z =
∫ ∞

−∞

1

|ω|
|z(ω)|2 dω < ∞, (6.38)
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where z(ω) is the Fourier transform of u(t). The above constraint is called the

admissibility condition of the wavelet (Daubechies, 1992), which is equivalent to

z(0) =
1

√
2π

∫ ∞

−∞
u(t) dt = 0, (6.39)

if u(t) is square integrable and decays as t → ±∞. This is why u(t) is called a

wavelet, meaning a small wave, in comparison with a typical plane wave, which

satisfies the above condition but is not square integrable. The wavelet u(t) is

usually normalized with

〈u|u〉 =
∫ ∞

−∞
|u(t)|2dt = 1 (6.40)

for convenience.

Let us examine a simple wavelet

u(t) = �(t) − 2�

(

t −
1

2

)

+�(t − 1), (6.41)

which is called the Haar wavelet, with the step function

�(t) =

{

1 if t > 0,

0 otherwise.
(6.42)

The wavelet transform coefficients g(λ, τ ) are obtained through Eq. (6.36) with

the wavelet given by

uλτ (t) =
1

√
|λ|

[

�(t − τ ) − 2�

(

t − τ −
λ

2

)

+�(t − τ − λ)

]

. (6.43)

The difficulty here is to have an analytic form of g(λ, τ ), even for a simple form of

f (t). In general the integration must be carried out numerically. Let us consider

a simple function f (t) = t(1 − t) for t ∈ [0, 1], zero otherwise. The following

program shows how to obtain the continuous wavelet transform of the function

numerically.

// An example of performing the continuous wavelet
// transform with function f(t)=t(1-t) for 0<t<1.

import java.lang.*;
public class Wavelet{

static final int nt = 21, nv = 11;
public static void main(String argv[]) {

double t[] = new double[nt];

double f[] = new double[nt];
double fi[] = new double[nt];
double v[] = new double[nv];
double g[][] = new double[nv][nv];
double dt = 1.0/(nt-1), dv = 1.0/(nv-1);
double rescale = 100;

// Assign the data, dilate, and translate
for (int i=0; i<nt; ++i) {

t[i] = dt*i;
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f[i] = t[i]*(1-t[i]);
}

for (int i=0; i<nv; ++i) v[i] = dv*(i+1);

// Perform the transform
for (int i=0; i<nv; ++i){

double sa = Math.sqrt(Math.abs(v[i]));
for (int j=0; j<nv; ++j){

for (int k=0; k<nt; ++k){
fi[k] = f[k]*(theta(t[k]-v[j])

- 2*theta(t[k]-v[j]-v[i]/2)
+ theta(t[k]-v[j]-v[i]))/sa;

}

g[i][j] = simpson(fi,dt);
}

}

// Output the coefficients obtained
for (int i=0; i<nv; ++i){

for (int j=0; j<nv; ++j){
double g2 = rescale*g[i][j]*g[i][j];
System.out.println(v[i] + " " + v[j] + " " + g2);

}
}

}

// Method to create a step funciton.

public static double theta(double x) {
if (x>0) return 1.0;
else return 0.0;

}

public static double simpson(double y[], double h) {...}
}

In Fig. 6.3 we show the surface and contour plots of |g(λ, τ )|2, generated with

the above program. The contour plot is called the scalogram of f (t), and can

be interpreted geometrically in analyzing the information contained in the data

(Grossmann, Kronland-Martinet, and Morlet, 1989).

From the definition of the continuous wavelet transform and the constraints

on the selection of the wavelet u(t), we can show that the data function can be

recovered from the inverse wavelet transform

f (t) =
1

Z

∫ ∞

−∞

1

λ2
g(λ, τ )uλτ (t) dλ dτ. (6.44)

We can also show that the wavelet transform satisfies an identity similar to that

in the Fourier transform or the windowed Fourier transform with

∫ ∞

−∞
| f (t)|2dt =

1

Z

∫ ∞

−∞

1

λ2
|g(λ, τ )|2dλ dτ. (6.45)

Analytically, the continuous wavelet transform is easier to deal with than the

discrete wavelet transform. However, most data obtained are discrete in nature.



180 Spectral analysis

Fig. 6.3 Surface and

contour plots of the

scalogram of the function

f (t) = t(1 − t) for t ∈ [0,1]

and zero otherwise.

More importantly, it is much easier to implement the data analysis numerically

if the transform is defined with discrete variables.

6.7 Discrete wavelet transform

From the continuous wavelet transform, we can obtain detailed information on

the data at different locations and scales. The drawback is that the information

received is redundant because we effectively decompose a one-dimensional data

stream into a two-dimensional data stream. To remove this redundancy, we can

take the wavelet at certain selected scales (dyadic scales at λ j = 2 j for integers

j) and certain locations (k points apart on the scale of λ j ). The transform can

then be achieved level by level with the multiresolution analysis of Mallat (1989)

under a pyramid scheme.

In the spirit of carrying out the Fourier analysis in terms of the Fourier series,

we expand the time sequence as

f (t) =
∞
∑

j=−∞

∞
∑

k=−∞
c jku jk(t), (6.46)

where the basis set

u jk(t) = 2 j/2u(2 j t − k) (6.47)

is generated from dilating and translating the wavelet u(t). The transform is

obtained from

c jk = 〈u jk | f 〉 =
∫ ∞

−∞
f (t)u jk(t) dt, (6.48)

following the general argument that u jk(t) form a complete, orthonormal basis set.

The expansion in Eq. (6.46) is also known as synthesis because we can reconstruct
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the time sequence f (t) if all the coefficients c jk are given. Consequently, the

transformation of Eq. (6.48) is called analysis. To simplify our problem, we

have taken the basis set to be orthonormal even though completeness is the only

necessary condition.

We have also made the assumption that the basis set is real and orthonormal for

simplicity, even though completeness is the only necessary condition needed. An

example of an orthonormal wavelet is the Haar wavelet discussed in the preceding

section. We can follow the approach that we have used in the preceding section

for the continuous wavelet transform to obtain all the integrals in the transform

coefficients. However, the hierarchical structure of the discrete wavelet transform

allows us to use a much more efficient method to obtain the transform without

worrying about all the integrals involved.

Multiresolution analysis

We can first define a set of linear vector spaces W j , with each span over the

function space covered by u jk for −∞ < k < ∞, allowing us to decompose

f (t) into components residing in individual W j with

f (t) =
∞
∑

j=−∞
d j (t), (6.49)

where d j (t) is called the detail of f (t) in W j and is given by

d j (t) =
∞
∑

k=−∞
c jku jk(t). (6.50)

Then we can introduce another set of linear vector spaces V j , with each the

addition of its nested subspace V j−1 ⊂ V j and W j−1. We can visualize this by

examining three-dimensional Euclidean space. If V j were taken as the entire

Euclidean space and V j−1 the xy plane, W j−1 would be the z axis. Note specifically

that u(t − k) form the complete basis set for the space W0. A symbolic sketch of

the spaces W j and V j is given in Fig. 6.4. Note that there is no overlap between

any two different W j spaces, whereas V j are nested within Vk for j < k.

Then the projection of f (t) into the space V j can be written as

a j (t) =
j−1
∑

k=−∞

∞
∑

l=−∞
cklukl (t), (6.51)

with the limits a∞(t) = f (t) and a−∞(t) = 0. The function a j (t) is called the

approximation of f (t) in V j . The spaces W j and V j , and the approximations

a j (t) and details d j (t) are simply related by

V j+1 = V j ⊕ W j , (6.52)

a j+1(t) = a j (t) + d j (t). (6.53)
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The above relations define the multiresolution of the space and function. The

nested spaces V j possess certain unique properties. For example, V−∞ contains

only one element, the zero vector, which is shared among all the spaces V j . This

means that the projection of any function f (t) into V−∞ is zero. Furthermore, if

f (t) is a function in space V j , f (2t) is automatically a function in space V j+1,

and vice versa. This is the consequence of u j+1k(t) =
√

2u jk(2t). The space V∞
becomes equivalent to the space L2(R), which holds all the square-integrable

functions f (t).

Let us consider a simple example of decomposing a function f (t) given in a

certain space V j a few times. The space hierarchy is given as

V j = V j−1 ⊕ W j−1

= V j−2 ⊕ W j−2 ⊕ W j−1

= V j−3 ⊕ W j−3 ⊕ W j−2 ⊕ W j−1, (6.54)

which allows us to expand the function as

f (t) = A1(t) + D1(t)

= A2(t) + D2(t) + D1(t)

= A3(t) + D3(t) + D2(t) + D1(t), (6.55)

where A1(t) is the first-level approximation or the projection of f (t) into V j−1,

A2(t) is the second-level approximation or the projection into V j−2, D1(t) is the

first-level detail in W j−1, D2(t) is the second-level detail in W j−2, and so forth.

This is just a special case of f (t) = a j (t) with Ak(t) = a j−k(t) and Dk(t) =
d j−k(t). The essence of the multiresolution analysis is therefore to decompose a

data sequence into difference levels of approximations and details.
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Scaling function

The multiresolution analysis of f (t) can be realized in a concise form if there

exist a set of functions v jk(t) that form a complete, orthogonal basis set in space

V j with

〈v jk(t)|v jl (t)〉 =
∫ ∞

−∞
v jk(t)v jl (t) dt = δkl . (6.56)

Here v jk(t) are called scaling functions that satisfy

v jk(t) = 2 j/2v(2 j t − k), (6.57)

where the scaling function v(t) is sometimes also referred to as the father scaling

function or father wavelet. Note that v jk(t) with different j cannot be made

orthogonal to each other because the spaces V j are nested rather than orthogonal,

unlike the spaces W j . More importantly, V0 and W0 are both the subspaces of V1

because V0 ⊕ W0 = V1. We can therefore expand a basis function in V0, v(t) =
v00(t), and a basis function in W0, u(t) = u00(t), in terms of the basis set in V1 as

v(t) =
∞
∑

k=−∞
h(k)v1k(t) =

∞
∑

k=−∞
h(k)

√
2v(2t − k), (6.58)

u(t) =
∞
∑

k=−∞
g(k)v1k(t) =

∞
∑

k=−∞
g(k)

√
2v(2t − k), (6.59)

where h(k) and g(k) are referred to as filters, which we will discuss in more detail

below. The two-scale relations given in Eqs. (6.58) and (6.59) are instrumental

to the development of an efficient algorithm in achieving the discrete wavelet

transform.

There are certain properties that we can derive from the orthogonal conditions

of the scaling functions and wavelets. For example, from the integration over time

on the two-scale relation for the scaling function, we obtain

∞
∑

k=−∞
h(k) =

√
2. (6.60)

Furthermore, because 〈v(t)|v(t − l)〉 = δ0l , we also have

∞
∑

k=−∞
h(k)h(k + 2l) = δ0l , (6.61)

after applying the two-scale equation for the scaling function. Furthermore, we

can show, from the Fourier transform of the scaling functions, that
∫ ∞

−∞
v(t) dt = 1. (6.62)

Using the admissibility condition
∫ ∞

−∞
u(t) dt = 0 (6.63)
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and 〈v(t)|u(t − l)〉 = δ0l , a consequence of W0 being orthogonal to V0, we can

also obtain

g(k) = (−1)kh(r − k), (6.64)

where r is an arbitrary, odd integer. However, if the number of nonzero h(k) is

finite and equal to n, we must have r = n − 1.

In order to have all h(k) for k = 0, 1, . . . , n − 1 determined, we need a total of

n independent equations. Equations (6.60) and (6.61) provide a total of n/2 + 1

equations. So we are still free to impose more conditions on h(k). If we want

to recover polynomial data up to the (n/2 − 1)th order, the moments under the

filters must satisfy (Strang, 1989)

n−1
∑

k=0

(−1)kkl h(k) = 0, (6.65)

for l = 0, 1, . . . , n/2 − 1, which supplies another n/2 equations. Note that the

case of l = 0 in either Eq. (6.61) or Eq. (6.65) can be derived from Eq. (6.60)

and other given relations. So Eqs. (6.60), (6.61), and (6.65) together provide n

independent equations for n coefficients h(k), and therefore they can be uniquely

determined for a given n. For small n we can solve h(k) easily with this procedure.

Now let us use a simple example to illustrate the points made above. Consider

here the case of the Haar scaling function and wavelet for n = 2. The Haar scaling

function is a box between 0 and 1, namely, v(t) = �(t) −�(t − 1), where �(t)

is the step function. Then we have

v(t) = v(2t) + v(2t − 1), (6.66)

which gives h(0) = h(1) = 1/
√

2 and h(k) = 0 for k 	= 0, 1. We also have

g(0) = 1/
√

2, g(1) = −1/
√

2, and g(k) = 0 if k 	= 0, 1, which comes from

g(k) = (−1)kh(n − 1 − k) = (−1)kh(1 − k), with n = 2. Considering now

n = 4, we have

h(0) =
1 +

√
3

4
√

2
; h(1) =

3 +
√

3

4
√

2
;

(6.67)

h(2) =
3 −

√
3

4
√

2
; h(3) =

1 −
√

3

4
√

2
,

which is commonly known as the D4 wavelet, named after Daubechies (1988).

For even larger n, however, we may have to solve the n coupled equations for

h(k) numerically.

A better scheme can be devised (Daubechies, 1988) through the zeros zk of a

polynomial

p(z) =
n/2−1
∑

k=0

(n/2 − 1 + k)!

k!(n/2 − 1)!

(z − 1)2k

(−z)k
(6.68)
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inside the unit circle. The coefficients h(k) are given by h(k) = bk/
√

N , where

bk is from the expansion

(z + 1)n/2

n/2−1
∏

k=1

(z − zk) =
n−1
∑

k=0

bk zn−k−1 (6.69)

and the normalization constant N =
∑n−1

k=0 b2
k .

In general, we can express the basis functions for the spaces V j−1 and W j−1

in terms of those for the space V j as

v j−1 k(t) =
∞
∑

l=−∞
h(l)v j 2k+l (t), (6.70)

u j−1 k(t) =
∞
∑

l=−∞
g(l)v j 2k+l (t), (6.71)

following Eqs. (6.47), (6.57), (6.58), and (6.59). This provides a means for

us to decompose a given set of data level by level, starting from any chosen

resolution.

Filter bank and pyramid algorithm

Now let us turn to the analysis of the data in the spaces V j and W j . If we start by

approximating the data function f (t) by A0(t) = a j (t) with a reasonably large

j , we can perform the entire wavelet analysis level by level. First we decompose

A0(t) once to have

A0(t) =
∞
∑

k=−∞
a(0)(k)v jk(t) = A1(t) + D1(t), (6.72)

where

A1(t) =
∞
∑

k=−∞
a(1)(k)v j−1k(t), (6.73)

D1(t) =
∞
∑

k=−∞
d (1)(k)u j−1k(t). (6.74)

This is the consequence of V j = V j−1 ⊕ W j−1, and v jk(t) for all integers k form

the basis set for V j and u jk(t) for all integers k form the basis set for W j . The

coefficients in the above expression are obtained from

a(1)(k) = 〈v j−1 k |A1〉 = 〈v j−1 k |A0〉 =
∞
∑

l=−∞
h(l − 2k)a(0)(l), (6.75)

d (1)(k) = 〈u j−1 k |D1〉 = 〈u j−1 k |A0〉 =
∞
∑

l=−∞
g(l − 2k)a(0)(l). (6.76)

We can then decompose A1(t) into A2(t) and D2(t) to obtain the next level

analysis. The transform is used to find a(n)(k) and d (n)(k), or An(t) and Dn(t),

provided the filters h(k) and g(k) are given. Now if we know a(0)(k) and the filters,
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we can obtain the transform, that is, calculate a(n)(k) and d (n)(k) for a given integer

n, easily. As soon as we have the scaling function and its corresponding filters

specified, we also have the wavelet from the second two-scale relation and the

coefficients a(0)(k) = 〈v(t − k)| f (t)〉. A digital filter is defined by the convolution

a ∗ b(t) =
∞
∑

k=−∞
a(k)b(t − k) =

∞
∑

k=−∞
a(k − t)b(t), (6.77)

where a(t) is called the filter and the time sequence b(t) is the data function that is

filtered by a(t). From Eqs. (6.75) and (6.76), we see that the filters associated with

the wavelet analysis are time-reversed and skip every other data point during the

filtering, which is called downsampling. We therefore can represent each level of

analysis by two operations, the filtering and downsampling, as shown in Fig. 6.5.

The downsampling is equivalent to converting function x(k) into x(2k). The

analysis can be continued with the same pair of filters to the next level with a

decomposition of A1(t) into A2(t) and D2(t), and so forth, forming a multistage

filter bank pyramid. We can design a pyramid algorithm to carry out n levels of

decompositions to obtain {a(n), d (n), . . . , d (1)}, for n ≥ 1.

The inverse transform (synthesis) can be obtained with the same pair of filters

without reversing the time. From the expansion of Eq. (6.72), we have

a(0)(k) = 〈v jk(t)|A0(t)〉

=
∞
∑

l=−∞
a(1)(l)h(k − 2l) +

∞
∑

l=−∞
d (1)(l)g(k − 2l), (6.78)

which can be interpreted as a combination of an upsampling and a filtering

operation. The upsampling is equivalent to converting function x(k) into x(k/2)

for even k and into zero for odd k. Graphically, we can express this one level of

synthesis as that shown in Fig. 6.6. Of course, the process can be continued to

the second level of synthesis, the third level of synthesis, and so forth, until we

have the time sequence completely reconstructed.
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Like the discrete Fourier transform, the discrete wavelet transform can also

be used in higher-dimensional spaces. Interested readers can find discussions

of the two-dimensional wavelet transform in Newland (1993). There are many

other scaling functions and wavelets available; interested readers should consult

the references cited at the beginning of the preceding section. For a particular

problem, one may work better than others.

6.8 Special functions

The solutions of a special set of differential equations can be expressed in

terms of polynomials. In some cases, each polynomial has an infinite number of

terms. For example, the Schrödinger equation for a particle in a central potential

V (r ) is

−
h--2

2m
∇2�(r) + V (r )�(r) = ε�(r), (6.79)

with

∇2 =
1

r 2

∂

∂r
r 2 ∂

∂r
+

1

r 2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r 2 sin2 θ

∂2

∂φ2
(6.80)

in spherical coordinates. We can assume that the solution �(r) is of the form

�(r, θ, φ) = R(r )Y (θ, φ), (6.81)

and then the equation becomes

1

R

d

dr
r 2 d R

dr
+

2mr 2

h--2
(ε − V ) = −

1

Y

(

1

sin θ

∂

∂θ
sin θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂φ2

)

= λ, (6.82)

where λ is an introduced parameter to be determined by solving the eigenvalue

problem of Y (θ, φ). We can further assume that Y (θ, φ) = �(θ )�(φ) and then

the equation for �(θ ) becomes

1

sin θ

d

dθ
sin θ

d�

dθ
+
(

λ−
m2

sin2 θ

)

� = 0, (6.83)

with the corresponding equation for �(φ) given as

�′′(φ) = −m2�(φ), (6.84)

where m is another introduced parameter and has to be an integer, because �(φ)

needs to be a periodic function of φ, that is, �(φ + 2π ) = �(φ). Note that

�(φ) = Aeimφ + Be−imφ is the solution of the differential equation for �(φ).

In order for the solution of �(θ ) to be finite everywhere with θ ∈ [0, π ], we

must have λ = l(l + 1), where l is a positive integer. Such solutions �(θ ) =
Pm

l (cos θ ) are called associated Legendre polynomials and can be written as

Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl (x), (6.85)
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where Pl(x) are the Legendre polynomials that satisfy the recursion

(l + 1)Pl+1(x) = (2l + 1)x Pl (x) − l Pl−1(x), (6.86)

starting with P0(x) = 1 and P1(x) = x . We can then obtain all Pl(x) from

Eq. (6.86) with l = 2, 3, 4, . . . . We can easily show that Pl(x) is indeed the

solution of the equation

d

dx
(1 − x2)

d

dx
Pl (x) + l(l + 1)Pl (x) = 0 (6.87)

and is a polynomial of order l in the region of x ∈ [−1, 1], as discussed in

Section 5.8 in the calculation of the electronic structures of atoms.

Legendre polynomials are useful in almost every subfield of physics and engi-

neering where partial differential equations involving spherical coordinates need

to be solved. For example, the electrostatic potential of a charge distribution ρ(r)

can be written as

�(r) =
1

4πǫ0

∫

ρ(r′) dr′

|r − r′|
, (6.88)

where 1/|r − r′| can be expanded with the application of Legendre polynomials as

1

|r − r′|
=

∞
∑

l=0

r l
<

r l+1
>

Pl (cos θ ), (6.89)

where r< (r>) is the smaller (greater) value of r and r ′ and θ is the angle between

r and r′. So if we can generate Pl(cos θ ), we can evaluate the electrostatic

potential for any given charge distribution ρ(r) term by term.

The Legendre polynomials can be produced from the recursion given in

Eq. (6.86). Below is a simple implementation of the recursion to create the

Legendre polynomials for a given x and a maximum l.

// Method to create the Legendre polynomials p_l(x) for
// a given x and maximum l.

public static double[] p (double x, int lmax) {
double pl[] = new double[lmax+1];
pl[0] = 1;
if (lmax==0) return pl;
else {

pl[1] = x;
if (lmax==1) return pl;
else {

for (int l=1; l<lmax; ++l)
pl[l+1] = ((2*l+1)*x*pl[l]

-(l+1)*pl[l-1])/(l+1);
return pl;

}
}

}

Legendre polynomials Pl(x) form a complete set of orthogonal basis functions

in the region of x ∈ [−1, 1], which can be used to achieve the least-squares
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approximations, as discussed in Chapter 2, or to accomplish a generalized Fourier

transform. If we choose

Ul (x) =
√

2l + 1

2
Pl (x), (6.90)

we can easily show that Ul(x) satisfy
∫ 1

−1

Ul (x)Ul ′ (x) dx = δll ′ . (6.91)

A function f (x) in the region of x ∈ [−1, 1] can be written as

f (x) =
∞
∑

l=0

alUl (x) (6.92)

with

al =
∫ 1

−1

f (x)Ul (x) dx . (6.93)

This is a generalized Fourier transform of the function f (t). In fact, almost

every aspect associated with the Fourier transform can be generalized to other

orthogonal functions that form a complete basis set. There is a whole class of

orthogonal polynomials that are similar to Legendre polynomials and can be

applied to similar problems in the same fashion. Detailed discussions on these

orthogonal polynomials can be found in Hochstrasser (1965).

In the case of cylindrical coordinates, the equation governing the Laplace

operator in the radial direction is the so-called Bessel equation

d2 J (x)

dx2
+

1

x

d J (x)

dx
+
(

1 −
ν2

x2

)

J (x) = 0, (6.94)

where ν is a parameter and the solution of the equation is called the Bessel

function of order ν. Here ν can be an integer or a fraction. The recursion for the

Bessel functions is

Jν±1(x) =
2ν

x
Jν(x) − Jν∓1(x), (6.95)

which can be used in a similar fashion to Legendre polynomials to generate

Jν±1(x) from Jν(x) and Jν∓1(x).

Bessel functions can be further divided into two types, depending on their

asymptotic behavior. We call the ones with finite values as x → 0 functions of

the first kind and denote them by Jν(x); the ones that diverge as x → 0 are called

functions of the second kind and are denoted by Yν(x). We will consider only the

case where ν is an integer. Both Jν(x) and Yν(x) can be applied to a generalized

Fourier transform because they form orthogonal basis sets under certain given

conditions: for example,
∫ a

0

Jν(κνkρ)Jν(κνlρ)ρ dρ =
a2

2
J 2
ν+1(xνk)δkl , (6.96)



190 Spectral analysis

where κνk and xνk = κνka are from the kth zero (root) of Jν(x) = 0. Then for a

function f (ρ) defined in the region ρ ∈ [0, a], we have

f (ρ) =
∞
∑

k=1

Aνk Jν(κνkρ), (6.97)

with

Aνk =
2

a2 J 2
ν+1(xνk)

∫ a

0

f (ρ)Jν(κνkρ)ρ dρ. (6.98)

In practice, there are two more problems in generating Bessel functions nu-

merically. Bessel functions have an infinite number of terms in the series rep-

resentation, so it is difficult to initiate the recursion numerically, and the Bessel

function of the second kind, Yν(x), increases exponentially with ν when ν > x .

These problems can be resolved if we carry out the recursion forward for

Yν(x) and backward for Jν(x). We can use several properties of the functions to

initiate the recursion. For Jν(x), we can set the first two points as JN (x) = 0 and

JN−1(x) = 1 in the backward recursion. The functions generated can be rescaled

afterward with

RN = J0(x) + 2J2(x) + · · · + 2JN (x), (6.99)

because R∞ = 1 for the actual Bessel functions and

lim
ν→∞

Jν(x) = 0. (6.100)

For Yν(x), we can use the values obtained for J0(x), J1(x), . . . , JN (x) to initiate

the first two points,

Y0(x) =
2

π

(

ln
x

2
+ γ

)

J0(x) −
4

π

∞
∑

k=1

(−1)k J2k(x)

k
(6.101)

and

Y1(x) =
1

J0(x)

[

J1(x)Y0(x) −
2

πx

]

, (6.102)

in the forward recursion. Here γ is the Euler constant,

γ = lim
N→∞

(

N
∑

k=1

1

k
− ln N

)

= 0.577 215 664 9 . . . . (6.103)

The summation in Eq. (6.101) is truncated at 2k = N , which should not introduce

too much error into the functions, because Jν(x) exponentially decreases with ν

for ν > x . The following method is an implementation of the above schemes for

generating Bessel functions of the first and second kinds.

// Method to create Bessel functions for a given x, index n,
// and index buffer nb.

public static double[][] b(double x, int n, int nb) {
int nmax = n+nb;
double g = 0.5772156649;
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double y[][] = new double[2][n+1];
double z[] = new double[nmax+1];

// Generate the Bessel function of 1st kind J_n(x)

z[nmax-1] = 1;

double s = 0;
for (int i=nmax-1; i>0; --i) {

z[i-1] = 2*i*z[i]/x-z[i+1];
if (i%2 == 0) s += 2*z[i];

}

s += z[0];
for (int i=0; i<=n; ++i) y[0][i] = z[i]/s;

// Generate the Bessel function of 2nd kind Y_n(x)

double t = 0;
int sign = -1;
for (int i=1; i<nmax/2; ++i) {

t += sign*z[2*i]/i;
sign *= -1;

}
t *= -4/(Math.PI*s);
y[1][0] = 2*(Math.log(x/2)+g)*y[0][0]/Math.PI+t;

y[1][1] = (y[0][1]*y[1][0]-2/(Math.PI*x))/y[0][0];

for (int i=1; i<n; ++i)
y[1][i+1] = 2*i*y[1][i]/x-y[1][i-1];

return y;

}

If we only need to generate Jν(x), the lines associated with Yν(x) can be deleted

from the above method. Note that the variable x needs to be smaller than the

maximum ν in order for the value of Jν(x) to be accurate.

6.9 Gaussian quadratures

We can use special functions to construct numerical integration quadratures that

automatically minimize the possible errors due to the deviation of approximate

functions from the data, the same concept used in Chapter 3 to obtain the approx-

imation of a function by orthogonal polynomials. In fact, all special functions

form basis sets for certain vector spaces.

An integral defined in the region [a, b] can be written as

I =
∫ b

a

w(x) f (x) dx, (6.104)

where w(x) is the weight of the integral, which has exactly the same meaning as

the weight of the orthogonal functions defined in Chapter 3. Examples of w(x)

will be given in this section.

Now we divide the region [a, b] into n points (n − 1 slices) and approximate

the integral as

I ≃
n
∑

k=1

wk f (xk), (6.105)
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with xk and wk determined according to two criteria: the simplicity of the expres-

sion and the accuracy of the approximation.

The expression in Eq. (6.105) is quite general and includes the simplest quadra-

tures introduced in Chapter 3 with w(x) = 1. For example, if we take

xk = a +
k − 1

n − 1
(b − a) (6.106)

for k = 1, 2, . . . , n and

wk =
1

n(1 + δk1 + δkn)
, (6.107)

we recover the trapezoid rule. The Simpson rule is recovered if we take a more

complicated wk with

wk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1/3n for k = 1 or n,

1/n for k = even numbers,

2/3n for k = odd numbers,

(6.108)

but still the same set of xk with w(x) = 1.

The so-called Gaussian quadrature is constructed from a set of orthogonal

polynomials φl(x) with

∫ b

a

φl (x)w(x)φk(x) dx = 〈φl |φk〉 = Nlδlk, (6.109)

where the definition of each quantity is exactly the same as in Section 3.2. We

can show that to choose xk to be the kth root of φn(x) = 0 and to choose

wk =
−anNn

φ′
n(xk)φn+1(xk)

, (6.110)

with n = 1, 2, . . . , N , we ensure that the error in the quadrature is given by

�I =
Nn

A2
n(2n)!

f (2n)(x0), (6.111)

where x0 is a value of x ∈ [a, b], An is the coefficient of the xn term in φn(x), and

an = An+1/An . We can use any kind of orthogonal polynomials for this purpose.

For example, with the Legendre polynomials, we have a = −1, b = 1, w(x) = 1,

an = (2n + 1)/(n + 1), and Nn = 2/(2n + 1).

Another set of very useful orthogonal polynomials is the Chebyshev polyno-

mials, defined in the region [−1, 1]. For example, the recursion relation for the

Chebyshev polynomials of the first kind is

Tk+1(x) = 2x Tk(x) − Tk−1(x), (6.112)

starting with T0(x) = 1 and T1(x) = x . We can easily show that
∫ 1

−1

Tk(x)w(x)Tl (x) dx = δkl , (6.113)
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with w(x) = 1/
√

1 − x2. If we write as a series an integral with the same weight,
∫ 1

−1

f (x) dx
√

1 − x2
≃

n
∑

k=1

wk f (xk), (6.114)

we have

xk = cos
(2k − 1)π

2n
(6.115)

and wk = π/n, which are extremely easy to use. Note that we can translate a

given integration region [a, b] to another, for example, [0, 1] or [−1, 1], through

a linear coordinate transformation.

Exercises

6.1 Run the discrete Fourier transform program and the fast Fourier transform

program on a computer and establish the time dependence on the number

of points for both of them. Would it be different if the processor were a

vector processor, that is, if a segment of the inner loop were performed in

one clock cycle?

6.2 Develop a method that implements the fast Fourier transform for N data

points with N = 4M , where M is an integer. Is this algorithm faster that

the one with N = 2M given in Section 6.3 when applied to the same data

stream?

6.3 Analyze the power spectrum of the Duffing model defined in Exercise 4.6.

What is the most significant difference between the Duffing model and the

driven pendulum with damping?

6.4 Develop a method that carries out the continuous wavelet transform with the

Haar wavelet. Apply the method to the angular data in the driven pendulum

with damping. Illustrate the wavelet coefficients in a surface plot. What can

we learn from the wavelet coefficients at different parameter regions?

6.5 Show that the real-value Morlet wavelet

u(t) = e−t2

cos

(

π

√

2

ln 2
t

)

satisfies the admissibility condition roughly. Apply this wavelet in a con-

tinuous wavelet transform to the time-dependent function f (t) = 1 for

t ∈ [0, 1], zero otherwise. Plot the scalogram of f (t) and discuss the fea-

tures shown.

6.6 Show that the wavelet

u(t) = e−t2

(1 − 2t2)

satisfies the admissibility condition. Apply this wavelet in a con-

tinuous wavelet transform to a sequence fi = f (ti ) from a uniform

random-number generator with the assumption that ti are uniformly
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spaced in the region [0, 1]. Does the scalogram show any significant

structures?

6.7 Solve the equation set outlined in Section 6.7 for the scaling filters for

n = 4, 8, 16. Is the result for the n = 4 the same as the D4 wavelet?

6.8 Find the zeros of the polynomial given in Eq. (6.68) inside the unit circle,

and then use Eq. (6.69) to obtain the scaling filters for n = 4, 8, 16. Is the

result for the n = 4 case the same as the D4 wavelet?

6.9 Develop a method that performs the pyramid algorithm in the discrete

wavelet transform under the D4 wavelet. Apply the method to the displace-

ment data in the Duffing model. What can we learn from both the wavelet

and scaling coefficients at different parameter regions?

6.10 Based on the inverse pyramid algorithm, write a method that recovers the

original data from the wavelet and scaling coefficients. Test the method

with a simple data stream generated from a random-number generator.

6.11 Write a method that generates the Chebyshev polynomials of the first kind

discussed in Section 6.9.

6.12 The Laguerre polynomials form an orthogonal basis set in the region [0,∞]

and satisfy the following recursion

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x),

starting with L0(x) = 1 and L1(x) = 1 − x . (a) Write a subroutine that

generates the Laguerre polynomials for a given x and maximum n. (b)

Show that the weight of the polynomials w(x) = e−x , and that the normal-

ization factor Nn =
∫∞

0
w(x)L2

n(x)dx = 1. (c) If we want to construct the

Gaussian quadrature for the integral

I =
∫ ∞

0

e−x f (x) dx =
N
∑

n=1

wn f (xn) +�I,

where xn is the nth root of L N (x) = 0, show that wn is given by

wn =
(N !)2xn

(N + 1)2 L2
N+1(xn)

.

This quadrature is extremely useful in statistical physics, where the integrals

are typically weighted with an exponential function.

6.13 The Hermite polynomials are another set of important orthogonal polyno-

mials in the region [−∞,∞] and satisfy the following recursion

Hn+1(x) = 2x Hn(x) − 2nHn−1(x),

starting with H0(x) = 1 and H1(x) = 2x . (a) Write a subroutine that gener-

ates the Hermite polynomials for a given x and maximum n. (b) Show that

the weight of the polynomials w(x) = e−x2

and that the normalization fac-

tor Nn =
∫∞
−∞ w(x)H 2

n (x)dx =
√
π2nn!. (c) Now if we want to construct
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the Gaussian quadrature for the integral

I =
∫ ∞

∞
e−x2

f (x) dx =
N
∑

n=1

wn f (xn) +�I,

where xn is the nth root of HN (x) = 0, show that wn is given by

wn =
2N−1 N !

√
π

N 2 H 2
N−1(xn)

.

Many integrals involving the Gaussian distribution can take advantage of

this quadrature.

6.14 The integral expressions for the Bessel functions of the first and second

kinds of order zero are given by

J0(x) =
2

π

∫ ∞

0

sin(x cosh t) dt,

Y0(x) = −
2

π

∫ ∞

0

cos(x cosh t) dt,

with x > 0. Calculate these two expressions numerically and compare them

with the values generated with the subroutine in Section 6.8.

6.15 Demonstrate numerically that for a small angle θ but large l,

Pl (cos θ ) ≃ J0(lθ ).

6.16 In quantum scattering, when the incident particle has very high kinetic

energy, the cross section

σ = 2π

∫ π

0

sin θ | f (θ )|2 dθ

has a very simple form with

f (θ ) ≃ −
2m

h--2

∫ ∞

0

r V (x) sin(qr ) dr,

where q = |kf − ki| = 2k sin(θ/2) and ki and kf are initial and final mo-

menta of the particle with the same magnitude k. (a) Show that the above

f (θ ) is the dominant term as k → ∞. (b) If the particle is an electron and

the scattering potential is an ionic potential

V (r ) =
1

4πǫ0

Ze2

r
e−r/r0 ,

write a program to evaluate the cross section of the scattering with the

Gaussian quadrature from the Laguerre polynomials for the integrals. Here

Z , e, and r0 are the number of protons, the proton charge, and the screening

length. Use Z = 2 and r0 = a0/4, where a0 is the Bohr radius, as a testing

example.

6.17 Another approximation in quantum scattering, called the eikonal approxi-

mation, is valid for high-energy and small-angle scattering. The scattering
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cross section can be written as

σ = 8π

∫ ∞

0

b sin2[α(b)] db,

with

α(b) = −
m

2h--2k

∫ ∞

−∞
V (b, x) dx,

where b is the impact parameter and x is the coordinate of the particle along

the impact direction with the scattering center at x = 0. (a) Show that the

eikonal approximation is valid for high-energy and small-angle scattering.

(b) If the scattering potential is

V (r ) = −V0 e−(r/r0)2

,

calculate the cross section with the Gaussian quadratures of Hermite and

Laguerre polynomials for the integrals. Here V0 and r0 are given parameters.



Chapter 7

Partial differential equations

In Chapter 4, we discussed numerical methods for solving initial-value and

boundary-value problems given in the form of differential equations with one

independent variable, that is, ordinary differential equations. Many of those meth-

ods can be generalized to study differential equations involving more than one

independent variable, that is, partial differential equations. Many physics prob-

lems are given in the form of a second-order partial differential equation, elliptic,

parabolic, or hyperbolic.

7.1 Partial differential equations in physics

In this chapter, we discuss numerical schemes for solving partial differential

equations. There are several types of partial differential equations in physics.

The Poisson equation

∇2φ(r) = −ρ(r)/ǫ0 (7.1)

for the electrostatic potential φ(r) at the position r under the given charge distri-

bution ρ(r) is a typical elliptic equation. The diffusion equation

∂n(r, t)

∂t
− ∇ · D(r)∇n(r, t) = S(r, t) (7.2)

for the concentration n(r, t) at the position r and time t under the given source

S(r, t) is a typical parabolic equation. Here D(r) is the diffusion coefficient at

the position r. The wave equation

1

c2

∂2u(r, t)

∂t2
− ∇2u(r, t) = R(r, t) (7.3)

for the generalized displacement u(r, t) at the position r and time t under the given

source R(r, t) is a typical hyperbolic equation. The time-dependent Schrödinger

equation

−
h--

i

∂�(r, t)

∂t
= H�(r, t) (7.4)

for the wavefunction �(r, t) of a quantum system defined by the Hamiltonian H,

can be viewed as a diffusion equation under imaginary time.

197
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All the above equations are linear if the sources and other quantities in the

equations are not related to the solutions. There are also nonlinear equations in

physics that rely heavily on numerical solutions. For example, the equations for

fluid dynamics,

∂v

∂t
+ v · ∇v +

1

ρ
∇P − η∇2v = 0, (7.5)

∂ρ

∂t
+ ∇ · ρv = 0, (7.6)

f (P, ρ) = 0, (7.7)

require numerical solutions under most conditions. Here the first equation is

the Navier–Stokes equation, in which v is the velocity, ρ the density, P the

pressure, and η the kinetic viscosity of the fluid. The Navier–Stokes equation can

be derived from the Newton equation for a small element in the fluid. The second

equation is the continuity equation, which is the result of mass conservation. The

third equation is the equation of state, which can also involve temperature as

an additional variable in many cases. We will cover numerical solutions of the

hydrodynamical equations in Chapter 9.

In this chapter, we will first outline an analytic scheme that can simplify

numerical tasks drastically in many cases and is commonly known as the separa-

tion of variables. The basic idea of the separation of variables is to reduce a partial

differential equation to several ordinary differential equations. The separation of

variables is the standard method in analytic solutions of most partial differential

equations. Even in the numerical study of partial differential equations, due to

the limitation of computing resources, the separation of variables can serve the

purpose of simplifying a problem to the point where it can be solved with the

available computing resources. Later in the chapter, we will introduce several

numerical schemes used mainly in solving linear partial differential equations.

7.2 Separation of variables

Before we introduce numerical schemes for partial differential equations, we now

discuss an analytic method, that is, the separation of variables, for solving partial

differential equations. In many cases, using a combination of the separation of

variables and a numerical scheme increases the speed of computing and the accu-

racy of the solution. The combination of analytic and numerical methods becomes

critical in cases where the memory and speed of the available computing resources

are limited. This section is far from being a complete discussion; interested read-

ers should consult a standard textbook, such as Courant and Hilbert (1989).

Here we will just illustrate how the method works. Each variable (time or

one of the spatial coordinates) is isolated from the rest, and the solutions of the

resulting ordinary differential equations for all the variables are obtained before

they are combined into the general solution of the original partial differential
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equation. Boundary and initial conditions are then used to determine the

unknown parameters left in the solution, which usually appear as the coefficients

or eigenvalues.

Consider first the standing waves on a light, uniform string that has both ends

(x = 0 and x = L) fixed. The wave equation is

∂2u(x, t)

∂t2
− c2 ∂

2u(x, t)

∂x2
= 0, (7.8)

where u(x, t) is the displacement of the string at the location x and time t , and

c =
√

T/ρ is the phase speed of the wave, with T being the tension on the string

and ρ the linear mass density of the string. The boundary condition for fixed ends

is u(0, t) = u(L , t) = 0 in this case. Now if we assume that the solution is given

by

u(x, t) = X (x)�(t), (7.9)

where X (x) is a function of x only and �(t) is a function of t only, we have

�′′(t)

�(t)
= c2 X ′′(x)

X (x)
= −ω2, (7.10)

after we substitute Eq. (7.9) into Eq. (7.8). Note that the introduced parame-

ter (eigenvalue) ω must be independent of the position from the first ratio and

independent of the time from the second ratio. Thus we must have

X ′′(x) = −
ω2

c2
X (x) = −k2 X (x), (7.11)

where k = ω/c is determined from the boundary condition X (0) = 0 and

X (L) = 0. We can view either ω or k as being the eigenvalue sought for the

eigenvalue problem defined in Eq. (7.11) under the given boundary condition.

The two independent, analytical solutions of Eq. (7.11) are sin kx and cos kx .

Then we have

X (x) = A sin kx + B cos kx . (7.12)

From the boundary condition X (0) = 0, we must have B = 0; from X (L) = 0,

we must have

kn =
nπ

L
, (7.13)

with n = 1, 2, . . . ,∞. Using this kn in the equation for �(t), we obtain

�(t) = C sinωn x + D cosωn x, (7.14)

with

ωn = ckn =
nπc

L
. (7.15)

Combining the solutions for X (x) and �(t), we obtain the general solution

u(x, t) =
∞
∑

n=1

(an sinωn t + bn cosωn t) sin kn x, (7.16)
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where an and bn are two sets of parameters that are determined by the initial dis-

placement u(x, 0) = u0(x) and the initial velocity ∂u(x, t)/∂t |t=0 = v0(x). Using

t = 0 for u(x, t) given in Eq. (7.16) and its partial derivative of time, we have

u0(x) =
∞
∑

n=1

bn sin kn x, (7.17)

v0(x) =
∞
∑

n=1

anωn sin kn x . (7.18)

Then we have

bl =
2

L

∫ L

0

u0(x) sin kl x dx, (7.19)

al =
2

ωl L

∫ L

0

v0(x) sin kl x dx, (7.20)

after multiplying Eqs. (7.17) and (7.18) by sin kl x and integrating over [0, L].

We have also used the orthogonal properties of sin kn x . This completes the

solution of the problem.

What happens if the string is not light, and/or carries a mass density ρ(x) that

is not a constant? The separation of variables still works, but we need to solve the

eigenvalue problem numerically. Let us take a closer look at the problem. The

equation now becomes

∂2u(x, t)

∂t2
=

T

ρ(x)

∂2u(x, t)

∂x2
− g, (7.21)

where g = 9.80 m/s2 is the magnitude of the gravitational acceleration. This

is an inhomogeneous equation. We can solve it with a general solution of the

homogeneous equation uh(x, t) (with g = 0) and a particular solution up(x, t) of

the inhomogeneous equation.

First let us consider the solution of the homogeneous equation. We can still

separate t from x by taking uh(x, t) = X (x)�(t); then we have

X ′′(x) = −
ω2ρ(x)

T
X (x), (7.22)

which can be solved as an eigenvalue problem with using either the scheme

developed in Chapter 4 or that in Chapter 5. We will leave it as an exercise for

the reader to find the eigenvalues ωn for the loaded string.

For the particular solution of the inhomogeneous equation, we can simplify

the problem by considering the static case, that is, up(x, t) = up(x). Then we have

d2up(x)

dx2
=

gρ(x)

T
, (7.23)

which is a linear equation set if we discretize the second-order derivative involved.

This equation determines the shape of the string when it is in equilibrium. We

will see the similar example of a loaded bench in Section 7.4.
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After we obtain the general solution uh(x, t) of the homogeneous equation and

a particular solution of the inhomogeneous equation, for example, up(x) from the

above static equation, we have the general solution of the inhomogeneous equation

as

u(x, t) = uh(x, t) + up(x, t). (7.24)

The initial displacement u0(x) and initial velocity v0(x) are still needed to deter-

mined the remaining parameters in the general solution above.

This procedure of separating variables can also be applied to higher-

dimensional systems. Let us consider the diffusion equation in an isotropic, three-

dimensional, and infinite space, with a time-dependent source and a zero initial

value, as an example. The diffusion equation under a time-dependent source and

a constant diffusion coefficient is given by

∂n(r, t)

∂t
− D∇2n(r, t) = S(r, t). (7.25)

The initial value n(r, 0) = 0 will be considered first. Note that t = 0 in this case

can be viewed as the moment of the introduction of the source. Then we can

view the source as an infinite number of impulsive sources, each within a time

interval dτ , given by S(r, τ )δ(t − τ )dτ . This way of treating the source is called

the impulse method. The solution n(r, t) is then the superposition of the solution

in each time interval dτ , with

n(r, t) =
∫ t

0

η(r, t ; τ ) dτ, (7.26)

where η(r, t ; τ ) satisfies

∂η(r, t ; τ )

∂t
− D∇2η(r, t ; τ ) = S(r, τ )δ(t − τ ), (7.27)

with η(r, 0; τ ) = 0. The impulse equation above is equivalent to a homogeneous

equation

∂η(r, t ; τ )

∂t
− D∇2η(r, t ; τ ) = 0, (7.28)

with the initial condition η(r, τ ; τ ) = S(r, τ ). Thus we have transformed the

original inhomogeneous equation with a zero initial value into an integral of a

function that is a solution of a homogeneous equation with a nonzero initial value.

We can generally write the solution of the inhomogeneous equation as the sum of

a solution of the corresponding homogeneous equation and a particular solution

of the inhomogeneous equation with the given initial condition satisfied. So if

we find a way to solve the corresponding homogeneous equation with a nonzero

initial value, we find the solution of the general problem.

Now let us turn to the separation of variables for a homogeneous diffusion

equation with a nonzero initial value. We will assume that the space is an isotropic,

three-dimensional, and infinite space, in order to simplify our discussion. Other

finite boundary situations can be solved in a similar manner. We will also suppress
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the parameter τ to simplify our notation. The solution of η(r, t) = η(r, t ; τ ) can

be assumed to be

η(r, t) = X (r)�(t), (7.29)

where X (r) is a function of r only and�(t) is a function of t only. If we substitute

this assumed solution into the equation, we have

X (r)�′(t) − D�(t)∇2 X (r) = 0, (7.30)

or

�′(t)

D�(t)
=

∇2 X (r)

X (r)
= −k2, (7.31)

where k = |k| is an introduced parameter (eigenvalue) that will be determined

later. Now we have two separate equations,

∇2 X (r) + k2 X (r) = 0, (7.32)

and

�′(t) + ω�(t) = 0, (7.33)

which are related by ω = Dk2. The spatial equation is now a standard eigen-

value problem with k2 being the eigenvalue to be determined by the specific

boundary condition. Because we have assumed that the space is isotropic, three-

dimensional, and infinite, the solution is given by plane waves with

X (r) = C eik·r, (7.34)

where C is a general constant. Similarly, the time-dependent equation for �(t) is

a standard initial-value problem with the solution

�(t) = Be−ω(t−τ ), (7.35)

where ω = Dk2 and B is a coefficient to be determined by the initial condition

of the problem. If we combine the spatial solution and the time solution, we

have

η(r, t) =
1

(2π )3/2

∫

Ak eik·r−ω(t−τ ) d k, (7.36)

and we can obtain the coefficient Ak from the initial value of η(r, τ ) = S(r, τ )

with the Fourier transform of the above equation as

Ak =
1

(2π)3/2

∫

S(r, τ )e−ik·r dr. (7.37)

If we substitute the above result for Ak into the integral for η(r, t) and complete

the integration over k, we obtain

η(r, t) =
1

√
4πDt

∫

S(r′, τ )e−(r−r′)2/4Dt dr′, (7.38)
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which can be substituted into the integral expression of n(r, t). We then reach the

final solution of the original problem,

n(r, t) =
∫ t

0

dτ
√

4πD(t − τ )

∫

S(r′, τ )e−(r−r′)2/4D(t−τ ) dr′. (7.39)

This integral can be evaluated numerically if the form of S(r, t) is given. We

should realize that if the space is not infinite but confined by some boundary, the

above closed form of the solution will be in a different but similar form, because

the idea of the Fourier transform is quite general in the sense of the spatial

eigenstates. In most cases, the spatial eigenstates form an orthogonal basis set

which can be used for a general Fourier transform, as discussed in Chapter 6. It is

worth pointing out that the above procedure is also similar to the Green’s function

method, that is, transforming the problem into a Green’s function problem and

expressing the solution as a convolution integral of Green’s function and the

source. For more discussions on the Green’s function method, see Courant and

Hilbert (1989).

For the wave equation with a source that varies over time and space, we

can follow more or less the same steps to complete the separation of variables.

The general solution for a nonzero initial displacement and/or velocity is a linear

combination of the solution uh(r, t) of the homogeneous equation and a particular

solution up(r, t) of the inhomogeneous equation. For the homogeneous equation

∇2uh(r, t) =
1

c2

∂2uh(r, t)

∂t2
, (7.40)

we can assume that uh(r, t) = X (r)�(t), and then we have �′′(t) = −ω2
k�(t)

and ∇2 X (r) = −k2 X (r), with ω2
k = c2k2. If we solve the eigenvalue problem for

the spatial part, we obtain the general solution

uh(r, t) =
∑

k

(

Ak e−iωkt + Bk eiωkt
)

uk(r), (7.41)

where uk(r) is the eigenstate of the equation for X (r) with the eigenvalue k. The

particular solution up(r, t) can be obtained by performing a Fourier transform of

time on both sides of Eq. (7.3). Then we have

∇2ũp(r, ω) +
ω2

c2
ũp(r, ω) = −R̃(r, ω), (7.42)

where ũp(r, ω) and R̃(r, ω) are the Fourier transforms of up(r, t) and R(r, t),

respectively. We can expand ũp(r, ω) and R̃(r, ω) in terms of the eigenstates

uk(r) as

ũp(r, ω) =
∑

k

ckuk(r) (7.43)

and

R̃(r, ω) =
∑

k

dkuk(r), (7.44)
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which give

ck =
c2dk

ω2
k − ω2

(7.45)

from Eq. (7.42). If we put all these together, we obtain the general solution for

the inhomogeneous equation with

u(r, t) = uh(r, t) +
1

√
2π

∫ ∞

−∞

(

∑

k

dk

k2 − ω2/c2

)

e−iωt dω, (7.46)

where dk is given by

dk =
∫

R̃(r, ω)u∗
k(r) dr, (7.47)

which is a function of ω. We have assumed that uk(r) are normalized and form

an orthogonal basis set. Here u∗
k(r) is the complex conjugate of uk(r). The initial

condition can now be used to determine Ak and Bk.

A useful result of the separation of variables is that we may then need to deal

with an equation or equations involving only a single variable, so that all the

methods we discussed in Chapter 4 become applicable.

7.3 Discretization of the equation

The essence of all numerical schemes for solving differential equations lies in the

discretization of the continuous variables, that is, the spatial coordinates and time.

If we use the rectangular coordinate system, we have to discretize ∂A(r, t)/∂ri ,

∂2 A(r, t)/∂ri∂rj , ∂A(r, t)/∂t , and ∂2 A(r, t)/∂2t , where ri or rj is either x , y, or

z. Sometimes we also need to deal with a situation similar to having a spatially

dependent diffusion constant, for example, to discretize ∇ · D(r)∇A(r, t). Here

A(r, t) is a generic function from one of the equations discussed at the beginning

of this chapter. We can apply the numerical schemes developed in Chapter 3 for

first-order and second-order derivatives for all the partial derivatives. Typically,

we use the two-point or three-point formula for the first-order partial derivative,

that is,

∂A(r, t)

∂t
=

A(r, tk+1) − A(r, tk)

τ
(7.48)

or

∂A(r, t)

∂t
=

A(r, tk+1) − A(r, tk−1)

2τ
. (7.49)

We can also use the three-point formula

∂2 A(r, t)

∂2t
=

A(r, tk+1) − 2A(r, tk) + A(r, tk−1)

τ 2
(7.50)

for the second-order derivative. Here tk = t and τ = tk+1 − tk = tk − tk−1. The
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same formulas can be applied to the spatial variables as well, for example,

∂A(r, t)

∂x
=

A(xk+1, y, z, t) − A(xk−1, y, z, t)

2hx

, (7.51)

with hx = xk+1 − xk = xk − xk−1, and

∂2 A(r, t)

∂2x
=

A(xk+1, y, z, t) − 2A(xk, y, z, t) + A(xk−1, y, z, t)

h2
x

. (7.52)

The partial differential equations can then be solved at discrete points.

However, when we need to deal with a discrete mesh that is not uniform or

with an inhomogeneity such as ∇ · D(r)∇A(r, t), we may need to introduce

some other discretization scheme. Typically, we can construct a functional from

the field of the solution in an integral form. The differential equation is recovered

from functional variation. This is in the same spirit as deriving the Lagrange

equation from the optimization of the action integral. The advantage here is that

we can discretize the integral first and then carry out the functional variation at

the lattice points. The corresponding difference equation results. Let us take the

one-dimensional Poisson equation

d

dx
ǫ(x)

dφ(x)

dx
= −ρ(x), (7.53)

for x ∈ [0, L], as an illustrative example. Here ǫ(x) is the electric permittivity

that has a spatial dependence.

For simplicity, let us take the homogeneous Dirichlet boundary condition

φ(0) = φ(L) = 0. We can construct a functional

U =
∫ L

0

{

1

2
ǫ(x)

[

dφ(x)

dx

]2

− ρ(x)φ(x)

}

dx, (7.54)

which leads to the Poisson equation if we take

δU

δφ
= 0. (7.55)

If we use the three-point formula for the first-order derivative in the integral and

the trapezoid rule to convert the integral into a summation, we have

U ≃
1

2h

∑

k

ǫk−1/2(φk − φk−1)2 − h
∑

k

ρkφk (7.56)

as the discrete representation of the functional. We have used φk = φ(xk) for

notational convenience and have used ǫk−1/2 = ǫ(xk−1/2) as the value of ǫ(x) in

the middle of the interval [xk−1, xk]. Now if we treat each discrete variable φk as

an independent variable, the functional variation in Eq. (7.55) becomes a partial

derivative

∂U

∂φk

= 0. (7.57)

We then obtain the desired difference equation

ǫk+1/2φk+1 − (ǫk+1/2 + ǫk−1/2)φk + ǫk−1/2φk−1 = −h2ρk, (7.58)
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which is a discrete representation of the original Poisson equation. This scheme

is extremely useful when the geometry of the system is not rectangular or when

the coefficients in the equation are not constants. For example, we may want to

study the Poisson equation in a cylindrically or spherically symmetric case, or

diffusion of some contaminated materials underground where we have a spatially

dependent diffusion coefficient. The stationary one-dimensional diffusion equa-

tion is equivalent to the one-dimensional Poisson equation if we replace ǫ(x)

with D(x) and ρ(x) with S(x) in Eqs. (7.53)–(7.58). The scheme can also be

generalized for the time-dependent diffusion equation by replacing the source

term h2Sk with h2{Sk(ti ) − [nk(ti+1) − nk(ti )]/τ }. For higher spatial dimensions,

the integral is a multidimensional integral. The aspects of time dependence and

higher dimensions will be discussed in more detail later in this chapter.

Sometimes it is more convenient to deal with the physical quantities only at the

lattice points. Equation (7.58) can be modified to such a form, with the quantity

midway between two neighboring points replaced by the average of two lattice

points, for example, ǫk+1/2 ≃ (ǫk + ǫk+1)/2. The difference equation given in

Eq. (7.58) can then be modified to

(ǫk+1 + ǫk)φk+1 − 4ǫkφk + (ǫk−1 + ǫk)φk−1 = −2h2ρk, (7.59)

which does not sacrifice too much accuracy if the permittivity ǫ(x) is a slowly-

varying function of x .

7.4 The matrix method for difference equations

When a partial differential equation is discretized and given in a difference equa-

tion form, we can generally solve it with the matrix methods that we introduced

in Chapter 5. Recall that we outlined how to solve the Hartree–Fock equation for

atomic systems with the matrix method in Section 5.8 as a special example. In

general, when we have a differential equation with the form

Lu(r, t) = f (r, t), (7.60)

where L is a linear differential operator of the spatial and time variables, u(r, t)

is the physical quantity to be solved, and f (r, t) is the source, we can always

discretize the equation and put it into the matrix form

Au = b, (7.61)

where the coefficient matrix A is from the discretization of the operator L, the

column vector u is from the discrete values of u(r, t) excluding the boundary and

initial points, and b is the known vector constructed from the discrete values of

f (r, t) and the boundary and initial points of u(r, t). The time variable is usually

separated with the Fourier transform first unless it has to be dealt with at different

spatial points. Situations like this will be discussed in Section 7.7.



7.4 The matrix method for difference equations 207

For example, the difference equations for the one-dimensional Poisson equa-

tion obtained in the preceding section can be cast into such a form. For the

difference equation given in Eq. (7.59), we have

Ai j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−4ǫi for i = j,

ǫi + ǫi+1 for i = j − 1,

ǫi + ǫi−1 for i = j + 1,

0 otherwise,

(7.62)

and

bi = −2h2ρi . (7.63)

This matrix representation of the difference equation resulting from the discretiza-

tion of a differential equation is very general.

Let us illustrate this method further by studying an interesting example. Con-

sider a situation in which a person is sitting at the middle of a long bench supported

at both ends. Assume that the length of the bench is L . If we want to know the dis-

placement of the bench at every point, we can establish the equation for the cur-

vature at different locations from Newton’s equation for each tiny slice of the

bench. Then we obtain

YI
d2u(x)

dx2
= f (x), (7.64)

where u(x) is the curvature (that is, the inverse of the effective radius of the curve

at x), Y is Young’s modulus of the bench, I = t3w/3 is a geometric constant, with

t being the thickness and w the width of the bench, and f (x) is the force density

on the bench. Because both ends are fixed, the curvatures there are taken to be

zero: that is, u(0) = u(L) = 0. If we discretize the equation with evenly spaced

intervals, that is, x0 = 0, x1 = h, . . . , xn+1 = L , via the three-point formula for

the second-order derivative, we have

ui+1 − 2ui + ui−1 =
h2 fi

YI
(7.65)

for i = 0, 1, . . . , n + 1, which is equivalent to

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 · · · · · · 0

1 −2 1 · · · 0
...

...
...

...
...

0 · · · 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

u1

u2

...

un

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b1

b2

...

bn

⎞

⎟

⎟

⎟

⎟

⎠

, (7.66)

with u0 = un+1 = 0, as required by the boundary condition, and bi = h2 fi/YI .

We can easily solve the problem with the Gaussian elimination scheme or the

LU decomposition scheme, as discussed in Section 2.4. For the specific prob-

lem discussed here, we have ei = ci = 1 and di = −2. Assume that the force
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distribution on the bench is given by

f (x) =

{

− f0[e−(x−L/2)2/x2
0 − e−1] − ρg for |x − L/2| ≤ x0,

−ρg otherwise,
(7.67)

with f0 = 200 N/m and x0 = 0.25 m, and that the bench has a length of 3.0 m,

a width of 0.20 m, a thickness of 0.030 m, a linear density of ρ = 3.0 kg/m, and

a Young’s modulus of 1.0 × 109 N/m2. Here g = 9.80 m/s2 is the magnitude of

the gravitational acceleration. Note that we have taken a truncated Gaussian form

for the weight of the person distributed over the bench.

The following program uses the LU decomposition method introduced in

Section 2.4 to solve the bench problem with the force distribution and parameters

given above using the SI units.

// A program to solve the problem of a person sitting
// on a bench as described in the text.

import java.lang.*;
public class Bench {

final static int n = 99, m = 2;
public static void main(String argv[]) {
double d[] = new double[n];
double b[] = new double[n];
double c[] = new double[n];
double l = 3, l2 = l/2, h = l/(n+1), h2 = h*h;
double x0 = 0.25, x2 = x0*x0, e0 = 1/Math.E;
double rho = 3, g = 9.8, f0 = 200;

double y = 1e9*Math.pow(0.03,3)*0.2/3;

// Evaluate the coefficient matrix elements
for (int i=0; i<n; ++i) {

d[i] = -2;

c[i] = 1;
b[i] = -rho*g;
double x = h*(i+1)-l2;
if (Math.abs(x) < x0)

b[i] -= f0*(Math.exp(-x*x/x2)-e0);
b[i] *= h2/y;

}

// Obtain the solution of the curverture of the bench
double u[] = tridiagonalLinearEq(d, c, c, b);

// Output the result in every m time steps
double x = h;
double mh = m*h;

for (int i=0; i<n; i+=m) {
System.out.println(x + " " + 100*u[i]);
x += mh;

}
}

// Method to solve the tridiagonal linear equation set.

public static double[] tridiagonalLinearEq(double d[],
double e[], double c[], double b[]) {...}

}
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Fig. 7.1 The curvature

of the bench, as

evaluated with the

program given.

The numerical result for the curvature of the bench calculated with the above

program is illustrated in Fig. 7.1. Under these realistic parameters, the bench

does not deviate from the original position very much. Even at the middle of the

bench, the effective radius for the curve is still about 30 m.

A noticeable feature of this problem is that when the equation is discretized into

a difference equation, it becomes extremely simple with a symmetric, tridiagonal

coefficient matrix. In general, all one-dimensional problems with the same math-

ematical structure can be solved in the same fashion, such as the one-dimensional

Poisson equation or the stationary one-dimensional diffusion equation. We will

show later that equations with higher spatial dimensions, or with time depen-

dence, can be solved in a similar manner. We need to note that the boundary

condition as well as the coefficient matrix can become more complicated. How-

ever, if we split the coefficient matrix among the coordinates correctly, we can

still preserve its tridiagonal nature, at least, in each step along each coordinate

direction. As long as the coefficient matrix is tridiagonal, we can use the simple

LU decomposition outlined in Section 2.4 to obtain the solution of the linear

equation set. Sometimes we may also need to solve the linear problem with the

full matrix that is no longer tridiagonal. Then the Gaussian elimination or the LU

decomposition introduced in Chapter 5 can be used.

7.5 The relaxation method

As we have discussed, a functional can be constructed for the purpose of discretiz-

ing a differential equation. The procedure for reaching the differential equation

is to optimize the functional. In most cases, the optimization is equivalent to the

minimization of the functional. A numerical scheme can therefore be devised
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to find the numerical solution iteratively, as long as the functional associated

with the equation does not increase with each new iteration. The solution of the

differential equation is obtained when the functional no longer changes. This

numerical scheme, formally known as the relaxation method, is extremely pow-

erful for solving elliptic equations, including the Poisson equation, the stationary

diffusion equation, and the spatial part of the wave equation after the separation

of variables.

Let us first examine the stationary one-dimensional diffusion equation

−
d

dx

[

D(x)
dn(x)

dx

]

= S(x), (7.68)

which can be written in a discrete form as

ni =
1

Di+1/2 + Di−1/2

(

Di+1/2ni+1 + Di−1/2ni−1 + h2 Si

)

, (7.69)

as discussed in Section 7.3. It is the above equation that gives us the basic idea

of the relaxation method: a guessed solution that satisfies the required boundary

condition is gradually modified to satisfy the difference equation within the given

tolerance. So the key is to establish an updating scheme that can modify the

guessed solution gradually toward the correct direction, namely, the direction with

the functional minimized. In practice, one uses the following updating scheme

n
(k+1)
i = (1 − p)n

(k)
i + pni , (7.70)

where n
(k)
i is the solution of the kth iteration at the i th lattice point; ni is given

from Eq. (7.69) with the terms on the right-hand side calculated under n
(k)
i . Here

p is an adjustable parameter restricted in the region p ∈ [0, 2]. The reason for

such a restriction on p is that the procedure has to ensure the optimization of

the functional during the iterations, and this is equivalent to having the solution

of Eq. (7.70) approach the true solution of the diffusion equation defined in

Eq. (7.68). More discussion on the quantitative aspect of p can be found in

Young and Gregory (1988, pp. 1026–39). The points at the boundaries can be

updated under the constraints of the boundary condition. Later in this section we

will show how to achieve this numerically.

Here let us reexamine the bench problem solved in the preceding section with

the LU decomposition. Equation (7.64) is equivalent to Eq. (7.68) with D(x) = 1

and S(x) = − f (x)/(Y I ). The following example program is an implementation

of the relaxation scheme for the problem of a person sitting on a bench.

// A program to solve the problem of a person sitting
// on a bench with the relaxation scheme.

import java.lang.*;

public class Bench2 {
final static int n = 100, m = 2;
public static void main(String argv[]) {
double u[] = new double[n+1];
double d[] = new double[n+1];
double s[] = new double[n+1];
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double l = 3, l2 = l/2, h = l/n, h2 = h*h;
double x0 = 0.25, x2 = x0*x0, e0 = 1/Math.E;

double x = 0, rho = 3, g = 9.8, f0 = 200;
double y = 1e9*Math.pow(0.03,3)*0.2/3;
double u0 = 0.032, p = 1.5, del =1e-3;

int nmax = 100;

// Evaluate the source in the equation
for (int i=0; i<=n; ++i) {

s[i] = rho*g;

x = h*i-l2;
if (Math.abs(x) < x0)

s[i] += f0*(Math.exp(-x*x/x2)-e0);
s[i] *= h2/y;

}

for (int i=1; i<n; ++i) {
x = Math.PI*h*i/l;
u[i] = u0*Math.sin(x);
d[i] = 1;

}
d[0] = d[n] = 1;
relax(u, d, s, p, del, nmax);

// Output the result in every m time step
x = 0;
double mh = m*h;
for (int i=0; i<n; i+=m) {

System.out.println(x + " " + 100*u[i]);
x += mh;

}
}

// Method to complete one step of relaxation.

public static void relax(double u[], double d[],
double s[], double p, double del, int nmax) {
int n = u.length-1;
double q = 1-p, fi = 0;
double du = 2*del;
int k = 0;

while ((du>del) && (k<nmax)) {
du = 0;
for (int i=1; i<n; ++i) {

fi = u[i];
u[i] = p*u[i]

+q*((d[i+1]+d[i])*u[i+1]
+(d[i]+d[i-1])*u[i-1]+2*s[i])/(4*d[i]);

fi = u[i]-fi;

du += fi*fi;
}
du = Math.sqrt(du/n);
k++;

}
if (k==nmax) System.out.println("Convergence not" +

" found after " + nmax + " iterations");
}

}



212 Partial differential equations

Note that in the above method we have used the updated ui−1 on the right-

hand side of the relaxation scheme, which is usually more efficient but less

stable. We have also used Di−1/2 ≃ (Di + Di−1)/2, Di+1/2 ≃ (Di + Di+1)/2,

and Di+1/2 + Di−1/2 ≃ 2Di in Eq. (7.69) in case the diffusion coefficient is

given at the lattice points only. The multiplication of S(x) by h2 is done outside

the method to keep the scheme more efficient. In general, the solution with the

LU decomposition is faster and stabler than the solution with the relaxation

method for the bench problem. But the situation reverses in the case of a higher-

dimensional system.

The points at the boundaries are not updated in the method. For the Dirichlet

boundary condition, we can just keep them constant. For the Neumann boundary

condition, we can use either a four-point or a six-point formula for the first-order

derivative to update the solution at the boundary. For example, if we have

dn(x, t)

dx

∣

∣

∣

∣

x=0

= 0, (7.71)

we can update the first point, n0, by setting

n0 =
1

3
(4n1 − n2) , (7.72)

which is the result of the four-point formula of the first-order derivative at x = 0,

dn(x)

dx

∣

∣

∣

∣

x=0

≃
1

6h
(−2n−1 − 3n0 + 6n1 − n2) = 0, (7.73)

where n−1 = n1 is the result of the zero derivative. A partial derivative is dealt

with in the same manner. Higher accuracy can be achieved if we use a formula with

more points. We have to use even-numbered point formulas because we want to

have n0 in the expression.

Now let us turn to the two-dimensional case, and we will use the Poisson

equation

∇2φ(r) = −ρ(r)/ǫ0 = −s(r), (7.74)

as an illustrative example. Here s(r) is introduced for convenience. Now if we

consider the case with a rectangular boundary, we have

φi+1 j + φi−1 j − 2φi j

h2
x

+
φi j+1 + φi j−1 − 2φi j

h2
y

= −si j , (7.75)

where i and j are used for the x and y coordinates and hx and h y are the intervals

along the x and y directions, respectively. We can rearrange the above equation

so that the value of the solution at a specific point is given by the corresponding

values at the neighboring points,

φi j =
1

2(1 + α)

[

φi+1 j + φi−1 j + α(φi j+1 + φi j−1) + h2
x si j

]

, (7.76)
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with α = (hx/h y)2. So the solution is obtained if the values of φi j at all the lat-

tice points satisfy the above equation and the boundary condition. The relaxation

scheme is based on the fact that the solution of the equation is approached iter-

atively. We first guess a solution that satisfies the boundary condition. Then we

can update or improve the guessed solution with

φ
(k+1)
i j = (1 − p)φ

(k)
i j + pφi j , (7.77)

where p is an adjustable parameter close to 1. Here φ
(k)
i j is the result of the

kth iteration, and φi j is obtained from Eq. (7.76) with φ
(k)
i j used on the right-hand

side.

The second part of the above equation can be viewed as the correction to

the solution, because it is obtained through the differential equation. The choice

of p determines the speed of convergence. If p is selected outside the allowed

range by the specific geometry and discretization, the algorithm will be unstable.

Usually, the optimized p is somewhere between 0 and 2. In practice, we can find

the optimized p easily by just running the program for a few iterations, say, ten,

with different values of p. The convergence can be analyzed easily with the result

from iterations of each choice of p. Mathematically, one can place an upper limit

on p but in practice, this is not really necessary, because it is much easier to test

the choice of p numerically.

7.6 Groundwater dynamics

Groundwater dynamics is very rich because of the complexity of the underground

structures. For example, a large piece of rock may modify the speed and direc-

tion of flow drastically. The dynamics of groundwater is of importance in the

construction of any underground structure.

In this section, because we just want to illustrate the power of the method, we

will confine ourselves to the relatively simple case of a two-dimensional aquifer

with a rectangular geometry of dimensions L x × L y . Readers interested in learn-

ing more about the subject can find detailed discussions on groundwater modeling

in Wang and Anderson (1982), Konikow and Reilly (1999), or Charbeneau (2000).

Steady groundwater flow is described by the so-called Darcy’s law

q = −σ · ∇φ, (7.78)

where q is the specific discharge vector (the flux density), which is a measure of

the volume of the fluid passing through a unit cross-sectional area perpendicular

to the velocity of the flow in a unit of time. The average velocity v of the flow

at a given position and time can be related to the specific discharge at the same

position and time by v = q/β, where β is the porosity, which is the percentage

of the empty space (voids) on a cross section perpendicular to the flow. Here σ is

the hydraulic conductivity tensor of rank 2 (or 3 × 3 matrix); it has nine elements

given by the specified porous medium and carries a unit of velocity. For example,
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for an isotropic medium, σ reduces to a diagonal matrix with three identical

elements σ , and Darcy’s law is simplified to q = −σ∇φ. The scalar field φ is

referred to as the head, which is a measure of relative energy of the water in a

standpipe from the datum (zero point). The head at elevation z, measured from

the datum, can be related to the hydraulic pressure P and speed of the flow at the

same elevation as

φ ≃
v2

2g
+

P

ρg
+ z ≃

P

ρg
+ z, (7.79)

where ρ is the density of the fluid, g is the magnitude of the gravitational acceler-

ation, and v ≃ 0 is the speed of the flow. Note that Darcy’s law here is analogous

to Ohm’s law for electric conduction or Fourier’s law for thermal conduction. For

an ideal fluid under the steady flow condition, ρgφ is a constant, a consequence

of Bernoulli’s equation.

If we combine the above equation with the continuity equation resulting from

mass conservation (volume conservation if ρ is constant), we have

µ
∂φ(r, t)

∂t
− ∇ · σ · ∇φ(r, t) = f (r, t), (7.80)

where µ is the specific storage, a measure of the influence on the rate of head

change, and f is the rate of infiltration. For an isotropic, steady flow, the above

equation reduces to a generalized Poisson equation

∇2φ(r) = − f (r)/σ, (7.81)

which describes the groundwater dynamics reasonably well in most cases. When

there is no infiltration, the above equation reduces to its simplest form

∇2φ(r) = 0, (7.82)

which is the Laplace equation for the head.

Now let us demonstrate how one can solve the groundwater dynamics problem

by assuming that we are dealing with a rectangular geometry with nonuniform

conductivity and nonzero infiltration. Boundary conditions play a significant role

in determining the behavior of groundwater dynamics. We discretize the equation

with the scheme discussed in Section 7.3, and the equation becomes

φi j =
1

4(1 + α)σi j

{(σi+1 j + σi j )φi+1 j + (σi j + σi−1 j )φi−1 j

+α[(σi j+1 + σi j )φi j+1 + (σi j + σi j−1)φi j−1] + 2h2
x fi j }, (7.83)

where α = (hx/h y)2. The above difference equation can form the basis for an

iterative approach under the relaxation method with

φ
(k+1)
i j = (1 − p)φ

(k)
i j + pφi j , (7.84)

where φ
(k)
i j is the value of the kth iteration and φi j is evaluated from Eq. (7.83)

with the right-hand side evaluated under φ
(k)
i j .
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We illustrate this procedure by studying an actual example, with L x = 1000 m,

L y = 500 m, σ (x, y) = σ0 + ay with σ0 = 1.0 m/s and a = −0.04 s−1, and

f (x, y) = 0. The boundary condition is ∂φ/∂x = 0 at x = 0 and x = 1000 m,

φ = φ0 at y = 0, and φ = φ0 + b cos(x/L x ) at y = 500 m, with φ0 = 200 m and

b = −20 m. The four-point formula for the first-order derivative is used to ensure

zero partial derivatives for two of the boundaries. The following program is an

implementation of the relaxation method to this groundwater dynamics problem.

// An example of studying the 2-dimensional groundwater
// dynamics through the relaxation method.

import java.lang.*;
public class Groundwater {

final static int nx = 100, ny = 50, ni = 5;
public static void main(String argv[]) {

double sigma0 = 1, a = -0.04, phi0 = 200, b = -20;
double lx = 1000, hx = lx/nx, ly = 500, hy =ly/ny;
double phi[][] = new double[nx+1][ny+1];

double sigma[][] = new double[nx+1][ny+1];

double f[][] = new double[nx+1][ny+1];
double p = 0.5;

// Set up boundary values and a trial solution
for (int i=0; i<=nx; ++i) {

double x = i*hx;
for (int j=0; j<=ny; ++j) {

double y = j*hy;
sigma[i][j] = sigma0+a*y;
phi[i][j] = phi0+b*Math.cos(Math.PI*x/lx)*y/ly;
f[i][j] = 0;

}
}
for (int step=0; step<ni; ++step) {

// Ensure boundary conditions by 4-point formula
for (int j=0; j<ny; ++j) {

phi[0][j] = (4*phi[1][j]-phi[2][j])/3;
phi[nx][j] = (4*phi[nx-1][j]-phi[nx-2][j])/3;

}
relax2d(p, hx, hy, phi, sigma, f);

}

// Output the result
for (int i=0; i<=nx; ++i) {

double x = i*hx;
for (int j=0; j<=ny; ++j) {

double y = j*hy;
System.out.println(x + " " + y + " "

+ phi[i][j]);
}

}
}

// Method to perform a relaxation step in 2D.

public static void relax2d(double p, double hx,
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Fig. 7.2 The head of the

groundwater obtained

from the program given in

the text. Here x, y, and

φ(x, y) are all plotted in

meters.
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double hy, double u[][], double d[][],
double s[][]) {
double h2 = hx*hx, a = h2/(hy*hy),

b = 1/(4*(1+a)), ab = a*b, q = 1-p;
for (int i=1; i<nx; ++i) {

for (int j = 1; j <ny; ++j) {
double xp = b*(d[i+1][j]/d[i][j]+1);
double xm = b*(d[i-1][j]/d[i][j]+1);
double yp = ab*(d[i][j+1]/d[i][j]+1);
double ym = ab*(d[i][j-1]/d[i][j]+1);
u[i][j] = q*u[i][j]+p*(xp*u[i+1][j]

+xm*u[i-1][j]+yp*u[i][j+1]
+ym*u[i][j-1]+h2*s[i][j]);

}
}

}
}

Note that we have used the four-point formula to update the boundary points at

x = 0 and x = 1000 m to ensure zero partial derivatives there. We can use the

six-point formula to improve the accuracy if needed. The output of the above

program is shown in Fig. 7.2.

The transient state of groundwater dynamics involves the time variable,

and is similar to the situations that we will discuss in the next two sections.

Dynamics involving time can be solved with the combination of the discrete

scheme discussed in the preceding two sections for the spatial variables and the

scheme discussed in Chapter 4 for the initial-value problems. It is interesting that

the time evolution involved in the problem is almost identical to the iterations of

the relaxation scheme. A stabler scheme requires the use of the tridiagonal-matrix

scheme discussed in Section 7.4.

7.7 Initial-value problems

A typical initial-value problem can be either the time-dependent diffusion equa-

tion or the time-dependent wave equation. Some initial-value problems are
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nonlinear equations, such as the equation for a stretched elastic string or the

Navier–Stokes equation in fluid dynamics. We can, in most cases, apply the

Fourier transform for the time variable of the equation to reduce it to a station-

ary equation, which can be solved by the relaxation method discussed earlier in

this chapter. Then the time dependence can be obtained with an inverse Fourier

transform after the solution of the corresponding stationary case is obtained.

For equations with higher-order time derivatives, we can also redefine the

derivatives as new variables in order to convert the equations to ones with only

first-order time derivatives, as we did in Chapter 4. For example, we can redefine

the first-order time derivative in the wave equation, that is, the velocity

v(r, t) =
∂u(r, t)

∂t
(7.85)

as a new variable. Then we have two coupled first-order equations,

∂u(r, t)

∂t
= v(r, t), (7.86)

1

c2

∂v(r, t)

∂t
= ∇2u(r, t) + R(r, t), (7.87)

which describe the same physics as the original second-order wave equation.

Note that the above equation set now has a mathematical structure similar to that

of a first-order equation such as the diffusion equation

∂n(r, t)

∂t
= ∇ · D(r)∇n(r, t) + S(r, t). (7.88)

This means we can develop numerical schemes for equations with first-order

time derivatives only. In the case of higher-order time derivatives, we will

always introduce new variables to reduce the higher-order equation to a first-

order equation set. In the next chapter, however, we will introduce some numerical

algorithms designed to solve second-order differential equations directly. As one

can see, after discretization of the spatial variables, we have practically the same

initial-value problem as that discussed in Chapter 4. However, there is one more

complication. The specific scheme used to discretize the spatial variables as well

as the time variable will certainly affect the stability and accuracy of the solution.

Even though it is not the goal here to analyze all aspects of various algorithms,

we will still make a comparison among the most popular algorithms with some

actual examples in physics and discuss specifically the relevant aspects of the

instability under the spatial and time intervals adopted.

In order to analyze the stability of the problem, let us first consider the one-

dimensional diffusion equation

∂n(x, t)

∂t
= D

∂2n(x, t)

∂2x
+ S(x, t). (7.89)

If we discretize the first-order time derivative by means of the two-point for-

mula with an interval τ and the second-order spatial derivative by means of the
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three-point formula with an interval h, we obtain a difference equation

ni (t + τ ) = ni (t) + γ [ni+1(t) + ni−1(t) − 2ni (t)] + τ Si (t), (7.90)

which is the result of the Euler method, equivalent to that for the initial-value

problems introduced in Chapter 4. Here γ = Dτ/h2 is a measure of the relative

sizes between the space and the time intervals. Note that we have used ni (t) =
n(xi , t) for notational convenience. So the problem is solved if we know the

initial value n(x, 0) and the source S(x, t). However, this algorithm is unstable

if γ is significantly larger than 1/2. We can show this by examining the case

with x ∈ [0, 1] and n(0, t) = n(L , t) = 0. For detailed discussions, see Young

and Gregory (1988, pp. 1078–84).

A better scheme is the Crank–Nicolson method, which modifies the Euler

method by using the average of the second-order spatial derivative and the source

at t and t + τ on the right-hand side of the equation, resulting in

ni (t + τ ) = ni (t) +
1

2
{[Hi ni (t) + τ Si (t)] + [Hi ni (t + τ ) + τ Si (t + τ )]}, (7.91)

where we have used

Hi ni (t) = γ [ni+1(t) + ni−1(t) − 2ni (t)] (7.92)

to simplify the notation. The implicit iterative scheme in Eq. (7.91) can be rewrit-

ten into the form

(2 − Hi )ni (t + τ ) = (2 + Hi )ni (t) + τ [Si (t) + Si (t + τ )], (7.93)

which has all the unknown terms at t + τ on the left. More importantly, Eq. (7.93)

is a linear equation set with a tridiagonal coefficient matrix, which can easily be

solved as discussed in Section 2.4 for the cubic-spline approximation, or as in

Section 7.4 for the problem of a person sitting on a bench. We can also show that

the algorithm is stable for any γ and converges as h → 0, and that the error in

the solution is on the order of h2 (Young and Gregory, 1988).

However, the above tridiagonal matrix does not hold if the system is in a higher-

dimensional space. There are two ways to deal with this problem in practice. We

can discretize the equation in the same manner and then solve the resulting linear

equation set with some other methods, such as the Gaussian elimination scheme or

a general LU decomposition scheme for a full matrix. A more practical approach

is to deal with each spatial coordinate separately. For example, if we are dealing

with the two-dimensional diffusion equation, we have

Hi j ni j (t) = (Hi + H j )ni j (t), (7.94)

with

Hi ni j (t) = γx [ni+1 j (t) + ni−1 j (t) − 2ni j (t)], (7.95)

H j ni j (t) = γy[ni j+1(t) + ni j−1(t) − 2ni j (t)]. (7.96)
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Here γx = Dτ/h2
x and γy = Dτ/h2

y . The decomposition of Hi j into Hi and H j

can be used to take one half of each time step along the x direction and the other

half along the y direction with

(2 − H j )ni j

(

t +
τ

2

)

= (2 + H j )ni j (t) +
τ

2

[

Si j (t) + Si j

(

t +
τ

2

)]

, (7.97)

and

(2 − Hi )ni j (t + τ ) = (2 + Hi )ni j

(

t +
τ

2

)

+
τ

2

[

Si j

(

t +
τ

2

)

+ Si j (t + τ )
]

, (7.98)

which is a combined implicit scheme developed by Peaceman and Rachford

(1955). As we can see, in each of the above two steps, we have a tridiagonal

coefficient matrix. We still have to be careful in using the Peaceman–Rachford

algorithm. Even though it has the same accuracy as the Crank–Nicolson algo-

rithm, the convergence in the Peaceman–Rachford algorithm can sometimes be

very slow in practice. We should compare the Peaceman–Rachford algorithm

with the Crank–Nicolson method in test runs before deciding which one to use

in a specific problem. We can easily monitor the convergence of the algorithm

by changing hx and h y . For more discussions on and comparisons of various

algorithms, see Young and Gregory (1988).

7.8 Temperature field of a nuclear waste rod

The temperature increase around nuclear waste rods is not only an interesting

physics problem but also an important safety question that has to be addressed

before building nuclear waste storage facilities. The typical plan for nuclear waste

storage is an underground facility with the waste rods arranged in an array. In

this section, we will study a very simple case, the temperature around a single

rod.

The relation between the thermal current density and the temperature gradient

is given by Fourier’s law

j = −σ · ∇T, (7.99)

where σ is the thermal conductivity, which is typically a tensor of rank 2 or

a 3 × 3 matrix. For an isotropic material, σ reduces to a diagonal matrix with

identical diagonal elements σ . Note that this relation is a typical result from the

linear-response theory, which provides all sorts of similar relations between the

gradient of a field and the corresponding current density.

If we combine Fourier’s law with the energy conservation, we have

cρ
∂T

∂t
− ∇ · σ · ∇T = q(r, t), (7.100)
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where c the specific heat and ρ the density of the material, and q(r, t) is the heat

released into the system per unit volume per unit time at the position r and time

t . Assuming that the system is isotropic, then we have

1

κ

∂T (r, t)

∂t
− ∇2T (r, t) = S(r, t), (7.101)

where κ = σ/cρ is called the diffusivity, a system-dependent parameter, and

S = q/σ is the effective source.

For the specific geometry of a nuclear waste rod, we can assume that the

system is effectively two-dimensional with the temperature field having a circular

symmetry around the rod. The above equation then becomes

1

κ

∂T (r, t)

∂t
−

1

r

∂

∂r
r
∂T (r, t)

∂r
= S(r, t), (7.102)

with the boundary condition T (∞, t) = TE, the environment temperature. For

the purpose of the numerical evaluation, we assume that

S(r, t) =

⎧

⎪

⎨

⎪

⎩

T0

a2
e−t/τ0 for r ≤ a,

0 elsewhere,

(7.103)

where T0, a, and τ0 are system-dependent parameters. If we take advantage of the

cylindrical symmetry of the problem, the discretized equation along the radial

direction is equivalent to a one-dimensional diffusion equation with a spatially

dependent diffusion coefficient D ∝ r , that is,

(2 − Hi )T (t + τ ) = (2 + Hi )T (t) + τκ[Si (t) + Si (t + τ )], (7.104)

with

Hi T (t) =
τκ

ri h2
[ri+1/2Ti+1(t) + ri−1/2Ti−1(t) − 2ri Ti (t)]. (7.105)

The numerical problem is now more complicated than the constant diffusion

coefficient case, but the matrix involved is still tridiagonal. We can solve the

problem iteratively with the simple method described in Section 2.4 by performing

an LU decomposition first and then a forward substitution followed by a backward

substitution.

Special care must be given at r = 0 and the cut-off radius rc. Consider that

i = 0 at r = 0 and i = n + 1 at r = rc. Because the energy cannot flow into the

r = 0 region, we must have

∂T

∂r

∣

∣

∣

∣

r=0

= 0. (7.106)

Then we can use Eq. (7.72) to express the temperature at r = 0 in terms of the

temperatures at the next two points. One way to fix the temperature at the cut-off

radius is by extrapolation. We will leave this as an exercise for the reader.

Now let us see an actual numerical example. Assuming that the system

(the rod and its environment) is close to concrete with c = 789 J/(kg K),
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σ = 1.00 W/(m K), and ρ = 2.00 × 103 kg/m3, we have κ = σ/cρ = 6.34 ×
10−7 m2/s = 2.00 × 107 cm2/100 yr. We will take a = 25 cm, T0 = 1.00 K, and

τ0 = 100 years.

To simplify the problem here, we will assume that the temperature at the cut-

off radius rc = 100 cm is fixed at 300 K under ventilation. This restriction can

be removed by extrapolation. The initial condition is given by �T (r, 0) = 0 K or

T (r, 0) = TE, and the boundary condition�T (rc, t) = 0. The following program

puts everything together for the temperature field change around a nuclear waste

rod.

// A program to study the time-dependent temperature
// field around a nuclear waste rod in a 2D model.

import java.lang.*;
public class Nuclear {

final static int nx = 100, n = 5, nt = 1000,
mt = 1000;

public static void main(String argv[]) {
double d[] = new double[nx];
double e[] = new double[nx];

double c[] = new double[nx];
double b[] = new double[nx];
double p[] = new double[nx];
double s[][] = new double[nt+1][nx];
double T[][] = new double[nt+1][nx+1];
double dt = 1.0/mt, tc = 1, T0 = 1, kappa = 2e7;
double ra = 25, rb = 100, h = rb/nx, h2 = h*h;
double s0 = dt*kappa*T0/(ra*ra), g = dt*kappa/h2;

// Assign the elements in the matrix 2-H_i
for (int i=0; i<nx; ++i) {

d[i] = 2*(1+g);
e[i] = -(1+0.5/(i+1))*g;
c[i] = -(1-0.5/(i+2))*g;

}

// Modify the first equation from T"=0 at r=0
d[0] -= 2*g/3;
e[0] += g/6;

// Assign the source of the radiation heat
int na = (int) (ra/h);
for (int i=0; i<=nt; ++i) {

double t = -dt*i/tc;
for (int j=0; j<na-1; ++j) {

s[i][j] = s0*Math.exp(t);
}

}

// Find the temperature field recursively
for (int i=1; i<=nt; ++i) {

// Assign the elements in the matrix 2+H_0
double d0 = 2*(1-g);
double e0 = (1+0.5)*g;
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Fig. 7.3 Temperature

change around a nuclear

waste rod calculated with

the program given in the

text. Solid dots are for

t = 1 year, stars are for

t = 10 years, squares are

for t = 50 years, and

circles are for t = 100

years.

double c0 = (1-0.5)*g;

// Evaluate b[0] under the condition T"=0 at r=0
b[0] = d0*T[i-1][0]+e0*T[i-1][1]

+c0*(4*T[i-1][0]-T[i-1][1])/3
+s[i-1][0]+s[i][0];

// Find the elements in the array b[i]
for (int j=1; j<nx; ++j) {

// Assign the elements in the matrix 2+H_0
d0 = 2*(1-g);
e0 = (1+0.5/(j+1))*g;
c0 = (1-0.5/(j+1))*g;

// Obtain the elements from the last recursion
b[j] = d0*T[i-1][j]+e0*T[i-1][j+1]

+c0*T[i-1][j-1]+s[i-1][j]+s[i][j];

}

// Obtain the solution of the temperature field
p = tridiagonalLinearEq(d, e, c, b);
for (int j=0; j<nx; ++j) T[i][j] = p[j];

}

// Output the result at every n spatial data points
for (int j=0; j<nx; j+=n) {

double r = h*(j+1);
System.out.println(r + " " + T[nt][j]);

}
}

// Method to solve the tridiagonal linear equation set.

public static double[] tridiagonalLinearEq(double d[],
double e[], double c[], double b[]) {...}

}
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The parameters used in the above programs are not from actual storage units.

However, if we want to study the real situation, we only need to modify the

parameters for the actual system and environment. The numerical scheme and

program are quite applicable to realistic situations. The output of the program is

shown in Fig. 7.3. Note that the maximum change of the temperature (the peak)

increases with time initially and then decreases afterward. The largest change of

the temperature over time and the rate of the temperature change are critical in

designing a safe and practical nuclear waste storage.

Exercises

7.1 Consider the Poisson equation

∇2φ(x, y) = −ρ(x, y)/ǫ0

from electrostatics on a rectangular geometry with x ∈ [0, L x ] and y ∈
[0, L y]. Write a program that solves this equation using the relaxation

method. Test your program with: (a) ρ(x, y) = 0, φ(0, y) = φ(L x , y) =
φ(x, 0) = 0, φ(x, L y) = 1 V, L x = 1 m, and L y = 1.5 m; (b) ρ(x, y)/ǫ0 =
1 V/m2, φ(0, y) = φ(L x , y) = φ(x, 0) = φ(x, L y) = 0, and L x = L y =
1 m.

7.2 Develop a numerical scheme that solves the Poisson equation

∇2φ(r, θ ) = −ρ(r, θ )/ǫ0

in polar coordinates. Assume that the geometry of the boundary is a cir-

cular ring with the potential at the inner radius, φ(a, θ ), and outer radius,

φ(b, θ ), given. Test the scheme with some special choice of the boundary

values.

7.3 If the charge distribution in the Poisson equation is spherically symmetric,

derive the difference equation for the potential along the radius. Test the

algorithm with ρ(r ) = ρ0e−r/r0 in a program.

7.4 Derive the relaxation scheme for a three-dimensional system with rectan-

gular boundaries. Analyze the choice of p in a program for the Poisson

equation with constant potentials at the boundaries.

7.5 Modify the program for the groundwater dynamics problem given in Sec-

tion 7.6 to study the general case of the transient state, that is, the case

where the time derivative of the head is nonzero. Apply the program to

study the stationary case given there as well as the evolution of the so-

lution with time if the infiltration f (r, t) = f0e−t/τ for various f0 and

τ .

7.6 Write a program that solves the wave equation of a finite string with both

ends fixed. Assume that the initial displacement and velocity are given.

Test the program with some specific choice of the initial condition.
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7.7 Solve the time-dependent Schrödinger equation using the Crank–Nicolson

method. Consider the one-dimensional case and test it by applying it to the

problem of a square well with a Gaussian initial state coming in from the

left.

7.8 Obtain the algorithm for solving the three-dimensional wave equation

with 1/3 of the time step applied to each coordinate direction. Test the

algorithm with the equation under the homogeneous Dirichlet bound-

ary condition. Take the initial condition as u(r; 0) = 0 and v(r; 0) =
sin(πx/L x ) sin(πy/L y) sin(π z/L z), where L x , L y , and L z are the lengths

of the box along the three directions.

7.9 Consider an elastic rope that is fixed at both ends at x = 0 and x = L =
8.00 m, subject to a tension T = 5.00 × 103 N. Two friends are sitting

on the rope, each with a mass distribution (mass per unit length) from a

truncated Gaussian

ρi (x) =
mi

2ai

e−(x−xi )2/a2
i ,

for |x − xi | ≤ ai . Assume that m1 = 40.0 kg, m2 = 55.0 kg, x1 = 3.50 m,

x2 = 4.10 m, a1 = 0.300 m, and a2 = 0.270 m, and the rope has a den-

sity of ρ0 = 4.00 kg/m. (a) Show that the motion of the rope is described

by

∂2u(x, t)

∂t2
=

T

ρ(x)

∂2u(x, t)

∂x2
− g,

where u(x, t) is the displacement of the rope at the position x and time

t , ρ(x) = ρ0 + ρ1(x) + ρ2(x), and g = 9.8 m/s2 is the magnitude of the

gravitational constant. (b) Find the displacement of the rope when it is in

equilibrium. Where is the maximum displacement of the rope? (c) Find the

first five angular frequencies if the system is in vibration and plot out the

corresponding eigenstates.

7.10 Solve the nuclear waste rod problem discussed in Section 7.8 with the ex-

trapolation of the temperature made at the cut-off radius. Compare various

extrapolation schemes, linear extrapolation, quadratic extrapolation, the

Lagrange extrapolation with multipoints, and the extrapolation based on

the cubic spline. Which scheme works the best? Are there any significant

differences between the result here and that found in Section 7.8 with a

fixed temperature at the cut-off radius and why?

7.11 Simulate the process of burning a hole in the middle of a large silver

sheet with a propane torch numerically. Assuming that the torch head can

generate a power of about 5000 W within a circle that has a 4 mm radius,

estimate how long it will take to create a hole in a sheet that has a thickness

of 2 mm.
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7.12 The macroscopic state of Bose–Einstein condensate is described by the

Gross–Pitaevskii equation

ih--
∂φ(r, t)

∂t
=
[

−
h--2

2m
∇2 + Vext(r) + g|φ(r, t)|2

]

φ(r, t),

where φ(r, t) is the macroscopic wavefunction, m and g are two system-

related parameters, and Vext(r) is the external potential. Develop a program

that solves this equation numerically. Consider various potentials, such as

a parabolic or a square well.



Chapter 8

Molecular dynamics simulations

Most physical systems are collections of interacting objects. For example, a drop

of water contains more than 1021 water molecules, and a galaxy is a collection

of millions and millions of stars. In general, there is no analytical solution that

can be found for an interacting system with more than two objects. We can solve

the problem of a two-body system, such as the Earth–Sun system, analytically,

but not a three-body system, such as the Moon–Earth–Sun system. The situation

is similar in quantum mechanics, in that one can obtain the energy levels of the

hydrogen atom (one electron and one proton) analytically, but not those the helium

atom (two electrons and a nucleus). Numerical techniques beyond those we have

discussed so far are needed to study a system of a large number of interacting

objects, or the so-called many-body system. Of course, there is a distinction

between three-body systems such as the Moon–Earth–Sun system and a more

complicated system, such as a drop of water. Statistical mechanics has to be

applied to the latter.

8.1 General behavior of a classical system

In this chapter, we introduce a class of simulation techniques called molecular

dynamics, which solves the dynamics of a classical many-body system described

by the Hamiltonian

H = EK + EP =
N
∑

i=1

p2
i

2mi

+
N
∑

i> j=1

V (ri j ) +
N
∑

i=1

Uext(ri ), (8.1)

where EK and EP are the kinetic energy and potential energy of the system,

respectively, mi , ri , and pi are the mass, position vector, and momentum of the

i th particle, and V (ri j ) and U (ri ) are the corresponding interaction energy and

external potential energy. From Hamilton’s principle, the position vector and

momentum satisfy

ṙi =
∂H

∂pi

=
pi

mi

, (8.2)

ṗi = −
∂H

∂qi

= fi , (8.3)
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which are called Hamilton’s equations and valid for any given H, including the

case of a system that can exchange energy or heat with its environment. Here the

force fi is given by

fi = −∇i Uext(ri ) −
∑

j 	=i

∇i V (ri j ). (8.4)

The methods for solving Newton’s equation discussed in Chapter 1 and Chapter 4

can be used to solve the above equation set. However, those methods are not as

practical as the ones about to be discussed, in terms of the speed and accuracy of

the computation and given the statistical nature of large systems. In this chapter,

we discuss several commonly used molecular dynamics simulation schemes and

offer a few examples.

Before we go into the numerical schemes and actual physical systems, we

need to discuss several issues. There are several ways to simulate a many-body

system. Most simulations are done either through a stochastic process, such as

the Monte Carlo simulation, which will be discussed in Chapter 10, or through a

deterministic process, such as a molecular dynamics simulation. Some numerical

simulations are performed in a hybridized form of both, for example, Langevin

dynamics, which is similar to molecular dynamics except for the presence of

a random dissipative force, and Brownian dynamics, which is performed under

the condition that the acceleration is balanced out by the drifting and random

dissipative forces. We will not discuss Langevin or Brownian dynamics in this

book, but interested readers can find detailed discussions in Heermann (1986)

and Kadanoff (2000).

Another issue is the distribution function of the system. In statistical mechan-

ics, each special environment is dealt with by way of a special ensemble. For

example, for an isolated system we use the microcanonical ensemble, which as-

sumes a constant total energy, number of particles, and volume. A system in good

contact with a thermal bath is dealt with using the canonical ensemble, which as-

sumes a constant temperature, number of particles, and volume (or pressure). For

any given ensemble, the system is described by a probability function W(R,P),

which is in general a function of phase space, consisting of all coordinates and

momenta of the particles R = (r1, r2, . . . , rN ) and P = (p1,p2, . . . ,pN ), and

other quantities, such as temperature, total particle number of the system, and so

forth. For the canonical ensemble, we have

W(R,P) =
1

N
e−H/kBT , (8.5)

where T is the temperature of the system, kB is the Boltzmann constant, and

N is a normalization constant. For an N -particle quasi-classical system, N =
N !h3N , where h is the Planck constant. Note that we can separate the position

dependence and momentum dependence in W(R,P) if they are not coupled in

H. Any average of the momentum-dependent quantity becomes quite simple

because of the quadratic behavior of the momentum in H. So we concentrate
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on the position dependence here. The statistical average of a physical quantity

A(R,P) is then given by

〈A〉 =
1

Z

∫

A(R,P)W(R,P) dR dP, (8.6)

where Z is the partition function of the system from

Z =
∫

W(R,P) dR dP. (8.7)

The ensemble average given above is equivalent to the time average

〈A〉 = lim
τ→∞

1

τ

∫ τ

0

A(t) dt, (8.8)

if the system is ergodic: that is, every possible state is accessed with an equal

probability. Because molecular dynamics simulations are deterministic in nature,

almost all physical quantities are obtained through time averages. Sometimes

the average over all the particles is also needed to characterize the system. For

example, the average kinetic energy of the system can be obtained from any

ensemble average, and the result is given by the partition theorem

〈EK〉 =

〈

N
∑

i=1

p2
i

2mi

〉

=
G

2
kBT, (8.9)

where G is the total number of degrees of freedom. For a very large system,

G ≃ 3N , because each particle has three degrees of freedom. In molecular dy-

namics simulations, the average kinetic energy of the system can be obtained

through

〈EK〉 =
1

M

M
∑

j=1

EK(t j ), (8.10)

where M is the total number of data points taken at different time steps and

EK(t j ) is the kinetic energy of the system at time t j . If the system is ergodic,

the time average is equivalent to the ensemble average. The temperature T of the

simulated system is then given by the average kinetic energy with the application

of the partition theorem, T = 2〈EK〉/GkB.

8.2 Basic methods for many-body systems

In general, we can define an n-body density function

ρn(r1, r2, . . . , rn) =
1

Z

N !

(N − n)!

∫

W(R,P) dRn dP, (8.11)

where dRn = drn+1 drn+2 · · · drN . Note that the particle density ρ(r) = ρ1(r)

is the special case of n = 1. The two-body density function is related to the

pair-distribution function g(r, r′) through

ρ2(r, r′) = ρ(r)g(r, r′)ρ(r′), (8.12)
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and one can easily show that

ρ2(r, r′) = 〈ρ̂(r)ρ̂(r′)〉 − δ(r − r′)ρ(r), (8.13)

where the first term is the so-called density–density correlation function. Here

ρ̂(r) is the density operator, defined as

ρ̂(r) =
N
∑

i=1

δ(r − ri ). (8.14)

The density of the system is given by the average of the density operator,

ρ(r) = 〈ρ̂(r)〉. (8.15)

If the density of the system is nearly a constant, the expression for g(r, r′) can be

reduced to a much simpler form

g(r) =
1

ρN

〈

N
∑

i 	= j

δ(r − ri j )

〉

, (8.16)

where ρ is the average density from the points r′ = 0 and r. If the angular distri-

bution is not the information needed, we can take the angular average to obtain

the radial distribution function

g(r ) =
1

4π

∫

g(r) sin θ dθ dφ, (8.17)

where θ and φ are the polar and azimuthal angles from the spherical coordinate

system. The pair-distribution or radial distribution function is related to the static

structure factor S(k) through the Fourier transform

S(k) − 1 = ρ

∫

[g(r) − 1]e−ik·r dr (8.18)

and its inverse

g(r) − 1 =
1

(2π )3ρ

∫

[S(k) − 1]eik·r dk. (8.19)

The angular average of S(k) is given by

S(k) − 1 = 4πρ

∫ ∞

0

sin kr

kr
[g(r ) − 1]r 2 dr. (8.20)

The structure factor of a system can be measured with the light- or neutron-

scattering experiment.

The behavior of the pair-distribution function can provide a lot of information

regarding the translational nature of the particles in the system. For example, a

solid structure would have a pair-distribution function with sharp peaks at the

distances of nearest neighbors, next nearest neighbors, and so forth. If the system

is a liquid, the pair-distribution still has some broad peaks at the average distances

of nearest neighbors, next nearest neighbors, and so forth, but the feature fades

away after several peaks.
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If the bond orientational order is important, one can also define an orientational

correlation function

gn(r, r′) = 〈qn(r)qn(r′)〉, (8.21)

where qn(r) is a quantity associated with the orientation of a specific bond.

Detailed discussions on orientational order can be found in Strandburg (1992).

Here we discuss how one can calculateρ(r) and g(r ) in a numerical simulation.

The density at a specific point is given by

ρ(r) ≃
〈N (r,�r )〉
�(r,�r )

, (8.22)

where �(r,�r ) is the volume of a sphere centered at r with a radius �r and

N (r,�r ) is the number of particles in the volume. Note that we may need to

adjust the radius �r to have a smooth and realistic density distribution ρ(r) for

a specific system. The average is taken over the time steps.

Similarly, we can obtain the radial distribution function numerically. We need

to measure the radius r from the position of a specific particle ri , and then the

radial distribution function g(r ) is the probability of another particle’s showing

up at a distance r . Numerically, we have

g(r ) ≃
〈�N (r,�r )〉
ρ��(r,�r )

, (8.23)

where ��(r,�r ) ≃ 4πr2�r is the volume element of a spherical shell with

radius r and thickness �r and �N (r,�r ) is the number of particles in the shell

with the i th particle at the center of the sphere. The average is taken over the time

steps as well as over the particles, if necessary.

The dynamics of the system can be measured from the displacement of the

particles in the system. We can evaluate the time dependence of the mean-square

displacement of all the particles,

�2(t) =
1

N

N
∑

i=1

[ri (t) − ri (0)]2 , (8.24)

where ri (t) is the position vector of the i th particle at time t . For a solid system,

�2(t) is relatively small and does not grow with time, and the particles are in

nondiffusive, or oscillatory, states. For a liquid system, �2(t) grows linearly with

time:

�2(t) = 6Dt +�2(0), (8.25)

where D is the self-diffusion coefficient (a measure of the motion of a particle in

a medium of identical particles) and �2(0) is a time-independent constant. The

particles are then in diffusive, or propagating, states.

The very first issue in numerical simulations for a bulk system is how to extend

a finite simulation box to model the nearly infinite system. A common practice is

to use a periodic boundary condition, that is, to approximate an infinite system by
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piling up identical simulation boxes periodically. A periodic boundary condition

removes the conservation of the angular momentum of the simulated system

(particles in one simulation box), but still preserves the translational symmetry

of the center of mass. So the temperature is related to the average kinetic energy

by

〈EK〉 =
3

2
(N − 1)kBT, (8.26)

where the factor (N − 1) is due to the removal of the rotation around the center

of mass.

The remaining issue, then, is how to include the interactions among the parti-

cles in different simulation boxes. If the interaction is a short-range interaction,

one can truncate it at a cut-off length rc. The interaction V (rc) has to be small

enough that the truncation does not affect the simulation results significantly. A

typical simulation box usually has much larger dimensions than rc. For a three-

dimensional cubic box with sides of length L , the total interaction potential can

be evaluated with many fewer summations than N !/2, the number of possible

pairs in the system. For example, if we have L/2 > rc, and if |xi j |, |yi j |, and

|zi j | are all smaller than L/2, we can use Vi j = V (ri j ); otherwise, we use the

corresponding point in the neighboring box. For example, if |xi j | > L/2, we can

replace xi j with xi j ± L in the interaction. We can deal with y and z coordinates

similarly. In order to avoid a finite jump at the truncation, one can always shift

the interaction to V (r ) − V (rc) to make sure that it is zero at the truncation.

The pressure of a bulk system can be evaluated from the pair-distribution

function through

P = ρkBT −
2πρ2

3

∫ ∞

0

∂V (r )

∂r
g(r )r 3 dr, (8.27)

which is the result of the virial theorem that relates the average kinetic energy to

the average potential energy of the system. The correction due to the truncation

of the potential is then given by

�P = −
2πρ2

3

∫ ∞

rc

∂V (r )

∂r
g(r )r 3 dr, (8.28)

which is useful for estimating the influence on the pressure from the truncation

in the interaction potential. Numerically, one can also evaluate the pressure from

the time average

〈w〉 =
1

3

∑

i> j

〈ri j · fi j 〉, (8.29)

because g(r ) can be interpreted as the probability of seeing another particle at a

distance r . Then we have

P = ρkBT +
ρ

N
〈w〉 +�P, (8.30)
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which can be evaluated quite easily, because at every time step the force fi j =
−∇V (ri j ) is calculated for each particle pair.

8.3 The Verlet algorithm

Hamilton’s equations given in Eqs. (8.2) and (8.3) are equivalent to Newton’s

equation

mi

d2ri

dt2
= fi , (8.31)

for the i th particle in the system. To simplify the notation, we will use R to repre-

sent all the coordinates (r1, r2, . . . , rN ) and G to represent all the accelerations

(f1/m1, f2/m2, . . . , fN/m N ). Thus, we can rewrite Newton’s equations for all the

particles as

d2R

dt2
= G. (8.32)

If we apply the three-point formula to the second-order derivative d2R/dt2, we

have

d2R

dt2
=

1

τ 2
(Rk+1 − 2Rk + Rk−1) + O(τ 2), (8.33)

with t = kτ . We can also apply the three-point formula to the velocity

V =
dR

dt
=

1

2τ
(Rk+1 − Rk−1) + O(τ 2). (8.34)

After we put all the above together, we obtain the simplest algorithm, which is

called the Verlet algorithm, for a classical many-body system, with

Rk+1 = 2Rk − Rk−1 + τ 2Gk + O(τ 4), (8.35)

Vk =
Rk+1 − Rk−1

2τ
+ O(τ 2). (8.36)

The Verlet algorithm can be started if the first two positions R0 and R1 of the

particles are given. However, in practice, only the initial position R0 and ini-

tial velocity V0 are given. Therefore, we need to figure out R1 before we can

start the recursion. A common practice is to treat the force during the first

time interval [0, τ ] as a constant, and then to apply the kinematic equation to

obtain

R1 ≃ R0 + τV0 +
τ 2

2
G0, (8.37)

where G0 is the acceleration vector evaluated at the initial configuration R0.

Of course, the position R1 can be improved by carrying out the Taylor ex-

pansion to higher-order terms if the accuracy in the first two points is critical.

We can also replace G0 in Eq. (8.37) with the average (G0 + G1)/2, with G1

evaluated at R1, given from Eq. (8.37). This procedure can be iterated several
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times before starting the algorithm for the velocity V1 and the next position

R2.

The Verlet algorithm has advantages and disadvantages. It preserves the time

reversibility that is one of the important properties of Newton’s equation. The

rounding error may eventually destroy this time symmetry. The error in the

velocity is two orders of magnitude higher than the error in the position. In

many applications, we may only need information about the positions of the

particles, and the Verlet algorithm yields very high accuracy for the position.

If the velocity is not needed, we can totally ignore the evaluation of the veloc-

ity, since the evaluation of the position does not depend on the velocity at each

time step. The biggest disadvantage of the Verlet algorithm is that the velocity is

evaluated one time step behind the position. However, this lag can be removed

if the velocity is evaluated directly from the force. A two-point formula would

yield

Vk+1 = Vk + τGk + O(τ 2). (8.38)

We would get much better accuracy if we replaced Gk with the average (Gk +
Gk+1)/2. The new position can be obtained by treating the motion within t ∈
[kτ, (k + 1)τ ] as motion with a constant acceleration Gk ; that is,

Rk+1 = Rk + τVk +
τ 2

2
Gk . (8.39)

Then a variation of the Verlet algorithm with the velocity calculated at the same

time step of the position is

Rk+1 = Rk + τVk +
τ 2

2
Gk + O(τ 4), (8.40)

Vk+1 = Vk +
τ

2
(Gk+1 + Gk) + O(τ 2). (8.41)

Note that the evaluation of the position still has the same accuracy because the

velocity is now updated according to Eq. (8.41), which provides the cancelation

of the third-order term in the new position.

Here we demonstrate this velocity version of the Verlet algorithm with a very

simple example, the motion of Halley’s comet, which has a period of about 76

years.

The potential between the comet and the Sun is given by

V (r ) = −G
Mm

r
, (8.42)

where r is the distance between the comet and the Sun, M and m are the respective

masses of the Sun and the comet, and G is the gravitational constant. If we use

the center-of-mass coordinate system as described in Chapter 3 for the two-body

collision, the dynamics of the comet is governed by

µ
d2r

dt2
= f = −G Mm

r

r 3
, (8.43)
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with the reduced mass

µ =
Mm

M + m
≃ m, (8.44)

for the case of Halley’s comet. We can take the farthest point (aphelion) as the

starting point, and then we can easily obtain the comet’s whole orbit with one of

the versions of the Verlet algorithm. Two quantities can be assumed as the known

quantities, the total energy and the angular momentum, which are the constants

of motion. We can describe the motion of the comet in the xy plane and choose

x0 = rmax, vx0 = 0, y0 = 0, and vy0 = vmin. From well-known results we have

that rmax = 5.28 × 1012 m and vmin = 9.13 × 102 m/s. Let us apply the velocity

version of the Verlet algorithm to this problem. Then we have

x (k+1) = x (k) + τv(k)
x +

τ 2

2
g(k)

x , (8.45)

v(k+1)
x = v(k)

x +
τ

2

[

g(k+1)
x + g(k)

x

]

, (8.46)

y(k+1) = y(k) + τv(k)
y +

τ 2

2
g(k)

y , (8.47)

v(k+1)
y = v(k)

y +
τ

2

[

g(k+1)
y + g(k)

y

]

, (8.48)

where the time-step index is given in parentheses as superscripts in order to

distinguish it from the x-component or y-component index. The acceleration

components are given by

gx = −κ
x

r 3
, (8.49)

gy = −κ
y

r 3
, (8.50)

with r =
√

x2 + y2 and κ = G M . We can use more specific units in the numerical

calculations, for example, 76 years as the time unit and the semimajor axis of

the orbital a = 2.68 × 1012 m as the length unit. Then we have rmax = 1.97,

vmin = 0.816, and κ = 39.5. The following program is the implementation of the

algorithm outlined above for Halley’s comet.

// An example to study the time-dependent position and

// velocity of Halley's comet via the Verlet algorithm.

import java.lang.*;
public class Comet {

static final int n = 20000, m = 200;
public static void main(String argv[]) {

double t[] = new double [n];
double x[] = new double [n];
double y[] = new double [n];

double r[] = new double [n];
double vx[] = new double [n];

double vy[] = new double [n];

double gx[] = new double [n];

double gy[] = new double [n];

double h = 2.0/(n-1), h2 = h*h/2, k = 39.478428;
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Fig. 8.1 The distance

between Halley’s

comet and the Sun

calculated with the

program given in the

text. The period of the

comet is used as the

unit of time, and the

semimajor axis of the

orbit is used as the unit

of distance.

// Initialization of the problem
t[0] = 0;
x[0] = 1.966843;
y[0] = 0;
r[0] = x[0];
vx[0] = 0;
vy[0] = 0.815795;
gx[0] = -k/(r[0]*r[0]);
gy[0] = 0;

// Verlet algorithm for the position and velocity
for (int i=0; i<n-1; ++i) {

t[i+1] = h*(i+1);
x[i+1] = x[i]+h*vx[i]+h2*gx[i];
y[i+1] = y[i]+h*vy[i]+h2*gy[i];
double r2 = x[i+1]*x[i+1]+y[i+1]*y[i+1];
r[i+1] = Math.sqrt(r2);
double r3 = r2*r[i+1];
gx[i+1] = -k*x[i+1]/r3;
gy[i+1] = -k*y[i+1]/r3;
vx[i+1]= vx[i]+h*(gx[i+1]+gx[i])/2;
vy[i+1]= vy[i]+h*(gy[i+1]+gy[i])/2;

}
for (int i=0; i<n-m; i+=m) {

System.out.println(t[i]);
System.out.println(r[i]);
System.out.println();

}
}

}

In Fig. 8.1, we show the result for the distance between Halley’s comet and the

Sun calculated using the above program.
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The accuracy of the velocity version of the Verlet algorithm is reasonable

in practice; it is usually accurate enough because the corresponding physical

quantities are rescaled according to, for example, the temperature of the system

in most molecular dynamics simulations. The accumulated errors are thus re-

moved when the rescaling is applied. More accurate algorithms, such as the Gear

predictor–corrector algorithm, will be discussed later in this chapter.

8.4 Structure of atomic clusters

One of the simplest applications of the Verlet algorithm is in the study of an iso-

lated collection of particles. For an isolated system, there is a significant differ-

ence between a small system and a large system. For a small system, the ergodic

assumption of statistical mechanics fails and the system may never reach the

so-called equilibrium state. However, some parallel conclusions can be drawn on

the thermodynamics of small systems against infinite systems (Gross, 2001). For

a very large system, standard statistical mechanics applies, even if it is isolated

from the environment; the interactions among the particles cause the exchange

of energies and drive the system to equilibrium. Very small clusters with just a

few particles usually behave like molecules (Sugano and Koizumi, 1998). What

is unclear is the behavior of a cluster of an intermediate size, say, about 100

atoms.

In this section, we demonstrate the application of the velocity version of the

Verlet algorithm in determining the structure and dynamics of clusters of an

intermediate size. We will assume that the system consists of N atoms that interact

with each other through the Lennard–Jones potential

V (r ) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (8.51)

where r is the distance between the two particles, and ε and σ are the system-

dependent parameters. The force exerted on the i th particle is therefore given

by

fi =
48ε

σ 2

N
∑

j 	=i

(

ri − r j

)

[

(

σ

ri j

)14

−
1

2

(

σ

ri j

)8
]

. (8.52)

In order to simplify the notation, ε is usually used as the unit of energy, ε/kB

as the unit of temperature, and σ as the unit of length. Then the unit of time

is given by
√

mσ 2/48ε. Newton’s equation for each particle then becomes

dimensionless,

d2ri

dt2
= gi =

N
∑

j 	=i

(ri − r j )

(

1

r 14
i j

−
1

2r 8
i j

)

. (8.53)
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After discretization with the Verlet algorithm, we have

r
(k+1)
i = r

(k)
i + τv

(k)
i +

τ 2

2
g

(k)
i , (8.54)

v
(k+1)
i = v

(k)
i +

τ

2

[

g
(k+1)
i + g

(k)
i

]

. (8.55)

The update of the velocity is usually done in two steps in practice. When g
(k)
i is

evaluated, the velocity is partially updated with

v
(k+1/2)
i = v

(k)
i +

τ

2
g

(k)
i (8.56)

and then updated again when g
(k+1)
i becomes available after the coordinate is

updated, with

v
(k+1)
i = v

(k+1/2)
i +

τ

2
g

(k+1)
i . (8.57)

This is equivalent to the one-step update but more economical, because it does not

require storage of the acceleration of the previous time step. We can then simulate

the structure and dynamics of the cluster starting from a given initial position and

velocity for each particle. However, several aspects still need special care. The

initial positions of the particles are usually taken as the lattice points on a closely

packed structure, for example, the face-centered cubic structure. What we want

to avoid is the breaking up of the system in the first few time steps, which happens

if some particles are too close to each other. Another way to set up a relatively sta-

ble initial cluster is to cut out a piece from a bulk simulation. The corresponding

bulk simulation is achieved with the application of the periodic boundary condi-

tion. The initial velocities of the particles should also be assigned reasonably. A

common practice is to assign velocities from the Maxwell distribution

W(vx ) ∝ e−mv2
x /2kBT , (8.58)

which can be achieved numerically quite easily with the availability of Gaussian

random numbers. The variance in the Maxwell distribution is
√

kBT/m for each

velocity component. For example, the following method returns the Maxwell

distribution of the velocity for a given temperature.

// Method to draw initial velocities from the Maxwell
// distribution for a given mass m, temperature T, and
// paritcle number N.

public static double[] maxwell(doubule m, double T,
int N) {
int nv = 3*N;
int ng = nv-6;
double v[] = new double[nv];
double r[] = new double[2];

// Assign a Gaussian number to each velocity component

for (int i=0; i<nv-1; i+=2){
r = rang();
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g[i] = r[0];
g[i+1] = r[1];

}

// Scale the velocity to satisfy the partition theorem

double ek = 0;
for (int i=0; i<nv; ++i) ek += v[i]*v[i];
double vs = Math.sqrt(m*ek*nv/(ng*T));
for (int i=0; i<nv; ++i) v[i] /= vs;
return v;

}

However, we always have difficulty in defining a temperature if the system is

very small, that is, where the thermodynamic limit is not applicable. In practice,

we can still call a quantity associated with the kinetic energy of the system the

temperature, which is basically a measure of the kinetic energy at each time step,

EK =
G

2
kBT, (8.59)

where G is the total number of independent degrees of freedom in the system.

Note that now T is not necessarily a constant and that G is equal to 3N − 6,

with N being the number of particles in the system, because we have to remove

the center-of-mass motion and rotation around the center of mass when we study

the structure and dynamics of the isolated cluster.

The total energy of the system is given by

E =
N
∑

i=1

miv
2
i

2
+

N
∑

i> j=1

V (ri j ), (8.60)

where the kinetic energy EK is given by the first term on the right-hand side and

the potential energy EP by the second.

One remarkable effect observed in the simulations of finite clusters is that there

is a temperature region where the system fluctuates from a liquid state to a solid

state over time. A phase is identified as solid if the particles in the system vibrate

only around their equilibrium positions; otherwise they are in a liquid phase.

Simulations of clusters have revealed some very interesting phenomena that are

unique to clusters of intermediate size (with N ≃ 100). We have discussed how

to analyze the structural and dynamical information of a collection of particles

in Sections 8.1 and 8.2. One can evaluate the mean square of the displacement of

each particle. For the solid state, �2(t) is relatively small and does not grow with

time, and the particles are nondiffusive but oscillatory. For the liquid state, �2(t)

grows with time close to the linear relation�2(t) = 6Dt +�2(0), where D is the

self-diffusion coefficient and�2(0) is a constant. In a small system, this relation in

time may not be exactly linear. One can also measure the specific structure of the

cluster from the pair-distribution function g(r ) and the orientational correlation

function of the bonds. The temperature (or total kinetic energy) can be gradually

changed to cool or heat the system.
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The results from simulations on clusters of about 100 particles show that the

clusters can fluctuate from a group of solid states with lower energy levels to a

group of liquid states that lie at higher energy levels in a specific temperature

region, with kBT in the same order as the energy that separates the two groups.

This is not expected because the higher-energy-level liquid states are not supposed

to have an observable lifetime. However, the statistical mechanics may not be

accurate here, because the number of particles is relatively small. More detailed

simulations also reveal that the melting of the cluster usually starts from the

surface. Interested readers can find more discussions of this topic in Matsuoka

et al. (1992) and Kunz and Berry (1993; 1994).

8.5 The Gear predictor--corrector method

We discussed multistep predictor–corrector methods in Chapter 4 when solv-

ing initial-value problems. Another type of predictor–corrector method uses the

truncated Taylor expansion of the function and its derivatives as a prediction

and then evaluates the function and its derivatives at the same time step with a

correction given from the restriction of the differential equation. This multivalue

predictor–corrector scheme was developed by Nordsieck and Gear. Details of the

derivations can be found in Gear (1971).

We will take a first-order differential equation

dr

dt
= f(r, t) (8.61)

as an example and then generalize the method to other types of initial-value prob-

lems, such as Newton’s equation. For simplicity, we will introduce the rescaled

quantities

r(l) =
τ l

l!

d lr

dt l
, (8.62)

with l = 0, 1, 2, . . . . Note that r(0) = r. Now if we define a vector

x = (r(0), r(1), r(2), . . . ), (8.63)

we can obtain the predicted value of x in the next time step xk+1, with tk+1 =
(k + 1)τ , from that of the current time step xk , with tk = kτ , from the Taylor

expansion for each component of xk+1: that is,

xk+1 = Bxk, (8.64)

where B is the coefficient matrix from the Taylor expansion. One can easily show

that B is an upper triangular matrix with unit diagonal and first row elements,

with the other elements given by

Bi j =

(

j − 1

i

)

=
( j − 1)!

i! ( j − i − 1)!
. (8.65)
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Note that the dimension of B is (n + 1) × (n + 1), that is, x is a vector of dimen-

sion n + 1, if the Taylor expansion is carried out up to the term of dnr/dtn .

The correction in the Gear method is performed with the application of the

differential equation under study. The difference between the predicted value of

the first-order derivative r
(1)
k+1 and the velocity field τ fk+1 is

δr
(1)
k+1 = τ fk+1 − r

(1)
k+1, (8.66)

which would be zero if the exact solution were obtained with τ → 0. Note that

r
(1)
k+1 in the above equation is from the prediction of the Taylor expansion. So if

we combine the prediction and the correction in one expression, we have

xk+1 = Bxk + Cδxk+1, (8.67)

where δxk+1 has only one nonzero component, δr
(1)
k+1, and C is the correction

coefficient matrix, which is diagonal with zero off-diagonal elements and nonzero

diagonal elements Ci i = ci for i = 0, 1, . . . , n. Here ci are obtained by solving a

matrix eigenvalue problem involving B and the gradient of δxk+1 with respect to

xk+1. It is straightforward to solve for ci if the truncation in the Taylor expansion

is not very high. Interested readers can find the derivation in Gear (1971), with

a detailed table listing up to the fourth-order differential equations (Gear 1971,

p. 154). The most commonly used Gear scheme for the first-order differential

equation is the fifth-order Gear algorithm (with the Taylor expansion carried out

up to n = 5), with c0 = 95/288, c1 = 1, c2 = 25/24, c3 = 35/72, c4 = 5/48,

and c5 = 1/120.

We should point out that the above procedure is not unique to first-order differ-

ential equations. The predictor part is identical for any higher-order differential

equation. The only change one needs to make is the correction, which is the

result of the difference between the prediction and the solution restricted by the

equation. In molecular dynamics, we are interested in the solution of Newton’s

equation, which is a second-order differential equation with

d2r

dt2
=

f(r, t)

m
, (8.68)

where f is the force on a specific particle of mass m. We can still formally express

the algorithm as

xk+1 = Bxk + Cδxk+1, (8.69)

where δxk+1 also has only one nonzero element

δr
(2)
k+1 = τ 2fk+1/2m − r

(2)
k+1, (8.70)

which provides the corrections to all the components of x. Similarly, r
(2)
k+1 in the

above equation is from the Taylor expansion. The corrector coefficient matrix

is still diagonal with zero off-diagonal elements and nonzero diagonal elements

Ci i = ci for i = 0, 1, . . . , n. Here ci for the second-order differential equation
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have also been worked out by Gear (1971, p. 154). The most commonly used

Gear scheme for the second-order differential equation is still the fifth-order Gear

algorithm (with the Taylor expansion carried out up to n = 5), with c0 = 3/20,

c1 = 251/360, c2 = 1, c3 = 11/18, c4 = 1/6, and c5 = 1/60. The values of these

coefficients are obtained with the assumption that the force in Eq. (8.68) does not

have an explicit dependence on the velocity, that is, the first-order derivative of

r. If it does, c0 = 3/20 needs to be changed to c0 = 3/16 (Allen and Tildesley,

1987, pp. 340–2).

8.6 Constant pressure, temperature, and bond length

Several issues still need to be addressed when we want to compare the simulation

results with the experimental measurements. For example, environmental param-

eters, such as temperature or pressure, are the result of thermal or mechanical

contact of the system with the environment or the result of the equilibrium of the

system. For a macroscopic system, we deal with average quantities by means of

statistical mechanics, so it is highly desirable for the simulation environment to

be as close as possible to a specific ensemble. The scheme adopted in Section 8.4

for atomic cluster systems is closely related to the microcanonical ensemble,

which has the total energy of the system conserved. It is important that we also

be able to find ways to deal with constant-temperature and/or constant-pressure

conditions. We should emphasize that there have been many efforts to model

realistic systems with simulation boxes by introducing some specific procedures.

However, all these procedures do not introduce any new concepts in physics.

They are merely numerical techniques to make the simulation boxes as close as

possible to the physical systems under study.

Constant pressure: the Andersen scheme

The scheme for dealing with a constant-pressure environment was devised by

Andersen (1980) with the introduction of an environmental variable, the instan-

taneous volume of the system, in the effective Lagrangian. When the Lagrange

equation is applied to the Lagrangian, the equations of motion for the coordinates

of the particles and the volume result. The constant pressure is then a result of

the zero average of the second-order time derivative of the volume.

The effective Lagrangian of Andersen (1980) is given by

L =
N
∑

i=1

mi

2
L2ẋ2

i −
∑

i> j

V (Lxi j ) +
M

2
�̇2 − P0�, (8.71)

where the last two terms are added to deal with the constant pressure from the

environment. The parameter M can be viewed here as an effective inertia asso-

ciated with the expansion and contraction of the volume �, and P0 is the exter-

nal pressure, which introduces a potential energy P0� to the system under the
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assumption that the system is in contact with the constant-pressure environment.

The coordinate of each particle ri is rescaled with the dimension of the simulation

box, L = �1/3, because the distance between any two particles changes with L

and the coordinates independent of the volume are then given by

xi = ri/L , (8.72)

which are not directly related to the changing volume. Note that this effective

Lagrangian is not the result of any new physical principles or concepts but is

merely a method of modeling the effect of the environment in realistic systems.

Now if we apply the Lagrange equation to the above Lagrangian, we obtain the

equations of motion for the particles and the volume �,

ẍi =
gi

L
−

2�̇

3�
ẋi , (8.73)

�̈ =
P − P0

M
, (8.74)

where gi = fi/mi and P is given by

P =
1

3�

(

∑

i

mi L2ẋ2
i +

N
∑

i> j

ri j · fi j

)

, (8.75)

which can be interpreted as the instantaneous pressure of the system and has a

constant average P0, because 〈�̈〉 ≡ 0.

After we have the effective equations of motion, the algorithm can be worked

out quite easily. We will use

X = (x1, x2, · · · , xN ), (8.76)

G = (f1/m1, f2/m2, · · · , fN/m N ), (8.77)

to simplify the notation. If we apply the velocity version of the Verlet algorithm,

the difference equations for the volume and the rescaled coordinates are given by

�k+1 = �k + τ�̇k +
τ 2(Pk − P0)

2M
, (8.78)

Xk+1 =
(

1 −
τ 2�̇k

2�k

)

Xk + τ Ẋk +
τ 2Gk

2Lk

, (8.79)

�̇k+1 = �̇k+1/2 +
τ (Pk+1 − P0)

2M
, (8.80)

Ẋk+1 =
(

1 −
τ�̇k+1

2�k+1

)

Ẋk+1/2 +
τGk+1

2Lk+1

, (8.81)

where the values with index k + 1/2 are intermediate values before the pressure

and force are updated, with

�̇k+1/2 = �̇k +
τ (Pk − P0)

2M
, (8.82)

Ẋk+1/2 =
(

1 −
τ�̇k

2�k

)

Ẋk +
τGk

2Lk+1

, (8.83)
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which are usually evaluated immediately after the volume and the coordinates

are updated.

In practice, we first need to set up the initial positions and velocities of the

particles and the initial volume and its time derivative. The initial volume is deter-

mined from the given particle number and density, and its initial time derivative is

usually set to be zero. The initial coordinates of the particles are usually arranged

on a densely packed lattice, for example, a face-centered cubic lattice, and the

initial velocities are usually drawn from the Maxwell distribution. One should

test the program with different Ms in order to find the value of M that minimizes

the fluctuation.

A generalization of the Andersen constant-pressure scheme was introduced

by Parrinello and Rahman (1980; 1981) to allow the shape of the simulation

box to change as well. This generalization is important in the study of the struc-

tural phase transition. With the shape of the simulation box allowed to vary,

the particles can easily move to the lattice points of the structure with the low-

est free energy. The idea of Parrinello and Rahman can be summarized in the

Lagrangian

L =
1

2

N
∑

i=1

mi ẋ
T
i Bẋi −

N
∑

i> j

V (xi j ) +
M

2

3
∑

i, j=1

Ȧ2
i j − P0�, (8.84)

where yi is the coordinate of the i th particle in the vector representation of the

simulation box, � = a · (b × c), with

ri = x
(1)
i a + x

(2)
i b + x

(3)
i c. (8.85)

Here A is the matrix representation of (a,b, c) in Cartesian coordinates and

B = ATA. Instead of a single variable �, there are nine variables Ai j , with i,

j = 1, 2, 3; this allows both the volume size and the shape of the simulation box

to change. The equations of motion for xi and Ai j can be derived by applying

the Lagrange equation to the above Lagrangian. An external stress can also be

included in such a procedure (Parrinello and Rahman, 1981).

Constant temperature: the Nosé scheme

The constant-pressure scheme discussed above is usually performed with an ad

hoc constant-temperature constraint, which is done by rescaling the velocities

during the simulation to ensure the relation between the total kinetic energy and

the desired temperature in the canonical ensemble.

This rescaling can be shown to be equivalent to a force constraint up to first

order in the time step τ . The constraint method for the constant-temperature

simulation is achieved by introducing an artificial force −ηpi , which is similar

to a frictional force if η is greater than zero or to a heating process if η is less
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than zero. The equations of motion are modified under this force to

ṙi =
pi

mi

, (8.86)

v̇i =
fi

mi

− ηvi , (8.87)

where pi is the momentum of the i th particle and η is the constraint parameter,

which can be obtained from the relevant Lagrange multiplier (Evans et al., 1983)

in the Lagrange equations with

η =
2
∑

fi · vi
∑

mi v
2
i

= −
d EP/dt

GkBT
, (8.88)

which can be evaluated at every time step. Here G is the total number of degrees of

freedom of the system, and EP is the total potential energy. So one can simulate the

canonical ensemble averages from the equations for ri and vi given in Eqs. (8.86)

and (8.87).

The most popular constant-temperature scheme is that of Nosé (1984a; 1984b),

who introduced a fictitious dynamical variable to take the constant-temperature

environment into account. The idea is very similar to that of Andersen for the

constant-pressure case. In fact, one can put both fictitious variables together to

have simulations for constant pressure and constant temperature together. Here

we will briefly discuss the Nosé scheme.

We can introduce a rescaled effective Lagrangian

L =
N
∑

i=1

mi

2
s2ẋ2

i −
∑

i> j

V (xi j ) +
ms

2
v2

s − GkBT ln s, (8.89)

where s and vs are the coordinate and velocity of an introduced fictitious variable

that rescales the time and the kinetic energy in order to have the constraint of

the canonical ensemble satisfied. The rescaling is achieved by replacing the time

element dt with dt /s and holding the coordinates unchanged, that is, xi = ri . The

velocity is rescaled with time: ṙi = sẋi . We can then obtain the equation of motion

for the coordinate xi and the variable s by applying the Lagrange equation. Hoover

(1985; 1999) showed that the Nosé Lagrangian leads to a set of equations very

similar to the result of the constraint force scheme discussed at the beginning of

this subsection. The Nosé equations of motion are given in the Hoover version by

ṙi = vi , (8.90)

v̇i =
fi

mi

− ηvi , (8.91)

where η is given in a differential form,

η̇ =
1

ms

(

N
∑

i=1

p2
i

mi

− GkBT

)

, (8.92)

and the original variable s, introduced by Nosé, is related to η by

s = s0eη(t−t0), (8.93)
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with s0 as the initial value of s at t = t0. We can discretize the above equation

set easily with either the Verlet algorithm or one of the Gear schemes. Note that

the behavior of the parameter s is no longer directly related to the simulation; it

is merely a parameter Nosé introduced to accomplish the microscopic processes

happening in the constant-temperature environment. We can also combine the

Andersen constant-pressure scheme with the Nosé constant-temperature scheme

in a single effective Lagrangian

L =
N
∑

i=1

mi

2
s2 L2ẋ2

i −
∑

i> j

V (Lxi j ) +
ms

2
ṡ2 − GkBT ln s +

M

2
�̇2 − P0�, (8.94)

which is worked out in detail in the original work of Nosé (1984a; 1984b).

Another constant-temperature scheme was introduced by Berendsen et al. (1984)

with the parameter η given by

η =
1

ms

(

N
∑

i=1

mi v
2
i − GkBT

)

, (8.95)

which can be interpreted as a similar form of the constraint that differs from

the Hoover–Nosé form in the choice of η. For a review on the subject, see Nosé

(1991).

Constant bond length

Another issue we have to deal with in practice is that for large molecular systems,

such as biopolymers, the bond length of a pair of nearest neighbors does not

change very much even though the angle between a pair of nearest bonds does.

If we want to obtain accurate simulation results, we have to choose a time step

much smaller than the period of the vibration of each pair of atoms. This costs

a lot of computing time and might exclude the applicability of the simulation to

more complicated systems, such as biopolymers.

A procedure commonly known as the SHAKE algorithm (Ryckaert, Ciccotti,

and Berendsen, 1977; van Gunsteren and Berendsen, 1977) was introduced to

deal with the constraint on the distance between a pair of particles in the sys-

tem. The idea of this procedure is to adjust each pair of particles iteratively to

have

(

r2
i j − d2

i j

)

/d2
i j ≤ � (8.96)

in each time step. Here di j is the distance constraint between the i th and j th

particles and � is the tolerance in the simulation. The adjustment of the position

of each particle is performed after each time step of the molecular dynamics

simulation. Assume that we are working on a specific pair of particles and for the

lth constraint and that we would like to have

(ri j + δri j )
2 − d2

i j = 0, (8.97)
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where ri j = r j − ri is the new position vector difference after a molecular time

step starting from r
(0)
i j and the adjustments for the l − 1 constraints have been

completed. Here δri j = δr j − δri is the total amount of adjustment needed for

both particles.

One can show, in conjunction with the Verlet algorithm, that the adjustments

needed are given by

miδri = −gi j r
(0)
i j = −m jδr j , (8.98)

with gi j as a parameter to be determined. The center of mass of these two particles

remains the same during the adjustment.

If we substitute δri and δr j given in Eq. (8.98), we obtain
(

r
(0)
i j

)2

g2
i j + 2µi j r

(0)
i j · ri j gi j + µ2

i j

(

r 2
i j − d2

)

= 0, (8.99)

where µi j = mi m j/(mi + m j ) is the reduced mass of the two particles. If we

keep only the linear term in gi j , we have

gi j =
µi j

2r
(0)
i j · ri j

(

d2
i j − r 2

i j

)

, (8.100)

which is reasonable, because gi j is a small number during the simulation. More

importantly, by the end of the iteration, all the constraints will be satisfied as

well; all gi j go to zero at the convergence. Equation (8.100) is used to estimate

each gi j for each constraint in each iteration. After one has the estimate of gi j

for each constraint, the positions of the relevant particles are all adjusted. The

adjustments have to be performed several times until the convergence is reached.

For more details on the algorithm, see Ryckaert et al. (1977).

This procedure has been used in the simulation of chain-like systems as well

as of proteins and nucleic acids. Interested readers can find some detailed discus-

sions on the dynamics of proteins and nucleic acids in McCammon and Harvey

(1987).

8.7 Structure and dynamics of real materials

In this section, we will discuss some typical methods used to extract informa-

tion about the structure and dynamics of real materials in molecular dynamics

simulations.

A numerical simulation of a specific material starts with a determination of

the interaction potential in the system. In most cases, the interaction potential

is formulated in a parameterized form, which is usually determined separately

from the available experimental data, first principles calculations, and condition

of the system under study. The accuracy of the interaction potential determines the

validity of the simulation results. Accurate model potentials have been developed

for many realistic materials, for example, the Au (100) surface (Ercolessi, Tosatti,

and Parrinello, 1986) and Si3N4 ceramics (Vashishta et al., 1995). In the next
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section, we will discuss an ab initio molecular dynamics scheme in which the

interaction potential is obtained by calculating the electronic structure of the

system at each particle configuration.

We then need to set up a simulation box under the periodic boundary condition.

Because most experiments are performed in a constant-pressure environment, we

typically use the constant-pressure scheme developed by Andersen (1980) or its

generalization (Parrinello and Rahman, 1980; 1981). The size of the simulation

box has to be decided together with the available computing resources and the

accuracy required for the quantities to be evaluated. The initial positions of the

particles are usually assigned at the lattice points of a closely packed structure, for

example, a face-centered cubic structure. The initial velocities of the particles are

drawn from the Maxwell distribution for a given temperature. The temperature

can be changed by rescaling the velocities. This is extremely useful in the study

of phase transitions with varying temperature, such as the transition between

different lattice structures, glass transition under quenching, or liquid–solid tran-

sition when the system is cooled down slowly. The advantage of simulation over

actual experiment also shows up when we want to observe some behavior that is

not achievable experimentally due to the limitations of the technique or equip-

ment. For example, the glass transition in the Lennard–Jones system is observed

in molecular dynamics simulations but not in the experiments for liquid Ar,

because the necessary quenching rate is so high that it is impossible to achieve it

experimentally.

Studying the dynamics of different materials requires a more general time-

dependent density–density correlation function

C(r, r′; t) = 〈ρ̂(r + r′, t)ρ̂(r′, 0)〉, (8.101)

with the time-dependent density operator given by

ρ̂(r, t) =
N
∑

i=1

δ[r − ri (t)]. (8.102)

If the system is homogeneous, we can integrate out r′ in the time-dependent

density–density correlation function to reach the van Hove time-dependent dis-

tribution function (van Hove, 1954)

G(r, t) =
1

ρN

〈

N
∑

i, j

δ{r − [ri (t) − r j (0)]}

〉

. (8.103)

The dynamical structure factor measured in an experiment, for example, neutron

scattering, is given by the Fourier transform of G(r, t) as

S(k, ω) =
ρ

2π

∫

ei(ωt−k·r)G(r, t) dr dt. (8.104)

The above equation reduces to the static case with

S(k) − 1 = 4πρ

∫

sin kr

kr
[g(r ) − 1]r 2 dr (8.105)
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if we realize that

G(r, 0) = g(r) +
δ(r)

ρ
(8.106)

and

S(k) =
∫ ∞

−∞
S(k, ω) dω, (8.107)

where g(r) is the pair distribution discussed earlier in this chapter and S(k) is

the angular average of S(k). Here G(r, t) can be interpreted as the probability of

observing one of the particles at r at time t if a particle was observed at r = 0

at t = 0. This leads to the numerical evaluation of G(r, t), which is the angular

average of G(r, t). If we write G(r, t) in two parts,

G(r, t) = Gs(r, t) + Gd(r, t), (8.108)

with Gs(r, t) the probability of observing the same particle that was at r = 0 at

t = 0, and Gd(r, t) the probability of observing other particles, we have

Gd(r, t) ≃
1

ρ

〈�N (r,�r ; t)〉
��(r,�r )

, (8.109)

where ��(r,�r ) ≃ 4πr2�r is the volume of a spherical shell with radius r and

thickness �r , and �N (r,�r ; t) is the number of particles in the spherical shell

at time t . The position of each particle at t = 0 is chosen as the origin in the

evaluation of Gd(r, t) and the average is taken over all the particles in the system.

Note that this is different from the evaluation of g(r ), in which we always select a

particle position as the origin and take the average over time. We can also take the

average over all the particles in the evaluation of g(r ). Here Gs(r, t) can be evalu-

ated in a similar fashion. Because Gs(r, t) represents the probability for a particle

to be at a distance r at time t from its original position at t = 0, we can introduce

�2n(t) =
1

N

〈

N
∑

i=1

[ri (t) − ri (0)]2n

〉

=
∫

r 2n Gs(r, t) dr (8.110)

in the evaluation of the diffusion coefficient with n = 1. The diffusion coefficient

can also be evaluated from the autocorrelation function

c(t) = 〈v(t) · v(0)〉 =
1

N

N
∑

i=1

[vi (t) · vi (0)], (8.111)

with

D =
1

3c(0)

∫ ∞

0

c(t) dt, (8.112)

because the velocity of each particle at each time step vi (t) is known from the

simulation. The velocity correlation function can also be used to obtain the

power spectrum

P(ω) =
6

πc(0)

∫ ∞

0

c(t) cosωt dt, (8.113)
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which has many features similar to those of the phonon spectrum of the system: for

example, a broad peak for the glassy state and sharp features for a crystalline state.

Thermodynamical quantities can also be evaluated from molecular dynam-

ics simulations. For example, if a simulation is performed under the constant-

pressure condition, we can obtain physical quantities such as the particle density,

pair-distribution function, and so on, at different temperature. The inverse of

the particle density is called the specific volume, denoted VP (T ). The thermal

expansion coefficient under the constant-pressure condition is then given by

αP =
∂VP (T )

∂T
, (8.114)

which is quite different when the system is in a liquid phase than it is in a solid

phase. Furthermore, we can calculate the temperature-dependent enthalpy

H = E + P�, (8.115)

where E is the internal energy given by

E =

〈

N
∑

i=1

mi

2
v2

i +
N
∑

i 	= j

V (ri j )

〉

, (8.116)

with P the pressure, and � the volume of the system. The specific heat under the

constant-pressure condition is then obtained from

cP =
1

N

∂H

∂T
. (8.117)

The specific heat under the constant-volume condition can be derived from the

fluctuation of the internal energy 〈(δE)2〉 = 〈[E − 〈E〉]2〉 with time, given as

cV =
〈(δE)2〉
kBT 2

. (8.118)

The isothermal compressibility κT is then obtained from the identity

κT =
T�α2

P

cP − cV

, (8.119)

which is also quite different for the liquid phase than for the solid phase. For

more discussions on the molecular dynamics simulation of glass transition, see

Yonezawa (1991).

Other aspects related to the structure and dynamics of a system can be studied

through molecular dynamics simulations. The advantage of molecular dynamics

over a typical stochastic simulation is that molecular dynamics can give all the

information on the time dependence of the system, which is necessary for analyz-

ing the structural and dynamical properties of the system. Molecular dynamics is

therefore the method of choice in computer simulations of many-particle systems.

However, stochastic simulations, such as Monte Carlo simulations, are sometimes

easier to perform for some systems and are closely related to the simulations of

quantum systems.
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8.8 Ab initio molecular dynamics

In this section, we outline a very interesting simulation scheme that combines the

calculation of the electronic structure and the molecular dynamics simulation for

a system. This is known as ab initio molecular dynamics, which was devised and

put into practice by Car and Parrinello (1985).

The maturity of molecular dynamics simulation schemes and the great

advances in computing capacity have made it possible to perform molecular

dynamics simulations for amorphous materials, biopolymers, and other com-

plex systems. However, in order to obtain an accurate description of a specific

system, we have to know the precise behavior of the interactions among the

particles, that is, the ions in the system. Electrons move much faster than ions

because the electron mass is much smaller than that of an ion. The position

dependence of the interactions among the ions in a given system is therefore

determined by the distribution of the electrons (electronic structure) at the spe-

cific moment. Thus, a good approximation of the electronic structure in a cal-

culation can be obtained with all the nuclei fixed in space for that moment.

This is the essence the Born–Oppenheimer approximation, which allows the

degrees of freedom of the electrons to be treated separately from those of the

ions.

In the past, the interactions among the ions were given in a parameterized

form based on experimental data, quantum chemistry calculations, or the specific

conditions of the system under study. All these procedures are limited due to

the complexity of the electronic structure of the actual materials. We can easily

obtain accurate parameterized interactions for the inert gases, such as Ar, but

would have a lot of difficulties in obtaining an accurate parameterized interaction

that can produce the various structures of ice correctly in the molecular dynamics

simulation.

It seems that a combined scheme is highly desirable. We can calculate the

many-body interactions among the ions in the system from the electronic structure

calculated at every molecular dynamics time step and then determine the next

configuration from such ab initio interactions. This can be achieved in principle,

but in practice the scheme is restricted by the existing computing capacity. The

combined method devised by Car and Parrinello (1985) was the first in its class

and has been applied to the simulation of real materials.

Density functional theory

The density functional theory (Hohenberg and Kohn, 1964; Kohn and Sham,

1965) was introduced as a practical scheme to cope with the many-electron effect

in atoms, molecules, and solids. The theorem proved by Hohenberg and Kohn

(1964) states that the ground-state energy of an interacting system is the optimized

value of an energy functional E[ρ(r)] of the electron density ρ(r) and that the
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corresponding density distribution of the optimization is the unique ground-state

density distribution. Symbolically, we can write

E[ρ(r)] = Eext[ρ(r)] + EH[ρ(r)] + EK[ρ(r)] + Exc[ρ(r)], (8.120)

where Eext[ρ(r)] is the contribution from the external potential Uext(r) with

Eext[ρ(r)] =
∫

Uext(r)ρ(r) dr, (8.121)

EH [ρ(r)] is the Hartree type of contribution due to the electron–electron inter-

action, given by

EH[ρ(r)] =
1
2
e2

4πǫ0

∫

ρ(r′)ρ(r)

|r′ − r|
dr dr′, (8.122)

EK is the contribution of the kinetic energy, and Exc denotes the rest of the

contributions and is termed the exchange–correlation energy functional.

In general, we can express the electron density in a spectral representation

ρ(r) =
∑

i

ψ
†
i (r)ψi (r), (8.123)

where ψ
†
i (r) is the complex conjugate of the wavefunction ψi (r) and the sum-

mation is over all the degrees of freedom, that is, all the occupied states with

different spin orientations. Then the kinetic energy functional can be written

as

EK[ρ(r)] = −
h̄2

2m

∫

∑

i

ψ
†
i (r)∇2ψi (r) dr. (8.124)

There is a constraint from the total number of electrons in the system, namely,
∫

ρ(r) dr = N , (8.125)

which introduces the Lagrange multipliers into the variation. If we use the spectral

representation of the density in the energy functional and apply the Euler equation

with the Lagrange multipliers, we have

δE[ρ(r)]

δψ
†
i (r)

− εiψi (r) = 0, (8.126)

which leads to the Kohn–Sham equation

[

−
h̄2

2m
∇2 + VE(r)

]

ψi (r) = εiψi (r), (8.127)

where VE(r) is an effective potential given by

VE(r) = Uext(r) + VH(r) + Vxc(r), (8.128)
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with

Vxc(r) =
δExc[ρ(r)]

δρ(r)
, (8.129)

which cannot be obtained exactly. A common practice is to approximate it by its

homogeneous density equivalent, the so-called local approximation, in which we

assume that Vxc(r) is given by the same quantity of a uniform electron gas with

density equal to ρ(r). This is termed the local density approximation. The local

density approximation has been successfully applied to many physical systems,

including atomic, molecular, and condensed-matter systems. The unexpected

success of the local density approximation in materials research has made it a

standard technique for calculating electronic properties of new materials and

systems. The procedure for calculating the electronic structure with the local

density approximation can be described in several steps. We first construct the

local approximation of Vxc(r) with a guessed density distribution. Then the Kohn–

Sham equation is solved, and a new density distribution is constructed from the

solution. With the new density distribution, we can improve Vxc(r) and then solve

the Kohn–Sham equation again. This procedure is repeated until convergence is

reached. Interested readers can find detailed discussions on the density functional

theory in many monographs or review articles, for example, Kohn and Vashishta

(1983), and Jones and Gunnarsson (1989).

The Car---Parrinello simulation scheme

The Hohenberg–Kohn energy functional forms the Born–Oppenheimer potential

surface for the ions in the system. The idea of ab initio molecular dynamics is

similar to the relaxation scheme we discussed in Chapter 7. We introduced a

functional

U =
∫

{

1

2
ǫ(x)

[

dψ(x)

dx

]2

− ρ(x)ψ(x)

}

dx (8.130)

for the one-dimensional Poisson equation. Note that ρ(x) here is the charge

density instead of the particle density. The physical meaning of this functional

is the electrostatic energy of the system. After applying the trapezoid rule to the

integral and taking a partial derivative of U with respect to φi , we obtain the

corresponding difference equation

(Hi + ρi )ψi = 0, (8.131)

for the one-dimensional Poisson equation. Here Hiφi denotes ǫi+1/2φi+1 +
ǫi−1/2φi−1 − (ǫi+1/2 + ǫi−1/2)φi . If we combine the above equation with the re-

laxation scheme discussed in Section 7.5, we have

ψ
(k+1)
i = (1 − p)ψ

(k)
i + p(Hi + ρi + 1)ψ

(k)
i , (8.132)
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which would optimize (minimize) the functional (the electrostatic energy) as

k → ∞. The indices k and k + 1 are for iteration steps, and the index n is for the

spatial points. The iteration can be interpreted as a fictitious time step, since we

can rewrite the above equation as

ψ
(k+1)
i − ψ

(k)
i

p
= (Hi + ρi )ψ

(k)
i , (8.133)

with p acting like a fictitious time step. The solution converges to the true solution

of the Poisson equation as k goes to infinity if the functional U decreases during

the iterations.

The ab initio molecular dynamics is devised by introducing a fictitious time-

dependent equation for the electron degrees of freedom:

µ
d2ψi (r, t)

dt2
= −

1

2

δE[ρ(r, t); Rn]

δψ
†
i (r, t)

+
∑

j

�i jψ j (r), (8.134)

where µ is an adjustable parameter introduced for convenience, �i j is the

Lagrange multiplier, introduced to ensure the orthonormal condition of the wave-

functions ψi (r, t), and the summation is over all the occupied states. Note that

the potential energy surface E is a functional of the electron density as well as

a function of the ionic coordinates Rn for n = 1, 2, . . . , Nc, with a total of Nc

ions in the system. In practice, we can also consider the first-order time derivative

equation, with d2ψi (r, t)/dt2 replaced by the first-order derivative dψi (r, t)/dt ,

because either the first-order or the second-order derivative will approach zero

at the limit of convergence. Second-order derivatives were used in the original

work of Car and Parrinello and were later shown to yield a fast convergence if a

special damping term is introduced (Tassone, Mauri, and Car, 1994). The ionic

degrees of freedom are then simulated from Newton’s equation

Mn

d2Rn

dt2
= −

∂E[ρ(r, t); Rn]

∂Rn

, (8.135)

where Mn and Rn are the mass and the position vector of the nth particle. The

advantage of ab initio molecular dynamics is that the electron degrees of freedom

and the ionic degrees of freedom are simulated simultaneously by the above

equations. Since its introduction by Car and Parrinello (1985), the method has

been applied to many systems, especially those without a crystalline structure,

namely, liquids and amorphous materials. We will not go into more detail on

the method or its applications; interested readers can find them in the review by

Tassone, Mauri, and Car (1994). Progress in ab initio molecular dynamics has

also included mapping the Hamiltonian onto a tight-binding model in which the

evaluation of the electron degrees of freedom is drastically simplified (Wang,

Chan, and Ho, 1989). This approach has also been applied to many systems,

for example, amorphous carbon and carbon clusters. More discussions on the

method can be found in several review articles, for example, Oguchi and Sasaki

(1991).
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Exercises

8.1 Show that the Verlet algorithm preserves the time reversal of Newton’s

equation.

8.2 Derive the velocity version of the Verlet algorithm and show that the posi-

tion update has the same accuracy as in the original Verlet algorithm.

8.3 Write a program that uses the velocity version of the Verlet algorithm to

simulate the small clusters of ions (Na+)n(Cl−)m for small n and m. Use

the empirical interaction potential given in Eq. (5.64) for the ions and set

up the initial configuration as the equilibrium configuration. Assign initial

velocities from the Maxwell distribution. Discuss the time dependence of

the kinetic energy with different total energies.

8.4 Explore the coexistence of the liquid and solid phases in a Lennard–

Jones cluster that has an intermediate size of about 150 particles through

the microcanonical molecular dynamics simulation. Analyze the melt-

ing process in the cluster and the size dependence of the coexistence

region.

8.5 A two-dimensional system can behave quite differently from its three-

dimensional counterpart. Use the molecular dynamics technique to study

a two-dimensional Lennard–Jones cluster of the intermediate size of about

100 particles. Do the liquid and solid phases coexist in any temperature

region? Discuss the difference found between the three-dimensional and

two-dimensional clusters.

8.6 Develop a program with the fifth-order Gear predictor–corrector scheme

and apply it to the damped pendulum under a sinusoidal driving force. Study

the properties of the pendulum with different values of the parameters.

8.7 Apply the fifth-order Gear scheme to study the long-time behavior of a clas-

sical helium atom in two dimensions. Explore different initial conditions.

Is the system unstable or chaotic under certain initial conditions?

8.8 Derive the Hoover equations from the Nosé Lagrangian. Show that the gen-

eralized Lagrangian given in Section 8.6 can provide the correct equations

of motion to ensure the constraint of constant temperature as well as that

of constant pressure.

8.9 Develop a molecular dynamics program to study the structure of a cluster

of identical charges inside a three-dimensional isotropic, harmonic trap.

Under what condition does the cluster form a crystal? What happens if the

system is confined in a plane?

8.10 Show that the Parrinello–Rahman Lagrangian allows the shape of the

simulation box to change, and derive equations of motion from it. Find

the Lagrangian that combines the Parrinello–Rahman Lagrangian and

Nosé Lagrangian and derive the equations of motion from this generalized

Lagrangian.
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8.11 For quantum many-body systems, the n-body density function is defined

by

ρn(r1, r2, . . . , rn) =
1

Z

N !

(N − n)!

∫

|�(R)|2 drn+1 drn+2 · · · drN ,

where �(R) is the ground-state wavefunction of the many-body system

and Z is the normalization constant given by

Z =
∫

|�(R)|2 dr1 dr2 · · · drN .

The pair-distribution function is related to the two-body density function

through

ρ(r)g(r, r′)ρ(r′) = ρ2(r, r′).

Show that
∫

ρ(r)[g̃(r, r′) − 1] dr = −1,

where

g̃(r, r′) =
∫ 1

0

g(r, r′; λ) dλ,

with g(r, r′; λ) as the pair-distribution function under the scaled interaction

V (r, r′; λ) = λV (dr, r′).

8.12 Show that the exchange–correlation energy functional is given by

Exc[ρ(r)] =
1

2

∫

ρ(r)V (r, r′)[g̃(r, r′) − 1]ρ(r′) dr dr′,

with g̃(r, dr′) given from the last problem.



Chapter 9

Modeling continuous systems

It is usually more difficult to simulate continuous systems than discrete ones,

especially when the properties under study are governed by nonlinear equations.

The systems can be so complex that the length scale at the atomic level can

be as important as the length scale at the macroscopic level. The basic idea in

dealing with complicated systems is similar to a divide-and-conquer concept,

that is, dividing the systems with an understanding of the length scales involved

and then solving the problem with an appropriate method at each length scale. A

specific length scale is usually associated with an energy scale, such as the average

temperature of the system or the average interaction of each pair of particles. The

divide-and-conquer schemes are quite powerful in a wide range of applications.

However, each method has its advantages and disadvantages, depending on the

particular system.

9.1 Hydrodynamic equations

In this chapter, we will discuss several methods used in simulating continuous

systems. First we will discuss a quite mature method, the finite element method,

which sets up the idea of partitioning the system according to physical condition.

Then we will discuss another method, the particle-in-cell method, which adopts a

mean-field concept in dealing with a large system involving many, many atoms,

for example, 1023 atoms. This method has been very successful in the simulations

of plasma, galactic, hydrodynamic, and magnetohydrodynamic systems. Then

we will briefly highlight a relatively new method, the lattice Boltzmann method,

which is closely related to the lattice-gas method of cellular automata and has

been applied in modeling several continuous systems.

Before going into the detail of each method, we introduce the hydrodynamic

equations. The equations are obtained by analyzing the dynamics of a small

element of fluid in the system and then taking the limit of continuity. We can

obtain three basic equations by examining the changes in the mass, momentum,

and energy of a small element in the system. For simplicity, let us first assume

that the fluid is neutral and not under an external field. The three fundamental

256
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hydrodynamic equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (9.1)

∂

∂t
(ρv) + ∇ · Π = 0, (9.2)

∂

∂t

(

ρε +
1

2
ρv2

)

+ ∇ · je = 0. (9.3)

The first equation is commonly known as the continuity equation, which is the

result of mass conservation. The second equation is known as the Navier–Stokes

equation, which comes from Newton’s equation applied to an infinitesimal ele-

ment in the fluid. The final equation is the result of the work–energy theorem. In

these equations, ρ is the mass density, v is the velocity, ε is the internal energy

per unit mass, Π is the momentum flux tensor, and je is the energy flux density.

The momentum flux tensor can be written as

Π = ρvv − Γ, (9.4)

where Γ is the stress tensor of the fluid, given as

Γ = η
[

∇v + (∇v)T
]

+
[(

ζ −
2η

3

)

∇ · v − P

]

I, (9.5)

where η and ζ are coefficients of bulk and shear viscosity, P is the pressure in

the fluid, and I is the unit tensor. The energy flux density is given by

je = v

(

ρε +
1

2
ρv2

)

− v · Γ − κ∇T, (9.6)

where the last term is the thermal energy flow due to the gradient of the temper-

ature T , with κ being the thermal conductivity. The above set of equations can

be solved together with the equation of state

f (ρ, P, T ) = 0, (9.7)

which provides a particular relationship between several thermal variables for

the given system. Now we can add the effects of external fields into the related

equations. For example, if gravity is important, we can modify Eq. (9.2) to

∂

∂t
(ρv) + ∇ · Π = ρg, (9.8)

where g is the gravitational field given by

g = −∇�. (9.9)

Here � is the gravitational potential from the Poisson equation

∇2� = 4πGρ, (9.10)

with G being the gravitational constant.
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When the system is charged, electromagnetic fields become important. We

then need to modify the momentum flux tensor, energy density, and energy flux

density. A term (BB − IB2/2)/µ should be added to the momentum flux tensor.

A magnetic field energy density term B2/(2µ) should be added to the energy

density, and an extra energy flux term E × B/µ should be added to the energy

flux density. Here µ is the magnetic permeability with a limit of µ = µ0 in free

space. The electric current density j, electric field E, and magnetic field B are

related through the Maxwell equations and the charge transport equation. We will

come back to this point in the later sections of this chapter.

These hydrodynamic or magnetohydrodynamic equations can be solved in

principle with the finite difference methods discussed in Chapter 7. However,

in this chapter, we introduce some other methods, mainly based on the divide-

and-conquer schemes. For more detailed discussions on the hydrodynamic and

magnetohydrodynamic equations, see Landau and Lifshitz (1987) and Lifshitz

and Pitaevskii (1981).

9.2 The basic finite element method

In order to show how a typical finite element method works for a specific problem,

let us take the one-dimensional Poisson equation as an example. Assume that

the charge distribution is ρ(x) and the equation for the electrostatic potential

is

d2φ(x)

dx2
= −

ρ(x)

ǫ0

. (9.11)

In order to simplify our discussion here, let us assume that the boundary con-

dition is given as φ(0) = φ(1) = 0. As discussed in Chapter 4, we can always

express the solution in terms of a complete set of orthogonal basis functions

as

φ(x) =
∑

i

ai ui (x), (9.12)

where the basis functions ui (x) satisfy

∫ 1

0

u j (x)ui (x) dx = δi j (9.13)

and ui (0) = ui (1) = 0. We have assumed that ui (x) is a real function and that the

summation is over all the basis functions. One of the choices for ui (x) is to have

ui (x) =
√

2 sin iπx . In order to obtain the actual value of φ(x), we need to solve

all the coefficients ai by applying the differential equation and the orthogonal

condition in Eq. (9.13). This becomes quite a difficult task if the system has a

higher dimensionality and an irregular boundary.

The finite element method is designed to find a good approximation of the

solution for irregular boundary conditions or in situations of rapid change of the
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solution. Typically, the approximation is still written as a series

φn(x) =
n
∑

i=1

ai ui (x), (9.14)

with a finite number of terms. Here ui (x) is a set of linearly independent

local functions, each defined in a small region around a node xi . If we use this

approximation in the differential equation, we have a nonzero value

rn(x) = φ′′
n (x) +

ρ(x)

ǫ0

, (9.15)

which would be zero if φn(x) were the exact solution. The goal now is to set up a

scheme that would make rn(x) small over the whole region during the process of

determining all ai . The selection of ui (x) and the procedure for optimizing rn(x)

determine how accurate the solution is for a given n. We can always improve the

accuracy with a higher n. One scheme for performing optimization is to introduce

a weighted integral

gi =
∫ 1

0

rn(x)w i (x) dx, (9.16)

which is then forced to be zero during the determination of ai . Here w i (x) is a

selected weight.

The procedure just described is the essence of the finite element method. The

region of interest is divided into many small pieces, usually of the same topology

but not the same size, for example, different triangles for a two-dimensional

domain. Then a set of linearly independent local functions ui (x) is selected,

with each defined around a node and its neighborhood. We then select the weight

w i (x), which is usually chosen as a local function as well. For the one-dimensional

Poisson equation, the weighted integral becomes

gi =
∫ 1

0

[

n
∑

j=1

a j u
′′
j (x) +

ρ(x)

ǫ0

]

w i (x) dx = 0, (9.17)

which is equivalent to a linear equation set

Aa = b, (9.18)

with

Ai j = −
∫ 1

0

u′′
i (x)w j (x) dx (9.19)

and

bi =
1

ǫ0

∫ 1

0

ρ(x)w i (x) dx . (9.20)

The advantage of choosing ui (x) and w i (x) as local functions lies in the solution

of the linear equation set given in Eq. (9.18). Basically, we need to solve only a

tridiagonal or a band matrix problem, which can be done quite quickly. The idea
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is to make the problem computationally simple but numerically accurate. That

means the choice of the weight w i (x) is rather an art. A common choice is that

w i (x) = ui (x), which is called the Galerkin method.

Now let us consider in detail the application of the Galerkin method to the

one-dimensional Poisson equation. We can divide the region [0, 1] into n + 1

equal intervals with x0 = 0 and xn+1 = 1 and take

ui (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x − xi−1)/h for x ∈ [xi−1, xi ],

(xi+1 − x)/h for x ∈ [xi , xi+1],

0 otherwise.

(9.21)

Here h = xi − xi−1 = 1/(n + 1) is the spatial interval. Note that this choice

of ui (x) satisfies the boundary condition. Let us take a very simple charge

distribution

ρ(x) = ǫ0π
2 sinπx (9.22)

for illustrative purposes. We can easily determine the weighted integrals to obtain

the matrix elements

Ai j =
∫ 1

0

u′
i (x)u′

j (x) dx =

⎧

⎪

⎨

⎪

⎩

2/h for i = j,

−1/h for i = j ± 1,

0 otherwise

(9.23)

and the vector

bi =
1

ǫ0

∫ 1

0

ρ(x)ui (x) dx

=
π

h
(xi−1 + xi+1 − 2xi ) cosπxi (9.24)

+
1

h
(2 sinπxi − sinπxi−1 − sinπxi+1).

Now we are ready to put all these values into a program. Note that the coefficient

matrix A is automatically symmetric and tridiagonal because the local basis ui (x)

is confined in the region [xi−1, xi+1]. As we discussed in Chapters 2, 5, and 7, an

LU decomposition scheme can easily be devised to solve this tridiagonal matrix

problem. Here is the implementation of the algorithm.

// Program for the one-dimensional Poisson equation.

import java.lang.*;
public class Poisson {

final static int n = 99, m = 2;
public static void main(String argv[]) {
double d[] = new double[n];
double b[] = new double[n];
double c[] = new double[n];
double h = 1.0/(n+1), pi = Math.PI;

// Evaluate the coefficient matrix elements
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Fig. 9.1 Numerical

solution of the

one-dimensional

Poisson equation

obtained with the

program given in the

text.

for (int i=0; i<n; ++i) {
d[i] = 2;
c[i] = -1;
double xm = h*i;
double xi = xm + h;
double xp = xi + h;
b[i] = 2*Math.sin(pi*xi) - Math.sin(pi*xm)

-Math.sin(pi*xp);
}

// Obtain the solution
double u[] = tridiagonalLinearEq(d, c, c, b);

// Output the result
double x = h;

double mh = m*h;

for (int i=0; i<n; i+=m) {
System.out.println(x + " " + u[i]);
x += mh;

}
}

// Method to solve the tridiagonal linear equation set.

public static double[] tridiagonalLinearEq(double d[],
double e[], double c[], double b[]) {...}

}

The result from the above program is plotted in Fig. 9.1. As we can easily show, the

above problem has an analytic solution, φ(x) = sinπx . There is one more related

issue involved in the Galerkin method, that is, dealing with different boundary

conditions. We have selected a very simple boundary condition in the above

example. In general, we may have nonzero boundary conditions, for example,
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φ(0) = φ0 and φ(1) = φ1. We can write the solution as

φn(x) = (1 − x)φ0 + xφ1 +
n
∑

i=1

ai ui (x), (9.25)

in which the first two terms satisfy the boundary conditions; the summation part is

zero at the boundaries. Similarly, if the boundary conditions are of the Neumann

type or a mixed type, special care can be taken by adding a couple of terms and

the local basis ui (x) can be made to satisfy homogeneous boundary conditions

only. We will discuss a few of other situations in the next section.

9.3 The Ritz variational method

The basic finite element method discussed above resembles the idea of the dis-

cretization scheme of the finite difference method discussed in Chapter 7. In

the relaxation scheme further developed there a functional was constructed that

would lead to the original differential equation when optimized. For example, the

functional for the one-dimensional Helmholtz equation

d2φ(x)

dx2
+ k2φ(x) = −s(x), (9.26)

where k2 is a parameter (or eigenvalue) and s(x) is a function of x , defined in the

region [0, 1], is given by

E[φ(x)] =
∫ 1

0

{

1

2

[

φ′2(x) − k2φ2(x)
]

− s(x)φ(x)

}

dx, (9.27)

which leads to the original differential equation from the Euler–Lagrange

equation

δE[φ(x)]

δφ(x)
= 0, (9.28)

with the condition that the variations at the boundaries are zero. What we did in

Chapter 7 was to discretize the integrand of the functional and then consider the

solution at each lattice point as an independent function when the optimization

was performed. A difference equation was obtained from the Euler–Lagrange

equation and acted as a finite difference approximation of the original differential

equation.

The variational principle used is called the Ritz variational principle, which

ensures that the true solution of the differential equation has the lowest value of

E[φ(x)]. An approximate solution is better the lower its value of E[φ(x)]. Thus,

there are two basic steps in the Ritz variational scheme. A proper functional for a

specific differential equation has to be constructed first. Then we can approximate

the solution of the equation piece by piece in each finite element and apply the

Ritz variational principle to obtain the linear equation set for the coefficients of

the approximate solution.
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Let us here use the one-dimensional Helmholtz equation to demonstrate some

details of the Ritz variational method. The approximate solution is still expressed

as a linear combination of a set of local functions

φn(x) ≃
n
∑

i=1

ai ui (x), (9.29)

which are linearly independent. Here ui (x) is usually defined in the neighborhood

of the i th node. The essence of the Ritz variational method is to treat each

coefficient ai as an independent variational parameter. The optimization is then

done with respect to each ai with

∂E[(φn(x)]

∂ai

= 0, (9.30)

for i = 1, 2, . . . , n, which produces a linear equation set

Aa = b, (9.31)

with

Ai j =
∂2 E[φn(x)]

∂ai∂a j

=
∫ 1

0

[u′
i (x)u′

j (x) − k2ui (x)u j (x)] dx (9.32)

and

bi =
∫ 1

0

s(x)ui (x) dx . (9.33)

The Ritz variational scheme actually reaches the same linear equation set as the

Galerkin method for this specific problem, because

∫ 1

0

u′′
i (x)u j (x) dx = −

∫ 1

0

u′
i (x)u′

j (x) dx, (9.34)

if ui (x) or u′
i (x) is zero at the boundaries. In fact, if the first two terms in E[φ(x)]

together are positive definite, the Ritz method is equivalent to the Galerkin method

for problems with homogeneous boundary conditions in general.

In most cases, it is much easier to deal with the so-called weak form of the

original differential equation. Here we demonstrate how to obtain the weak form

of a differential equation. If we still take the Helmholtz equation as an example,

we can multiply it by a function ψ(x), then we have
∫ 1

0

[φ′′(x) + k2φ(x) + s(x)]ψ(x) dx = 0 (9.35)

after integration. Here ψ(x) is assumed to be squarely integrable, with ψ(0) =
ψ(1) = 0. The reverse is also true from the fundamental variational theorem,

which states that if we have
∫ b

a

r (x)ψ(x) dx = 0 (9.36)
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for any given function ψ(x), with ψ(a) = ψ(b) = 0, then the equation

r (x) = 0 (9.37)

will result. The only restriction on ψ(x) is that it has to be squarely integrable.

Now if we integrate the first term of Eq. (9.35) by parts, we have
∫ 1

0

{φ′(x)ψ ′(x) − [k2φ(x) + s(x)]ψ(x)}dx = 0, (9.38)

which is the so-called weak form of the original differential equation, because

now only the first-order derivatives are involved in the above integral. We need

to realize that the solution of the weak form is not necessarily the same as the

original differential equation, especially when the second-order derivative ofφ(x)

is not well behaved. The weak form can be solved approximately by taking the

linear combination

φn(x) =
n
∑

i=0

ai ui (x), (9.39)

withψ(x) = u j (x). Then the weak form of the equation becomes a linear equation

set

n
∑

i=1

ai

∫ 1

0

[u′
i (x)u′

j (x) − k2ui (x)u j (x) − s(x)ui (x)]dx = 0, (9.40)

for j = 1, 2, . . . , n. This is exactly the same as the equation derived from the

Ritz variational scheme. In most cases, the first and second parts of the coefficient

matrix are written separately as A = K + M, where

Ki j =
∫ 1

0

u′
i (x)u′

j (x) dx (9.41)

is referred to as the stiffness matrix and

Mi j = −k2

∫ 1

0

ui (x)u j (x) dx (9.42)

is referred to as the mass matrix. For the case of s(x) = 0, we have an eigenvalue

problem with A still being an n × n matrix and b = 0. The actual forms of the

matrix elements are given by the choice of ui (x). A good example is the choice of

ui (x) discussed in the preceding section. The eigenvalues can be obtained from

|A| = 0. (9.43)

When we have the exact forms of K and M, we can use the schemes developed

in Chapter 5 to find all the quantities associated with them. Note that if we

choose ui (x) to make K and M tridiagonal, the numerical complexity is reduced

drastically.

As we have mentioned, the boundary condition always needs special atten-

tion in the choice of ui (x) and the construction of φn(x). Here we illustrate
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the modification under different boundary conditions from the solution of the

Sturm–Liouville equation

[p(x)φ′(x)]′ − r (x)φ(x) + λw(x)φ(x) = s(x), (9.44)

where λ is the eigenvalue and p(x), r (x), and w(x) are functions of x . The Sturm–

Liouville equation is a general form of some very important equations in physics

and engineering, for example, the Legendre equation and the spherical Bessel

equation. We can rewrite the Sturm–Liouville equation as

−[p(x)φ′(x)]′ + q(x)φ(x) + s(x) = 0, (9.45)

for the convenience of the variational procedure and assume that p(x), q(x), and

s(x) are well-behaved functions, that is, continuous and squarely integrable in

most cases. We can easily show that, for homogeneous boundary conditions, the

functional

E[φ(x)] =
1

2

∫ 1

0

[p(x)φ′2(x) + q(x)φ2(x) + 2s(x)φ(x)]dx (9.46)

will produce the given differential equation under optimization. Now if the bound-

ary condition is the so-called natural boundary condition

φ′(0) + αφ(0) = 0, (9.47)

φ′(1) + βφ(1) = 0, (9.48)

where α and β are some given parameters, we can show that the functional

E[φ(x)] =
1

2

∫ 1

0

[p(x)φ′2(x) + q(x)φ2(x) + 2s(x)φ(x)]dx

−
α

2
p(0)φ2(0) +

β

2
p(1)φ2(1) (9.49)

will produce the Sturm–Liouville equation with the correct boundary condition.

We can convince ourselves by taking the functional variation of E[φ(x)] with the

given boundary condition; the Sturm–Liouville equation should result. When we

set up the finite elements, we can include the boundary points in the expression

of the approximate solution, and the modified functional will take care of the

necessary adjustment. Of course, the local functions u0(x) and un+1(x) are set to

zero outside of the region [0, 1].

However, when the boundary values are not zero, special care is needed in the

construction of ui (x) and φn(x). For example, for the inhomogeneous Dirichlet

boundary condition, we can introduce two more terms that explicitly take care

of the boundary condition. Another way of doing this is to include the boundary

points in the approximation

φn(x) =
n+1
∑

i=0

ai ui (x). (9.50)



266 Modeling continuous systems

If we substitute the above approximate solution into the inhomogeneous Dirichlet

boundary condition, we have

a0 =
φ(0)

u0(0)
, (9.51)

an+1 =
φ(1)

un+1(1)
. (9.52)

We have assumed that ui (0) = ui (1) = 0 for i 	= 0, n + 1. The coefficients a0 and

an+1 are obtained immediately if the form of ui (x) is given. The approximation

φn(x) can be substituted into the functional before taking the Ritz variation.

The resulting linear equation set is still in an n × n matrix form. We will come

back to this point again in the next section when we discuss higher-dimensional

systems.

9.4 Higher-dimensional systems

The Galerkin or Ritz scheme can be generalized for higher-dimensional systems.

For example, if we want to study a two-dimensional system, the nodes can be

assigned at the vertices of the polygons that cover the specified domain. For con-

venience in solving the linear equation set, we need to construct all the elements

with a similar shape, for example, all triangular. The finite element coefficient

matrix is then a band matrix, which is much easier to solve.

The simplest way to construct an approximate solution is to choose ui (x, y) as

a function around the i th node, for example, a pyramidal function with ui (xi , yi )

= 1 that linearly goes to zero at the nearest neighboring nodes. Then the approx-

imate solution of a differential equation is represented by a linear combination

of the local functions ui (x, y) as

φn(x, y) =
n
∑

i=1

ai ui (x, y), (9.53)

where the index i runs through all the internal nodes if the boundary satisfies the

homogeneous Dirichlet condition. For illustrative purposes, let us still take the

Helmholtz equation

∇2φ(x, y) + k2φ(x, y) = −s(x, y) (9.54)

as an example. The corresponding functional with the approximate solution is

given by

E[φn] =
1

2

∫

{

[∇φn(x, y)]2 − k2φ2
n (x, y) − 2s(x, y)φn(x, y)

}

dx dy, (9.55)

which is optimized with the Ritz variational procedure:

∂E[φn]

∂ai

= 0. (9.56)

This variation produces a linear equation set

Aa = b (9.57)
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with

Ai j =
∫

[∇ui (x, y) · ∇u j (x, y) − k2ui (x, y)u j (x, y)]dx dy (9.58)

and

bi =
∫

s(x, y)ui (x, y) dx dy. (9.59)

Note that the node index runs through all the vertices of the finite elements in the

system except the ones on the boundary.

In reality, the homogeneous Dirichlet boundary condition does not always

hold. A more general situation is given by the boundary condition

∇nφ(x, y) + α(x, y)φ(x, y) + β(x, y) = 0, (9.60)

which includes most cases in practice. Here α(x, y) and β(x, y) are assumed to be

given functions, and ∇nφ(x, y) is the gradient projected outward perpendicular

to the boundary line. It is straightforward to show that the functional

E[φ] =
1

2

∫

{

[∇φ(x, y)]2 − k2φ2(x, y) − 2s(x, y)φ(x, y)
}

dx dy

+
∫

B

[α(x, y)φ2(x, y) + β(x, y)φ(x, y)]dℓ (9.61)

can produce the differential equation with the given general boundary condition if

the Euler–Lagrange equation is applied. Here the line integral is performed along

the boundary B with the domain on the left-hand side. As we discussed for one-

dimensional equations, the boundary points can be included in the expansion of

the approximate solution for the inhomogeneous boundary conditions. The local

functions ui (x, y) at the boundaries are the same as other local functions except

that they are set to zero outside the domain of the problem specified. When the

local functions for the internal nodes are selected so as to be zero at the boundary,

the coefficients for the terms from the nodes at the boundary points are given by

the values of the local function at those points.

A very efficient way of constructing the stiffness matrix and the mass matrix

is to view the system as a collection of elements and the solution of the equation

is given in each individual element separately. For example, we can divide the

domain into many triangles and label all the triangles sequentially. The solution

of the equation is then given in each triangle separately. For simplicity, we will

use the pyramidal functions ui (x, y) as the local functions for the expansion of

the approximate solution; ui (x, y) is 1 at the i th node and goes to zero linearly

at the nearest neighboring nodes. Let us select a triangle element labeled by σ .

Assume that the three nodes at the three corners of the selected element are

labeled i , j , and k. The approximate solution in the element can be expressed as

φnσ (x, y) = ai ui (x, y) + a j u j (x, y) + akuk(x, y) (9.62)
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because the local basis ul(x) is taken to be a function that is zero beyond the

nearest neighbors of the lth node. As we can show, for the case of a local pyramidal

function, the approximation is given by a linear function

φnσ (x, y) = α + βx + γ y, (9.63)

with the constant α given by a determinant

α =
1

�

∣

∣

∣

∣

∣

∣

ai a j ak

xi x j xk

yi y j yk

∣

∣

∣

∣

∣

∣

(9.64)

and the coefficients β and γ given by two other determinants

β =
1

�

∣

∣

∣

∣

∣

∣

1 1 1

ai a j ak

yi y j yk

∣

∣

∣

∣

∣

∣

(9.65)

and

γ =
1

�

∣

∣

∣

∣

∣

∣

∣

1 1 1

xi x j xk

ai a j ak

∣

∣

∣

∣

∣

∣

∣

. (9.66)

The constant � can also be expressed in a determinant form with

� =

∣

∣

∣

∣

∣

∣

∣

1 1 1

xi x j xk

yi y j yk

∣

∣

∣

∣

∣

∣

∣

. (9.67)

The functional can now be expressed as the summation of integrals performed on

each triangular element. The elements of the coefficient matrix are then obtained

from

Ai j =
∑

σ

Aσ
i j , (9.68)

where the summation over σ is for the integrals over two adjacent elements that

share the nodes i and j if i 	= j , and six elements that share the i th node if i = j .

For the Helmholtz equation, we have

Aσ
i j =

∫

σ

[∇ui (x) · ∇u j (x) − k2ui (x)u j (x)]dx dy, (9.69)

which is performed over the element σ . Similarly, the constant vector element

can also be obtained from

bi =
∑

σ

bσi , (9.70)

where the summation is over all the six elements that share the i th node. As we

have discussed in earlier sections in this chapter, there are other choices of ui (x, y)

than just a linear pyramidal function. Interested readers can find these choices in

Strang and Fix (1973). A Fortran program that solves the extended Helmholtz

equation in two dimensions (a two-dimensional version of the Sturm–Liouville
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equation) is given in Vichnevetsky (1981, pp. 269–78). Extensive discussions

on the method and its applications can be found in Burnett (1987) and Cook

et al. (2001).

An extremely important issue in the finite element method is the analysis of

errors, which would require more space than is available here. Similar procedures

can also be developed for three-dimensional systems. Because most applications

of the finite element method are in one-dimensional or two-dimensional problems,

we will not go any further here. Interested readers can find examples in the

literature.

9.5 The finite element method for nonlinear equations

The examples discussed in this chapter so far are all confined to linear equations.

However, the finite element method can also be applied to nonlinear equations. In

this section, we use the two-dimensional Navier–Stokes equation as an illustrative

example to demonstrate the method for such cases.

For simplicity, we will assume that the system is stationary, that is, it has no

time dependence, and under constant temperature and density, that is, a stationary

isothermal and incompressible fluid. The Navier–Stokes equation under such

conditions is given by

ρv · ∇v + ∇P − η∇2v = ρg, (9.71)

where ρ is the density, v(x, y) is the velocity, η is the viscosity coefficient, P(x, y)

is the pressure, and g(x, y) is the external force field. The continuity equation

under the incompressible condition is simply given by

∇ · v = 0, (9.72)

which is the continuity equation under the given conditions. Because the system

is two-dimensional, we have three coupled equations for vx (x, y), vy(x, y), and

P(x, y). Two of them are from the vector form of the Navier–Stokes equation and

the third is the continuity equation. Note that the first term in the Navier–Stokes

equation is nonlinear.

Before we introduce the numerical scheme to solve this equation set, we still

need to define the appropriate boundary condition. Let us assume that the domain

of interest is D and the boundary of the domain is B. Because the solution and

the existence of the solution are very sensitive to the boundary condition, we

have to be very careful in selecting a valid one (Bristeau et al., 1985). A common

choice in numerical solution of the Navier–Stokes equation is to have an extended

domain, De > D, with a boundary Be. Either the velocity

v(x, y) = ve(x, y) (9.73)

for n · v < 0 or the combination

P(x, y)n − ηn · ∇v(x, y) = q(x, y) (9.74)
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for n · v ≥ 0 is given at the boundary Be. Here n is the normal unit vector at

the boundary pointing outward. The weak form of the Navier–Stokes equation is

obtained if we take a dot product of the equation with a vector function u(x, y)

and then integrate both sides:
∫

De

(ρv · ∇v + ∇P − η∇2v) · u dx dy =
∫

De

ρg · u dx dy, (9.75)

which can be transformed into the weak form with integration by parts of the

Laplace term and the pressure gradient term. Then we have
∫

De

[ρ(v · ∇v) · u − P∇ · u − η∇v : ∇u] dx dy

=
∫

ρg · u dx dy −
∫

Be

(Pn − ηn · ∇v) · u dℓ, (9.76)

where : denotes a double dot product, a combination of the dot product between

∇ and ∇ and the dot product between v and u. The line integral is along the

boundary with the domain on the left.

The weak form of the continuity equation can be obtained by multiplying the

equation by a scalar function f (x, y) and then integrating it in the domain De.

We obtain
∫

De

[∇ · v(x, y)] f (x, y) dx dy = 0, (9.77)

which can be solved together with the weak form of the Navier–Stokes equation.

The line integral along the boundary can be found with the given v(x, y) and

P(x, y) at the boundary or replaced with
∫

Be
q · u dℓ after applying Eq. (9.74).

Either way, this integral is given after we have selected u(x, y).

Let us represent the approximate solutions by linear combinations of the local

functions,

vn(x, y) =
n
∑

i=1

ei ui (x, y), (9.78)

Pn(x, y) =
n
∑

i=1

ci w i (x, y), (9.79)

where ei = (ai , bi ) is a two-component vector corresponding to the two compo-

nents of v, and ui (x, y) and w i (x, y) are chosen to be different because, in the

weak form, the pressure appears only in its own form but the velocity field also

appears in the form of its first-order derivative. This means that we can choose

a simpler function w i (x, y) (for example, differentiable once) than ui (x, y) (for

example, differentiable twice) in order to have the same level of smoothness in

P(x, y) and v(x, y).

In order to convert the weak form into a matrix form, we will use u =
(ui , u j ) and f (x, y) = w i (x, y). More importantly, we have to come up with
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a scheme to deal with the nonlinear term. An iterative scheme can be devised as

follows:

(1) We first make a guess of the solution, a
(0)
i , b

(0)
i , and c

(0)
i , for i = 1, 2, . . . , n. This can be

achieved in most cases by solving the problem with a mean-field type of approximation

to the nonlinear term, for example,

v · ∇v ≃ v0 · ∇v, (9.80)

where v0 is a constant vector that is more or less the average of v over the whole

domain.

(2) Then we can improve the solution iteratively. For the (k + 1)th iteration, we can

use the result of the kth iteration for part of the nonlinear term; for example, the first

term in the weak form of the Navier–Stokes equation can be written as v(k) · ∇v(k+1).

Then we can solve a
(k+1)
i , b

(k+1)
i , and c

(k+1)
i for i = 1, 2, . . . , n. The weak form at each

iteration is a linear equation set, because a
(k)
i , b

(k)
i , and c

(k)
i have already been solved

in the previous step.

This iterative scheme is rather general. We can also devise similar schemes for

solving other nonlinear equations with the nonlinear terms rewritten into linear

terms with part of each term represented by the result of the previous step. Note

that the scheme outlined here is similar to the scheme discussed in Chapter 5

for solving multivariable nonlinear problems. The scheme outlined here can also

be interpreted as a special choice of a relaxation scheme (Fortin and Thomasset,

1983) with

v(k+1) = (1 − p)v(k) + pv(k+1/2), (9.81)

where v(k+1/2) is the solution of the equation set

ρv(k) · ∇v(k+1/2) + ∇P (k+1) − η∇2v(k+1/2) = ρg, (9.82)

∇ · v(k+1/2) = 0. (9.83)

Here p is a parameter that can be adjusted to achieve the best convergence.

An important aspect of the solution of the Navier–Stokes equation is the

solution of the time-dependent equation, which requires us to combine the spatial

solution just discussed and the initial-value problem discussed in Chapter 7.

Interested readers can find detailed discussions on the numerical algorithms for

solving the time-dependent Navier–Stokes equation in Bristeau et al. (1985).

9.6 The particle-in-cell method

In order to simulate a large continuous system such as a hydrodynamic fluid, we

have to devise a method that can deal with the macroscopic phenomena observed.

Finite element methods and finite difference methods can be used in the solution

of macroscopic equations that describe the dynamics of continuous systems.



272 Modeling continuous systems

However, the behavior of the systems may involve different length scales, which

will make a finite difference or finite element method quite difficult.

We can, in principle, treat each atom or molecule as an individual particle and

then solve Newton’s equations for all the particles in the many-body system. This

can be a good method if the structural and dynamical properties under study are

at the length scale of the average interparticle distance, which is clearly the case

when we study the behavior of salt melting, glass formation, or structure factors

of specific liquids. This was the subject of the preceding chapter on molecular

dynamics simulation.

Schemes dealing with the simulation of the dynamics of each individual parti-

cle in the system will run into difficulty when applied to a typical hydrodynamic

system, because such a system has more than 1023 particles and the phenomena

take place at macroscopic length scales. The common practice is to solve the set

of macroscopic equations discussed at the beginning of this chapter with either

the finite difference method introduced in Chapter 7 or the finite element method

discussed in this chapter. However, we cannot always do so because some dynam-

ical phenomena, such as the nonlinear properties observed in plasma or galactic

systems, may derive from the fundamental interaction in the system – for ex-

ample, the Coulomb interaction between electrons and ions, or gravity between

stars. More importantly, density fluctuations around a phase transition or the

onset of chaotic behavior might involve several orders of magnitude in the length

scale. So a scheme that can bridge the microscopic dynamics of each particle to

the macroscopic phenomena in a system is highly desirable. The particle-in-cell

method was first introduced by Evans and Harlow (1957) for this purpose. For

a review on the early development of the method, see Harlow (1964). More re-

cent progress can be found in Grigoryev, Vshivkov, and Fedoruk (2002) and in

Büchner, Dum, and Scholer (2003).

Let us assume that the system that we are interested in is a large contin-

uous system. We can divide the system into many cells, which are similar to

the finite elements discussed earlier in this chapter. In each cell there are still a

large number of particles. For example, if we are interested in a two-dimensional

system with 1014 particles and divide it into one million cells, we still have

100 million particles in each cell. A common practice is to construct pseudo-

particles, which are still collections of many true particles. For example, if we

take one million particles as one pseudo-particle for the two-dimensional system

with 1014 particles, we can easily divide the system into 10 000 cells, each of

which has 10 000 particles. This becomes a manageable problem with currently

available computing capacity. Note that because the pseudo-particles are still col-

lections of particles, simulations with such pseudo-particles are not completely

described by microscopic dynamics. However, because the division of the system

into cells allows us to cover several orders of magnitude in length scales, we can

simulate many phenomena that involve different length scales in macroscopic

systems.
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The size of the cells is usually determined by the relevant length scales in the

system. If we are interested in a collection of charged particles, we must have

each cell small enough that the detailed distribution of the charges in each cell

does not affect the behavior of each particle or pseudo-particle very much. This

means that the contribution to the energy of each particle due to the other charges

in the same cell can be ignored in comparison with the dominant energy scale,

for example, the thermal energy of each particle in this case. The electrostatic

potential energy of a particle due to the uniform distribution of the charges around

it inside a sphere with a radius a is given by

Uc = ne2a2/ǫ0, (9.84)

which should be much smaller than the thermal energy of one degree of freedom,

kBT/2. The dimensions of the cell then must satisfy

a ≪ λD =
√

ǫ0kBT

ne2
, (9.85)

where λD is called the Debye length, e is the charge on each particle, and n is

the number density. However, because we are interested in the hydrodynamics of

the system, we cannot choose too small a cell. It has to be much larger than the

average volume occupied by each particle, that is,

a ≫ a0 =
1

n1/3
, (9.86)

for a three-dimensional system. Similar relations can be established for other

systems, such as galaxies. After the size of the cell is determined, we can decide

whether or not a pseudo-particle picture is needed based on how many particles

are in the cell. Basically, we have to make sure that the finite size effect of each

cell will not dominate the behavior of the system under study.

Let us first sketch the idea of the method for a specific example: a three-

dimensional charged particle system. If the cell size is much larger than the

average distance between two nearest neighbors, the system is nearly collision-

less. The dynamics of each particle or pseudo-particle is then governed by the

instantaneous velocity v of the particle and the average electrostatic field E at the

position of the particle. For example, at time t = nτ , where τ is the time step,

the i th particle has a velocity v
(n)
i and an acceleration

g
(n)
i = eE

(n)
i /m, (9.87)

with e being the charge and m the mass of the particle. Then the next position

r
(n+1)
i and velocity v

(n+1)
i of the same particle are given by

r
(n+1)
i = r

(n)
i + τv

(n)
i +

τ 2

2
g

(n)
i , (9.88)

v
(n+1)
i = v

(n)
i +

τ

2

(

g
(n)
i + g

(n+1)
i

)

, (9.89)
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with the Verlet velocity algorithm. We have assumed that the charge and the

mass of each particle or pseudo-particle are e and m, respectively. Note that

there is no difference between the current situation and the molecular dynamics

case except that we are dealing only with an average acceleration gi , which is an

interpolated value from the fields at the grid points around the particle, instead of

a detailed calculation from the particle–particle interactions. Most probably the

“particles” here are pseudo-particles, each equivalent to many, many particles.

It is worth pointing out that other numerical schemes developed in molecular

dynamics can be applied here as well. As we have already discussed in molecular

dynamics, the most time-consuming part of the simulation is the evaluation of the

interactions between the particles. The basic idea of the particle-in-cell method

is to circumvent such an effort. Instead, we try to solve the field on the grid points

and then find the average field at the particle from the interpolation of the values

from the grid points around it. For a charged particle system, this can be achieved

by solving the Poisson equation for the electrostatic potential at the grid points,

which are typically set at the centers of the cells. The accuracy of the interpolation

kernel is the key to a stable and accurate algorithm. We will here incorporate the

idea of the improved interpolation kernels, introduced by Monaghan (1985), into

our discussions. For convenience of notation, we will use Greek letters for the

indices for the grid points and Latin letters for the particles. The charge density

on a specific grid point can be determined from the distribution of the particles

in the system at the same moment, that is,

ρ(n+1)(rσ ) = e

N
∑

i=1

W
(

rσ − r
(n+1)
i , h

)

, (9.90)

where W(r, h) is the interpolation kernel, which can be interpreted as a distribu-

tion function and satisfies
∫

W(r, h) dr = 1, (9.91)

and N is the total number of pseudo-particles in the system. Note that W(r, h)

is usually a function ranged with the grid spacing h. This is due to the fact that

W(r, h) has to be very small beyond |r| = h. Monaghan (1985) has shown that

we can improve interpolation accuracy by choosing

W(r, h) =
1

2

[

(d + 2)G(r, h) − h
∂G(r, h)

∂h

]

, (9.92)

whereG(r, h) is a smooth interpolation function and d is the number of the spatial

dimensions of the system. For example, if G(r, h) is a Gaussian function

G(r, h) =
1

π 3/2
e−r2/h2

, (9.93)

W(r, h) is given by

W(r, h) =
1

π3/2

(

d + 2

2
−

r 2

h2

)

e−r2/h2

. (9.94)
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From the interpolated grid values of the density, we can solve the Poisson equation

∇2�(r) = −ρ(r)/ǫ0, (9.95)

with any of the finite difference methods discussed in Chapter 7. Then the electric

field E = −∇�(r) at each grid point can be evaluated through, for example, a

three-point or two-point formula. In order to have a more accurate value for the

field at the particle site, we can also interpolate the potential at the particle site

and then evaluate the field

E
(n+1)
i = −

z
∑

σ=1

�(n+1)
σ ∇σU(ri − rσ ), (9.96)

where U(r) is another kernel that can be either the same as or different from the

kernelW(r, h). The gradient is taken on the continuous function of rσ , and z is the

number of grid points nearby that we would like to include in the interpolation

scheme. For example, if only the nearest neighbors are included, z = 4 for a

square lattice. The new velocity of the particle in the Verlet algorithm above is

then given by

v
(n+1)
i = v

(n)
i +

eτ

2m

(

E
(n)
i + E

(n+1)
i

)

. (9.97)

The number of points to be included in the summation is determined from the

dimensionality of the system and the geometry of the cells. Like W(r, h), U(r)

also has to be a smooth, even function of r and it must satisfy

z
∑

σ=1

U(rσ − ri ) = 1, (9.98)

for any given ri . This can be done by normalizingU(rσ − ri ) numerically at every

time step. Note that the order of the position update and the velocity update in

Eqs. (9.88) and (9.89) can be interchanged. In practice, this makes no difference

to the numerical difficulty, but provides some flexibility in improving the accuracy

for a specific problem.

So a typical particle-in-cell scheme has four major steps: solving the micro-

scopic equations, interpolating microscopic quantities to the grid points, solving

the macroscopic equations on the grid points, and then interpolating the macro-

scopic quantities back to the particles. The order of the steps may vary depending

on the specific problem in question, but the goal is always the same – to avoid

direct simulation of the system from the microscopic equations while still main-

taining the input from the microscopic scales to the macroscopic phenomena. The

particle-in-cell method is very powerful in many practical applications, ranging

from plasma simulations to galactic dynamics. In the next section, we will discuss

a typical application of the method in hydrodynamics and magnetohydrodynam-

ics. For more details of the method, see Potter (1977), Hockney and Eastwood

(1988), and Monaghan (1985).
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9.7 Hydrodynamics and magnetohydrodynamics

Now let us turn to hydrodynamic systems. We have already discussed the equa-

tions of hydrodynamics at the beginning of this chapter. To simplify our discus-

sion here, we will first consider the case of an ideal fluid, that is, one for which it

can be assumed that the viscosity, temperature gradient, and external field in the

system are all very small and can be ignored. The Navier–Stokes equation then

becomes

ρ
∂v

∂t
+ ρv · ∇v + ∇P = 0, (9.99)

where the second term is the convective (nonlinear) term and the third term results

from the change of the pressure. The continuity equation is still the same,

∂ρ

∂t
+ ∇ · (ρv) = 0. (9.100)

Because there is no dissipation, the equation for the internal energy per unit mass

is given by

ρ
∂ε

∂t
+ ρv · ∇ε + P∇ · v = 0. (9.101)

The pressure P , the density ρ, and the internal energy ε are all related by the

equation of state

f (P, ρ, ε) = 0. (9.102)

Sometimes entropy is a more convenient choice than the internal energy.

Once again we will incorporate the improved interpolation scheme of

Monaghan (1985) into our discussion. We divide the hydrodynamic system into

many cells, and in each cell we have many particles or pseudo-particles. Assum-

ing that the equation of state and the initial conditions are given, we can set up

the initial density, velocity, energy per unit mass, and pressure associated with

the lattice points as well as the particles.

If we use the two-point formula for the partial time derivative and an interpo-

lated pressure from an interpolation kernel V(r), the velocity at the lattice points

can be partially updated as

v(n+1/2)
σ = v(n)

σ −
τ

ρ
(n)
σ

∑

µ

Pµ∇σV(rσ − rµ), (9.103)

which does not include the effect due to the convective term ρv · ∇v. Here index

µ runs through all the nearest neighbors of the lattice point rσ and V(rσ − rµ) is

normalized as
∑

µ

V(rσ − rµ) = 1. (9.104)

We will explain later that the velocity at the lattice points is modified by convection

to

v(n+1)
σ =

1

2

(

v(n)
σ + v(n+1/2)

σ

)

(9.105)
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if the particle positions are updated as discussed below. The velocity v
(n+1)
σ can

be used to update the internal energy partially at the lattice points with

ε(n+1/2)
σ = ε(n)

σ −
τ P (n)

σ

ρ
(n)
σ

∑

µ

v(n+1)
µ · ∇σV(rσ − rµ), (9.106)

which does not include the effect of the convective term ρv · ∇ε in Eq. (9.101).

This is also done with the application of the two-point formula to the partial time

derivative.

The total thermal energy per unit mass at the lattice points with the partial

updates of the velocity and the internal energy is then given by

e(n+1/2)
σ = ε(n+1/2)

σ +
1

2

(

v(n+1/2)
σ

)2
, (9.107)

which in turn can be used to interpolate the energy per unit mass at the particle

sites,

e
(n+1/2)
j =

z
∑

σ=1

e(n+1/2)
σ U(ri − rσ ), (9.108)

where U(r) is the interpolation kernel from lattice points to particle positions

used in the preceding section. The new particle velocity is obtained from the

interpolation

v
(n+1)
i =

z
∑

σ=1

v(n+1)
σ U(ri − rσ ), (9.109)

which can then be used to update the particle positions with a simple two-point

formula

r
(n+1)
i = r

(n)
i + τv

(n+1)
i , (9.110)

which completes the convective motion. We can easily show that the updating

formula for the particle position is exactly the same as in the Verlet algorithm

with

r
(n+1)
i = r

(n)
i + τv

(n)
i +

τ 2

2
g

(n)
i , (9.111)

where

g(r) = −
1

ρ(r)
∇P(r). (9.112)

This has exactly the same mathematical structure as the electrostatic field

discussed in the preceding section. The gradient of the pressure at the particle

position can therefore be obtained from the pressure at the lattice points

with

∇Pi =
z
∑

σ=1

Pσ∇σU(rσ − ri ). (9.113)
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We can show that the updated particle velocity is also equivalent to that of the

Verlet algorithm with

v
(n+1)
i = v

(n)
i +

τ

4

(

g
(n)
i + g

(n+1)
i

)

, (9.114)

to the same order of accuracy with the convective term included. Note that the

second term is only half of the corresponding term in the nonconvective case.

Now we can update the quantities at the lattice points. Following the discus-

sions in the preceding section, we have

ρ(n+1)
σ = m

N
∑

i=1

W
(

rσ − r
(n+1)
i

)

, (9.115)

ρ(n+1)
σ v(n+1)

σ = m

N
∑

i=1

viW
(

rσ − r
(n+1)
i

)

, (9.116)

ρ(n+1)
σ e(n+1)

σ = m

N
∑

i=1

e
(n+1)
i W

(

rσ − r
(n+1)
i

)

, (9.117)

ε(n+1)
σ = e(n+1)

σ −
1

2

(

v(n+1)
σ

)2
. (9.118)

The values of ρσ and eσ can then be used in the equation of state to obtain the

new values for the pressure at the lattice points. Then the steps outlined above

can be repeated for the next time step.

The above scheme can easily be extended to include viscosity and magnetic

field effects. The Navier–Stokes equation is then given by

∂

∂t
(ρv) = −∇ · Π, (9.119)

where Π = ρvv − Γ with

Γ = η
[

∇v + (∇v)T
]

+
[(

ζ −
2η

3

)

∇ · v − P −
B2

2µ

]

I +
BB

µ
(9.120)

and the magnetic field satisfies

∂B

∂t
= ∇ ×

[

v × B −
ρ

µ
· (∇ × B)

]

, (9.121)

where ρ is the resistivity tensor of the system. The energy equation is then given

by

∂

∂t

(

ε + ρ
v2

2
+

B2

2µ

)

= ∇ · je, (9.122)

where

je = v

(

ρε +
1

2
ρv2 +

B2

2µ

)

− v · Γ − κ∇T (9.123)

is the energy current. All these extra terms can be incorporated into the particle-

in-cell scheme outlined earlier in this section. We will not go into more details

here, but interested readers can find discussions in Monaghan (1985).
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9.8 The lattice Boltzmann method

As discussed so far, continuous systems can properly be represented by dis-

crete models if the choice of discretization still accounts for the basic physical

processes involved in the systems. This basic idea was put forward by Frisch,

Hasslacher, and Pomeau (1986), Frisch et al. (1987), and Wolfram (1986) in a

model now known as lattice-gas cellular automata. The model treats the system

as a lattice gas and the occupancy at each site of the lattice as a Boolean num-

ber, 0 or 1, corresponding to an unoccupied or occupied state of a few possible

velocities. We can recover the macroscopic equations of fluid dynamics from the

microscopic Boltzmann equation under the constraint of mass and momentum

conservation. This lattice-gas model has the advantage of using Boolean numbers

in simulations and therefore is free of rounding errors. Another advantage of the

lattice-gas model is that it is completely local and can easily be implemented in

parallel or distributed computing environments. However, the lattice-gas model

also has some disadvantages in simulations, such as large fluctuations in the

density distribution and other physical quantities due to the discrete occupancy

of each site and an exponential increase with the number of nearest vertices in

the collision rules. These two disadvantages were overcome by the introduction

of the lattice Boltzmann method (McNamara and Zanetti, 1988; Higuera and

Jiménez, 1989), which preserves most of the advantages of the lattice-gas model

in simulations but allows a smooth occupancy, which reduces the fluctuations.

The introduction of the BGK (Bhatnagar–Gross–Krook) form of the collision

term in the Boltzmann equation also reduces the exponential complexity in the

collision rules with the number of the nearest vertices.

Before discussing the lattice-gas model and the lattice Boltzmann method, we

first give a brief outline of the Boltzmann kinetic theory. All the ideas behind the

classic kinetic theory are based on the Boltzmann transport equation. Assume

that f (r, v, t) is the distribution function at the point (r, v) in the phase space at

time t . Then the number of particles in the phase-space volume element dr dv

is f (r, v, t) dr dv. Because the number of particles and the volume element in

the phase space are conserved in equilibrium based on Liouville’s theorem, we

have

d f (r, v, t)

dt
= 0 (9.124)

if the particles in the system do not interact with each other. Furthermore, both r

and v are functions of time and we can then rewrite the above derivative as

d f

dt
=

∂ f

∂t
+ v · ∇ f + g · ∇v f = 0, (9.125)

where we have used the definition of the velocity v = dr/dt , the acceleration

g = dv/dt , and the gradient in velocity ∇v = ∂/∂v for convenience. We will

consider only the zero external field case, that is, g = 0, for simplicity. The above
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equation will not hold if the collisions in the system cannot be ignored. Instead,

the equation is modified to

∂ f

∂t
+ v · ∇ f = �(r, v, t), (9.126)

where �(r, v, t) is a symbolic representation of the effects of all the collisions

between the particles in the system. The collision contribution �(r, v, t) can be

expressed in terms of an integral that involves the product of f (r, v, t) at different

velocities as well as the scattering cross section of many-body collisions in the

integrand. We will not derive this expression here because we will need only the

sum rules of �(r, v, t). The simplest approximation is the BGK form with

�(r, v, t) = −
f (r, v, t) − f0(r, v, t)

τ
, (9.127)

where f0 is the equilibrium distribution and τ is the relaxation time due to the

collisions. The conservation laws are reflected in the sum rules of �(r, v, t). For

example, the conservation of the total mass ensures
∫

m�(r, v, t) dr dv = 0, (9.128)

and the conservation of the linear momentum would require
∫

mv�(r, v, t) dr dv = 0. (9.129)

We can also obtain the hydrodynamic equations from the Boltzmann equation

(Lifshitz and Pitaevskii, 1981) after taking the statistical averages of the relevant

physical quantities. The point we want to make is that the macroscopic behavior of

a dynamic system is the result of the average effects of all the particles involved.

As we have pointed out, it is impossible to simulate 1023 particles from their

equations of motion with current computing capacity. Alternative methods have

to be devised in the simulation of hydrodynamics. As we discussed earlier in

this chapter, we can use the particle-in-cell method to simulate hydrodynamic

systems.

The idea of the lattice-gas model resembles the particle-in-cell concept in two

respects: the particles in the lattice are pseudo-particles, and the lattice sites are

similar to the grid points in the particle-in-cell schemes. The difference is in

the assignment of velocities to the particles. In the lattice-gas model, only a few

discrete velocities are allowed. Let us take a triangular lattice as an illustrative

example. At each site, there cannot be more than seven particles, each of which

has to have a unique velocity

vσ =
eσ

τ
, (9.130)

where eσ is one of the vectors pointing to the nearest neighboring vertices or 0,

that is,

|vσ | =
{

a/τ for σ = 1, . . . , 6,
0 for σ = 0,

(9.131)
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where a is the distance to a nearest neighbor. Here the index σ runs from 0 to

z, where z is the number of nearest neighbors of a lattice point. Now if we take

τ as the unit of time and fσ (r, t) as the occupancy of the site r in the state with

velocity vσ , the Boltzmann equation for each lattice point becomes

fσ (r + eσ , t + 1) − fσ (r, t) = �σ [ fµ(r, t)], (9.132)

with σ,µ = 0, 1, . . . , z. Note that fσ here is a Boolean number that can only be

0 for the unoccupied state or 1 for the occupied state. Now if we require the mass

and momentum at each site to be constant as τ → 0, we have

∂ρ

∂t
= −∇ · (ρv), (9.133)

∂

∂t
(ρv) = −∇ · Π, (9.134)

where ρ is the local density given by

ρ(r, t) = m

z
∑

σ=0

fσ (r, t), (9.135)

ρv is the corresponding momentum density with

ρ(r, t)v(r, t) = m

z
∑

σ=0

vσ fσ (r, t), (9.136)

and

Π = m

z
∑

σ=0

vσvσ fσ (r, t) (9.137)

is the momentum flux density. We can show that the above equations leads to a

macroscopic equation that resembles the Navier–Stokes equation if we perform

the Chapman–Enskog expansion of fσ (r, t) up to the τ 2 terms (Frisch et al.,

1987; Wolfram, 1986).

Two very important aspects of lattice-gas automaton simulations are the ge-

ometry of the lattice and the collision rules at each vertex. For example, we have

used a triangular lattice in two dimensions in order to have isotropic macro-

scopic behavior. Another popular choice is to use a square lattice to have nine

choices of velocities associated with the eight displacement vectors to nearest

neighbors and next nearest neighbors and zero velocity. It is more difficult to

ensure isotropic macroscopic behavior in three dimensions. One way to have

a macroscopic isotropy is to simulate a three-dimensional projection of a four-

dimensional face-centered cubic lattice. For more details on lattice-gas automata,

see the articles in Doolen (1991).

Now we turn to the lattice Boltzmann method. As we have stated, the distri-

bution at each site for a specific state is assumed to be a smooth function of the

position instead of a Boolean number. We will take

nσ (r, t) = 〈 fσ (r, t)〉 (9.138)
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as the distribution function. The lattice Boltzmann equation then becomes

nσ (r + eσ , t + 1) − nσ (r, t) = �σ [nµ(r, t)] (9.139)

forσ,µ = 0, 1, . . . , z. The collision term can be further approximated by keeping

only the linear term of the deviation of the distribution from its equilibrium value

(Higuera and Jiménez, 1989), and then we have

nσ (r + eσ , t + 1) − nσ (r, t) =
z
∑

µ=0

�σµ

[

nµ(r, t) − n0
µ(r, t)

]

, (9.140)

where the matrix �� is determined from the symmetry of the lattice and con-

servation of mass and momentum. We can expand the equilibrium distribution

function n0
σ (r, t) into a power series of v, and then we can show that macroscopic

equations resemble hydrodynamic equations. The selection of the parameters

in the expansion can also lead to the equation of state for a specific system

under study (Chen, Chen, and Matthaeus, 1992). Interested readers can find

more detailed discussions in the review by Chen and Doolen (1998) and books

by Wolf-Gladrow (2000), Succi (2001), and Zhou (2004)

Exercises

9.1 Derive Eqs. (9.1), (9.2), and (9.3) by considering an infinitesimal cubic

element in a bulk fluid. Find their modifications if the particles are charged

and the system is under the influence of external gravitational and electro-

magnetic fields.

9.2 Solve the one-dimensional Poisson equation

φ′′(x) = −ρ(x)/ǫ0,

by the Galerkin method. Assume that all the quantities are in the SI units,

the boundary condition is u(0) = u(1) = 0, and the density distribution is

given by

ρ(x)/ǫ0 =

{

x2 if x ∈ [0, 0.5],

(1 − x)2 if x ∈ [0.5, 1].

Use the basis functions

ui (x) =

⎧

⎪

⎨

⎪

⎩

(x − xi−1)/h if x ∈ [xi−1, xi ],

(xi+1 − x)/h if x ∈ [xi , xi+1],

0 otherwise,

to construct the matrix A and the vector b. Write a program that solves the

resulting equation set through the LU decomposition.

9.3 Consider the electrostatic problem within an equilateral triangle with side

length of 2.0 m. The potentials at the sides are 0 V, 0.5 V, and 1.0 V. The

charge distribution is zero at the highest potential side and linearly increases

to ǫ0 at the opposite angle. Construct an equally spaced triangular grid with
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lines parallel to the sides with a total of eleven points on each side. Find the

electrostatic potential at the field points through the finite element method

with the pyramid basis functions that reach zero at the nearest neighboring

points.

9.4 Consider a rope stretched between two anchoring points 3.0 m apart, subject

to a tension T = 1.00 × 103 N, on which a person is sitting. Assume that the

mass distribution (mass per unit length) of the system is given by m(x) =
m0e−(x−x0)2/a2

, where m0 = 80.0 kg/m, a = 0.30 m, and x0 = 1.0 m from

one end of the rope. Find the wave equation that describes the motion of the

rope. What is the weak form of the wave equation? Solve the displacement

of the rope under the equilibrium condition with a finite element scheme.

Determine the three lowest vibrational frequencies of the system.

9.5 Solve the Helmholtz equation

φ′′(x) + k2φ(x) = −s(x)

through its weak form. Use the boundary condition φ(0) = φ(1) = 0 and

assume that k = π and s(x) = δ(x − 0.5). Is the solution of the weak form

the same as the solution of the equation?

9.6 Show that the optimization of the generalized functional introduced in the

text for the Sturm–Liouville equation with the natural boundary condition

can produce the equation with the correct boundary condition. Construct

a simple basis function set that is suitable for a finite element solution of

the equation. Find the coefficient matrix and the constant vector in the cor-

responding linear equation set with the natural boundary condition for dif-

ferent α and β. Develop a computer program that implements the scheme.

Test the program with the Schrödinger equation for the one-dimensional

harmonic oscillator.

9.7 Show that the optimization of the functional introduced for the two-

dimensional Helmholtz equation with the general boundary condition can

produce the equation with the correct boundary condition. Construct a

simple basis function set that is suitable for a finite element solution of

the equation. Find the coefficient matrix and the constant vector in the

corresponding linear equation set with the general boundary condition for

different functions α(x, y) and β(x, y). Develop a computer program that

implements the scheme. Test the program with the electrostatic problem

given in Exercise 9.3.

9.8 Show that the finite element solution for a specific element in two dimen-

sions with triangular elements and linear local pyramidal functions is given

by Eq. (9.63). Work out the coefficient matrix and the constant vector if the

two-dimensional space is divided into a triangular lattice with the lattice

constant h.

9.9 Develop a computer program that solves the two-dimensional, stationary

Navier–Stokes equation described in Section 9.5. Test your program for a
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rectangular domain under a given boundary condition. How sensitive is the

solution to the variance in the boundary condition?

9.10 An infinite cylindrical conducting shell of radius a is cut along its axis into

four equal parts, which are then insulated from each other. If the potential

on the first and third quarters is V and the potential on the second and fourth

quarters is −V, find the potential in the perpendicular plane through a finite

element method. Compare the numerical result with the exact solution.

9.11 Obtain the Debye length for a galaxy. Estimate the size of the cell needed if

it is simulated by the particle-in-cell method. Develop a computer program

to simulate the dynamics of a galaxy. Use the parameters associated with

the Milky Way to test the program.

9.12 Consider a two-dimensional nonviscous fluid with the same equation of

state as that of an adiabatic ideal gas. Develop a particle-in-cell scheme

and a computer program to simulate this system. Assume that there are 106

particles in the system with 100 in each cell on average.

9.13 Construct a lattice-gas model for a square lattice with nine choices of

velocity at each site from the eight displacement vectors to the nearest

neighbors and next nearest neighbors and zero velocity.

9.14 Apply the lattice Boltzmann method to simulate a two-dimensional non-

viscous fluid with the same equation of state as that of an adiabatic ideal

gas. Based on the simulation results, discuss the differences found between

a seven-velocity triangular lattice model and a nine-velocity square lattice

model.



Chapter 10

Monte Carlo simulations

One of the major numerical techniques developed in the last half century

for evaluating multidimensional integrals or solving integral equations is the

Monte Carlo method. The basic idea of the method is to select points in the

region enclosed by the boundary and then take the weighted data as the es-

timated value of the integral. Early Monte Carlo simulations go back to the

1950s, when the first computers became available. In this chapter, we will intro-

duce the basic idea of the Monte Carlo method with applications in statistical

physics, quantum mechanics, and other related fields, highlighting some recent

developments.

10.1 Sampling and integration

Let us first use a simple example to illustrate how a basic Monte Carlo scheme

works. If we want to find the numerical value of the integral

S =
∫ 1

0

f (x) dx, (10.1)

we can simply divide the region [0, 1] evenly into M slices with x0 = 0 and

xM = 1, and then the integral can be approximated as

S =
1

M

M
∑

n=1

f (xn) + O(h2), (10.2)

which is equivalent to sampling from a set of points x1, x2, . . . , xM in the region

[0, 1] with an equal weight, in this case, 1, at each point. We can, on the other

hand, select xn with n = 1, 2, . . . , M from a uniform random number generator

in the region [0, 1] to accomplish the same goal. If M is very large, we would

expect xn to be a set of numbers uniformly distributed in the region [0, 1] with

fluctuations proportional to 1/
√

M . Then the integral can be approximated by

the average

S ≃
1

M

M
∑

n=1

f (xn), (10.3)

285
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where xn is a set of M points generated from a uniform random number generator

in the region [0, 1]. Note that the possible error in the evaluation of the integral

is now given by the fluctuation of the distribution xn . If we use the standard

deviation of statistics to estimate the possible error of the random sampling, we

have

(�S)2 =
1

M

(〈

f 2
n

〉

− 〈 fn〉2
)

. (10.4)

Here the average of a quantity is defined as

〈An〉 =
1

M

M
∑

n=1

An, (10.5)

where An is the sampled data. We have used fn = f (xn) for notational conve-

nience.

Now we illustrate how the scheme works in an actual numerical example. In

order to demonstrate the algorithm clearly, let us take a very simple integrand

f (x) = x2. The exact result of the integral is 1/3 for this simple example. The

following program implements such a sampling.

// An example of integration with direct Monte Carlo

// scheme with integrand f(x) = x*x.

import java.lang.*;
import java.util.Random;
public class Monte {

public static void main(String argv[]) {

Random r = new Random();

int n = 1000000;
double s0 = 0;
double ds = 0;
for (int i=0; i<n; ++i) {

double x = r.nextDouble();
double f = x*x;
s0 += f;
ds += f*f;

}
s0 /= n;

ds /= n;

ds = Math.sqrt(Math.abs(ds-s0*s0)/n);
System.out.println("S = " + s0 + " +- " + ds);

}
}

We have used the uniform random number generator in Java for convenience. The

numerical result and estimated error from the above program is 0.3334 ± 0.0003.

More reliable results can be obtained from the average of several independent

runs. For example, with four independent runs, we obtain an average of 0.3332

with an estimated error of 0.0002.

The simple Monte Carlo quadrature used in the above program does not show

any advantage. For example, the trapezoid rule yields much higher accuracy with
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the same number of points. The reason is that the error from the Monte Carlo

quadrature is

�S ∝
1

M1/2
, (10.6)

whereas the trapezoid rule yields an estimated error of

�S ∝
1

M2
, (10.7)

which is much smaller for a large M . The true advantage of the Monte Carlo

method comes in the evaluation of multidimensional integrals. For example, if

we are interested in a many-body system, such as the electrons in a neon atom,

we have ten particles, and the integral for the expectation value can have as many

as 30 dimensions. For a d-dimensional space, the Monte Carlo quadrature will

still yield the same error behavior, that is, it is proportional to 1/
√

M , where M

is the number of points sampled. However, the trapezoid rule has an error of

�S ∝
1

M2/d
, (10.8)

which becomes greater than the Monte Carlo error estimate with the same number

of points if d is greater than 4. The point is that the Monte Carlo quadrature

produces a much more reasonable estimate of a d-dimensional integral when d is

very large. There are some specially designed numerical quadratures that would

work still better than the Monte Carlo quadrature when d is slightly larger than 4.

However, for a real many-body system, the dimensionality in an integral is 3N ,

where N is the number of particles in the system. When N is on the order of 10

or larger, any other workable quadrature would perform worse than the Monte

Carlo quadrature.

10.2 The Metropolis algorithm

From the discussion in the preceding section, we see that for an arbitrary integrand

such as f (x) = x2 in the region [0, 1], the accuracy of the integral evaluated from

the Monte Carlo quadrature is very low. We used 106 points in the numerical

example and obtained an accuracy of only 0.1%. Is there any way to increase the

accuracy for some specific types of integrands?

If f (x) were a constant, we would need only a single point to obtain the

exact result from the Monte Carlo quadrature. Or if f (x) is smooth and close to

constant, the accuracy from the Monte Carlo quadrature would be much higher.

Here we consider a more general case in which there are 3N variables, that is,

R = (r1, r2, . . . , rN ), with each ri for i = 1, 2, . . . , N being a three-dimensional

vector. The 3N -dimensional integral is then written as

S =
∫

D

F(R) dR, (10.9)
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where D is the domain of the integral. In many cases, the function F(R) is not

a smooth function. The idea of importance sampling introduced by Metropolis

et al. (1953) is to sample the points from a nonuniform distribution. If a distri-

bution function W(R) can mimic the drastic changes in F(R), we should expect

a much faster convergence with

S ≃
1

M

M
∑

i=1

F(Ri )

W(Ri )
, (10.10)

where M is the total number of points of the configurations Ri sampled according

to the distribution function W(R).

Now we show some of the details of this sampling scheme. We can, of course,

rewrite the integral as

S =
∫

W(R)G(R) dR, (10.11)

where W(R) is positive definite and satisfies the normalization condition
∫

W(R) dR = 1, (10.12)

which ensures that W(R) can be viewed as a probability function. From the two

expressions of the integral we have G(R) = F(R)/W(R). The problem is solved

if G(R) is a smooth function of R, that is, nearly a constant. We can imagine a

statistical process that leads to an equilibrium distribution W(R) and the integral

S is merely a statistical average of G(R). This can be compared with the canonical

ensemble average

〈A〉 =
∫

A(R)W(R) dR, (10.13)

where A(R) denotes the physical quantities to be averaged and the probability or

distribution function W(R) is given by

W(R) =
e−U (R)/kBT

∫

e−U (R′)/kBT dR′ , (10.14)

with U (R) being the potential energy of the system for a given configura-

tion R. Here kB is the Boltzmann constant and T is the temperature of the

system.

A procedure introduced by Metropolis et al. (1953) is extremely powerful in

the evaluation of the multidimensional integral defined in Eq. (10.11). Here we

give a brief outline of the procedure and refer to it as the Metropolis algorithm. The

selection of the sampling points is viewed as a Markov process. In equilibrium,

the values of the distribution function at different points of the phase space are

related by

W(R)T (R → R′) = W(R′)T (R′ → R), (10.15)
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where T (R → R′) is the transition rate from the state characterized by R to

the state characterized by R′. This is usually referred to as detailed balance in

statistical mechanics. Now the points are no longer sampled randomly but rather

by following the Markov chain. The transition from one point R to another point

R′ is accepted if the ratio of the transition rates satisfies

T (R → R′)

T (R′ → R)
=

W(R′)

W(R)
≥ w i , (10.16)

where w i is a uniform random number in the region [0, 1]. Let us here outline the

steps used for the evaluation of the integral defined in Eq. (10.11) or Eq. (10.13).

We first randomly select a configuration R0 inside the specified domain D. Then

W(R0) is evaluated. A new configuration R1 is tried with

R1 = R0 +�R, (10.17)

where �R is a 3N -dimensional vector with each component from a uniform

distribution between [−h, h], which is achieved, for example, with

�xi = h(2ηi − 1), (10.18)

for the x component of ri . Here ηi is a uniform random number generated

in the region [0, 1]. The actual value of the step size h is determined from

the desired accepting rate (the ratio of the accepted to the attempted steps).

A large h will result in a small accepting rate. In practice, h is commonly

chosen so that the accepting rate of moves is around 50%. After all the com-

ponents of R = (r1, r2, . . . , rN ) have been tried, we can evaluate the distribution

function at the new configuration R1, which is then accepted according to the

probability

p =
W(R1)

W(R0)
, (10.19)

that is, comparing p with a uniform random number w i in the region [0, 1]. If

p ≥ w i , the new configuration is accepted; otherwise, the old configuration is

assumed to be the new configuration. This procedure is repeated and the phys-

ical quantity A(Rk) for k = n1, n1 + n0, . . . , n1 + (M − 1)n0 is evaluated. The

numerical result of the integral is then given by

〈A〉 ≃
1

M

M−1
∑

l=0

A(Rn1+n0l ). (10.20)

Note that n1 steps are used to remove the influence of the initial selection of

the configuration, that is, R0. The data are taken n0 steps apart to avoid high

correlation between the data points, because they are generated consecutively

and a reasonable number of points must be skipped when the next data point is

taken.
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Fig. 10.1 Autocorrelation

function obtained from

the numerical example

given in the text.

We can, however, minimize the correlation and at the same time the number

of steps needed to reach a required accuracy by analyzing the autocorrelation

function of A(Rn) for n = 1, 2, . . . . The autocorrelation function is defined as

C(l) =
〈An+l An〉 − 〈An〉2

〈

A2
n

〉

− 〈An〉2
, (10.21)

where the average is taken from consecutive steps, that is,

〈An+l An〉 =
1

M

M
∑

n=1

An+l An . (10.22)

We have used An for A(Rn) to simplify the notation. A typical C(l), obtained

from the numerical example later in this section is shown in Fig. 10.1. As we

can see, the autocorrelation function starts to decrease at the beginning and

then saturates around l = lc ≃ 12, which is a good choice of the number of

steps to be skipped, n0 = lc, for the two adjacent data points to be used in the

sampling.

In most cases, the distribution function W(R) varies by several orders of mag-

nitude, whereas A(R) stays smooth or nearly constant. The sampling scheme

outlined above will find the average of a physical quantity according to the dis-

tribution W(R). In other words, there will be more points showing up with con-

figurations of higher W(R). This sampling by importance is much more efficient

than the direct, random sampling presented in the preceding section.

Now we would like to compare this procedure numerically with the direct,

random sampling. We still consider the integral

S =
∫ 1

0

f (x) dx =
∫ 1

0

W(x)g(x) dx, (10.23)
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with f (x) = x2. We can choose the distribution function as

W(x) =
1

Z

(

ex2 − 1
)

, (10.24)

which is positive definite. The normalization constant Z is given by

Z =
∫ 1

0

(

ex2 − 1
)

dx = 0.462 651 67, (10.25)

which is calculated from another numerical scheme for convenience. Then the

corresponding function g(x) = f (x)/W(x) is given by

g(x) = Z
x2

ex2 − 1
. (10.26)

Now we are ready to put all of these into a program that is a realization of the

Metropolis algorithm for the integral specified.

// An example of Monte Carlo simulation with the
// Metropolis scheme with integrand f(x) = x*x.

import java.lang.*;
import java.util.Random;
public class Carlo {

static final int nsize = 10000;
static final int nskip = 15;
static final int ntotal = nsize*nskip;
static final int neq = 10000;
static int iaccept = 0;
static double x, w, h = 0.4, z = 0.46265167;
static Random r = new Random();
public static void main(String argv[]) {

x = r.nextDouble();
w = weight();
for (int i=0; i<neq; ++i) metropolis();

double s0 = 0;
double ds = 0;
iaccept = 0;
for (int i=0; i<ntotal; ++i) {

metropolis();
if (i%nskip == 0) {

double f = g(x);
s0 += f;
ds += f*f;

}

}
s0 /= nsize;
ds /= nsize;
ds = Math.sqrt(Math.abs(ds-s0*s0)/nsize);
s0 *= z;
ds *= z;
double accept = 100.0*iaccept/(ntotal);
System.out.println("S = " + s0 + " +- " + ds);
System.out.println("Accept rate = " + accept + "%");

}
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public static void metropolis() {
double xold = x;

x = x + 2*h*(r.nextDouble()-0.5);
if ((x<0) || (x>1)) x = xold;
else {

double wnew = weight();

if (wnew > w*r.nextDouble()) {
w = wnew;
++iaccept;

}
else x = xold;

}

}

public static double weight() {

return Math.exp(x*x) - 1;
}

public static double g(double y) {
return y*y/(Math.exp(y*y)-1);

}
}

The numerical result obtained with the above program is 0.3334 ± 0.0005. The

step size is adjustable, and we should try to keep it such that the accepting rate

of the new configurations is less than or around 50%. In practice, it seems that

such a choice of accepting rate is compatible with considerations of speed and

accuracy. The above program is structured so that we can easily modify it to study

other problems.

10.3 Applications in statistical physics

The Metropolis algorithm was first applied in the simulation of the structure of

classical liquids and is still used in research into the study of glass transitions and

polymer systems. In this section, we discuss some applications of the Metropolis

algorithm in statistical physics. We will use the classical liquid system and the

Ising model as the two illustrative examples. The classical liquid system is con-

tinuous in spatial coordinates of atoms or molecules in the system, whereas the

Ising model is a discrete lattice system.

Structure of classical liquids

First we will consider the classical liquid system. Let us assume that the system

is in good contact with a thermal bath and has a fixed number of particles and

volume size: that is, that the system is described by the canonical ensemble. Then

the average of a physical quantity A is given by

〈A〉 =
1

Z

∫

A(R)e−U (R)/kBT dR, (10.27)
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where Z is the partition function of the system, which is given by

Z =
∫

e−U (R)/kBT dR. (10.28)

Here R = (r1, r2, . . . , rN ) is a 3N -dimensional vector for the coordinates of all

the particles in the system. We have suppressed the velocity dependence in the

expression with the understanding that the distribution of the velocity is given

by the Maxwell distribution, which can be used to calculate the averages of

any velocity-related physical quantities. For example, the average kinetic energy

component of a particle is given by

〈

mv2
ik

2

〉

=
1

2
kBT, (10.29)

where i = 1, 2, . . . , N is the index for the i th particle and k = 1, 2, 3 is the index

for the directions x , y, and z. The average of any physical quantity associated with

velocity can be obtained through the partition theorem. For example, a quantity

B(V) with V = (v1, v2, . . . , vN ) can always be expanded in the Taylor series of

the velocities, and then each term can be evaluated with

〈

vn
ik

〉

=

{

nkBT/m if n is even,

0 otherwise.
(10.30)

Now we can concentrate on the evaluation of a physical quantity that depends on

the coordinates only, such as the total potential energy, the pair distribution, or

the pressure. The average of the physical quantity is then given by

〈A〉 =
1

Z

∫

A(R)e−U (R)/kBT dR =
1

M

M
∑

i=1

A(Ri ), (10.31)

where Ri is a set of points in the phase space sampled according to the distribution

function

W(R) =
e−U (R)/kBT

Z
. (10.32)

Assuming that we have a pairwise interaction between any two particles, the total

potential energy for a specific configuration is then given by

U (R) =
N
∑

j>i

V (ri j ). (10.33)

In the preceding section, we discussed how to update all the components in

the old configuration in order to reach a new configuration. However, sometimes

it is more efficient to update the coordinates of just one particle at a time in the

old configuration to reach the new configuration, especially when the system is

very close to equilibrium or near a phase transition. Here we show how to update

the coordinates of one particle to obtain the new configuration. The coordinates
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for the i th particle are updated with

x
(n+1)
i = x

(n)
i + hx (2αi − 1), (10.34)

y
(n+1)
i = y

(n)
i + h y(2βi − 1), (10.35)

z
(n+1)
i = z

(n)
i + hz(2γi − 1), (10.36)

where hk is the step size along the kth direction and αi , βi , and γi are uniform

random numbers in the region [0, 1]. The acceptance of the move is determined

by importance sampling, that is, by comparing the ratio

p =
W(Rn+1)

W(Rn)
(10.37)

with a uniform random number w i . The attempted move is accepted if p ≥ w i

and rejected if p < w i . Note that in the new configuration only the coordinates

of the i th particle are moved, so we do not need to evaluate the whole U (Rn+1)

again in order to obtain the ratio p for the pairwise interactions. We can express

the ratio in terms of the potential energy difference between the old configuration

and the new configuration as

p = e−�U/kBT , (10.38)

with

�U =
N
∑

j 	=i

[

V
(∣

∣

∣
r

(n+1)
i − r

(n)
j

∣

∣

∣

)

− V
(∣

∣

∣
r

(n)
i − r

(n)
j

∣

∣

∣

)]

, (10.39)

which can usually be truncated for particles within a distance ri j ≤ rc. Here rc

is the typical distance at which the effect of the interaction V (rc) is negligible.

For example, the interaction in a simple liquid is typically the Lennard–Jones

potential, which decreases drastically with the separation of the two particles.

The typical distance for the truncation in the Lennard–Jones potential is about

rc = 3σ , where σ is the separation of the zero potential. As we discussed earlier,

we should not take all the discrete data points in the sampling for the average

of a physical quantity, because the autocorrelation of the data is very high if the

points are not far apart. Typically, we need to skip about 10–15 data points before

taking another value for the average. The evaluations of physical quantities such

as total potential energy, structural factor, and pressure are performed almost the

same as in the molecular dynamics if we treat the Monte Carlo steps as the time

steps in the molecular dynamics.

Another issue for the simulation of infinite systems is the extension of the

finite box with a periodic boundary condition. Long-range interactions, such

as the Coulomb interaction, cannot be truncated; a summation of the interaction

between particles in all the periodic boxes is needed. The Ewald sum is used to in-

clude the interactions between a charged particle and the images in other boxes un-

der the periodic boundary condition. Discussion on the Ewald summation can be

found in standard textbooks of solid-state physics, for example, Madelung (1978).
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The Monte Carlo step size h is determined from the desired rejection rate. For

example, if we want 70% of the moves to be rejected, we can adjust h to satisfy

such a rejection rate. A larger h produces a higher rejection rate. In practice, it

is clear that a higher rejection rate produces data points with less fluctuation.

However, we also have to consider the computing time needed. The decision is

made according to the optimization of the computing time and the accuracy of

the data sought. Typically, 50–75% used as the rejection rate in the most Monte

Carlo simulations. Here h along each different direction, that is, hx , h y , or hz ,

is determined according to the length scale along that direction. An isotropic

system would have hx = h y = hz . A system confined along the z direction, for

example, would need a smaller hz .

Properties of lattice systems

Now let us turn to discrete model systems. The scheme is more or less the same.

The difference comes mainly from the way the new configuration is tried. Because

the variables are discrete, instead of moving the particles in the system, we need

to update the configuration by changing the local state of each lattice site. Here we

will use the classical three-dimensional Ising model as an illustrative example.

The Hamiltonian is

H = −J

N
∑

〈i j〉
si s j − B

N
∑

i=1

si , (10.40)

where J is the exchange interaction strength, B is the external field, 〈i j〉 denotes

the summation over all nearest neighbors, and N is the total number of sites in the

system. The spin si for i = 1, 2, . . . , N can take values of either 1 or −1, so the

summation for the interactions is for energies carried by all the bonds between

nearest neighboring sites.

The Ising model was used historically to study magnetic phase transitions.

The magnetization is defined as

m =
1

N

N
∑

i=1

〈si 〉, (10.41)

which is a function of the temperature and external magnetic field. For the B = 0

case, there is a critical temperature Tc that separates different phases of the system.

For example, the system is ferromagnetic if T < Tc, paramagnetic if T > Tc, and

unstable if T = Tc. The complete plot of T , m, and B forms the so-called phase

diagram. Another interesting application of the Ising model is that it is also a

generic model for binary lattices: that is, two types of particles can occupy the

lattice sites with two on-site energies which differ by 2B. So the results obtained

from the study of the Ising model apply also to other systems in its class, such

as binary lattices. Readers who are interested in these aspects can find good
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discussions in Parisi (1988). Other quantities of interest include, but are not

limited to, the total energy

E = 〈H〉, (10.42)

and the specific heat

C =
〈H2〉 − 〈H〉2

NkBT 2
. (10.43)

In order to simulate the Ising model, for example, in the calculation of m, we

can apply more or less the same idea as for the continuous system. The statistical

average of the spin at each site is given by

m =
1

Z

∑

σ

sσ e−Hσ /kBT , (10.44)

where sσ = Sσ/N , with Sσ =
∑

si being the total spin of a specific configura-

tion labeled by σ and Hσ being the corresponding Hamiltonian (energy). The

summation in Eq. (10.44) is over all the possible configurations. Here Z is the

partition function given by

Z =
∑

σ

e−Hσ /kBT . (10.45)

The average of a physical quantity, such as the magnetization, can be obtained

from

m ≃
1

M

M
∑

σ=1

sσ , (10.46)

with σ = 1, 2, . . . , M indicating the configurations sampled according to the

distribution function

W(Sσ ) =
exp[−Hσ /kBT ]

Z
. (10.47)

Let us consider the actual simulations in more detail. First we randomly assign

1 and −1 to the spins on all the lattice sites. Then we select one site, which can

be picked either randomly or sequentially, to be updated. Assume that the i th site

is selected. The update is attempted with the spin at the site reversed: that is,

s
(n+1)
i = −s

(n)
i , (10.48)

which is accepted into the new configuration if

p = e−�H/kBT ≥ w i , (10.49)

where w i is a uniform random number in the region [0, 1] and �H is the energy

difference caused by the reversal of the spin, given by

�H = −2Js
(n+1)
i

z
∑

j=1

s
(n)
j . (10.50)
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Here j runs over all the nearest neighboring sites of i . Note that the quantity
∑

s
(n)
j

associated with a specific site may be stored and updated during the simulation.

Every time a spin is reversed and its new value is accepted, we can update the

summations accordingly. If the reversal is rejected in the new configuration, no

update is needed. The detailed balance condition

W(Sσ )T (Sσ → Sµ) = W(Sµ)T (Sµ → Sσ ) (10.51)

does not determine the transition rate T (Sσ → Sµ) uniquely; therefore we can

also use the other properly normalized probability for the Metropolis steps, for

example

q =
1

1 + e�H/kBT
(10.52)

instead of p in the simulation without changing the equilibrium results. The use of

q speeds up the convergence at higher temperature. There has been considerable

discussion on Monte Carlo simulations for the Ising model or related lattice

models, such as percolation models. Interested readers can find these discussions

in Binder and Heermann (1988), and Binder (1986; 1987; 1992).

10.4 Critical slowing down and block algorithms

There is a practical problem with the Metropolis algorithm in statistical physics

when the system under study is approaching a critical point. Imagine that the

system is a three-dimensional Ising system. At very high temperature, almost all

the spins are uncorrelated, and therefore flipping of a spin has a very high chance

of being accepted into the new configuration. So the different configurations can

be accessed rather quickly and provide an average close to ergodic behavior.

However, when the system is moved toward the critical temperature from above,

domains with lower energy start to form. If the interaction is ferromagnetic, we

start to see large clusters with all the spins pointing in the same direction. Now, if

only one spin is flipped, the configuration becomes much less favorable because

of the increase in energy. The favorable configurations are the ones with all the

spins in the domain reversed, a point that it will take a very long time to reach. It

means that we need to have all the spins in the domain flipped. This requires a very

long sequence of accepted moves. This is known as the critical slowing down.

Another way to view it is from the autocorrelation function of the total energy

of the system. Because now most steps are not accepted in generating new config-

urations, the total energy evaluated at each Monte Carlo step is highly correlated.

In fact, the relaxation time needed to have the autocorrelation function decreased

to near zero, tc, is proportional to the power of the correlation length ξ , which

diverges at the critical point in a bulk system. We have

tc = cξ z, (10.53)
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where c is a constant and the exponent z is called the dynamical critical exponent,

which is about 2, estimated from standard Monte Carlo simulations. Note that

the correlation length is bounded by the size of the simulation box L . Then the

relaxation time is

tc = cL z, (10.54)

when the system is very close to the critical point.

The first solution of this problem was devised by Swendsen and Wang (1987).

Their block update scheme is based on the nearest neighbor pair picture of the

Ising model, in which the partition function is a result of the contributions of all

the nearest pairs of sites in the system. Let us examine closely the effect of a

specific pair between sites i and j on the total partition function. We express the

partition function of the system in terms of Zp, the partition function from the

rest of the pairs with spins at sites i and j parallel, and Zf, the corresponding

partition function without any restriction on the spins at sites i and j . Then the

total partition function of the system is

Z = qZp + (1 − q)Zf, (10.55)

with

q = e−4β J , (10.56)

which can be interpreted as the probability of having a pair of correlated nearest

neighbors decoupled. This is the basis on which Swendsen and Wang devised the

block algorithm to remove the critical slowing down.

Here is a summary of their algorithm. We first cluster the sites next to each

other that have the same spin orientation. A bond is introduced for any pair of

nearest neighbors in a cluster. Each bond is then removed with probability q.

After all the bonds are tried with some removed and the rest kept, there are more,

but smaller, clusters still connected through the remaining bonds. The spins in

each small cluster are flipped all together with a probability of 50%. The new

configuration is then used for the next Monte Carlo step. This procedure in fact

updates the configuration by flipping blocks of parallel spins, which is similar to

the physical process that we would expect when the system is close to the critical

point. The speedup in this block algorithm is extremely significant. Numerical

simulations show that the dynamical critical exponent is significantly reduced,

with z ≃ 0.35 for the two-dimensional Ising model and z ≃ 0.53 for the three-

dimensional Ising model, instead of z ≃ 2 in the spin-by-spin update scheme.

The algorithm of Swendsen and Wang is important but still does not eliminate

the critical slowing down completely, because the time needed to reach an uncor-

related energy still increases with the correlation length. An algorithm devised by

Wolff (1989) provides about the same improvement in the two-dimensional Ising

model as the Swendsen–Wang algorithm but greater improvement in the three-

dimensional Ising model. More interestingly, the Wolff algorithm eliminates the
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critical slowing down completely, that is, z ≃ 0, in the four-dimensional Ising

model, while the Swendsen–Wang algorithm has z ≃ 1.

The idea of Wolff is very similar to the idea of Swendsen and Wang. Instead of

removing bonds, Wolff proposed constructing a cluster in which the nearest sites

have the same spin orientation. We first select a site randomly from the system

and add its nearest neighbors with the same spin orientation to the cluster with

the probability p = 1 − q . This is continued, with sites added to the cluster, until

all the sites in the system have been tried. All the spins in the constructed cluster

are then flipped together to reach a new spin configuration of the system. We can

easily show that the Wolff algorithm ensures detailed balance.

The Swendsen–Wang and Wolff algorithms can also be generalized to other

spin models, such as the xy model and the Heisenberg model (Wolff, 1989).

The idea is based on the construction of the probability q in both of the above-

mentioned algorithms. At every step, we first generate a random unit vector e

with each component a uniform random number xi ,

e =
1

r
(x1, x2, . . . , xn), (10.57)

with

r 2 =
n
∑

i=1

x2
i , (10.58)

where n is the dimension of the vector space of the spin. We can then define the

probability of breaking a bond as

q = min{1, e−4β J (e·si )(e·s j )}, (10.59)

which reduces to Eq. (10.56) for the Ising model. The Swendsen–Wang algorithm

and the Wolff algorithm have also shown significant improvement in the xy model,

the Heisenberg model, and the Potts model. For more details, see Swendsen,

Wang, and Ferrenberg (1992).

10.5 Variational quantum Monte Carlo simulations

The Monte Carlo method used in the simulations of classical many-body systems

can be generalized to study quantum systems as well. In this section, we will intro-

duce the most direct generalization of the Metropolis algorithm in the framework

of the variational principle. We will start our discussion with a general quantum

many-body problem, that is, the approximate solution of the Hamiltonian

H =
N
∑

i=1

[

−
h--2

2mi

∇2
i + Uext(ri )

]

+
∑

i> j

V (ri , r j ), (10.60)

where −h--2∇2
i /(2mi ) is the kinetic energy and Uext(ri ) is the external potential

of the i th particle and V (ri , r j ) is the interaction potential between the i th and

j th particles. In most cases, the interaction is spherically symmetric, that is,
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V (ri , r j ) = V (ri j ). The masses of all particles are the same in an identical-particle

system, of course.

We can symbolically write the time-independent many-body Schrödinger

equation as

H�n(R) = En�n(R), (10.61)

where R = (r1, r2, . . . , rN ) and �n(R) and En are the nth eigenstate and its cor-

responding eigenvalue of H. We usually cannot obtain analytic or exact solutions

for a system with more than two particles due to the complexity of the interaction

potential. Approximate schemes are thus important tools for studying the differ-

ent aspects of the many-body problem. It is easier to study the ground state of a

many-body system. Properties associated with the ground state include the order

of the state, collective excitations, and structural information.

Based on the variational principle that any other state would have a higher

expectation value of the total energy than the ground state of system, we can

always introduce a trial state �(R) to approximate the ground state. Here �(R)

can be a parameterized function or some specific function form. The parameters

or the variational function in �(R) can be optimized through the variational

principle with

E[αi ] =
〈�|H|�〉
〈�|�〉

≥ E0, (10.62)

where αi can be a set of variational parameters or functions of R, which are

linearly independent. This inequality can easily be shown by expanding �(R) in

terms of the eigenstates of the Hamiltonian with

�(R) =
∞
∑

n=0

an�n(R). (10.63)

The expansion above is a generalization of the Fourier theorem, because �n(R)

forms a complete basis set. The variational principle results if we substitute the

expansion for �(R) into the evaluation of the expectation value in Eq. (10.62)

with the understanding that

En ≥ E0 (10.64)

for n > 0 and that the eigenstates of a Hermitian operator can be made orthonor-

mal with

〈�n|�m〉 = δnm . (10.65)

In order to obtain the optimized wavefunction, we can treat the variational pa-

rameters or specific functions in the variational wavefunction as independent

variables in the Euler–Lagrange equation

δE[αi ]

δα j

= 0, (10.66)
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for j = 1, 2, 3, . . . . To simplify our discussion, let us assume that the system is

a continuum and that αi is a set of variational parameters. So we can write the

expectation value in the form of an integral

E[αi ] =
∫

�†(R)H�(R) dR
∫

|�(R′)|2 dR′ =
∫

W(R)E(R) dR, (10.67)

where

W(R) =
|�(R)|2

∫

|�(R′)|2 dR′ (10.68)

can be interpreted as a distribution function and

E(R) =
1

�(R)
H�(R) (10.69)

can be viewed as a local energy of a specific configuration R. The expectation

value can then be evaluated by the Monte Carlo quadrature if the expressions for

E(R) and W(R) for a specific set of parameters αi are given. In practice, �(R) is

parameterized to have the important physics built in. The variational parameters

αi in the trial wavefunction �(R) are then optimized with the minimization

of the expectation value E[αi ]. It needs to be emphasized that the variational

process usually cannot lead to any new physics and that the physics is in the

variational wavefunction, which is constructed intuitively. However, in order to

observe the physics of a nontrivial wavefunction, one usually needs to carry out

the calculations.

A common choice of the trial wavefunction for quantum liquids has the general

form

�(R) = D(R)e−U (R), (10.70)

where D(R) is a constant for boson systems and a Slater determinant of single-

particle orbitals for fermion systems to meet the Pauli principle. Here U (R) is

the Jastrow correlation factor, which can be written in terms of one-body terms,

two-body terms, and so on, with

U (R) =
N
∑

i=1

u1(ri ) +
N
∑

i> j

u2(ri , r j ) +
N
∑

i> j>k

u3(ri , r j , rk) + · · · , (10.71)

which is usually truncated at the two-body terms in most Monte Carlo sim-

ulations. Both u1(r) and u2(r, r′) are parameterized according to the physical

understanding of the source of these terms. We can show that when the external

potential becomes a dominant term, u1(r) is uniquely determined by the form of

the external potential, and when the interaction between the i th and j th particles

dominates, the form of u2(ri , r j ) is uniquely determined by V (ri , r j ). These are

the important aspects used in determining the form of u1 and u2 in practice.

First let us consider the case of bulk helium liquids. Because the external

potential is zero, we can choose u1(r) = 0. The two-body term is translationally
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invariant, u2(ri , r j ) = u2(ri j ). The expression for u2(r ) at the limit of r → 0 can

be obtained by solving a two-body problem. In the center-of-mass coordinate

system, we have
[

−
h--2

2µ
∇2 + V (r )

]

e−u2(r ) = Ee−u2(r ), (10.72)

where µ is the reduced mass m/2, V (r ) is the interaction potential that is given

by 4ε(σ/r )12 at the limit of r → 0, and the Laplacian can be decoupled in the

angular momentum eigenstates as

∇2 =
d2

dr 2
+

2

r

d

dr
−

l(l + 1)

r 2
. (10.73)

We can show that in order for the divergence of the potential energy to be canceled

by the kinetic energy at the limit of r → 0, we must have

u2(r ) =
(a

r

)5

. (10.74)

The condition needed to remove the divergence of the potential energy with

the kinetic energy term constructed from the wavefunction is called the cusp

condition. This condition is extremely important in all quantum Monte Carlo

simulations, because it is the major means of stabilizing the algorithms. The

behavior of u2(r ) at longer range is usually dominated by the density fluctuation

or zero-point motion of phonons, which is proportional to 1/r2. We can show that

the three-body term and the effects due to the backflow are also important and

can be incorporated into the variational wavefunction. The Slater determinant for

liquid 3He can be constructed from plane waves. The key, as we have stressed

earlier, is to find a variational wavefunction that contains the essential physics

of the system, which is always nontrivial. In one study, Bouchaud and Lhuillier

(1987) replaced the Slater determinant with a BCS (Bardeen–Cooper–Schrieffer)

ansatz for liquid 3He. This changed the structure of the ground state of the system

from a Fermi liquid, which is characterized by a Fermi surface with a finite jump

in the particle distribution, to a superconducting glass, which does not have a

Fermi surface. For more details on the variational Monte Carlo simulations of

helium systems, see Ceperley and Kalos (1986).

Electronic systems are another class of systems studied with the variational

quantum Monte Carlo method. Significant results are obtained for atomic sys-

tems, molecules, and even solids. Typical approaches treat electrons and nuclei

separately with the so-called Born–Oppenheimer approximation: that is, the elec-

tronic state is adjusted quickly for a given nuclear configuration so the potential

due to the nuclei can be treated as an external potential of the electronic system.

Assume that we can obtain the potential of the nuclei or ions with some other

method. Then u1(ri ) can be parameterized to ensure the cusp condition between

an electron and a nucleus or ion. For an ion with an effective charge Ze, we have

u1(r ) = Zr/a0 (10.75)
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as r → 0. Here a0 is the Bohr radius. u2(ri j ) is obtained from the electron–electron

interaction, and the cusp condition requires

u2(ri j ) = −
σi jri j

2a0

(10.76)

as ri j → 0. Here σi j = 1 if the i th and j th electrons have different spin orienta-

tions; otherwise σi j = 1/2. The Slater determinant can be constructed from the

local orbitals, for example, the linear combinations of the Gaussian orbitals from

all nuclear sites. Details of how to construct the kinetic energy for the Jastrow

ansatz with the Slater determinant can be found in Ceperley, Chester, and Kalos

(1977).

There have been a lot of impressive variational quantum Monte Carlo sim-

ulations for electronic systems, for example, the work of Fahy, Wang, and

Louie (1990) on carbon and silicon solids, the work of Umrigar, Wilson, and

Wilkins (1988) on the improvement of variational wavefunctions; and the work

of Umrigar (1993) on accelerated variational Monte Carlo simulations.

The numerical procedure for performing variational quantum Monte Carlo

simulations is similar to that for the Monte Carlo simulations of statistical systems.

The only difference is that for the statistical system the calculations are done for

a given temperature, but for the quantum system they are done for a given set of

variational parameters in the variational wavefunction. We can update either the

whole configuration or just the coordinates associated with a particular particle

at each Metropolis step.

10.6 Green’s function Monte Carlo simulations

As we pointed out in the preceding section, the goal of the many-body theory is to

understand the properties of a many-body Hamiltonian under given conditions.

Assuming that we are dealing with an identical-particle system with an external

potential Uext(r), the Hamiltonian is then given by

H = −
h--2

2m

N
∑

i=1

∇2
i +

N
∑

i=1

Uext(ri ) +
N
∑

i< j

V (ri , r j ), (10.77)

where m is the mass of each particle and V (ri , r j ) is the interaction potential

between the i th and j th particles. We will also assume that the interaction is

spherically symmetric: that is, that V (ri , r j ) = V (ri j ). As we discussed in the

preceding section, the formal solution of the Schrödinger equation can be written

as

H�n(R) = En�n(R), (10.78)

where R = (r1, r2, . . . , rN ) and �n(R) and En are the nth eigenstate and

its corresponding eigenvalue of H. For convenience of discussion, we will set

h-- = m = 1.
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It is impossible to solve the above Hamiltonian analytically for most cases.

Numerical simulations are the alternatives in the study of many-body Hamilto-

nians. In the preceding section, we discussed the use of the variational quantum

Monte Carlo simulation scheme to obtain the approximate solution for the ground

state. However, the result is usually limited by the variational wavefunction se-

lected. In this section, we show that we can go one step further to sample the

ground-state wavefunction and for some systems we can even find the exact

ground state. First we will discuss in more detail a version of the Green’s func-

tion Monte Carlo scheme that treats the ground state of the Schrödinger equation

as the stationary solution of a diffusion equation, the so-called imaginary-time

Schrödinger equation. That is why this specific version of the Green’s function

Monte Carlo scheme is commonly referred to as the diffusion quantum Monte

Carlo method. Later we will briefly discuss the original version of the Green’s

function Monte Carlo scheme, which actually samples Green’s function. The

imaginary-time Schrödinger equation is given by

∂�(R, t)

∂t
= −(H − Ec)�(R, t), (10.79)

where t is the imaginary time, �(R, t) is a time-dependent wavefunction, and

Ec is an adjustable constant that is used later in the simulation to ensure that the

overlap of �(R, t) and �0(R) is on the order of 1. We can show that at a later

time the wavefunction is given by the convolution

�(R, t) =
∫

G(R,R′; t − t ′)�(R′, t ′) dR′, (10.80)

where Green’s function G(R,R′; t − t ′) is given by
[

∂

∂t
− (H − Ec)

]

G(R,R′; t − t ′) = δ(R − R′)δ(t − t ′), (10.81)

which can be expressed as

G(R,R′; t − t ′ = 〈R| exp[−(H − Ec)(t − t ′)]|R′〉. (10.82)

Green’s function can be used to sample the time-dependent wavefunction�(R, t)

as discussed by Anderson (1975; 1976). A more efficient way of sampling the

wavefunction is by constructing a probability-like function (Reynolds et al.,

1982). Assume that we take a trial wavefunction for the ground state, such as

the one obtained in a variational quantum Monte Carlo simulation, as the ini-

tial wavefunction �(R, 0) = �(R). We can easily show that the time-dependent

wavefunction is given by

�(R, t) = e−(H−Ec)t�(R). (10.83)

Then we can construct a probability-like function

F(R, t) = �(R, t)�(R). (10.84)
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We can show that F(R, t) satisfies the diffusion equation

∂F

∂t
=

1

2
∇2 F − ∇ · FU + [Ec − E(R)]F, (10.85)

where

U = ∇ ln�(R) (10.86)

is the drifting velocity and

E(R) = �−1(R)H�(R) (10.87)

is the local energy for a given R. If we introduce a time-dependent expectation

value

E(t) =
〈�(R)|H|�(R, t)〉
〈�(R′)|�(R′, t)〉

=
∫

F(R, t)E(R) dR
∫

F(R′, t) dR′ (10.88)

at time t , we can obtain the true ground-state energy

E0 = lim
t→∞

E(t). (10.89)

The multidimensional integral in Eq. (10.88) can be obtained by means of the

Monte Carlo quadrature with F(R, t) treated as a time-dependent distribution

function if it is positive definite. In practice, the simulation is done by rewriting

the diffusion equation for F(R, t) as an integral

F(R′, t + τ ) =
∫

F(R, t)G(R′,R; τ ) dR, (10.90)

where G(R′,R; τ ) is Green’s function of the diffusion equation. If τ is very small,

Green’s function can be approximated as

G(R′,R; τ ) ≃ W(R′,R; τ )G0(R′,R; τ ), (10.91)

where

G0(R′,R; τ ) =
(

1

2πτ

)3N/2

e−[R′−R−Uτ ]2/2τ (10.92)

is a propagator due to the drifting and

W(R′,R; τ ) = e−{[E(R)+E(R′)]/2−Ec(t)}τ (10.93)

is a branching factor.

In order to treat F(R, t) as a distribution function or a probability, it has to

be positive definite. A common practice is to use a fixed-node approximation,

which forces the function F(R, t) to be zero in case it becomes negative. This

fixed-node approximation still provides an upper bound for the evaluation of

the ground-state energy and gives good molecular energies for small systems

if the trial wavefunction is properly chosen. The fixed-node approximation can

be removed by releasing the fixed nodes, but this requires additional computing



306 Monte Carlo simulations

efforts (Ceperley and Alder, 1984). Below is a summary of the major steps in the

actual Green’s function Monte Carlo simulation.

(1) We first perform variational quantum Monte Carlo simulations to optimize the varia-

tional parameters in the trial wavefunction.

(2) Then we can generate an initial ensemble with many independent configurations from

the variational simulations.

(3) Each configuration is updated with a drifting term and a Gaussian random walk, with

the new coordinate

R′ = R + Uτ + χ, (10.94)

where χ is a 3N -dimensional Gaussian random number generated in order to have a

variance of τ on each dimension.

(4) Not every step is accepted, and a probability

p = min[1,w(R′,R; τ )] (10.95)

is used to judge whether the updating move should be accepted or not. Here

w(R′,R, τ ) =
�(R′)2G(R,R′; τ )

�(R)2G(R′,R; τ )
(10.96)

is necessary in order to have detailed balance between points R′ and R. Any move that

crosses a node is rejected under the fixed-node approximation.

(5) A new ensemble is then created with branching: that is,

M = [W(R′,R; τa) + ξ ] (10.97)

copies of the configuration R′ are put in the new ensemble. Here ξ is a uniform random

number between [0, 1] that is used to make sure that the fraction of W is properly

taken care of; τa is the effective diffusion time, which is proportional to τ , with the

coefficient being the ratio of the mean square distance of the accepted moves to the

mean square distance of the attempted moves.

(6) The average local energy at each time step Ē(R′) is then evaluated from the summa-

tion of E(R′) of each configuration and weighted by the corresponding probability

W(R′,R; τa). The time-dependent energy Ec(t) is updated at every step with

Ec(t) =
Ē(R) + Ē(R′)

2
(10.98)

to ensure a smooth convergence.

Before we can take the data for the calculation, we need to run the above steps

enough times that the error is dominated by statistics. The data are typically taken

with an interval of ten steps. The exact size of the interval can be determined

from the autocorrelation function of the physical quantities evaluated in the sim-

ulation. We can then group and average the data to the desired accuracy. Several

independent runs can be carried out for a better average.
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Another scheme that samples Green’s function directly does not have the prob-

lems of finite time step or fixed-node approximation. This method was originally

proposed by Kalos (1962). It is based on the time-independent Green’s function

formalism. We can formally write the solution of the many-body Hamiltonian as

an integral

� (n+1)(R) = Ec

∫

G(R,R′)� (n)(R′) dR′, (10.99)

where Ec is a trial energy of the system and G(R,R′) is the Green’s function of

the Hamiltonian given by

HG(R,R′) = δ(R − R′), (10.100)

where G(R,R′) also satisfies the boundary condition. We can show that the

ground state of the Hamiltonian is recovered for n = ∞ with

�0(R) = � (∞)(R). (10.101)

In order to have the desired convergence, Ec has to be a positive quantity, which

can be ensured at least locally by adding a constant to the Hamiltonian. It can be

shown for sufficiently large values of n that

� (n+1)(R) ≃
Ec

E0

� (n)(R). (10.102)

The time-independent Green’s function is related to the time-dependent Green’s

function by

G(R,R′) =
∫ ∞

0

G(R,R′; t) dt, (10.103)

which can be sampled exactly in principle. In practice, it will usually take a lot

of computing time to reach a stable result. For more details on how to sample

Green’s function, see Ceperley and Kalos (1986) or Lee and Schmidt (1992).

10.7 Two-dimensional electron gas

In the nearly two decades since the bold claim (Anderson, 1987) that cuprate

superconductors result from a resonating-valence-bond state, the physics com-

munity has agonized with excitement and frustration, searching for such a state

and its consequences after doping. The properties of this state would be unique,

as exemplified in the proposal of applying it to quantum computing (Ioffe et al.

2002). A simpler but related system is the two-dimensional electron gas formed in

semiconductor structures, which is found to have many interesting properties, in-

cluding a metal–insulator transition in the dilute limit (Pudalov et al., 1993). The

search for a proper description of the metallic state in the dilute two-dimensional

electron gas is intensified because emerging experimental results are challenging

the established theoretical pictures.
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As an illustrative example, we present numerical evidence from diffusion

quantum Monte Carlo simulation to show that the ground state of the dilute

two-dimensional electron gas in the vicinity of the Wigner crystallization is best

described by a resonating-pair liquid. With an explicit construction of the many-

body wavefunction of such a liquid, we elucidate its relations to the resonating-

valence-bond and gossamer superconducting states (Laughlin, 2002; Zhang,

2003) and highlight the significance of the disappearance of the Fermi surface in

such a system.

The nature of a three-dimensional homogeneous electron gas is well under-

stood in both the high- and low-density limits (Mahan, 2000). When the density

is extremely low, the system is a quantum solid, known as the Wigner crystal,

resulting from strong Coulomb interactions among the electrons. At extremely

high density, the system behaves like a free electron gas because of the screening

of the interaction potentials and is well described by the Fermi liquid theory. What

happens in between is not entirely understood, and this makes the system inter-

esting, especially when the dimensionality is reduced. Two-dimensional electron

gas systems have been full of surprises on several fronts of condensed matter re-

search. First there is the appearance of the quantum and fractional quantum Hall

effects under a strong, perpendicular magnetic field. Then there is the discovery

of the cuprate superconductors, which can be viewed as a highly correlated two-

dimensional electron gas subject to a periodic potential near the Mott insulating

state. The third there is the discovery of the metal–insulator transition in a dilute

two-dimensional electron gas formed in a semiconductor structure; this is totally

unexpected, in defiance of the scaling theory of localization (Abrahams et al.,

1979).

Below we outline a study (Pang, 2005) of the two-dimensional electron gas

using diffusion quantum Monte Carlo simulation. A metallic state, consisting of

a collection of resonating singlet pairs, was found to be the preferred state in

the vicinity of the Wigner crystallization. These findings resolve several issues

regarding the two-dimensional electron gas and provide important clues on how

to proceed to have a better understanding of the electron–electron correlation in

related materials. Following convention, we use the jellium model (Mahan, 2000)

to describe the two-dimensional homogeneous electron gas:

H = −
1

2

N
∑

i=1

∇2
i +

N
∑

i> j=1

1

ri j

+ N V0, (10.104)

where N is the total number of particles in the simulation cell, ri j is the distance

between the i th electron and the j th electron (or its image if it is closer) under

the periodic boundary condition, and V0 = −
N

2

1

�

∫

�

dr

r
is an effective potential

due to the charge images and the positive background with � being the area of

the simulation cell. This model appears to be a reasonable approximation of the
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corresponding infinite system (Attaccalite et al., 2002). Atomic units are used

here for convenience.

The jellium model has been studied extensively, with calculations using quan-

tum Monte Carlo simulations (Attaccalite et al., 2002), which conclude that, in

the vicinity of the Wigner crystallization, the system is a spin-polarized Fermi

liquid. However, another experiment (Shashkin et al., 2003) seems to suggest

that this cannot be the case. Pang (2005) proposes that two-dimensional electron

gas in the dilute limit is instead a resonating-pair liquid and introduces a varia-

tional wavefunction to describe the ground state of such a liquid. To support this

view, variational and diffusion quantum Monte Carlo simulations based on this

wavefunction are performed. It is found that the system prefers this liquid state

over the Fermi liquid state and this opens a completely new ground for studying

highly correlated two-dimensional electron gas systems.

The standard variational and diffusion quantum Monte Carlo simulation meth-

ods are applied to the above model with a unique trial/guide many-body wave-

function that contains resonating pairs of spin singlets:

|�〉 = F |�〉, (10.105)

where F =
∏

i 	= j f (ri j ) is the Jastrow projection factor that restricts the wave-

function according to the interaction when any two particles are approach-

ing closely to each other, and |�〉 is a determinant formed from matrix

elements ϕ(ri j ) between a spin-up and a spin-down particle (Bouchaud and

Lhuillier, 1987). We use f (r ) = eu(r ), with u(r ) = ar/(1 + br ) + s for r < rm,

u(r ) =
∑5

k=0 ck(r − rm)k for rm < r < rc, and u(r ) = 0 for r > rc, as has been

done for the three-dimensional electron gas (Ortiz, Harris, and Ballone, 1999).

In order to have the Coulomb repulsion canceled by the kinetic energy when two

particles approach each other, we must have a = 1 if the spins are different and

a = 1/3 if the spins are the same. Other parameters are selected to minimize the

variational ground-state energy.

The resonating-pair wavefunction is taken as a modified Gaussian with

ϕ(r ) = e−α1r2/(1+β1r2) − qe−α2r2/(1+β2r2), where αi > 0 determine the range of the

resonating pair and βi ≥ 0 determine where the pairing ends with βi = 0 being

a special case of a bound pair (Bouchaud and Luillier, 1987). The parameter q is

used to include the effect of the correlation hole and detailed structure of the pair.

This choice of trial/guide wavefunction is based on the intuition that the two-

dimensional electron gas near the Wigner crystallization is a liquid but possesses

certain characteristics of the nearby insulating solid state. The Wigner crystal is a

triangular lattice that has electrons forming resonating spin singlets. If we picture

the melting process as one that first delocalizes the electrons while keeping the

features of the spin singlets that can be either bound or in a resonating state, near

the Wigner crystallization the system must be close to a resonating-valence-bond

state or a quantum antiferromagnetic state, with singlet pairs that are close to but

not quite bounded.
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Fig. 10.2 Optimized

resonating-pair

wavefunction ϕ(r )

(triangles) compared with

that of the noninteracting

system ϕ0(r ) (circles). The

size of the resonating pair

is clearly on the order of

the average nearest

neighbor distance (2rs),

marked by the peak in

rϕ(r ). The long-range

oscillatory tail in ϕ0(r )

around zero (indicated by

a dashed line) reflects the

sharp edge of the Fermi

surface in the

noninteracting system or

the corresponding

Fermi-liquid state. The

wavefunctions are

normalized by their

maximum values in the

plots and the inset shows

the short-range difference

between ϕ(r ) and ϕ0(r ).

Several variational quantum Monte Carlo simulations on the model Hamil-

tonian of Eq. (10.104) with the trial wavefunction |�〉 can be used in order

to optimize it. The parameters, α1 = 0.11/r2
s , β1 = 0.025/r2

s , α2 = 0.425/r2
s ,

β2 = 0.1/r2
s , and q = 0.25, appear to optimize |�〉 for any given density

ρ = N/� = 1/(πr2
s ). Figure 10.2 shows the optimized resonating-pair wave-

function ϕ(r ) with that of the Fermi liquid, ϕ0(r ) =
∫ kF

0
J0(kr )k dk, where J0 is

the zeroth-order Bessel function of the first kind and kF =
√

2πρ is the Fermi

wave number of the noninteracting system.

The ground-state energy of the resonating-pair liquid is obtained through

the standard fixed-node diffusion quantum Monte Carlo simulation, shown in

Fig. 10.3, referred to the ground-state energy of the corresponding Fermi liquid

state, which is calculated in the exactly same manner with the resonating-pair

wavefunction ϕ(r ) replaced by ϕ0(r ). The scheme provides the exact result if

the nodal structure of the exact wavefunction is given. Otherwise the result ob-

tained is variational in nature, representing a thorough search of an entire class

of wavefunctions with the same nodal structure.

From the data shown, the resonating-pair liquid is not only plausible but

is clearly preferable in the vicinity of the Wigner crystallization. The energy

difference calculated in the region from rs = 10 to rs = 45 is great enough to

rule out the possibility of a spin-polarized Fermi liquid, and pushes the transition

to a Wigner crystal to a higher value than rs ≃ 37. The differences presented

should have reduced, if not entirely circumvented, the errors due to the finite size

of the simulation cell, truncation of the Coulomb interaction, finite time steps

(τ = rs/100) used, and certain biases created in the specific implementation of
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Fig. 10.3 The energy

difference per particle

�ε between the

resonating-pair liquid

and Fermi liquid

measured in terms of

the Fermi energy

(εF = k
2
F/2) of the

noninteracting system.

The total number of

particles used in all the

simulations here is

N = 58. The largest

difference obtained in

the region shown for a

spin-polarized liquid or

Wigner crystal is on

the order of, or smaller

than, 0.1, not enough

to make one of them a

preferable state in the

region shown.the fixed-nodal scheme. Any of these contributions should be much smaller than

the energy difference shown and should not have altered the conclusions reached

here.

In order to understand the structure of the proposed resonating-pair liquid

better, snapshots of the electrons in this state and in the corresponding Fermi

liquid state have been taken (Pang, 2005). Figure 10.4 shows two representative

snapshots of the electrons with the same rs = 30. As one can see, electrons with

different spins are highly correlated in both liquids. They almost all appear in pairs

in which one is a spin-up electron and the other a spin-down one. However, the

electrons in the resonating-pair liquid are more evenly distributed with a smaller

density fluctuation, close to a solid or an incompressible fluid. This is the result of

the resonating-pair wavefunction ϕ(r ), which has a broad peak at a distance close

to the lattice spacing around 2rs . For the Fermi liquid, the spin-up and spin-down

electrons are still well paired but with a much larger (more liquid-like) density

fluctuation. This is evident from the number of pairs that have a separation distance

smaller than rs , reflecting the structures of ϕ(r ) and ϕ0(r ). We may speculate that

the resonating-pair liquid is close to a glass state, similar to what was argued for

the normal state of the 3He liquid (Bouchaud and Luillier, 1987).

The resonating-pair state that we have introduced here is clearly a liquid be-

cause of the continuous translational symmetry preserved in the wavefunction.

Nevertheless, the resonating-pair liquid does not possess a Fermi surface (or

Fermi circle for the two-dimensional systems). This can be shown by comparing

the resonating-pair state ϕ(r ) with its noninteracting counterpart ϕ0(r ). The non-

interacting state ϕ0(r ) is formed from the superposition of plane waves within
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Fig. 10.4 Snapshots of the

electrons in the two

distinct liquid states with

rs = 30: (a) the

resonating-pair liquid;

(b) the Fermi liquid.

Spin-up and spin-down

electrons are

distinguished in these

snapshots. The total

number of electrons in

each case is N = 58 and

the average distance

between nearest

neighbors is about

2rs = 60. The snapshots

are for the entire

simulation cell under the

periodic boundary

condition. The density

fluctuation in the

resonating-pair liquid is

much smaller, as is

evident from only one

pair in (a) having a

separation distance

smaller than rs, whereas

there are nine in (b).

the Fermi surface:

ϕ0(r ) =
1

�

∑

k<kF

eik·r, (10.106)

which can be viewed as a Fourier transform with a unit Fourier coefficient for

k < kF and zero otherwise. However, the resonating-pair state has a nonzero

Fourier coefficient

ck =
1

2π

∫

ϕ(r )e−ik·r dr (10.107)

for any given k. Here ck is obviously a continuous function of k across

kF. Therefore the resonating-pair liquid does not have a discontinuity in the

single-particle spectrum in the momentum space. This is a significant departure

from the conventional Fermi liquid description of the normal state of an interact-

ing Fermi system. Because of the liquid nature of the resonating-pair state, this

is certainly a candidate that defies the unique metallic state argument (Laughlin,

1998) based on quantum criticality. An interesting issue that can be investigated

in the framework presented here is whether there is a density region in which

both the Fermi liquid and the resonating-pair liquid can coexist. This may pro-

vide an explanation for the experiment observation (Gao et al., 2002) that the

metallic phase of the two-dimensional electron gas appears to be a mixture of two

phases.

In general, the Fermi liquid would be sensitive to the disorder and behave as a

weakly localized system whereas the resonating-pair liquid, with pairs resembling

Cooper pairs within the scattering length, would not be significantly influenced

by nonmagnetic impurities or disorders and therefore would remain metallic. The

metal–insulator transition can then be viewed as the disappearance or localiza-

tion of the resonating pairs. The localization of the resonating pairs could be a

transformation into a resonating-valence-bond liquid if magnetic ordering is not
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preferred. This is believed to be the case for a triangular lattice with one electron

per lattice site. Otherwise, it can lead to an antiferromagnetic ground state of

the localized electrons, such as the case of a square lattice with one electron

per lattice site. The third possibility is for the system to become a paired elec-

tron solid, a state explored for three-dimensional electron gas (Moulopoulos and

Ashcroft, 1993). Another possibility is that a small fraction of resonating pairs

become bound, and the system then is a gossamer superconductor. In general, one

expects that all the resonating pairs become bound if the interaction is modified

to include an attractive tail, such as the case of the 3He liquid (Bouchaud and

Luillier, 1987).

10.8 Path-integral Monte Carlo simulations

So far we have been discussing the study of the ground-state properties of quantum

many-body systems. In reality, the properties of excited states are as important as

those of the ground state, especially when we are interested in the temperature-

dependent behavior of the system. In this section, we briefly discuss a finite-

temperature quantum Monte Carlo simulation scheme introduced by Pollock and

Ceperley (1984). If the system is in equilibrium, the properties of the system are

generally given by the density matrix

ρ(R,R′;β) = 〈R′|e−βH|R〉 =
∑

n

e−βEn�†
n(R′)�n(R), (10.108)

where β = 1/kBT is the inverse temperature and H, En , and �n are related

through the Schrödinger equation

H�n(R) = En�n(R) (10.109)

of the many-body system. The thermodynamic quantities of the system are related

to the density matrix through the partition function

Z = Trρ(R,R′;β), (10.110)

which is the sum of all diagonal elements of the matrix. The density matrix, as

well as the partition function, satisfies the convolution

ρ(R,R′;β) =
∫

ρ(R,R1; τ ) · · · ρ(RM ,R′; τ ) dR1 · · · dRM , (10.111)

with τ = β/(M + 1). If M is a very large number, ρ(Ri ,R j ; τ ) approaches the

high-temperature limit with the effective temperature as Tτ = 1/kBτ ≃ MT . We

can formally show that the quantum density matrix written in the convolution is

equivalent to a classical polymer system, which is one dimension higher in ge-

ometry than the corresponding quantum system. For example, the point particles

of a quantum system therefore behave like classical polymer chains with the
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bonds and beads connected around each true particle. This can be viewed from

the path-integral representation for the partition function

Z =
∫

e−S[R(t)] DR(t) (10.112)

at the limit of M → ∞, where

S[R(t)] =
∫ β

0

[

1

2

(

dR

dt

)2

+ V (R)

]

dt (10.113)

and

DR(τ ) = lim
M→∞

1

(2πτ )3N (M+1)/2
dR1dR2 · · · dRM . (10.114)

Note that the path integral in Eq. (10.112) is purely symbolic. For more details on

the path-integral representation, especially its relevance to polymers, see Wiegel

(1986).

If we can obtain the density matrix of the system at the high-temperature

limit, the density matrix and other physical quantities at the given temperature

are given by 3N × M-dimensional integrals, which can be sampled, in principle,

with the Metropolis algorithm. However, in order to have a reasonable speed of

convergence, we cannot simply use

ρ(R,R′; τ ) =
1

(2πτ )3N/2
exp

[

−
(R − R′)2

2τ
− τV (R)

]

, (10.115)

which is the density matrix at the limit of M → ∞ or τ = β/(M + 1) → 0 under

the Feynman path-integral representation for simulation purposes. A good choice

seems to be the pair-product approximation (Barker, 1979)

ρ(R,R′; τ ) ≃ ρ0(R,R′; τ )e−U (R,R′;τ ), (10.116)

with

U (R,R′; τ ) =
∑

i< j

u(ri j , r ′
i j ; τ ), (10.117)

which is the pair correction to the free particle density matrix,

ρ0(R,R′; τ ) =
1

(2πτ )3N/2
exp

[

−
(R − R′)2

2τ

]

. (10.118)

Another important issue is that each quantum many-body system satisfies a cer-

tain quantum statistics. Fermions and bosons behave totally differently when two

particles in the system are interchanged. The general expression of the sym-

metrized or antisymmetrized density matrix can be written as

ρ±(R,R′;β) =
1

N !

∑

P

(±1)Pρ(R,PR′;β), (10.119)

where P is an indicator of permutations. This matrix with permutations has been

used to study liquid 4He (Ceperley and Pollock, 1986), liquid 3He (Ceperley,
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1992), and liquid helium mixtures (Boninsegni and Ceperley, 1995). For a review

of the subject see Ceperley (1995). The path-integral Monte Carlo method has

been used to study the interacting bosons trapped in a potential well (Pearson,

Pang, and Chen, 1998). An unexpected symmetry-breaking phenomenon shows

up in a trapped boson mixture (Ma and Pang, 2004).

Different Metropolis sampling schemes have also been developed for path-

integral Monte Carlo simulations. Interested readers should consult Schmidt

and Ceperley (1992). We can also find the discussion of a new scheme devised

specifically for many-fermion systems in Lyubartsev and Vorontsov-Velyaminov

(1993).

10.9 Quantum lattice models

Various quantum Monte Carlo simulation techniques discussed in the last few

sections have also been applied in the study of quantum lattice models, such as

the quantum Heisenberg, Hubbard, and t–J models. These studies are playing a

very important role in the understanding of highly correlated materials systems

that have great potential for future technology.

In this section, we will give a very brief introduction to the subject: interested

readers can refer the vast literature on the subject. We will use the Hubbard model

as an illustrative example to highlight the key elements in these approaches and

also point out the difficulties encountered in current research. We have used

the Hubbard model in describing the electronic structure of H+
3 in Chapter 5.

The single-band Hubbard model for a general electronic system is given by the

Hamiltonian

H = −t

L
∑

〈i j〉
(a

†
i↑a j↑ + a

†
i↓a j↓) + U

L
∑

i=1

ni↑ni↓, (10.120)

where a
†
iσ and a jσ are creation and annihilation operators of an electron with either

spin up (σ = ↑) or down (σ = ↓), niσ = a
†
iσaiσ is the corresponding occupancy

at the i th site, t is the hopping integral of an electron between the nearest sites

(notated as〈i j〉), U is the on-site interaction of two electrons with opposite spin

orientations, and L is the total number of lattice sites.

The Hubbard model is extremely appealing, because it is very simple but

contains almost all the information in the highly correlated systems. An exact

solution for this model is only available for one dimension. The typical quantities

to be studied are the spin correlation function, the particle correlation function,

and the excitation spectra. The spin–spin correlation function is defined as

Cs(l) = 〈si · si+l〉, (10.121)

where the spin operator is given by

si =
h--

2

∑

σν

a
†
iσpσνaiν, (10.122)
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with pσν being the Pauli matrices,

px =

(

0 1

1 0

)

, py =

(

0 −i

i 0

)

, pz =

(

1 0

0 −1

)

. (10.123)

The particle–particle correlation function is defined as

Cp(l) = 〈�ni�ni+l〉, (10.124)

where �ni = ni − n0 is the difference in the occupancy of the i th site and the

average occupancy n0. Note that the index l is used symbolically for pairs of sites

that are separated by the same distance. These and other correlation functions are

very useful in understanding the physical properties of the system. For example,

a solid state is formed if the particle correlation function has a long-range order

and the (staggered) magnetization m is given by the long-distance limit of the

spin correlation function as m2 = 1
3
Cs(l → ∞). These correlation functions can

be evaluated up to a point by quantum Monte Carlo simulations.

Variational simulation

The variational quantum Monte Carlo simulation is a combination of the vari-

ational scheme and the Metropolis algorithm. We first need construct a trial

wavefunction that contains as much of the relevant physics as possible. It is

usually very difficult actually to come up with a state that is concise but con-

tains all the important physics. It appears only to have happened three times in

the entire history of the many-body theory: in 1930, when Bethe proposed the

Bethe ansatz for the spin-1/2 one-dimensional Heisenberg model; in 1957, when

Bardeen, Cooper, and Schrieffer proposed the BCS ansatz for the ground state

of superconductivity; and in 1983, when Laughlin proposed the Laughlin ansatz

for the fractional quantum Hall state. It turns out that the Bethe ansatz is exact

for the spin-1/2 chain and has since been applied to many other one-dimensional

systems.

Because there is no such extraordinary trial state for the two- or three-

dimensional Hubbard model, we will take the best-known trial state so far, the

Gutzwiller ansatz

|�〉 =
L
∏

i=1

[1 − (1 − g)ni↑ni↓]|�0〉, (10.125)

to illustrate the scheme. Here g is the only variational parameter in the trial wave-

function and |�0〉 is a reference state, which is usually chosen as the uncorrelated

state of the Hamiltonian, that is, the solution with U = 0, the single-band tight-

binding model. This trial state is used by Vollhardt (1984) in the description of

the behavior of the normal state of liquid 3He. Some other variational wavefunc-

tions have also been developed for the Hubbard model, but so far there has not

been a unique description because of the lack of a fundamental understanding
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of the model in two dimensions. We can show that the Gutzwiller ansatz can be

rewritten as

|�〉 = gD|�0〉, (10.126)

where D is the number of sites with double occupancy. The above variational

wavefunction can be generalized into a Jastrow type of ansatz

|�〉 = e−U [ni ]/2|�0〉, (10.127)

with the correlation factor given by

U [ni ] =
L
∑

j,k

αl ( j, k)n j nk, (10.128)

where αl( j, k) is a variational parameter between the j th and kth sites. The spin

index is combined with the site index for convenience, and the summation over j

and k should be interpreted as also including spin degrees of freedom. The index

l = 1, 2 is for the different spin configuration of the i th and j th sites with two

distinct situations: spin parallel and spin antiparallel. The above Jastrow type of

ansatz reduces back to the Gutzwiller ansatz when αl( j, k) is only for the on-site

occupancy with α = − ln(1/g).

The simulation is performed with optimization of the energy expectation

E =
〈�|H|�〉
〈�|�〉

. (10.129)

Several aspects need special care during the simulation. First, the total spin of the

system is commutative with the Hamiltonian, so we cannot change the total spin

of the system, that is, we can only move the particles around but not flip their

spins, or flip a spin-up and spin-down pair at the same time. The optimized g is

a function of t/U and n0, so we can choose t as the unit of energy, that is, t = 1,

and then g will be a function of U and n0 only. Each site cannot be occupied

by more than two particles with opposite spins. So we can move one particle to

its nearest site if allowed, and the direction of the move can be determined by a

random number generator. For example, if we label the nearest sites 1, 2, . . . , z,

we can move the particle to the site labeled int(ηi z + 1) if allowed by the Pauli

principle. Here ηi is a uniform random number in the region [0, 1]. The move is

accepted by comparing

p =
|�new|2

|�old|2
=

exp
(

−U
[

nnew
i

])

exp
(

−U
[

nold
i

]) (10.130)

with another uniform random number w i . Other aspects are similar to the vari-

ational quantum Monte Carlo simulation discussed earlier in this chapter for

continuous systems.
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Green’s function Monte Carlo simulation

We can also use the Green’s function Monte Carlo simulation to study quan-

tum lattice systems. As we discussed earlier, the solution of the imaginary-time

Schrödinger equation can be expressed in terms of an integral equation

�(R,R′, t + τ ) =
∫

G(R,R′, τ )�(R′, t) dR′, (10.131)

where R or R′ is a set of locations and spin orientations of all the particles.

So far the Green’s function Monte Carlo simulation has been performed for

only lattice spin problems, especially the spin- 1
2

antiferromagnetic Heisenberg

model on a square lattice, which is relevant to the normal state of cuprates, which

become superconducting with high transition temperatures after doping. We can

show formally that this model is the limit of the Hubbard model with half-filling

and infinite on-site interaction. The Heisenberg model is given by

H = J

L
∑

〈i j〉
si · s j , (10.132)

with J = 4t2/U a positive constant for the antiferromagnetic case. This model

can formally be transformed into a hard-core lattice boson model with

H = −J

L
∑

〈i j〉
b
†
i b j + J

L
∑

〈i j〉
ni n j + E0, (10.133)

where b
†
i = s+

i = sx
i + is

y
i , bi = s−

i = sx
i − is

y
i , and ni = b

†
i bi = 1/2 − sz

i . The

constant E0 = −J z(L − N )/4, where L is the total number of sites in the system,

N = L/2 − Sz is the number of occupied sites, and z is the number of nearest

neighbors of each lattice point. Sz is the total spin along the z direction. As we

discussed earlier in this chapter, if we choose the time step τ to be very small,

we can use the short-time approximation for Green’s function

G(R,R′, τ ) = 〈R|e−τ (H−Ec)|R′〉 ≃ 〈R|[1 − τ (H − Ec)]|R′〉. (10.134)

This has a very simple form

G(R,R′, τ ) =

⎧

⎪

⎨

⎪

⎩

1 − τ [V (R) − Ec] for R = R′,

τ J/2 for R = R′ +�R′,

0 otherwise,

(10.135)

under the boson representation, where R′ +�R′ is a position vector with one

particle moved to the nearest neighbor site in R′ and V (R) is the interaction part,

that is, the second term in the Hamiltonian with a configuration R. A procedure

similar to that we discussed for continuous systems can be devised. Readers who
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are interested in the details of the Green’s function Monte Carlo simulation for

quantum lattice systems should consult the original articles, for example, Trivedi

and Ceperley (1990).

Finite-temperature simulation

If we want to know the temperature dependence of the system, we need to simulate

it at a finite temperature. The starting point is the partition function

Z = Tre−βH, (10.136)

where H is the lattice Hamiltonian, for example, the Hubbard model, and

β = 1/kBT is the inverse temperature. The average of a physical quantity A

is measured by

〈A〉 =
1

Z
TrAe−βH. (10.137)

If we divide the inverse temperature into M + 1 slices with τ = β/(M + 1), we

can rewrite the partition function as a product

Z = Tr(e−τH)M+1. (10.138)

In the limit of τ → 0, we can show that

e−τH ≃ e−τV e−τH0 , (10.139)

where

V = U

L
∑

i=1

ni↑ni↓ (10.140)

is the potential part of the Hamiltonian and

H0 = −t

L
∑

〈i j〉
(a

†
i↑a j↑ + a

†
i↓ai↓) (10.141)

is the contribution of all the hopping integrals. Hirsch (1985a; 1985b) has shown

that the discrete Hubbard–Stratonovich transformation can be used to rewrite the

quartic term of the interaction as a quadratic form, that is,

e−τU (ni↑−1/2)(ni↓−1/2) = e−τU/4
∑

σl =±1

e−τσlλ(ni↑−ni↓), (10.142)

with λ given by

cosh(τλ) = eτU/2. (10.143)

Because the kinetic energy part H0 has only the quadratic term, it is ready now

to have the partition function simulated with the Metropolis algorithm. Readers
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who are interested in more details can find a good discussion of the method in

Sugar (1990).

There is a fundamental problem for the Fermi systems, called the fermion sign

problem, which appears in most Fermi systems. It is the result of the fundamental

properties of the nonlocal exchange interaction or the Pauli principle. It may

appear in different forms, such as the nodal structure in the wavefunction or

negative probability in the stochastic simulation. However, the challenge is to

find an approximation that preserves the essential physics of a given many-body

fermion system. Interested readers will be able to find many discussions, but not

yet a real solution, in the literature.

Exercises

10.1 Show that the Monte Carlo quadrature yields a standard deviation

�2 = 〈A2〉 − 〈A〉2 ∝
1

M
,

where A is a physical observable and M is the total number of Monte Carlo

points taken. Demonstrate it numerically by sampling the average of a set

data xi ∈ [0, 1], drawn uniformly from a random-number generator.

10.2 Show that the Metropolis algorithm applied to statistical mechanics does

satisfy the detailed balance and sample the points according to the distri-

bution function. Demonstrate it by sampling the speed of a particle in an

ideal gas.

10.3 Calculate the integral

S =
∫ ∞

−∞
e−r2/2(xyz)2 dr

with the Metropolis algorithm and compare the Monte Carlo result with the

exact result. Does the Monte Carlo errorbar decrease with the total number

of points as expected?

10.4 Calculate the autocorrelation function of the data sampled in the evalua-

tion of the integral in Exercise 10.3. From the plot of the autocorrelation

function, determine how many points need to be skipped between any two

data points in order to have nearly uncorrelated data points.

10.5 Develop a Monte Carlo program for the ferromagnetic Ising model on a

square lattice. For simplicity, the system can be chosen as an N × N square

with the periodic boundary condition imposed. Update the spin configura-

tion site by site. Study the temperature dependence of the magnetization.

Is there any critical slowing down in the simulation when the system is

approaching the critical point?
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10.6 Implement the Swendsen–Wang algorithm in a Monte Carlo study of the

ferromagnetic Ising model on a triangular lattice. Does the Swendsen–

Wang scheme cure the critical slowing down completely?

10.7 Implement the Wolff algorithm in a Monte Carlo study of the ferromagnetic

Heisenberg model on a cubic lattice. Does the Wolff scheme cure the critical

slowing down completely?

10.8 Study the antiferromagnetic Ising model on a square lattice using both

the Swendsen–Wang and Wolff algorithms. Find the temperature depen-

dence of the staggered magnetization. Which of the algorithms handles the

critical slowing down better? What happens if the system is a triangular

lattice?

10.9 Carry out a Monte Carlo study of the anisotropic Heisenberg model

H = −J

L
∑

〈i j〉

(

λsz
i sz

j + sx
i sx

j + s
y

i s
y

j

)

on a square lattice, where J > 0 and the spins are classical, each with a

magnitude S. Find the λ dependence of the critical temperature for a chosen

value of S. What happens if J < 0?

10.10 Study the electronic structure of the helium atom using the variational

quantum Monte Carlo method. Assume that the nucleus is fixed at the

origin of the coordinates. The key is to find a good parameterized variational

wavefunction with proper cusp conditions built in.

10.11 Find the variational ground-state energy per particle, the density profile,

and the pair correlation function of a 4He cluster. How sensitive are the

values to the size of the cluster? Assume that the interaction between any

two atoms is given by the Lennard-Jones potential and express the results

in terms of the potential parameters. What happens if the system is a 3He

cluster?

10.12 Implement the Green’s function Monte Carlo algorithm in a study of a

hydrogen molecule. The two-proton and two-electron system should be

treated as a four-body system. Calculate the ground-state energy of the

system and compare the result with the best of the known calculations.

10.13 The structure of the liquid 4He can be studied using the variational quan-

tum Monte Carlo method. Develop a program to calculate the ground-state

energy per particle and the pair correlation function with the selected vari-

ational wavefunction. Assume that the system is in a cubic simulation cell

under the periodic boundary condition and use the density measured at

the lowest temperature possible and the state-of-the-art calculation of the

interaction potential for the simulation.

10.14 Perform the diffusion or Green’s function Monte Carlo simulation for liquid
4He. Is there any significant improvement in the calculated ground-state

energy over that of the variational Monte Carlo calculation?
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10.15 Carry out path-integral quantum Monte Carlo simulation of a hard-sphere

boson cluster in an anisotropic harmonic trap with a trapping potential

V (r) =
mω2

2

(

λz2 + x2 + y2
)

,

where m is the mass of a particle and ω and λ are parameters of the trap.

Find the condensation temperature of the system for a set of different values

of the total number of particles, hard-sphere radius,ω, and λ. What happens

if there is more than one species of bosons in the trap?



Chapter 11

Genetic algorithm and programming

From the relevant discussions on function optimization covered in Chapters 3,

5, and 10, we by now should have realized that to find the global minimum

or maximum of a multivariable function is in general a formidable task even

though a search for an extreme of the same function under certain circumstances

is achievable. This is the driving force behind the never-ending quest for newer

and better schemes in the hope of finding a method that will ultimately lead

to the discovery of the shortest path for a system to reach its overall optimal

configuration.

The genetic algorithm is one of the schemes obtained from these vast efforts.

The method mimics the evolution process in biology with inheritance and muta-

tion from the parents built into the new generation as the key elements. Fitness

is used as a test for maintaining a particular genetic makeup of a chromosome.

The scheme was pioneered by Holland (1975) and enhanced and publicized by

Goldberg (1989). Since then the scheme has been applied to many problems that

involve different types of optimization processes (Bäck, Fogel, and Michalewicz,

2003). Because of its strength and potential applications in many optimization

problems, we introduce the scheme and highlight some of its basic elements

with a concrete example in this chapter. Several variations of the genetic algo-

rithm have emerged in the last decade under the collective name of evolutionary

algorithms and the scope of the applications has also been expanded into multi-

objective optimization (Deb, 2001; Coello Coello, van Veldhuizen, and Lamont,

2002). The main purpose here is to introduce the practical aspects of the method.

Readers interested in its mathematical foundations can find the relevant material

in Mitchell (1996) and Vose (1999).

We can even take one further step. Instead of encoding the possible con-

figurations into chromosomes, possible computing operations can be selected

or altered, resulting in the program encoding itself. This direct manipulation or

creation of optimal programs based on the evolution concept is called genetic pro-

gramming, which was conceptualized 40 years ago (Fogel, 1962) and matured

more recently (Koza, 1992). We will not be able cover all the details of genetic

323
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programming here but will merely highlight the concept toward to the end of the

chapter.

11.1 Basic elements of a genetic algorithm

The basic idea behind a genetic algorithm is to follow the biological process

of evolution in selecting the path to reach an optimal configuration of a given

complex system. For example, for an interacting many-body system, the equilib-

rium is reached by moving the system to the configuration that is at the global

minimum on its potential energy surface. This is single-objective optimization,

which can be described mathematically as searching for the global minimum of

a multivariable function g(r1, r2, . . . , rn). Multiobjective optimization involves

more than one equation, for example, a search for the minima of gk(r1, r2, . . . ,

rn) with k = 1, 2, . . . , l. Both types of optimization can involve some constraints.

We limit ourselves to single-objective optimization here. For a detailed dis-

cussion on multi-objective optimization using the genetic algorithm, see Deb

(2001).

In this section, we describe only a binary version of the genetic algorithm that

closely follows the evolutionary processes. The advantage of the binary genetic

algorithm lies in its simplicity, and it articulates the evolution in the forms of

binary chromosomes. Later in the chapter, we will also introduce the algorithm

that uses real numbers in constructing a chromosome. The advantage of the real

genetic algorithm is that the search is done with continuous variables, which

better reflects the nature of a typical optimization problem.

In the binary algorithm, each configuration of variables (r1, r2, . . . , rn) is

represented by a binary array, This array can be stored on a computer as an

integer array with each element containing a decimal number 1 or 0, or as a

boolean array with each element containing a bit that is set to be true (1) or false

(0). We will use boolean numbers in actual computer codes but use decimal 0s

and 1s when writing equations for convenience.

Several steps are involved in a genetic algorithm. First we need to create

an initial population of configurations, which is called the initial gene pool.

Then we need to select some members to be the parents for reproduction. The

way to mix the genes of the two parents is called crossover, which reflects how

the genetic attributes are passed on. In order to produce true offspring, each

of the parent chromosomes is cut into segments that are exchanged and joined

together to form the new chromosomes of the offspring. After that we allow a

certain percentage of bits in the chromosomes to mutate. In the whole process,

we use the fitness of each configuration based on the cost (the function to be

optimized) g(r1, r2, . . . , rn) as the criterion for selecting parents and sorting the

chromosomes for the next generation of the gene pool. In each of the three main

operations (selection, crossover, and mutation) in each generation, we make sure

that the elite configurations with the lowest costs always survive.
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Creating a gene pool

The initial population of the gene pool is typically created randomly. A sorting

scheme is used to rank each of the chromosomes according to its fitness. The

following method shows an example of how to create the initial population of the

gene pool.

// Method to initialize the simulation by creating the
// zeroth generation of the gene population.

public static void initiate(){
Random rnd = new Random();
boolean d[][] = new boolean[ni][nd];
boolean w[] = new boolean[nd];
double r[] = new double[nv];
double e[] = new double[ni];
int index[] = new int[ni];

for (int i=0; i<ni; ++i) {
for (int j=0; j<nv; ++j) r[j] = rnd.nextDouble();
e[i] = cost(r);
index[i] = i;
w = encode(r,nb);
for (int j=0; j<nd; ++j) d[i][j] = w[j];

}
sort(e,index);
for (int i=0; i<ng; ++i){

f[i] = e[i];
for (int j=0; j<nd; ++j) c[i][j] = d[index[i]][j];

}
}

There are several issues that need to be addressed during the initialization of the

gene pool. The first is the size of the population. Even though each individual

configuration in the gene pool is represented by a distinct chromosome, a good

choice of the population size optimizes the convergence of the simulation. If the

population is too small, it will require more time to sample the entire possible

configuration space; but if the population is too large, it takes more time to create

a new generation each time. The second issue concerns the quality of the initial

gene pool. If we just used all the configurations created randomly, the quality of

the initial gene pool would be low and that means a longer convergence time.

Instead, as shown in the above example, we usually create more chromosomes

initially in order to give us a choice. For example, if we want to have a population

of ng chromosomes in the gene pool, we can randomly generated a larger number

of chromosomes and then select the best ng chromosomes that have the lowest

costs. A typical choice is to have ni = 2ng chromosomes from which to choose.

We have to encode each configuration into a chromosome and also evaluate its

corresponding cost. These two issues will be discussed later in the section. After

we obtain the costs of all the configurations, we can rank them accordingly through

a sorting scheme. Because we want the ranking recorded and used to relabel the
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chromosomes, we need to assign a ranking index in the sorting process. The

following method shows how to achieve such a sorting.

// Method to sort an array x[i] from the lowest to the
// highest with the original order stored in index[i].

public static void sort(double x[], int index[]){
int m = x.length;
for (int i = 0; i<m; ++i) {

for (int j = i+1; j<m; ++j) {
if (x[i] > x[j]) {

double xtmp = x[i];
x[i] = x[j];
x[j] = xtmp;
int itmp = index[i];
index[i] = index[j];
index[j] = itmp;

}
}

}
}

Note that the index used here in the input is in a natural order and that in the

output is in increasing order of the associated costs of all the configurations. This

sorting scheme is also used in rearranging the chromosomes in other places when

needed.

Encoding a configuration

Because we want to model the genetic process accurately, we need to convert each

configuration (r1, r2, . . . , rn) into a chromosome through an encoding process.

We will assume that the variables ri are in the region [0, 1], that is, 0 ≤ ri ≤ 1

for i = 1, 2, · · · , n. This does not affect the generality of the discussion as long

as the variables are bound in a finite region so they can always be cast back into

the region [0, 1] by a linear transformation.

We can represent any variable ri ∈ [0, 1] by a binary string in which each bit is

set to a true or false value. If the kth bit is true, there is a fraction 1/2k contributed

to the variable, which can then be expressed as

ri =
yi1

2
+

yi2

4
+

yi3

8
+ · · · =

∞
∑

j=1

yi j

2 j
, (11.1)

where yi j is a decimal integer equal to either 0 or 1. We can truncate the binary

string at a selected number m, whose value depends on how accurate we want ri

to be. Then we have

ri ≃
m
∑

j=1

yi j

2 j
. (11.2)

For example, if ri = 0.93, We have yi1 = yi2 = yi3 = 1 and yi4 = 0, and if ri =
0.6347, we have yi1 = yi3 = 1 and yi2 = yi4 = 0, for m = 4. The maximum error
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created in ri is ±1/2m+1. The process of generating yi j is called encoding, which

is accomplished with

yi j = int

[

2 j−1ri −
j−1
∑

k=1

(

2 j−k−1 yik

)

]

, (11.3)

for j = 2, 3, . . . ,m, where the operation int rounds the value inside the square

bracket to the nearest decimal integer (either 0 or 1), with i = 1, 2, . . . , n. Note

that yi1 = int[ri ].

The encoding is a process of representing ri by a binary array with each

element containing a bit that is set to be true or false, corresponding to a decimal

integer 1 or 0. We call this binary array yi j for j = 1, 2, . . . ,m the i th gene of the

chromosome that is a binary representation of the entire real array (r1, r2, . . . , rn).

The following method encodes the array ri for i = 1, 2, . . . , n into a binary

chromosome w = {y11 . . . y1m y21 . . . y2m yn1 . . . ynm}.

// Method to encode an array of n real numbers r[i] in
// [0,1] into an n*m binary representation w[j].

public static boolean[] encode(double r[], int m) {
int n = r.length;
boolean w[] = new boolean[n*m];
for (int i = 0; i<n; ++i) {

double sum = r[i];

w[i*m] = false;
if((int)(0.5+sum) == 1) w[i*m] = true;

double d = 2;
for (int j = 1; j<m; ++j) {

if(w[i*m+j-1]) sum -= 1/d;
w[i*m+j] = false;
if((int)(0.5+d*sum) == 1) w[i*m+j] = true;
d *= 2;

}
}
return w;

}

Of course, the reverse of the encoding process is also necessary when we need

to use the configuration information in the evaluation of the cost function or

output the final configurations. To decode a chromosome, we can use Eq. (11.2).

For example, if we have a chromosome w = {1010111001 . . . } for m = 10, the

corresponding variable

r1 ≃
1

2
+

1

23
+

1

25
+

1

26
+

1

27
+

1

210
≃ 0.6807. (11.4)

Note that the uncertainty in r1 here is determined by the choice of m, given

by ±1/2m+1 ≃ ±0.0005 in this case. This decoding process can be achieved

quite easily in a program. The following is an example for decoding a binary

array.
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// Method to decode an array of n*m binary numbers w[j]
// into an array of n real numbers r[i].

public static double[] decode(boolean w[], int m) {

int n = w.length/m;

double r[] = new double[n];
for (int i = 0; i<n; ++i) {

double d = 2;

double sum = 0;
for (int j = 0; j<m; ++j) {

if(w[i*m+j]) sum += 1/d;
d *= 2;

}

r[i] = sum + 1/d;
}

return r;
}

Now we know how to create a chromosome w for a real array (r1, r2, . . . , rn).

We can then use the encoding scheme to create an initial population that is sorted

with the cost function. After we have all these tools, we can accomplish the three

main operations, selection, crossover, and mutation, in a genetic algorithm.

Selection operation

We need to able to select a fraction of the chromosomes from the given gene

pool to pass on their genes. This models the natural reproduction process. If

we take Darwin’s concept literally, the chromosomes with better costs are the

ones most likely to survive. Several methods have been designed to follow this

concept in selecting the parents. A simple choice is to use the best half of the

chromosomes from the entire population according to their costs. Then we can

randomly select one pair after another from this parent pool to create a certain

number of offspring. Another choice is to select a chromosome from the entire

population with a probability based on a weight assigned according to either its

ranking in cost or its relative cost. For a comparative study of these choices, see

Goldberg and Deb (1991).

The most popular method for creating the parents is to hold tournaments, in

each of which the two or more participants are selected at random with the winner

of each tournament being the participant with the best cost. The following method

illustrates how to select the winners from one-on-one matches.

// Method to run tournaments for selecting the parents.

public static void select() {
int index[] = new int[ng];
boolean d[][] = new boolean[ng][nd];
double e[] = new double[ng];

for (int i=0; i<ng; ++i){
for (int l=0; l<nd; ++l) d[i][l] = c[i][l];
e[i] = f[i];
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index[i] = i;
}

shuffle(index);

int k = 0;
for (int i=0; i<nr; ++i) {

if (e[index[k]] < e[index[k+1]]){
for (int l=0; l<nd; ++l) c[i][l]=d[index[k]][l];
f[i] = e[index[k]];

}
else {

for (int l=0; l<nd; ++l) c[i][l]=d[index[k+1]][l];

f[i] = e[index[k+1]];

}
k += 2;

}
}

Note that we have allowed each member in the pool to participate, but in only one

match. Half of the chromosomes in the pool (nr = ng/2) are selected to be the

parents without any duplication. The above method will always result in a copy of

the best chromosome being and retained the worst being eliminated. Some other

tournament schemes do allow duplications, for example, to have two copies of

the best chromosome in the parent pool by letting each chromosome participate

in two matches. Shuffling is used to mix up the indices before the matches so that

the participants are randomly drawn for a match with an equal probability. Here

is how we shuffle the indices.

// Method to shuffle the index array.

public static void shuffle(int index[]){
int k = index.length;
Random rnd = new Random();
for (int i = 0; i<k; ++i) {

int j = (int)(k*rnd.nextDouble());
if (j!=i) {

int itmp = index[i];
index[i] = index[j];
index[j] = itmp;

}
}

}

After we have completed the selection, we are ready to make some new

chromosomes.

Crossover operation

So far we have found ways of creating a gene pool based on randomly assigned bits

and then selecting certain genes to be the parents. The next step is to devise a way

of exploring the cost surface. There are two operations in the genetic algorithm

that effectively look over the entire variable space. The first operation is called
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crossover, which is achieved by mimicking the reproduction processes in Nature.

We can choose a pair of parents from the parent pool, cut each chromosome of

the parents into two segments at a selected point, and then join the right segment

of one parent to the left segment of the other, and vice versa, to form two new

chromosomes for the offspring. For example, if the chromosomes of two parents

are w1 = {01101010} and w2 = {10101101}, the corresponding chromosomes

of the offspring are w3 = {01101101} and w4 = {10101010}, respectively, with

the crossover point taken as the middle of the chromosomes. Crossover is one the

most effective ways of exploring the cost surface of all the possible configurations.

What we have described here is the single-point crossover scheme. There are other

types of crossover schemes and the readers can find them in the related literature

(Spears, 1998). The following method is an implementation of the single-point

crossover.

// Method to perform single-point crossover operations.

public static void cross() {
Random rnd = new Random();

int k = 0;
for (int i=nr; i<nr+nr/2; ++i) {

int nx = 1 + (int)(nd*rnd.nextDouble());
for (int l=0; l<nx; ++l){

c[i][l] = c[k][l];
c[i+nr/2][l] = c[k+1][l];

}
for (int l=nx; l<nd; ++l){

c[i][l] = c[k+1][l];
c[i+nr/2][l] = c[k][l];

}
k += 2;

}
}

Note that each time we have taken two members from the parent pool in order to

create two offspring, who are made from single-point crossover operations. We

can also choose the parents differently from the pool (Goldberg, 1989). After we

complete the reproduction of nr = ng/2 offspring, we need to rearrange all the

chromosomes, parents and offspring, into an increasing order of the cost. This

is necessary in preparing the gene pool before any mutation takes place. The

following method shows how to rearrange the chromosomes.

// Method to rank chromosomes in the population.

public static void rank() {
boolean d[][] = new boolean[ng][nd];
boolean w[] = new boolean[nd];
double r[] = new double[nv];
double e[] = new double[ng];
int index[] = new int[ng];
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for (int i=0; i<ng; ++i) {
for (int j=0; j<nd; ++j){

w[j] = c[i][j];

d[i][j] = w[j];
}

r = decode(w,nb);

e[i] = cost(r);
index[i] = i;

}
sort(e,index);
for (int i=0; i<ng; ++i){

f[i] = e[i];

for (int j=0; j<nd; ++j) c[i][j] = d[index[i]][j];
}

}

Note specifically how the index array is used to help relabel the chromosomes

according to the cost of each configuration.

Mutation operation

Another effective way of exploring the cost surface in the genetic algorithm is

through the mutation process. This is achieved by randomly reversing the bits in

the randomly selected chromosomes. There are two issues related to mutation.

First is the percentage of bits in the entire gene pool that are to be mutated

in each generation. A typical case is to select about 1% of bits randomly for

mutation, 0 (false) to 1 (true) and 1 (true) to 0 (false). The higher the percentage

the bigger the fluctuation. However, if a larger fraction of bits is mutated in each

generation, the cost surface can be explored faster, but it may mean that the best

cost is skipped in the process. So in an actual calculation, we need to experiment

with different percentages for a specific given problem (cost function) in order

to find a moderate percentage that will allow us to explore the cost surface fast

enough without missing the best cost configuration.

Another issue is the number of configurations that we would like to keep im-

mune from mutation. Under any mutation scheme, the best chromosome is always

kept unchanged. But we may also want a few of the next-best chromosomes to be

immune from mutation. This slows down the exploration of the cost surface by

mutation but increases the rate of convergence because those configurations may

have already contain a large fraction of excellent genes in their chromosomes. In

practice, we need to experiment in order to find the most suitable percentage of bits

to be mutated for the specific problem. The following method is an example of per-

forming mutation on a population with a given percentage of bits to be reversed.

// Method to mutate a percentage of bits in the selected
// chromosomes except the best one.

public static void mutate() {
int mmax = (int)(ng*nd*pm+1);
Random rnd = new Random();
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double r[] = new double[nv];
boolean w[] = new boolean[nd];

// Mutation in the elite configurations

for (int i=0; i<ne; ++i) {
for (int l=0; l<nd; ++l) w[l] = c[i][l];
int mb = (int)(nd*pm+1);
for (int j=0; j<mb; ++j){

int ib = (int)(nd*rnd.nextDouble());
w[ib] = !w[ib];

}
r = decode(w,nb);

double e = cost(r);
if (e<f[i]){

for (int l=0; l<nd; ++l) c[i][l] = w[l];

f[i] = e;
}

}

// Mutation in other configurations
for (int i=0; i<mmax; ++i) {

int ig = (int)((ng-ne)*rnd.nextDouble()+ne);

int ib = (int)(nd*rnd.nextDouble());

c[ig][ib] = !c[ig][ib];
}

// Rank the chromosomes in the population

rank();
}

Note that we have kept a certain number of elite configurations immune from mu-

tation unless the attempted mutation improves their costs. All the configurations

are rearranged according to their costs after each round of mutation operation.

Now we are ready to see how the algorithm works in actual problems.

11.2 The Thomson problem

In electrostatics, charges will distribute to minimize the electrostatic energy under

the equilibrium condition implied. This is the so-called Thomson theorem. For

example, we can show that in a system of conductors, each forms an equipotential

surface if the charge placed on each conductor is fixed and the total electrostatic

energy of the system is minimized. However, a problem arises when the equi-

librium configuration of a significant number of discrete charges is sought, for

example, the stable geometry of nc identical point charges confined on the sur-

face of a unit sphere. This problem, known as the Thomson problem, originates

from two complexities: the nonlinearity in the behavior of the system and a large

number of low-lying energy levels.

We can obtain definite answers for some limited cases. For example, we can

prove that the charges will cover the entire surface uniformly if nc → ∞ and

that the symmetric geometries to keep all the charges far apart are the stable

configurations for small nc, such as an equilateral triangle for nc = 3, a tetrahe-

dron for nc = 4, a twisted and stretched cube for nc = 8, and so forth. However,
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the problem becomes increasingly complicated as nc increases. For example,

when nc reaches 200, the number of nearly degenerate low-lying energy levels is

about 8000. The problem with a large nc is as yet still considered unsolved. Here

we want to demonstrate the application of the genetic algorithm to the Thomson

problem to demonstrate the strength of the scheme. Furthermore, the calculations

achieved with the genetic algorithm for nc ≤ 200 are the best results obtained so

far (Morris, Deaven, and Ho, 1996).

Mathematically, the Thomson problem is to find the configuration that mini-

mizes the electrostatic energy

U =
q2

4πǫ0

nc
∑

i> j=1

1

|ri − r j |
, (11.5)

where q is the charge on each particle, ǫ0 is the electric permittivity of free space,

and ri is the position vector of the i th charge. Because all the charges are confined

on the surface of the unit sphere, ri ≡ 1. We will take q2/4πǫ0 = 1, reflecting a

special choice of units, for convenience. If we represent the Cartesian coordinates

in terms of the polar and azimuthal angles, we have

xi = sin θi cosφi ,

yi = sin θi sinφi ,

zi = cos θi .

Here we have taken the radius of the sphere to be unit. The following method is

an implementation of the evaluation of the cost (total electrostatic energy of the

system) in the Thomson problem.

// Method to evaluate the cost for a given variable array.

public static double cost(double r[]) {
double g = 0;
double theta[] = new double[nc];
double phi[] = new double[nc];

for (int i=0; i<nc; ++i){
theta[i] = Math.PI*r[i];
phi[i] = 2*Math.PI*r[i+nc];

}

for (int i=0; i<nc-1; ++i){
double ri = Math.sin(theta[i]);
double xi = ri*Math.cos(phi[i]);

double yi = ri*Math.sin(phi[i]);

double zi = Math.cos(theta[i]);
for (int j=i+1; j<nc; ++j){

double rj = Math.sin(theta[j]);
double dx = xi - rj*Math.cos(phi[j]);
double dy = yi - rj*Math.sin(phi[j]);
double dz = zi - Math.cos(theta[j]);
g += 1/Math.sqrt(dx*dx+dy*dy+dz*dz);

}
}
return g;

}
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Fig. 11.1 The stable

structures of five and

eight charges on a unit

sphere.

Note that the input variables are assumed to be in the region [0, 1] and we there-

fore convert them to the correct regions with θi ∈ [0, π ] and φ ∈ [0, 2π ], for

i = 1, 2, . . . , nc. To test the validity of each part of the computer code that

we have developed for the Thomson problem, we search first for the geometric

configurations of small systems. In Fig. 11.1 we show the stable configurations

that we have obtained for nc = 5 and nc = 8. We obtain these stable configura-

tions in just about 10 000 generations with the total energies E5 = 6.4747 and

E8 = 19.675, respectively. The energies obtained are fully converged for both

cases (Wille, 1986).

Because the search in the genetic algorithm is nonlinear, we do not need

to worry about the degeneracy of the global rotation of the entire system.

When we performed the search for the stable configuration of the ionic clus-

ter (Na+)n(Cl−)m in Chapter 5, we had to remove the motion of the center

of mass and the global rotation about an axis through the center of mass, be-

cause the search there was in fact a linear search. We can, of course, modify the

above method to have one charge sitting at the north pole and another in the xz

plane at a variable latitude. The following part of the code shows the assigning

of the angles in such a manner.

theta[0] = 0;
phi[0] = 0;
theta[1] = Math.PI*r[nv-1];
phi[1] = 0;
int k = 0;
for (int i=2; i<nc; ++i){

theta[i] = Math.PI*r[k];
phi[i] = 2*Math.PI*r[k+1];
k += 2;

}

If we replace the corresponding part in the method for the evaluation of the cost,

we have removed any global rotation in the simulation.

The Thomson problem is interesting because the number of low-lying excited

states increases with the number of charges exponentially. However, we know that

the solution is the configuration that spreads out the charges in the most uniform

manner; the charges try to avoid each other as much as they can, but confinement

on a finite surface forces them to find a compromise. This type of competition

is at the heart of the modern theory of the quantum many-body systems. The
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Fig. 11.2 The final

configuration of 60

charges on a unit

sphere after 60 000

generations of the

search under genetic

algorithm.

compromise between two conflicting effects drives a system into an exotic state

that is typically beyond intuitive thinking or creates surprises. This is perhaps the

reason why the Thomson problem is so fascinating. In Fig. 11.2 we show the final

configuration of a system of 60 charges, after 60 000 generations. Even though

the system is still not fully converged, we can already see the clear distinction

between this system and the buckminsterfullerene structure of the molecule C60.

We can, of course, use the same program to search for the stable configuration

of even larger systems. The computing time required to obtain a stable config-

uration will increase, but in principle, we can obtain the stable configuration of

multicharges located on the surface of a unit sphere. There are still many in-

teresting issues related to the Thomson problem that are under constant debate,

interested readers can find some of these discussions in Pérez-Garrido and Moore

(1999) and Morris, Deaven, and Ho (1996).

11.3 Continuous genetic algorithm

The advantage of the binary genetic algorithm lies in its clarity and the trans-

parency of the evolutionary mechanism built in through the three basic operations,

selection, crossover, and mutation. However, sometimes the encoding scheme

can become unmanageable if accuracy in the array is greatly desired. Examples

include cases in which a significant number of local minima are located close

together. It then becomes desirable for the variables to remain continuous real

parameters and to utilize the machine or language accuracy for the variables.

An alternative to the binary scheme is to code the arrays as real parameters

directly. So a chromosome is simply an array of real variables involved in the

cost function. The three operations, selection, crossover, and mutation, have to

be adjusted in order to work with the real parameters directly instead of operating

on the binary strings.
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The selection is done in a nearly identical manner because the cost function

corresponding to each individual chromosome is always used in any selection

scheme. For example, if we still use the tournament method, we can implement

the selection using the following method as in the binary scheme.

// Method to run tournaments for selecting the parents.

public static void select() {
int index[] = new int[ng];
double d[][] = new double[ng][nv];

double e[] = new double[ng];

for (int i=0; i<ng; ++i){

for (int l=0; l<nv; ++l) d[i][l] = c[i][l];

e[i] = f[i];
index[i] = i;

}
shuffle(index);
int k = 0;

for (int i=0; i<nr; ++i) {
if (e[index[k]] < e[index[k+1]]){

for (int l=0; l<nv; ++l) c[i][l]=d[index[k]][l];

f[i] = e[index[k]];
}
else {

for (int l=0; l<nv; ++l) c[i][l]=d[index[k+1]][l];

f[i] = e[index[k+1]];
}
k += 2;

}

}

Note that the only difference between the above selection and that of the binary

code is that the chromosomes now are stored as real variables instead of binaries.

The crossover can be achieved in several different ways. The simplest is to

swap a part of the real arrays. For example, the single-point crossover can be

implemented as in the following method.

// Method to perform single-point crossover operations.

public static void cross() {
Random rnd = new Random();

int k = 0;
for (int i=nr; i<nr+nr/2; ++i) {

int nx = 1 + (int)(nv*rnd.nextDouble());
for (int l=0; l<nx; ++l){

c[i][l] = c[k][l];
c[i+nr/2][l] = c[k+1][l];

}
for (int l=nx; l<nv; ++l){

c[i][l] = c[k+1][l];
c[i+nr/2][l] = c[k][l];

}

k += 2;
}

}
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Note again that the code appears to be virtually identical to that of the binary

code, but the crossover is not happening at an arbitrary point that can be the

middle of a binary string. Instead, it is at a selected location of the real array that

represents a chromosome. The crossover in the binary code allows the change to

happen in the middle of a binary segment that represents a single real variable.

But the real-parameter version above swaps the variables themselves. There are

other ways to implement crossover that allow a partial change of a real variable

(Goldberg, 1989).

The most significant departure from the binary scheme is in the mutation oper-

ation. When we have the binary representation of a chromosome, binary bits are

natural and we expect a bit to change from true to false or vice versa if mutation

occurs. But when the chromosomes are given in real values, it is not entirely clear

what change a variable will be subject to if mutation occurs. One way to implement

mutation is with a random number. For example, if a real number is chosen to mu-

tate according to the percentage of mutation specified, we can replace it with a uni-

form random number to the region [0, 1]. Note that all the variables are restricted

to the region [0, 1]. The replacement with a random number would be equivalent to

having a percentage of bits altered if the variable were represented by a segment of

binaries. The following method is an implementation of such a mutation scheme.

// Method to mutate a percentage of bits in the selected

// chromosomes except the best one.

public static void mutate() {
Random rnd = new Random();
double r[] = new double[nv];

// Mutation in the elite configurations
for (int i=0; i<ne; ++i) {

for (int l=0; l<nv; ++l) r[l] = c[i][l];
int mb = (int)(nv*pm+1);
for (int j=0; j<mb; ++j){

int ib = (int)(nv*rnd.nextDouble());
r[ib] = rnd.nextDouble();

}

double e = cost(r);
if (e<f[i]){

for (int l=0; l<nv; ++l) c[i][l] = r[l];
f[i] = e;

}
}

// Mutation in other configurations
int mmax = (int)((ng-ne)*nv*pm+1);
for (int i=0; i<mmax; ++i) {

int ig = (int)((ng-ne)*rnd.nextDouble()+ne);
int ib = (int)(nv*rnd.nextDouble());
c[ig][ib] = rnd.nextDouble();

}

// Rank the chromosomes in the population
rank();

}
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When the above changes were implemented in a real-parameter genetic algorithm

and applied to the Thomson problem, it was found that the scheme was as

powerful as the binary version. The advantage of the real-parameter code is that it

avoids having to encode and decode the chromosomes back and forth every time

the variables are used or stored and therefore saves a large portion of computing

time.

11.4 Other applications

The potential of the genetic algorithm was not realized immediately when the

scheme was first introduced (Holland, 1975), but it picked up the pace afterwards

(Goldberg, 1989). Now the scheme is applied in many fields, including business,

economics, social studies, engineering, biology, physical sciences, computer sci-

ence, and mathematics. In order to show its importance, we highlight a few

applications in this section. The discussion is far from being complete; interested

readers should search the current literature to obtain a better glimpse of what is

going on with the genetic algorithm.

Molecules, clusters, and solids

The Thomson problem can be generalized in the search for stable structures

of other small clusters of atoms and molecules that can be well described by a

classical n-body interaction potential V (r1, r2, . . . , rn), which is usually obtained

from some types of first-principles calculations, such as the glue potential for gold

clusters (Ercolessi, Tosatti, and Parrinello, 1986).

The simplest n-body interaction is an isotropic pairwise (two-body) interac-

tion, such as the Coulomb interaction involved in the Thomson problem. For

example, the interaction between two inert gas atoms is well described by the

(two-body) Lennard–Jones potential

V (ri j ) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (11.6)

which we introduced in Chapter 8 to illustrate the molecular dynamics simulation.

We can follow what we did with the Thomson problem to find the stable geometric

configurations of clusters of inert gas atoms. However, there is one change that

must be made in order to accommodate these unrestricted clusters. The particles

are allowed to move along the r direction as well as the θ and φ directions. We

can still keep all the variables finite by introducing a cut-off radius r0, which can

be viewed as the largest distance the particle can reach from the center of the

clusters. Unless the cluster is falling apart, this choice of cut-off radius does not

affect the stable configuration of the clusters. The following method shows how

the cost is calculated in the program.
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Fig. 11.3 The stable

structures of five and

eight particles that

interact with each

other through the

Lennard--Jones

potential.

// Method to evaluate the cost for a given variable array.

public static double cost(double r[]) {
double g = 0;
double ri[] = new double[nc];
double theta[] = new double[nc];
double phi[] = new double[nc];

int k = 0;
for (int i=0; i<nc; ++i){

ri[i] = r0*r[k];
theta[i] = Math.PI*r[k+1];
phi[i] = 2*Math.PI*r[k+2];
k += 3;

}

for (int i=0; i<nc-1; ++i){
double rhoi = ri[i]*Math.sin(theta[i]);
double xi = rhoi*Math.cos(phi[i]);
double yi = rhoi*Math.sin(phi[i]);
double zi = ri[i]*Math.cos(theta[i]);
for (int j=i+1; j<nc; ++j){

double rhoj = ri[j]*Math.sin(theta[j]);
double dx = xi - rhoj*Math.cos(phi[j]);
double dy = yi - rhoj*Math.sin(phi[j]);
double dz = zi - ri[j]*Math.cos(theta[j]);
double r6 = Math.pow((dx*dx+dy*dy+dz*dz),3);
double r12 = r6*r6;
g += 1/r12-2/r6;

}
}
return g;

}

Note that the variables are still kept in the region of [0, 1] for convenience.

Because of this choice, the main methods for selection, crossover, and mutation

are unchanged. In Fig. 11.3, we show the stable configurations of the Lennard–

Jones clusters with five and eight particles. We have used the real-parameter

version of the genetic algorithm discussed in the preceding section in the search,

and ε and 21/6σ as the units of energy and length, respectively. The potential

energies per particle are E5/5 = −1.8208 and E8/8 = −2.4776. Note that even

though the clusters studied here are extremely small, they already appear to be
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a stack of tetrahedrons that are the building blocks of a face-centered cubic or

hexagonal close-packed lattice.

The search can be enhanced with a better design of the crossover operation,

especially for large clusters. One type of such is called basin hopping, in which

the potential energy surface has many local minima and the new configurations

are created to overcome the barriers between these basins by swapping certain

particles from different configurations. For example, we can cut two different

configurations of the cluster through a randomly chosen plane that goes through

or is near the center of mass of the cluster, splitting the cluster into two equal

halves of compensated parts, and then exchange the parts to create two offspring

(Deaven and Ho, 1995). This catchment basin transformation of the potential

energy surface can also be built into other optimization schemes (Wales and

Scheraga, 1999).

We can also use the genetic algorithm to search for the stable lattice structure

of a solid. There is an additional issue that needs to be addressed. In practice,

we cannot deal with an infinite system directly. However, we can always put

the particles in a box and then impose the periodic boundary condition on the

system under study. Because we are searching for a crystal structure, we also

need to find ways to relax the size and the shape of the simulation box, as we

did in Chapter 8 for the molecular dynamics simulation of an infinite system. In

fact, we can combine the genetic algorithm with a typical simulation technique,

such as molecular dynamics, or an ab initio total energy calculation from, for

example, density function theory in the study of the phase transition of bulk

materials. For example, a combination of the genetic algorithm and a solution

of the Ornstein–Zernike equation provides an effective exploration of the phase

diagram of spherical polyelectrolyte microgels (Gottwald et al., 2004), and a

combination of the genetic algorithm and the density functional theory allows an

extensive search for the most stable four component alloys out of 192 016 possible

fcc and bcc structures formed in 32 different metals (Jóhannesson et al., 2002).

Chaos forecast

There have been many applications of genetic algorithm in all sorts of nonlinear

processes, including in the study of dynamical systems. For example, if there

is a given time sequence (y1, y2, . . . , yn) that can be either a data set from an

experimental measurement or one from a computer simulation, we can use the

genetic algorithm to obtain the information hidden in the sequence. A successful

analysis of the sequence would provide a good description of the nonlinear terms

involved and the nature of the sequence, linear, periodic, random, or chaotic.

The fundamental problem here is to find the appropriate function form of the

time dependence in the dynamic variable

yi = f (yi−1, yi−2, . . . , yi−k) (11.7)
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from the given time sequence. Here k is an assumed number of previ-

ous steps that determine the current dynamics. The idea is to decompose

f (yi−1, yi−2, . . . , yi−k) into all possible building blocks and let a selection

process that follows the genetic concept take place. After generations of evolution,

we expect good blocks to be amplified and bad blocks eliminated (Szpiro, 1997;

López, Álvarez, and Hernández-Garcı́a, 2000). As soon as we find the exact form

of the function, or the closest one possible, we can forecast the future behavior

of the dynamical system, including chaos.

Depending on how much information in f (yi−1, yi−2 . . . , yi−k) is known, we

can construct an approximate cost for the search process. If we already know

the model, namely, the function form of f (yi−1, yi−2 . . . , yi−k), we can find the

precise values of the parameters involved in the model by constructing a chro-

mosome that represents a specific choice of the parameter set. For example, if we

have l parameters, v1, v2, . . . , vl , in the model function f (yi−1, yi−2, . . . , yi−k),

the cost can be chosen as

g(v1, v2, . . . , vl ) =
n
∑

i=k+1

(y′
i − yi )

2, (11.8)

where y′
i is the predicted value based on the given set of parameters in the whole

sequence and yi is the actual value. Then we can follow the three operations,

selection, crossover, and mutation, in the genetic algorithm to tune the parameter

set in order to find the appropriate ones.

When we do not know the exact form of f (yi−1, yi−2, . . . , yi−k), we can

create chromosomes from the results of certain mathematical operations on the

variables yi−1, yi−2, . . . , yi−k . Following the evolution of the chromosomes, we

can at least find an approximate form of f (yi−1, yi−2, . . . , yi−k) that can describe

certain aspects of the system, even if it is chaotic (Szpiro, 1997). The mathematical

operations can be the four basic operations, addition, subtraction, multiplication,

and division, or more advanced operations, such as logarithmic, trigonometric,

or logic operations. Care must be taken to avoid forbidden operations, such as

division by a zero or taking the square root of a negative quantity in the case

of real operations only. The selection can be achieved in the manner we have

discussed, but the crossover can only be done by swapping certain building blocks

or operations. This is quite similar to the real-parameter version of the genetic

algorithm scheme. Mutation is achieved in a closely related manner by randomly

swapping a given percentage of two operations or two building blocks that are

also randomly selected.

Best strategy in a game

It is commonplace for a corporation to apply the concept of game theory in

developing its business strategies. Game theory is the study of all the possi-

ble responses that each individual can make in a game (a process that involves
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mutually interacting rational players) and the consequence (gain or loss) of each

response (Osborne, 2004). The essential part of a successful analysis of a game

is figuring out the strategy for an individual player to obtain the maximum gain

in the long run, based on the available record.

Here we use a simple example of the adaptive minority game (Sysi-Aho,

Chakraborti, and Kaski, 2004) in order to illustrate the potential of applying the

concepts of the genetic algorithm. The simple minority game has an odd number

of N players with only two possible actions that can be recorded as a binary 0 or

1. A player wins a point by ending up in the minority group. Assuming that all

the players have access to the M most recent results with each recorded also as a

binary, 0 for the winning of 0’s group and 1 for the winning of 1’s group. So the

record is one of the 2M possible combinations. For each combination, a player can

choose either 0 or 1, that makes a total of 22M

possible strategies for each player.

However, each player is only allowed to have a finite number of S strategies in his

strategy pool from which to choose. The adaptive minority game allows a player

to modify his strategy pool. This modification can be constructed according to

the genetic algorithm. For example, we can map each strategy into a gene that

contains a binary string of a possible record and action. The chromosome is a

binary string of the genes of all the agents at a given time t , which is increased

by a unit each time the game is played. Among different strategies, we can create

a population at a given time. The performance of the system is measured by the

time-dependent cost (called the utility)

U (x) =
1

x0

[x +�(x − 2x0)(N − x)] , (11.9)

where x ∈ [1, N ] is the number of agents that take a specific action (1 or 0)

at time t , x0 = (N − 1)/2 is the maximum number of possible winners, and

�(y) = 1 for y > 0, zero otherwise. The maximum cost is normalized to 1 and

decreases if x deviates from the average N/2. It has been shown that a single-

point crossover operation can improve the performance of an individual agent as

well as the system as a whole (Sysi-Aho, Chakraborti, and Kaski, 2004). It would

be interesting to see whether the selection and mutation operations are able to do

the same.

The minority game is not unique in the sense of having the characteristic that

there is a gain for each individual and an overall efficiency of the system. We

can identify many economical and social phenomena that carry such a generic

feature. More applications of the concepts of genetic algorithm are expected to

emerge in near future.

11.5 Genetic programming

The problems involved in game theory and chaos forecasting are more com-

plicated than that of finding the stable configuration of an atomic cluster; they
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require optimization of the processes involved. If we imagine that each of the

strategies taken by an agent in the minority game is a possible computer opera-

tion (represented there by a binary string), the entire sequence of strategies can be

viewed as a piece of symbolic computer program and the sequence that receives

the best overall performance is the best available computer program to achieve

the task of the minority game.

The scheme that selects the best set of operations (best program), based on

the concept of evolution, from all the possible sets of operations (possible pro-

grams) for solving a certain problem or achieving a certain task is called genetic

(or evolutionary) programming, which was first introduced in the early 1960s

(Fogel, 1962; Fogel, Owens, and Walsh, 1966). The scheme has experienced

much renovation since then (Koza, 1992; 1994). For an introduction to the sub-

ject, see Jacob (2001). The main difference between genetic programming and

the genetic algorithm is that the genetic algorithm tries to find the configuration

(chromosome) that optimizes the cost, but genetic programming tries to find the

best process among all the possible processes according to the assigned fitness.

So genetic programming creates computer codes for certain objectives and mod-

ifies them according to evolutionary principles. This is much more proactive in

the sense of creating a certain artificial intelligence in the programs.

For example, if we want to design software that can interpret the Chinese

characters written with an electronic pen on a pat that is formed with a matrix of

capacitors and resistors, the cost (the measure of fitness) function could be the

percentage of characters that have been interpreted wrongly since the beginning

of the writing. This is a difficult task because the software must be able to recog-

nise the characters even when there are differences in the hand-writing. But this

is the type of the problem for which genetic programming works the best, with a

simple fitness function that depends on a large number of variables from different

handwriting styles.

Genetic programming involves roughly the same pieces of ingredients as in

the genetic algorithm. First, an initial pool of computer programs, formed with

functions (computational operations) and terminals (elements to be operated on)

of the possible solutions of the problem, is created. Parents are then selected ac-

cording to the fitness of each program. Finally, new generations are created with

crossover and mutation. The key difference between the genetic algorithm and ge-

netic programming is what is being modified – configurations of the variables in a

genetic algorithm but computational operations or elements in a genetic program.

A typical function in genetic programming is an arithmetic operation, such as

addition, division, or taking a square root, but it can also be a more sophisticated

operation, like a function operation z = f (x, y) on the two terminals (elements)

x and y. The simplest terminal is typically a variable or parameter; a general

terminal is a combination of many variables and parameters through functions.

For example, if the function is z = ex ln(y − 1), we can consider the terminals to

be x and y, which can be combinations of some other variables and parameters,
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Fig. 11.4 Two different

tree diagrams that

represent the same

energy equation.

such as x = a2 + 2b −
√

c and y = 3a + b2 − ln c. Of course, y > 1 and c > 0

if we are dealing with real quantities only.

One of the difficulties in designing a genetic program is in figuring out an

appropriate fitness (cost) associated with each possible program. The cost can

only be evaluated through running the program. In some cases in order to obtain

a fair estimate of the cost, a program must be run multiple times, resulting in a

time consuming process.

Let us take an extremely simple example in physics to highlight how genetic

programming works. Consider that we are searching for the relation between the

energy E and momentum p of a relativistic particle of mass m, which is given as

E = c
√

m2c2 + p2, (11.10)

where c is the speed of light in vacuum. If we use mc2 as the unit of energy

and mc as the unit of momentum, we have E =
√

1 + p2. We can formally use

a tree diagram to represent the actual equation. Note that each function in this

problem can only have one or two terminals. When there are two terminals, the

operation of the function is binary, from left to right. There are many possi-

ble representations (tree diagrams) for the equation, two of which are shown in

Fig. 11.4.

For simplicity, we assume that there is a cut-off for the momentum p ≤ pc and

the functions are five elementary operations: addition (+), subtraction (−), multi-

plication (∗), division (/), and taking the square root (
√

). We further assume that

the equation is given at n discrete points with Ei = E(pi ), for i = 1, 2, . . . , n.

Now we can create the initial pool of equations by treating p and 1 as the

only variable and parameter that can be used repeatedly. We can limit the num-

ber of the uninterrupted segments in the longest branch in the tree diagram

to four. Note that we also must avoid dividing by a zero or having a negative

value within a square root. We can simply eliminate that diagram if it is the

case.

After we have the initial pool, we can assign a fitness (cost) to each of the

diagrams based on

f =
n
∑

i=1

�E2
i , (11.11)
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Fig. 11.5 Two possible
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used to create

offspring by swapping

the dashed branches.

where �Ei is the energy difference between a tree diagram in the pool and that

of actual value. Based on the cost, we can run tournaments to select parents.

Assume that we have found two parents as given in Fig. 11.5. We can perform

crossover to create offspring. The crossover is performed between the two parents

at similar functions, two-terminal or one-terminal. For example, if the crossover

is done by swapping the dashed branches, we obtain two offspring, with one of

them being the exact equation sought. Note that a crossover can also be performed

on two identical parents with different parts swapped, which is equivalent to

swapping different segments of two identical chromosomes in a genetic algorithm.

Mutation can be performed at each vertex. For example, if a function is selected

randomly to be mutated, we can use one of the five operations to replace it. If the

variable is selected to be mutated, we can replace it with the parameter, or vice

versa. Note that we still have to keep the equation valid, that is avoid having a

negative value inside a square root or dividing a quantity by a zero.

There have been much activity in genetic programming, including progress

in different methods of assigning cost, performing crossover, and carrying out

mutation. The field is still fast growing, especially in the areas of artificial intel-

ligence and machine learning. Interested readers can find detailed discussions on

these subjects in Ryan (2000), Langdon and Poli (2002), and Koza et al. (1999;

2003).

Exercises

11.1 Assuming that the interaction between Na+ and Cl− in a NaCl molecule is

given by

V (r ) = −
e2

4πǫ0r
+ V0 e−r/r0 ,

with V0 = 1.09 × 103 eV and r0 = 0.330 Å, find the bond length of the

molecule with the genetic algorithm.

11.2 Find the minimum of f (x, y, z) = y sin(4πx) + 2x cos(8πy) in the region

of x, y ∈ [−1, 1] with the genetic algorithm.

11.3 Find the stable geometric structures of clusters of ions (Na+)n(Cl−)m with

small integers n and m by a genetic algorithm search.
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11.4 Search for the stable geometric structures of small Lennard–Jones clusters.

Specifically, find the Mackay icosahedron for 55 particles and decahedron

for 75 particles. Are the Mackay icosahedron and decahedron the stable

structures of the given systems?

11.5 Using the four basic operations, addition, subtraction, multiplication, and

division, and the data points from the previous time steps, find the correct

expression for the right-hand side of the Duffing model

d2x

dt2
= b cos t − g

dx

dt
− x3

and forecast chaos.

11.6 Create a long set of data points with an equal-time step for a simple har-

monic oscillator, (y1, y2, . . . , yn), where yk for k = 1, 2, . . . , n are two-

component vectors, with one component for the angle of the pendulum

away from the vertical and the other for its time derivative. Determine the

optimal function form of f from

yi = f(yi−1, yi−2, . . . , yi−k),

for k = 1, 2, 3, 4. What happens if the pendulum is a driven pendulum with

damping?

11.7 Generate a long, random set of data and determine that it cannot come from

any dynamical system. A specific model can be used as a test.

11.8 Develop a genetic algorithm program to play the optimal minority game.

When each of the three operations, selection, crossover, and mutation are

analyzed, which one is most critical?

11.9 Use genetic programming to create a solution of a two-dimensional maze

built from n × n squares.

11.10 The Chinese board game Weiqi has 361 vertices through 19 × 19 perpen-

dicular lines. Two players take turns to occupy the vertices, one at a time

with two types of stones (black and white), one for each player. If one player

completely surrounds one or more of his opponents stones, he removes the

surrounded stones. The winner is the one who occupies most vertices at

the end. Using the genetic algorithm or genetic programming, develop a

computer program that can play Weiqi against a skillful human player.



Chapter 12

Numerical renormalization

Renormalization is a method that was first introduced in quantum field theory

to deal with far-infrared divergence in Feynman diagrams. The idea was fur-

ther explored in statistical physics to tackle the problems associated with adia-

batic continuity problems in phase transitions and critical phenomena. So far, the

renormalization method has been applied to many problems in physics, including

chaos, percolation, critical phenomena, and quantum many-body problems.

Even though many aspects of the renormalization group have been studied, it

is still unclear how to apply the method to study most highly correlated systems

that we are interested in now, for example, the systems described by the two-

dimensional Hubbard model. However, it is believed by some physicists that the

idea of renormalization will eventually be applied to solve the typical quantum

many-body problems we are encountering, especially with the availability of

modern computers, new numerical algorithms, and fresh ideas for setting up

proper renormalization schemes.

12.1 The scaling concept

The renormalization technique in statistical physics is based on the scaling hy-

pothesis that the competition between the long-range correlation and the fluc-

tuation of the order parameters is the cause of all the singular behavior of the

relevant physical quantities at the critical point. The longest length of the order

parameter that stays correlated at a given temperature T is defined as the correla-

tion length of the system, which diverges when the system approaches the critical

temperature Tc:

ξ ∝ t−ν, (12.1)

where ξ is the correlation length, t = |T − Tc|/Tc is the reduced temperature, and

ν is the critical exponent of the correlation length. The scaling hypothesis states

that the divergence of all the other quantities at the critical temperature is the result

of the divergence of the correlation length. Based on this hypothesis, we can obtain

several relations between the exponents of different physical quantities. Detailed

discussions on the scaling hypothesis and exponent relations can be found in

347
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Ma (1976) and Kadanoff (2000). Here we just want to give a brief discussion of

the scaling concept introduced by Widom (1965a; 1965b) and Kadanoff (1966).

Widom’s idea is based on the fact that the thermodynamic potentials, such as

the Helmholtz free energy, are homogeneous functions, which scale with the

extensive variables of the system. For example, the internal energy doubles if we

double the volume and entropy of the system.

If we take a spin system as an example, the Helmholtz free energy satisfies

F(t, B) = �−1 F(�x t,�y B), (12.2)

where� is a parameter that changes the length scale of the system and x and y are

two exponents determining how the reduced temperature t and the magnetic field

strength B scale with �. We can view the above equation as dividing the system

by a length scale � along one specific direction with x and y characterizing the

corresponding changes in the intensive variables t and B. The critical behavior

of the magnetization m is characterized by two exponents β and δ as

m(t, B = 0) ∝ tβ , (12.3)

m(t = 0, B) ∝ B1/δ. (12.4)

Now let us show how we can derive the relations of the critical exponents from the

assumption that the free energy is a homogeneous function. The magnetization

is defined as

m(t, B) = −
∂F(t, B)

∂B
, (12.5)

which leads to a rescaling relation

m(t, B) = �y−1m(�x t,�y B), (12.6)

which in turn gives

β =
1 − y

x
, (12.7)

δ =
y

1 − y
, (12.8)

if we take �x t = 1 and B = 0, and t = 0 and �y B = 1. Similarly, we can obtain

the exponent γ of the susceptibility from the definition

χ (t, B = 0) =
∂m(t, B)

∂B

∣

∣

∣

∣

B=0

= �2y−1χ (�x t, 0) ∝ t−γ , (12.9)

which gives

γ =
2y − 1

x
= β(δ − 1), (12.10)

if we take �x t = 1. Following exactly the same process, we can obtain the expo-

nent α for the specific heat

C(t, B = 0) =
∂2 F(t, B)

∂t2

∣

∣

∣

∣

B=0

∝ t−α, (12.11)
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which leads to

α = 2 −
1

x
= 2 − β(δ + 1). (12.12)

The above relations indicate that if we know x and y, we know β, δ, γ , and α.

In other words, if we know any two exponents, we know the rest. In most cases,

the behavior on each side of the critical point is symmetric, so we do not need to

distinguish the two limiting processes of approaching the critical point. However,

we have to realize that this may not always be true. So a more detailed analysis

should consider them separately.

How can we relate the critical exponents of the thermodynamic quantities

discussed above to the fundamental exponent of the correlation length? It was

Kadanoff (1966) who first introduced the concept of the block Hamiltonian and

then related the exponent of the correlation length to the critical exponents of

the thermodynamic quantities. Kadanoff’s idea is based on the observation that

the correlation length diverges at the critical point. So the details of the behavior

of the system at a shorter length than that of the correlation do not matter very

much. Thus, we can imagine a process in which the spins in a block of dimension

� point in more or less the same direction so we can treat the whole block like a

single spin. The Helmholtz free energy then scales as

F(�a t,�b B) = �d F(t, B), (12.13)

where a and b are the rescaling exponents for t and B, respectively, and d is the

dimensionality of the lattice. The above relation shows that

a = xd, (12.14)

b = yd, (12.15)

in comparison with the Widom scaling based on the homogeneous function as-

sumption. The spin correlation function is defined as

G(ri j , t) = 〈si s j 〉 − 〈si 〉〈s j 〉, (12.16)

which satisfies a scaling relation

G(ri j , t) = �2(b−d)G(�−1ri j ,�
a t), (12.17)

which leads to

ν =
1

a
=

1

xd
=

2 − α

d
. (12.18)

The exponent of the correlation function with the distance is given by

G(ri j , t = 0) ∝
(

1

ri j

)d−2−η

, (12.19)

which is related to the other exponents by

η = 2 −
d(δ − 1)

δ + 1
. (12.20)
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In the next section we will show how we can construct a renormalization scheme,

the mathematical form of the Kadanoff block spin transformation, and then show

how the exponents are related to the eigenvalues of the linear representation of

the transformation around the critical point.

12.2 Renormalization transform

As argued by Wilson (1975), the physical quantities of statistical physics are

controlled by fluctuations at all length scales up to the correlation length ξ .

These fluctuations occur in every physical observable at every energy scale, and

the renormalization scheme is aimed at finding the structure of this hierarchy, or its

approximation, if it exists. One way to obtain the structure of the hierarchy in the

ferromagnetic spin system is through the Kadanoff transform (Kadanoff, 1966),

which partitions the lattice to form a new lattice with the definition of the block

spins. This procedure is repeated until a stable fixed point is reached. Intuitively,

we can view this transform as a process for recovering the long-range behavior

of the system. For example, when the system changes from a paramagnetic state

to a ferromagnetic state, at any length scale, the magnetization is more or less the

same. In other words, the spins tend to line up to form ferromagnetic domains,

and the domains will continue to line up to form larger domains until the whole

system becomes one big ferromagnetic domain. In general, this transform can

mathematically be formulated into a semigroup, that is, a series of operations

without an inverse. For some simple cases, the inverse transform can also be

found; a true group then results. To illustrate how this is done, assume that

the system is the d-dimensional Ising spin system with a length L along each

direction. We can first divide the system into many blocks, and a block spin si

can then be formulated from all the lattice spins in that block:

si = g{siσ }, (12.21)

where we have used i = 1, 2, . . . ,(L/�)d , where� is the length of the block. We

have also used {si } to denote a configuration of si with i = 1, 2, 3, . . . being a

generic index for the sites involved, and σ is used to label spins within a block, that

is, σ = 1, 2, . . . ,(�/a)d , with a being the lattice constant. The specific function

form of g{siσ } is not always simple; the choice has to reflect the physical process

of the system. For the Ising model, a common practice is to use the majority

rule: The block spin is assigned +1 (−1) if the majority of spins in the block are

up (down). When the block has the same number of up and down sites, we can

assign either +1 or −1 to the block spin with an equal probability. The transform

is continued by taking the block spins as the new lattice spins

s
(n)
i = g

{

s
(n)
iσ

}

, (12.22)
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where s
(0)
i are the original lattice spins. To simplify our notation, we will use

S = (s1, s2, s3, . . . ) for a total spin configuration. The so-called renormalization

transform is defined with the new distribution function

W (n+1)
(

S(n+1)
)

=
1

Z (n+1)

∑

σ

δ
[

S(n+1) − g
(

S(n)
σ

)]

e−H(n)(S(n)), (12.23)

where the effective Hamiltonian H is also a function of the coupling constant

and the external field. Temperature is absorbed into the coupling constant and the

external field. The partition function at each iteration of the transform is given

by

Z (n) =
∑

S(n)

e−H(n)(S(n)). (12.24)

We can easily show that the average of an observable is related through

〈A〉 =
∑

S(n+1)

A
(

S(n+1))W(S(n+1)
)

=
∑

S(n)

A
(

S(n+1)
)

W
(

S(n)
)

, (12.25)

during the transformation. The block Hamiltonian H(n+1) is completely given by

H(n) through the transform up to a constant. Symbolically, we can write all the

parameters in the Hamiltonian as the components of a vector H, and the transform

can be expressed as a matrix multiplication

H(n+1) = TH(n), (12.26)

where T is the transform matrix defined through the distribution function with

block variables. T is quite complex in most problems. A fixed point is found if

the mapping goes to itself with

H0 = TH0, (12.27)

which can be one of several types. If the flow lines move toward the fixed point

along all the directions, we call it a stable fixed point, which usually corresponds

to T = 0 or T = ∞. If the flow lines move away from the fixed point, we call

it an unstable fixed point. The critical point is a mixture of unstable and stable

behavior. Along some directions the flow lines move toward the fixed point, but

along other directions, the flow lines move away from the fixed point.

If we expand the above renormalization equation around the fixed point, we

have

H0 + δH′ = T(H0 + δH). (12.28)

When δH is very close to zero, we can carry out the Taylor expansion

T(H0 + δH) = T(H0) + AδH + O(δH2) (12.29)

up to the linear terms, where A is given by partial derivatives

Ai j =
∂Ti (H0)

∂H j

. (12.30)
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In the neighborhood of the fixed point, we then must have

δH′ = AδH. (12.31)

The eigenvalues λα of A from

Axα = λαxα (12.32)

determine the behavior of the fixed point along the directions of the eigenvectors.

If λα > 1, then the fixed point along the direction of xα is unstable; otherwise, it

is stable with λα < 1 or marginal with λα = 1.

The critical exponent can be related to the eigenvalue of the linearized trans-

form around the critical point. For example, the critical exponent of the correlation

length is given by

ν =
ln�

ln λσ
, (12.33)

where λσ is one of the eigenvalues of A that is greater than 1. This is derived

from the fact that around the critical point, the correlation function scales as

G(δH) = �−d G(AδH), (12.34)

which can be used to relate � and λσ to the exponent x and then the exponent ν.

12.3 Critical phenomena: the Ising model

We will use the ferromagnetic Ising model in two dimensions to illustrate sev-

eral important aspects of the renormalization scheme outlined in the preceding

section. The original work was carried out by Niemeijer and van Leeuwen (1974).

The ferromagnetic Ising model is given by the Hamiltonian

H = −J

N
∑

〈i j〉
si s j − B

N
∑

i=1

si , (12.35)

where J > 0 is the spin coupling strength, B is the external field, and i and j

are nearest neighbors. For the Ising model, si is either 1 or −1. Assume that the

lattice is a triangular lattice. Let us take the triangle of three nearest sites as the

block and use the majority rule to define the block spin, that is, si = +1 if two

or three spins in the i th block are up and si = −1 if two or three spins in the

block are down. We will absorb the temperature into J and B. For notational

simplicity, we will suppress the interaction indices when there is no confusion.

The renormalization transform is given by

e−H{si } =
∑

σ

e−H{siσ }, (12.36)

where si are the block spins given by

si = g{siσ } = sgn(si1 + si2 + si3) (12.37)
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if the majority rule is adopted. Here si is either 1 or −1 depending on whether

the majority of spins are up or down. For each value of si there are four spin

configurations of the three spins in the block: three from two spins pointing in

the same direction and one from all three spins pointing in the same direction.

We can separate the lattice Hamiltonian into two parts, one for the intrablock

spin interactions given as

H0 = −J
∑

i,σ,µ

siσ siµ, (12.38)

and another for the interblock interactions and the external field,

V = −J
∑

〈i j〉,σ,µ
siσ s jµ − B

∑

i,σ

siσ , (12.39)

where 〈i j〉 indicates the summation over the nearest blocks. An expectation value

under the intrablock part of the Hamiltonian is given by

〈A〉0 =
1

Z0

∑

{si }
A{siσ }δ(si − g{siσ })e−H0{siσ }. (12.40)

Here the partition function

Z0 =
∑

{si }
δ(si − g{siσ })e−H0{siσ } = zM

0 (12.41)

is the total contribution of the partition functions from all the M blocks, where

z0 =
∑

σ

e−H0{siσ } = 3e−J + e3J , (12.42)

is the partition function of a single block. Note that we did not counter the

degeneracy with all the spins flipped in the above partition function because it

would add only an overall factor.

From the definition in Eq. (12.40) of the average over the spin configurations

from all the blocks, the renormalization transform can be written as

e−H{si } =

[

∑

{si }
δ(si − g{siσ })e−H0{siσ }

]

〈e−V 〉0, (12.43)

where the first part is simply given by the partition function Z0 and the second

part needs to be evaluated term by term in an expansion if we are interested in

the analytic results. In the next section, we will explain how to use Monte Carlo

simulations to obtain the averages needed for the renormalization transform.

Equation (12.43) is the key for performing the renormalization transform, and

we can easily show that it is correct by carrying out a Taylor expansion for the

exponent.

We can formally write the average left as

〈e−V 〉0 = −〈V 〉0 +
1

2
〈V 2〉0 − · · ·

= exp{−〈V 〉0 − [〈V 2〉0 − 〈V 〉2
0]/2 + · · · }, (12.44)
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after Taylor expansion of the exponential function and resummation in terms

of the moments of the statistical averages. The above equation then leads to

the renormalization transform between the lattice Hamiltonian and the block

Hamiltonian as

H{si } = lnZ0 + 〈V 〉0 −
1

2

[

〈V 2〉0 − 〈V 〉2
0

]

+ · · · . (12.45)

The right-hand side has an infinite number of terms, but we can truncate the series

if the fixed points have small values of J and B.

Now we can work out the transform analytically, as well as the exponents

associated with the fixed point. We already know Z0 from Eqs. (12.41) and

(12.42). 〈V 〉0 can then be evaluated from the definition. If we concentrate on the

two nearest neighboring blocks, i and j , we have

〈Vi j 〉0 = −J 〈si1s j2 + si1s j3〉0 = −2J 〈si1〉0〈s j2〉0, (12.46)

due to the symmetry of each block, and the average is performed over the inter-

actions within each individual block. The average over a specific spin can easily

be computed with a fixed block spin and we have

〈siσ 〉0 =
1

z0

∑

si

δ[si − sgn(si1 + si2 + si3)]e−J (si1si2+si1si3+si2si3)

=
si

z0

(

e3J + e−J
)

. (12.47)

If we gather all the terms above into the renormalization transform of Eq. (12.45),

we obtain

H(n+1)
{

s
(n+1)
i

}

= lnZ
(n)
0 − J (n+1)

∑

〈i j〉
s

(n+1)
i s

(n+1)
j − B(n+1)

∑

i

s
(n+1)
i , (12.48)

with

J (n+1) ≃ 2

(

e3J (n) + e−J (n)

e3J (n) + 3e−J (n)

)2

J (n), (12.49)

and

B(n+1) ≃ 3

(

e3J (n) + e−J (n)

e3J (n) + 3e−J (n)

)

B(n), (12.50)

which can be used to construct the matrix for the fixed points. If we use the

vector representation of the Hamiltonian parameters, we have H = (H1, H2) =
(B, J ). The fixed points are given by the invariants of the transform. Using

Eqs. (12.49) and (12.50), we obtain B0 = 0 and J0 = 0, and B0 = 0 and

J0 = ln(2
√

2 + 1)/4 ≃ 0.3356. In order to study the behavior around these fixed

points, we can linearize the transform as discussed in the preceding section with

the matrix elements given by

A =
∂T(H)

∂H
. (12.51)
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For (B0, J0) = (0, 0), we have

A =

(

1.5 0

0 0.5

)

, (12.52)

which has two eigenvalues λB = 1.5 > 1 and λJ = 0.5 < 1, corresponding to

the high-temperature limit, where the interaction is totally unimportant. For the

other fixed point, with (B0, J0) = (0, 0.3356), we have

A =

(

2.1213 0

0 1.6235

)

, (12.53)

which has the two eigenvalues λB = 2.1213 > 1 and λJ = 1.6235 > 1, corre-

sponding to the unstable fixed point, the critical point. Because we have truncated

the series at its first-order terms, these results are only approximately correct.

From the exact Onsager solution (McCoy and Wu, 1973), we know that at

the critical point, Jc = J/kBTc = ln
√

3/2 ≃ 0.2747, which is smaller than the

result for J0 obtained above. We can also calculate the critical exponents, for

example,

ν =
ln�

ln λJ

=
ln

√
3

ln 1.6235
= 1.1336 (12.54)

and

yd =
ln λB

ln�
=

ln 2.1213

ln
√

3
= 1.3690, (12.55)

which can be used further to obtain the exponents α = 2 − νd = −0.2672 and

δ = y/(1 − y) = 2.1696. These values are still quite different from the exact

results of α = 0 and δ = 15. The discrepancies are due to the approximation

in the evaluation of 〈exp(−V )〉0. There are two ways to improve the accuracy:

we can either include the higher-order terms in the expansion for 〈exp(−V )〉0,

which seems to improve the results quite slowly, or perform the evaluation of

〈exp(−V )〉0 numerically, as we will discuss in the next section. Numerical evalu-

ation of the averages in the renormalization transform has been a very successful

approach.

12.4 Renormalization with Monte Carlo simulation

As we discussed in the preceding section, we have difficulty in obtaining an

accurate renormalization matrix around the fixed point because the evaluation of

nontrivial averages such as 〈exp(−V )〉0 is needed. However, if we recall the Monte

Carlo scheme in statistical physics discussed Chapter 10, these averages should

not be very difficult to evaluate through the Metropolis algorithm. A scheme

introduced by Swendsen (1979) was devised for such a purpose. Let us still take

the Ising model as the illustrative example. The renormalization transform is
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given by

H(n+1) = −J (n+1)
∑

〈i j〉
s

(n+1)
i s

(n+1)
j − B(n+1)

∑

i

s
(n+1)
i , (12.56)

up to a constant term. We will label the Hamiltonian by a vector H = (H1, H2) =
(B, J ), as we did in the preceding section. Then we have the renormalization

matrix

Ai j =
∂H

(n+1)
i

∂H
(n)
j

. (12.57)

The Hamiltonian can also be written in terms of the moments of the spin variables.

For example, we can write

H =
m
∑

i=1

Hi Mi , (12.58)

with, for example, M1 =
∑

j s j , M2 =
∑

〈 jk〉 s j sk , and so on. Now we can relate

the renormalization transform matrix to the thermal averages of the moments

through

∂
〈

M
(n+1)
i

〉

∂H
(n)
j

=
∑

k

∂
〈

M
(n+1)
i

〉

∂H
(n+1)
k

∂H
(n+1)
k

∂H
(n)
j

, (12.59)

which is equivalent to

F = GA, (12.60)

with

Fi j =
∂
〈

M
(n+1)
i

〉

∂H
(n)
j

(12.61)

and

G i j =
∂
〈

M
(n+1)
i

〉

∂H
(n+1)
j

. (12.62)

We can express Fi j and G i j in terms of the averages of Mi and Mi M j from the

relation between Hi and Mi in the Hamiltonian and the definition of the thermal

average, for example,

〈Mi 〉 =
∑

{si } Mi e
−
∑

j H j M j

∑

{si } e−
∑

j H j M j
. (12.63)

If we take the derivative with respect to H j in the above expression, we have,

Fi j =
〈

M
(n+1)
i M

(n)
j

〉

−
〈

M
(n+1)
i

〉 〈

M
(n)
j

〉

, (12.64)

G i j =
〈

M
(n+1)
i M

(n+1)
j

〉

−
〈

M
(n+1)
i 〉〈M

(n+1)
j

〉

. (12.65)

The Swendsen scheme evaluates the matrices F and G in each renormalization

transform step, and then the matrix A is obtained through Eq. (12.60), with F
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multiplied by the inverse of G. As we discussed in the preceding section, we can

now calculate the relevant critical exponents from the eigenvalues of the matrix

A. For more details, see Swendsen (1979).

12.5 Crossover: the Kondo problem

The Kondo problem has been one of the most interesting problems in the history

of theoretical physics. The full solution of the problem, first accomplished by

Wilson numerically through the renormalization group, contains both mathemat-

ical elegance and physical insight. The problem was first noticed in the experi-

mental observation of the resistivity of simple metals such as copper, embedded

with very dilute magnetic impurities, for example, chromium. The resistivity first

decreases as the temperature is lowered, which is common in all nonmagnetic

impurity scattering cases and well understood. However, at very low tempera-

tures, typically on the order of 1 K, the resistivity starts to increase and eventually

saturates at zero temperature. Kondo argued that this was due to the spin-flip scat-

tering of the electron and magnetic moment of the impurity and came up with a

very simple Hamiltonian for single-impurity scattering:

H =
∑

kσ

εkc
†
kσ ckσ + JS ·

∑

kσ, qµ

c
†
kσ sσµcqµ, (12.66)

where c
†
kσ and ckσ are creation and annihilation operators for the electrons, εk is

the band energy dispersion, sσµ are Pauli matrices for the electron spins, S is the

spin operator for the impurity, and J is the spin coupling constant. For ferromag-

netic coupling, that is, J < 0, perturbation theory provides a convergent solution

of this model. The typical electron and magnetic impurity system, however, has

antiferromagnetic coupling. Kondo used the Hamiltonian in Eq. (12.66) to calcu-

late the resistivity of the electrons due to impurity scattering with a perturbation

method. After summing up a specific class of infinite terms, Kondo found that the

series diverges logarithmically when the temperature approaches a characteristic

temperature of the system, now known as the Kondo temperature TK, which is

typically on the order of 1 K. A significant amount of theoretical effort followed

the discovery of the problem by Kondo, and this effort was summarized in Kondo

(1969). And it was clear then that a full solution of the problem was not going to

be straightforward.

It was Wilson who devised the numerical renormalization method and solved

the Kondo problem completely. Even though the problem was later solved exactly

using an analytic method, it is still fair to say that Wilson’s solution captured all

the relevant physics of the problem (the process now known as the crossover

phenomenon); that is, the system changes its behavior gradually from the high-

temperature or the weak-coupling state to the low-temperature or the strong-

coupling state without a phase transition.

Wilson made several modifications to the original Hamiltonian in order to

solve it numerically with his renormalization method. First, the free electron
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energy band is assumed to be linear, that is, that εk ∝ k. This modification of

the Hamiltonian does not significantly change the physics of the model if the

relevant energy scale is much smaller that the energy bandwidth. After a proper

choice of the units and the Fermi level, the modified Kondo Hamiltonian is given

by

H =
∫ 1

−1

c
†
kck dk + J A†sA · S, (12.67)

where s and S are the Pauli matrices for an electron and for the impurity, respec-

tively. The operators A and A† are the collective operators defined by

A =
∫ 1

−1

ck dk. (12.68)

Note that the spin indices have been suppressed in the above expressions for

convenience of notation. Both ck and A have spin indices and when the operators

appear in pairs, the spin indices are all summed. For example,

A†sA =
∑

σµ

A†
σ sσµAµ. (12.69)

Then the momentum space is discretized with a logarithmic decrease of the space

intervals toward the center of the band, that is, the Fermi level, with the lattice

points at

km =
±1

�m
, (12.70)

for m = 0, 1, . . . ,∞, with � > 1. When � → 1, the space approaches the con-

tinuous limit. We can then construct a set of orthogonal basis states defined in

each interval �−(m+1) < k < �−m as

φml (k) =
�(m+1)/2

√
�− 1

eiωm kl , (12.71)

for l = 0, 1, . . . ,∞, with

ωm =
2π�m+1

�− 1
. (12.72)

The state in Eq. (12.71) is nonzero only in the interval defined. Because the Fermi

level is at the center of the band, φml(k) and φml(−k) for k ≥ 0 form a complete

basis for the whole momentum space. The creation and annihilation operators of

electrons can then be expressed in terms of these discrete states as

ak =
∑

ml

[cmlφml (k) + dmlφml (−k)], (12.73)

where cml and dml satisfy the fermion anticommutative relation, for example,

[ckl , c†mn]+ = δkmδln, (12.74)

and they can be interpreted as different fermion operators. If we only keep the

l = 0 states in the above expansion, the Kondo Hamiltonian is further simplified
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to

H = ε0

∑

m

1

�m
(c†mcm − d†

mdm) + J A†sA · S, (12.75)

where cm = cm0, dm = dm0, and ε0 = (1 +�−1)/2. A transform can be made

so that the Hamiltonian can be described by just one set of parameters, given

as

H =
∞
∑

k=0

εk( f
†

k fk+1 + f
†

k+1 fk) + J̃ f +
0 s f0 · S, (12.76)

where f0 is defined directly from A as

f0 =
1

√
2

A, (12.77)

and fk for k > 0 are given from an orthogonal transform of cm and dm with

fk =
∑

m

(ukmcm + vkmdm). (12.78)

After rescaling, we have εk = 1/�k/2 and J̃ = 4J�/(�+ 1). This rescaling has

some effects on terms with small values of k but not on terms with large values

of k. We can obtain all the transform coefficients ukm and vkm and show that fk

satisfies the fermion anticommutative relation

[ fk, f
†

l ]+ = δkl (12.79)

from the properties of ckl and dkl as well as the orthogonal transform. For more

details of the approximation and transform, see Wilson (1975).

Before we describe Wilson’s solution of the above Hamiltonian, a technical

detail is worth mentioning. Assume that we want to obtain the spectrum of the

Hamiltonian

H = H0 + H1 + H2 + · · · , (12.80)

where H0 has a degenerate ground state and the elements in Hn are several orders

smaller than the elements in Hn−1. In order to have an accurate structure of the

eigenvalue spectrum, one cannot simply diagonalize H with all the elements in

Hn with n > 0 substituted. The reason is that the numerical rounding error will

kill the detailed structure of the spectrum due to the smallness of Hn for n > 0.

A better way, perhaps the only way, to maintain the accuracy in the spectrum is

to diagonalize H0 first and then treat Hn as perturbations term by term. Note

that the accuracy we are talking about here is not the absolute values of the

eigenvalues but rather the structure, that is, the correct splitting of the energy

levels or the hierarchical structure of the spectrum. The structure of the energy

spectrum determines the properties of the system.

The Hamiltonian of Eq. (12.76) is ready to be formulated in a recursive form

that defines the renormalization transform. Let us define a Hamiltonian with k
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truncated at k = n − 1:

H(n) = �(n−1)/2
n−1
∑

k=0

εk( f
†

k fk+1 + f
†

k+1 fk) + J̃ f
†

0 s f0 · S, (12.81)

where the rescaling factor �(n−1)/2 is used to make the smallest term in the

Hamiltonian on the order of 1. The results of the original Hamiltonian can

be recovered by dividing the eigenvalues by �(n−1)/2 after they are obtained.

The recursive relation or the renormalization transform is then formulated

as

H(n+1) = T [H(n)] =
1

√
�
H(n) + f †

n fn+1 + f
†

n+1 fn − E
(n+1)
0 , (12.82)

where E
(n+1)
0 is the ground-state energy of the Hamiltonian H(n+1). The Hamil-

tonian can now be diagonalized with a combination of numerical diagonalization

of the first part of the Hamiltonian and then degenerate perturbations of other

terms. The number of states increases exponentially with n. We have to truncate

the number of states used in the recursions at some reasonable number so that

the problem can be dealt with on a computer.

Wilson discovered that no matter how small the original coupling constant

J > 0 is, the behavior of the system always crosses over to that of J = ∞ after

many steps of recursion. In physical terms, this means that no matter how small the

coupling between an electron and the impurity, if it is antiferromagnetic, when

the temperature approaches zero, the system eventually moves to the strong-

coupling limit: that is, the electron spins screen the impurity spin completely at

a temperature of zero. The temperature at which the crossover happens is the

Kondo temperature, which is a function of the original coupling constant J .

We are not going to have more discussion here of the methods of evaluation

of physical quantities such as the magnetic susceptibility or specific heat of the

impurity. Interested readers can find a full discussion of the Kondo problem in

Hewson (1993).

12.6 Quantum lattice renormalization

After Wilson’s celebrated work on the numerical renormalization study of the

Kondo problem in the early 1970s, a series of attempts were made to generalize

the idea in the study of quantum lattice models. These attempts turned out not

as successful as the study of the Kondo problem. However, these studies did

provide some qualitative understanding of these systems and have formed the

basis for further development, especially the density matrix renormalization of

White (1992; 1993).

In this section, we discuss how to generalize the Wilson method to quantum

lattice models. What we need to find is the transform

H(n+1) = T [H(n)], (12.83)
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which can accurately describe the energy structure of the system, at least for

low-lying excited states. We will consider an infinite chain system and divide it

first into small blocks. The renormalization transform then combines two nearest

blocks into one new block. We focus on two blocks and assume that the left-hand

block has NL independent states and the right-hand block has NR independent

states, so the total number of states of the two-block system is N = NL × NR.

The Hamiltonian can be written symbolically as

H(n) = H
(n)
L + H

(n)
R + V

(n)
LR , (12.84)

where H
(n)
L,R is the intrablock Hamiltonian and V

(n)
LR is the coupling between the

blocks. Let us take |l〉 with l = 1, 2, . . . ,NL and |r〉 with r = 1, 2, . . . ,NR as the

eigenstates of the left-hand block and the right-hand block, respectively, and the

direct product |i〉 = |l〉 ⊗ |r〉, where i = 1, 2, . . . ,N is the basis functions for

constructing the eigenstates of H(n), given as

|k〉 =
N
∑

i=1

aki |i〉, (12.85)

where k = 1, 2, . . . ,N , and then we have

H(n)|k〉 = Ek |k〉. (12.86)

The direct product of two vectors |i〉 = |l〉 ⊗ |r〉 will be illustrated later in this

section in an example. The renormalization transform is then performed with

K ≤ N states selected from |k〉 with

H(n+1) = AH(n)A†, (12.87)

where A is a K × N matrix constructed from

Aki = aki (12.88)

and the matrix representation of H(n) on the right-hand side of Eq. (12.87) is in

the original direct product state |i〉, given as

〈i |H(n)|i ′〉 = 〈l|HL|l ′〉 ⊗ IR + IL ⊗ 〈r |HR|r ′〉 + 〈i |VLR|i ′〉, (12.89)

where IR and IL are unit matrices with dimensions NR × NR and NL × NL,

respectively, and ⊗ has the same meaning as the direct product of two irreducible

matrix representations of a group (Tinkham, 2003).

One aspect requiring special care is the matrix representation of the interaction

term between two blocks. For example, if the interaction is of the Ising type with

VLR = Jsx
r sx

l , (12.90)

we have

〈i |VLR|i ′〉 = J 〈l|sx(n)
r |l ′〉 ⊗

〈

r |sx(n)

l |r ′
〉

, (12.91)
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where sx
r and sx

l are the spin operators at the right-hand and left-hand ends of the

blocks, respectively.

In fact, all other variables are transformed in a way similar to the transformation

of the Hamiltonian, particularly the operators at the boundaries, which are needed

to construct the next iteration of the Hamiltonian. For example, the new spin

operator for the right-hand boundary is given by

sx(n+1)
r = Asx(n)

r A†. (12.92)

Note that we also need to expand the dimensionality of s
x(n)

r,l for the transform by

a direct product with a unit matrix, for example,

〈

i
∣

∣sx(n)
r

∣

∣ i ′〉 = IL ⊗
〈

r
∣

∣sx(n)
r

∣

∣ r ′〉 ; (12.93)
〈

i |sx(n)

l |i ′
〉

=
〈

l|sx(n)

l |l ′
〉

⊗ IR. (12.94)

There is one important aspect we have not specified, that is, the criteria for

selecting the K states out of a total number of N states to construct the renor-

malization transform. Traditionally, the states with lowest energies were taken

for the renormalization transform. However, there is a difference between the

lattice Hamiltonian and the Kondo Hamiltonian worked out by Wilson. In the

Kondo problem, every term added during the transformation is much smaller

than the original elements, so we would not expect, for example, any level

crossing. The lower states contribute more to the true ground state. However,

in the lattice case, there are no such small elements. The terms added in are as

large as other elements. A problem arises when we perform the transformation

by keeping the few (for example, 100) lowest states because the higher levels still

contribute to the true ground state or lower excited states at the infinite limit. In

the next section, we will discuss the reduced density matrix formulation of the

renormalization transform introduced by White (1992; 1993), which resolves the

problem of level crossing during the transformation, at least for one-dimensional

systems.

In order to have a better understanding of the scheme outlined above, let

us apply it to an extremely simple model, the spin- 1
2

quantum Ising chain in a

transverse magnetic field, given as

H = J

∞
∑

i=−∞
sx

i sx
i+1 − B

∞
∑

i=−∞
sz

i , (12.95)

where sx and sz can be expressed in the Pauli matrices:

sx =

(

0 1

1 0

)

; sz =

(

1 0

0 −1

)

, (12.96)

if we takeh̄/2 = 1. This model was studied by Jullien et al. (1978) in great detail.

What we would like to obtain is a transform

H(n+1) = T [H(n)]. (12.97)
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In order to simplify our discussion, we will only take one site in each block and

then combine two blocks into a new block during the transformation. We will

also take the two states with lowest eigenvalues for the transform, which means

that NL = NR = K = 2 and N = NL + NR = 4. So the states in each block |r〉
or |l〉 are given by

|1〉 =

(

1

0

)

; |2〉 =

(

0

1

)

. (12.98)

Then the direct product |i〉 = |l〉 ⊗ |r〉 generates four basis functions

|1〉 =

⎛

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎠

; |2〉 =

⎛

⎜

⎜

⎜

⎝

0

1

0

0

⎞

⎟

⎟

⎟

⎠

; |3〉 =

⎛

⎜

⎜

⎜

⎝

0

0

1

0

⎞

⎟

⎟

⎟

⎠

; |4〉 =

⎛

⎜

⎜

⎜

⎝

0

0

0

1

⎞

⎟

⎟

⎟

⎠

, (12.99)

which are obtained by taking the product of first element of the first vector and

the second vector to form the first two elements and then the second element

of the first vector and the second vector to form the the next two elements. The

matrix direct products are performed in exactly the same manner. In general, we

want to obtain the direct product C = A ⊗ B, where A is an n × n matrix and B

is an m × m matrix. Then C is an nm × nm matrix, which has n × n blocks with

m × m elements in each block constructed from the corresponding element of A

multiplied by the the second matrix B. Based on this rule of the direct product,

we can obtain all the terms in a Hamiltonian of two blocks. And if we put all

these terms together, we have

H(n) =

⎛

⎜

⎜

⎜

⎜

⎝

−2B 0 0 J

0 0 J 0

0 J 0 0

J 0 0 2B

⎞

⎟

⎟

⎟

⎟

⎠

, (12.100)

which can be diagonalized by the following four states:

|1〉 =
1

√
2

⎛

⎜

⎜

⎜

⎝

0

−1

1

0

⎞

⎟

⎟

⎟

⎠

; |2〉 =
1

√
2

⎛

⎜

⎜

⎜

⎝

0

1

1

0

⎞

⎟

⎟

⎟

⎠

;

(12.101)

|3〉 =
1

√
1 + α2

⎛

⎜

⎜

⎜

⎝

−α
0

0

1

⎞

⎟

⎟

⎟

⎠

; |4〉 =
1

√

1 + β2

⎛

⎜

⎜

⎜

⎝

−β
1

1

0

⎞

⎟

⎟

⎟

⎠

.

where α and β are given by

α =
2B +

√
4B2 + J 2

J
; β =

2B −
√

4B2 + J 2

J
. (12.102)

The corresponding eigenvalues are

Ek = −J, J, −
√

4B2 + J 2,
√

4B2 + J 2. (12.103)
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Because the first and third states have lower energy for J > 0, the transform

matrix is then given as

A =

(

0 −1/
√

2 1/
√

2 0

−α/
√

1 + α2 0 0 1/
√

1 + α2

)

, (12.104)

which can be used to construct the new block Hamiltonian

H(n+1) = AH(n)A† =

(

−J 0

0 −γ

)

, (12.105)

with γ =
√

4B2 + J 2. Similarly, we can construct new spin operators at the

boundaries, for example,

sx(n+1)
r = A

(

1 0

0 1

)

⊗

(

0 1

1 0

)

A† =
α + 1

√

2(1 + α2)

(

0 1

1 0

)

, (12.106)

and s
x(n+1)

l = −s
x(n+1)
r . The new interaction term is then given by

V
(n+1)

LR = Jsx(n+1)
r ⊗ s

x(n+1)

l . (12.107)

The above scheme is repeated to convergence. As we pointed out at the begin-

ning of the section, this procedure turns out to be unsuccessful in most sys-

tems. The problem lies in the facts that the addition of two blocks is not a very

small perturbation to the single-block Hamiltonian and that the overlap of the

higher-energy states with the lower-energy states in the infinite system is very

significant.

12.7 Density matrix renormalization

Significant progress in the numerical renormalization study of highly correlated

systems has been made by White (1992; 1993). The basic idea comes from the

observation that the reduced density matrix constructed from a set of states of a

specific segment of an infinite system should have the largest eigenvalues if we

want this set of states to have the largest overlap with the lower-lying states of

the system. Here we will just give a brief introduction to the scheme: interested

readers should consult reviews on the subject, for example, White (1998), Shibata

(2003), and Schollwöck (2005).

The density matrix is defined for a system that is in contact with the environ-

ment. Assume that the system is described by a set of orthonormal and complete

states |l〉 for l = 1, 2, . . . ,m and the environment by another set of orthonormal

and complete states |r〉 for r = 1, 2, . . . ,n. Then an arbitrary state including the

system and its environment can be expressed as

|ψ〉 =
m,n
∑

l,r=1

clr |l〉|r〉, (12.108)
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where |l〉|r〉 is used as a two-index notation, instead of the direct product |l〉 ⊗ |r〉
used earlier. This is an easier way of keeping track of the indices. The expectation

value of an operator A of the system under the state |ψ〉 can then be written as

〈A〉 = 〈ψ |A|ψ〉 =
∑

l,l ′,r

c∗
l ′r clr 〈l ′|A|l〉 = Tr ρA, (12.109)

where the density matrix ρ of the system is defined from

ρi j =
n
∑

r=1

c∗
jr cir (12.110)

for the above expectation value. Note that we have assumed that A is not coupled

to the environment and the index r for the environment is therefore in the diagonal

form and summed up completely.

We can easily show that ρ is Hermitian and can therefore be diagonalized and

written in the diagonal form of its eigenstates |α〉 as

ρ =
m
∑

α=1

wα|α〉〈α|, (12.111)

where wα can be interpreted as the probability that the system is in the state |α〉
under the given system and environment. Because |α〉 is a state of the system, it

can be written as

|α〉 =
m
∑

l=1

uαl |l〉. (12.112)

Here uαl can be viewed as the elements of a unitary matrix because |α〉 also

form a complete, orthonormal basis set, and the relation between |α〉 and |l〉 is

a canonical transform, or a coordinate rotation in Hilbert space. If we normalize

the wavefunction, we have

〈ψ |ψ〉 = Tr ρ =
m
∑

α=1

wα = 1, (12.113)

which means that the states with higher wα then contribute more than other

states when an average of a physical quantity TrρA is carried out. So a good

approximation can be found if we use the reduced matrix

ρ ≃
k
∑

α=1

wα|α〉〈α| (12.114)

for k < m under the choice of order w1 ≥ w2 · · · ≥ wk · · · ≥ wm ≥ 0. This con-

cept of using the reduced density matrix in the evaluation of a physical quantity

during a block transformation forms the basic idea of density matrix renormal-

ization (White, 1992). The states selected to construct the new blocks are the

eigenstates of the density matrix with the largest eigenvalues, because they have

the highest probabilities for the system to be in under the given environment. The

system can then be viewed as a segment of an infinite system.
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Because of the fast increase in the number of states in the system and in its

environment when the size of either grows, the selection of the system and its

environment becomes very important in order to have a practical and accurate

scheme. As we discussed in the preceding section, a new block is usually con-

structed from two identical blocks. Numerical results show that it is more efficient

in most cases to construct the new block by adding one more site to the old block.

Because the system is growing only at one end if one site is added to the old block,

the result corresponds to the condition of an open end. If a periodic boundary

condition is imposed on the system, the added site(s) should also be in contact

with the other end, as the size of a circle is increased by introducing a new seg-

ment into its circumference. For an infinite chain, imposing a periodic condition

for the renormalization transform requires many more states to be maintained in

order to have the same accuracy as for the the system with an open end.

There are two important criteria in the selection of the environment. It has to

be convenient for constructing the new block Hamiltonian, and it has to be the

best representation of the rest of the actual physical system within the capacity of

current computers. We now go into a little more detail about the algorithms that

are currently used for studying most one-dimensional systems. We first select a

block with a fixed number of sites, denoted by B
(k)
L at the nth iteration of the

renormalization transform. Then we add a single site to the right-hand side of

the block to form the new block denoted by B
(k+1)
L = B

(k)
L ◦, where the circle ◦

means the site added to the original block B
(k)
L . The environment is selected as

the reflection of B
(k)
L ◦, denoted as ◦B

(k)
R . The system B

(k)
L ◦ and the environment

◦B
(k)
R together form a superblock B

(k)
L ◦ ◦ B

(k)
R . We can solve the Hamiltonian

of the superblock and construct the reduced density matrix for the new system

B
(k+1)
L = B

(k)
L ◦ from the eigenstates of the density matrix with largest eigenvalues.

Then we can add one more site to the new system to repeat the process. We can start

the renormalization scheme with four sites as the first superblock B
(1)
L ◦ ◦ B

(1)
R .

So each block, B
(1)
L , or B

(1)
R , has only one site. In general the matrix of the

Hamiltonian of a superblock is usually very sparse and can be solved with the

Lanczos method discussed in Chapter 5.

The above renormalization transform scheme is termed the algorithm for an

infinite system because the size of the system grows with the iteration. The

total number of basis functions increases exponentially with the number of sites

involved. The restriction imposed by the reduced density matrix selection of the

basis states therefore introduces a certain error into the wavefunction and physical

quantities evaluated. To minimize this artificial uncertainty, we can also perform

a finite size renormalization in each stage of the the renormalization for an infinite

system, or for a finite system with a fixed size. We start first with a symmetric

superblock B
(k)
L ◦ ◦ B

(k)
R . Then we formulate the new system as B

(k+1)
L = B

(k)
L ◦

but the environment B
(k+1)
R = ◦B

(k−1)
R , where B

(k−1)
R is the block with one site

less than B
(k)
R , or the previous environment in the infinite algorithm. By sweeping

through the system this way, we improve the wavefunction and physical quantities
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evaluated for the system of a given size. In fact, if we are studying the ground

state, the whole process is equivalent to a variational procedure with a controllable

uncertainty.

The algorithms for both of the infinite and finite systems have been applied

to many different physical systems in the last decade. We will not go into those

aspects here. Interested readers can found detailed discussions in the the reviews

by White (1998), Shibata (2003), and Schollwöck (2005).

Exercises

12.1 From the scaling relations discussed in the text, if two of the exponents

are given, we can find the rest. For the two-dimensional Ising model, the

exact results are available. If we start with α = 0 and β = 1/8, show that

γ = 7/4, δ = 15, η = 1/4, and ν = 1.

12.2 As discussed in the text, the approximation, up to the first order, of the

coupling between two nearest neighboring spin blocks can be improved

by including more terms in the expansion. If we rewrite the Hamiltonian

in the form of the nearest neighbor interaction and another term of next

nearest neighbor interaction (zero in the zeroth-order iteration), we can

incorporate the second-order term in the renormalization transform. Derive

the renormalization transform matrix for the case in which first-order and

second-order terms are included in the expansion and calculate the critical

exponents for the triangular Ising model. Are there any improvements over

the first-order approximation?

12.3 One can also improve the calculation outlined in the text for the triangular

Ising model by choosing larger blocks. Use hexagonal blocks with seven

sites as the renormalization transform units and evaluate the exponents

with expansion up to first order. Are there any improvements over the

calculations of the triangular blocks?

12.4 Develop a program with the Swendsen Monte Carlo renormalization al-

gorithm for the two-dimensional Ising model on a square lattice. Take the

2 × 2 block as the renormalization transform unit for a system of 40 × 40

sites and apply the majority rule for the block spin.

12.5 One of Wilson’s very interesting observations is that when one has a Hamil-

tonian matrix with multiple energy scales, the only way to obtain the ac-

curate structure of the energy levels is to perform degenerate perturbations

level by level. Assume that we have the following Hamiltonian:

H = H (0) + H (1) + H (2),

with the zeroth order given by

H0 =

(

2 1

1 −2

)
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and the first-order and second-order terms given by

H
(1)
i j =

{

0.01 for i 	= j,

0 for i = j,

and

H
(2)
i j =

{

0.0001 for i 	= j,

0 for i = j.

Find the energy level structure of the Hamiltonian through degenerate per-

turbation. Keep only the ground state at each stage of the calculations.

12.6 Use the renormalization group to study the one-dimensional ferromagnetic

quantum Ising model. Discuss the fixed point and the phase diagram of the

system.

12.7 Develop a program using the density matrix renormalization scheme to

study the one-dimensional ferromagnetic quantum Ising model. Start the

scheme with a four-site superblock.

12.8 Construct the density matrix renormalization group to study of the one-

dimensional anisotropic spin- 1
2

Heisenberg model

H = −J

L
∑

〈i j〉

(

λsz
i sz

j + sx
i sx

j + s
y

i s
y

j

)

,

where J > 0. Explore the phase diagram for different λ. What happens if

J < 0?
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Higuera, F. and Jiménez, J. (1989). Boltzmann approach to lattice gas simulations,

Europhysics Letters 9, 663–8.

Hirsch, J.E. (1985a). Attractive interaction and pairing in fermion systems with strong on-site

repulsion, Physical Review Letters 54, 1317–20.

Hirsch, J.E. (1985b). Two-dimensional Hubbard model: Numerical simulation study, Physical

Review B 31, 4403–19.

Hochstrasser, U.W. (1965). Orthogonal polynomials, in Handbook of Mathematical

Functions, eds. M. Abramowitz and I.A. Stegun (New York: Dover), pp. 771–802.

Hockney, R.W. and Eastwood, J.W. (1988). Computer Simulation Using Particles (London:

McGraw–Hill).

Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas, Physical Review 136,

B864–71.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems (Ann Arbor, Michigan:

University of Michigan).

Holschneider, M. (1999). Wavelets: An Analysis Tool (Oxford, UK: Clarendon).

Hoover, W.G. (1985). Canonical dynamics: Equilibrium phase-space distributions, Physical

Review A 31, 1695–7.

Hoover, W.G. (1999). Time Reversibility, Computer Simulation, and Chaos (Singapore: World

Scientific).



374 References

Hulthén, L. (1938). Uber das austauschproblem eines kristalles, Arkiv för Matematik,

Astronomi och Fysik 26(11), 1–105.

Ioffe, L.B., Feigel’man, M.V., Ioselevich, A., Ivanov, D., Troyer, M., and Blatter, G. (2002).

Topologically protected quantum bits using Josephson junction arrays, Nature 415, 503–6.

Jackson, J.D. (1999). Classical Electrodynamics (New York: Wiley).

Jacob, C. (2001). Illustrating Evolutionary Computation with Mathematica (San Francisco,

California: Morgan Kaufmann).
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Nosé, S. (1991). Constant temperature molecular dynamics methods, Progress of Theoretical

Physics Supplement 103, 1–46.

Oguchi, T. and Sasaki, T. (1991). Density-functional molecular-dynamics method, Progress of

Theoretical Physics Supplement 103, 93–117.

Onodera, Y. (1994). Numerov integration for radial wave function in cylindrical symmetry,

Computers in Physics 8, 352–4.

Ortiz, G., Harris, M., and Ballone, P. (1999). Zero temperature phases of the electron gas,

Physical Review Letters 82, 5317–20.

Osborne, M.J. (2004). An Introduction to Game Theory (New York: Oxford University Press).

Pang, T. (1995). A numerical method for quantum tunneling, Computers in Physics 9, 602–5.

Pang, T. (2005). The metallic state of the dilute two-dimensional electron gas: A resonating

pair liquid? unpublished.



References 377

Parisi, G. (1988). Statistical Field Theory (Redwood City, California: Addison–Wesley).

Park, S.K. and Miller, K.W. (1988). Random number generators: Good ones are hard to find,

Communications of the ACM 31, 1192–201.

Parrinello, M. and Rahman, A. (1980). Crystal structure and pair potentials: A

molecular-dynamics study, Physical Review Letters 45, 1196–9.

Parrinello, M. and Rahman, A. (1981). Polymorphic transition in single crystal: A new

molecular dynamics method, Journal of Applied Physics 52, 7182–90.

Peaceman, D.W. and Rachford, H.H. Jr. (1955). The numerical solution of parabolic and

elliptic difference equations, Journal of the Society for Industrial and Applied

Mathematics 3, 28–41.

Pearson, S., Pang, T., and Chen, C. (1998). Critical temperature of trapped hard-sphere Bose

gases, Physical Review A 56, 4796–800.

Percival, D.B. and Walden, A.T. (2000). Wavelet Methods for Time Series Analysis

(Cambridge, UK: Cambridge University Press).
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Hartree–Fock ansatz, 154

Hartree–Fock approximation, 153

Hartree–Fock equation, 154

Heisenberg model

classical, 299

quantum, 161, 318

helium liquids, 301, 321

Helmholtz equation

one-dimensional, 262, 283

two-dimensional, 266, 283

Helmholtz free energy, 348

Hermite polynomials, 194

Hermitian operator, 300

Hessenberg matrix, 145

high-level language, 10

Page links created automatically - disregard ones not formed from complete page numbers



Index 383

highly correlated systems, 364

Hohenberg–Kohn theory, see density

functional theory

Hollerith, Herman, 5

homogeneous functions, 348
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Metropolis algorithm, see Monte Carlo
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molecular dynamics
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definition, 227

real materials, 246–9
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simulation
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finite-temperature, 313

on lattices, 319–20

Green’s function, 303–7

on lattices, 318–19

importance sampling, 288

one-dimensional, 290–2

path-integral, 313–15

quantum variational on lattices,

316–18

quantum variational scheme, 299–303

Moore, Gordon, 6

multielectron atom, 153

multiple instruction unit, 7

multiresolution analysis, 181–2

mutation operation, 331–2

Napier, John, 5

natural boundary condition, 265

Navier–Stokes equation, 198, 257, 269,

276

Neumann boundary condition, 212

Newton interpolation, 45

Newton method

multivariable, 134

single-variable, 63–5

Newton’s equation, 8, 81, 90, 232, 239

Newton–Raphson method, see Newton

method

Nordsieck method, see Gear

predictor–corrector method

Nosé scheme, see molecular dynamics,

constant temperature

nuclear waste storage, 219–23

numerical algorithm, see computer

algorithm

Numerov algorithm, 104, 105, 107, 110

orthogonal basis functions, 165, 188,

258

orthogonal polynomials, 25

Oughtred, William, 5

pair-distribution function, 228, 255

pair-product approximation, 314

parallel computer, 7

Parrinello–Rahman scheme, see

molecular dynamics, constant

pressure

partial differential equations

discretization, 204–6

elliptic, 197

hyperbolic, 197

initial-value problem, 216–19

matrix method, 206–9

parabolic, 197

separation of variables, 201

particle-in-cell method

charge particle system, 273–5

concept, 271–3

hydrodynamics, 276–8

partition function, 228, 293, 314, 351

partition theorem, 228, 293

Pascal, Blaise, 5

path integral, 314

Pauli matrices, 357

Pauli principle, 301

Peaceman–Rachford algorithm, 219

pendulum, see chaotic dynamics, driven

pendulum

percolation, 43–4

periodic boundary condition, 231

perturbation method, 357

phase space, 227

phase-space diagram, 94

pi (π ), approximation of, 2–3, 14

Picard method, 83

Poisson equation

one-dimensional, 205, 258, 282

spherically symmetric, 223

three-dimensional, 155, 197, 214, 257,

275

two-dimensional, 223

polymers, 314

power spectrum, 173–4

predictor–corrector methods, 83–8

pressure, 231

probability function, see distribution

function

probability-like function, 304

program, see computer program

programming, 10

programming language, see computer

language

pseudo-particles, 272

pyramid algorithm, 186

pyramidal function, 266, 283

Q, 7

QR algorithm, 146

quantum Ising chain, 362

quantum liquids, 301

quantum many-body system, 157

quantum scattering, 110–15, 195–6

quantum statistics, 315

quantum tunneling, see quantum

scattering

quintic spline, 35

radial distribution function, 229

random matrix

definition, 158

Gaussian orthogonal ensemble, 159

numerical generation, 159

orthogonal ensemble, 158

symplectic ensemble, 158

unitary ensemble, 158

random-number generator

exponential distribution, 41–2

Gaussian distribution, 42–3

uniform distribution, 37–41

reduced density matrix, 364

Reduced Instruction Set Computer, 7

reduced temperature, 348

relaxation method, 209–13

renormalization

basics, 350–2

density matrix method, 364–7

Ising model, 352–5

Kondo problem, 357

Monte Carlo simulation, 355–7

quantum lattice models, 360–4

renormalization transform

Ising model, 352

quantum lattices, 361

spin systems, 351

renormalization transform matrix,

356

resistance coefficient matrix, 121

resistivity, 357

resistivity tensor, 278

Richardson extrapolation, 76

RISC, see Reduced Instruction Set

Computer

Ritz variational method, 262–6
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Ritz variational principle, 262

Romberg algorithm, 78

roots of an equation

multivariable, 133

single-variable, 62

Routh–Hurwitz test, 152–3

Runge–Kutta method

algorithms, 88–90

driven pendulum, 92

multivariable, 91

quantum scattering, 110

shooting method, 97

Rutherford formula, 76

scaling concept, 347–50

scaling function, 183–5

scaling hypothesis, 347

scaling relations, 349

scalogram, 179

Schrödinger equation

central potential, 187

eigenvalue problem, 105

imaginary-time, 304, 318

many-body, 313

multielectron atoms, 154

one-dimensional, 105

scattering problem, 110

time-dependent, 197, 224

secant method

multivariable, 134–6

single-variable, 65–6, 74, 97

secular equation, see matrix, secular

equation

selection operation, 328–9

self-diffusion coefficient, 230

separation of variables, see partial

differential equations, separation of

variables

SHAKE algorithm, 245

shooting method

concept, 96

implementation, 97–8

Simpson rule, 57, 74, 192

nonuniform spacing, 58–9

uniform spacing, 57–8

Slater determinant, 154, 301

slide rule, 5

specific heat, 249, 348

spherical harmonics, 155

spin configurations, 353

spin coupling strength, 352

spin operator, 357

spin-flip scattering, 357

spline approximation, 30–7

stable fixed point, 351

statistical average, 292

steepest-decent method, 68–70

stiffness matrix, 264

stress tensor, 257

structure factor

dynamical, 247

static, 229, 247

Sturm–Liouville equation, 265, 283

Sturm–Liouville problem, 101, 105

susceptibility, 348

Swendsen scheme, 356

Swendsen–Wang algorithm, 298

Taylor expansion

multivariable, 49

single-variable, 49, 88, 239, 353

teraflop, 7

teraflop computer, 7

thermal conductivity, 257

thermal energy, 277

thermal expansion coefficient, 249

thermodynamic potentials, 348

Thomson problem, 332–5

three-point formula

first-order derivative, 50, 74, 204, 205,

232

nonuniform spacing, 53–4

second-order derivative, 51, 204,

232

tight-binding model, 317

Torres y Quevedo, Leonardo, 5

trapezoid rule, 57, 192, 205, 286

tree diagram, 344

triangular lattice, 352

truncated potential, 231

Turing machine, 9

Turing, Alan, 9

two-body system, 70

two-point formula, 50, 276

unit tensor, 257

universal computer, 9

Unix operating system, 13

unstable fixed point, 351

up-and-down method, 21

van Hove distribution, 247

variational parameters, 300

variational principle, 300

vector processor, 6

Verlet algorithm, 232–3, 274, 277

viscosity, 257, 278

voltage array, 121

wave equation, 95, 197, 203, 224

wavelet

D4, 184

Haar, 178

Morlet, 193

wavelet transform

background, 175–7

continuous, 177–80

discrete, 180–7

higher dimensions, 187

weak form, 263

weighted integral, 259

Weiqi, 346

Wheatstone bridge, 120

White scheme, 364

Widom scaling, 349

Wigner semicircle, 160

Wilson solution, 357–60

window function

Gaussian, 176

triangular, 176

Wolff algorithm, 298

work–energy theorem, 257

Young’s modulus, 207

Yukawa potential, 74

Zu, Chongzhi, 2

Zu, Gengzhi, 2
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