PREFACE

In 1971 we began teaching a graduate course at MIT, “Analysis of Urban
Service Systems.” The course was stimulated in part by the urban turmoil
of the late 1960s and early 1970s, which had turned many students toward
problems of social and public concern. It was also motivated by our per-
ception of a growing gap between courses that were primarily methodological
in nature and those that were “applications-oriented,” that is, dealing with
real-world problems. Students appeared to be having a difficult time linking
the theoretical techniques to actual urban settings.

We thus attempted to design a course that provided students with both a
set of relevant analytical skills and an awareness of and sensitivity to the
people-related and institutional issues that arise in practice. We felt that both
purposes could best be served by focusing on logistically oriented deployment
problems of certain urban service systems:

« Door-to-door pickup and delivery services (refuse collection, mail
delivery)

« Emergency services (police, fire, emergency medical, emergency
repair)

- Transportation services (buses, subways, jitneys, taxicabs, paratransit
services)

« Certain street maintenance services (snowplowing, street sweeping, and
cleaning)

« Various services provided at fixed locations (libraries, little city halls,
outpatient clinics, recreation centers)
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- Certain home visitation services (social worker services, meals for the
elderly)

Many of these services face complicated problems related to spatial and
temporal deployment of limited resources. It is this class of problems that we
selected for the course.

The mathematical methods and models required to address urban deploy-
ment problems are often new and exciting. Even standard methods may
require special tailoring when applied in an urban context. Many models
require simultancous consideration of both temporal and spatial relationships.
Geometrical probability ideas are necessary to model the spatial relationships
between service demands and service providers. Queueing theory is required
to incorporate congestion caused by uncertainties in time of occurrence of
service demands and length and type of service required. Reflecting the fact
that many queues in a city are spatially distributed, the queueing models must
often be situated in a geometrical context—with spatially distributed cus-
tomers and/or servers. Network or graph theory is needed in the analysis of
transportation and routing problems over the streets of a city. Simulation, fash-
ioned to an urban context, may be necessary when analytical techniques fail.

To help develop knowledge of the process of implementing quantitative
methods in practice, we have included a chapter on implementation. We have
found that this material is most appreciated by students within the context of
term projects, in which small groups of students work with a local urban service
agency to help formulate, and possibly solve, an actual deployment problem.

The book is written for advanced undergraduates or beginning graduate
students who have had a solid one-semester course in applied probability.
Based on our 10-year teaching experience with earlier versions of this material,
we expect that the book will be of interest to a diverse set of students, includ-
ing those in engineering, operations research and management science, public
policy, urban planning, and public administration.

A primary purpose of the book is to develop skills in formulating mathe-
matical models from word statements of physical situations. To this purpose,
we have included numerous examples and suggested exercises throughout
the chapters, and we have ended each methodology chapter with an average
of 20 problems ranging from elementary to difficult. Most of the problems
are original to this text. Although we do not recommend that any student
attempt all the problems, it is essential that for each chapter covered a
representative sample be attempted. (Instructors may obtain written solu-
tions for approximately half the problems from the authors.)

Chapter 2 reviews the probability prerequisites necessary for later chap-
ters. The chapter covers sample spaces, events, random variables, condi-
tional probability, expectation, well-known probability mass and density
functions, and worked examples. Although much of this may be review, it is
strongly recommended that the student read and study the chapter to develop
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a sense of our physically oriented, model-based point of view. The “pedestrian
crossing” example at the end of the chapter provides a good check on one's
understanding of the concepts of the chapter.

in Chapter 3 we apply probabilistic reasoning to develop the geometrically
oriented methods and results that are essential to our understanding of
spatially distributed urban service systems. In the first part of the chapter we
focus on functions of random variables, meaning that we must derive the
(joint) probability distribution of one or more random variables that are
expressed as functions of one or more other random variables whose (joint)
probability distribution is known. Most of the examples worked out in the
chapter pertain directly to urban service systems and may be of interest in
their own right. Occasionally, when the standard techniques of probabilistic
analysis are cumbersome in a geometric setting, there are available a number
of special geometrically oriented tools, methods, and (sometimes) tricks that
may facilitate the analysis. Geometrical probability is the name given to this
collection. Much work in this area was done in the latter part of the nine-
teenth century, in such diverse areas as virology, astronomy, crystallography,
and forestry, all far from the urban scene. We have selected a representative
sample of geometrical probability methods in the second part of the chapter
to illustrate the kind of thinking that has been applied to spatially oriented
problems and to develop results useful later in the text. The third part of the
chapter applies the methods of the first two parts to develop some useful
“rules of thumb” that interrelate travel distances, travel times, and area geo-
metries. Several of these relationships were tested and reinforced empirically
in the early 1970s by researchers at the New York City Rand Institute. The
chapter concludes with analyses of various spatially distributed stochastic
processes, particularly the Poisson process, which is useful in modeling the
spatial distributions of demands for many urban services.

Once the methods of geometrical probabilistic analysis are firmly ground-
ed, we proceed in Chapter 4 to a rather extensive treatment of queueing
theory as it had developed in operations research up through the 1960s and
carly 1970s. We cover in detail Markovian “birth and death” queues, which
assume Poisson arriving customers and service times that are negative expo-
nential. We illustrate with this simple structure how to model the complexities
of multiple servers, balking, reneging, finite capacity, and so on, all presented
within the context of the telephone queue associated with an urban emergency
service number such as “911.” We also develop key results for the single-
server queue, with general service times and Poisson arrivals, with applica-
tions to an ambulance deployment problem. Also covered are priority qucues,
simple bounds and approximations, and a brief introduction to queucing
networks. While motivated from an urban perspective, we feel that the chapter
is a useful, self-contained, transform-free introduction to quecues.

In Chapter 5 we merge the ideas of Chapters 3 and 4 to discuss spatially
distributed queues. Since there are far too many spatially distributed qucues
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in a city to cover carefully within one chapter, we focus most of our attention
on one representative class—that which models accurately urban emergency
services. We develop analytical results for single-server and two-server
models, but we must resort to a computer-implemented model for three or
more servers. This model, called the “hypercube model” because of its state
space, illustrates how a particular problem structure can be exploited for
efficient computer implementation and solution. Numerous potential (and
actual) applications of the hypercube model are described. When the number
of spatially distributed servers becomes large, one can use a “hypercube
approximation procedure,” which reduces the number of required simul-
taneous equations for N servers from 2V to N. This procedure is derived in
the chapter and illustrated with an N = 3 example. The chapter concludes
with some useful results for many-server spatially distributed queues.

Chapter 6 changes focus initially from probabilistic to deterministic analy-
sis, dealing with deployment problems that occur on networks. A network is
a set of nodes (e.g., street intersections, major neighborhoods, towns) con-
nected by a set of links (e.g., street segments, major arteries, highways).
Deployment problems on a network can be considered to be routing prob-
lems, or location problems, or network design problems. Many of these
problems are of interest in themselves, while others provide inputs to other
models. An important routing problem is the determination of a minimal-
travel-time path from any node to any other node. This “minimal-travel-
time-path” problem is of independent interest, and its solution can be used to
provide an input travel time matrix for the hypercube model. Other routing
problems include “node-covering” problems such as the famous traveling
salesman problem, and “link-covering” problems such as the Chinese post-
man problem. Location problems deal with the siting of a finite number of
facilities on a network in order to optimize some objective function. Examples
include the now well-known N-median and N-center problems. A network
design problem requires optimal structure of nodes and links in order to best
achieve some objective; an example is the minimal-spanning-tree problem.
All the examples cited are covered in Chapter 6. Moreover, the chapter
merges, in a new and (we think) useful way, traditional network problems
with new “vehicle-routing” problems. It also refers briefly to active research
in probabilistic networks. We feel that it is a self-contained treatment of net-
work theory, as it applies to deployment problems, and should be of interest
independently of the urban context within which it is presented.

Chapter 7 discusses what one should do when and if analytical techniques
fail—simulate. The chapter is a self-contained introduction to Monte Carlo
simulation, with special emphasis given to geometrical considerations that
arise when simulating spatially distributed systems. Included, for instance,
are methods for generating random sample points from within a polygon of

arbitrary shape and for determining whether various geometrical figures
overlap.
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To provide a context for the student projects that we mentioned earlier,
Chapter 8 concludes the book with a discussion of implementation. We cannot
overemphasize the importance we place on this subject. The techniques of
this book are exciting and often new; they can provide many insights to
urban decision makers. However, before eagerly launching out into the real
world armed with these tools, the student must have an appreciation for the
broader setting of any study that would utilize the methods of this book in an
operating urban setting. The chapter provides thumbnail sketches of some of
our own experiences, as well as those of our students. We then attempt to
build from the cases to discuss implementation issues that are related both to
models and to people and their institutions.

The material covered in Chapters 1-8 could easily require a two-semester
course, especially if augmented by a substantial real-world project. In design-
ing a one-semester course, the instructor should keep in mind the following
precedent relationships among chapters:
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In our MIT one-semester offering of the subject “Analysis of Urban
Systems” (now renamed “Urban Operations Research™), we have found it
possible to cover the key ideas in each of the cight chapters. In any one-
semester offering, however, advanced material in Chapters 3-6 will have to be
sclectively chosen, with some of the material left for student reading (e.g., the
hypercube approximation procedure in Chapter 5, queueing bounds and
approximations and priority queues in Chapter 4, Crofton’s method in Chap-
ter 3, the p-center problem in Chapter 6). By selecting Chapter 2, functions
of random variables in Chapter 3, and Chapters 4, 6, and 7, the instructor
can cover all the introductory methods of operations research except linear
programming.

Many individuals and organizations have contributed to the development
of this book. We are grateful to the National Science Foundation which
under Grant APR 73-07778 A02 (formerly GI1-38004), to MIT’s Operations
Research Center (ORC) supported first drafts of Chapters 2-7. The Law
Enforcement Assistance Administration under Grant 78 NI-AX-0007, to the
MIT ORC, supported the development of Chapter 8. However, responsibility
for the material contained in these chapters lies with us. It does not neces-
sarily reflect the official views of either the National Science Foundation or
the Law Enforcement Assistance Administration. We thank the following
academic departments at MIT: Electrical Engineering and Computer Sci-
ence, Urban Studies and Planning, Aeronautics and Astronautics, and the
Sloan School of Management; each allowed us to develop this material in a
course jointly registered among all four departments. The first author also
thanks the Department of Industrial Engineering and Operations Research
at the University of California at Berkeley for allowing him to present one
version of this course, augmented with student projects, during the spring
quarter of 1976. Our many students at MIT and at Berkeley were very helpful
with their feedback, and we thank them all. Special gratitude is owed to
former teaching assistants Pitu Mirchandani, Keith Stevenson, and Ghazala
Sadiq. We appreciate the useful comments on certain portions of this book
from Arnold Barnett, Ed Beltrami, Saul Gass, and Jan Chaiken. We are also
most pleased to acknowledge Alan Shuchat and Riynaldo Macedo whose
meticulous review and numerous suggestions led to significant changes and
improvements. For personal support during the time of writing of this book,
the authors owe a great deal to Eleni Mahaira Odoni, Miyo Tatsumi, and M.
Elizabeth Murray. Competent and timely typing assistance was provided by
Debbie Brooks and Mary Donovan. Book production at MIT was aided
greatly by Dorothy Green.

Finally, we would like to express our deep gratitude to the MIT Opera-
tions Research Center for providing such a hospitable home for the develop-
ment of the contents of this book.

Richard C. Larson

Amedeo R. Odoni
Cambridge, Massachusetts



