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CHAPTER 8: SOLUTION MANUAL

8.1

This exercise shows that nondifferentiabilities of the dual function often tend to
arise at the most interesting points and thus cannot be ignored. Consider problem
(P) and assume that for all µ ≥ 0, the infimum of the Lagrangian L(x, µ) over X
is attained by at least one xµ ∈ X. Show that if there is a duality gap, then the
dual function q(µ) = infx∈X L(x, µ) is nondifferentiable at every dual optimal
solution. Hint : If q is differentiable at a dual optimal solution µ∗, by the theory
of Section 4.2, we must have ∂q(µ∗)/∂µj ≤ 0 and µ∗j∂q(µ

∗)/∂µj = 0 for all j.
Use this to show that µ∗ together with any vector xµ∗ that minimizes L(x, µ∗)
over X satisfy the conditions for an optimal solution-geometric multiplier pair.

Solution: To obtain a contradiction, assume that q is differentiable at some dual
optimal solution µ∗ ∈M , where M = {µ ∈ <r | µ ≥ 0}. Then by the optimality
theory of Section 4.7 (cf. Prop. 4.7.2, concave function q), we have

∇q(µ∗)(µ∗ − µ) ≥ 0, ∀ µ ≥ 0.

If µ∗j = 0, then by letting µ = µ∗+γej for a scalar γ ≥ 0, and the vector ej whose
jth component is 1 and the other components are 0, from the preceding relation
we obtain ∂q(µ∗)/∂µj ≤ 0. Similarly, if µ∗j > 0, then by letting µ = µ∗ + γej

for a sufficiently small scalar γ (small enough so that µ∗ + γej ∈ M), from the
preceding relation we obtain ∂q(µ∗)/∂µj = 0. Hence

∂q(µ∗)/∂µj ≤ 0, ∀ j = 1, . . . , r,

µ∗j∂q(µ
∗)/∂µj = 0, ∀ j = 1, . . . , r.

Since q is differentiable at µ∗, we have that

∇q(µ∗) = g(x∗),

for some vector x∗ ∈ X such that q(µ∗) = L(x∗, µ∗). This and the preceding
two relations imply that x∗ and µ∗ satisfy the necessary and sufficient optimality
conditions for an optimal solution-geometric multiplier pair (cf. Prop. 6.2.5). It
follows that there is no duality gap, a contradiction.
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8.2 (Sharpness of the Error Tolerance Estimate)

Consider the unconstrained optimization of the two-dimensional function

f(x1, x2) =

M∑
i=1

C0

(
|x1 + 1|+ 2|x1|+ |x1 − 1|+ |x2 + 1|+ 2|x2|+ |x2 − 1|

)
,

where C0 is a positive constant, by using the incremental subgradient method
with a constant stepsize α. Show that there exists a component processing order
such that when the method starts a cycle at the point x = (x1, x2), where x1 =
x2 = αMC0 with αMC0 ≤ 1, it returns to x at the end of the cycle. Use this
example to show that starting from x, we have

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαC2

2
, ∀ i = 1, . . . ,m,

for some constant β (independent of C0 and M), where C = mC0 and m = 8M
[cf. Eq. (8.13)].

Solution: Consider the incremental subgradient method with the stepsize α and
the starting point x = (αMC0, αMC0), and the following component processing
order:

M components of the form |x1| [endpoint is (0, αMC0)],

M components of the form |x1 + 1| [endpoint is (−αMC0, αMC0)],

M components of the form |x2| [endpoint is (−αMC0, 0)],

M components of the form |x2 + 1| [endpoint is (−αMC0,−αMC0)],

M components of the form |x1| [endpoint is (0,−αMC0)],

M components of the form |x1 − 1| [endpoint is (αMC0,−αMC0)],

M components of the form |x2| [endpoint is (αMC0, 0)], and

M components of the form |x2 − 1| [endpoint is (αMC0, αMC0)].

With this processing order, the method returns to x at the end of a cycle.
Furthermore, the smallest function value within the cycle is attained at points
(±αMC0, 0) and (0,±αMC0), and is equal to 4MC0 + 2αM2C2

0 . The optimal
function value is f∗ = 4MC0, so that

lim inf
k→∞

f(ψi,k) ≥ f∗ + 2αM2C2
0 .

Since m = 8M and mC0 = C, we have M2C2
0 = C2/64, implying that

2αM2C2
0 =

1

16

αC2

2
,

and therefore

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαC2

2
,

with β = 1/16.
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8.3 (A Variation of the Subgradient Method [CFM75])

Consider the dual problem and the following variation of the subgradient method

µk+1 = PX(µk + skdk),

where

dk =

{
gk if k = 0,
gk + βkdk−1 if k > 0,

gk is a subgradient of q at µk, and sk and βk are scalars satisfying

0 < sk ≤ q(µ∗)− q(µk)

‖dk‖2
,

βk =

{
−γ g

k′dk−1

‖dk−1‖2
if gk′dk−1 < 0,

0 otherwise,

with γ ∈ [0, 2], and µ∗ is an optimal dual solution. Assuming µk 6= µ∗, show that

‖µ∗ − µk+1‖ < ‖µ∗ − µk‖.

Furthermore,
(µ∗ − µk)′dk

‖dk‖ ≥ (µ∗ − µk)′gk

‖gk‖ ,

i.e., the angle between dk and µ∗−µk is no larger than the angle between gk and
µ∗ − µk.

Solution: At first, by induction, we show that

(µ∗ − µk)′dk ≥ (µ∗ − µk)′gk. (8.0)

Since d0 = g0, the preceding relation obviously holds for k = 0. Assume now
that this relation holds for k − 1. By using the definition of dk,

dk = gk + βkdk−1,

we obtain
(µ∗ − µk)′dk = (µ∗ − µk)′gk + βk(µ∗ − µk)′dk−1. (8.1)

We further have

(µ∗ − µk)′dk−1 = (µ∗ − µk−1)′dk−1 + (µk−1 − µk)′dk−1

≥ (µ∗ − µk−1)′dk−1 − ‖µk−1 − µk‖‖dk−1‖.

By the induction hypothesis, we have that

(µ∗ − µk−1)′dk−1 ≥ (µ∗ − µk−1)′gk−1,
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while by the subgradient inequality, we have that

(µ∗ − µk−1)′gk−1 ≥ q(µ∗)− q(µk−1).

Combining the preceding three relations, we obtain

(µ∗ − µk)′dk−1 ≥ q(µ∗)− q(µk−1)− ‖µk−1 − µk‖‖dk−1‖.

Since
‖µk−1 − µk‖ ≤ sk−1‖dk−1‖,

it follows that

(µ∗ − µk)′dk−1 ≥ q(µ∗)− q(µk−1)− sk−1‖dk−1‖2.

Finally, because 0 < sk−1 ≤
(
q(µ∗)− q(µk−1)

)
/‖dk−1‖2, we see that

(µ∗ − µk)′dk−1 ≥ 0. (8.2)

Since βk ≥ 0, the preceding relation and equation (8.1) imply that

(µ∗ − µk)′dk ≥ (µ∗ − µk)′gk.

Assuming µk 6= µ∗, we next show that

‖µ∗ − µk+1‖ < ‖µ∗ − µk‖, ∀ k.

Similar to the proof of Prop. 8.2.1, it can be seen that this relation holds for k = 0.
For k > 0, by using the nonexpansive property of the projection operation, we
obtain

‖µ∗ − µk+1‖2 ≤ ‖µ∗ − µk − skdk‖2

= ‖µ∗ − µk‖2 − 2sk(µ∗ − µk)′dk + (sk)2‖dk‖2.

By using equation (8.1) and the subgradient inequality,

(µ∗ − µk)′gk ≥ q(µ∗)− q(µk),

we further obtain

‖µ∗ − µk+1‖2 ≤ ‖µk − µ∗‖2 − 2sk(µ∗ − µk)′gk + (sk)2‖dk‖2

≤ ‖µk − µ∗‖2 − 2sk
(
q(µ∗)− q(µk)

)
+ (sk)2‖dk‖2.

Since 0 < sk ≤
(
q(µ∗)− q(µk)

)
/‖dk‖2, it follows that

−2sk
(
q(µ∗)− q(µk)

)
+ (sk)2‖dk‖2 ≤ −sk

(
q(µ∗)− q(µk)

)
< 0,

implying that
‖µ∗ − µk+1‖2 < ‖µk − µ∗‖2.
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We next prove that

(µ∗ − µk)′dk

‖dk‖ ≥ (µ∗ − µk)′gk

‖gk‖ .

It suffices to show that
‖dk‖ ≤ ‖gk‖,

since this inequality and Eq. (8.0) imply the desired relation. If gk′dk−1 ≥ 0,
then by the definition of dk and βk, we have that dk = gk, and we are done, so

assume that gk′dk−1 < 0. We then have

‖dk‖2 = ‖gk‖2 + 2βkgk′dk−1 + (βk)2‖dk−1‖2.

Since βk = −γgk′dk−1/‖dk−1‖2, it follows that

2βkgk′dk−1 + (βk)2‖dk−1‖2 = 2βkgk′dk−1 − γβkgk′dk−1 = (2− γ)βkgk′dk−1.

Furthermore, since gk′dk−1 < 0, βk ≥ 0, and γ ∈ [0, 2], we see that

2βkgk′dk−1 + (βk)2‖dk−1‖2 ≤ 0,

implying that
‖dk‖2 ≤ ‖gk‖2.

8.4 (Subgradient Randomization for Stochastic Programming)

Consider the stochastic programming problem of Example 8.2.2. Derive and
justify a randomized incremental subgradient method that samples the different
component functions fi using the probabilities πi.

Solution: The stochastic programming problem of Example 8.2.2 can be written
in the following form

minimize

m∑
i=1

πi

(
f0(x) + fi(x)

)
subject to x ∈ X,

where
fi(x) = max

B′
i
λi≤di

(bi −Ax)′λi, i = 1, . . . ,m,

and the outcome i occurs with probability πi. Assume that for each outcome
i ∈ {1, ...,m} and each vector x ∈ <n, the maximum in the expression for fi(x)
is attained at some λi(x). Then, the vector A′λi(x) is a subgradient of fi at x.
One possible form of the randomized incremental subgradient method is

xk+1 = PX

(
xk − αk(gk +A′λk

ωk
)
)
,
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where gk is a subgradient of f0 at xk, λk
ωk

= λωk
(xk), and the random variable

ωk takes value i from the set {1, . . . ,m} with probability πi. The convergence
analysis of Section 8.2.2 goes through in its entirety for this method, with only
some adjustments in various bounding constants.

In an alternative method, we could use as components the m + 1 func-
tions f0, f1, . . . , fm, with f0 chosen with probability 1/2 and each component fi,
1, . . . ,m, chosen with probability πi/2.

8.5

Give an example of a one-dimensional problem where the cutting plane method
is started at an optimal solution but does not terminate finitely.

Solution: Consider the cutting plane method applied to the following one-
dimensional problem

maximize q(µ) = −µ2,

subject to µ ∈ [0, 1].

Suppose that the method is started at µ0 = 0, so that the initial polyhedral ap-
proximation is Q1(µ) = 0 for all µ. Suppose also that in all subsequent iterations,
when maximizing Qk(µ), k = 0, 1, ..., over [0, 1], we choose µk to be the largest of
all maximizers of Qk(µ) over [0, 1]. We will show by induction that in this case,
we have µk = 1/2k−1 for k = 1, 2, ....

Since Q1(µ) = 0 for all µ, the set of maximizers of Q1(µ) = 0 over [0, 1] is
the entire interval [0, 1], so that the largest maximizer is µ1 = 1. Suppose now
that µi = 1/2i−1 for i = 1, ..., k. Then

Qk+1(µ) = min{l0(µ), l1(µ), ..., lk(µ)},

where l0(µ) = 0 and

li(µ) = q(µi) +∇q(µi)′(µ− µi) = −2µiµ+ (µi)2, i = 1, ..., k.

The maximum value of Qk+1(µ) over [0, 1] is 0 and it is attained at any point
in the interval [0, µk/2]. By the induction hypothesis, we have µk = 1/2k−1,
implying that the largest maximizer of Qk+1(µ) over [0, 1] is µk+1 = 1/2k.

Hence, in this case, the cutting plane method generates an infinite sequence
{µk} converging to the optimal solution µ∗ = 0, thus showing that the method
need not terminate finitely even if it starts at an optimal solution.

8.6 (Approximate Subgradient Method)

This exercise deals with a variant of the subgradient method whereby we minimize
approximately L(x, µk) over x ∈ X, thereby obtaining a vector xk ∈ X with

L(xk, µk) ≤ inf
x∈X

L(x, µk) + ε.
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(a) Show that the corresponding constraint vector, g(xk), is an ε-subgradient
at µk.

(b) Consider the iteration

µk+1 = PM

(
µk +

q(µ∗)− q(µk)

‖gk‖2
gk

)
,

where µ∗ is a dual optimal solution, gk is an ε-subgradient at µk, and
ε > 0. Show that as long as µk is such that q(µk) < q(µ∗) − 2ε, we have
‖µk+1 − µ∗‖ < ‖µk − µ∗‖.

Solution: (a) We have for all µ ∈ <r

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}
≤ f(xk) + µ′g(xk)

= f(xk) + µk′g(xk) + g(xk)′(µ− µk)

= q(µk) + ε+ g(xk)′(µ− µk),

where the last inequality follows from the equation

L(xk, µk) ≤ inf
x∈X

L(x, µk) + ε.

Thus g(xk) is an ε-subgradient of q at µk.

(b) For all µ ∈M , by using the nonexpansive property of the projection, we have

‖µk+1 − µ‖2 ≤ ‖µk + skgk − µ‖2

≤ ‖µk − µ‖2 − 2skgk′(µ− µk) + (sk)2‖gk‖2,

where

sk =
q(µ∗)− q(µk)

‖gk‖2
,

and gk ∈ ∂εq(µ
k). From this relation and the definition of an ε-subgradient we

obtain

‖µk+1 − µ‖2 ≤ ‖µk − µ‖2 − 2sk
(
q(µ)− q(µk)− ε

)
+ (sk)2‖gk‖2, ∀ µ ∈M.

Let µ∗ be an optimal solution. Substituting the expression for sk and taking
µ = µ∗ in the above inequality, we have

‖µk+1 − µ∗‖2 ≤ ‖µk − µ∗‖2 − q(µ∗)− q(µk)

‖gk‖2

(
q(µ∗)− q(µk)− 2ε

)
.

Thus, if q(µk) < q(µ∗)− 2ε, we obtain

‖µk+1 − µ∗‖ ≤ ‖µk − µ∗‖.
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