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1.1.6
(a) The cost function is convex so the necessary and sufficient condition for optimality of
T 1 . i}
S T,
oz =l
which is the same as the condition for the equilibrium of forces in the Varignon frame me-
chanical model.
(b) The solution is not always unique. Consider the case where there are two weights and
w; = wy. Then any position x where = is between 1; and y, minimizes the sum of weighted
distances.
(c) Let H be the height of the board, measured from the reference level, and let I; be the
length of the string from the knot to the ¢th weight. Then, when the position of the knot is
x, the height of the ith weight is H — (I; — ||z — y;||), and the potential energy of the system is

E(x):ZW(H (li = ||z —wil])) sz —li)‘i‘zwin—yiH-
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Therefore, minimizing F(z) over x is equivalent to minimizing > /", w;||z — y;||, which the
problem of part (a).

1.2.2
We have
fl@) = 2|0 = (a2 4 -+ 22)'*3,
SO ﬁ
Vi@) =1+ )@+ ) (e wa) 2= 2+ B)lle]w.

To invoke Prop. 1.2.3, we need to check whether the Lipschitz condition is satisfied; i.e
whether for all x,y € R", there is some constant L > 0 such that

1/ () = FW)Il < Lllz =yl

or
2+ B)IHlzl1’x = Iyl || < Lllz = yll.

By letting y = —z, this yields (2 + 8)||z]|® < L, so clearly the Lipschitz condition is not
satisfied.



The behavior of the steepest descent method with constant stepsize s is described by the
equation
e = ah — sV (") = 2" (1 = s(2 4 5)]|2"])°). (1)
It is easy to show by induction that if ||z!|| < ||z°||, then [|z*T!|| < ||«*|| for all k, and that
if ||zt > ||2°||, then ||z**t|| > ||z*|| for all k. Thus in order for the method to converge, we
must have
2| = [[«°(1 = s(2+ B)[2°17)|| < I°]I,
or, equivalently,
1= s(2+8)[«")°] < 1, (2)
or equivalently
s(2+ B)||=°[” < 2. (3)
For the values of s, 3, and 20 satisfying Eq. (3), the sequence {||z*||} is monotonically
decreasing. We will show that for the same values, we have ¥ — 0. Indeed, let ¢ be the limit
of {||z*||}. If ¢ = 0, we have ¥ — 0 and we are done. If ¢ > 0, then
k+1
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and from Egs. (2) and (3), and the fact ¢ < ||2°||, we have
11— s(248)f < 1.

Combining the above relation and Eq. (1), we obtain
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11— s(248)f < 1,
a contradiction. Hence, we must have ¢ = 0.

1.2.3
Consider the Lipschitz condition when y is taken to be —ux:

IVf(x) = VIl < Lz -y

or

12V f ()] < Lf[2x]]

or

3% < 2L|ja]].
This is not true, however, for ||z||'/? < % Thus the Lipschitz condition does not hold for
all x and y. In fact, it does not hold on any set containing the optimal point x* = 0 in its
interior.
Now consider the behavior of the algorithm if started at a point 2° # 0, for any value of

the constant stepsize a. We have at every iteration
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If, for some k, we have ||z*|| = 9a%/4, then zF+t1 = 0, and the method will have converged to
the minimizing point z* = 0 in a finite number of iterations. Now if this does not occur, note
that
> ||zF|| if 0 < ||2%|| < 9a%/16,
|2 { < k|| if ||2*]] > 9a2/16,
= ||z*|| if ||z*|| = 9a2/16.

Thus, the values of ||z¥|| will oscillate around 9a2/16 unless ||z¥|| = 0 or ||z*|| = 9a?/16
for some k. In the former case, {z*} never converges to the minimizing value z* = 0. If
||z*|| = 9a?/16 for some ky, then xFoT! = —z*0 and x* will oscillate between those two points
for all k > ko. Finally, if |[2*|| = 0 for some k then {z*} converges in a finite number of
iterations.

More formally, let’s suppose that {z*} converges to 2* = 0 in an infinite number of itera-
tions. Then for all € > 0, there exists k such that ||2%|| < €,V k > k. Now suppose € = %
and k is such that ||z*|| < €,V k > k. (Note that ||z*| > 0 since we assume that {z*} does not
converge finitely to zero.) Then from above, we must have ||z*|| > ||z*||,V k > k. But then,
for € = ||2*||, there cannot exist a k such that [|z¥|| < ||:Ek||,V k > k, yielding a contradiction.

Thus {z*} cannot converge to z* = 0 in an infinite number of iterations.

1.2.6
(a) We have

IVf(2) = VI = 10 —y)I* = (z — 1) Q*(z — y) < Anaa(@*)l2 — yl*.

Since @ is positive definite and symmetric, Apqee(@Q?), the maximum eigenvalue of Q?, equals
the square of the maximum eigenvalue of (), proving the desired relation.
(b) The iteration z** = 2% — sD f(2*) is written as

M —a* = (I — sDQ) (2" — 2%).
Define y* = DV2gk, y* = DY22*, and substitute in the above equation. We have
Yy =yt = (I = sD'PQD'?)(y* — 7).

This iteration converges if and only if all the eigenvalues of (I —sDY2@QD'?) are in the interval
(—1,1). (Note that these eigenvalues are real because D'/2Q D'/? is symmetric. Note also that
D@ need not be symmetric, which is the reason we introduced the y-coordinate system.)
Thus the iteration of y* (and equivalently the iteration of z*) converges if and only if the
eigenvalues of sD'2QD'/? are in the interval (0,2). Equivalently s must lie between 0 and

2/ Amaz(DY2QD/?).

1.2.15
Since
f(z) = 22%sign(z) + =,

the steepest descent iteration has the following form

v k+ 1



(a) Let = 1. If 2% > k + 1, then from Eq. (1) we have
22 4 1) _ab(k — 22F)
k+17  k+1
If 2 < —(k + 1), then from Eq. (1) we similarly obtain z*** > k + 2. Hence, for all k,

oF = R (1 < —(k+2).

2% >k + 1 = 2" > k4 2.

Since |2°| > 1, recursively we obtain |z¥] > k + 1 for all k.
(b) Define y* = |2*| and let
(29" + 1) < 2.

Then from Eq. (1) we have

k
k+1 _ k (29" +1)
=yl — ——=|. 2
y vl e (2)
Based on this relation and induction, we show that for all k
Y(2y" +1) < 2. (3)

Note that the equation (3) holds for & = 0 by the choice of y°. Now, assume that Eq. (3)
holds for some k& > 0 and let us prove that it holds for k£ + 1. By using induction hypothesis,
we obtain 24t +1)
(29" +1 2
l-——>1-—-2>0 4
k+1 k+1— 7 4)

which in view of Eq. (2) implies that

2uF +1)
k1l kl_V(y k
y syl )
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so that
Y2y 4+ 1) < (20 +1) < 2,

where we again use induction hypothesis. Hence Eq. (3) holds for all k.
Next we prove that y* — 0. Let ¢ be the limit of the monotonically decreasing sequence
{y*}. If ¢ = 0, we are done, so assume that ¢ > 0. Let k be sufficiently large, so that

v(2yF +1)
E+1 7

Since y* > ¢, we have from Eq. (2), and all k > k,

k+1 k. " (2y* + 1) k. ye(2c+ 1)

0<1-— YV k> k.

vy k+ 1 4 k+1
Adding over all k& > k, we obtain
mtl P s c(2¢+1) _
<y’ — E — Vm > k.
Y Yy k:k Er1 m =

Since 3227 ¢ k%&-l = 00, we obtain a contradiction. Hence ¢ = 0, y* — 0, and 2% — 0.
(c) Proposition 1.2.4 is not applicable because f does not satisfy the Lipschitz condition.



