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CHAPTER 1: SOLUTION MANUAL

1.1

Let C be a nonempty subset of <n, and let λ1 and λ2 be positive scalars. Show
that if C is convex, then (λ1 + λ2)C = λ1C + λ2C [cf. Prop. 1.2.1(c)]. Show by
example that this need not be true when C is not convex.

Solution: We always have (λ1 + λ2)C ⊂ λ1C + λ2C, even if C is not convex.
To show the reverse inclusion assuming C is convex, note that a vector x in
λ1C + λ2C is of the form x = λ1x1 + λ2x2, where x1, x2 ∈ C. By convexity of
C, we have

λ1

λ1 + λ2
x1 +

λ2

λ1 + λ2
x2 ∈ C,

and it follows that

x = λ1x1 + λ2x2 ∈ (λ1 + λ2)C.

Hence λ1C + λ2C ⊂ (λ1 + λ2)C.
For a counterexample when C is not convex, let C be a set in <n consisting

of two vectors, 0 and x 6= 0, and let λ1 = λ2 = 1. Then C is not convex, and
(λ1 +λ2)C = 2C = {0, 2x}, while λ1C +λ2C = C +C = {0, x, 2x}, showing that
(λ1 + λ2)C 6= λ1C + λ2C.

1.2 (Properties of Cones)

Show that:

(a) The intersection ∩i∈ICi of a collection {Ci | i ∈ I} of cones is a cone.

(b) The Cartesian product C1 × C2 of two cones C1 and C2 is a cone.

(c) The vector sum C1 + C2 of two cones C1 and C2 is a cone.

(d) The closure of a cone is a cone.

(e) The image and the inverse image of a cone under a linear transformation
is a cone.

Solution: (a) Let x ∈ ∩i∈ICi and let α be a positive scalar. Since x ∈ Ci for
all i ∈ I and each Ci is a cone, the vector αx belongs to Ci for all i ∈ I. Hence,
αx ∈ ∩i∈ICi, showing that ∩i∈ICi is a cone.

(b) Let x ∈ C1 × C2 and let α be a positive scalar. Then x = (x1, x2) for some
x1 ∈ C1 and x2 ∈ C2, and since C1 and C2 are cones, it follows that αx1 ∈ C1

and αx2 ∈ C2. Hence, αx = (αx1, αx2) ∈ C1 × C2, showing that C1 × C2 is a
cone.
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(c) Let x ∈ C1 + C2 and let α be a positive scalar. Then, x = x1 + x2 for some
x1 ∈ C1 and x2 ∈ C2, and since C1 and C2 are cones, αx1 ∈ C1 and αx2 ∈ C2.
Hence, αx = αx1 + αx2 ∈ C1 + C2, showing that C1 + C2 is a cone.

(d) Let x ∈ cl(C) and let α be a positive scalar. Then, there exists a sequence
{xk} ⊂ C such that xk → x, and since C is a cone, αxk ∈ C for all k. Further-
more, αxk → αx, implying that αx ∈ cl(C). Hence, cl(C) is a cone.

(e) First we prove that A·C is a cone, where A is a linear transformation and A·C
is the image of C under A. Let z ∈ A · C and let α be a positive scalar. Then,
Ax = z for some x ∈ C, and since C is a cone, αx ∈ C. Because A(αx) = αz,
the vector αz is in A · C, showing that A · C is a cone.

Next we prove that the inverse image A−1 ·C of C under A is a cone. Let
x ∈ A−1 · C and let α be a positive scalar. Then Ax ∈ C, and since C is a cone,
αAx ∈ C. Thus, the vector A(αx) ∈ C, implying that αx ∈ A−1 ·C, and showing
that A−1 · C is a cone.

1.3 (Lower Semicontinuity under Composition)

(a) Let f : <n 7→ <m be a continuous function and g : <m 7→ < be a lower
semicontinuous function. Show that the function h defined by h(x) =
g
(
f(x)

)
is lower semicontinuous.

(b) Let f : <n 7→ < be a lower semicontinuous function, and g : < 7→ < be
a lower semicontinuous and monotonically nondecreasing function. Show
that the function h defined by h(x) = g

(
f(x)

)
is lower semicontinuous.

Give an example showing that the monotonic nondecrease assumption is
essential.

Solution: (a) Let {xk} ⊂ <n be a sequence of vectors converging to some x ∈ <n.
By continuity of f , it follows that

{
f(xk)

}
⊂ <m converges to f(x) ∈ <m, so

that by lower semicontinuity of g, we have

lim inf
k→∞

g
(
f(xk)

)
≥ g
(
f(x)

)
.

Hence, h is lower semicontinuous.

(b) Assume, to arrive at a contradiction, that h is not lower semicontinuous at
some x ∈ <n. Then, there exists a sequence {xk} ⊂ <n converging to x such
that

lim inf
k→∞

g
(
f(xk)

)
< g
(
f(x)

)
.

Let {xk}K be a subsequence attaining the above limit inferior, i.e.,

lim
k→∞, k∈K

g
(
f(xk)

)
= lim inf

k→∞
g
(
f(xk)

)
< g
(
f(x)

)
. (1.1)

Without loss of generality, we assume that

g
(
f(xk)

)
< g
(
f(x)

)
, ∀ k ∈ K.
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Since g is monotonically nondecreasing, it follows that

f(xk) < f(x), ∀ k ∈ K,

which together with the fact {xk}K → x and the lower semicontinuity of f , yields

f(x) ≤ lim inf
k→∞, k∈K

f(xk) ≤ lim sup
k→∞, k∈K

f(xk) ≤ f(x),

showing that
{
f(xk)

}
K
→ f(x). By our choice of the sequence {xk}K and the

lower semicontinuity of g, it follows that

lim
k→∞, k∈K

g
(
f(xk)

)
= lim inf

k→∞, k∈K
g
(
f(xk)

)
≥ g
(
f(x)

)
,

contradicting Eq. (1.1). Hence, h is lower semicontinuous.
As an example showing that the assumption that g is monotonically non-

decreasing is essential, consider the functions

f(x) =
{

0 if x ≤ 0,
1 if x > 0,

and g(x) = −x. Then

g
(
f(x)

)
=
{

0 if x ≤ 0,
−1 if x > 0,

which is not lower semicontinuous at 0.

1.4 (Convexity under Composition)

Let C be a nonempty convex subset of <n

(a) Let f : C 7→ < be a convex function, and g : < 7→ < be a function
that is convex and monotonically nondecreasing over a convex set that
contains the set of values that f can take,

{
f(x) | x ∈ C

}
. Show that the

function h defined by h(x) = g
(
f(x)

)
is convex over C. In addition, if g is

monotonically increasing and f is strictly convex, then h is strictly convex.

(b) Let f = (f1, . . . , fm), where each fi : C 7→ < is a convex function, and let
g : <m 7→ < be a function that is convex and monotonically nondecreasing
over a convex set that contains the set

{
f(x) | x ∈ C

}
, in the sense that

for all u, u in this set such that u ≤ u, we have g(u) ≤ g(u). Show that the
function h defined by h(x) = g

(
f(x)

)
is convex over C × · · · × C.

Solution: Let x, y ∈ <n and let α ∈ [0, 1]. By the definitions of h and f , we
have

h
(
αx + (1− α)y

)
= g
(
f
(
αx + (1− α)y

))
= g
(
f1

(
αx + (1− α)y

)
, . . . , fm

(
αx + (1− α)y

))
≤ g
(
αf1(x) + (1− α)f1(y), . . . , αfm(x) + (1− α)fm(y)

)
= g
(
α
(
f1(x), . . . , fm(x)

)
+ (1− α)

(
f1(y), . . . , fm(y)

))
≤ αg

(
f1(x), . . . , fm(x)

)
+ (1− α)g

(
f1(y), . . . , fm(y)

)
= αg

(
f(x)

)
+ (1− α)g

(
f(y)

)
= αh(x) + (1− α)h(y),
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where the first inequality follows by convexity of each fi and monotonicity of g,
while the second inequality follows by convexity of g.

If m = 1, g is monotonically increasing, and f is strictly convex, then the
first inequality is strict whenever x 6= y and α ∈ (0, 1), showing that h is strictly
convex.

1.5 (Examples of Convex Functions)

Show that the following functions from <n to (−∞,∞] are convex:

(a)

f1(x1, . . . , xn) =

{
−(x1x2 · · ·xn)

1
n if x1 > 0, . . . , xn > 0,

∞ otherwise.

(b) f2(x) = ln
(
ex1 + · · ·+ exn

)
.

(c) f3(x) = ‖x‖p with p ≥ 1.

(d) f4(x) = 1
f(x)

, where f is concave and f(x) is a positive number for all x.

(e) f5(x) = αf(x) + β, where f : <n 7→ < is a convex function, and α and β
are scalars such that α ≥ 0.

(f) f6(x) = eβx′Ax, where A is a positive semidefinite symmetric n× n matrix
and β is a positive scalar.

(g) f7(x) = f(Ax + b), where f : <m 7→ < is a convex function, A is an m× n
matrix, and b is a vector in <m.

Solution: (a) Denote X = dom(f1). It can be seen that f1 is twice continuously
differentiable over X and its Hessian matrix is given by

∇2f1(x) =
f1(x)

n2


1−n

x2
1

1
x1x2

· · · 1
x1xn

1
x2x1

1−n

x2
2

· · · 1
x2xn

...
1

xnx1

1
x1x2

· · · 1−n

x2
n


for all x = (x1, . . . , xn) ∈ X. From this, direct computation shows that for all
z = (z1, . . . , zn) ∈ <n and x = (x1, . . . , xn) ∈ X, we have

z′∇2f1(x)z =
f1(x)

n2

((
n∑

i=1

zi

xi

)2

− n

n∑
i=1

(
zi

xi

)2

)
.

Note that this quadratic form is nonnegative for all z ∈ <n and x ∈ X, since
f1(x) < 0, and for any real numbers α1, . . . , αn, we have

(α1 + · · ·+ αn)2 ≤ n(α2
1 + · · ·+ α2

n),

in view of the fact that 2αjαk ≤ α2
j +α2

k. Hence, ∇2f1(x) is positive semidefinite
for all x ∈ X, and it follows from Prop. 1.2.6(a) that f1 is convex.
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(b) We show that the Hessian of f2 is positive semidefinite at all x ∈ <n. Let
β(x) = ex1 + · · ·+ exn . Then a straightforward calculation yields

z′∇2f2(x)z =
1

β(x)2

n∑
i=1

n∑
j=1

e(xi+xj)(zi − zj)
2 ≥ 0, ∀ z ∈ <n.

Hence by Prop. 1.2.6(a), f2 is convex.

(c) The function f3(x) = ‖x‖p can be viewed as a composition g
(
f(x)

)
of the

scalar function g(t) = tp with p ≥ 1 and the function f(x) = ‖x‖. In this case, g is
convex and monotonically increasing over the nonnegative axis, the set of values
that f can take, while f is convex over <n (since any vector norm is convex,
see the discussion preceding Prop. 1.2.4). Using Exercise 1.4, it follows that the
function f3(x) = ‖x‖p is convex over <n.

(d) The function f4(x) = 1
f(x)

can be viewed as a composition g
(
h(x)

)
of the

function g(t) = − 1
t

for t < 0 and the function h(x) = −f(x) for x ∈ <n. In this
case, the g is convex and monotonically increasing in the set {t | t < 0}, while h
is convex over <n. Using Exercise 1.4, it follows that the function f4(x) = 1

f(x)

is convex over <n.

(e) The function f5(x) = αf(x) + β can be viewed as a composition g
(
f(x)

)
of

the function g(t) = αt + β, where t ∈ <, and the function f(x) for x ∈ <n. In
this case, g is convex and monotonically increasing over < (since α ≥ 0), while f
is convex over <n. Using Exercise 1.4, it follows that f5 is convex over <n.

(f) The function f6(x) = eβx′Ax can be viewed as a composition g
(
f(x)

)
of the

function g(t) = eβt for t ∈ < and the function f(x) = x′Ax for x ∈ <n. In this
case, g is convex and monotonically increasing over <, while f is convex over <n

(since A is positive semidefinite). Using Exercise 1.4, it follows that f6 is convex
over <n.

(g) This part is straightforward using the definition of a convex function.

1.6 (Ascent/Descent Behavior of a Convex Function)

Let f : < 7→ < be a convex function.

(a) (Monotropic Property) Use the definition of convexity to show that f is
“turning upwards” in the sense that if x1, x2, x3 are three scalars such that
x1 < x2 < x3, then

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.

(b) Use part (a) to show that there are four possibilities as x increases to ∞:
(1) f(x) decreases monotonically to −∞, (2) f(x) decreases monotonically
to a finite value, (3) f(x) reaches some value and stays at that value, (4)
f(x) increases monotonically to ∞ when x ≥ x for some x ∈ <.
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Solution: (a) Let x1, x2, x3 be three scalars such that x1 < x2 < x3. Then we
can write x2 as a convex combination of x1 and x3 as follows

x2 =
x3 − x2

x3 − x1
x1 +

x2 − x1

x3 − x1
x3,

so that by convexity of f , we obtain

f(x2) ≤
x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3).

This relation and the fact

f(x2) =
x3 − x2

x3 − x1
f(x2) +

x2 − x1

x3 − x1
f(x2),

imply that

x3 − x2

x3 − x1

(
f(x2)− f(x1)

)
≤ x2 − x1

x3 − x1

(
f(x3)− f(x2)

)
.

By multiplying the preceding relation with x3−x1 and by dividing it with (x3−
x2)(x2 − x1), we obtain

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.

(b) Let {xk} be an increasing scalar sequence, i.e., x1 < x2 < x3 < · · · . Then
according to part (a), we have for all k

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
≤ · · · ≤ f(xk+1)− f(xk)

xk+1 − xk
. (1.2)

Since
(
f(xk)− f(xk−1)

)
/(xk − xk−1) is monotonically nondecreasing, we have

f(xk)− f(xk−1)

xk − xk−1
→ γ, (1.3)

where γ is either a real number or ∞. Furthermore,

f(xk+1)− f(xk)

xk+1 − xk
≤ γ, ∀ k. (1.4)

We now show that γ is independent of the sequence {xk}. Let {yj} be
any increasing scalar sequence. For each j, choose xkj such that yj < xkj and
xk1 < xk2 < · · · < xkj , so that we have yj < yj+1 < xkj+1 < xkj+2 . By part (a),
it follows that

f(yj+1)− f(yj)

yj+1 − yj
≤

f(xkj+2)− f(xkj+1)

xkj+2 − xkj+1

,
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and letting j →∞ yields

lim
j→∞

f(yj+1)− f(yj)

yj+1 − yj
≤ γ.

Similarly, by exchanging the roles of {xk} and {yj}, we can show that

lim
j→∞

f(yj+1)− f(yj)

yj+1 − yj
≥ γ.

Thus the limit in Eq. (1.3) is independent of the choice for {xk}, and Eqs. (1.2)
and (1.4) hold for any increasing scalar sequence {xk}.

We consider separately each of the three possibilities γ < 0, γ = 0, and
γ > 0. First, suppose that γ < 0, and let {xk} be any increasing sequence. By
using Eq. (1.4), we obtain

f(xk) =

k−1∑
j=1

f(xj+1)− f(xj)

xj+1 − xj
(xj+1 − xj) + f(x1)

≤
k−1∑
j=1

γ(xj+1 − xj) + f(x1)

= γ(xk − x1) + f(x1),

and since γ < 0 and xk → ∞, it follows that f(xk) → −∞. To show that f
decreases monotonically, pick any x and y with x < y, and consider the sequence
x1 = x, x2 = y, and xk = y + k for all k ≥ 3. By using Eq. (1.4) with k = 1, we
have

f(y)− f(x)

y − x
≤ γ < 0,

so that f(y)− f(x) < 0. Hence f decreases monotonically to −∞, corresponding
to case (1).

Suppose now that γ = 0, and let {xk} be any increasing sequence. Then,
by Eq. (1.4), we have f(xk+1)−f(xk) ≤ 0 for all k. If f(xk+1)−f(xk) < 0 for all
k, then f decreases monotonically. To show this, pick any x and y with x < y,
and consider a new sequence given by y1 = x, y2 = y, and yk = xK+k−3 for all
k ≥ 3, where K is large enough so that y < xK . By using Eqs. (1.2) and (1.4)
with {yk}, we have

f(y)− f(x)

y − x
≤ f(xK+1)− f(xK)

xK+1 − xK
< 0,

implying that f(y) − f(x) < 0. Hence f decreases monotonically, and it may
decrease to −∞ or to a finite value, corresponding to cases (1) or (2), respectively.

If for some K we have f(xK+1)− f(xK) = 0, then by Eqs. (1.2) and (1.4)
where γ = 0, we obtain f(xk) = f(xK) for all k ≥ K. To show that f stays at
the value f(xK) for all x ≥ xK , choose any x such that x > xK , and define {yk}
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as y1 = xK , y2 = x, and yk = xN+k−3 for all k ≥ 3, where N is large enough so
that x < xN . By using Eqs. (1.2) and (1.4) with {yk}, we have

f(x)− f(xK)

x− xK
≤ f(xN )− f(x)

xN − x
≤ 0,

so that f(x) ≤ f(xK) and f(xN ) ≤ f(x). Since f(xK) = f(xN ), we have
f(x) = f(xK). Hence f(x) = f(xK) for all x ≥ xK , corresponding to case (3).

Finally, suppose that γ > 0, and let {xk} be any increasing sequence. Since(
f(xk) − f(xk−1)

)
/(xk − xk−1) is nondecreasing and tends to γ [cf. Eqs. (1.3)

and (1.4)], there is a positive integer K and a positive scalar ε with ε < γ such
that

ε ≤ f(xk)− f(xk−1)

xk − xk−1
, ∀ k ≥ K. (1.5)

Therefore, for all k > K

f(xk) =

k−1∑
j=K

f(xj+1)− f(xj)

xj+1 − xj
(xj+1 − xj) + f(xK) ≥ ε(xk − xK) + f(xK),

implying that f(xk) → ∞. To show that f(x) increases monotonically to ∞ for
all x ≥ xK , pick any x < y satisfying xK < x < y, and consider a sequence given
by y1 = xK , y2 = x, y3 = y, and yk = xN+k−4 for k ≥ 4, where N is large enough
so that y < xN . By using Eq. (1.5) with {yk}, we have

ε ≤ f(y)− f(x)

y − x
.

Thus f(x) increases monotonically to ∞ for all x ≥ xK , corresponding to case
(4) with x = xK .

1.7 (Characterization of Differentiable Convex Functions)

Let f : <n 7→ < be a differentiable function. Show that f is convex over a
nonempty convex set C if and only if(

∇f(x)−∇f(y)
)′

(x− y) ≥ 0, ∀ x, y ∈ C.

Note: The condition above says that the function f , restricted to the line segment
connecting x and y, has monotonically nondecreasing gradient.

Solution: If f is convex, then by Prop. 1.2.5(a), we have

f(y) ≥ f(x) +∇f(x)′(y − x), ∀ x, y ∈ C.

By exchanging the roles of x and y in this relation, we obtain

f(x) ≥ f(y) +∇f(y)′(x− y), ∀ x, y ∈ C,
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and by adding the preceding two inequalities, it follows that(
∇f(y)−∇f(x)

)′
(x− y) ≥ 0. (1.6)

Conversely, let Eq. (1.6) hold, and let x and y be two points in C. Define
the function h : < 7→ < by

h(t) = f
(
x + t(y − x)

)
.

Consider some t, t′ ∈ [0, 1] such that t < t′. By convexity of C, we have that
x + t(y − x) and x + t′(y − x) belong to C. Using the chain rule and Eq. (1.6),
we have(

dh(t′)

dt
− dh(t)

dt

)
(t′ − t)

=
(
∇f
(
x + t′(y − x)

)
−∇f

(
x + t(y − x)

))′
(y − x)(t′ − t)

≥ 0.

Thus, dh/dt is nondecreasing on [0, 1] and for any t ∈ (0, 1), we have

h(t)− h(0)

t
=

1

t

∫ t

0

dh(τ)

dτ
dτ ≤ h(t) ≤ 1

1− t

∫ 1

t

dh(τ)

dτ
dτ =

h(1)− h(t)

1− t
.

Equivalently,
th(1) + (1− t)h(0) ≥ h(t),

and from the definition of h, we obtain

tf(y) + (1− t)f(x) ≥ f
(
ty + (1− t)x

)
.

Since this inequality has been proved for arbitrary t ∈ [0, 1] and x, y ∈ C, we
conclude that f is convex.

1.8 (Characterization of Twice Continuously Differentiable
Convex Functions)

Let C be a nonempty convex subset of <n and let f : <n 7→ < be twice continu-
ously differentiable over <n. Let S be the subspace that is parallel to the affine
hull of C. Show that f is convex over C if and only if y′∇2f(x)y ≥ 0 for all
x ∈ C and y ∈ S. [In particular, when C has nonempty interior, f is convex over
C if and only if ∇2f(x) is positive semidefinite for all x ∈ C.]

Solution: Suppose that f : <n 7→ < is convex over C. We first show that for all
x ∈ ri(C) and y ∈ S, we have y′∇2f(x)y ≥ 0. Assume to arrive at a contradiction,
that there exists some x ∈ ri(C) such that for some y ∈ S, we have

y′∇2f(x)y < 0.
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Without loss of generality, we may assume that ‖y‖ = 1. Using the continuity of
∇2f , we see that there is an open ball B(x, ε) centered at x̄ with radius ε such
that B(x, ε) ∩ aff(C) ⊂ C [since x ∈ ri(C)], and

y′∇2f(x)y < 0, ∀ x ∈ B(x, ε). (1.7)

By Prop. 1.1.13(a), for all positive scalars α with α < ε, we have

f(x̄ + αy) = f(x̄) + α∇f(x̄)′y +
1

2
y′∇2f(x̄ + ᾱy)y,

for some ᾱ ∈ [0, α]. Furthermore, ‖(x + αy)− x‖ ≤ ε [since ‖y‖ = 1 and ᾱ < ε].
Hence, from Eq. (1.7), it follows that

f(x̄ + αy) < f(x̄) + α∇f(x̄)′y, ∀ α ∈ [0, ε).

On the other hand, by the choice of ε and the assumption that y ∈ S, the vectors
x̄ + αy are in C for all α with α ∈ [0, ε), which is a contradiction in view of
the convexity of f over C. Hence, we have y′∇2f(x)y ≥ 0 for all y ∈ S and all
x ∈ ri(C).

Next, let x be a point in C that is not in the relative interior of C. Then, by
the Line Segment Principle, there is a sequence {xk} ⊂ ri(C) such that xk → x.
As seen above, y′∇2f(xk)y ≥ 0 for all y ∈ S and all k, which together with the
continuity of ∇2f implies that

y′∇2f(x)y = lim
k→∞

y′∇2f(xk)y ≥ 0, ∀ y ∈ S.

It follows that y′∇2f(x)y ≥ 0 for all x ∈ C and y ∈ S.

Conversely, assume that y′∇2f(x)y ≥ 0 for all x ∈ C and y ∈ S. By Prop.
1.1.13(a), for all x, z ∈ C we have

f(z) = f(x) + (z − x)′∇f(x) + 1
2
(z − x)′∇2f

(
x + α(z − x)

)
(z − x)

for some α ∈ [0, 1]. Since x, z ∈ C, we have that (z − x) ∈ S, and using the
convexity of C and our assumption, it follows that

f(z) ≥ f(x) + (z − x)′∇f(x), ∀ x, z ∈ C.

From Prop. 1.2.5(a), we conclude that f is convex over C.

1.9 (Strong Convexity)

Let f : <n 7→ < be a differentiable function. We say that f is strongly convex
with coefficient α if(

∇f(x)−∇f(y)
)′

(x− y) ≥ α‖x− y‖2, ∀ x, y ∈ <n, (1.8)

where α is some positive scalar.
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(a) Show that if f is strongly convex with coefficient α, then f is strictly convex.

(b) Assume that f is twice continuously differentiable. Show that strong con-
vexity of f with coefficient α is equivalent to the positive semidefiniteness
of ∇2f(x)− αI for every x ∈ <n, where I is the identity matrix.

Solution: (a) Fix some x, y ∈ <n such that x 6= y, and define the function
h : < 7→ < by h(t) = f

(
x + t(y − x)

)
. Consider scalars t and s such that t < s.

Using the chain rule and the equation(
∇f(x)−∇f(y)

)′
(x− y) ≥ α‖x− y‖2, ∀ x, y ∈ <n, (1.9)

for some α > 0, we have(
dh(s)

dt
− dh(t)

dt

)
(s− t)

=
(
∇f
(
x + s(y − x)

)
−∇f

(
x + t(y − x)

))′
(y − x)(s− t)

≥ α(s− t)2‖x− y‖2 > 0.

Thus, dh/dt is strictly increasing and for any t ∈ (0, 1), we have

h(t)− h(0)

t
=

1

t

∫ t

0

dh(τ)

dτ
dτ <

1

1− t

∫ 1

t

dh(τ)

dτ
dτ =

h(1)− h(t)

1− t
.

Equivalently, th(1) + (1 − t)h(0) > h(t). The definition of h yields tf(y) + (1 −
t)f(x) > f

(
ty + (1 − t)x

)
. Since this inequality has been proved for arbitrary

t ∈ (0, 1) and x 6= y, we conclude that f is strictly convex.

(b) Suppose now that f is twice continuously differentiable and Eq. (1.9) holds.
Let c be a scalar. We use Prop. 1.1.13(b) twice to obtain

f(x + cy) = f(x) + cy′∇f(x) +
c2

2
y′∇2f(x + tcy)y,

and

f(x) = f(x + cy)− cy′∇f(x + cy) +
c2

2
y′∇2f(x + scy)y,

for some t and s belonging to [0, 1]. Adding these two equations and using Eq.
(1.9), we obtain

c2

2
y′
(
∇2f(x + scy) +∇2f(x + tcy)

)
y =

(
∇f(x + cy)−∇f(x)

)′
(cy) ≥ αc2‖y‖2.

We divide both sides by c2 and then take the limit as c → 0 to conclude that
y′∇2f(x)y ≥ α‖y‖2. Since this inequality is valid for every y ∈ <n, it follows
that ∇2f(x)− αI is positive semidefinite.

For the converse, assume that ∇2f(x) − αI is positive semidefinite for all
x ∈ <n. Consider the function g : < 7→ < defined by

g(t) = ∇f
(
tx + (1− t)y

)′
(x− y).
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Using the Mean Value Theorem (Prop. 1.1.12), we have

(
∇f(x)−∇f(y)

)′
(x− y) = g(1)− g(0) =

dg(t)

dt

for some t ∈ [0, 1]. On the other hand,

dg(t)

dt
= (x− y)′∇2f

(
tx + (1− t)y

)
(x− y) ≥ α‖x− y‖2,

where the last inequality holds because∇2f
(
tx+(1−t)y

)
−αI is positive semidef-

inite. Combining the last two relations, it follows that f is strongly convex with
coefficient α.

1.10 (Posynomials)

A posynomial is a function of positive scalar variables y1, . . . , yn of the form

g(y1, . . . , yn) =

m∑
i=1

βiy
ai1
1 · · · yain

n ,

where aij and βi are scalars, such that βi > 0 for all i. Show the following:

(a) A posynomial need not be convex.

(b) By a logarithmic change of variables, where we set

f(x) = ln
(
g(y1, . . . , yn)

)
, bi = ln βi, ∀ i, xj = ln yj , ∀ j,

we obtain a convex function

f(x) = ln exp(Ax + b), ∀ x ∈ <n,

where exp(z) = ez1 + · · ·+ ezm for all z ∈ <m, A is an m× n matrix with
entries aij , and b ∈ <m is a vector with components bi.

(c) Every function g : <n 7→ < of the form

g(y) = g1(y)γ1 · · · gr(y)γr ,

where gk is a posynomial and γk > 0 for all k, can be transformed by a
logarithmic change of variables into a convex function f given by

f(x) =

r∑
k=1

γk ln exp(Akx + bk),

with the matrix Ak and the vector bk being associated with the posynomial
gk for each k.
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Solution: (a) Consider the following posynomial for which we have n = m = 1
and β = 1

2
,

g(y) = y
1
2 , ∀ y > 0.

This function is not convex.

(b) Consider the following change of variables, where we set

f(x) = ln
(
g(y1, . . . , yn)

)
, bi = ln βi, ∀ i, xj = ln yj , ∀ j.

With this change of variables, f(x) can be written as

f(x) = ln

(
m∑

i=1

ebi+ai1x1+···+ainxn

)
.

Note that f(x) can also be represented as

f(x) = ln exp(Ax + b), ∀ x ∈ <n,

where ln exp(z) = ln
(
ez1 + · · ·+ ezm

)
for all z ∈ <m, A is an m× n matrix with

entries aij , and b ∈ <m is a vector with components bi. Let f2(z) = ln(ez1 +
· · ·+ ezm). This function is convex by Exercise 1.5(b). With this identification,
f(x) can be viewed as the composition f(x) = f2(Ax + b), which is convex by
Exercise 1.5(g).

(c) Consider a function g : <n 7→ < of the form

g(y) = g1(y)γ1 · · · gr(y)γr ,

where gk is a posynomial and γk > 0 for all k. Using a change of variables similar
to part (b), we see that we can represent the function f(x) = ln g(y) as

f(x) =

r∑
k=1

γk ln exp(Akx + bk),

with the matrix Ak and the vector bk being associated with the posynomial gk for
each k. Since f(x) is a linear combination of convex functions with nonnegative
coefficients [part (b)], it follows from Prop. 1.2.4(a) that f(x) is convex.

1.11 (Arithmetic-Geometric Mean Inequality)

Show that if α1, . . . , αn are positive scalars with
∑n

i=1
αi = 1, then for every set

of positive scalars x1, . . . , xn, we have

x
α1
1 x

α2
2 · · ·xαn

n ≤ α1x1 + a2x2 + · · ·+ αnxn,

with equality if and only if x1 = x2 = · · · = xn. Hint : Show that − ln x is a
strictly convex function on (0,∞).
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Solution: Consider the function f(x) = − ln(x). Since ∇2f(x) = 1/x2 > 0 for
all x > 0, the function − ln(x) is strictly convex over (0,∞). Therefore, for all
positive scalars x1, . . . , xn and α1, . . . αn with

∑n

i=1
αi = 1, we have

− ln(α1x1 + · · ·+ αnxn) ≤ −α1 ln(x1)− · · · − αn ln(xn),

which is equivalent to

eln(α1x1+···+αnxn) ≥ eα1 ln(x1)+···+αn ln(xn) = eα1 ln(x1) · · · eαn ln(xn),

or
α1x1 + · · ·+ αnxn ≥ x

α1
1 · · ·xαn

n ,

as desired. Since − ln(x) is strictly convex, the above inequality is satisfied with
equality if and only if the scalars x1, . . . , xn are all equal.

1.12 (Young and Holder Inequalities)

Use the result of Exercise 1.11 to verify Young’s inequality

xy ≤ xp

p
+

yq

q
, ∀ x ≥ 0, ∀ y ≥ 0,

where p > 0, q > 0, and
1/p + 1/q = 1.

Then, use Young’s inequality to verify Holder’s inequality

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

Solution: According to Exercise 1.11, we have

u
1
p v

1
q ≤ u

p
+

v

q
, ∀ u > 0, ∀ v > 0,

where 1/p + 1/q = 1, p > 0, and q > 0. The above relation also holds if u = 0 or
v = 0. By setting u = xp and v = yq, we obtain Young’s inequality

xy ≤ xp

p
+

yq

q
, ∀ x ≥ 0, ∀ y ≥ 0.

To show Holder’s inequality, note that it holds if x1 = · · · = xn = 0 or
y1 = · · · = yn = 0. If x1, . . . , xn and y1, . . . , yn are such that (x1, . . . , xn) 6= 0
and (y1, . . . , yn) 6= 0, then by using

x =
|xi|(∑n

j=1
|xj |p

)1/p
and y =

|yi|(∑n

j=1
|yj |q

)1/q
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in Young’s inequality, we have for all i = 1, . . . , n,

|xi|(∑n

j=1
|xj |p

)1/p

|yi|(∑n

j=1
|yj |q

)1/q
≤ |xi|p

p
(∑n

j=1
|xj |p

) +
|yi|q

q
(∑n

j=1
|yj |q

) .

By adding these inequalities over i = 1, . . . , n, we obtain∑n

i=1
|xi| · |yi|(∑n

j=1
|xj |p

)1/p (∑n

j=1
|yj |q

)1/q
≤ 1

p
+

1

q
= 1,

which implies Holder’s inequality.

1.13

Let C be a nonempty convex set in <n+1, and let f : <n 7→ [−∞,∞] be the
function defined by

f(x) = inf
{
w | (x, w) ∈ C

}
, x ∈ <n.

Show that f is convex.

Solution: Let (x, w) and (y, v) be two vectors in epi(f). Then f(x) ≤ w and
f(y) ≤ v, implying that there exist sequences

{
(x, wk)

}
⊂ C and

{
(y, vk)

}
⊂ C

such that for all k,

wk ≤ w +
1

k
, vk ≤ v +

1

k
.

By the convexity of C, we have for all α ∈ [0, 1] and all k,(
αx + (1− αy), αwk + (1− α)vk

)
∈ C,

so that for all k,

f
(
αx + (1− α)y

)
≤ αwk + (1− α)vk ≤ αw + (1− α)v +

1

k
.

Taking the limit as k →∞, we obtain

f
(
αx + (1− α)y

)
≤ αw + (1− α)v,

so that α(x, w) + (1 − α)(y, v) ∈ epi(f). Hence, epi(f) is convex, implying that
f is convex.
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1.14

Show that the convex hull of a nonempty set coincides with the set of all convex
combinations of its elements.

Solution: The elements of X belong to conv(X), so all their convex combinations
belong to conv(X) since conv(X) is a convex set. On the other hand, consider
any two convex combinations of elements of X, x = λ1x1 + · · · + λmxm and
y = µ1y1 + · · ·+ µryr, where xi ∈ X and yj ∈ X. The vector

(1− α)x + αy = (1− α) (λ1x1 + · · ·+ λmxm) + α (µ1y1 + · · ·+ µryr) ,

where 0 ≤ α ≤ 1, is another convex combination of elements of X.
Thus, the set of convex combinations of elements of X is itself a convex

set, which contains X, and is contained in conv(X). Hence it must coincide with
conv(X), which by definition is the intersection of all convex sets containing X.

1.15

Let C be a nonempty convex subset of <n. Show that

cone(C) = ∪x∈C{γx | γ ≥ 0}.

Solution: Let y ∈ cone(C). If y = 0, then y ∈ ∪x∈C{γx | γ ≥ 0}. If y 6= 0, then
by definition of cone(C), we have

y =

m∑
i=1

λixi,

for some positive integer m, nonnegative scalars λi, and vectors xi ∈ C. Since
y 6= 0, we cannot have all λi equal to zero, implying that

∑m

i=1
λi > 0. Because

xi ∈ C for all i and C is convex, the vector

x =

m∑
i=1

λi∑m

j=1
λj

xi

belongs to C. For this vector, we have

y =

(
m∑

i=1

λi

)
x,

with
∑m

i=1
λi > 0, implying that y ∈ ∪x∈C

{
γx | γ ≥ 0} and showing that

cone(C) ⊂ ∪x∈C{γx | γ ≥ 0}.

The reverse inclusion follows from the definition of cone(C).
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1.16 (Convex Cones)

Show that:

(a) For any collection of vectors {ai | i ∈ I}, the set C = {x | a′ix ≤ 0, i ∈ I}
is a closed convex cone.

(b) A cone C is convex if and only if C + C ⊂ C.

(c) For any two convex cones C1 and C2 containing the origin, we have

C1 + C2 = conv(C1 ∪ C2),

C1 ∩ C2 =
⋃

α∈[0,1]

(
αC1 ∩ (1− α)C2

)
.

Solution: (a) Let x ∈ C and let λ be a positive scalar. Then

a′i(λx) = λa′ix ≤ 0, ∀ i ∈ I,

showing that λx ∈ C and that C is a cone. Let x, y ∈ C and let λ ∈ [0, 1]. Then

a′i
(
λx + (1− λ)y

)
= λa′ix + (1− λ)a′iy ≤ 0, ∀ i ∈ I,

showing that
(
λx+(1−λ)y

)
∈ C and that C is convex. Let a sequence {xk} ⊂ C

converge to some x̄ ∈ <n. Then

a′ix̄ = lim
k→∞

a′ixk ≤ 0, ∀ i ∈ I,

showing that x̄ ∈ C and that C is closed.

(b) Let C be a cone such that C + C ⊂ C, and let x, y ∈ C and α ∈ [0, 1]. Then
since C is a cone, αx ∈ C and (1−α)y ∈ C, so that αx + (1−α)y ∈ C + C ⊂ C,
showing that C is convex. Conversely, let C be a convex cone and let x, y ∈ C.
Then, since C is a cone, 2x ∈ C and 2y ∈ C, so that by the convexity of C,
x + y = 1

2
(2x + 2y) ∈ C, showing that C + C ⊂ C.

(c) First we prove that C1 + C2 ⊂ conv(C1 ∪ C2). Choose any x ∈ C1 + C2.
Since C1 + C2 is a cone [see Exercise 1.2(c)], the vector 2x is in C1 + C2, so that
2x = x1 + x2 for some x1 ∈ C1 and x2 ∈ C2. Therefore,

x =
1

2
x1 +

1

2
x2,

showing that x ∈ conv(C1 ∪ C2).
Next, we show that conv(C1 ∪C2) ⊂ C1 + C2. Since 0 ∈ C1 and 0 ∈ C2, it

follows that
Ci = Ci + 0 ⊂ C1 + C2, i = 1, 2,

implying that
C1 ∪ C2 ⊂ C1 + C2.

18



By taking the convex hull of both sides in the above inclusion and by using the
convexity of C1 + C2, we obtain

conv(C1 ∪ C2) ⊂ conv(C1 + C2) = C1 + C2.

We finally show that

C1 ∩ C2 =
⋃

α∈[0,1]

(
αC1 ∩ (1− α)C2

)
.

We claim that for all α with 0 < α < 1, we have

αC1 ∩ (1− α)C2 = C1 ∩ C2.

Indeed, if x ∈ C1 ∩ C2, it follows that x ∈ C1 and x ∈ C2. Since C1 and C2

are cones and 0 < α < 1, we have x ∈ αC1 and x ∈ (1 − α)C2. Conversely, if
x ∈ αC1 ∩ (1− α)C2, we have

x

α
∈ C1,

and
x

(1− α)
∈ C2.

Since C1 and C2 are cones, it follows that x ∈ C1 and x ∈ C2, so that x ∈ C1∩C2.
If α = 0 or α = 1, we obtain

αC1 ∩ (1− α)C2 = {0} ⊂ C1 ∩ C2,

since C1 and C2 contain the origin. Thus, the result follows.

1.17

Let {Ci | i ∈ I} be an arbitrary collection of convex sets in <n, and let C be the
convex hull of the union of the collection. Show that

C =
⋃

I⊂I, I: finite set

∑
i∈I

αiCi

∣∣∣ ∑
i∈I

αi = 1, αi ≥ 0, ∀ i ∈ I

 ,

i.e., the convex hull of the union of the Ci is equal to the set of all convex
combinations of vectors from the Ci.

Solution: By Exercise 1.14, C is the set of all convex combinations x = α1y1 +
· · ·+αmym, where m is a positive integer, and the vectors y1, . . . , ym belong to the
union of the sets Ci. Actually, we can get C just by taking those combinations in
which the vectors are taken from different sets Ci. Indeed, if two of the vectors,
y1 and y2 belong to the same Ci, then the term α1y1 + α2y2 can be replaced by
αy, where α = α1 + α2 and

y = (α1/α)y1 + (α2/α)y2 ∈ Ci.
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Thus, C is the union of the vector sums of the form

α1Ci1 + · · ·+ αmCim ,

with

αi ≥ 0, ∀ i = 1, . . . , m,

m∑
i=1

αi = 1,

and the indices i1, . . . , im are all different, proving our claim.

1.18 (Convex Hulls, Affine Hulls, and Generated Cones)

Let X be a nonempty set. Show that:

(a) X, conv(X), and cl(X) have the same affine hull.

(b) cone(X) = cone
(
conv(X)

)
.

(c) aff
(
conv(X)

)
⊂ aff

(
cone(X)

)
. Give an example where the inclusion is

strict, i.e., aff
(
conv(X)

)
is a strict subset of aff

(
cone(X)

)
.

(d) If the origin belongs to conv(X), then aff
(
conv(X)

)
= aff

(
cone(X)

)
.

Solution: (a) We first show that X and cl(X) have the same affine hull. Since
X ⊂ cl(X), there holds

aff(X) ⊂ aff
(
cl(X)

)
.

Conversely, because X ⊂ aff(X) and aff(X) is closed, we have cl(X) ⊂ aff(X),
implying that

aff
(
cl(X)

)
⊂ aff(X).

We now show that X and conv(X) have the same affine hull. By using a
translation argument if necessary, we assume without loss of generality that X
contains the origin, so that both aff(X) and aff

(
conv(X)

)
are subspaces. Since

X ⊂ conv(X), evidently aff(X) ⊂ aff
(
conv(X)

)
. To show the reverse inclusion,

let the dimension of aff
(
conv(X)

)
be m, and let x1, . . . , xm be linearly indepen-

dent vectors in conv(X) that span aff
(
conv(X)

)
. Then every x ∈ aff

(
conv(X)

)
is

a linear combination of the vectors x1, . . . , xm, i.e., there exist scalars β1, . . . , βm

such that

x =

m∑
i=1

βixi.

By the definition of convex hull, each xi is a convex combination of vectors in
X, so that x is a linear combination of vectors in X, implying that x ∈ aff(X).
Hence, aff

(
conv(X)

)
⊂ aff(X).

(b) Since X ⊂ conv(X), clearly cone(X) ⊂ cone
(
conv(X)

)
. Conversely, let

x ∈ cone
(
conv(X)

)
. Then x is a nonnegative combination of some vectors in
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conv(X), i.e., for some positive integer p, vectors x1, . . . , xp ∈ conv(X), and
nonnegative scalars α1, . . . , αp, we have

x =

p∑
i=1

αixi.

Each xi is a convex combination of some vectors in X, so that x is a nonneg-
ative combination of some vectors in X, implying that x ∈ cone(X). Hence
cone

(
conv(X)

)
⊂ cone(X).

(c) Since conv(X) is the set of all convex combinations of vectors in X, and
cone(X) is the set of all nonnegative combinations of vectors in X, it follows that
conv(X) ⊂ cone(X). Therefore

aff
(
conv(X)

)
⊂ aff

(
cone(X)

)
.

As an example showing that the above inclusion can be strict, consider the
set X =

{
(1, 1)

}
in <2. Then conv(X) = X, so that

aff
(
conv(X)

)
= X =

{
(1, 1)

}
,

and the dimension of conv(X) is zero. On the other hand, cone(X) =
{
(α, α) |

α ≥ 0
}
, so that

aff
(
cone(X)

)
=
{
(x1, x2) | x1 = x2

}
,

and the dimension of cone(X) is one.

(d) In view of parts (a) and (c), it suffices to show that

aff
(
cone(X)

)
⊂ aff

(
conv(X)

)
= aff(X).

It is always true that 0 ∈ cone(X), so aff
(
cone(X)

)
is a subspace. Let the

dimension of aff
(
cone(X)

)
be m, and let x1, . . . , xm be linearly independent

vectors in cone(X) that span aff
(
cone(X)

)
. Since every vector in aff

(
cone(X)

)
is

a linear combination of x1, . . . , xm, and since each xi is a nonnegative combination
of some vectors in X, it follows that every vector in aff

(
cone(X)

)
is a linear

combination of some vectors in X. In view of the assumption that 0 ∈ conv(X),
the affine hull of conv(X) is a subspace, which implies by part (a) that the affine
hull of X is a subspace. Hence, every vector in aff

(
cone(X)

)
belongs to aff(X),

showing that aff
(
cone(X)

)
⊂ aff(X).

1.19

Let {fi | i ∈ I} be an arbitrary collection of proper convex functions fi : <n 7→
(−∞,∞]. Define

f(x) = inf
{
w | (x, w) ∈ conv

(
∪i∈Iepi(fi)

)}
, x ∈ <n.

21



Show that f(x) is given by

f(x) = inf

{∑
i∈I

αifi(xi)

∣∣∣ ∑
i∈I

αixi = x, xi ∈ <n,
∑
i∈I

αi = 1, αi ≥ 0, ∀ i ∈ I,

I ⊂ I, I : finite

}
.

Solution: By definition, f(x) is the infimum of the values of w such that (x, w) ∈
C, where C is the convex hull of the union of nonempty convex sets epi(fi). We
have that (x, w) ∈ C if and only if (x, w) can be expressed as a convex combination
of the form

(x, w) =
∑
i∈I

αi(xi, wi) =

∑
i∈I

αixi,
∑
i∈I

αiwi

 ,

where I ⊂ I is a finite set and (xi, wi) ∈ epi(fi) for all i ∈ I. Thus, f(x) can be
expressed as

f(x) = inf

{∑
i∈I

αiwi

∣∣∣ (x, w) =
∑
i∈I

αi(xi, wi),

(xi, wi) ∈ epi(fi), αi ≥ 0, ∀ i ∈ I,
∑
i∈I

αi = 1

}
.

Since the set
{(

xi, fi(xi)
)
| xi ∈ <n

}
is contained in epi(fi), we obtain

f(x) ≤ inf

∑
i∈I

αifi(xi)

∣∣∣ x =
∑
i∈I

αixi, xi ∈ <n, αi ≥ 0, ∀ i ∈ I,
∑
i∈I

αi = 1

 .

On the other hand, by the definition of epi(fi), for each (xi, wi) ∈ epi(fi) we
have wi ≥ fi(xi), implying that

f(x) ≥ inf

∑
i∈I

αifi(xi)

∣∣∣ x =
∑
i∈I

αixi, xi ∈ <n, αi ≥ 0, ∀ i ∈ I,
∑
i∈I

αi = 1

 .

By combining the last two relations, we obtain

f(x) = inf

∑
i∈I

αifi(xi)

∣∣∣ x =
∑
i∈I

αixi, xi ∈ <n, αi ≥ 0, ∀ i ∈ I,
∑
i∈I

αi = 1

 ,

where the infimum is taken over all representations of x as a convex combination
of elements xi such that only finitely many coefficients αi are nonzero.
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1.20 (Convexification of Nonconvex Functions)

Let X be a nonempty subset of <n and let f : X 7→ < be a function that is
bounded below over X. Define the function F : conv(X) 7→ < by

F (x) = inf
{
w | (x, w) ∈ conv

(
epi(f)

)}
.

Show that:

(a) F is convex over conv(X) and it is given by

F (x) = inf

{∑
i

αif(xi)

∣∣∣ ∑
i

αixi = x, xi ∈ X,
∑

i

αi = 1, αi ≥ 0, ∀ i

}
,

where the infimum is taken over all representations of x as a convex com-
bination of elements of X (i.e., with finitely many nonzero coefficients αi).

(b)
inf

x∈conv(X)
F (x) = inf

x∈X
f(x).

(c) Every x∗ ∈ X that attains the minimum of f over X, i.e., f(x∗) =
infx∈X f(x), also attains the minimum of F over conv(X).

Solution: (a) Since conv
(
epi(f)

)
is a convex set, it follows from Exercise 1.13

that F is convex over conv(X). By Caratheodory’s Theorem, it can be seen that
conv

(
epi(f)

)
is the set of all convex combinations of elements of epi(f), so that

F (x) = inf

{∑
i

αiwi

∣∣∣ (x, w) =
∑

i

αi(xi, wi),

(xi, wi) ∈ epi(f), αi ≥ 0,
∑

i

αi = 1

}
,

where the infimum is taken over all representations of x as a convex combination
of elements of X. Since the set

{(
z, f(z)

)
| z ∈ X

}
is contained in epi(f), we

obtain

F (x) ≤ inf

{∑
i

αif(xi)

∣∣∣ x =
∑

i

αixi, xi ∈ X, αi ≥ 0,
∑

i

αi = 1

}
.

On the other hand, by the definition of epi(f), for each (xi, wi) ∈ epi(f) we have
wi ≥ f(xi), implying that

F (x) ≥ inf

{∑
i

αif(xi)

∣∣∣ (x, w) =
∑

i

αi(xi, wi),

(xi, wi) ∈ epi(f), αi ≥ 0,
∑

i

αi = 1

}
,

= inf

{∑
i

αif(xi)

∣∣∣ x =
∑

i

αixi, xi ∈ X, αi ≥ 0,
∑

i

αi = 1

}
,
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which combined with the preceding inequality implies the desired relation.

(b) By using part (a), we have for every x ∈ X

F (x) ≤ f(x),

since f(x) corresponds to the value of the function
∑

i
αif(xi) for a particular

representation of x as a finite convex combination of elements of X, namely
x = 1 · x. Therefore, we have

inf
x∈X

F (x) ≤ inf
x∈X

f(x),

and since X ⊂ conv(X), it follows that

inf
x∈conv(X)

F (x) ≤ inf
x∈X

f(x).

Let f∗ = infx∈X f(x). If infx∈conv(X) F (x) < f∗, then there exists z ∈
conv(X) with F (z) < f∗. According to part (a), there exist points xi ∈ X and
nonnegative scalars αi with

∑
i
αi = 1 such that z =

∑
i
αixi and

F (z) ≤
∑

i

αif(xi) < f∗,

implying that ∑
i

αi

(
f(xi)− f∗

)
< 0.

Since each αi is nonnegative, for this inequality to hold, we must have f(xi)−f∗ <
0 for some i, but this cannot be true because xi ∈ X and f∗ is the optimal value
of f over X. Therefore

inf
x∈conv(X)

F (x) = inf
x∈X

f(x).

(c) If x∗ ∈ X is a global minimum of f over X, then x∗ also belongs to conv(X),
and by part (b)

inf
x∈conv(X)

F (x) = inf
x∈X

f(x) = f(x∗) ≥ F (x∗),

showing that x∗ is also a global minimum of F over conv(X).
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1.21 (Minimization of Linear Functions)

Show that minimization of a linear function over a set is equivalent to minimiza-
tion over its convex hull. In particular, if X ⊂ <n and c ∈ <n, then

inf
x∈conv(X)

c′x = inf
x∈X

c′x.

Furthermore, the infimum in the left-hand side above is attained if and only if
the infimum in the right-hand side is attained.

Solution: Let f : X 7→ < be the function f(x) = c′x, and define

F (x) = inf
{
w | (x, w) ∈ conv

(
epi(f)

)}
,

as in Exercise 1.20. According to this exercise, we have

inf
x∈conv(X)

F (x) = inf
x∈X

f(x),

and

F (x) = inf

{∑
i

αic
′xi

∣∣∣ ∑
i

αixi = x, xi ∈ X,
∑

i

αi = 1, αi ≥ 0

}

= inf

{
c′

(∑
i

αixi

) ∣∣∣ ∑
i

αixi = x, xi ∈ X,
∑

i

αi = 1, αi ≥ 0

}
= c′x,

showing that
inf

x∈conv(X)
c′x = inf

x∈X
c′x.

According to Exercise 1.20(c), if infx∈X c′x is attained at some x∗ ∈ X,
then infx∈conv(X) c′x is also attained at x∗. Suppose now that infx∈conv(X) c′x is
attained at some x∗ ∈ conv(X), i.e., there is x∗ ∈ conv(X) such that

inf
x∈conv(X)

c′x = c′x∗.

Then, by Caratheodory’s Theorem, there exist vectors x1, . . . , xn+1 in X and
nonnegative scalars α1, . . . , αn+1 with

∑n+1

i=1
αi = 1 such that x∗ =

∑n+1

i=1
αixi,

implying that

c′x∗ =

n+1∑
i=1

αic
′xi.

Since xi ∈ X ⊂ conv(X) for all i and c′x ≥ c′x∗ for all x ∈ conv(X), it follows
that

c′x∗ =

n+1∑
i=1

αic
′xi ≥

n+1∑
i=1

αic
′x∗ = c′x∗,

implying that c′xi = c′x∗ for all i corresponding to αi > 0. Hence, infx∈X c′x is
attained at the xi’s corresponding to αi > 0.
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1.22 (Extension of Caratheodory’s Theorem)

Let X1 and X2 be nonempty subsets of <n, and let X = conv(X1) + cone(X2).
Show that every vector x in X can be represented in the form

x =

k∑
i=1

αixi +

m∑
i=k+1

αiyi,

where m is a positive integer with m ≤ n+1, the vectors x1, . . . , xk belong to X1,
the vectors yk+1, . . . , ym belong to X2, and the scalars α1, . . . , αm are nonnegative
with α1+· · ·+αk = 1. Furthermore, the vectors x2−x1, . . . , xk−x1, yk+1, . . . , ym

are linearly independent.

Solution: The proof will be an application of Caratheodory’s Theorem [part (a)]
to the subset of <n+1 given by

Y =
{
(x, 1) | x ∈ X1

}
∪
{
(y, 0) | y ∈ X2

}
.

If x ∈ X, then

x =

k∑
i=1

γixi +

m∑
i=k+1

γiyi,

where the vectors x1, . . . , xk belong to X1, the vectors yk+1, . . . , ym belong to X2,
and the scalars γ1, . . . , γm are nonnegative with γ1 + · · ·+ γk = 1. Equivalently,
(x, 1) ∈ cone(Y ). By Caratheodory’s Theorem part (a), we have that

(x, 1) =

k∑
i=1

αi(xi, 1) +

m∑
i=k+1

αi(yi, 0),

for some positive scalars α1, . . . , αm and vectors

(x1, 1), . . . (xk, 1), (yk+1, 0), . . . , (ym, 0),

which are linearly independent (implying that m ≤ n + 1) or equivalently,

x =

k∑
i=1

αixi +

m∑
i=k+1

αiyi, 1 =

k∑
i=1

αi.

Finally, to show that the vectors x2 − x1, . . . , xk − x1, yk+1, . . . , ym are linearly
independent, assume to arrive at a contradiction, that there exist λ2, . . . , λm, not
all 0, such that

k∑
i=2

λi(xi − x1) +

m∑
i=k+1

λiyi = 0.

Equivalently, defining λ1 = −(λ2 + · · ·+ λm), we have

k∑
i=1

λi(xi, 1) +

m∑
i=k+1

λi(yi, 0) = 0,

which contradicts the linear independence of the vectors

(x1, 1), . . . , (xk, 1), (yk+1, 0), . . . , (ym, 0).
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1.23

Let X be a nonempty bounded subset of <n. Show that

cl
(
conv(X)

)
= conv

(
cl(X)

)
.

In particular, if X is compact, then conv(X) is compact (cf. Prop. 1.3.2).

Solution: The set cl(X) is compact since X is bounded by assumption. Hence,
by Prop. 1.3.2, its convex hull, conv

(
cl(X)

)
, is compact, and it follows that

cl
(
conv(X)

)
⊂ cl

(
conv

(
cl(X)

))
= conv

(
cl(X)

)
.

It is also true in general that

conv
(
cl(X)

)
⊂ conv

(
cl
(
conv(X)

))
= cl

(
conv(X)

)
,

since by Prop. 1.2.1(d), the closure of a convex set is convex. Hence, the result
follows.

1.24 (Radon’s Theorem)

Let x1, . . . , xm be vectors in <n, where m ≥ n + 2. Show that there exists a
partition of the index set {1, . . . , m} into two disjoint sets I and J such that

conv
(
{xi | i ∈ I}

)
∩ conv

(
{xj | j ∈ J}

)
6= Ø.

Hint : The system of n + 1 equations in the m unknowns λ1, . . . , λm,

m∑
i=1

λixi = 0,

m∑
i=1

λi = 0,

has a nonzero solution λ∗. Let I = {i | λ∗i ≥ 0} and J = {j | λ∗j < 0}.

Solution: Consider the system of n+1 equations in the m unknowns λ1, . . . , λm

m∑
i=1

λixi = 0,

m∑
i=1

λi = 0.

Since m > n + 1, there exists a nonzero solution, call it λ∗. Let

I = {i | λ∗i ≥ 0}, J = {j | λ∗j < 0},

and note that I and J are nonempty, and that∑
k∈I

λ∗k =
∑
k∈J

(−λ∗k) > 0.
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Consider the vector
x∗ =

∑
i∈I

αixi,

where

αi =
λ∗i∑

k∈I
λ∗k

, i ∈ I.

In view of the equations
∑m

i=1
λ∗i xi = 0 and

∑m

i=1
λ∗i = 0, we also have

x∗ =
∑
j∈J

αjxj ,

where

αj =
−λ∗j∑

k∈J
(−λ∗k)

, j ∈ J.

It is seen that the αi and αj are nonnegative, and that∑
i∈I

αi =
∑
j∈J

αj = 1,

so x∗ belongs to the intersection

conv
(
{xi | i ∈ I}

)
∩ conv

(
{xj | j ∈ J}

)
.

Given four distinct points in the plane (i.e., m = 4 and n = 2), Radon’s
Theorem guarantees the existence of a partition into two subsets, the convex
hulls of which intersect. Assuming, there is no subset of three points lying on the
same line, there are two possibilities:

(1) Each set in the partition consists of two points, in which case the convex
hulls intesect and define the diagonals of a quadrilateral.

(2) One set in the partition consists of three points and the other consists of one
point, in which case the triangle formed by the three points must contain
the fourth.

In the case where three of the points define a line segment on which they lie,
and the fourth does not, the triangle formed by the two ends of the line segment
and the point outside the line segment form a triangle that contains the fourth
point. In the case where all four of the points lie on a line segment, the degenerate
triangle formed by three of the points, including the two ends of the line segment,
contains the fourth point.

1.25 (Helly’s Theorem [Hel21])

Consider a finite collection of convex subsets of <n, and assume that the inter-
section of every subcollection of n + 1 (or fewer) sets has nonempty intersection.
Show that the entire collection has nonempty intersection. Hint : Use induction.
Assume that the conclusion holds for every collection of M sets, where M ≥ n+1,
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and show that the conclusion holds for every collection of M + 1 sets. In par-
ticular, let C1, . . . , CM+1 be a collection of M + 1 convex sets, and consider the
collection of M + 1 sets B1, . . . , BM+1, where

Bj = ∩ i=1,...,M+1,
i6=j

Ci, j = 1, . . . , M + 1.

Note that, by the induction hypothesis, each set Bj is the intersection of a collec-
tion of M sets that have the property that every subcollection of n+1 (or fewer)
sets has nonempty intersection. Hence each set Bj is nonempty. Let xj be a vec-
tor in Bj . Apply Radon’s Theorem (Exercise 1.24) to the vectors x1, . . . , xM+1.
Show that any vector in the intersection of the corresponding convex hulls belongs
to the intersection of C1, . . . , CM+1.

Solution: Consider the induction argument of the hint, let Bj be defined as in
the hint, and for each j, let xj be a vector in Bj . Since M + 1 ≥ n + 2, we can
apply Radon’s Theorem to the vectors x1, . . . , xM+1. Thus, there exist nonempty
and disjoint index subsets I and J such that I ∪J = {1, . . . , M +1}, nonnegative
scalars α1, . . . , αM+1, and a vector x∗ such that

x∗ =
∑
i∈I

αixi =
∑
j∈J

αjxj ,
∑
i∈I

αi =
∑
j∈J

αj = 1.

It can be seen that for every i ∈ I, a vector in Bi belongs to the intersection
∩j∈JCj . Therefore, since x∗ is a convex combination of vectors in Bi, i ∈ I, x∗

also belongs to the intersection ∩j∈JCj . Similarly, by reversing the role of I and
J , we see that x∗ belongs to the intersection ∩i∈ICI . Thus, x∗ belongs to the
intersection of the entire collection C1, . . . , CM+1.

1.26

Consider the problem of minimizing over <n the function

max
{
f1(x), . . . , fM (x)

}
,

where fi : <n 7→ (−∞,∞], i = 1, . . . , M , are convex functions, and assume that
the optimal value, denoted f∗, is finite. Show that there exists a subset I of
{1, . . . , M}, containing no more than n + 1 indices, such that

inf
x∈<n

{
max
i∈I

fi(x)
}

= f∗.

Hint : Consider the convex sets Xi =
{
x | fi(x) < f∗

}
, argue by contradiction,

and apply Helly’s Theorem (Exercise 1.25).

Solution: Assume the contrary, i.e., that for every index set I ⊂ {1, . . . , M},
which contains no more than n + 1 indices, we have

inf
x∈<n

{
max
i∈I

fi(x)
}

< f∗.
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This means that for every such I, the intersection ∩i∈IXi is nonempty, where

Xi =
{
x | fi(x) < f∗

}
.

From Helly’s Theorem, it follows that the entire collection {Xi | i = 1, . . . , M}
has nonempty intersection, thereby implying that

inf
x∈<n

{
max

i=1,...,M
fi(x)

}
< f∗.

This contradicts the definition of f∗. Note: The result of this exercise relates to
the following question: what is the minimal number of functions fi that we need
to include in the cost function maxi fi(x) in order to attain the optimal value f∗?
According to the result, the number is no more than n + 1. For applications of
this result in structural design and Chebyshev approximation, see Ben Tal and
Nemirovski [BeN01].

1.27

Let C be a nonempty convex subset of <n, and let f : <n 7→ (−∞,∞] be a convex
function such that f(x) is finite for all x ∈ C. Show that if for some scalar γ, we
have f(x) ≥ γ for all x ∈ C, then we also have f(x) ≥ γ for all x ∈ cl(C).

Solution: Let x be an arbitrary vector in cl(C). If f(x) = ∞, then we are done,
so assume that f(x) is finite. Let x be a point in the relative interior of C. By
the Line Segment Principle, all the points on the line segment connecting x and
x, except possibly x, belong to ri(C) and therefore, belong to C. From this, the
given property of f , and the convexity of f , we obtain for all α ∈ (0, 1],

αf(x) + (1− α)f(x) ≥ f
(
αx + (1− α)x

)
≥ γ.

By letting α → 0, it follows that f(x) ≥ γ. Hence, f(x) ≥ γ for all x ∈ cl(C).

1.28

Let C be a nonempty convex set, and let S be the subspace that is parallel to
the affine hull of C. Show that

ri(C) = int(C + S⊥) ∩ C.

Solution: From Prop. 1.4.5(b), we have that for any vector a ∈ <n, ri(C + a) =
ri(C) + a. Therefore, we can assume without loss of generality that 0 ∈ C, and
aff(C) coincides with S. We need to show that

ri(C) = int(C + S⊥) ∩ C.
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Let x ∈ ri(C). By definition, this implies that x ∈ C and there exists some
open ball B(x, ε) centered at x with radius ε > 0 such that

B(x, ε) ∩ S ⊂ C. (1.10)

We now show that B(x, ε) ⊂ C + S⊥. Let z be a vector in B(x, ε). Then,
we can express z as z = x + αy for some vector y ∈ <n with ‖y‖ = 1, and
some α ∈ [0, ε). Since S and S⊥ are orthogonal subspaces, y can be uniquely
decomposed as y = yS + yS⊥ , where yS ∈ S and yS⊥ ∈ S⊥. Since ‖y‖ = 1, this
implies that ‖yS‖ ≤ 1 (Pythagorean Theorem), and using Eq. (1.10), we obtain

x + αyS ∈ B(x, ε) ∩ S ⊂ C,

from which it follows that the vector z = x + αy belongs to C + S⊥, implying
that B(x, ε) ⊂ C + S⊥. This shows that x ∈ int(C + S⊥) ∩ C.

Conversely, let x ∈ int(C + S⊥) ∩ C. We have that x ∈ C and there exists
some open ball B(x, ε) centered at x with radius ε > 0 such that B(x, ε) ⊂ C+S⊥.
Since C is a subset of S, it can be seen that (C + S⊥) ∩ S = C. Therefore,

B(x, ε) ∩ S ⊂ C,

implying that x ∈ ri(C).

1.29

Let x0, . . . , xm be vectors in <n such that x1 − x0, . . . , xm − x0 are linearly
independent. The convex hull of x0, . . . , xm is called an m-dimensional simplex,
and x0, . . . , xm are called the vertices of the simplex.

(a) Show that the dimension of a convex set is the maximum of the dimensions
of all the simplices contained in the set.

(b) Use part (a) to show that a nonempty convex set has a nonempty relative
interior.

Solution: (a) Let C be the given convex set. The convex hull of any subset of
C is contained in C. Therefore, the maximum dimension of the various simplices
contained in C is the largest m for which C contains m + 1 vectors x0, . . . , xm

such that x1 − x0, . . . , xm − x0 are linearly independent.
Let K = {x0, . . . , xm} be such a set with m maximal, and let aff(K) denote

the affine hull of set K. Then, we have dim
(
aff(K)

)
= m, and since K ⊂ C, it

follows that aff(K) ⊂ aff(C).
We claim that C ⊂ aff(K). To see this, assume that there exists some

x ∈ C, which does not belong to aff(K). This implies that the set {x, x0, . . . , xm}
is a set of m + 2 vectors in C such that x− x0, x1 − x0, . . . , xm − x0 are linearly
independent, contradicting the maximality of m. Hence, we have C ⊂ aff(K),
and it follows that

aff(K) = aff(C),

thereby implying that dim(C) = m.
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(b) We first consider the case where C is n-dimensional with n > 0 and show that
the interior of C is not empty. By part (a), an n-dimensional convex set contains
an n-dimensional simplex. We claim that such a simplex S has a nonempty
interior. Indeed, applying an affine transformation if necessary, we can assume
that the vertices of S are the vectors (0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1),
i.e.,

S =

{
(x1, . . . , xn)

∣∣∣ xi ≥ 0, ∀ i = 1, . . . , n,

n∑
i=1

xi ≤ 1

}
.

The interior of the simplex S,

int(S) =

{
(x1, . . . , xn) | xi > 0, ∀ i = 1, . . . , n,

n∑
i=1

xi < 1

}
,

is nonempty, which in turn implies that int(C) is nonempty.
For the case where dim(C) < n, consider the n-dimensional set C + S⊥ ,

where S⊥ is the orthogonal complement of the subspace parallel to aff(C). Since
C + S⊥ is a convex set, it follows from the above argument that int(C + S⊥) is
nonempty. Let x ∈ int(C + S⊥). We can represent x as x = xC + xS⊥ , where
xC ∈ C and xS⊥ ∈ S⊥. It can be seen that xC ∈ int(C + S⊥). Since

ri(C) = int(C + S⊥) ∩ C,

(cf. Exercise 1.28), it follows that xc ∈ ri(C), so ri(C) is nonempty.

1.30

Let C1 and C2 be two nonempty convex sets such that C1 ⊂ C2.

(a) Give an example showing that ri(C1) need not be a subset of ri(C2).

(b) Assuming that the sets C1 and C2 have the same affine hull, show that
ri(C1) ⊂ ri(C2).

(c) Assuming that the sets ri(C1) and ri(C2) have nonempty intersection, show
that ri(C1) ⊂ ri(C2).

(d) Assuming that the sets C1 and ri(C2) have nonempty intersection, show
that the set ri(C1) ∩ ri(C2) is nonempty.

Solution: (a) Let C1 be the segment
{
(x1, x2) | 0 ≤ x1 ≤ 1, x2 = 0

}
and let C2

be the box
{
(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

}
. We have

ri(C1) =
{
(x1, x2) | 0 < x1 < 1, x2 = 0

}
,

ri(C2) =
{
(x1, x2) | 0 < x1 < 1, 0 < x2 < 1

}
.

Thus C1 ⊂ C2, while ri(C1) ∩ ri(C2) = Ø.
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(b) Let x ∈ ri(C1), and consider a open ball B centered at x such that B ∩
aff(C1) ⊂ C1. Since aff(C1) = aff(C2) and C1 ⊂ C2, it follows that B∩aff(C2) ⊂
C2, so x ∈ ri(C2). Hence ri(C1) ⊂ ri(C2).

(c) Because C1 ⊂ C2, we have

ri(C1) = ri(C1 ∩ C2).

Since ri(C1) ∩ ri(C2) 6= Ø, there holds

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2)

[Prop. 1.4.5(a)]. Combining the preceding two relations, we obtain ri(C1) ⊂
ri(C2).

(d) Let x2 be in the intersection of C1 and ri(C2), and let x1 be in the relative
interior of C1 [ri(C1) is nonempty by Prop. 1.4.1(b)]. If x1 = x2, then we are
done, so assume that x1 6= x2. By the Line Segment Principle, all the points
on the line segment connecting x1 and x2, except possibly x2, belong to the
relative interior of C1. Since C1 ⊂ C2, the vector x1 is in C2, so that by the
Line Segment Principle, all the points on the line segment connecting x1 and x2,
except possibly x1, belong to the relative interior of C2. Hence, all the points on
the line segment connecting x1 and x2, except possibly x1 and x2, belong to the
intersection ri(C1) ∩ ri(C2), showing that ri(C1) ∩ ri(C2) is nonempty.

1.31

Let C be a nonempty convex set.

(a) Show the following refinement of Prop. 1.4.1(c): x ∈ ri(C) if and only if for
every x ∈ aff(C), there exists a γ > 1 such that x + (γ − 1)(x− x) ∈ C.

(b) Assuming that the origin lies in ri(C), show that cone(C) coincides with
aff(C).

(c) Show the following extension of part (b) to a nonconvex set: If X is a
nonempty set such that the origin lies in the relative interior of conv(X),
then cone(X) coincides with aff(X).

Solution: (a) Let x ∈ ri(C). We will show that for every x ∈ aff(C), there exists
a γ > 1 such that x + (γ − 1)(x− x) ∈ C. This is true if x = x, so assume that
x 6= x. Since x ∈ ri(C), there exists ε > 0 such that{

z | ‖z − x‖ < ε
}
∩ aff(C) ⊂ C.

Choose a point xε ∈ C in the intersection of the ray
{
x + α(x− x) | α ≥ 0

}
and

the set
{
z | ‖z − x‖ < ε

}
∩ aff(C). Then, for some positive scalar αε,

x− xε = αε(x− x).

Since x ∈ ri(C) and xε ∈ C, by Prop. 1.4.1(c), there is γε > 1 such that

x + (γε − 1)(x− xε) ∈ C,
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which in view of the preceding relation implies that

x + (γε − 1)αε(x− x) ∈ C.

The result follows by letting γ = 1 + (γε − 1)αε and noting that γ > 1, since
(γε − 1)αε > 0. The converse assertion follows from the fact C ⊂ aff(C) and
Prop. 1.4.1(c).

(b) The inclusion cone(C) ⊂ aff(C) always holds if 0 ∈ C. To show the reverse
inclusion, we note that by part (a) with x = 0, for every x ∈ aff(C), there exists
γ > 1 such that x̃ = (γ − 1)(−x) ∈ C. By using part (a) again with x = 0, for
x̃ ∈ C ⊂ aff(C), we see that there is γ̃ > 1 such that z = (γ̃− 1)(−x̃) ∈ C, which
combined with x̃ = (γ − 1)(−x) yields z = (γ̃ − 1)(γ − 1)x ∈ C. Hence

x =
1

(γ̃ − 1)(γ − 1)
z

with z ∈ C and (γ̃− 1)(γ− 1) > 0, implying that x ∈ cone(C) and, showing that
aff(C) ⊂ cone(C).

(c) This follows by part (b), where C = conv(X), and the fact

cone
(
conv(X)

)
= cone(X)

[Exercise 1.18(b)].

1.32

Let C be a nonempty set.

(a) If C is convex and compact, and the origin is not in the relative boundary
of C, then cone(C) is closed.

(b) Give examples showing that the assertion of part (a) fails if C is unbounded
or the origin is in the relative boundary of C.

(c) If C is compact and the origin is not in the relative boundary of conv(C),
then cone(C) is closed. Hint : Use part (a) and Exercise 1.18(b).

Solution:
(a) If 0 ∈ C, then 0 ∈ ri(C) since 0 is not on the relative boundary of C.
By Exercise 1.31(b), it follows that cone(C) coincides with aff(C), which is a
closed set. If 0 6∈ C, let y be in the closure of cone(C) and let {yk} ⊂ cone(C)
be a sequence converging to y. By Exercise 1.15, for every yk, there exists a
nonnegative scalar αk and a vector xk ∈ C such that yk = αkxk. Since {yk} → y,
the sequence {yk} is bounded, implying that

αk‖xk‖ ≤ sup
m≥0

‖ym‖ < ∞, ∀ k.

We have infm≥0 ‖xm‖ > 0, since {xk} ⊂ C and C is a compact set not containing
the origin, so that

0 ≤ αk ≤
supm≥0 ‖ym‖
infm≥0 ‖xm‖

< ∞, ∀ k.
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Thus, the sequence {(αk, xk)} is bounded and has a limit point (α, x) such that
α ≥ 0 and x ∈ C. By taking a subsequence of {(αk, xk)} that converges to (α, x),
and by using the facts yk = αkxk for all k and {yk} → y, we see that y = αx
with α ≥ 0 and x ∈ C. Hence, y ∈ cone(C), showing that cone(C) is closed.

(b) To see that the assertion in part (a) fails when C is unbounded, let C be the
line

{
(x1, x2) | x1 = 1, x2 ∈ <

}
in <2 not passing through the origin. Then,

cone(C) is the nonclosed set
{
(x1, x2) | x1 > 0, x2 ∈ <

}
∪
{
(0, 0)

}
.

To see that the assertion in part (a) fails when C contains the origin on its
relative boundary, let C be the closed ball

{
(x1, x2) | (x1 − 1)2 + x2

2 ≤ 1
}

in <2.

Then, cone(C) is the nonclosed set
{
(x1, x2) | x1 > 0, x2 ∈ <

}
∪
{
(0, 0)

}
(see

Fig. 1.3.2).

(c) Since C is compact, the convex hull of C is compact (cf. Prop. 1.3.2). Because
conv(C) does not contain the origin on its relative boundary, by part (a), the cone
generated by conv(C) is closed. By Exercise 1.18(b), cone

(
conv(C)

)
coincides

with cone(C) implying that cone(C) is closed.

1.33

(a) Let C be a nonempty convex cone. Show that ri(C) is also a convex cone.

(b) Let C = cone
(
{x1, . . . , xm}

)
. Show that

ri(C) =

{
m∑

i=1

αixi

∣∣∣ αi > 0, i = 1, . . . , m

}
.

Solution: (a) By Prop. 1.4.1(b), the relative interior of a convex set is a convex
set. We only need to show that ri(C) is a cone. Let y ∈ ri(C). Then, y ∈ C and
since C is a cone, αy ∈ C for all α > 0. By the Line Segment Principle, all the
points on the line segment connecting y and αy, except possibly αy, belong to
ri(C). Since this is true for every α > 0, it follows that αy ∈ ri(C) for all α > 0,
showing that ri(C) is a cone.

(b) Consider the linear transformation A that maps (α1, . . . , αm) ∈ <m into∑m

i=1
αixi ∈ <n. Note that C is the image of the nonempty convex set{

(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0
}

under the linear transformation A. Therefore, by using Prop. 1.4.3(d), we have

ri(C) = ri
(
A ·
{
(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0

})
= A · ri

({
(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0

})
= A ·

{
(α1, . . . , αm) | α1 > 0, . . . , αm > 0

}
=

{
m∑

i=1

αixi | α1 > 0, . . . , αm > 0

}
.
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1.34

Let A be an m×n matrix and let C be a nonempty convex set in <m. Assuming
that A−1 · ri(C) is nonempty, show that

ri(A−1 · C) = A−1 · ri(C), cl(A−1 · C) = A−1 · cl(C).

(Compare these relations with those of Prop. 1.4.4.)

Solution: Define the sets

D = <n × C, S =
{
(x, Ax) | x ∈ <n

}
.

Let T be the linear transformation that maps (x, y) ∈ <n+m into x ∈ <n. Then
it can be seen that

A−1 · C = T · (D ∩ S). (1.11)

The relative interior of D is given by ri(D) = <n×ri(C), and the relative interior
of S is equal to S (since S is a subspace). Hence,

A−1 · ri(C) = T ·
(
ri(D) ∩ S

)
. (1.12)

In view of the assumption that A−1 · ri(C) is nonempty, we have that the in-
tersection ri(D) ∩ S is nonempty. Therefore, it follows from Props. 1.4.3(d) and
1.4.5(a) that

ri
(
T · (D ∩ S)

)
= T ·

(
ri(D) ∩ S

)
. (1.13)

Combining Eqs. (1.11)-(1.13), we obtain

ri(A−1 · C) = A−1 · ri(C).

Next, we show the second relation. We have

A−1 · cl(C) =
{
x | Ax ∈ cl(C)

}
= T ·

{
(x, Ax) | Ax ∈ cl(C)

}
= T ·

(
cl(D) ∩ S

)
.

Since the intersection ri(D) ∩ S is nonempty, it follows from Prop. 1.4.5(a) that
cl(D) ∩ S = cl(D ∩ S). Furthermore, since T is continuous, we obtain

A−1 · cl(C) = T · cl(D ∩ S) ⊂ cl
(
T · (D ∩ S)

)
,

which combined with Eq. (1.11) yields

A−1 · cl(C) ⊂ cl(A−1 · C).

To show the reverse inclusion, cl(A−1 ·C) ⊂ A−1 · cl(C), let x be some vector in
cl(A−1 · C). This implies that there exists some sequence {xk} converging to x
such that Axk ∈ C for all k. Since xk converges to x, we have that Axk converges
to Ax, thereby implying that Ax ∈ cl(C), or equivalently, x ∈ A−1 · cl(C).
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1.35 (Closure of a Convex Function)

Consider a proper convex function f : <n 7→ (−∞,∞] and the function whose
epigraph is the closure of the epigraph of f . This function is called the closure
of f and is denoted by cl f . Show that:

(a) cl f is the greatest lower semicontinuous function majorized by f , i.e., if
g : <n 7→ [−∞,∞] is lower semicontinuous and satisfies g(x) ≤ f(x) for all
x ∈ <n, then g(x) ≤ (clf)(x) for all x ∈ <n.

(b) cl f is a closed proper convex function and

(cl f)(x) = f(x), ∀ x ∈ ri
(
dom(f)

)
.

(c) If x ∈ ri
(
dom(f)

)
and y ∈ dom(cl f), we have

(cl f)(y) = lim
α↓0

f
(
y + α(x− y)

)
.

(d) Assume that f = f1 + · · · + fm, where fi : <n 7→ (−∞,∞], i = 1, . . . , m,
are proper convex functions such that ∩m

i=1ri
(
dom(fi)

)
6= Ø. Show that

(cl f)(x) = (cl f1)(x) + · · ·+ (cl fm)(x), ∀ x ∈ <n.

Solution: (a) Let g : <n 7→ [−∞,∞] be such that g(x) ≤ f(x) for all x ∈
<n. Choose any x ∈ dom(cl f). Since epi(cl f) = cl

(
epi(f)

)
, we can choose a

sequence
{
(xk, wk)

}
∈ epi(f) such that xk → x, wk → (cl f)(x). Since g is lower

semicontinuous at x, we have

g(x) ≤ lim inf
k→∞

g(xk) ≤ lim inf
k→∞

f(xk) ≤ lim inf
k→∞

wk = (cl f)(x).

Note also that since epi(f) ⊂ epi(cl f), we have (cl f)(x) ≤ f(x) for all x ∈ <n.

(b) For the proof of this part and the next, we will use the easily shown fact that
for any convex function f , we have

ri
(
epi(f)

)
=
{
(x, w) | x ∈ ri

(
dom(f)

)
, f(x) < w

}
.

Let x ∈ ri
(
dom(f)

)
, and consider the vertical line L =

{
(x, w) | w ∈ <

}
.

Then there exists ŵ such that (x, ŵ) ∈ L∩ri
(
epi(f)

)
. Let w be such that (x, w) ∈

L∩ cl
(
epi(f)

)
. Then, by Prop. 1.4.5(a), we have L∩ cl

(
epi(f)

)
= cl

(
L∩ epi(f)

)
,

so that (x, w) ∈ cl
(
L ∩ epi(f)

)
. It follows from the Line Segment Principle that

the vector
(
x, ŵ + α(w − ŵ)

)
belongs to epi(f) for all α ∈ [0, 1). Taking the

limit as α → 1, we see that f(x) ≤ w for all w such that (x, w) ∈ L ∩ cl
(
epi(f)

)
,

implying that f(x) ≤ (cl f)(x). On the other hand, since epi(f) ⊂ epi(cl f), we
have (cl f)(x) ≤ f(x) for all x ∈ <n, so f(x) = (cl f)(x).
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We know that a closed convex function that is improper cannot take a finite
value at any point. Since cl f is closed and convex, and takes a finite value at all
points of the nonempty set ri

(
dom(f)

)
, it follows that cl f must be proper.

(c) Since the function cl f is closed and is majorized by f , we have

(cl f)(y) ≤ lim inf
α↓0

(cl f)
(
y + α(x− y)

)
≤ lim inf

α↓0
f
(
y + α(x− y)

)
.

To show the reverse inequality, let w be such that f(x) < w. Then, (x, w) ∈
ri
(
epi(f)

)
, while

(
y, (cl f)(y)

)
∈ cl
(
epi(f)

)
. From the Line Segment Principle, it

follows that(
αx + (1− α)y, αw + (1− α)(cl f)(y)

)
∈ ri
(
epi(f)

)
, ∀ α ∈ (0, 1].

Hence,

f
(
αx + (1− α)y

)
< αw + (1− α)(cl f)(y), ∀ α ∈ (0, 1].

By taking the limit as α → 0, we obtain

lim inf
α↓0

f
(
y + α(x− y)

)
≤ (cl f)(y),

thus completing the proof.

(d) Let x ∈ ∩m
i=1ri

(
dom(fi)

)
. Since by Prop. 1.4.5(a), we have

ri
(
dom(f)

)
= ∩m

i=1ri
(
dom(fi)

)
,

it follows that x ∈ ri
(
dom(f)

)
. By using part (c), we have for every y ∈ dom(cl f),

(cl f)(y) = lim
α↓0

f
(
y + α(x− y)

)
=

m∑
i=1

lim
α↓0

fi

(
y + α(x− y)

)
=

m∑
i=1

(cl fi)(y).

1.36

Let C be a convex set and let M be an affine set such that the intersection C∩M
is nonempty and bounded. Show that for every affine set M that is parallel to
M , the intersection C ∩M is bounded.

Solution: The assumption that “C ∩M is bounded” must be modified to read
“cl(C)∩M is bounded”. Assume first that C is closed. Since C ∩M is bounded,
by part (c) of the Recession Cone Theorem (cf. Prop. 1.5.1), RC∩M = {0}. This
and the fact RC∩M = RC ∩RM , imply that RC ∩RM = {0}. Let S be a subspace
such that M = x+S for some x ∈ M . Then RM = S, so that RC ∩S = {0}. For
every affine set M that is parallel to M , we have RM = S, so that

RC∩M = RC ∩RM = RC ∩ S = {0}.

Therefore, by part (c) of the Recession Cone Theorem, C ∩M is bounded.
In the general case where C is not closed, we replace C with cl(C). By

what has already been proved, cl(C) ∩ M is bounded, implying that C ∩ M is
bounded.
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1.37 (Properties of Cartesian Products)

Given nonempty sets Xi ⊂ <ni , i = 1, . . . , m, let X = X1 × · · · × Xm be their
Cartesian product. Show that:

(a) The convex hull (closure, affine hull) of X is equal to the Cartesian product
of the convex hulls (closures, affine hulls, respectively) of the Xi.

(b) If all the sets X1, . . . , Xm contain the origin, then

cone(X) = cone(X1)× · · · × cone(Xm).

Furthermore, the result fails if one of the sets does not contain the origin.

(c) If all the sets X1, . . . , Xm are convex, then the relative interior (recession
cone) of X is equal to the Cartesian product of the relative interiors (re-
cession cones, respectively) of the Xi.

Solution: (a) We first show that the convex hull of X is equal to the Cartesian
product of the convex hulls of the sets Xi, i = 1, . . . , m. Let y be a vector that
belongs to conv(X). Then, by definition, for some k, we have

y =

k∑
i=1

αiyi, with αi ≥ 0, i = 1, . . . , m,

k∑
i=1

αi = 1,

where yi ∈ X for all i. Since yi ∈ X, we have that yi = (xi
1, . . . , x

i
m) for all i,

with xi
1 ∈ X1, . . . , x

i
m ∈ Xm. It follows that

y =

k∑
i=1

αi(x
i
1, . . . , x

i
m) =

(
k∑

i=1

αix
i
1, . . . ,

k∑
i=1

αix
i
m

)
,

thereby implying that y ∈ conv(X1)× · · · × conv(Xm).
To prove the reverse inclusion, assume that y is a vector in conv(X1)×· · ·×

conv(Xm). Then, we can represent y as y = (y1, . . . , ym) with yi ∈ conv(Xi),
i.e., for all i = 1, . . . , m, we have

yi =

ki∑
j=1

αi
jx

i
j , xi

j ∈ Xi, ∀ j, αi
j ≥ 0, ∀ j,

ki∑
j=1

αi
j = 1.

First, consider the vectors

(x1
1, x

2
r1

, . . . , xm
rm−1

), (x1
2, x

2
r1

, . . . , xm
rm−1

), . . . , (x1
ki

, x2
r1

, . . . , xm
rm−1

),

for all possible values of r1, . . . , rm−1, i.e., we fix all components except the
first one, and vary the first component over all possible x1

j ’s used in the convex
combination that yields y1. Since all these vectors belong to X, their convex
combination given by (( k1∑

j=1

α1
jx

1
j

)
, x2

r1
, . . . , xm

rm−1

)
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belongs to the convex hull of X for all possible values of r1, . . . , rm−1. Now,
consider the vectors(( k1∑

j=1

α1
jx

1
j

)
, x2

1, . . . , x
m
rm−1

)
, . . . ,

(( k1∑
j=1

α1
jx

1
j

)
, x2

k2
, . . . , xm

rm−1

)
,

i.e., fix all components except the second one, and vary the second component
over all possible x2

j ’s used in the convex combination that yields y2. Since all
these vectors belong to conv(X), their convex combination given by(( k1∑

j=1

α1
jx

1
j

)
,
( k2∑

j=1

α2
jx

2
j

)
, . . . , xm

rm−1

)

belongs to the convex hull of X for all possible values of r2, . . . , rm−1. Proceeding
in this way, we see that the vector given by(( k1∑

j=1

α1
jx

1
j

)
,
( k2∑

j=1

α2
jx

2
j

)
, . . . ,

( km∑
j=1

αm
j xm

j

))

belongs to conv(X), thus proving our claim.

Next, we show the corresponding result for the closure of X. Assume that
y = (x1, . . . , xm) ∈ cl(X). This implies that there exists some sequence {yk} ⊂ X
such that yk → y. Since yk ∈ X, we have that yk = (xk

1 , . . . , xk
m) with xk

i ∈ Xi

for each i and k. Since yk → y, it follows that xi ∈ cl(Xi) for each i, and
hence y ∈ cl(X1) × · · · × cl(Xm). Conversely, suppose that y = (x1, . . . , xm) ∈
cl(X1) × · · · × cl(Xm). This implies that there exist sequences {xk

i } ⊂ Xi such
that xk

i → xi for each i = 1, . . . , m. Since xk
i ∈ Xi for each i and k, we have that

yk = (xk
1 , . . . , xk

m) ∈ X and {yk} converges to y = (x1, . . . , xm), implying that
y ∈ cl(X).

Finally, we show the corresponding result for the affine hull of X. Let’s
assume, by using a translation argument if necessary, that all the Xi’s contain
the origin, so that aff(X1), . . . , aff(Xm) as well as aff(X) are all subspaces.

Assume that y ∈ aff(X). Let the dimension of aff(X) be r, and let
y1, . . . , yr be linearly independent vectors in X that span aff(X). Thus, we
can represent y as

y =

r∑
i=1

βiyi,

where β1, . . . , βr are scalars. Since yi ∈ X, we have that yi = (xi
1, . . . , x

i
m) with

xi
j ∈ Xj . Thus,

y =

r∑
i=1

βi(xi
1, . . . , x

i
m) =

(
r∑

i=1

βixi
1, . . . ,

r∑
i=1

βixi
m

)
,
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implying that y ∈ aff(X1) × · · · × aff(Xm). Now, assume that y ∈ aff(X1) ×
· · · × aff(Xm). Let the dimension of aff(Xi) be ri, and let x1

i , . . . , x
ri
i be linearly

independent vectors in Xi that span aff(Xi). Thus, we can represent y as

y =

(
r1∑

j=1

βj
1xj

1, . . . ,

rm∑
j=1

βj
mxj

m

)
.

Since each Xi contains the origin, we have that the vectors(
r1∑

j=1

βj
1xj

1, 0, . . . , 0

)
,

(
0,

r2∑
j=1

βj
2xj

2, 0, . . . , 0

)
, . . . ,

(
0, . . . ,

rm∑
j=1

βj
mxj

m

)
,

belong to aff(X), and so does their sum, which is the vector y. Thus, y ∈ aff(X),
concluding the proof.

(b) Assume that y ∈ cone(X). We can represent y as

y =

r∑
i=1

αiyi,

for some r, where α1, . . . , αr are nonnegative scalars and yi ∈ X for all i. Since
yi ∈ X, we have that yi = (xi

1, . . . , x
i
m) with xi

j ∈ Xj . Thus,

y =

r∑
i=1

αi(xi
1, . . . , x

i
m) =

(
r∑

i=1

αixi
1, . . . ,

r∑
i=1

αixi
m

)
,

implying that y ∈ cone(X1)× · · · × cone(Xm).
Conversely, assume that y ∈ cone(X1) × · · · × cone(Xm). Then, we can

represent y as

y =

(
r1∑

j=1

αj
1x

j
1, . . . ,

rm∑
j=1

αj
mxj

m

)
,

where xj
i ∈ Xi and αj

i ≥ 0 for each i and j. Since each Xi contains the origin,
we have that the vectors(

r1∑
j=1

αj
1x

j
1, 0, . . . , 0

)
,

(
0,

r2∑
j=1

αj
2x

j
2, 0, . . . , 0

)
. . . ,

(
0, . . . ,

rm∑
j=1

αj
mxj

m

)
,

belong to the cone(X), and so does their sum, which is the vector y. Thus,
y ∈ cone(X), concluding the proof.

Finally, consider the example where

X1 = {0, 1} ⊂ <, X2 = {1} ⊂ <.
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For this example, cone(X1) × cone(X2) is given by the nonnegative quadrant,
whereas cone(X) is given by the two halflines α(0, 1) and α(1, 1) for α ≥ 0 and
the region that lies between them.

(c) We first show that

ri(X) = ri(X1)× · · · × ri(Xm).

Let x = (x1, . . . , xm) ∈ ri(X). Then, by Prop. 1.4.1 (c), we have that for all
x = (x1, . . . , xm) ∈ X, there exists some γ > 1 such that

x + (γ − 1)(x− x) ∈ X.

Therefore, for all xi ∈ Xi, there exists some γ > 1 such that

xi + (γ − 1)(xi − xi) ∈ Xi,

which, by Prop. 1.4.1(c), implies that xi ∈ ri(Xi), i.e., x ∈ ri(X1)× · · · × ri(Xm).
Conversely, let x = (x1, . . . , xm) ∈ ri(X1) × · · · × ri(Xm). The above argument
can be reversed through the use of Prop. 1.4.1(c), to show that x ∈ ri(X). Hence,
the result follows.

Finally, let us show that

RX = RX1 × · · · ×RXm .

Let y = (y1, . . . , ym) ∈ RX . By definition, this implies that for all x ∈ X and
α ≥ 0, we have x + αy ∈ X. From this, it follows that for all xi ∈ Xi and α ≥ 0,
xi +αyi ∈ Xi, so that yi ∈ RXi , implying that y ∈ RX1 ×· · ·×RXm . Conversely,
let y = (y1, . . . , ym) ∈ RX1 ×· · ·×RXm . By definition, for all xi ∈ Xi and α ≥ 0,
we have xi + αyi ∈ Xi. From this, we get for all x ∈ X and α ≥ 0, x + αy ∈ X,
thus showing that y ∈ RX .

1.38 (Recession Cones of Nonclosed Sets)

Let C be a nonempty convex set.

(a) Show that
RC ⊂ Rcl(C), cl(RC) ⊂ Rcl(C).

Give an example where the inclusion cl(RC) ⊂ Rcl(C) is strict.

(b) Let C be a closed convex set such that C ⊂ C. Show that RC ⊂ RC . Give

an example showing that the inclusion can fail if C is not closed.

Solution:
(a) Let y ∈ RC . Then, by the definition of RC , x + αy ∈ C for every x ∈ C and
every α ≥ 0. Since C ⊂ cl(C), it follows that x + αy ∈ cl(C) for some x ∈ cl(C)
and every α ≥ 0, which, in view of part (b) of the Recession Cone Theorem (cf.
Prop. 1.5.1), implies that y ∈ Rcl(C). Hence

RC ⊂ Rcl(C).
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By taking closures in this relation and by using the fact that Rcl(C) is closed [part
(a) of the Recession Cone Theorem], we obtain cl(RC) ⊂ Rcl(C).

To see that the inclusion cl(RC) ⊂ Rcl(C) can be strict, consider the set

C =
{
(x1, x2) | 0 ≤ x1, 0 ≤ x2 < 1

}
∪
{
(0, 1)

}
,

whose closure is

cl(C) = {(x1, x2) | 0 ≤ x1, 0 ≤ x2 ≤ 1}.

The recession cones of C and its closure are

RC =
{
(0, 0)

}
, Rcl(C) =

{
(x1, x2) | 0 ≤ x1, x2 = 0

}
.

Thus, cl(RC) =
{
(0, 0)

}
, and cl(RC) is a strict subset of Rcl(C).

(b) Let y ∈ RC and let x be a vector in C. Then we have x + αy ∈ C for all
α ≥ 0. Thus for the vector x, which belongs to C, we have x + αy ∈ C for all
α ≥ 0, and it follows from part (b) of the Recession Cone Theorem (cf. Prop.
1.5.1) that y ∈ R

C . Hence, RC ⊂ RC .

To see that the inclusion RC ⊂ RC can fail when C is not closed, consider
the sets

C =
{
(x1, x2) | x1 ≥ 0, x2 = 0

}
, C =

{
(x1, x2) | x1 ≥ 0, 0 ≤ x2 < 1

}
.

Their recession cones are

RC = C =
{
(x1, x2) | x1 ≥ 0, x2 = 0

}
, RC =

{
(0, 0)

}
,

showing that RC is not a subset of RC .

1.39 (Recession Cones of Relative Interiors)

Let C be a nonempty convex set.

(a) Show that Rri(C) = Rcl(C).

(b) Show that a vector y belongs to Rri(C) if and only if there exists a vector
x ∈ ri(C) such that x + αy ∈ ri(C) for every α ≥ 0.

(c) Let C be a convex set such that C = ri(C) and C ⊂ C. Show that RC ⊂
RC . Give an example showing that the inclusion can fail if C 6= ri(C).

Solution: (a) The inclusion Rri(C) ⊂ Rcl(C) follows from Exercise 1.38(b).
Conversely, let y ∈ Rcl(C), so that by the definition of Rcl(C), x+αy ∈ cl(C)

for every x ∈ cl(C) and every α ≥ 0. In particular, x + αy ∈ cl(C) for every
x ∈ ri(C) and every α ≥ 0. By the Line Segment Principle, all points on the
line segment connecting x and x + αy, except possibly x + αy, belong to ri(C),
implying that x + αy ∈ ri(C) for every x ∈ ri(C) and every α ≥ 0. Hence,
y ∈ Rri(C), showing that Rcl(C) ⊂ Rri(C).

43



(b) If y ∈ Rri(C), then by the definition of Rri(C) for every vector x ∈ ri(C) and
α ≥ 0, the vector x + αy is in ri(C), which holds in particular for some x ∈ ri(C)
[note that ri(C) is nonempty by Prop. 1.4.1(b)].

Conversely, let y be such that there exists a vector x ∈ ri(C) with x+αy ∈
ri(C) for all α ≥ 0. Hence, there exists a vector x ∈ cl(C) with x+αy ∈ cl(C) for
all α ≥ 0, which, by part (b) of the Recession Cone Theorem (cf. Prop. 1.5.1),
implies that y ∈ Rcl(C). Using part (a), it follows that y ∈ Rri(C), completing the
proof.

(c) Using Exercise 1.38(c) and the assumption that C ⊂ C [which implies that
C ⊂ cl(C)], we have

RC ⊂ R
cl(C)

= R
ri(C)

= R
C

,

where the equalities follow from part (a) and the assumption that C = ri(C).

To see that the inclusion RC ⊂ RC can fail when C 6= ri(C), consider the
sets

C =
{
(x1, x2) | x1 ≥ 0, 0 < x2 < 1

}
, C =

{
(x1, x2) | x1 ≥ 0, 0 ≤ x2 < 1

}
,

for which we have C ⊂ C and

RC =
{
(x1, x2) | x1 ≥ 0, x2 = 0

}
, RC =

{
(0, 0)

}
,

showing that RC is not a subset of RC .

1.40

This exercise is a refinement of Prop. 1.5.6. Let {Xk} and {Ck} be sequences of
closed convex subsets of <n, such that the intersection

X = ∩∞k=0Xk

is specified by linear inequality constraints as in Prop. 1.5.6. Assume that:

(1) Xk+1 ⊂ Xk and Ck+1 ⊂ Ck for all k.

(2) Xk ∩ Ck is nonempty for all k.

(3) We have
RX = LX , RX ∩RC ⊂ LC ,

where
RX = ∩∞k=0RXk

, LX = ∩∞k=0LXk
,

RC = ∩∞k=0RCk
, LC = ∩∞k=0LCk

.

Then the intersection ∩∞k=0(Xk ∩ Ck) is nonempty. Hint : Consider the sets
Ck = Xk ∩ Ck and the intersection X ∩ (∩∞k=0Ck). Apply Prop. 1.5.6.

Solution: For each k, consider the set Ck = Xk ∩ Ck. Note that {Ck} is a
sequence of nonempty closed convex sets and X is specified by linear inequality
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constraints. We will show that, under the assumptions given in this exercise,
the assumptions of Prop. 1.5.6 are satisfied, thus showing that the intersection
X ∩ (∩∞k=0Ck) [which is equal to the intersection ∩∞k=0(Xk ∩ Ck)] is nonempty.

Since Xk+1 ⊂ Xk and Ck+1 ⊂ Ck for all k, it follows that

Ck+1 ⊂ Ck, ∀ k,

showing that assumption (1) of Prop. 1.5.6 is satisfied. Similarly, since by as-
sumption Xk ∩ Ck is nonempty for all k, we have that, for all k, the set

X ∩ Ck = X ∩Xk ∩ Ck = Xk ∩ Ck,

is nonempty, showing that assumption (2) is satisfied. Finally, let R denote the
set R = ∩∞k=0RCk

. Since by assumption Ck is nonempty for all k, we have, by

part (e) of the Recession Cone Theorem, that RCk
= RXk

∩RCk
implying that

R = ∩∞k=0RCk

= ∩∞k=0(RXk
∩RCk

)

=
(
∩∞k=0RXk

)
∩
(
∩∞k=0RCk

)
= RX ∩RC .

Similarly, letting L denote the set L = ∩∞k=0LCk
, it can be seen that L = LX∩LC .

Since, by assumption RX ∩RC ⊂ LC , it follows that

RX ∩R = RX ∩RC ⊂ LC ,

which, in view of the assumption that RX = LX , implies that

RX ∩R ⊂ LC ∩ LX = L,

showing that assumption (3) of Prop. 1.5.6 is satisfied, and thus proving that the
intersection X ∩ (∩∞k=0Ck) is nonempty.

1.41

Let C be a nonempty convex subset of <n and let A be an m× n matrix. Show
that if Rcl(C) ∩N(A) = {0}, then

cl(A · C) = A · cl(C), A ·Rcl(C) = RA·cl(C).

Give an example showing that A · Rcl(C) and RA·cl(C) may differ when Rcl(C) ∩
N(A) 6= {0}.

Solution: Let y be in the closure of A · C. We will show that y = Ax for some
x ∈ cl(C). For every ε > 0, the set

Cε = cl(C) ∩
{
x | ‖y −Ax‖ ≤ ε

}
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is closed. Since A·C ⊂ A·cl(C) and y ∈ cl(A·C), it follows that y is in the closure
of A · cl(C), so that Cε is nonempty for every ε > 0. Furthermore, the recession
cone of the set

{
x | ‖Ax − y‖ ≤ ε

}
coincides with the null space N(A), so that

RCε = Rcl(C) ∩N(A). By assumption we have Rcl(C) ∩N(A) = {0}, and by part
(c) of the Recession Cone Theorem (cf. Prop. 1.5.1), it follows that Cε is bounded
for every ε > 0. Now, since the sets Cε are nested nonempty compact sets, their
intersection ∩ε>0Cε is nonempty. For any x in this intersection, we have x ∈ cl(C)
and Ax − y = 0, showing that y ∈ A · cl(C). Hence, cl(A · C) ⊂ A · cl(C). The
converse A · cl(C) ⊂ cl(A · C) is clear, since for any x ∈ cl(C) and sequence
{xk} ⊂ C converging to x, we have Axk → Ax, showing that Ax ∈ cl(A · C).
Therefore,

cl(A · C) = A · cl(C). (1.14)

We now show that A · Rcl(C) = RA·cl(C). Let y ∈ A · Rcl(C). Then, there
exists a vector u ∈ Rcl(C) such that Au = y, and by the definition of Rcl(C),
there is a vector x ∈ cl(C) such that x + αu ∈ cl(C) for every α ≥ 0. Therefore,
Ax + αAu ∈ A · cl(C) for every α ≥ 0, which, together with Ax ∈ A · cl(C) and
Au = y, implies that y is a direction of recession of the closed set A · cl(C) [cf.
Eq. (1.14)]. Hence, A ·Rcl(C) ⊂ RA·cl(C).

Conversely, let y ∈ RA·cl(C). We will show that y ∈ A · Rcl(c). This is true
if y = 0, so assume that y 6= 0. By definition of direction of recession, there is a
vector z ∈ A · cl(C) such that z +αy ∈ A · cl(C) for every α ≥ 0. Let x ∈ cl(C) be
such that Ax = z, and for every positive integer k, let xk ∈ cl(C) be such that
Axk = z + ky. Since y 6= 0, the sequence {Axk} is unbounded, implying that
{xk} is also unbounded (if {xk} were bounded, then {Axk} would be bounded,
a contradiction). Because xk 6= x for all k, we can define

uk =
xk − x

‖xk − x‖ , ∀ k.

Let u be a limit point of {uk}, and note that u 6= 0. It can be seen that
u is a direction of recession of cl(C) [this can be done similar to the proof of
part (c) of the Recession Cone Theorem (cf. Prop. 1.5.1)]. By taking an appro-
priate subsequence if necessary, we may assume without loss of generality that
limk→∞ uk = u. Then, by the choices of uk and xk, we have

Au = lim
k→∞

Auk = lim
k→∞

Axk −Ax

‖xk − x‖ = lim
k→∞

k

‖xk − x‖y,

implying that limk→∞
k

‖xk−x‖ exists. Denote this limit by λ. If λ = 0, then u is

in the null space N(A), implying that u ∈ Rcl(C) ∩N(A). By the given condition
Rcl(C) ∩ N(A) = {0}, we have u = 0 contradicting the fact u 6= 0. Thus, λ is
positive and Au = λy, so that A(u/λ) = y. Since Rcl(C) is a cone [part (a) of the
Recession Cone Theorem] and u ∈ Rcl(C), the vector u/λ is in Rcl(C), so that y
belongs to A ·Rcl(C). Hence, RA·cl(C) ⊂ A ·Rcl(C), completing the proof.

As an example showing that A·Rcl(C) and RA·cl(C) may differ when Rcl(C)∩
N(A) 6= {0}, consider the set

C =
{
(x1, x2) | x1 ∈ <, x2 ≥ x2

1

}
,
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and the linear transformation A that maps (x1, x2) ∈ <2 into x1 ∈ <. Then, C
is closed and its recession cone is

RC =
{
(x1, x2) | x1 = 0, x2 ≥ 0

}
,

so that A ·RC = {0}, where 0 is scalar. On the other hand, A ·C coincides with
<, so that RA·C = < 6= A ·RC .

1.42

Let C be a nonempty convex subset of <n. Show the following refinement of
Prop. 1.5.8(a) and Exercise 1.41: if A is an m× n matrix and Rcl(C) ∩N(A) is a
subspace of the lineality space of cl(C), then

cl(A · C) = A · cl(C), A ·Rcl(C) = RA·cl(C).

Solution: Let S be defined by

S = Rcl(C) ∩N(A),

and note that S is a subspace of Lcl(C) by the given assumption. Then, by Lemma
1.5.4, we have

cl(C) =
(
cl(C) ∩ S⊥

)
+ S,

so that the images of cl(C) and cl(C) ∩ S⊥ under A coincide [since S ⊂ N(A)],
i.e.,

A · cl(C) = A ·
(
cl(C) ∩ S⊥

)
. (1.15)

Because A · C ⊂ A · cl(C), we have

cl(A · C) ⊂ cl
(
A · cl(C)

)
,

which in view of Eq. (1.15) gives

cl(A · C) ⊂ cl
(
A ·
(
cl(C) ∩ S⊥

))
.

Define

C = cl(C) ∩ S⊥

so that the preceding relation becomes

cl(A · C) ⊂ cl(A · C). (1.16)

The recession cone of C is given by

RC = Rcl(C) ∩ S⊥, (1.17)
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[cf. part (e) of the Recession Cone Theorem, Prop. 1.5.1], for which, since S =
Rcl(C) ∩N(A), we have

RC
∩N(A) = S ∩ S⊥ = {0}.

Therefore, by Prop. 1.5.8, the set A ·C is closed, implying that cl(A ·C) = A ·C.
By the definition of C, we have A · C ⊂ A · cl(C), implying that cl(A · C) ⊂
A ·cl(C) which together with Eq. (1.16) yields cl(A ·C) ⊂ A ·cl(C). The converse
A · cl(C) ⊂ cl(A · C) is clear, since for any x ∈ cl(C) and sequence {xk} ⊂ C
converging to x, we have Axk → Ax, showing that Ax ∈ cl(A · C). Therefore,

cl(A · C) = A · cl(C). (1.18)

We next show that A · Rcl(C) = RA·cl(C). Let y ∈ A · Rcl(C). Then, there
exists a vector u ∈ Rcl(C) such that Au = y, and by the definition of Rcl(C),
there is a vector x ∈ cl(C) such that x + αu ∈ cl(C) for every α ≥ 0. Therefore,
Ax+αAu ∈ Acl(C) for some x ∈ cl(C) and for every α ≥ 0, which together with
Ax ∈ A · cl(C) and Au = y implies that y is a recession direction of the closed
set A · cl(C) [Eq. (1.18)]. Hence, A ·Rcl(C) ⊂ RA·cl(C).

Conversely, in view of Eq. (1.15) and the definition of C, we have

RA·cl(C) = RA·C .

Since RC ∩N(A) = {0} and C is closed, by Exercise 1.41, it follows that

RA·C = A ·RC ,

which combined with Eq. (1.17) implies that

A ·RC ⊂ A ·Rcl(C).

The preceding three relations yield RA·cl(C) ⊂ A ·Rcl(C), completing the proof.

1.43 (Recession Cones of Vector Sums)

This exercise is a refinement of Prop. 1.5.9.

(a) Let C1, . . . , Cm be nonempty closed convex subsets of <n such that the
equality y1 + · · · + ym = 0 with yi ∈ RCi implies that each yi belongs to
the lineality space of Ci. Then, the vector sum C1 + · · · + Cm is a closed
set and

RC1+···+Cm = RC1 + · · ·+ RCm .

(b) Show the following extension of part (a) to nonclosed sets: Let C1, . . . , Cm

be nonempty convex subsets of <n such that the equality y1 + · · ·+ym = 0
with yi ∈ Rcl(Ci)

implies that each yi belongs to the lineality space of
cl(Ci). Then, we have

cl(C1 + · · ·+ Cm) = cl(C1) + · · ·+ cl(Cm),
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Rcl(C1+···+Cm) = Rcl(C1) + · · ·+ Rcl(Cm).

Solution: (a) Let C be the Cartesian product C1× · · ·×Cm. Then, by Exercise
1.37, C is closed, and its recession cone and lineality space are given by

RC = RC1 × · · · ×RCm , LC = LC1 × · · · × LCm .

Let A be a linear transformation that maps (x1, . . . , xm) ∈ <mn into x1 + · · ·+
xm ∈ <n. The null space of A is the set of all (y1, . . . , ym) such that y1+· · ·+ym =
0. The intersection RC ∩N(A) consists of points (y1, . . . , ym) such that y1 + · · ·+
ym = 0 with yi ∈ RCi for all i. By the given condition, every vector (y1, . . . , ym)
in the intersection RC ∩ N(A) is such that yi ∈ LCi for all i, implying that
(y1, . . . , ym) belongs to the lineality space LC . Thus, RC ∩N(A) ⊂ LC ∩N(A).
On the other hand by definition of the lineality space, we have LC ⊂ RC , so that
LC ∩ N(A) ⊂ RC ∩ N(A). Therefore, RC ∩ N(A) = LC ∩ N(A), implying that
RC ∩ N(A) is a subspace of LC . By Exercise 1.42, the set A · C is closed and
RA·C = A ·RC . Since A · C = C1 + · · ·+ Cm, the assertions of part (a) follow.

(b) The proof is similar to that of part (a). Let C be the Cartesian product
C1 × · · · × Cm. Then, by Exercise 1.37(a),

cl(C) = cl(C1)× · · · × cl(Cm), (1.19)

and its recession cone and lineality space are given by

Rcl(C) = Rcl(C1) × · · · ×Rcl(Cm), (1.20)

Lcl(C) = Lcl(C1) × · · · × Lcl(Cm).

Let A be a linear transformation that maps (x1, . . . , xm) ∈ <mn into x1 + · · ·+
xm ∈ <n. Then, the intersection Rcl(C) ∩ N(A) consists of points (y1, . . . , ym)
such that y1 + · · · + ym = 0 with yi ∈ Rcl(Ci)

for all i. By the given condition,
every vector (y1, . . . , ym) in the intersection Rcl(C)∩N(A) is such that yi ∈ Lcl(Ci)

for all i, implying that (y1, . . . , ym) belongs to the lineality space Lcl(C). Thus,
Rcl(C) ∩N(A) ⊂ Lcl(C) ∩N(A). On the other hand by definition of the lineality
space, we have Lcl(C) ⊂ Rcl(C), so that Lcl(C) ∩ N(A) ⊂ Rcl(C) ∩ N(A). Hence,
Rcl(C) ∩ N(A) = Lcl(C) ∩ N(A), implying that Rcl(C) ∩ N(A) is a subspace of
Lcl(C). By Exercise 1.42, we have cl(A ·C) = A · cl(C) and RA·cl(C) = A ·Rcl(C),
from which by using the relation A · C = C1 + · · · + Cm, and Eqs. (1.19) and
(1.20), we obtain

cl(C1 + · · ·+ Cm) = cl(C1) + · · ·+ cl(Cm),

Rcl(C1+···+Cm) = Rcl(C1) + · · ·+ Rcl(Cm).
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1.44

Let C1, . . . , Cm be nonempty subsets of <n that are specified by convex quadratic
inequalities, i.e., for all i = 1, . . . , n,

Ci =
{
x | x′Qijx + a′ijx + bij ≤ 0, j = 1, . . . , ri

}
,

where Qij are symmetric positive semidefinite n× n matrices, aij are vectors in
<n, and bij are scalars. Show that the vector sum C1 + · · ·+ Cm is a closed set.

Solution: Let C be the Cartesian product C1 × · · · × Cm viewed as a subset of
<mn, and let A be the linear transformation that maps a vector (x1, . . . , xm) ∈
<mn into x1 + · · ·+ xm. Note that set C can be written as

C =
{
x = (x1, . . . , xm) | x′Qijx + a′ijx + bij ≤ 0, i = 1, . . . , m, j = 1, . . . , ri

}
,

where the Qij are appropriately defined symmetric positive semidefinite mn×mn
matrices and the aij are appropriately defined vectors in <mn. Hence, the set C
is specified by convex quadratic inequalities. Thus, we can use Prop. 1.5.8(c) to
assert that the set AC = C1 + · · ·+ Cm is closed.

1.45 (Set Intersection and Helly’s Theorem)

Show that the conclusions of Props. 1.5.5 and 1.5.6 hold if the assumption that
the sets Ck are nonempty and nested is replaced by the weaker assumption that
any subcollection of n + 1 (or fewer) sets from the sequence {Ck} has nonempty
intersection. Hint : Consider the sets Ck given by

Ck = ∩k
i=1Ci, ∀ k = 1, 2, . . . ,

and use Helly’s Theorem (Exercise 1.25) to show that they are nonempty.

Solution: Helly’s Theorem implies that the sets Ck defined in the hint are
nonempty. These sets are also nested and satisfy the assumptions of Props. 1.5.5
and 1.5.6. Therefore, the intersection ∩∞i=1Ci is nonempty. Since

∩∞i=1Ci ⊂ ∩∞i=1Ci,

the result follows.
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