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CHAPTER 1: SOLUTION MANUAL

1.1

Let C be a nonempty subset of ", and let A\; and A2 be positive scalars. Show
that if C' is convex, then (A1 + A2)C = A1C + X2C [cf. Prop. 1.2.1(c)]. Show by
example that this need not be true when C' is not convex.

Solution: We always have (A1 + A2)C' C A\ C + A2C, even if C is not convex.
To show the reverse inclusion assuming C' is convex, note that a vector x in
AMC + A2C is of the form x = A\x1 + A2x2, where x1,z2 € C. By convexity of
C, we have
A1 Ao
x1 +
AL+ A2 ! AL+ A2

x2 € C,

and it follows that
T = MANT1+ Aoxo € ()\1 + /\Q)C

Hence \1C + \2C C ()\1 + )\2)0

For a counterexample when C' is not convex, let C' be a set in R" consisting
of two vectors, 0 and x # 0, and let Ay = A2 = 1. Then C is not convex, and
(A1 +A2)C = 2C = {0, 2z}, while MiC' 4+ X2C = C+C = {0, z, 2z}, showing that
()\1 =+ )\2)0 75 MC 4+ X\C.

1.2 (Properties of Cones)

Show that:

(a) The intersection N;crC; of a collection {C; | ¢ € I} of cones is a cone.

(b) The Cartesian product C1 x Cs of two cones C1 and C? is a cone.

The vector sum C1 4 C2 of two cones C; and Cs is a cone.

The closure of a cone is a cone.

The image and the inverse image of a cone under a linear transformation

is a cone.

Solution: (a) Let € N;erC; and let o be a positive scalar. Since z € C; for
all i € I and each C; is a cone, the vector ax belongs to C; for all ¢ € I. Hence,
azx € NierCy, showing that N;crC; is a cone.

(b) Let x € C1 x C and let « be a positive scalar. Then z = (z1,z2) for some
r1 € C7 and z3 € (s, and since C; and C2 are cones, it follows that ax; € C;
and azs € C2. Hence, ax = (ax1,ax2) € C1 x Cs, showing that C1 x C2 is a
cone.



(c) Let x € C1 4+ Cs and let « be a positive scalar. Then, = x1 + x2 for some
r1 € C1 and x2 € (s, and since C7 and Cs are cones, ax; € Cy and axs € Cs.
Hence, ax = az1 + azs € C1 4+ Cs2, showing that C1 + C5 is a cone.

(d) Let = € cl(C) and let o be a positive scalar. Then, there exists a sequence
{zr} C C such that zx — =z, and since C is a cone, azy € C for all k. Further-
more, axyr — oz, implying that ax € cl(C). Hence, cl(C) is a cone.

(e) First we prove that A-C is a cone, where A is a linear transformation and A-C
is the image of C' under A. Let z € A - C and let a be a positive scalar. Then,
Az = z for some z € C, and since C is a cone, ax € C. Because A(az) = az,
the vector az is in A - C, showing that A - C is a cone.

Next we prove that the inverse image A~' - C of C under A is a cone. Let
z € A7!1. C and let a be a positive scalar. Then Az € C, and since C is a cone,
aAzx € C. Thus, the vector A(azx) € C, implying that ax € A™*-C, and showing
that A™!. C is a cone.

1.3 (Lower Semicontinuity under Composition)

(a) Let f : R™ — R™ be a continuous function and g : ™ — R be a lower
semicontinuous function. Show that the function h defined by h(z) =
g( f (m)) is lower semicontinuous.

(b) Let f : R™ — R be a lower semicontinuous function, and g : ® — R be
a lower semicontinuous and monotonically nondecreasing function. Show
that the function h defined by h(z) = g(f(:c)) is lower semicontinuous.
Give an example showing that the monotonic nondecrease assumption is
essential.

Solution: (a) Let {zx} C R" be a sequence of vectors converging to some z € R".

By continuity of f, it follows that {f(:rk)} C R™ converges to f(z) € R™, so
that by lower semicontinuity of g, we have

liminf g(f (1)) > 9(f(2).

Hence, h is lower semicontinuous.

(b) Assume, to arrive at a contradiction, that h is not lower semicontinuous at
some x € N". Then, there exists a sequence {z} C R" converging to x such
that

liminf g (f(xx)) < g(f(2))-

Let {zr}x be a subsequence attaining the above limit inferior, i.e.,

g(f(wr)) =liminf g(f(wx)) < g(f(x))- (1.1)

lim
k—oo, ke
Without loss of generality, we assume that
g(f(zr) <g(f(@), VEkek.
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Since g is monotonically nondecreasing, it follows that
flze) < f(z), VEkeK,
which together with the fact {1 }x — x and the lower semicontinuity of f, yields
flz) < | liminf f(zx) < Eﬁfngf(wk) < flx),

showing that {f(ack)}}C — f(z). By our choice of the sequence {z}x and the
lower semicontinuity of g, it follows that

9(f(zx)) = kligl’igglcg(f(wk)) > g(f(2)),

contradicting Eq. (1.1). Hence, h is lower semicontinuous.
As an example showing that the assumption that g is monotonically non-
decreasing is essential, consider the functions

0 ifz <0,
f(“:)—{1 if >0,

o(r@)={2, r3o

if x > 0,

lim
k—oo, keEK

and g(x) = —z. Then

which is not lower semicontinuous at 0.

1.4 (Convexity under Composition)

Let C be a nonempty convex subset of 1"

(a) Let f : C — R be a convex function, and g : ® — R be a function
that is convex and monotonically nondecreasing over a convex set that
contains the set of values that f can take, {f(:v) |z € C’}. Show that the
function h defined by h(z) = g(f(m)) is convex over C. In addition, if g is
monotonically increasing and f is strictly convex, then h is strictly convex.

(b) Let f = (f1,--.,fm), where each f; : C'— R is a convex function, and let
g: 1™ — RN be a function that is convex and monotonically nondecreasing
over a convex set that contains the set {f(x) | z € C’}, in the sense that
for all w, @ in this set such that v < @, we have g(u) < g(@). Show that the
function h defined by h(z) = g(f(a;)) is convex over C' x --- x C.

Solution: Let z,y € R™ and let « € [0,1]. By the definitions of h and f, we
have

h(oz:r+(1—o¢ gfax—i— l—a)y))

IA

(
g(@fi(@) + (1 =a)fi(y),... afm(@) + (1 - a)fn(y))
(

a(fi@) e fn@)) + (1fa)(f1 Wi fn(@))

(s
g(f ax + 1—a)y),...,fm(a:r—|— 1—a)y)>
= (ol

« (f 77fm( )) (lia)g(fl(y)vvfm(y))
(f(@) + (1= a)g(f(v)
(

ah(z) + (1 — a)h(y),

g
ag
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where the first inequality follows by convexity of each f; and monotonicity of g,
while the second inequality follows by convexity of g.

If m = 1, g is monotonically increasing, and f is strictly convex, then the
first inequality is strict whenever z # y and « € (0, 1), showing that A is strictly
convex.

1.5 (Examples of Convex Functions)

Show that the following functions from R" to (—oo, co] are convex:

(a)

1
fl(mly-..7il'n) = {—(331172"'1‘")” if x1 > 0,...,@n > 07
00 otherwise.

(b) falw) =In(e™ 4o+ ¢=n).

(¢) fa(z)=||z||” withp>1

(d) fa(z) = ﬁ7 where f is concave and f(z) is a positive number for all z.

(e) fs(z) = af(z) + B, where f : R" — R is a convex function, and « and
are scalars such that o > 0.

/
(f) fo(x) = e 4% where A is a positive semidefinite symmetric n X n matrix
and (3 is a positive scalar.

(g) fr(z) = f(Az +b), where f : R™ — R is a convex function, A is an m X n

matrix, and b is a vector in R&™.

Solution: (a) Denote X = dom(f1). It can be seen that fi is twice continuously
differentiable over X and its Hessian matrix is given by

1=-n 1 1
x% T T T 1Tn
( 1 l=-n 1
2 i) | 2™ 2 zoTn
v f1($) - ’I’L2
_1 1 1-n
TnT]  ®1T9 z2
for all z = (z1,...,2,) € X. From this, direct computation shows that for all
z=(z1,...,2n) € R" and = = (z1,...,2n) € X, we have

2

2V fi(z)z = %zm) > % - TLZ(%)Q
1 =1

i= i=

Note that this quadratic form is nonnegative for all z € R" and = € X, since
fi(z) < 0, and for any real numbers a1, ..., an, we have

(a1 4 +an)? <nlai +---+ap),

in view of the fact that 200 < a? +aji. Hence, V2 fi(x) is positive semidefinite
for all x € X, and it follows from Prop. 1.2.6(a) that fi is convex.
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(b) We show that the Hessian of fa is positive semidefinite at all z € R". Let
B(x) = €1 +--- 4 e®?. Then a straightforward calculation yields

SV ) = ﬁ-)z DD T —z) 20, VzeRn

i=1 j=1

Hence by Prop. 1.2.6(a), f2 is convex.

(¢) The function f3(xz) = ||z||” can be viewed as a composition g(f(:c)) of the
scalar function g(t) = t¥ with p > 1 and the function f(x) = ||z||. In this case, g is
convex and monotonically increasing over the nonnegative axis, the set of values
that f can take, while f is convex over R™ (since any vector norm is convex,
see the discussion preceding Prop. 1.2.4). Using Exercise 1.4, it follows that the
function fs3(z) = ||z||? is convex over R".

(d) The function f4(z) = ﬁx) can be viewed as a composition g(h(m)) of the
function g(t) = —1 for ¢ < 0 and the function h(z) = —f(z) for z € R". In this
case, the g is convex and monotonically increasing in the set {¢ | ¢ < 0}, while h
is convex over R". Using Exercise 1.4, it follows that the function fi(x) = f(ll)
is convex over R".

(e) The function f5(x) = af(x) + B can be viewed as a composition g(f(m)) of
the function g(t) = at + 3, where ¢t € R, and the function f(z) for x € ®". In
this case, g is convex and monotonically increasing over R (since o > 0), while f
is convex over R". Using Exercise 1.4, it follows that fs is convex over R".

(f) The function fe(z) = 'A% can be viewed as a composition g(f(:c)) of the

function g(t) = € for t € R and the function f(x) = 2’ Az for z € R™. In this
case, g is convex and monotonically increasing over 3, while f is convex over "
(since A is positive semidefinite). Using Exercise 1.4, it follows that fs is convex
over R™.

(g) This part is straightforward using the definition of a convex function.

1.6 (Ascent/Descent Behavior of a Convex Function)

Let f: R — R be a convex function.

(a) (Monotropic Property) Use the definition of convexity to show that f is
“turning upwards” in the sense that if z1, z2, z3 are three scalars such that
r1 < x2 < x3, then

fx2) = f(z1) _ flas) = fla2)

T2 — I1 - T3 — T2

(b) Use part (a) to show that there are four possibilities as x increases to co:
(1) f(z) decreases monotonically to —co, (2) f(x) decreases monotonically
to a finite value, (3) f(x) reaches some value and stays at that value, (4)
f(x) increases monotonically to co when x > T for some Z € R.
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Solution: (a) Let z1,z2,x3 be three scalars such that 1 < z2 < x3. Then we
can write x2 as a convex combination of z; and x3 as follows

xr3 — T2 T2 — T1
T2 = T+ T3,
T3 — T1 T3 — T1

so that by convexity of f, we obtain

T3 — T2

< - -
flz2) < prap— f(z1) prap— f(3)
This relation and the fact
o r3 — T2 T2 — I1
flwz) = 2 = f(@2) + - f(@2),

imply that

B2 (fla) — flan)) < 2221 (f(as) — flx2).

r3 — T1 I3 — 1

By multiplying the preceding relation with z3 — 1 and by dividing it with (z3 —
z2)(x2 — 1), we obtain

fz2) = f@1) _ flas) - f(w2).

To — 1 - T3 — T2

(b) Let {zx} be an increasing scalar sequence, i.e., z1 < z2 < x3 < ---. Then
according to part (a), we have for all k

Fw2) = fla1) _ flws) = f2) __ fl@nen) = flan) (1.2)

To — X1 - xr3 — T2 - - Tk41 — Tk
Since (f(ack) — f(:ckfl))/(mk — xp—1) is monotonically nondecreasing, we have

faw) = Jee) (1.3)
Tk Tk—1

where 7 is either a real number or co. Furthermore,

Jxrs1) — flxw)

We now show that ~ is independent of the sequence {xr}. Let {y;} be
any increasing scalar sequence. For each j, choose T such that y; < Tk; and
Try < Thy <00 < Ty, SO that we have y; < yj4+1 < Thjy ) < Thjyo- By part (a),
it follows that

Flys+1) = fys) F@r; o) = f(@n44)

Yji+1 — Yj - mkj+2 - mkj+1

)



and letting j — oo yields

Flyir) = flys)

lim <.

J—oo Yi+1 — Y
Similarly, by exchanging the roles of {zx} and {y;}, we can show that

i JWit1) = F(y5) > o
J—ee Yit1 — Y

Thus the limit in Eq. (1.3) is independent of the choice for {z\}, and Eqs. (1.2)
and (1.4) hold for any increasing scalar sequence {z}.

We consider separately each of the three possibilities v < 0,7 = 0, and
~ > 0. First, suppose that v < 0, and let {zx} be any increasing sequence. By
using Eq. (1.4), we obtain

ko

— f(z41) — Jlws)

G — ;) + f(z1)

flzk) =

IN
> <.
[
[E

V(@i —z5) + f(z1)
1

y(zk — x1) + f(21),

<.
Il

and since v < 0 and zx — oo, it follows that f(xx) — —oo. To show that f
decreases monotonically, pick any = and y with x < y, and consider the sequence
1 =z, 2 =y, and z = y + k for all £ > 3. By using Eq. (1.4) with k = 1, we

have
fy) — f(z)
y—x

<y <0

so that f(y) — f(z) < 0. Hence f decreases monotonically to —oco, corresponding
to case (1).

Suppose now that v = 0, and let {z} be any increasing sequence. Then,
by Eq. (1.4), we have f(zk41)— f(zr) < 0 for all k. If f(zrs1)— f(zk) < 0 for all
k, then f decreases monotonically. To show this, pick any x and y with z < y,
and consider a new sequence given by y1 = x, y2 = vy, and yr = Tk tr—3 for all
k > 3, where K is large enough so that y < zx. By using Egs. (1.2) and (1.4)
with {yx}, we have

fly) = f@) _ flrre) = flex)

b <0,
y—a TK+1 — TK

implying that f(y) — f(z) < 0. Hence f decreases monotonically, and it may
decrease to —oo or to a finite value, corresponding to cases (1) or (2), respectively.

If for some K we have f(zx+1) — f(zx) = 0, then by Egs. (1.2) and (1.4)
where v = 0, we obtain f(zx) = f(xk) for all k > K. To show that f stays at
the value f(xk) for all z > xzk, choose any = such that * > zx, and define {yx}

8



as y1 = Tk, Y2 = x, and yr = rn+i—3 for all £ > 3, where N is large enough so
that z < zn. By using Eqs. (1.2) and (1.4) with {yx}, we have

[@) = fax) _ fan) = 1@ _,

T —TK - IN — T =7

so that f(z) < f(zk) and f(zn) < f(z). Since f(zx) = f(zn), we have
f(z) = f(zk). Hence f(z) = f(zk) for all x > xx, corresponding to case (3).

Finally, suppose that v > 0, and let {z} be any increasing sequence. Since
(f(:ck) — f(xk,l))/(xk — xk—1) is nondecreasing and tends to vy [cf. Egs. (1.3)
and (1.4)], there is a positive integer K and a positive scalar € with € < « such
that

ngy V> K. (1.5)
Tk — Thk—1

Therefore, for all k > K

k—1

f(wk)IZ

=K

W(I;‘H —z5) + f(zx) 2 e(zr —wx) + fzK),

<.

implying that f(xr) — oco. To show that f(z) increases monotonically to oo for
all z > xk, pick any x < y satisfying xx < z < y, and consider a sequence given
by y1 =k, y2 = x, ys = ¥y, and yx = TN+k—a for k > 4, where N is large enough
so that y < zn. By using Eq. (1.5) with {yx}, we have

Thus f(z) increases monotonically to oo for all x > zk, corresponding to case
(4) with T = zk.

1.7 (Characterization of Differentiable Convex Functions)

Let f : R" — R be a differentiable function. Show that f is convex over a
nonempty convex set C' if and only if

(Vi@ - Vi) (@-y) >0, VayecC.

Note: The condition above says that the function f, restricted to the line segment
connecting x and y, has monotonically nondecreasing gradient.

Solution: If f is convex, then by Prop. 1.2.5(a), we have

fy) = fl@)+ V@) (y—z), VayeCl.

By exchanging the roles of x and y in this relation, we obtain
f@) = f) +VIiW'(@-y), VYzyedl,

9



and by adding the preceding two inequalities, it follows that

(Viy) — V@) (z—y) >0 (1.6)

Conversely, let Eq. (1.6) hold, and let « and y be two points in C'. Define
the function h : R — R by

h(t) = f(x +t(y — :v))

Consider some t,t' € [0,1] such that ¢ < ¢. By convexity of C, we have that
z+t(y — ) and x + t'(y — ) belong to C. Using the chain rule and Eq. (1.6),
we have

dh(t)  dh(t)\ .,
( dt dt )(t_t)

= (Vi +ty-o) - V(e + iy - x))),(y — o) — 1)

v
o

Thus, dh/dt is nondecreasing on [0, 1] and for any ¢ € (0, 1), we have

h(t) = h(0) _ 1/’f dhT) 4y < L /1 dh(r) . _ h(1) = h(t)

t t dr 1-1

Equivalently,
th(1) + (1 = t)h(0) = h(t),

and from the definition of h, we obtain

tfy)+ (A —t)f(z) > f(ty+ (1 —t)z).

Since this inequality has been proved for arbitrary ¢ € [0,1] and z,y € C, we
conclude that f is convex.

1.8 (Characterization of Twice Continuously Differentiable
Convex Functions)

Let C be a nonempty convex subset of ®" and let f : R" — R be twice continu-
ously differentiable over ®". Let S be the subspace that is parallel to the affine
hull of C. Show that f is convex over C' if and only if 4/ V2 f(z)y > 0 for all
z € Cand y € S. [In particular, when C' has nonempty interior, f is convex over
C if and only if V2 f(z) is positive semidefinite for all z € C']

Solution: Suppose that f : R"™ — R is convex over C. We first show that for all

z €1i(C) and y € S, we have ' V2 f(z)y > 0. Assume to arrive at a contradiction,
that there exists some Z € ri(C') such that for some y € S, we have

V2 f(Z)y < 0.
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Without loss of generality, we may assume that ||y|| = 1. Using the continuity of
V2f, we see that there is an open ball B(T, €) centered at Z with radius e such
that B(Z,¢) Naff(C) C C [since Z € ri(C)], and

YV f(z)y <0, YV z € B(Z,¢). (1.7)

By Prop. 1.1.13(a), for all positive scalars « with a < €, we have
_ _ _ 1 L
F@+ay) = [(2) + V@) y+ 5y’ V(@ +ay)y,

for some & € [0, . Furthermore, ||(Z + ay) — Z|| < € [since ||y|| =1 and & < €.
Hence, from Eq. (1.7), it follows that

f(@+ay) < f(&) +aV @)y, YV a€0€).

On the other hand, by the choice of € and the assumption that y € S, the vectors
Z + ay are in C for all « with « € [0,¢), which is a contradiction in view of
the convexity of f over C. Hence, we have y'V2f(z)y > 0 for all y € S and all
z € ri(C).

Next, let T be a point in C that is not in the relative interior of C. Then, by
the Line Segment Principle, there is a sequence {x} C ri(C) such that xx — 7.
As seen above, y' V2 f(zx)y > 0 for all y € S and all k, which together with the
continuity of V2 £ implies that

YV f@y = lim y'V f(z)y 20,  VyeS.

It follows that 3'V2f(z)y >0 for allz € C and y € S.

Conversely, assume that y'V? f(z)y > 0 for all z € C and y € S. By Prop.
1.1.13(a), for all z,z € C we have

J(z) = f(2) + (z = 2)' V() + 5(z = 2) V2 f (2 + a(z —x)) (z — )

for some a € [0,1]. Since z,z € C, we have that (z — z) € S, and using the
convexity of C' and our assumption, it follows that

() 2 f@) + (: =)' Vi(@), VazeC.

From Prop. 1.2.5(a), we conclude that f is convex over C.

1.9 (Strong Convexity)

Let f: R — R be a differentiable function. We say that f is strongly convex
with coefficient o if

(VI@) = VIiW) @-y) >alz—yl*, VazyeR", (1.8)
where « is some positive scalar.

11



(a) Show that if f is strongly convex with coefficient «, then f is strictly convex.

(b) Assume that f is twice continuously differentiable. Show that strong con-
vexity of f with coefficient « is equivalent to the positive semidefiniteness
of V2f(x) — ol for every = € R™, where I is the identity matrix.

Solution: (a) Fix some z,y € R" such that z # y, and define the function
h:R+— Rby h(t) = f(x +t(y — x)) Consider scalars t and s such that ¢ < s.
Using the chain rule and the equation

(V@) - Vi) (@ —y) > ale—yl*, VazyeR" (1.9)

for some a > 0, we have

()

= (Ve sy =) - Vi (et tly - 2)) - 2)s 1)
> als = Pz = yl* > 0.

Thus, dh/dt is strictly increasing and for any ¢ € (0, 1), we have

h(t) — h(0) 1/t dh(r) , 1 /1 dh(r) . _ h(1) = h(t)

- dr T<17t

t t

dr 1-—t

Equivalently, th(1) + (1 — t)h(0) > h(t). The definition of h yields ¢f(y) + (1 —
t)f(x) > f(ty +(1- t)m) Since this inequality has been proved for arbitrary
t € (0,1) and x # y, we conclude that f is strictly convex.

(b) Suppose now that f is twice continuously differentiable and Eq. (1.9) holds.
Let ¢ be a scalar. We use Prop. 1.1.13(b) twice to obtain

@+ ey) = fla) + ey Vi) + SV fa+ tey)y,

and
f(@)=flz+cy) —cyV(z+cy) + %y'ng(a: + scy)y,

for some t and s belonging to [0,1]. Adding these two equations and using Eq.
(1.9), we obtain

SV (V21 (@ + sey) + V2 f (@ + tey) )y = (Vf (@ + ey) = V(@) (ey) > ac |y

We divide both sides by ¢? and then take the limit as ¢ — 0 to conclude that
y'V2f(x)y > ally||*>. Since this inequality is valid for every y € R", it follows
that V2 f(x) — ol is positive semidefinite.

For the converse, assume that V2 f(z) — ol is positive semidefinite for all
z € R". Consider the function g : ® — R defined by

g(t) = Vf(tz + (1 - t)y) (z — y).
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Using the Mean Value Theorem (Prop. 1.1.12), we have

(VF(@) = V) (@ —y) =g(1) - g(0) = %

~—

for some ¢t € [0,1]. On the other hand,

d%f) =(z =)V f(tz + (1= )y)(z —y) > aflz -y,

where the last inequality holds because V2 f (ter(l ft)y) —al is positive semidef-
inite. Combining the last two relations, it follows that f is strongly convex with
coefficient a.

1.10 (Posynomials)

A posynomial is a function of positive scalar variables y1, ..., yn of the form
g(y17 e 7y"l) = Zﬁlylllﬂ o 'yzin7
i=1

where a;; and (; are scalars, such that §; > 0 for all <. Show the following:
(a) A posynomial need not be convex.

(b) By a logarithmic change of variables, where we set
f@)=M(gy,...,yn)),  bi=Wp, ¥i, x;=Iny;, ¥j
we obtain a convex function
f(z) = Inexp(Az + b), VaeR",

where exp(z) = €1 +--- 4+ €*™ for all z € R™, A is an m X n matrix with
entries a;;, and b € R™ is a vector with components b;.

(c) Every function g : " — R of the form

)Wr

g) =g ()" 9. (y

)

where gi is a posynomial and v, > 0 for all k£, can be transformed by a
logarithmic change of variables into a convex function f given by

fz) = nyk Inexp(Axz + b),
k=1

with the matrix Ay and the vector by being associated with the posynomial
gr. for each k.
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Solution: (a) Consider the following posynomial for which we have n =m =1
and § = %,

1
gly) =y2, Vy>0.
This function is not convex.

(b) Consider the following change of variables, where we set
f(x):ln(g(yl,...,yn)), b =Ing;, Vi, z; =Iny;, Vj.

With this change of variables, f(z) can be written as

f(z)=1In (Z ebi+%1x1+'“+amwn> )

i=1
Note that f(x) can also be represented as
f(z) = Inexp(Az +b), VzeR",

where Inexp(z) = ln(ezl +- eZm) for all z € R™, A is an m x n matrix with
entries ai;, and b € R™ is a vector with components b;. Let fa(z) = In(e®! +
-+« 4+ ¢e*m). This function is convex by Exercise 1.5(b). With this identification,
f(x) can be viewed as the composition f(z) = fo(Az + b), which is convex by
Exercise 1.5(g).

(c¢) Consider a function g : " — R of the form

)’Y'r

gy) =g ()" g (y

’

where gy, is a posynomial and 7, > 0 for all k. Using a change of variables similar
to part (b), we see that we can represent the function f(z) =Ing(y) as

F@) = Inexp(Az +b),

k=1

with the matrix Ay and the vector by being associated with the posynomial g for
each k. Since f(z) is a linear combination of convex functions with nonnegative
coeflicients [part (b)], it follows from Prop. 1.2.4(a) that f(z) is convex.

1.11 (Arithmetic-Geometric Mean Inequality)

Show that if a4, ..., a, are positive scalars with 2;1 a; = 1, then for every set
of positive scalars x1,...,T,, we have

.T(;‘I.ng s xi" < oz +a2x2 + -+ AT,
with equality if and only if x1 = 22 = -+ = z,,. Hint: Show that —Inz is a

strictly convex function on (0, c0).
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Solution: Consider the function f(z) = —In(x). Since V>f(z) = 1/2® > 0 for
all z > 0, the function —In(z) is strictly convex over (0,00). Therefore, for all
positive scalars z1,...,x, and a1, ...q, with Z?:1 a; = 1, we have

—In(aaz1 + -+ anzn) < —arIn(z1) — - -+ — an In(zr),

which is equivalent to

eln(a1w1+~-+anxn) > 1 In(zq)+--+an In(zn) — 1 In(zq) . eon ln(a:n)7

or

« @
x4t oy >yt ap,

as desired. Since — In(x) is strictly convex, the above inequality is satisfied with

equality if and only if the scalars x1,...,z, are all equal.

1.12 (Young and Holder Inequalities)

Use the result of Exercise 1.11 to verify Young’s inequality

¥4 q
sy<Z 4+ L va>0vy>o0,
p q

where p > 0, ¢ > 0, and
l/p+1/g=1.

Then, use Young’s inequality to verify Holder’s inequality
n n 1/p n 1/q
> iyl < (Z |m> (Z W) :
i=1 i=1 i=1

Solution: According to Exercise 1.11, we have

Qi

1
uPvd < — + —, Vu>0, Vov>0,

SN

w
p
where 1/p+1/g =1, p > 0, and q > 0. The above relation also holds if u = 0 or
v = 0. By setting u = 2? and v = y?, we obtain Young’s inequality

D q
<=+, vaz0, vyxo.
p q
To show Holder’s inequality, note that it holds if z; = --- = z,, = 0 or
y1 = =yn =0. If z1,...,2, and y1,...,Yn are such that (z1,...,z,) # 0

and (y1,...,yn) # 0, then by using

|4

T = and y= lyi| T

(o, fasle) (S0t
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in Young’s inequality, we have for all i = 1,...,n,

| |y |i|” |y
n /e n YVa = " P * n q '
(Zj:l |I]'|p) (Zj:l |yj|q) p Zj:l ‘mJ| q Z]‘=1 |yj|
By adding these inequalities over i = 1,...,n, we obtain

Doicy |l - lysl _1
n 1/p n 1/qa — P
(Zj:l |Ij‘p> ( j=1 |yj|q)

which implies Holder’s inequality.

1.13

Let C be a nonempty convex set in R, and let f : R — [—o0,00] be the
function defined by

f(w):inf{w| (as,w)eC}, z eR".

Show that f is convex.
Solution: Let (z,w) and (y,v) be two vectors in epi(f). Then f(z) < w and

f(y) < v, implying that there exist sequences {(w,ﬁk)} c C and {(y,ik)} ccC
such that for all k,

Ek§w+%, ﬁkquL%.
By the convexity of C, we have for all « € [0,1] and all &,
(aw + (1 - ay), awr + (1 — a)ﬂk) eC,

so that for all &,

f(ax+(17a)y) <awg + (1 —a)vg < aw+(1fo¢)v+%.
Taking the limit as £ — oo, we obtain

f(aﬂc +(1- oz)y) <aw+ (1 - a)v,
so that a(xz,w) + (1 — a)(y,v) € epi(f). Hence, epi(f) is convex, implying that

f is convex.
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1.14

Show that the convex hull of a nonempty set coincides with the set of all convex
combinations of its elements.

Solution: The elements of X belong to conv(X), so all their convex combinations
belong to conv(X) since conv(X) is a convex set. On the other hand, consider
any two convex combinations of elements of X, z = Aax1 + -+ + Anam and
y = piy1 + -+ pryr, where z; € X and y; € X. The vector
(I-azt+ay=(1-=a) Mz + - 4+ Antm) + a(payr + -+ pryr)

where 0 < a < 1, is another convex combination of elements of X.

Thus, the set of convex combinations of elements of X is itself a convex
set, which contains X, and is contained in conv(X). Hence it must coincide with
conv(X), which by definition is the intersection of all convex sets containing X.

1.15

Let C be a nonempty convex subset of ®". Show that

cone(C) = Uzec{yz | v > 0}.

Solution: Let y € cone(C). If y =0, then y € Uzec{yx | v > 0}. If y # 0, then
by definition of cone(C'), we have

m
Y= Z AiTi,
=1

for some positive integer m, nonnegative scalars \;, and vectors x; € C. Since
y # 0, we cannot have all \; equal to zero, implying that Z:’;l Ai > 0. Because
x; € C for all ¢ and C is convex, the vector

belongs to C'. For this vector, we have

()

with Y™ A > 0, implying that y € Ugcec{’yx | ¥ > 0} and showing that
cone(C) C Uzec{yz | v > 0}.

The reverse inclusion follows from the definition of cone(C).
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1.16 (Convex Cones)

Show that:

(a) For any collection of vectors {a; | i € I}, the set C = {z | ajoz <0, i € I}
is a closed convex cone.

(b) A cone C is convex if and only if C+ C C C.

(¢) For any two convex cones C1 and C> containing the origin, we have
C1+Cy = COHV(Cl U Cg),

CinCy = U (OéC1 N (1 — Ot)CQ).

a€[0,1]

Solution: (a) Let z € C and let A be a positive scalar. Then
a;(\z) = dajz <0, Viel,
showing that Az € C and that C is a cone. Let z,y € C and let A € [0,1]. Then
a;(Az + (1= N)y) = Aajz + (1 — Najy <0, Viel,

showing that (/\er(l f)\)y) € C and that C is convex. Let a sequence {z} C C
converge to some Z € R". Then

a;Z = lim ajx, <0, Viel,
k—oo

showing that z € C' and that C' is closed.

(b) Let C be a cone such that C +C C C, and let z,y € C and « € [0, 1]. Then
since C' is a cone, ax € C and (1 —a)y € C, so that az+ (1—a)y e C+C C C,
showing that C is convex. Conversely, let C' be a convex cone and let z,y € C.
Then, since C' is a cone, 2z € C and 2y € C, so that by the convexity of C,
z+y = 3(2z + 2y) € C, showing that C + C C C.

(c) First we prove that Ci + C2 C conv(Cy U C2). Choose any = € Cy + Ch.
Since C1 + C- is a cone [see Exercise 1.2(c)], the vector 2z is in C1 + C2, so that
2x = x1 + x2 for some 1 € C1 and z2 € Cs. Therefore,

1 1
T = 5:)61 + ixz,
showing that = € conv(Ci U C2).
Next, we show that conv(Cy UC2) C C1 + Cs. Since 0 € Cy and 0 € Cy, it
follows that
Ci=C;+0C C1+ Oy, i=1,2,

implying that
CruCy C Cy + Ca.
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By taking the convex hull of both sides in the above inclusion and by using the
convexity of C1 + C2, we obtain

conv(Cy UCy) C conv(Cy + C2) = C1 + Ch.

We finally show that

anG= J (ecin-a)c).

a€l0,1]
We claim that for all @ with 0 < a < 1, we have
aCi N (1 — Oé)Cz =C1NCs.

Indeed, if x € C1 N Cy, it follows that x € C; and © € C3. Since C; and Co
are cones and 0 < a < 1, we have z € aC1 and z € (1 — a)Ca. Conversely, if
z € aC1 N (1 — a)Cs, we have
T
— e Ch,
o
and
_r
(1-a)
Since C; and C5 are cones, it follows that x € C; and x € Ca, so that x € C1NCs.
If « =0 or a =1, we obtain

€ Cs.

aC1 N (1 — 05)02 = {0} cCin CQ,
since C1 and C contain the origin. Thus, the result follows.

1.17

Let {C; | i € I} be an arbitrary collection of convex sets in R", and let C be the
convex hull of the union of the collection. Show that

C = U Zalc’l Zaizl, aiZO,Vi67 s

IciI, T: finite set icl icl

i.e., the convex hull of the union of the C; is equal to the set of all convex
combinations of vectors from the C;.

Solution: By Exercise 1.14, C is the set of all convex combinations z = ajy1 +
-+ -+ amYm, where m is a positive integer, and the vectors y1, . .., ym belong to the
union of the sets C;. Actually, we can get C' just by taking those combinations in
which the vectors are taken from different sets C;. Indeed, if two of the vectors,
y1 and y2 belong to the same C;, then the term a1y1 + a2y2 can be replaced by
ay, where a = a1 + a2 and

y = (1/a)y1 + (2/a)y2 € Ci.
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Thus, C is the union of the vector sums of the form

a1Cyy + - + amCipy,

with
m
>0, Vi=1,...,m, Zaizl,
=1
and the indices i1, ..., i, are all different, proving our claim.

1.18 (Convex Hulls, Affine Hulls, and Generated Cones)

Let X be a nonempty set. Show that:
(a) X, conv(X), and cl(X) have the same affine hull.
(b) cone(X) = cone(conv(X)).

(c) aff(conv(X))C af‘f(cone(X)). Give an example where the inclusion is
strict, i.e., aff (COHV(X)) is a strict subset of aff (cone(X)).

(d) If the origin belongs to conv(X), then aff (conV(X)) = aff (cone(X))A

Solution: (a) We first show that X and cl(X) have the same affine hull. Since
X C cl(X), there holds

aff(X) C aff (cl(X)).

Conversely, because X C aff(X) and aff(X) is closed, we have cl(X) C aff(X),
implying that
aff (cl(X)) C aff(X).

We now show that X and conv(X) have the same affine hull. By using a
translation argument if necessary, we assume without loss of generality that X
contains the origin, so that both aff(X) and aff (conv(X )) are subspaces. Since

X C conv(X), evidently aff(X) C aff (conv(X )) To show the reverse inclusion,
let the dimension of aff (conv(X)) be m, and let 1, ..., T, be linearly indepen-

dent vectors in conv(X) that span aff (conv(X)). Then every x € aff (conv(X)) is
a linear combination of the vectors x1, ..., Tm, i.e., there exist scalars G1,..., Om

such that
m
T = Z Bixi.
i=1

By the definition of convex hull, each x; is a convex combination of vectors in
X, so that z is a linear combination of vectors in X, implying that z € aff(X).
Hence, aff (conv(X)) C aff(X).

(b) Since X C conv(X), clearly cone(X) C cone(conv(X)). Conversely, let

T € cone(conv(X)). Then z is a nonnegative combination of some vectors in
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conv(X), i.e., for some positive integer p, vectors zi,...,zp, € conv(X), and
nonnegative scalars asq, ..., qp, we have

p
x = E ;X5
=1

Each z; is a convex combination of some vectors in X, so that = is a nonneg-
ative combination of some vectors in X, implying that x € cone(X). Hence
cone(conv(X)) C cone(X).

(c) Since conv(X) is the set of all convex combinations of vectors in X, and
cone(X) is the set of all nonnegative combinations of vectors in X, it follows that
conv(X) C cone(X). Therefore

aff (conv(X)) C aff (cone(X)).

As an example showing that the above inclusion can be strict, consider the
set X = {(1, 1)} in R2. Then conv(X) = X, so that

aff (conv(X)) = X = {(1,1)},

and the dimension of conv(X) is zero. On the other hand, cone(X) = {(oz7 a) |
a > O}, so that
aff(cone(X)) = {(ml,mz) | 21 = m2}7

and the dimension of cone(X) is one.

(d) In view of parts (a) and (c), it suffices to show that
aff (cone(X)) C aff (conv(X)) = aff(X).

It is always true that 0 € cone(X), so aff(cone(X)) is a subspace. Let the
dimension of aff(cone(X)) be m, and let x1,...,z, be linearly independent

vectors in cone(X) that span aff (cone(X)). Since every vector in aff (cone(X)) is
a linear combination of x1, . .., T, and since each z; is a nonnegative combination
of some vectors in X, it follows that every vector in aff (cone(X )) is a linear
combination of some vectors in X. In view of the assumption that 0 € conv(X),
the affine hull of conv(X) is a subspace, which implies by part (a) that the affine
hull of X is a subspace. Hence, every vector in aff (cone(X)) belongs to aff(X),

showing that aff (cone(X)) C aff(X).

1.19

Let {fi | © € I} be an arbitrary collection of proper convex functions f; : R" —
(=00, o0]. Define

f(z) =inf {w | (z,w) € conv(uiezepi(fi))} , zeR".
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Show that f(x) is given by
f(z) —inf{zaiﬁ(aﬁi) ‘ Zam =z, z; € R", Zai =1, 0;,>0,Viel,
icl i€l icl

IclI, I: ﬁnite}.

Solution: By definition, f(x) is the infimum of the values of w such that (z,w) €
C, where C' is the convex hull of the union of nonempty convex sets epi(f;). We
have that (z,w) € C if and only if (z, w) can be expressed as a convex combination
of the form

(z,w) = Zai(xi,wi) = Zami,Zaiwi ,
iel icl icl

where I C I is a finite set and (z;, w;) € epi(fi) for all 4 € I. Thus, f(x) can be
expressed as

f(x) =inf { Zaiwi (z,w) = Zai(xi,wi),

icl icT

(zi,w;) € epi(fi), as >0, Viel, Zaizl}.

icl

Since the set {(xl, fl(:cl)) | x; € §R”} is contained in epi(f;), we obtain

f(x) < inf Zazfl(xl) ‘ xr = Zami, x; € §Rn, a; >0, Vie T, Zai =1

iel iel iel

On the other hand, by the definition of epi(f;), for each (z;,w;) € epi(f;) we
have w; > fi(z;), implying that

f(z) > inf Zalfl(xl) ‘ m:Zaixi, 2 €R, >0, Viel, Z%‘Zl

i€l i€l i€l

By combining the last two relations, we obtain

f(x) =inf Zalfl(:cl) ‘ m:Zaimi, 2, €RY, 0, >0, Viel, Z%‘Zl ,

i€l i€l icl

where the infimum is taken over all representations of x as a convex combination
of elements x; such that only finitely many coefficients «; are nonzero.
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1.20 (Convexification of Nonconvex Functions)

Let X be a nonempty subset of " and let f : X — R be a function that is
bounded below over X. Define the function F : conv(X) — R by

F(z) = inf{w | (z,w) € conv(epi(f))}.
Show that:

(a) F is convex over conv(X) and it is given by

F(m)—inf{zaif(l‘i) Zaixi:a}, z; € X, Zaizl,ai >0, Vi},

where the infimum is taken over all representations of x as a convex com-
bination of elements of X (i.e., with finitely many nonzero coefficients «;).

(b)

inf F(z)= inf f(z).

z€conv(X) reX

(¢) Every z* € X that attains the minimum of f over X, ie., f(z") =
infzex f(z), also attains the minimum of F' over conv(X).

Solution: (a) Since conv (epi( f)) is a convex set, it follows from Exercise 1.13

that F is convex over conv(X). By Caratheodory’s Theorem, it can be seen that
conv (epi(f)) is the set of all convex combinations of elements of epi(f), so that

F(az) = inf { Z ;W5

(z,w) = Zai(%‘,wi),

(zi,w;) € epi(f), a; >0, Zai = 1},

where the infimum is taken over all representations of x as a convex combination
of elements of X. Since the set {(z,f(z)) | z € X} is contained in epi(f), we
obtain

F(m)ginf{Zaif(a:i) ‘ mzZaixi, ;€ X, a; >0, Zaizl}.

On the other hand, by the definition of epi(f), for each (x;,w;) € epi(f) we have
w; > f(x;), implying that

F(z) > inf { Zaif(xi) ’ (z,w) = Zai(xi,wi),
(zi,w;) € epi(f), ai >0, Zai = 1},

:inf{Zaif(a:i) ‘ mzZaimi, i€ X, a; >0, Zaizl},
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which combined with the preceding inequality implies the desired relation.

(b) By using part (a), we have for every z € X
Fz) < f(x),

since f(x) corresponds to the value of the function Zl a; f(z;) for a particular
representation of x as a finite convex combination of elements of X, namely
x =1-x. Therefore, we have

inf F(xz) < inf f
;2}( (x) ;2;( (x)7
and since X C conv(X), it follows that

inf F(x) < inf f(z).

zE€conv(X) T zeX

Let f* = infrex f(2). If infycconv(x) F(2) < f*, then there exists z €
conv(X) with F(z) < f*. According to part (a), there exist points z; € X and
nonnegative scalars «o; with ZL a; = 1 such that z = ZL a;xi and

F(2) <Y aif(m) < f,

implying that

ZO@ (f(.l‘z) — f*) < 0.

i

Since each «; is nonnegative, for this inequality to hold, we must have f(z;)—f* <
0 for some %, but this cannot be true because x; € X and f* is the optimal value
of f over X. Therefore

inf  F(x)= inf f(z).

z€conv(X) zeX

(c) If 2" € X is a global minimum of f over X, then z* also belongs to conv(X),
and by part (b)

inf F(z)= inf f(z) = f(z") > F(z"),

z€conv(X) reX

showing that z* is also a global minimum of F' over conv(X).
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1.21 (Minimization of Linear Functions)

Show that minimization of a linear function over a set is equivalent to minimiza-
tion over its convex hull. In particular, if X C ®"™ and ¢ € R", then

. / . /
inf  cx=inf cz.
z€conv(X) zeX

Furthermore, the infimum in the left-hand side above is attained if and only if
the infimum in the right-hand side is attained.

Solution: Let f: X — R be the function f(z) = 'z, and define

F(z) = inf{w | (z,w) € conv(epi(f))}7
as in Exercise 1.20. According to this exercise, we have

inf  F(z)= inf f(z),

z€conv(X) zeX

F(x) = inf Z a;c'T;

Zaizi:x,wiGX,Zaizl,aizo
i i
=inf{c Zaixi ’Zami:x,mieX,Zai:LaiZO

/
=cux,
showing that
inf 'z = inf 'z
zE€conv(X) reX
According to Exercise 1.20(c), if infex ¢’z is attained at some z* € X,
then inf,cconv(x) c'z is also attained at z*. Suppose now that infacconv(x) cdxis
attained at some z* € conv(X), i.e., there is * € conv(X) such that

. / /! k
inf cx=cuz".

z€conv(X)
Then, by Caratheodory’s Theorem, there exist vectors zi,...,Znp4+1 in X and
nonnegative scalars ai, ..., an+1 with 27:11 a; = 1 such that z* = 27:11 Ty,
implying that
n+1

Since ; € X C conv(X) for all 4 and ¢’z > ¢'x* for all x € conv(X), it follows

that
n+1 n+1

/ ok / / ok /%
cx = E QiC T > E acxr =cx,
i=1 i=1

implying that ¢’z; = ¢’z* for all i corresponding to a; > 0. Hence, infyex ¢’z is
attained at the z;’s corresponding to a; > 0.

25



1.22 (Extension of Caratheodory’s Theorem)

Let X7 and X» be nonempty subsets of R", and let X = conv(X1) + cone(X2).
Show that every vector x in X can be represented in the form

k m
ng a;T; + E ;i
=1

i=k+1
where m is a positive integer with m < n+1, the vectors z1, ...,z belong to X1,
the vectors yx+1, ..., ym belong to X2, and the scalars a1, . . ., am, are nonnegative
with a1 +- - -+ay = 1. Furthermore, the vectors zo—x1,..., Tk —T1, Ykt+1,-- - Ym

are linearly independent.

Solution: The proof will be an application of Caratheodory’s Theorem [part (a)]
to the subset of R™™* given by

V={(z,1) |z € X1} U{(y,0) |y € Xz}

If z € X, then
k m
T = Z’Yixi + Z YilYis
i=1 i=k+1
where the vectors x1, ...,z belong to X1, the vectors yxt1, ..., ym belong to Xa,

and the scalars 71, ..., 7vm are nonnegative with y1 + --- 4+ v, = 1. Equivalently,
(z,1) € cone(Y). By Caratheodory’s Theorem part (a), we have that

k m
(@ 1) =Y ai(zi )+ Y iy, 0),
i=1 i=k+1
for some positive scalars ag, ..., an and vectors

(x17 1)’ s (mk’ 1)7 (yk-‘rla 0), EER) (ym’ 0)7
which are linearly independent (implying that m < n + 1) or equivalently,

k m k
T = E a;T; + E QiYi, 1= E Q.
i=1 i=1

i=k+1

Finally, to show that the vectors z2 — z1,..., Tx — 1, Yk+1,-..,Ym are linearly
independent, assume to arrive at a contradiction, that there exist Ao, ..., Ay, not

all 0, such that
k m
ZAK:&—JH)%— Z )\iyi =0.
i=2 i=k+1
Equivalently, defining A1 = —(A2 + - -+ + Am ), we have

k m

Z)\i(l‘i,l)—‘r Z )\i(yi,O)ZO,

=1 i=k+1

which contradicts the linear independence of the vectors

(#1,1),..., (:L‘k7 1), (yk+170)7 oo (Ym, 0).
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1.23
Let X be a nonempty bounded subset of ™. Show that
cl (conv(X)) = conv (cl(X)) .
In particular, if X is compact, then conv(X) is compact (cf. Prop. 1.3.2).

Solution: The set cl(X) is compact since X is bounded by assumption. Hence,
by Prop. 1.3.2, its convex hull, conv(cl(X)), is compact, and it follows that

cl (conv(X)) Cecl (conv (cl(X))) = conv (cl(X)),
It is also true in general that
conv (cl(X)) C conv (cl(conv(X))) = cl(conv(X)),

since by Prop. 1.2.1(d), the closure of a convex set is convex. Hence, the result
follows.

1.24 (Radon’s Theorem)

Let z1,...,Zm be vectors in R", where m > n + 2. Show that there exists a
partition of the index set {1,...,m} into two disjoint sets I and J such that

conv({xi | i€ I}) ﬂconv({xj |j€ J}) # 0.

Hint: The system of n + 1 equations in the m unknowns \1,..., Am,

ikiwizo, i/\i:O,
i=1 i=1

has a nonzero solution A*. Let I = {i | A7 > 0} and J = {j | A\] < 0}.

Solution: Consider the system of n+ 1 equations in the m unknowns A1, ..., Ap,

f:)w£i:0, zm:)\i:(].
=1 i=1

Since m > n + 1, there exists a nonzero solution, call it A\*. Let
I={i|x; >0},  J={j|}\ <0},

and note that I and J are nonempty, and that

DAL= (=) >0

kel keJ
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Consider the vector

* j :
r = Qi T,

Af .
Q= =——, ie 1.
Zkel >‘k
In view of the equations Y " Afz; =0and ) " Af =0, we also have

*_ . .
T = iy,

jeJ

where

where .
-\

- ZkeJ(_Az)7

It is seen that the a; and a; are nonnegative, and that

Zm:Zaj:l,

iel jeJ

je

Q;

so z* belongs to the intersection
conv({:ri | i€ I}) ﬂconv({:cj |j€ J})

Given four distinct points in the plane (i.e., m = 4 and n = 2), Radon’s
Theorem guarantees the existence of a partition into two subsets, the convex
hulls of which intersect. Assuming, there is no subset of three points lying on the
same line, there are two possibilities:

(1) Each set in the partition consists of two points, in which case the convex
hulls intesect and define the diagonals of a quadrilateral.

(2) One set in the partition consists of three points and the other consists of one
point, in which case the triangle formed by the three points must contain
the fourth.

In the case where three of the points define a line segment on which they lie,
and the fourth does not, the triangle formed by the two ends of the line segment
and the point outside the line segment form a triangle that contains the fourth
point. In the case where all four of the points lie on a line segment, the degenerate
triangle formed by three of the points, including the two ends of the line segment,
contains the fourth point.

1.25 (Helly’s Theorem [Hel21])

Consider a finite collection of convex subsets of R", and assume that the inter-
section of every subcollection of n + 1 (or fewer) sets has nonempty intersection.
Show that the entire collection has nonempty intersection. Hint: Use induction.
Assume that the conclusion holds for every collection of M sets, where M > n+1,
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and show that the conclusion holds for every collection of M + 1 sets. In par-
ticular, let C4,...,Crmy1 be a collection of M + 1 convex sets, and consider the
collection of M + 1 sets Bi,..., Byy1, where

Bj:ﬁizl ,,,,, M+1,C¢, 7=1,...,M+ 1.

Note that, by the induction hypothesis, each set B; is the intersection of a collec-
tion of M sets that have the property that every subcollection of n+1 (or fewer)
sets has nonempty intersection. Hence each set Bj is nonempty. Let z; be a vec-
tor in B;. Apply Radon’s Theorem (Exercise 1.24) to the vectors x1,...,Zm+1.
Show that any vector in the intersection of the corresponding convex hulls belongs
to the intersection of C1,...,Crr41.

Solution: Consider the induction argument of the hint, let B; be defined as in
the hint, and for each j, let =; be a vector in B;j. Since M +1 > n + 2, we can
apply Radon’s Theorem to the vectors x1, ..., zar+1. Thus, there exist nonempty
and disjoint index subsets I and J such that TUJ = {1,..., M + 1}, nonnegative
scalars a1, ..., anm+1, and a vector ™ such that

m*:E amizg a;T;, E aizg a; =1
iel i€ il jed

It can be seen that for every ¢ € I, a vector in B; belongs to the intersection
N;jesCj. Therefore, since 2™ is a convex combination of vectors in B;, i € I, x*
also belongs to the intersection NjcsC;. Similarly, by reversing the role of I and
J, we see that =™ belongs to the intersection N;e;Cr. Thus, x* belongs to the
intersection of the entire collection C1,...,Chrr41.

1.26
Consider the problem of minimizing over " the function

max{ fi(z),..., fu(z)},

where f; : R" — (—o00,00], i = 1,..., M, are convex functions, and assume that
the optimal value, denoted f*, is finite. Show that there exists a subset I of
{1,..., M}, containing no more than n + 1 indices, such that

Qien%fn {max fz(x)} = f".

iel

Hint: Consider the convex sets X; = {a: | fi(z) < f*}, argue by contradiction,
and apply Helly’s Theorem (Exercise 1.25).

Solution: Assume the contrary, i.e., that for every index set I C {1,..., M},
which contains no more than n 4 1 indices, we have

inf {maxfi(x)} < fr

zeRT icl
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This means that for every such I, the intersection N;ecrX; is nonempty, where
X; = {x | fi(z) < f*}

From Helly’s Theorem, it follows that the entire collection {X; | ¢ =1,..., M}
has nonempty intersection, thereby implying that

inf { max fz(a:)}<f*

zeR? | i=1,....M

This contradicts the definition of f*. Note: The result of this exercise relates to
the following question: what is the minimal number of functions f; that we need
to include in the cost function max; f;(x) in order to attain the optimal value f*?
According to the result, the number is no more than n + 1. For applications of
this result in structural design and Chebyshev approximation, see Ben Tal and
Nemirovski [BeNO1].

1.27

Let C be a nonempty convex subset of ", and let f : " — (—o0, o] be a convex
function such that f(x) is finite for all z € C'. Show that if for some scalar v, we
have f(x) > « for all z € C, then we also have f(z) > v for all z € cl(C).

Solution: Let T be an arbitrary vector in cl(C). If f(Z) = oo, then we are done,
so assume that f(Z) is finite. Let = be a point in the relative interior of C. By
the Line Segment Principle, all the points on the line segment connecting = and

T, except possibly Z, belong to ri(C) and therefore, belong to C. From this, the
given property of f, and the convexity of f, we obtain for all a € (0, 1],

af(@)+(1—a)f(@) > flax+ (1 - a)F) > .

By letting a — 0, it follows that f(Z) > 7. Hence, f(Z) > v for all x € cl(C).

1.28

Let C be a nonempty convex set, and let S be the subspace that is parallel to
the affine hull of C. Show that

ri(C) = int(C + SH) N C.
Solution: From Prop. 1.4.5(b), we have that for any vector a € ", ri(C + a) =

ri(C) + a. Therefore, we can assume without loss of generality that 0 € C, and
aff (C) coincides with S. We need to show that

ri(C) = int(C + SH) N C.
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Let z € ri(C). By definition, this implies that € C and there exists some
open ball B(z,€) centered at x with radius € > 0 such that

B(z,e)N S C C. (1.10)

We now show that B(z,e) C C 4+ S*. Let z be a vector in B(z,e). Then,
we can express z as z = x + ay for some vector y € R™ with ||y| = 1, and
some a € [0,¢). Since S and S1 are orthogonal subspaces, y can be uniquely
decomposed as y = ys + yg1, where ys € S and ygq1 € S*. Since ||y|| = 1, this
implies that |lys|| < 1 (Pythagorean Theorem), and using Eq. (1.10), we obtain

x4+ ays € B(z,e)NS C C,
from which it follows that the vector z = x + oy belongs to C' + S+, implying
that B(z,e) C C + S*. This shows that = € int(C' + S+) N C.

Conversely, let z € int(C' + S+) N C. We have that € C' and there exists
some open ball B(z, €) centered at & with radius e > 0 such that B(z, ¢) C C+S™.
Since C' is a subset of S, it can be seen that (C' 4+ S*) NS = C. Therefore,

B(z,e)NS C C,

implying that = € ri(C).

1.29

Let zo,...,xm be vectors in R™ such that x1 — zo,...,Tm — xo are linearly
independent. The convex hull of xo, ...,z is called an m-dimensional simplez,
and xo,...,Tm are called the vertices of the simplex.

(a) Show that the dimension of a convex set is the maximum of the dimensions
of all the simplices contained in the set.

(b) Use part (a) to show that a nonempty convex set has a nonempty relative
interior.

Solution: (a) Let C be the given convex set. The convex hull of any subset of
C'is contained in C'. Therefore, the maximum dimension of the various simplices
contained in C' is the largest m for which C contains m + 1 vectors zo, ..., Tm
such that 1 — xo,...,ZTm — xo are linearly independent.

Let K = {zo,...,Zm} be such a set with m maximal, and let aff(K) denote
the affine hull of set K. Then, we have dim(aff(K)) = m, and since K C C, it
follows that aff(K) C aff(C).

We claim that C' C aff(K). To see this, assume that there exists some
x € C, which does not belong to aff (K). This implies that the set {z, zo,...,Zm}
is a set of m 4 2 vectors in C such that x — o, 1 — x0, ..., Tm — xo are linearly
independent, contradicting the maximality of m. Hence, we have C' C aff(K),
and it follows that

aff(K) = aff(C),

thereby implying that dim(C') = m.

31



(b) We first consider the case where C' is n-dimensional with n > 0 and show that
the interior of C' is not empty. By part (a), an n-dimensional convex set contains
an n-dimensional simplex. We claim that such a simplex S has a nonempty
interior. Indeed, applying an affine transformation if necessary, we can assume
that the vertices of S are the vectors (0,0,...,0),(1,0,...,0),...,(0,0,...,1),

ie.,
S—{(ml,...,xn) ‘ x>0, Vi=1,...,n, Zmigl}.
i=1

The interior of the simplex S,

int(S) = {(ml,...,xn)|xi>0, Vi=1,...,n, in<1},
=1

is nonempty, which in turn implies that int(C) is nonempty.

For the case where dim(C') < n, consider the n-dimensional set C' + S* ,
where S+ is the orthogonal complement of the subspace parallel to aff(C). Since
C + S+ is a convex set, it follows from the above argument that int(C' + S*) is
nonempty. Let z € int(C + SL). We can represent x as * = x¢ + w51, where
zc € C and zg1 € S*. It can be seen that z¢ € int(C + S*). Since

ri(C) = int(C' + SY) N C,

(cf. Exercise 1.28), it follows that z. € ri(C), so ri(C) is nonempty.

1.30

Let C1 and C2 be two nonempty convex sets such that C; C Cs.
(a) Give an example showing that ri(C1) need not be a subset of ri(C2).

(b) Assuming that the sets C1 and C3 have the same affine hull, show that
ri(C1) C ri(C2).

(c) Assuming that the sets ri(C1) and ri(C2) have nonempty intersection, show
that ri(C1) C ri(Cs).

(d) Assuming that the sets C; and ri(C:) have nonempty intersection, show
that the set ri(C1) Nri(C2) is nonempty.

Solution: (a) Let C1 be the segment {(1‘171‘2) [0<z1 <1, z2 = 0} and let Cs
be the box {(1‘1,1‘2) [0<z1 <1, 0< 22 < 1}. ‘We have

ri(Ch) = {(3517352) |0< 21 <1, 22 = 0},

ri(Ce) = {(331,332) [0<z1<1, 0<z:2 < l}.

Thus C1 C Cs, while ri(C1) Nri(Cs) = @.
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(b) Let =z € ri(Cy), and consider a open ball B centered at = such that B N
aff (C1) C C1. Since aff(C1) = aff (C2) and C1 C O, it follows that BNaff(C2) C
Cs, so z € ri(Cy). Hence ri(C1) C ri(Cb).

(c) Because C1 C C, we have
ri(Ch) = ri(C1 N Cy).
Since ri(C1) Nri(C2) # @, there holds
ri(C1 N Cs) =1i(Ch) Nri(Cy)
[P(rop). 1.4.5(a)]. Combining the preceding two relations, we obtain ri(C:) C
ri(Cs).

(d) Let z2 be in the intersection of C1 and ri(C2), and let z1 be in the relative
interior of C; [ri(C1) is nonempty by Prop. 1.4.1(b)]. If 1 = z2, then we are
done, so assume that x1 # z2. By the Line Segment Principle, all the points
on the line segment connecting x1 and x2, except possibly x2, belong to the
relative interior of C'i. Since C; C (3, the vector z; is in C2, so that by the
Line Segment Principle, all the points on the line segment connecting x; and 2,
except possibly z1, belong to the relative interior of C2. Hence, all the points on
the line segment connecting x1 and x2, except possibly x1 and x2, belong to the
intersection ri(C1) N ri(C2), showing that ri(C1) Nri(C2) is nonempty.

1.31

Let C be a nonempty convex set.

(a) Show the following refinement of Prop. 1.4.1(c): x € ri(C) if and only if for
every T € aff(C'), there exists a v > 1 such that x + (y — 1)(z — ) € C.

(b) Assuming that the origin lies in ri(C), show that cone(C) coincides with
aff (C).

(c) Show the following extension of part (b) to a nonconvex set: If X is a
nonempty set such that the origin lies in the relative interior of conv(X),
then cone(X) coincides with aff(X).

Solution: (a) Let = € ri(C). We will show that for every T € aff(C'), there exists
a v > 1 such that x + (v — 1)(x — T) € C. This is true if T = z, so assume that
T # x. Since = € ri(C), there exists € > 0 such that

{z |z — | < e} Naff(C) c C.

Choose a point z. € C in the intersection of the ray {x +a—z)|a> 0} and
the set {z |z —z| < e} Naff(C). Then, for some positive scalar o,

T —Te = ae(r — 7).
Since z € ri(C) and ZT. € C, by Prop. 1.4.1(c), there is 7. > 1 such that

et (e — V(@) € C,
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which in view of the preceding relation implies that
x4+ (e — Dac(z —7) € C.

The result follows by letting v = 1 + (7. — 1)a. and noting that v > 1, since
(Ye — 1)ae > 0. The converse assertion follows from the fact C' C aff(C) and
Prop. 1.4.1(c).

(b) The inclusion cone(C') C aff(C) always holds if 0 € C. To show the reverse
inclusion, we note that by part (a) with z = 0, for every T € aff(C), there exists
~v > 1 such that z = (v — 1)(—%) € C. By using part (a) again with x = 0, for
Z € C C aff(C), we see that there is 4 > 1 such that z = (¥ —1)(—%) € C, which
combined with Z = (y — 1)(—7) yields z = (§ — 1)(y — 1)T € C. Hence

S

G-DO6-1

with z € C and (¥ —1)(y—1) > 0, implying that T € cone(C) and, showing that
aff(C) C cone(C).

(c) This follows by part (b), where C' = conv(X), and the fact

T =

cone(conv(X)) = cone(X)

[Exercise 1.18(b)].

1.32

Let C' be a nonempty set.

(a) If C is convex and compact, and the origin is not in the relative boundary
of C, then cone(C') is closed.

(b) Give examples showing that the assertion of part (a) fails if C' is unbounded
or the origin is in the relative boundary of C.

(¢) If C is compact and the origin is not in the relative boundary of conv(C),
then cone(C) is closed. Hint: Use part (a) and Exercise 1.18(b).

Solution:

(a) If 0 € C, then 0 € ri(C) since 0 is not on the relative boundary of C.
By Exercise 1.31(b), it follows that cone(C) coincides with aff(C), which is a
closed set. If 0 ¢ C, let y be in the closure of cone(C) and let {yx} C cone(C)
be a sequence converging to y. By Exercise 1.15, for every yi, there exists a
nonnegative scalar ay, and a vector x € C such that yr = axzk. Since {yrx} — v,
the sequence {yx} is bounded, implying that

agllzy]| < sup [lym|| < oo, V k.
m>0
We have inf >0 ||2m]|| > 0, since {zx} C C and C is a compact set not containing
the origin, so that

SUP,,>o0 [lym |

= infrzo [z

00, YV k.
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Thus, the sequence {(ax,zr)} is bounded and has a limit point («,z) such that
a > 0and z € C. By taking a subsequence of {(a,zx)} that converges to («, z),
and by using the facts yr = arxy for all k and {yx} — y, we see that y = ax
with a > 0 and = € C. Hence, y € cone(C'), showing that cone(C') is closed.

(b) To see that the assertion in part (a) fails when C' is unbounded, let C' be the
line {(1‘1,1‘2) |1 =1, z2 € ?R} in $? not passing through the origin. Then,
cone(C) is the nonclosed set {(xl, z2) |1 >0, z2 € ER} U {(0,0)}.

To see that the assertion in part (a) fails when C' contains the origin on its
relative boundary, let C be the closed ball {(:El,xg) | (x1 —1)*+23 < 1} in R2.

Then, cone(C) is the nonclosed set {(xl,xz) | 21 >0, z2 € ?R} U {(0,0)} (see
Fig. 1.3.2).

(c) Since C' is compact, the convex hull of C' is compact (cf. Prop. 1.3.2). Because
conv(C') does not contain the origin on its relative boundary, by part (a), the cone
generated by conv(C) is closed. By Exercise 1.18(b), cone(conV(C)) coincides
with cone(C) implying that cone(C') is closed.

1.33

(a) Let C be a nonempty convex cone. Show that ri(C) is also a convex cone.

(b) Let C = cone ({m, e 7avm}). Show that

ri(C’) = {Z QT4

a; >0, i—l,...,m}.

Solution: (a) By Prop. 1.4.1(b), the relative interior of a convex set is a convex
set. We only need to show that ri(C') is a cone. Let y € ri(C'). Then, y € C' and
since C' is a cone, ay € C for all « > 0. By the Line Segment Principle, all the
points on the line segment connecting y and ay, except possibly ay, belong to
ri(C'). Since this is true for every a > 0, it follows that ay € ri(C) for all a > 0,
showing that ri(C) is a cone.

(b) Consider the linear transformation A that maps (au,...,am) € R™ into
Z:’;l a;x; € R". Note that C is the image of the nonempty convex set

{(ocl,...7am)|o¢1 20,...,am20}

under the linear transformation A. Therefore, by using Prop. 1.4.3(d), we have
ri(C) = ri(A~ {(ozl,...,ozm) a1 >0,...,am > 0})

:A-ri<{(a1,...,am)\alzo,...,amEO})

:A'{(a17'--aam)|al>0,...,am>0}

—{Zaimi|a1>07...,am>0}.
i=1
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1.34

Let A be an m X n matrix and let C' be a nonempty convex set in ™. Assuming
that A=' - 1i(C) is nonempty, show that

(A7 C) = A7 ri(0), (A7 0)=A""-cl(O).
(Compare these relations with those of Prop. 1.4.4.)
Solution: Define the sets
D=R"xC, S={(z,Az)|zeR"}.
Let T be the linear transformation that maps (z,y) € "™ into z € R". Then

it can be seen that
Ah.c=T-(DNSY). (1.11)

The relative interior of D is given by ri(D) = R" x ri(C), and the relative interior
of S is equal to S (since S is a subspace). Hence,

ATHai(C) =T (ri(D)N S). (1.12)
In view of the assumption that A™' - 1i(C) is nonempty, we have that the in-
tersection ri(D) N S is nonempty. Therefore, it follows from Props. 1.4.3(d) and

1.4.5(a) that
ri(T-(DNS))=T-(ri(D)NS). (1.13)

Combining Egs. (1.11)-(1.13), we obtain

(A7 - C)=A"" - 1i(0).

Next, we show the second relation. We have
AT (@) ={z | Az e d(C)} =T - {(z,Az) | Az € c(C)} =T - (cI(D) N S).

Since the intersection ri(D) NS is nonempty, it follows from Prop. 1.4.5(a) that
c(D)NS =cl(DNS). Furthermore, since T' is continuous, we obtain

AT (C)=T-c(DNS) Cel(T-(DNS)),
which combined with Eq. (1.11) yields
A7 c(O) Cel(ATh - O).
To show the reverse inclusion, cl(A™" - C) € A™' - cl(C), let T be some vector in
cl(A™! . ©). This implies that there exists some sequence {x1} converging to T

such that Az € C for all k. Since x, converges to T, we have that Axj converges
to AZ, thereby implying that AZ € cl(C), or equivalently, T € A™' - cl(C).
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1.35 (Closure of a Convex Function)

Consider a proper convex function f : "™ +— (—o00,00] and the function whose
epigraph is the closure of the epigraph of f. This function is called the closure
of f and is denoted by cl f. Show that:

(a) clf is the greatest lower semicontinuous function majorized by f, i.e., if
g: R" — [—00,00] is lower semicontinuous and satisfies g(z) < f(z) for all
x € R", then g(z) < (clf)(z) for all z € R".

(b) clf is a closed proper convex function and

(cl f)(z) = f(=), Ve ri(dom(f)).
(c) fz € ri(dom(f)) and y € dom(cl f), we have

(A f)y) = lai%f(y +a(z —vy)).

(d) Assume that f = f1 + -+ fim, where f; : R" — (—oc0,00], i =1,...,m,
are proper convex functions such that N>, ri (dom(fi)) # (. Show that

(clf)(@) = (f1)(@)+ -+ (c fm)(x), VzeR"

Solution: (a) Let g : R" — [—o00,00] be such that g(z) < f(z) for all z €
R™. Choose any z € dom(cl f). Since epi(cl f) = cl(epi(f) , we can choose a

sequence {(xk, wk)} € epi(f) such that z — x, wr — (cl f)(z). Since g is lower
semicontinuous at x, we have

g(z) < 1ikminfg(mk) < likm inf f(zx) < likm infwg = (cl f)(z).

Note also that since epi(f) C epi(cl f), we have (cl f)(z) < f(z) for all z € R™.

(b) For the proof of this part and the next, we will use the easily shown fact that
for any convex function f, we have

ri(epi(f)) = {(x,w) |z € ri(dom(f)), f(z) < w}.

Let z € ri(dom(f))7 and consider the vertical line L = {(m,w) | w e §R}
Then there exists @ such that (z, @) € LNri (epi(f)). Let W be such that (z,w) €
Lﬂcl(epi(f)). Then, by Prop. 1.4.5(a), we have Lﬂcl(epi(f)) = cl(Lﬂepi(f)),
so that (z,w) € cl(L N epi(f)). It follows from the Line Segment Principle that
the vector (Jc,ﬁ) + a(w — ﬁ))) belongs to epi(f) for all @ € [0,1). Taking the
limit as o — 1, we see that f(z) < w for all w such that (z,w) € LN cl(epi(f)),
implying that f(z) < (cl f)(z). On the other hand, since epi(f) C epi(cl f), we
have (cl f)(z) < f(z) for all z € R", so f(z) = (cl f)(x).
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We know that a closed convex function that is improper cannot take a finite
value at any point. Since cl f is closed and convex, and takes a finite value at all
points of the nonempty set ri(dom(f)), it follows that cl f must be proper.

(c) Since the function cl f is closed and is majorized by f, we have
1 < lim inf(cl - < lim inf - .
(c1f)(y) < liminf(cl f) (y+a@-y) < im in fy+alz—1y)

To show the reverse inequality, let w be such that f(z) < w. Then, (z,w) €
ri (epi(f)), while (y7 (cl f) (y)) €cl (epi(f)). From the Line Segment Principle, it
follows that
(aac +(1-a)y,cw+(1— a)(clf)(y)) € ri(epi(f)), Vo€ (0,1].
Hence,
floz+(1—a)y) <ow+(1-a)df)). ¥ae (@1
By taking the limit as o — 0, we obtain

liminf f(y + oz~ y)) < (1)),

thus completing the proof.
(d) Let € N qri (dom(fi)). Since by Prop. 1.4.5(a), we have

ri(dom(f)) = NiZqri (dom(fi)),

it follows that = € ri(dom(f)). By using part (c), we have for every y € dom(cl f),

m

(L)) =lim f(y + ol —y)) = Zli“ fily+ otz =) =D (A f)).

i=1

1.36

Let C be a convex set and let M be an affine set such that the intersection C'N M
is nonempty and bounded. Show that for every affine set M that is parallel to
M, the intersection C'N M is bounded.

Solution: The assumption that “C' N M is bounded” must be modified to read
“cl(C)N M is bounded”. Assume first that C is closed. Since C' N M is bounded,
by part (c) of the Recession Cone Theorem (cf. Prop. 1.5.1), Renn = {0}. This
and the fact Roenn = Re N Rar, imply that Re N Ry = {0}. Let S be a subspace
such that M = z+ S for some € M. Then Ry = S, so that Re NS = {0}. For
every affine set M that is parallel to M, we have Ry = S, so that

RCOMZRcﬂRMZRcﬂSZ{O}.

Therefore, by part (c) of the Recession Cone Theorem, C' N M is bounded.

In the general case where C' is not closed, we replace C' with cl(C'). By
what has already been proved, cl(C) N M is bounded, implying that C' N M is
bounded.
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1.37 (Properties of Cartesian Products)
Given nonempty sets X; C ", i =1,...,m, let X = X3 x --- X X, be their
Cartesian product. Show that:

(a) The convex hull (closure, affine hull) of X is equal to the Cartesian product
of the convex hulls (closures, affine hulls, respectively) of the Xj;.

(b) If all the sets X1,...,X,, contain the origin, then
cone(X) = cone(X1) X - -+ x cone(Xm).

Furthermore, the result fails if one of the sets does not contain the origin.

(c) If all the sets X1,..., X, are convex, then the relative interior (recession
cone) of X is equal to the Cartesian product of the relative interiors (re-
cession cones, respectively) of the Xj.

Solution: (a) We first show that the convex hull of X is equal to the Cartesian
product of the convex hulls of the sets X;, i = 1,...,m. Let y be a vector that
belongs to conv(X). Then, by definition, for some k, we have

k k
y:Zaiyi7 with a; >0, i =1,...,m, Zai:]v
=1

=1

where y; € X for all 4. Since y; € X, we have that y; = (x%,...,2¢,) for all 4,
with 21 € X1,..., 25, € Xm. It follows that

k k k
_ i iy i i
y = ai(x], . Ty) = a;xy, ..., iy, |,
i=1 i=1 i=1

thereby implying that y € conv(X1) X - -+ X conv(Xm).

To prove the reverse inclusion, assume that y is a vector in conv(Xy) x - -+ x
conv(X,,). Then, we can represent y as y = (y1,...,Ym) with y; € conv(X;),
ie, foralli=1,...,m, we have

kg ki
yi:Za}az}, zj € Xy, V 4, a; >0, Vj, Za;-:l.
j=1 j=1

First, consider the vectors

1.2 m 1.2 m 1,2 m
(xl,xr17"'7x7'm_1)7 ('TZ:xrla"'7x7‘m_1)7'"7(xki,xr17"'7x'rm_1)7
for all possible values of 7r1,...,rm—1, i.e., we fix all components except the

first one, and vary the first component over all possible m;’s used in the convex
combination that yields y;. Since all these vectors belong to X, their convex
combination given by

k1

1.1 2 m
QGTG ) Ty ey T

j=1
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belongs to the convex hull of X for all possible values of r1,...,7m—1. Now,
consider the vectors

k1 k1
1.1 2 m 1.1 2 m
Oéjl‘j 7x1,~~~7m7‘m_1 goeey O(jﬂ,’j ,ku,...,xrm_l ,
Jj=1

=1

i.e., fix all components except the second one, and vary the second component
over all possible x?’s used in the convex combination that yields y2. Since all
these vectors belong to conv(X), their convex combination given by

k1 kg
1.1 2 2 m
a;T; ), ;T 7”‘7me71

j=1 j=1

belongs to the convex hull of X for all possible values of r2, ..., rm—1. Proceeding
in this way, we see that the vector given by

k1 ko km

1.1 2,2 m_m
a;T; ), QT4 )y, a; Ty

Jj=1 Jj=1 Jj=1

belongs to conv(X), thus proving our claim.

Next, we show the corresponding result for the closure of X. Assume that
y=(x1,...,Zm) € cl(X). This implies that there exists some sequence {y*} C X
such that y* — y. Since y* € X, we have that v* = (2%,...,z%) with «¥ € X,
for each 7 and k. Since yk — vy, it follows that z; € cl(X;) for each ¢, and
hence y € cl(X1) X -+ x cl(X,,). Conversely, suppose that y = (21,...,2m) €

cl(X1) x -+ x cl(X,,). This implies that there exist sequences {z¥} C X; such

that «¥ — a; for each i = 1,...,m. Since z¥ € X; for each i and k, we have that
y* = (aF,...,28) € X and {y*} converges to y = (21,...,xm), implying that
y € cl(X).

Finally, we show the corresponding result for the affine hull of X. Let’s
assume, by using a translation argument if necessary, that all the X;’s contain
the origin, so that aff(X1),...,aff(X,,) as well as aff(X) are all subspaces.

Assume that y € aff(X). Let the dimension of aff(X) be r, and let
y',...,y" be linearly independent vectors in X that span aff(X). Thus, we

can represent y as
y=>_ 8",
=1

where 3',..., 8" are scalars. Since y* € X, we have that y* = (z%,...,z%,) with
z; € X;. Thus,

y= iﬁl(acll,,a::n) = (iﬁ%ﬁ,,i:ﬁ%%) ,
i=1 i=1 i=1
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implying that y € aff(X1) x --- x aff (X,,). Now, assume that y € aff(X;) x
-+ x aff(X,,). Let the dimension of aff(X;) be r;, and let z;,...,z,’ be linearly
independent vectors in X; that span aff(X;). Thus, we can represent y as

71 Tm
_ E 7 E J .0
Y= ﬂlxh'"? ﬁ'mxm
Jj=1 j=1

Since each X; contains the origin, we have that the vectors

71 T2 m
(Zﬁ{:ﬂi,o,...,o) : <0,Zﬂgx;',o,...,o> (o,...,ZﬂZ,lxzn) :
Jj=1 J=1 J=1

belong to aff (X)), and so does their sum, which is the vector y. Thus, y € aff (X),
concluding the proof.

(b) Assume that y € cone(X). We can represent y as

T
_ i
Y= Yy,
i=1
for some r, where a',...,a" are nonnegative scalars and y; € X for all 4. Since
y' € X, we have that y* = (z71,...,2;,) with =} € X;. Thus,
™ r ™
_ i i iy i i i i
y= A" (x]y ey Tyy) = o'z, ..., o'z, |,
i=1 i=1 i=1

implying that y € cone(X1) X - -+ x cone(X,,).
Conversely, assume that y € cone(X1) X --- X cone(Xy,). Then, we can

represent y as
71 ™m
_ E J E J el
Y= Q1T75 -0 X T )
j=1 j=1

where xf € X; and af > 0 for each ¢ and j. Since each X; contains the origin,
we have that the vectors

1 T2 ™m

J pd J pd J d
E oyx7,0,...,0 |, O,E 5T5,0,...,0 | ..., 0,...,5 AT | s
Jj=1 Jj=1 Jj=1

belong to the cone(X), and so does their sum, which is the vector y. Thus,
y € cone(X), concluding the proof.
Finally, consider the example where

X1:{O71}C%, XQZ{].}C%.
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For this example, cone(X1) X cone(X2) is given by the nonnegative quadrant,
whereas cone(X) is given by the two halflines «(0,1) and «(1,1) for @ > 0 and
the region that lies between them.

(c) We first show that

ri(X) =ri(X1) X -+ X ri(Xm).

=

= (x1,...,Tm) € ri(X). Then, by Prop. 1.4.1 (c), we have that for all

et
= (T1,...,Tm) € X, there exists some v > 1 such that

T
T

8|

z+(y—1)(z—7) e X.
Therefore, for all Z; € X;, there exists some v > 1 such that
zi + (v — (i — 73) € X,

which, by Prop. 1.4.1(c), implies that z; € ri(X;), i.e., z € ri(X1) X - - X ri(Xm).
Conversely, let = (z1,...,%m) € ri(X1) X -+ X ri(Xs). The above argument
can be reversed through the use of Prop. 1.4.1(c), to show that = € ri(X). Hence,
the result follows.

Finally, let us show that

RX:Rxl X -+ X Rx,,.

Let y = (y1,...,ym) € Rx. By definition, this implies that for all z € X and
a > 0, we have x + ay € X. From this, it follows that for all x; € X; and o > 0,
x; +oay; € Xy, so that y; € Rx,, implying that y € Rx,; x--- X Rx,,. Conversely,
let y = (y1,...,ym) € Rx; X --- X Rx,,. By definition, for all z; € X; and o > 0,
we have x; + ay; € X;. From this, we get for allz € X and a« > 0, z + ay € X,
thus showing that y € Rx.

1.38 (Recession Cones of Nonclosed Sets)

Let C be a nonempty convex set.
(a) Show that
Rc C RCI(C)7 Cl(Rc) C Rd(C).
Give an example where the inclusion cl(Rc) C Rqc) is strict.

(b) Let C be a closed convex set such that C' C C. Show that Rc C Rg. Give
an example showing that the inclusion can fail if C' is not closed.

Solution:

(a) Let y € Rc. Then, by the definition of Rc,  + ay € C for every z € C and
every a > 0. Since C C cl(C), it follows that = + ay € cl(C) for some z € cl(C)
and every a > 0, which, in view of part (b) of the Recession Cone Theorem (cf.
Prop. 1.5.1), implies that y € Rcj(c). Hence

Rc C Rac)-
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By taking closures in this relation and by using the fact that Rq ¢ is closed [part
(a) of the Recession Cone Theorem], we obtain cl(Rc) C Rac)-
To see that the inclusion cl(Rc) C Rei(c) can be strict, consider the set

C={(z1,22) [0< @1, 0< w2 <1} U{(0,1)},
whose closure is
c(C) ={(z1,22) | 0 <21, 0 < g <1}
The recession cones of C' and its closure are
RC:{(0,0)}, Rd(c):{(xl,xgﬂogml, :rzzO}.

Thus, cl(R¢) = {(O, O)}, and cl(R¢) is a strict subset of Rg(¢)y.

(b) Let y € Rc and let = be a vector in C. Then we have  + ay € C for all
a > 0. Thus for the vector z, which belongs to C, we have z + ay € C for all
a > 0, and it follows from part (b) of the Recession Cone Theorem (cf. Prop.
1.5.1) that y € Rg. Hence, Rc C Rg.

To see that the inclusion Rc C R can fail when C is not closed, consider
the sets

C = {($17502) | x1 >0, T2 IO}7 62 {(CEl,m'z) ‘ 1 > 0, 0< s < 1}.
Their recession cones are
Re =C = {(z1,22) | 21 >0, 22 =0}, Rz ={(0,0)},

showing that Rc¢ is not a subset of Rg.

1.39 (Recession Cones of Relative Interiors)

Let C be a nonempty convex set.
(a) Show that Rri(C) = Rd(c)‘

(b) Show that a vector y belongs to Ry if and only if there exists a vector
z € ri(C) such that z + ay € ri(C) for every a > 0.

(c) Let C be a convex set such that C' = ri(C)) and C C C. Show that Rc C
R. Give an example showing that the inclusion can fail if C' # ri(C).

Solution: (a) The inclusion R.icy C Reyc) follows from Exercise 1.38(b).

Conversely, let y € Rey(cy, so that by the definition of Reycy, z+ay € cl(C)
for every z € cl(C) and every a > 0. In particular, z + ay € cl(C) for every
z € ri(C) and every a > 0. By the Line Segment Principle, all points on the
line segment connecting = and = + ay, except possibly = + ay, belong to ri(C),
implying that = + ay € ri(C) for every = € ri(C) and every a > 0. Hence,
y € Rii(cy, showing that Recy C Rricc)-
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(b) If y € R.i(c), then by the definition of R,y for every vector « € ri(C') and
a > 0, the vector = + ay is in ri(C), which holds in particular for some z € ri(C)
[note that ri(C') is nonempty by Prop. 1.4.1(b)].

Conversely, let y be such that there exists a vector = € ri(C) with z+ay €
ri(C) for all & > 0. Hence, there exists a vector z € cl(C) with z+ ay € cl(C) for
all @ > 0, which, by part (b) of the Recession Cone Theorem (cf. Prop. 1.5.1),
implies that y € Roi(cy. Using part (a), it follows that y € R,i(c), completing the
proof.

(c) Using Exercise 1.38(c) and the assumption that C' C C [which implies that
C C cl(C)], we have
Rc C Ry = Ry@) = R,

where the equalities follow from part (a) and the assumption that C = 1i(C).

To see that the inclusion Rc C Rg can fail when C # 1i(C), consider the
sets

C={(z1,22) 2120, 0<m2 <1}, C={(a1,22) 2120, 0<x2 <1},
for which we have C' C C and
Re = {(z1,02) |21 >0, 22 =0},  Rg={(0,0)},

showing that Rc¢ is not a subset of Rg.

1.40

This exercise is a refinement of Prop. 1.5.6. Let {X} and {Cy} be sequences of
closed convex subsets of R™, such that the intersection

X = Mo Xs

is specified by linear inequality constraints as in Prop. 1.5.6. Assume that:
(1) Xk+1 C Xk and Ck+1 C Cy, for all k.
(2) Xk N C is nonempty for all k.

(3) We have
Rx = Lx, RxNRc C Le,
where
Rx = ﬂzo:()RXk7 Lx = ﬂzonka,
Re = NiZoRey,, Le =MoLy,

Then the intersection NFZy(Xx N Ck) is nonempty. Hint: Consider the sets
Cr = X N Cy and the intersection X N (N52,Ck). Apply Prop. 1.5.6.

Solution: For each k, consider the set C, = X N Cy. Note that {Ci} is a
sequence of nonempty closed convex sets and X is specified by linear inequality
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constraints. We will show that, under the assumptions given in this exercise,

the assumptions of Prop. 1.5.6 are satisfied, thus showing that the intersection

X N (N72C) [which is equal to the intersection NPy (Xx N Cy)] is nonempty.
Since Xi41 C X and Cr41 C Ck for all k, it follows that

ék-H C ék, vk,

showing that assumption (1) of Prop. 1.5.6 is satisfied. Similarly, since by as-
sumption Xy N Cj is nonempty for all k£, we have that, for all k, the set

Xﬂék:XﬂXkﬂCk:XkﬂCk7

is nonempty, showing that assumption (2) is satisfied. Finally, let R denote the

set R = ﬂz":ong. Since by assumption C} is nonempty for all k, we have, by
part (e) of the Recession Cone Theorem, that ng = Rx, N Rc,, implying that

= ﬂ]?;o(RXk N Rck)
= (MZoRx,) N (NPZoRe, )
= Rx NRc.

Similarly, letting L denote the set L = ml?;OLék’ it can be seen that L = LxNLc.
Since, by assumption Rx N Rc C Lc¢, it follows that

RxNR=RxNRc C Lc,
which, in view of the assumption that Rx = Lx, implies that
RxNRCLcNLx =1L,

showing that assumption (3) of Prop. 1.5.6 is satisfied, and thus proving that the
intersection X N (N32,Ck) is nonempty.

1.41

Let C be a nonempty convex subset of R and let A be an m X n matrix. Show
that if Ry N N(A) = {0}, then

cl(A-C)=A-cl(C), A-Ryey = Raaoy-

Give an example showing that A - Rcyc) and Ra.cic) may differ when Reyc) N
N(A) £ {0},

Solution: Let y be in the closure of A - C'. We will show that y = Az for some
z € cl(C). For every € > 0, the set

Ce=cl(C) N {z | ly — Az|| < e}
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is closed. Since A-C' C A-cl(C) and y € cl(A-C), it follows that y is in the closure
of A-cl(C), so that C. is nonempty for every € > 0. Furthermore, the recession
cone of the set {m | | Az —y]| < e} coincides with the null space N(A), so that
Rc. = Ra(cy NN(A). By assumption we have Re(cy N N(A) = {0}, and by part
(c) of the Recession Cone Theorem (cf. Prop. 1.5.1), it follows that Ce is bounded
for every € > 0. Now, since the sets C. are nested nonempty compact sets, their
intersection Ne>oCe is nonempty. For any x in this intersection, we have x € cl(C)
and Az —y = 0, showing that y € A - cl(C). Hence, cl(A-C) C A-cl(C). The
converse A - cl(C) C cl(A - C) is clear, since for any = € cl(C) and sequence
{zx} C C converging to x, we have Az, — Az, showing that Az € cl(4 - C).
Therefore,

cl(A-C)=A-cl(C). (1.14)

We now show that A - Rec) = Ra.cic)- Let y € A- Reyc). Then, there
exists a vector u € Ry such that Au = y, and by the definition of R,
there is a vector z € cl(C) such that z + au € cl(C) for every a > 0. Therefore,
Az + aAu € A - cl(C) for every a > 0, which, together with Az € A - cl(C) and
Au = y, implies that y is a direction of recession of the closed set A - cl(C) [cf.
Eq. (1.14)]. Hence, A Ry¢c) C Ra.q(c)-

Conversely, let y € Ra.ci(c). We will show that y € A - Rej(). This is true
if y = 0, so assume that y # 0. By definition of direction of recession, there is a
vector z € A-cl(C) such that z+ay € A-cl(C) for every a > 0. Let x € cl(C) be
such that Az = z, and for every positive integer k, let zx € cl(C) be such that
Az, = z + ky. Since y # 0, the sequence {Az,} is unbounded, implying that
{z1} is also unbounded (if {xx} were bounded, then {Axzy} would be bounded,
a contradiction). Because xy # x for all k, we can define

T — X

v k.

Uk = 77—
" T — 2l

Let u be a limit point of {ux}, and note that u # 0. It can be seen that
w is a direction of recession of cl(C) [this can be done similar to the proof of
part (c) of the Recession Cone Theorem (cf. Prop. 1.5.1)]. By taking an appro-
priate subsequence if necessary, we may assume without loss of generality that
limg_ oo ur = u. Then, by the choices of ur and xx, we have

Az — A
Au = lim Augp = lim Tk L — lim Y,
implying that limg_.o Wk*lll exists. Denote this limit by A. If A =0, then w is

in the null space N(A), implying that u € R(cy N N(A). By the given condition
Rcy N N(A) = {0}, we have u = 0 contradicting the fact u # 0. Thus, A is
positive and Au = Ay, so that A(u/A) = y. Since R (¢ is a cone [part (a) of the
Recession Cone Theorem] and u € Rci(c), the vector u/X is in Reycy, so that y
belongs to A - Rei(cy. Hence, R4.cicy C A - Rq(c), completing the proof.

As an example showing that A- R c) and R .ccy may differ when ReycyN
N(A) # {0}, consider the set

C= {(93171’2) | 1 € R, z2 > 39?}7
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and the linear transformation A that maps (z1,z2) € R2 into z1 € R. Then, C'
is closed and its recession cone is

Re ={(z1,22) | &1 =0, z2 > 0},

so that A- Rc = {0}, where 0 is scalar. On the other hand, A - C coincides with
§R, so that Ra.c =R 7& A Rc.

1.42

Let C be a nonempty convex subset of R". Show the following refinement of
Prop. 1.5.8(a) and Exercise 1.41: if A is an m x n matrix and Reycy N.N(A) is a
subspace of the lineality space of cl(C), then

cl(A-C)=A-cl(C), ARy = Raae)-

Solution: Let S be defined by
S = Rcl(C) n ]\/v(A)7

and note that S is a subspace of L.(c) by the given assumption. Then, by Lemma
1.5.4, we have

c(C) = (cl(C) N S*) + S,
so that the images of cl(C) and cl(C') N S* under A coincide [since S C N(A)],
ie.,

A-cl(C)=A- (cd(C)NST). (1.15)

Because A-C C A-cl(C), we have

cl(A-C) Ccl(A-cl(C)),

which in view of Eq. (1.15) gives
(- ) cel(4- (d(C)nsh)).

Define
C=cl(C)n S+

so that the preceding relation becomes
cl(A-C) Ccl(A-O). (1.16)
The recession cone of C is given by
Rz = RacyN S+, (1.17)
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[cf. part (e) of the Recession Cone Theorem, Prop. 1.5.1], for which, since S =
R.icy N N(A), we have

RzNN(A)=85n S* ={0}.

Therefore, by Prop. 1.5.8, the set A-C is closed, implying that cl(A-C) = A-C.
By the definition of C, we have A-C C A - cl(C), implying that cl(A - C) C
A-cl(C) which together with Eq. (1.16) yields cl(A-C) C A-cl(C). The converse
A-cl(C) C cl(A - C) is clear, since for any z € cl(C) and sequence {zx} C C
converging to x, we have Az, — Az, showing that Az € cl(A - C). Therefore,

cl(A-C) = A-cl(C). (1.18)

We next show that A - Ry = Ra.acc)- Let y € A- Rec). Then, there
exists a vector u € Rcyc) such that Au = y, and by the definition of R,
there is a vector z € cl(C) such that z + au € cl(C) for every a > 0. Therefore,
Az + aAu € Acl(C) for some z € cl(C) and for every o > 0, which together with
Az € A-cl(C) and Au = y implies that y is a recession direction of the closed
set A - CI(C) [Eq. (1.18)]. Hence, A- Rcl(C) C RAACI(C).

Conversely, in view of Eq. (1.15) and the definition of C, we have

Ra.cey=R,&-
Since Rz N N(A) = {0} and C is closed, by Exercise 1.41, it follows that

R,5=A-Rg

which combined with Eq. (1.17) implies that
A- Rﬁ CcCA- Rcl(0)~

The preceding three relations yield R4.ci(cy C A - Rei(cy, completing the proof.

1.43 (Recession Cones of Vector Sums)

This exercise is a refinement of Prop. 1.5.9.

(a) Let Ci,...,Cm be nonempty closed convex subsets of " such that the
equality y1 + -+ + ym = 0 with y; € Rc, implies that each y; belongs to
the lineality space of C;. Then, the vector sum C; + --- 4+ C), is a closed
set and

RC1+"'+Cm = Rcl + -+ Rom.

(b) Show the following extension of part (a) to nonclosed sets: Let Cy,...,Cn,
be nonempty convex subsets of R™ such that the equality y1 +- -4+ ym =0
with y; € Ra(c,) implies that each y; belongs to the lineality space of
cl(C;). Then, we have

c(C1+ -4+ Cn) =cl(Cr) + - 4+ cl(C),
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Racy+-+cm) = Raey) + -+ Raom)-

Solution: (a) Let C' be the Cartesian product Cy X --- X Cp,. Then, by Exercise
1.37, C is closed, and its recession cone and lineality space are given by

Rc:Rcl><~~~><Rcm, Lc:Lclx---XLcm.

Let A be a linear transformation that maps (z1,...,2m) € ™" into 21 + -+ +
Zm € N". The null space of A is the set of all (y1, ..., ym) such that y1+- - -+ym =
0. The intersection Rc NN (A) consists of points (y1, ..., ym) such that y1 +---+
Ym = 0 with y; € Ro, for all . By the given condition, every vector (yi,...,Ym)
in the intersection Rc N N(A) is such that y; € L¢, for all ¢, implying that
(y1,-..,ym) belongs to the lineality space Lc. Thus, Re N N(A) C Le N N(A).
On the other hand by definition of the lineality space, we have Lo C Rc¢, so that
LcNN(A) C Re N N(A). Therefore, Rc N N(A) = Lc N N(A), implying that
Rc N N(A) is a subspace of Lc. By Exercise 1.42, the set A - C is closed and
Ra.c =A-R¢. Since A-C =C1 + -+ + Ch, the assertions of part (a) follow.

(b) The proof is similar to that of part (a). Let C' be the Cartesian product
C1 X -+ X Cpy. Then, by Exercise 1.37(a),

cl(C) =cl(Cy) x -+ x cl(Cry), (1.19)
and its recession cone and lineality space are given by

Racy = Reeyy X -+ X Recm), (1.20)

Loy = Leaey) X -+ X Lecpm)-

Let A be a linear transformation that maps (z1,...,Zm) € ™" into 1 + -+ +
Tm € R™. Then, the intersection R.(C) N N(A) consists of points (y1,...,Ym)
such that y1 + -+ + ym = 0 with y; € Royc,) for all i. By the given condition,
every vector (y1, ..., ¥m) in the intersection ReycyNN(A) is such that y; € Lec;)
for all 4, implying that (yi,...,%m) belongs to the lineality space Lqcy. Thus,
Recy NN(A) C Lacy N N(A). On the other hand by definition of the lineality
space, we have Loy C Rai(cy, so that Lecy N N(A) C Rocy N N(A). Hence,
Rocy N N(A) = Ly N N(A), implying that Ry N N(A) is a subspace of
L(cy. By Exercise 1.42, we have cl(A-C) = A-cl(C) and Ra.ccy = A Ry,
from which by using the relation A-C = C1 + --- + Cp,, and Egs. (1.19) and
(1.20), we obtain

c(Cr+ -4+ Cn) =cl(Cr) + - 4+ cl(C),

R+ tom) = Raey) + -+ Reem)-
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1.44

Let C1, ..., Cx be nonempty subsets of 8" that are specified by convex quadratic
inequalities, i.e., for alli =1,...,n,

Ci={z|2'Qux +ajz +bi; <0, j=1,...,7m:},

where QQ;; are symmetric positive semidefinite n x n matrices, a;; are vectors in
R"™, and b;; are scalars. Show that the vector sum C1 + - - - + Cp, is a closed set.

Solution: Let C' be the Cartesian product Cq X --- x Cy, viewed as a subset of

R™", and let A be the linear transformation that maps a vector (z1,...,Zm) €
R™™ into x1 + - -+ + xm. Note that set C' can be written as

C’z{xz(;rl,...,a:m)|x'@ijw+62jx+sz§0, i=1,...,m, j:l,...,ri},

where the Q, ,; are appropriately defined symmetric positive semidefinite mn xmn
matrices and the @;; are appropriately defined vectors in 8". Hence, the set C'
is specified by convex quadratic inequalities. Thus, we can use Prop. 1.5.8(c) to
assert that the set AC = C1 + -+ C,, is closed.

1.45 (Set Intersection and Helly’s Theorem)

Show that the conclusions of Props. 1.5.5 and 1.5.6 hold if the assumption that
the sets C} are nonempty and nested is replaced by the weaker assumption that
any subcollection of n + 1 (or fewer) sets from the sequence {C)} has nonempty
intersection. Hint: Consider the sets C given by

Cr=nf,Ci;, Vk=12,...,
and use Helly’s Theorem (Exercise 1.25) to show that they are nonempty.

Solution: Helly’s Theorem implies that the sets Cj defined in the hint are
nonempty. These sets are also nested and satisfy the assumptions of Props. 1.5.5
and 1.5.6. Therefore, the intersection N2, C; is nonempty. Since

N2, Ci C N2,Cy,

the result follows.

50



