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1.1.6
(a) The cost function is convex so the necessary and sufficient condition for optimality of

x∗ is
m∑

i=1

wi
x∗ − yi

‖x∗ − yi‖ = 0,

which is the same as the condition for the equilibrium of forces in the Varignon frame me-
chanical model.

(b) The solution is not always unique. Consider the case where there are two weights and
w1 = w2. Then any position x where x is between y1 and y2 minimizes the sum of weighted
distances.

(c) Let H be the height of the board, measured from the reference level, and let li be the
length of the string from the knot to the ith weight. Then, when the position of the knot is
x, the height of the ith weight is H − (li−‖x− yi‖), and the potential energy of the system is

E(x) =
m∑

i=1

wi(H − (li − ‖x− yi‖)) =
m∑

i=1

wi(H − li) +
m∑

i=1

wi‖x− yi‖.

Therefore, minimizing E(x) over x is equivalent to minimizing
∑m

i=1 wi‖x − yi‖, which the
problem of part (a).

1.2.2
We have

f(x) = ‖x‖2+β = (x2
1 + · · ·+ x2

n)1+β
2 ,

so

∇f(x) = (1 +
β

2
)(x2

1 + . . . + x2
n)

β
2 (x1, . . . , xn)′ · 2 = (2 + β)‖x‖βx.

To invoke Prop. 1.2.3, we need to check whether the Lipschitz condition is satisfied; i.e.,
whether for all x, y ∈ <n, there is some constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖
or

(2 + β)‖ ‖x‖βx− ‖y‖βy ‖ ≤ L‖x− y‖.
By letting y = −x, this yields (2 + β)‖x‖β ≤ L, so clearly the Lipschitz condition is not
satisfied.
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The behavior of the steepest descent method with constant stepsize s is described by the
equation

xk+1 = xk − s∇f(xk) = xk(1− s(2 + β)‖xk‖β). (1)

It is easy to show by induction that if ‖x1‖ < ‖x0‖, then ‖xk+1‖ < ‖xk‖ for all k, and that
if ‖x1‖ ≥ ‖x0‖, then ‖xk+1‖ ≥ ‖xk‖ for all k. Thus in order for the method to converge, we
must have

‖x1‖ =
∥∥∥x0(1− s(2 + β)‖x0‖β)

∥∥∥ < ‖x0‖,
or, equivalently,

|1− s(2 + β)‖x0‖β| < 1, (2)

or equivalently
s(2 + β)‖x0‖β < 2. (3)

For the values of s, β, and x0 satisfying Eq. (3), the sequence {‖xk‖} is monotonically
decreasing. We will show that for the same values, we have xk → 0. Indeed, let c be the limit
of {‖xk‖}. If c = 0, we have xk → 0 and we are done. If c > 0, then

lim
k→∞

‖xk+1‖
‖xk‖ = 1,

and from Eqs. (2) and (3), and the fact c ≤ ‖x0‖, we have

|1− s(2 + β)cβ| < 1.

Combining the above relation and Eq. (1), we obtain

lim
k→∞

‖xk+1‖
‖xk‖ = |1− s(2 + β)cβ| < 1,

a contradiction. Hence, we must have c = 0.

1.2.3
Consider the Lipschitz condition when y is taken to be −x:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
or

‖2∇f(x)‖ ≤ L‖2x‖
or

3‖x‖ 1
2 ≤ 2L‖x‖.

This is not true, however, for ‖x‖1/2 < 3
2L

. Thus the Lipschitz condition does not hold for
all x and y. In fact, it does not hold on any set containing the optimal point x∗ = 0 in its
interior.

Now consider the behavior of the algorithm if started at a point x0 6= 0, for any value of
the constant stepsize α. We have at every iteration

xk+1 = xk

(
1− 3α

2‖xk‖1/2

)
.
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If, for some k, we have ||xk|| = 9α2/4, then xk+1 = 0, and the method will have converged to
the minimizing point x∗ = 0 in a finite number of iterations. Now if this does not occur, note
that

‖xk+1‖




> ‖xk‖ if 0 < ‖xk‖ < 9α2/16,
< ‖xk‖ if ‖xk‖ > 9α2/16,
= ‖xk‖ if ‖xk‖ = 9α2/16.

Thus, the values of ||xk|| will oscillate around 9α2/16 unless ||xk|| = 0 or ||xk|| = 9α2/16
for some k. In the former case, {xk} never converges to the minimizing value x∗ = 0. If
||xk0|| = 9α2/16 for some k0, then xk0+1 = −xk0 and xk will oscillate between those two points
for all k ≥ k0. Finally, if ||xk|| = 0 for some k then {xk} converges in a finite number of
iterations.

More formally, let’s suppose that {xk} converges to x∗ = 0 in an infinite number of itera-
tions. Then for all ε > 0, there exists k̄ such that ‖xk‖ < ε, ∀ k > k̄. Now suppose ε = 9α2

16

and k̄ is such that ‖xk‖ < ε, ∀ k > k̄. (Note that ‖xk‖ > 0 since we assume that {xk} does not
converge finitely to zero.) Then from above, we must have ‖xk‖ ≥ ‖xk̄‖,∀ k > k̄. But then,

for ε = ‖xk̄‖, there cannot exist a k̂ such that ‖xk‖ < ‖xk̂‖,∀ k > k̂, yielding a contradiction.
Thus {xk} cannot converge to x∗ = 0 in an infinite number of iterations.

1.2.6
(a) We have

‖∇f(x)−∇f(y)‖2 = ‖Q(x− y)‖2 = (x− y)′Q2(x− y) ≤ λmax(Q
2)‖x− y‖2.

Since Q is positive definite and symmetric, λmax(Q
2), the maximum eigenvalue of Q2, equals

the square of the maximum eigenvalue of Q, proving the desired relation.
(b) The iteration xk+1 = xk − sDf(xk) is written as

xk+1 − x∗ = (I − sDQ)(xk − x∗).

Define yk = D1/2xk, y∗ = D1/2x∗, and substitute in the above equation. We have

yk+1 − y∗ = (I − sD1/2QD1/2)(yk − y∗).

This iteration converges if and only if all the eigenvalues of (I−sD1/2QD1/2) are in the interval
(−1, 1). (Note that these eigenvalues are real because D1/2QD1/2 is symmetric. Note also that
DQ need not be symmetric, which is the reason we introduced the y-coordinate system.)

Thus the iteration of yk (and equivalently the iteration of xk) converges if and only if the
eigenvalues of sD1/2QD1/2 are in the interval (0, 2). Equivalently s must lie between 0 and
2/λmax(D

1/2QD1/2).

1.2.15
Since

f(x) = 2x2sign(x) + x,

the steepest descent iteration has the following form

xk+1 = xk(1− (2|xk|+ 1)

k + 1
). (1)
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(a) Let = 1. If xk ≥ k + 1, then from Eq. (1) we have

xk+1 = xk(1− 2xk + 1

k + 1
) =

xk(k − 2xk)

k + 1
≤ −(k + 2).

If xk ≤ −(k + 1), then from Eq. (1) we similarly obtain xk+1 ≥ k + 2. Hence, for all k,

|xk| ≥ k + 1 ⇒ |xk+1| ≥ k + 2.

Since |x0| ≥ 1, recursively we obtain |xk| ≥ k + 1 for all k.
(b) Define yk = |xk| and let

γ(2y0 + 1) < 2.

Then from Eq. (1) we have

yk+1 = yk|1− (2yk + 1)

k + 1
|. (2)

Based on this relation and induction, we show that for all k

γ(2yk + 1) < 2. (3)

Note that the equation (3) holds for k = 0 by the choice of y0. Now, assume that Eq. (3)
holds for some k > 0 and let us prove that it holds for k + 1. By using induction hypothesis,
we obtain

1− γ(2yk + 1)

k + 1
> 1− 2

k + 1
≥ 0, (4)

which in view of Eq. (2) implies that

yk+1 ≤ yk(1− γ(2yk + 1)

k + 1
) < yk,

so that
γ(2yk+1 + 1) < γ(2yk + 1) < 2,

where we again use induction hypothesis. Hence Eq. (3) holds for all k.
Next we prove that yk → 0. Let c be the limit of the monotonically decreasing sequence

{yk}. If c = 0, we are done, so assume that c > 0. Let k̄ be sufficiently large, so that

0 < 1− γ(2yk + 1)

k + 1
, ∀ k ≥ k̄.

Since yk > c, we have from Eq. (2), and all k ≥ k̄,

yk+1 = yk − γyk(2yk + 1)

k + 1
< yk − γc(2c + 1)

k + 1
.

Adding over all k ≥ k̄, we obtain

ym+1 < yk̄ −
m∑

k=k̄

γc(2c + 1)

k + 1
, ∀ m ≥ k̄.

Since
∑∞

k=k̄
1

k+1
= ∞, we obtain a contradiction. Hence c = 0, yk → 0, and xk → 0.

(c) Proposition 1.2.4 is not applicable because f does not satisfy the Lipschitz condition.
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